6 * Address space accounting code <alan@lxorguk.ukuu.org.uk>
9 #include <linux/kernel.h>
10 #include <linux/slab.h>
11 #include <linux/backing-dev.h>
13 #include <linux/shm.h>
14 #include <linux/mman.h>
15 #include <linux/pagemap.h>
16 #include <linux/swap.h>
17 #include <linux/syscalls.h>
18 #include <linux/capability.h>
19 #include <linux/init.h>
20 #include <linux/file.h>
22 #include <linux/personality.h>
23 #include <linux/security.h>
24 #include <linux/hugetlb.h>
25 #include <linux/profile.h>
26 #include <linux/export.h>
27 #include <linux/mount.h>
28 #include <linux/mempolicy.h>
29 #include <linux/rmap.h>
30 #include <linux/mmu_notifier.h>
31 #include <linux/perf_event.h>
32 #include <linux/audit.h>
33 #include <linux/khugepaged.h>
34 #include <linux/uprobes.h>
35 #include <linux/rbtree_augmented.h>
36 #include <linux/sched/sysctl.h>
37 #include <linux/notifier.h>
38 #include <linux/memory.h>
40 #include <asm/uaccess.h>
41 #include <asm/cacheflush.h>
43 #include <asm/mmu_context.h>
47 #ifndef arch_mmap_check
48 #define arch_mmap_check(addr, len, flags) (0)
51 #ifndef arch_rebalance_pgtables
52 #define arch_rebalance_pgtables(addr, len) (addr)
55 static void unmap_region(struct mm_struct *mm,
56 struct vm_area_struct *vma, struct vm_area_struct *prev,
57 unsigned long start, unsigned long end);
59 /* description of effects of mapping type and prot in current implementation.
60 * this is due to the limited x86 page protection hardware. The expected
61 * behavior is in parens:
64 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC
65 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes
66 * w: (no) no w: (no) no w: (yes) yes w: (no) no
67 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
69 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes
70 * w: (no) no w: (no) no w: (copy) copy w: (no) no
71 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
74 pgprot_t protection_map[16] = {
75 __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
76 __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
79 pgprot_t vm_get_page_prot(unsigned long vm_flags)
81 return __pgprot(pgprot_val(protection_map[vm_flags &
82 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
83 pgprot_val(arch_vm_get_page_prot(vm_flags)));
85 EXPORT_SYMBOL(vm_get_page_prot);
87 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS; /* heuristic overcommit */
88 int sysctl_overcommit_ratio __read_mostly = 50; /* default is 50% */
89 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
90 unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
91 unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */
93 * Make sure vm_committed_as in one cacheline and not cacheline shared with
94 * other variables. It can be updated by several CPUs frequently.
96 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
99 * The global memory commitment made in the system can be a metric
100 * that can be used to drive ballooning decisions when Linux is hosted
101 * as a guest. On Hyper-V, the host implements a policy engine for dynamically
102 * balancing memory across competing virtual machines that are hosted.
103 * Several metrics drive this policy engine including the guest reported
106 unsigned long vm_memory_committed(void)
108 return percpu_counter_read_positive(&vm_committed_as);
110 EXPORT_SYMBOL_GPL(vm_memory_committed);
113 * Check that a process has enough memory to allocate a new virtual
114 * mapping. 0 means there is enough memory for the allocation to
115 * succeed and -ENOMEM implies there is not.
117 * We currently support three overcommit policies, which are set via the
118 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting
120 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
121 * Additional code 2002 Jul 20 by Robert Love.
123 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
125 * Note this is a helper function intended to be used by LSMs which
126 * wish to use this logic.
128 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
130 unsigned long free, allowed, reserve;
132 vm_acct_memory(pages);
135 * Sometimes we want to use more memory than we have
137 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
140 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
141 free = global_page_state(NR_FREE_PAGES);
142 free += global_page_state(NR_FILE_PAGES);
145 * shmem pages shouldn't be counted as free in this
146 * case, they can't be purged, only swapped out, and
147 * that won't affect the overall amount of available
148 * memory in the system.
150 free -= global_page_state(NR_SHMEM);
152 free += get_nr_swap_pages();
155 * Any slabs which are created with the
156 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
157 * which are reclaimable, under pressure. The dentry
158 * cache and most inode caches should fall into this
160 free += global_page_state(NR_SLAB_RECLAIMABLE);
163 * Leave reserved pages. The pages are not for anonymous pages.
165 if (free <= totalreserve_pages)
168 free -= totalreserve_pages;
171 * Reserve some for root
174 free -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
182 allowed = vm_commit_limit();
184 * Reserve some for root
187 allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
190 * Don't let a single process grow so big a user can't recover
193 reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);
194 allowed -= min(mm->total_vm / 32, reserve);
197 if (percpu_counter_read_positive(&vm_committed_as) < allowed)
200 vm_unacct_memory(pages);
206 * Requires inode->i_mapping->i_mmap_mutex
208 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
209 struct file *file, struct address_space *mapping)
211 if (vma->vm_flags & VM_DENYWRITE)
212 atomic_inc(&file_inode(file)->i_writecount);
213 if (vma->vm_flags & VM_SHARED)
214 mapping->i_mmap_writable--;
216 flush_dcache_mmap_lock(mapping);
217 if (unlikely(vma->vm_flags & VM_NONLINEAR))
218 list_del_init(&vma->shared.nonlinear);
220 vma_interval_tree_remove(vma, &mapping->i_mmap);
221 flush_dcache_mmap_unlock(mapping);
225 * Unlink a file-based vm structure from its interval tree, to hide
226 * vma from rmap and vmtruncate before freeing its page tables.
228 void unlink_file_vma(struct vm_area_struct *vma)
230 struct file *file = vma->vm_file;
233 struct address_space *mapping = file->f_mapping;
234 mutex_lock(&mapping->i_mmap_mutex);
235 __remove_shared_vm_struct(vma, file, mapping);
236 mutex_unlock(&mapping->i_mmap_mutex);
241 * Close a vm structure and free it, returning the next.
243 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
245 struct vm_area_struct *next = vma->vm_next;
248 if (vma->vm_ops && vma->vm_ops->close)
249 vma->vm_ops->close(vma);
252 mpol_put(vma_policy(vma));
253 kmem_cache_free(vm_area_cachep, vma);
257 static unsigned long do_brk(unsigned long addr, unsigned long len);
259 SYSCALL_DEFINE1(brk, unsigned long, brk)
261 unsigned long rlim, retval;
262 unsigned long newbrk, oldbrk;
263 struct mm_struct *mm = current->mm;
264 unsigned long min_brk;
267 down_write(&mm->mmap_sem);
269 #ifdef CONFIG_COMPAT_BRK
271 * CONFIG_COMPAT_BRK can still be overridden by setting
272 * randomize_va_space to 2, which will still cause mm->start_brk
273 * to be arbitrarily shifted
275 if (current->brk_randomized)
276 min_brk = mm->start_brk;
278 min_brk = mm->end_data;
280 min_brk = mm->start_brk;
286 * Check against rlimit here. If this check is done later after the test
287 * of oldbrk with newbrk then it can escape the test and let the data
288 * segment grow beyond its set limit the in case where the limit is
289 * not page aligned -Ram Gupta
291 rlim = rlimit(RLIMIT_DATA);
292 if (rlim < RLIM_INFINITY && (brk - mm->start_brk) +
293 (mm->end_data - mm->start_data) > rlim)
296 newbrk = PAGE_ALIGN(brk);
297 oldbrk = PAGE_ALIGN(mm->brk);
298 if (oldbrk == newbrk)
301 /* Always allow shrinking brk. */
302 if (brk <= mm->brk) {
303 if (!do_munmap(mm, newbrk, oldbrk-newbrk))
308 /* Check against existing mmap mappings. */
309 if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
312 /* Ok, looks good - let it rip. */
313 if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
318 populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
319 up_write(&mm->mmap_sem);
321 mm_populate(oldbrk, newbrk - oldbrk);
326 up_write(&mm->mmap_sem);
330 static long vma_compute_subtree_gap(struct vm_area_struct *vma)
332 unsigned long max, subtree_gap;
335 max -= vma->vm_prev->vm_end;
336 if (vma->vm_rb.rb_left) {
337 subtree_gap = rb_entry(vma->vm_rb.rb_left,
338 struct vm_area_struct, vm_rb)->rb_subtree_gap;
339 if (subtree_gap > max)
342 if (vma->vm_rb.rb_right) {
343 subtree_gap = rb_entry(vma->vm_rb.rb_right,
344 struct vm_area_struct, vm_rb)->rb_subtree_gap;
345 if (subtree_gap > max)
351 #ifdef CONFIG_DEBUG_VM_RB
352 static int browse_rb(struct rb_root *root)
354 int i = 0, j, bug = 0;
355 struct rb_node *nd, *pn = NULL;
356 unsigned long prev = 0, pend = 0;
358 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
359 struct vm_area_struct *vma;
360 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
361 if (vma->vm_start < prev) {
362 printk("vm_start %lx prev %lx\n", vma->vm_start, prev);
365 if (vma->vm_start < pend) {
366 printk("vm_start %lx pend %lx\n", vma->vm_start, pend);
369 if (vma->vm_start > vma->vm_end) {
370 printk("vm_end %lx < vm_start %lx\n",
371 vma->vm_end, vma->vm_start);
374 if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
375 printk("free gap %lx, correct %lx\n",
377 vma_compute_subtree_gap(vma));
382 prev = vma->vm_start;
386 for (nd = pn; nd; nd = rb_prev(nd))
389 printk("backwards %d, forwards %d\n", j, i);
395 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
399 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
400 struct vm_area_struct *vma;
401 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
402 BUG_ON(vma != ignore &&
403 vma->rb_subtree_gap != vma_compute_subtree_gap(vma));
407 void validate_mm(struct mm_struct *mm)
411 unsigned long highest_address = 0;
412 struct vm_area_struct *vma = mm->mmap;
414 struct anon_vma_chain *avc;
415 vma_lock_anon_vma(vma);
416 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
417 anon_vma_interval_tree_verify(avc);
418 vma_unlock_anon_vma(vma);
419 highest_address = vma->vm_end;
423 if (i != mm->map_count) {
424 printk("map_count %d vm_next %d\n", mm->map_count, i);
427 if (highest_address != mm->highest_vm_end) {
428 printk("mm->highest_vm_end %lx, found %lx\n",
429 mm->highest_vm_end, highest_address);
432 i = browse_rb(&mm->mm_rb);
433 if (i != mm->map_count) {
434 printk("map_count %d rb %d\n", mm->map_count, i);
440 #define validate_mm_rb(root, ignore) do { } while (0)
441 #define validate_mm(mm) do { } while (0)
444 RB_DECLARE_CALLBACKS(static, vma_gap_callbacks, struct vm_area_struct, vm_rb,
445 unsigned long, rb_subtree_gap, vma_compute_subtree_gap)
448 * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
449 * vma->vm_prev->vm_end values changed, without modifying the vma's position
452 static void vma_gap_update(struct vm_area_struct *vma)
455 * As it turns out, RB_DECLARE_CALLBACKS() already created a callback
456 * function that does exacltly what we want.
458 vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
461 static inline void vma_rb_insert(struct vm_area_struct *vma,
462 struct rb_root *root)
464 /* All rb_subtree_gap values must be consistent prior to insertion */
465 validate_mm_rb(root, NULL);
467 rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
470 static void vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
473 * All rb_subtree_gap values must be consistent prior to erase,
474 * with the possible exception of the vma being erased.
476 validate_mm_rb(root, vma);
479 * Note rb_erase_augmented is a fairly large inline function,
480 * so make sure we instantiate it only once with our desired
481 * augmented rbtree callbacks.
483 rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
487 * vma has some anon_vma assigned, and is already inserted on that
488 * anon_vma's interval trees.
490 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
491 * vma must be removed from the anon_vma's interval trees using
492 * anon_vma_interval_tree_pre_update_vma().
494 * After the update, the vma will be reinserted using
495 * anon_vma_interval_tree_post_update_vma().
497 * The entire update must be protected by exclusive mmap_sem and by
498 * the root anon_vma's mutex.
501 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
503 struct anon_vma_chain *avc;
505 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
506 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
510 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
512 struct anon_vma_chain *avc;
514 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
515 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
518 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
519 unsigned long end, struct vm_area_struct **pprev,
520 struct rb_node ***rb_link, struct rb_node **rb_parent)
522 struct rb_node **__rb_link, *__rb_parent, *rb_prev;
524 __rb_link = &mm->mm_rb.rb_node;
525 rb_prev = __rb_parent = NULL;
528 struct vm_area_struct *vma_tmp;
530 __rb_parent = *__rb_link;
531 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
533 if (vma_tmp->vm_end > addr) {
534 /* Fail if an existing vma overlaps the area */
535 if (vma_tmp->vm_start < end)
537 __rb_link = &__rb_parent->rb_left;
539 rb_prev = __rb_parent;
540 __rb_link = &__rb_parent->rb_right;
546 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
547 *rb_link = __rb_link;
548 *rb_parent = __rb_parent;
552 static unsigned long count_vma_pages_range(struct mm_struct *mm,
553 unsigned long addr, unsigned long end)
555 unsigned long nr_pages = 0;
556 struct vm_area_struct *vma;
558 /* Find first overlaping mapping */
559 vma = find_vma_intersection(mm, addr, end);
563 nr_pages = (min(end, vma->vm_end) -
564 max(addr, vma->vm_start)) >> PAGE_SHIFT;
566 /* Iterate over the rest of the overlaps */
567 for (vma = vma->vm_next; vma; vma = vma->vm_next) {
568 unsigned long overlap_len;
570 if (vma->vm_start > end)
573 overlap_len = min(end, vma->vm_end) - vma->vm_start;
574 nr_pages += overlap_len >> PAGE_SHIFT;
580 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
581 struct rb_node **rb_link, struct rb_node *rb_parent)
583 /* Update tracking information for the gap following the new vma. */
585 vma_gap_update(vma->vm_next);
587 mm->highest_vm_end = vma->vm_end;
590 * vma->vm_prev wasn't known when we followed the rbtree to find the
591 * correct insertion point for that vma. As a result, we could not
592 * update the vma vm_rb parents rb_subtree_gap values on the way down.
593 * So, we first insert the vma with a zero rb_subtree_gap value
594 * (to be consistent with what we did on the way down), and then
595 * immediately update the gap to the correct value. Finally we
596 * rebalance the rbtree after all augmented values have been set.
598 rb_link_node(&vma->vm_rb, rb_parent, rb_link);
599 vma->rb_subtree_gap = 0;
601 vma_rb_insert(vma, &mm->mm_rb);
604 static void __vma_link_file(struct vm_area_struct *vma)
610 struct address_space *mapping = file->f_mapping;
612 if (vma->vm_flags & VM_DENYWRITE)
613 atomic_dec(&file_inode(file)->i_writecount);
614 if (vma->vm_flags & VM_SHARED)
615 mapping->i_mmap_writable++;
617 flush_dcache_mmap_lock(mapping);
618 if (unlikely(vma->vm_flags & VM_NONLINEAR))
619 vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear);
621 vma_interval_tree_insert(vma, &mapping->i_mmap);
622 flush_dcache_mmap_unlock(mapping);
627 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
628 struct vm_area_struct *prev, struct rb_node **rb_link,
629 struct rb_node *rb_parent)
631 __vma_link_list(mm, vma, prev, rb_parent);
632 __vma_link_rb(mm, vma, rb_link, rb_parent);
635 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
636 struct vm_area_struct *prev, struct rb_node **rb_link,
637 struct rb_node *rb_parent)
639 struct address_space *mapping = NULL;
642 mapping = vma->vm_file->f_mapping;
645 mutex_lock(&mapping->i_mmap_mutex);
647 __vma_link(mm, vma, prev, rb_link, rb_parent);
648 __vma_link_file(vma);
651 mutex_unlock(&mapping->i_mmap_mutex);
658 * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
659 * mm's list and rbtree. It has already been inserted into the interval tree.
661 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
663 struct vm_area_struct *prev;
664 struct rb_node **rb_link, *rb_parent;
666 if (find_vma_links(mm, vma->vm_start, vma->vm_end,
667 &prev, &rb_link, &rb_parent))
669 __vma_link(mm, vma, prev, rb_link, rb_parent);
674 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
675 struct vm_area_struct *prev)
677 struct vm_area_struct *next;
679 vma_rb_erase(vma, &mm->mm_rb);
680 prev->vm_next = next = vma->vm_next;
682 next->vm_prev = prev;
683 if (mm->mmap_cache == vma)
684 mm->mmap_cache = prev;
688 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
689 * is already present in an i_mmap tree without adjusting the tree.
690 * The following helper function should be used when such adjustments
691 * are necessary. The "insert" vma (if any) is to be inserted
692 * before we drop the necessary locks.
694 int vma_adjust(struct vm_area_struct *vma, unsigned long start,
695 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
697 struct mm_struct *mm = vma->vm_mm;
698 struct vm_area_struct *next = vma->vm_next;
699 struct vm_area_struct *importer = NULL;
700 struct address_space *mapping = NULL;
701 struct rb_root *root = NULL;
702 struct anon_vma *anon_vma = NULL;
703 struct file *file = vma->vm_file;
704 bool start_changed = false, end_changed = false;
705 long adjust_next = 0;
708 if (next && !insert) {
709 struct vm_area_struct *exporter = NULL;
711 if (end >= next->vm_end) {
713 * vma expands, overlapping all the next, and
714 * perhaps the one after too (mprotect case 6).
716 again: remove_next = 1 + (end > next->vm_end);
720 } else if (end > next->vm_start) {
722 * vma expands, overlapping part of the next:
723 * mprotect case 5 shifting the boundary up.
725 adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
728 } else if (end < vma->vm_end) {
730 * vma shrinks, and !insert tells it's not
731 * split_vma inserting another: so it must be
732 * mprotect case 4 shifting the boundary down.
734 adjust_next = - ((vma->vm_end - end) >> PAGE_SHIFT);
740 * Easily overlooked: when mprotect shifts the boundary,
741 * make sure the expanding vma has anon_vma set if the
742 * shrinking vma had, to cover any anon pages imported.
744 if (exporter && exporter->anon_vma && !importer->anon_vma) {
745 if (anon_vma_clone(importer, exporter))
747 importer->anon_vma = exporter->anon_vma;
752 mapping = file->f_mapping;
753 if (!(vma->vm_flags & VM_NONLINEAR)) {
754 root = &mapping->i_mmap;
755 uprobe_munmap(vma, vma->vm_start, vma->vm_end);
758 uprobe_munmap(next, next->vm_start,
762 mutex_lock(&mapping->i_mmap_mutex);
765 * Put into interval tree now, so instantiated pages
766 * are visible to arm/parisc __flush_dcache_page
767 * throughout; but we cannot insert into address
768 * space until vma start or end is updated.
770 __vma_link_file(insert);
774 vma_adjust_trans_huge(vma, start, end, adjust_next);
776 anon_vma = vma->anon_vma;
777 if (!anon_vma && adjust_next)
778 anon_vma = next->anon_vma;
780 VM_BUG_ON(adjust_next && next->anon_vma &&
781 anon_vma != next->anon_vma);
782 anon_vma_lock_write(anon_vma);
783 anon_vma_interval_tree_pre_update_vma(vma);
785 anon_vma_interval_tree_pre_update_vma(next);
789 flush_dcache_mmap_lock(mapping);
790 vma_interval_tree_remove(vma, root);
792 vma_interval_tree_remove(next, root);
795 if (start != vma->vm_start) {
796 vma->vm_start = start;
797 start_changed = true;
799 if (end != vma->vm_end) {
803 vma->vm_pgoff = pgoff;
805 next->vm_start += adjust_next << PAGE_SHIFT;
806 next->vm_pgoff += adjust_next;
811 vma_interval_tree_insert(next, root);
812 vma_interval_tree_insert(vma, root);
813 flush_dcache_mmap_unlock(mapping);
818 * vma_merge has merged next into vma, and needs
819 * us to remove next before dropping the locks.
821 __vma_unlink(mm, next, vma);
823 __remove_shared_vm_struct(next, file, mapping);
826 * split_vma has split insert from vma, and needs
827 * us to insert it before dropping the locks
828 * (it may either follow vma or precede it).
830 __insert_vm_struct(mm, insert);
836 mm->highest_vm_end = end;
837 else if (!adjust_next)
838 vma_gap_update(next);
843 anon_vma_interval_tree_post_update_vma(vma);
845 anon_vma_interval_tree_post_update_vma(next);
846 anon_vma_unlock_write(anon_vma);
849 mutex_unlock(&mapping->i_mmap_mutex);
860 uprobe_munmap(next, next->vm_start, next->vm_end);
864 anon_vma_merge(vma, next);
866 mpol_put(vma_policy(next));
867 kmem_cache_free(vm_area_cachep, next);
869 * In mprotect's case 6 (see comments on vma_merge),
870 * we must remove another next too. It would clutter
871 * up the code too much to do both in one go.
874 if (remove_next == 2)
877 vma_gap_update(next);
879 mm->highest_vm_end = end;
890 * If the vma has a ->close operation then the driver probably needs to release
891 * per-vma resources, so we don't attempt to merge those.
893 static inline int is_mergeable_vma(struct vm_area_struct *vma,
894 struct file *file, unsigned long vm_flags)
896 if (vma->vm_flags ^ vm_flags)
898 if (vma->vm_file != file)
900 if (vma->vm_ops && vma->vm_ops->close)
905 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
906 struct anon_vma *anon_vma2,
907 struct vm_area_struct *vma)
910 * The list_is_singular() test is to avoid merging VMA cloned from
911 * parents. This can improve scalability caused by anon_vma lock.
913 if ((!anon_vma1 || !anon_vma2) && (!vma ||
914 list_is_singular(&vma->anon_vma_chain)))
916 return anon_vma1 == anon_vma2;
920 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
921 * in front of (at a lower virtual address and file offset than) the vma.
923 * We cannot merge two vmas if they have differently assigned (non-NULL)
924 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
926 * We don't check here for the merged mmap wrapping around the end of pagecache
927 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
928 * wrap, nor mmaps which cover the final page at index -1UL.
931 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
932 struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
934 if (is_mergeable_vma(vma, file, vm_flags) &&
935 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
936 if (vma->vm_pgoff == vm_pgoff)
943 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
944 * beyond (at a higher virtual address and file offset than) the vma.
946 * We cannot merge two vmas if they have differently assigned (non-NULL)
947 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
950 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
951 struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
953 if (is_mergeable_vma(vma, file, vm_flags) &&
954 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
956 vm_pglen = vma_pages(vma);
957 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
964 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
965 * whether that can be merged with its predecessor or its successor.
966 * Or both (it neatly fills a hole).
968 * In most cases - when called for mmap, brk or mremap - [addr,end) is
969 * certain not to be mapped by the time vma_merge is called; but when
970 * called for mprotect, it is certain to be already mapped (either at
971 * an offset within prev, or at the start of next), and the flags of
972 * this area are about to be changed to vm_flags - and the no-change
973 * case has already been eliminated.
975 * The following mprotect cases have to be considered, where AAAA is
976 * the area passed down from mprotect_fixup, never extending beyond one
977 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
979 * AAAA AAAA AAAA AAAA
980 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN PPPPNNNNXXXX
981 * cannot merge might become might become might become
982 * PPNNNNNNNNNN PPPPPPPPPPNN PPPPPPPPPPPP 6 or
983 * mmap, brk or case 4 below case 5 below PPPPPPPPXXXX 7 or
984 * mremap move: PPPPNNNNNNNN 8
986 * PPPP NNNN PPPPPPPPPPPP PPPPPPPPNNNN PPPPNNNNNNNN
987 * might become case 1 below case 2 below case 3 below
989 * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
990 * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
992 struct vm_area_struct *vma_merge(struct mm_struct *mm,
993 struct vm_area_struct *prev, unsigned long addr,
994 unsigned long end, unsigned long vm_flags,
995 struct anon_vma *anon_vma, struct file *file,
996 pgoff_t pgoff, struct mempolicy *policy)
998 pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
999 struct vm_area_struct *area, *next;
1003 * We later require that vma->vm_flags == vm_flags,
1004 * so this tests vma->vm_flags & VM_SPECIAL, too.
1006 if (vm_flags & VM_SPECIAL)
1010 next = prev->vm_next;
1014 if (next && next->vm_end == end) /* cases 6, 7, 8 */
1015 next = next->vm_next;
1018 * Can it merge with the predecessor?
1020 if (prev && prev->vm_end == addr &&
1021 mpol_equal(vma_policy(prev), policy) &&
1022 can_vma_merge_after(prev, vm_flags,
1023 anon_vma, file, pgoff)) {
1025 * OK, it can. Can we now merge in the successor as well?
1027 if (next && end == next->vm_start &&
1028 mpol_equal(policy, vma_policy(next)) &&
1029 can_vma_merge_before(next, vm_flags,
1030 anon_vma, file, pgoff+pglen) &&
1031 is_mergeable_anon_vma(prev->anon_vma,
1032 next->anon_vma, NULL)) {
1034 err = vma_adjust(prev, prev->vm_start,
1035 next->vm_end, prev->vm_pgoff, NULL);
1036 } else /* cases 2, 5, 7 */
1037 err = vma_adjust(prev, prev->vm_start,
1038 end, prev->vm_pgoff, NULL);
1041 khugepaged_enter_vma_merge(prev);
1046 * Can this new request be merged in front of next?
1048 if (next && end == next->vm_start &&
1049 mpol_equal(policy, vma_policy(next)) &&
1050 can_vma_merge_before(next, vm_flags,
1051 anon_vma, file, pgoff+pglen)) {
1052 if (prev && addr < prev->vm_end) /* case 4 */
1053 err = vma_adjust(prev, prev->vm_start,
1054 addr, prev->vm_pgoff, NULL);
1055 else /* cases 3, 8 */
1056 err = vma_adjust(area, addr, next->vm_end,
1057 next->vm_pgoff - pglen, NULL);
1060 khugepaged_enter_vma_merge(area);
1068 * Rough compatbility check to quickly see if it's even worth looking
1069 * at sharing an anon_vma.
1071 * They need to have the same vm_file, and the flags can only differ
1072 * in things that mprotect may change.
1074 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1075 * we can merge the two vma's. For example, we refuse to merge a vma if
1076 * there is a vm_ops->close() function, because that indicates that the
1077 * driver is doing some kind of reference counting. But that doesn't
1078 * really matter for the anon_vma sharing case.
1080 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1082 return a->vm_end == b->vm_start &&
1083 mpol_equal(vma_policy(a), vma_policy(b)) &&
1084 a->vm_file == b->vm_file &&
1085 !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC)) &&
1086 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1090 * Do some basic sanity checking to see if we can re-use the anon_vma
1091 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1092 * the same as 'old', the other will be the new one that is trying
1093 * to share the anon_vma.
1095 * NOTE! This runs with mm_sem held for reading, so it is possible that
1096 * the anon_vma of 'old' is concurrently in the process of being set up
1097 * by another page fault trying to merge _that_. But that's ok: if it
1098 * is being set up, that automatically means that it will be a singleton
1099 * acceptable for merging, so we can do all of this optimistically. But
1100 * we do that ACCESS_ONCE() to make sure that we never re-load the pointer.
1102 * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1103 * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1104 * is to return an anon_vma that is "complex" due to having gone through
1107 * We also make sure that the two vma's are compatible (adjacent,
1108 * and with the same memory policies). That's all stable, even with just
1109 * a read lock on the mm_sem.
1111 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1113 if (anon_vma_compatible(a, b)) {
1114 struct anon_vma *anon_vma = ACCESS_ONCE(old->anon_vma);
1116 if (anon_vma && list_is_singular(&old->anon_vma_chain))
1123 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1124 * neighbouring vmas for a suitable anon_vma, before it goes off
1125 * to allocate a new anon_vma. It checks because a repetitive
1126 * sequence of mprotects and faults may otherwise lead to distinct
1127 * anon_vmas being allocated, preventing vma merge in subsequent
1130 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1132 struct anon_vma *anon_vma;
1133 struct vm_area_struct *near;
1135 near = vma->vm_next;
1139 anon_vma = reusable_anon_vma(near, vma, near);
1143 near = vma->vm_prev;
1147 anon_vma = reusable_anon_vma(near, near, vma);
1152 * There's no absolute need to look only at touching neighbours:
1153 * we could search further afield for "compatible" anon_vmas.
1154 * But it would probably just be a waste of time searching,
1155 * or lead to too many vmas hanging off the same anon_vma.
1156 * We're trying to allow mprotect remerging later on,
1157 * not trying to minimize memory used for anon_vmas.
1162 #ifdef CONFIG_PROC_FS
1163 void vm_stat_account(struct mm_struct *mm, unsigned long flags,
1164 struct file *file, long pages)
1166 const unsigned long stack_flags
1167 = VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN);
1169 mm->total_vm += pages;
1172 mm->shared_vm += pages;
1173 if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC)
1174 mm->exec_vm += pages;
1175 } else if (flags & stack_flags)
1176 mm->stack_vm += pages;
1178 #endif /* CONFIG_PROC_FS */
1181 * If a hint addr is less than mmap_min_addr change hint to be as
1182 * low as possible but still greater than mmap_min_addr
1184 static inline unsigned long round_hint_to_min(unsigned long hint)
1187 if (((void *)hint != NULL) &&
1188 (hint < mmap_min_addr))
1189 return PAGE_ALIGN(mmap_min_addr);
1194 * The caller must hold down_write(¤t->mm->mmap_sem).
1197 unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1198 unsigned long len, unsigned long prot,
1199 unsigned long flags, unsigned long pgoff,
1200 unsigned long *populate)
1202 struct mm_struct * mm = current->mm;
1203 vm_flags_t vm_flags;
1208 * Does the application expect PROT_READ to imply PROT_EXEC?
1210 * (the exception is when the underlying filesystem is noexec
1211 * mounted, in which case we dont add PROT_EXEC.)
1213 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1214 if (!(file && (file->f_path.mnt->mnt_flags & MNT_NOEXEC)))
1220 if (!(flags & MAP_FIXED))
1221 addr = round_hint_to_min(addr);
1223 /* Careful about overflows.. */
1224 len = PAGE_ALIGN(len);
1228 /* offset overflow? */
1229 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1232 /* Too many mappings? */
1233 if (mm->map_count > sysctl_max_map_count)
1236 /* Obtain the address to map to. we verify (or select) it and ensure
1237 * that it represents a valid section of the address space.
1239 addr = get_unmapped_area(file, addr, len, pgoff, flags);
1240 if (addr & ~PAGE_MASK)
1243 /* Do simple checking here so the lower-level routines won't have
1244 * to. we assume access permissions have been handled by the open
1245 * of the memory object, so we don't do any here.
1247 vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
1248 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1250 if (flags & MAP_LOCKED)
1251 if (!can_do_mlock())
1254 /* mlock MCL_FUTURE? */
1255 if (vm_flags & VM_LOCKED) {
1256 unsigned long locked, lock_limit;
1257 locked = len >> PAGE_SHIFT;
1258 locked += mm->locked_vm;
1259 lock_limit = rlimit(RLIMIT_MEMLOCK);
1260 lock_limit >>= PAGE_SHIFT;
1261 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1266 struct inode *inode = file_inode(file);
1268 switch (flags & MAP_TYPE) {
1270 if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1274 * Make sure we don't allow writing to an append-only
1277 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1281 * Make sure there are no mandatory locks on the file.
1283 if (locks_verify_locked(inode))
1286 vm_flags |= VM_SHARED | VM_MAYSHARE;
1287 if (!(file->f_mode & FMODE_WRITE))
1288 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1292 if (!(file->f_mode & FMODE_READ))
1294 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
1295 if (vm_flags & VM_EXEC)
1297 vm_flags &= ~VM_MAYEXEC;
1300 if (!file->f_op->mmap)
1302 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1310 switch (flags & MAP_TYPE) {
1312 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1318 vm_flags |= VM_SHARED | VM_MAYSHARE;
1322 * Set pgoff according to addr for anon_vma.
1324 pgoff = addr >> PAGE_SHIFT;
1332 * Set 'VM_NORESERVE' if we should not account for the
1333 * memory use of this mapping.
1335 if (flags & MAP_NORESERVE) {
1336 /* We honor MAP_NORESERVE if allowed to overcommit */
1337 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1338 vm_flags |= VM_NORESERVE;
1340 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1341 if (file && is_file_hugepages(file))
1342 vm_flags |= VM_NORESERVE;
1345 addr = mmap_region(file, addr, len, vm_flags, pgoff);
1346 if (!IS_ERR_VALUE(addr) &&
1347 ((vm_flags & VM_LOCKED) ||
1348 (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1353 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1354 unsigned long, prot, unsigned long, flags,
1355 unsigned long, fd, unsigned long, pgoff)
1357 struct file *file = NULL;
1358 unsigned long retval = -EBADF;
1360 if (!(flags & MAP_ANONYMOUS)) {
1361 audit_mmap_fd(fd, flags);
1365 if (is_file_hugepages(file))
1366 len = ALIGN(len, huge_page_size(hstate_file(file)));
1368 if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file)))
1370 } else if (flags & MAP_HUGETLB) {
1371 struct user_struct *user = NULL;
1374 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & SHM_HUGE_MASK);
1378 len = ALIGN(len, huge_page_size(hs));
1380 * VM_NORESERVE is used because the reservations will be
1381 * taken when vm_ops->mmap() is called
1382 * A dummy user value is used because we are not locking
1383 * memory so no accounting is necessary
1385 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1387 &user, HUGETLB_ANONHUGE_INODE,
1388 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1390 return PTR_ERR(file);
1393 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1395 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1403 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1404 struct mmap_arg_struct {
1408 unsigned long flags;
1410 unsigned long offset;
1413 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1415 struct mmap_arg_struct a;
1417 if (copy_from_user(&a, arg, sizeof(a)))
1419 if (a.offset & ~PAGE_MASK)
1422 return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1423 a.offset >> PAGE_SHIFT);
1425 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1428 * Some shared mappigns will want the pages marked read-only
1429 * to track write events. If so, we'll downgrade vm_page_prot
1430 * to the private version (using protection_map[] without the
1433 int vma_wants_writenotify(struct vm_area_struct *vma)
1435 vm_flags_t vm_flags = vma->vm_flags;
1437 /* If it was private or non-writable, the write bit is already clear */
1438 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1441 /* The backer wishes to know when pages are first written to? */
1442 if (vma->vm_ops && vma->vm_ops->page_mkwrite)
1445 /* The open routine did something to the protections already? */
1446 if (pgprot_val(vma->vm_page_prot) !=
1447 pgprot_val(vm_get_page_prot(vm_flags)))
1450 /* Specialty mapping? */
1451 if (vm_flags & VM_PFNMAP)
1454 /* Can the mapping track the dirty pages? */
1455 return vma->vm_file && vma->vm_file->f_mapping &&
1456 mapping_cap_account_dirty(vma->vm_file->f_mapping);
1460 * We account for memory if it's a private writeable mapping,
1461 * not hugepages and VM_NORESERVE wasn't set.
1463 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1466 * hugetlb has its own accounting separate from the core VM
1467 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1469 if (file && is_file_hugepages(file))
1472 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1475 unsigned long mmap_region(struct file *file, unsigned long addr,
1476 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff)
1478 struct mm_struct *mm = current->mm;
1479 struct vm_area_struct *vma, *prev;
1481 struct rb_node **rb_link, *rb_parent;
1482 unsigned long charged = 0;
1484 /* Check against address space limit. */
1485 if (!may_expand_vm(mm, len >> PAGE_SHIFT)) {
1486 unsigned long nr_pages;
1489 * MAP_FIXED may remove pages of mappings that intersects with
1490 * requested mapping. Account for the pages it would unmap.
1492 if (!(vm_flags & MAP_FIXED))
1495 nr_pages = count_vma_pages_range(mm, addr, addr + len);
1497 if (!may_expand_vm(mm, (len >> PAGE_SHIFT) - nr_pages))
1501 /* Clear old maps */
1504 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) {
1505 if (do_munmap(mm, addr, len))
1511 * Private writable mapping: check memory availability
1513 if (accountable_mapping(file, vm_flags)) {
1514 charged = len >> PAGE_SHIFT;
1515 if (security_vm_enough_memory_mm(mm, charged))
1517 vm_flags |= VM_ACCOUNT;
1521 * Can we just expand an old mapping?
1523 vma = vma_merge(mm, prev, addr, addr + len, vm_flags, NULL, file, pgoff, NULL);
1528 * Determine the object being mapped and call the appropriate
1529 * specific mapper. the address has already been validated, but
1530 * not unmapped, but the maps are removed from the list.
1532 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1539 vma->vm_start = addr;
1540 vma->vm_end = addr + len;
1541 vma->vm_flags = vm_flags;
1542 vma->vm_page_prot = vm_get_page_prot(vm_flags);
1543 vma->vm_pgoff = pgoff;
1544 INIT_LIST_HEAD(&vma->anon_vma_chain);
1547 if (vm_flags & VM_DENYWRITE) {
1548 error = deny_write_access(file);
1552 vma->vm_file = get_file(file);
1553 error = file->f_op->mmap(file, vma);
1555 goto unmap_and_free_vma;
1557 /* Can addr have changed??
1559 * Answer: Yes, several device drivers can do it in their
1560 * f_op->mmap method. -DaveM
1561 * Bug: If addr is changed, prev, rb_link, rb_parent should
1562 * be updated for vma_link()
1564 WARN_ON_ONCE(addr != vma->vm_start);
1566 addr = vma->vm_start;
1567 vm_flags = vma->vm_flags;
1568 } else if (vm_flags & VM_SHARED) {
1569 error = shmem_zero_setup(vma);
1574 if (vma_wants_writenotify(vma)) {
1575 pgprot_t pprot = vma->vm_page_prot;
1577 /* Can vma->vm_page_prot have changed??
1579 * Answer: Yes, drivers may have changed it in their
1580 * f_op->mmap method.
1582 * Ensures that vmas marked as uncached stay that way.
1584 vma->vm_page_prot = vm_get_page_prot(vm_flags & ~VM_SHARED);
1585 if (pgprot_val(pprot) == pgprot_val(pgprot_noncached(pprot)))
1586 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1589 vma_link(mm, vma, prev, rb_link, rb_parent);
1590 /* Once vma denies write, undo our temporary denial count */
1591 if (vm_flags & VM_DENYWRITE)
1592 allow_write_access(file);
1593 file = vma->vm_file;
1595 perf_event_mmap(vma);
1597 vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT);
1598 if (vm_flags & VM_LOCKED) {
1599 if (!((vm_flags & VM_SPECIAL) || is_vm_hugetlb_page(vma) ||
1600 vma == get_gate_vma(current->mm)))
1601 mm->locked_vm += (len >> PAGE_SHIFT);
1603 vma->vm_flags &= ~VM_LOCKED;
1610 * New (or expanded) vma always get soft dirty status.
1611 * Otherwise user-space soft-dirty page tracker won't
1612 * be able to distinguish situation when vma area unmapped,
1613 * then new mapped in-place (which must be aimed as
1614 * a completely new data area).
1616 vma->vm_flags |= VM_SOFTDIRTY;
1621 if (vm_flags & VM_DENYWRITE)
1622 allow_write_access(file);
1623 vma->vm_file = NULL;
1626 /* Undo any partial mapping done by a device driver. */
1627 unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1630 kmem_cache_free(vm_area_cachep, vma);
1633 vm_unacct_memory(charged);
1637 unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1640 * We implement the search by looking for an rbtree node that
1641 * immediately follows a suitable gap. That is,
1642 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1643 * - gap_end = vma->vm_start >= info->low_limit + length;
1644 * - gap_end - gap_start >= length
1647 struct mm_struct *mm = current->mm;
1648 struct vm_area_struct *vma;
1649 unsigned long length, low_limit, high_limit, gap_start, gap_end;
1651 /* Adjust search length to account for worst case alignment overhead */
1652 length = info->length + info->align_mask;
1653 if (length < info->length)
1656 /* Adjust search limits by the desired length */
1657 if (info->high_limit < length)
1659 high_limit = info->high_limit - length;
1661 if (info->low_limit > high_limit)
1663 low_limit = info->low_limit + length;
1665 /* Check if rbtree root looks promising */
1666 if (RB_EMPTY_ROOT(&mm->mm_rb))
1668 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1669 if (vma->rb_subtree_gap < length)
1673 /* Visit left subtree if it looks promising */
1674 gap_end = vma->vm_start;
1675 if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1676 struct vm_area_struct *left =
1677 rb_entry(vma->vm_rb.rb_left,
1678 struct vm_area_struct, vm_rb);
1679 if (left->rb_subtree_gap >= length) {
1685 gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1687 /* Check if current node has a suitable gap */
1688 if (gap_start > high_limit)
1690 if (gap_end >= low_limit && gap_end - gap_start >= length)
1693 /* Visit right subtree if it looks promising */
1694 if (vma->vm_rb.rb_right) {
1695 struct vm_area_struct *right =
1696 rb_entry(vma->vm_rb.rb_right,
1697 struct vm_area_struct, vm_rb);
1698 if (right->rb_subtree_gap >= length) {
1704 /* Go back up the rbtree to find next candidate node */
1706 struct rb_node *prev = &vma->vm_rb;
1707 if (!rb_parent(prev))
1709 vma = rb_entry(rb_parent(prev),
1710 struct vm_area_struct, vm_rb);
1711 if (prev == vma->vm_rb.rb_left) {
1712 gap_start = vma->vm_prev->vm_end;
1713 gap_end = vma->vm_start;
1720 /* Check highest gap, which does not precede any rbtree node */
1721 gap_start = mm->highest_vm_end;
1722 gap_end = ULONG_MAX; /* Only for VM_BUG_ON below */
1723 if (gap_start > high_limit)
1727 /* We found a suitable gap. Clip it with the original low_limit. */
1728 if (gap_start < info->low_limit)
1729 gap_start = info->low_limit;
1731 /* Adjust gap address to the desired alignment */
1732 gap_start += (info->align_offset - gap_start) & info->align_mask;
1734 VM_BUG_ON(gap_start + info->length > info->high_limit);
1735 VM_BUG_ON(gap_start + info->length > gap_end);
1739 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1741 struct mm_struct *mm = current->mm;
1742 struct vm_area_struct *vma;
1743 unsigned long length, low_limit, high_limit, gap_start, gap_end;
1745 /* Adjust search length to account for worst case alignment overhead */
1746 length = info->length + info->align_mask;
1747 if (length < info->length)
1751 * Adjust search limits by the desired length.
1752 * See implementation comment at top of unmapped_area().
1754 gap_end = info->high_limit;
1755 if (gap_end < length)
1757 high_limit = gap_end - length;
1759 if (info->low_limit > high_limit)
1761 low_limit = info->low_limit + length;
1763 /* Check highest gap, which does not precede any rbtree node */
1764 gap_start = mm->highest_vm_end;
1765 if (gap_start <= high_limit)
1768 /* Check if rbtree root looks promising */
1769 if (RB_EMPTY_ROOT(&mm->mm_rb))
1771 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1772 if (vma->rb_subtree_gap < length)
1776 /* Visit right subtree if it looks promising */
1777 gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1778 if (gap_start <= high_limit && vma->vm_rb.rb_right) {
1779 struct vm_area_struct *right =
1780 rb_entry(vma->vm_rb.rb_right,
1781 struct vm_area_struct, vm_rb);
1782 if (right->rb_subtree_gap >= length) {
1789 /* Check if current node has a suitable gap */
1790 gap_end = vma->vm_start;
1791 if (gap_end < low_limit)
1793 if (gap_start <= high_limit && gap_end - gap_start >= length)
1796 /* Visit left subtree if it looks promising */
1797 if (vma->vm_rb.rb_left) {
1798 struct vm_area_struct *left =
1799 rb_entry(vma->vm_rb.rb_left,
1800 struct vm_area_struct, vm_rb);
1801 if (left->rb_subtree_gap >= length) {
1807 /* Go back up the rbtree to find next candidate node */
1809 struct rb_node *prev = &vma->vm_rb;
1810 if (!rb_parent(prev))
1812 vma = rb_entry(rb_parent(prev),
1813 struct vm_area_struct, vm_rb);
1814 if (prev == vma->vm_rb.rb_right) {
1815 gap_start = vma->vm_prev ?
1816 vma->vm_prev->vm_end : 0;
1823 /* We found a suitable gap. Clip it with the original high_limit. */
1824 if (gap_end > info->high_limit)
1825 gap_end = info->high_limit;
1828 /* Compute highest gap address at the desired alignment */
1829 gap_end -= info->length;
1830 gap_end -= (gap_end - info->align_offset) & info->align_mask;
1832 VM_BUG_ON(gap_end < info->low_limit);
1833 VM_BUG_ON(gap_end < gap_start);
1837 /* Get an address range which is currently unmapped.
1838 * For shmat() with addr=0.
1840 * Ugly calling convention alert:
1841 * Return value with the low bits set means error value,
1843 * if (ret & ~PAGE_MASK)
1846 * This function "knows" that -ENOMEM has the bits set.
1848 #ifndef HAVE_ARCH_UNMAPPED_AREA
1850 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1851 unsigned long len, unsigned long pgoff, unsigned long flags)
1853 struct mm_struct *mm = current->mm;
1854 struct vm_area_struct *vma;
1855 struct vm_unmapped_area_info info;
1857 if (len > TASK_SIZE - mmap_min_addr)
1860 if (flags & MAP_FIXED)
1864 addr = PAGE_ALIGN(addr);
1865 vma = find_vma(mm, addr);
1866 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1867 (!vma || addr + len <= vma->vm_start))
1873 info.low_limit = mm->mmap_base;
1874 info.high_limit = TASK_SIZE;
1875 info.align_mask = 0;
1876 return vm_unmapped_area(&info);
1881 * This mmap-allocator allocates new areas top-down from below the
1882 * stack's low limit (the base):
1884 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1886 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1887 const unsigned long len, const unsigned long pgoff,
1888 const unsigned long flags)
1890 struct vm_area_struct *vma;
1891 struct mm_struct *mm = current->mm;
1892 unsigned long addr = addr0;
1893 struct vm_unmapped_area_info info;
1895 /* requested length too big for entire address space */
1896 if (len > TASK_SIZE - mmap_min_addr)
1899 if (flags & MAP_FIXED)
1902 /* requesting a specific address */
1904 addr = PAGE_ALIGN(addr);
1905 vma = find_vma(mm, addr);
1906 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1907 (!vma || addr + len <= vma->vm_start))
1911 info.flags = VM_UNMAPPED_AREA_TOPDOWN;
1913 info.low_limit = max(PAGE_SIZE, mmap_min_addr);
1914 info.high_limit = mm->mmap_base;
1915 info.align_mask = 0;
1916 addr = vm_unmapped_area(&info);
1919 * A failed mmap() very likely causes application failure,
1920 * so fall back to the bottom-up function here. This scenario
1921 * can happen with large stack limits and large mmap()
1924 if (addr & ~PAGE_MASK) {
1925 VM_BUG_ON(addr != -ENOMEM);
1927 info.low_limit = TASK_UNMAPPED_BASE;
1928 info.high_limit = TASK_SIZE;
1929 addr = vm_unmapped_area(&info);
1937 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1938 unsigned long pgoff, unsigned long flags)
1940 unsigned long (*get_area)(struct file *, unsigned long,
1941 unsigned long, unsigned long, unsigned long);
1943 unsigned long error = arch_mmap_check(addr, len, flags);
1947 /* Careful about overflows.. */
1948 if (len > TASK_SIZE)
1951 get_area = current->mm->get_unmapped_area;
1952 if (file && file->f_op->get_unmapped_area)
1953 get_area = file->f_op->get_unmapped_area;
1954 addr = get_area(file, addr, len, pgoff, flags);
1955 if (IS_ERR_VALUE(addr))
1958 if (addr > TASK_SIZE - len)
1960 if (addr & ~PAGE_MASK)
1963 addr = arch_rebalance_pgtables(addr, len);
1964 error = security_mmap_addr(addr);
1965 return error ? error : addr;
1968 EXPORT_SYMBOL(get_unmapped_area);
1970 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1971 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
1973 struct vm_area_struct *vma = NULL;
1975 /* Check the cache first. */
1976 /* (Cache hit rate is typically around 35%.) */
1977 vma = ACCESS_ONCE(mm->mmap_cache);
1978 if (!(vma && vma->vm_end > addr && vma->vm_start <= addr)) {
1979 struct rb_node *rb_node;
1981 rb_node = mm->mm_rb.rb_node;
1985 struct vm_area_struct *vma_tmp;
1987 vma_tmp = rb_entry(rb_node,
1988 struct vm_area_struct, vm_rb);
1990 if (vma_tmp->vm_end > addr) {
1992 if (vma_tmp->vm_start <= addr)
1994 rb_node = rb_node->rb_left;
1996 rb_node = rb_node->rb_right;
1999 mm->mmap_cache = vma;
2004 EXPORT_SYMBOL(find_vma);
2007 * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2009 struct vm_area_struct *
2010 find_vma_prev(struct mm_struct *mm, unsigned long addr,
2011 struct vm_area_struct **pprev)
2013 struct vm_area_struct *vma;
2015 vma = find_vma(mm, addr);
2017 *pprev = vma->vm_prev;
2019 struct rb_node *rb_node = mm->mm_rb.rb_node;
2022 *pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2023 rb_node = rb_node->rb_right;
2030 * Verify that the stack growth is acceptable and
2031 * update accounting. This is shared with both the
2032 * grow-up and grow-down cases.
2034 static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow)
2036 struct mm_struct *mm = vma->vm_mm;
2037 struct rlimit *rlim = current->signal->rlim;
2038 unsigned long new_start;
2040 /* address space limit tests */
2041 if (!may_expand_vm(mm, grow))
2044 /* Stack limit test */
2045 if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur))
2048 /* mlock limit tests */
2049 if (vma->vm_flags & VM_LOCKED) {
2050 unsigned long locked;
2051 unsigned long limit;
2052 locked = mm->locked_vm + grow;
2053 limit = ACCESS_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur);
2054 limit >>= PAGE_SHIFT;
2055 if (locked > limit && !capable(CAP_IPC_LOCK))
2059 /* Check to ensure the stack will not grow into a hugetlb-only region */
2060 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2062 if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2066 * Overcommit.. This must be the final test, as it will
2067 * update security statistics.
2069 if (security_vm_enough_memory_mm(mm, grow))
2072 /* Ok, everything looks good - let it rip */
2073 if (vma->vm_flags & VM_LOCKED)
2074 mm->locked_vm += grow;
2075 vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow);
2079 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2081 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2082 * vma is the last one with address > vma->vm_end. Have to extend vma.
2084 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2088 if (!(vma->vm_flags & VM_GROWSUP))
2092 * We must make sure the anon_vma is allocated
2093 * so that the anon_vma locking is not a noop.
2095 if (unlikely(anon_vma_prepare(vma)))
2097 vma_lock_anon_vma(vma);
2100 * vma->vm_start/vm_end cannot change under us because the caller
2101 * is required to hold the mmap_sem in read mode. We need the
2102 * anon_vma lock to serialize against concurrent expand_stacks.
2103 * Also guard against wrapping around to address 0.
2105 if (address < PAGE_ALIGN(address+4))
2106 address = PAGE_ALIGN(address+4);
2108 vma_unlock_anon_vma(vma);
2113 /* Somebody else might have raced and expanded it already */
2114 if (address > vma->vm_end) {
2115 unsigned long size, grow;
2117 size = address - vma->vm_start;
2118 grow = (address - vma->vm_end) >> PAGE_SHIFT;
2121 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2122 error = acct_stack_growth(vma, size, grow);
2125 * vma_gap_update() doesn't support concurrent
2126 * updates, but we only hold a shared mmap_sem
2127 * lock here, so we need to protect against
2128 * concurrent vma expansions.
2129 * vma_lock_anon_vma() doesn't help here, as
2130 * we don't guarantee that all growable vmas
2131 * in a mm share the same root anon vma.
2132 * So, we reuse mm->page_table_lock to guard
2133 * against concurrent vma expansions.
2135 spin_lock(&vma->vm_mm->page_table_lock);
2136 anon_vma_interval_tree_pre_update_vma(vma);
2137 vma->vm_end = address;
2138 anon_vma_interval_tree_post_update_vma(vma);
2140 vma_gap_update(vma->vm_next);
2142 vma->vm_mm->highest_vm_end = address;
2143 spin_unlock(&vma->vm_mm->page_table_lock);
2145 perf_event_mmap(vma);
2149 vma_unlock_anon_vma(vma);
2150 khugepaged_enter_vma_merge(vma);
2151 validate_mm(vma->vm_mm);
2154 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2157 * vma is the first one with address < vma->vm_start. Have to extend vma.
2159 int expand_downwards(struct vm_area_struct *vma,
2160 unsigned long address)
2165 * We must make sure the anon_vma is allocated
2166 * so that the anon_vma locking is not a noop.
2168 if (unlikely(anon_vma_prepare(vma)))
2171 address &= PAGE_MASK;
2172 error = security_mmap_addr(address);
2176 vma_lock_anon_vma(vma);
2179 * vma->vm_start/vm_end cannot change under us because the caller
2180 * is required to hold the mmap_sem in read mode. We need the
2181 * anon_vma lock to serialize against concurrent expand_stacks.
2184 /* Somebody else might have raced and expanded it already */
2185 if (address < vma->vm_start) {
2186 unsigned long size, grow;
2188 size = vma->vm_end - address;
2189 grow = (vma->vm_start - address) >> PAGE_SHIFT;
2192 if (grow <= vma->vm_pgoff) {
2193 error = acct_stack_growth(vma, size, grow);
2196 * vma_gap_update() doesn't support concurrent
2197 * updates, but we only hold a shared mmap_sem
2198 * lock here, so we need to protect against
2199 * concurrent vma expansions.
2200 * vma_lock_anon_vma() doesn't help here, as
2201 * we don't guarantee that all growable vmas
2202 * in a mm share the same root anon vma.
2203 * So, we reuse mm->page_table_lock to guard
2204 * against concurrent vma expansions.
2206 spin_lock(&vma->vm_mm->page_table_lock);
2207 anon_vma_interval_tree_pre_update_vma(vma);
2208 vma->vm_start = address;
2209 vma->vm_pgoff -= grow;
2210 anon_vma_interval_tree_post_update_vma(vma);
2211 vma_gap_update(vma);
2212 spin_unlock(&vma->vm_mm->page_table_lock);
2214 perf_event_mmap(vma);
2218 vma_unlock_anon_vma(vma);
2219 khugepaged_enter_vma_merge(vma);
2220 validate_mm(vma->vm_mm);
2225 * Note how expand_stack() refuses to expand the stack all the way to
2226 * abut the next virtual mapping, *unless* that mapping itself is also
2227 * a stack mapping. We want to leave room for a guard page, after all
2228 * (the guard page itself is not added here, that is done by the
2229 * actual page faulting logic)
2231 * This matches the behavior of the guard page logic (see mm/memory.c:
2232 * check_stack_guard_page()), which only allows the guard page to be
2233 * removed under these circumstances.
2235 #ifdef CONFIG_STACK_GROWSUP
2236 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2238 struct vm_area_struct *next;
2240 address &= PAGE_MASK;
2241 next = vma->vm_next;
2242 if (next && next->vm_start == address + PAGE_SIZE) {
2243 if (!(next->vm_flags & VM_GROWSUP))
2246 return expand_upwards(vma, address);
2249 struct vm_area_struct *
2250 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2252 struct vm_area_struct *vma, *prev;
2255 vma = find_vma_prev(mm, addr, &prev);
2256 if (vma && (vma->vm_start <= addr))
2258 if (!prev || expand_stack(prev, addr))
2260 if (prev->vm_flags & VM_LOCKED)
2261 __mlock_vma_pages_range(prev, addr, prev->vm_end, NULL);
2265 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2267 struct vm_area_struct *prev;
2269 address &= PAGE_MASK;
2270 prev = vma->vm_prev;
2271 if (prev && prev->vm_end == address) {
2272 if (!(prev->vm_flags & VM_GROWSDOWN))
2275 return expand_downwards(vma, address);
2278 struct vm_area_struct *
2279 find_extend_vma(struct mm_struct * mm, unsigned long addr)
2281 struct vm_area_struct * vma;
2282 unsigned long start;
2285 vma = find_vma(mm,addr);
2288 if (vma->vm_start <= addr)
2290 if (!(vma->vm_flags & VM_GROWSDOWN))
2292 start = vma->vm_start;
2293 if (expand_stack(vma, addr))
2295 if (vma->vm_flags & VM_LOCKED)
2296 __mlock_vma_pages_range(vma, addr, start, NULL);
2302 * Ok - we have the memory areas we should free on the vma list,
2303 * so release them, and do the vma updates.
2305 * Called with the mm semaphore held.
2307 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2309 unsigned long nr_accounted = 0;
2311 /* Update high watermark before we lower total_vm */
2312 update_hiwater_vm(mm);
2314 long nrpages = vma_pages(vma);
2316 if (vma->vm_flags & VM_ACCOUNT)
2317 nr_accounted += nrpages;
2318 vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages);
2319 vma = remove_vma(vma);
2321 vm_unacct_memory(nr_accounted);
2326 * Get rid of page table information in the indicated region.
2328 * Called with the mm semaphore held.
2330 static void unmap_region(struct mm_struct *mm,
2331 struct vm_area_struct *vma, struct vm_area_struct *prev,
2332 unsigned long start, unsigned long end)
2334 struct vm_area_struct *next = prev? prev->vm_next: mm->mmap;
2335 struct mmu_gather tlb;
2338 tlb_gather_mmu(&tlb, mm, start, end);
2339 update_hiwater_rss(mm);
2340 unmap_vmas(&tlb, vma, start, end);
2341 free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2342 next ? next->vm_start : USER_PGTABLES_CEILING);
2343 tlb_finish_mmu(&tlb, start, end);
2347 * Create a list of vma's touched by the unmap, removing them from the mm's
2348 * vma list as we go..
2351 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2352 struct vm_area_struct *prev, unsigned long end)
2354 struct vm_area_struct **insertion_point;
2355 struct vm_area_struct *tail_vma = NULL;
2357 insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2358 vma->vm_prev = NULL;
2360 vma_rb_erase(vma, &mm->mm_rb);
2364 } while (vma && vma->vm_start < end);
2365 *insertion_point = vma;
2367 vma->vm_prev = prev;
2368 vma_gap_update(vma);
2370 mm->highest_vm_end = prev ? prev->vm_end : 0;
2371 tail_vma->vm_next = NULL;
2372 mm->mmap_cache = NULL; /* Kill the cache. */
2376 * __split_vma() bypasses sysctl_max_map_count checking. We use this on the
2377 * munmap path where it doesn't make sense to fail.
2379 static int __split_vma(struct mm_struct * mm, struct vm_area_struct * vma,
2380 unsigned long addr, int new_below)
2382 struct vm_area_struct *new;
2385 if (is_vm_hugetlb_page(vma) && (addr &
2386 ~(huge_page_mask(hstate_vma(vma)))))
2389 new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2393 /* most fields are the same, copy all, and then fixup */
2396 INIT_LIST_HEAD(&new->anon_vma_chain);
2401 new->vm_start = addr;
2402 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2405 err = vma_dup_policy(vma, new);
2409 if (anon_vma_clone(new, vma))
2413 get_file(new->vm_file);
2415 if (new->vm_ops && new->vm_ops->open)
2416 new->vm_ops->open(new);
2419 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2420 ((addr - new->vm_start) >> PAGE_SHIFT), new);
2422 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2428 /* Clean everything up if vma_adjust failed. */
2429 if (new->vm_ops && new->vm_ops->close)
2430 new->vm_ops->close(new);
2433 unlink_anon_vmas(new);
2435 mpol_put(vma_policy(new));
2437 kmem_cache_free(vm_area_cachep, new);
2443 * Split a vma into two pieces at address 'addr', a new vma is allocated
2444 * either for the first part or the tail.
2446 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2447 unsigned long addr, int new_below)
2449 if (mm->map_count >= sysctl_max_map_count)
2452 return __split_vma(mm, vma, addr, new_below);
2455 /* Munmap is split into 2 main parts -- this part which finds
2456 * what needs doing, and the areas themselves, which do the
2457 * work. This now handles partial unmappings.
2458 * Jeremy Fitzhardinge <jeremy@goop.org>
2460 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
2463 struct vm_area_struct *vma, *prev, *last;
2465 if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start)
2468 if ((len = PAGE_ALIGN(len)) == 0)
2471 /* Find the first overlapping VMA */
2472 vma = find_vma(mm, start);
2475 prev = vma->vm_prev;
2476 /* we have start < vma->vm_end */
2478 /* if it doesn't overlap, we have nothing.. */
2480 if (vma->vm_start >= end)
2484 * If we need to split any vma, do it now to save pain later.
2486 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2487 * unmapped vm_area_struct will remain in use: so lower split_vma
2488 * places tmp vma above, and higher split_vma places tmp vma below.
2490 if (start > vma->vm_start) {
2494 * Make sure that map_count on return from munmap() will
2495 * not exceed its limit; but let map_count go just above
2496 * its limit temporarily, to help free resources as expected.
2498 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2501 error = __split_vma(mm, vma, start, 0);
2507 /* Does it split the last one? */
2508 last = find_vma(mm, end);
2509 if (last && end > last->vm_start) {
2510 int error = __split_vma(mm, last, end, 1);
2514 vma = prev? prev->vm_next: mm->mmap;
2517 * unlock any mlock()ed ranges before detaching vmas
2519 if (mm->locked_vm) {
2520 struct vm_area_struct *tmp = vma;
2521 while (tmp && tmp->vm_start < end) {
2522 if (tmp->vm_flags & VM_LOCKED) {
2523 mm->locked_vm -= vma_pages(tmp);
2524 munlock_vma_pages_all(tmp);
2531 * Remove the vma's, and unmap the actual pages
2533 detach_vmas_to_be_unmapped(mm, vma, prev, end);
2534 unmap_region(mm, vma, prev, start, end);
2536 /* Fix up all other VM information */
2537 remove_vma_list(mm, vma);
2542 int vm_munmap(unsigned long start, size_t len)
2545 struct mm_struct *mm = current->mm;
2547 down_write(&mm->mmap_sem);
2548 ret = do_munmap(mm, start, len);
2549 up_write(&mm->mmap_sem);
2552 EXPORT_SYMBOL(vm_munmap);
2554 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2556 profile_munmap(addr);
2557 return vm_munmap(addr, len);
2560 static inline void verify_mm_writelocked(struct mm_struct *mm)
2562 #ifdef CONFIG_DEBUG_VM
2563 if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2565 up_read(&mm->mmap_sem);
2571 * this is really a simplified "do_mmap". it only handles
2572 * anonymous maps. eventually we may be able to do some
2573 * brk-specific accounting here.
2575 static unsigned long do_brk(unsigned long addr, unsigned long len)
2577 struct mm_struct * mm = current->mm;
2578 struct vm_area_struct * vma, * prev;
2579 unsigned long flags;
2580 struct rb_node ** rb_link, * rb_parent;
2581 pgoff_t pgoff = addr >> PAGE_SHIFT;
2584 len = PAGE_ALIGN(len);
2588 flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2590 error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2591 if (error & ~PAGE_MASK)
2597 if (mm->def_flags & VM_LOCKED) {
2598 unsigned long locked, lock_limit;
2599 locked = len >> PAGE_SHIFT;
2600 locked += mm->locked_vm;
2601 lock_limit = rlimit(RLIMIT_MEMLOCK);
2602 lock_limit >>= PAGE_SHIFT;
2603 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
2608 * mm->mmap_sem is required to protect against another thread
2609 * changing the mappings in case we sleep.
2611 verify_mm_writelocked(mm);
2614 * Clear old maps. this also does some error checking for us
2617 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) {
2618 if (do_munmap(mm, addr, len))
2623 /* Check against address space limits *after* clearing old maps... */
2624 if (!may_expand_vm(mm, len >> PAGE_SHIFT))
2627 if (mm->map_count > sysctl_max_map_count)
2630 if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
2633 /* Can we just expand an old private anonymous mapping? */
2634 vma = vma_merge(mm, prev, addr, addr + len, flags,
2635 NULL, NULL, pgoff, NULL);
2640 * create a vma struct for an anonymous mapping
2642 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2644 vm_unacct_memory(len >> PAGE_SHIFT);
2648 INIT_LIST_HEAD(&vma->anon_vma_chain);
2650 vma->vm_start = addr;
2651 vma->vm_end = addr + len;
2652 vma->vm_pgoff = pgoff;
2653 vma->vm_flags = flags;
2654 vma->vm_page_prot = vm_get_page_prot(flags);
2655 vma_link(mm, vma, prev, rb_link, rb_parent);
2657 perf_event_mmap(vma);
2658 mm->total_vm += len >> PAGE_SHIFT;
2659 if (flags & VM_LOCKED)
2660 mm->locked_vm += (len >> PAGE_SHIFT);
2661 vma->vm_flags |= VM_SOFTDIRTY;
2665 unsigned long vm_brk(unsigned long addr, unsigned long len)
2667 struct mm_struct *mm = current->mm;
2671 down_write(&mm->mmap_sem);
2672 ret = do_brk(addr, len);
2673 populate = ((mm->def_flags & VM_LOCKED) != 0);
2674 up_write(&mm->mmap_sem);
2676 mm_populate(addr, len);
2679 EXPORT_SYMBOL(vm_brk);
2681 /* Release all mmaps. */
2682 void exit_mmap(struct mm_struct *mm)
2684 struct mmu_gather tlb;
2685 struct vm_area_struct *vma;
2686 unsigned long nr_accounted = 0;
2688 /* mm's last user has gone, and its about to be pulled down */
2689 mmu_notifier_release(mm);
2691 if (mm->locked_vm) {
2694 if (vma->vm_flags & VM_LOCKED)
2695 munlock_vma_pages_all(vma);
2703 if (!vma) /* Can happen if dup_mmap() received an OOM */
2708 tlb_gather_mmu(&tlb, mm, 0, -1);
2709 /* update_hiwater_rss(mm) here? but nobody should be looking */
2710 /* Use -1 here to ensure all VMAs in the mm are unmapped */
2711 unmap_vmas(&tlb, vma, 0, -1);
2713 free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
2714 tlb_finish_mmu(&tlb, 0, -1);
2717 * Walk the list again, actually closing and freeing it,
2718 * with preemption enabled, without holding any MM locks.
2721 if (vma->vm_flags & VM_ACCOUNT)
2722 nr_accounted += vma_pages(vma);
2723 vma = remove_vma(vma);
2725 vm_unacct_memory(nr_accounted);
2727 WARN_ON(atomic_long_read(&mm->nr_ptes) >
2728 (FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT);
2731 /* Insert vm structure into process list sorted by address
2732 * and into the inode's i_mmap tree. If vm_file is non-NULL
2733 * then i_mmap_mutex is taken here.
2735 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
2737 struct vm_area_struct *prev;
2738 struct rb_node **rb_link, *rb_parent;
2741 * The vm_pgoff of a purely anonymous vma should be irrelevant
2742 * until its first write fault, when page's anon_vma and index
2743 * are set. But now set the vm_pgoff it will almost certainly
2744 * end up with (unless mremap moves it elsewhere before that
2745 * first wfault), so /proc/pid/maps tells a consistent story.
2747 * By setting it to reflect the virtual start address of the
2748 * vma, merges and splits can happen in a seamless way, just
2749 * using the existing file pgoff checks and manipulations.
2750 * Similarly in do_mmap_pgoff and in do_brk.
2752 if (!vma->vm_file) {
2753 BUG_ON(vma->anon_vma);
2754 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2756 if (find_vma_links(mm, vma->vm_start, vma->vm_end,
2757 &prev, &rb_link, &rb_parent))
2759 if ((vma->vm_flags & VM_ACCOUNT) &&
2760 security_vm_enough_memory_mm(mm, vma_pages(vma)))
2763 vma_link(mm, vma, prev, rb_link, rb_parent);
2768 * Copy the vma structure to a new location in the same mm,
2769 * prior to moving page table entries, to effect an mremap move.
2771 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2772 unsigned long addr, unsigned long len, pgoff_t pgoff,
2773 bool *need_rmap_locks)
2775 struct vm_area_struct *vma = *vmap;
2776 unsigned long vma_start = vma->vm_start;
2777 struct mm_struct *mm = vma->vm_mm;
2778 struct vm_area_struct *new_vma, *prev;
2779 struct rb_node **rb_link, *rb_parent;
2780 bool faulted_in_anon_vma = true;
2783 * If anonymous vma has not yet been faulted, update new pgoff
2784 * to match new location, to increase its chance of merging.
2786 if (unlikely(!vma->vm_file && !vma->anon_vma)) {
2787 pgoff = addr >> PAGE_SHIFT;
2788 faulted_in_anon_vma = false;
2791 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
2792 return NULL; /* should never get here */
2793 new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2794 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma));
2797 * Source vma may have been merged into new_vma
2799 if (unlikely(vma_start >= new_vma->vm_start &&
2800 vma_start < new_vma->vm_end)) {
2802 * The only way we can get a vma_merge with
2803 * self during an mremap is if the vma hasn't
2804 * been faulted in yet and we were allowed to
2805 * reset the dst vma->vm_pgoff to the
2806 * destination address of the mremap to allow
2807 * the merge to happen. mremap must change the
2808 * vm_pgoff linearity between src and dst vmas
2809 * (in turn preventing a vma_merge) to be
2810 * safe. It is only safe to keep the vm_pgoff
2811 * linear if there are no pages mapped yet.
2813 VM_BUG_ON(faulted_in_anon_vma);
2814 *vmap = vma = new_vma;
2816 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
2818 new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2821 new_vma->vm_start = addr;
2822 new_vma->vm_end = addr + len;
2823 new_vma->vm_pgoff = pgoff;
2824 if (vma_dup_policy(vma, new_vma))
2826 INIT_LIST_HEAD(&new_vma->anon_vma_chain);
2827 if (anon_vma_clone(new_vma, vma))
2828 goto out_free_mempol;
2829 if (new_vma->vm_file)
2830 get_file(new_vma->vm_file);
2831 if (new_vma->vm_ops && new_vma->vm_ops->open)
2832 new_vma->vm_ops->open(new_vma);
2833 vma_link(mm, new_vma, prev, rb_link, rb_parent);
2834 *need_rmap_locks = false;
2840 mpol_put(vma_policy(new_vma));
2842 kmem_cache_free(vm_area_cachep, new_vma);
2847 * Return true if the calling process may expand its vm space by the passed
2850 int may_expand_vm(struct mm_struct *mm, unsigned long npages)
2852 unsigned long cur = mm->total_vm; /* pages */
2855 lim = rlimit(RLIMIT_AS) >> PAGE_SHIFT;
2857 if (cur + npages > lim)
2863 static int special_mapping_fault(struct vm_area_struct *vma,
2864 struct vm_fault *vmf)
2867 struct page **pages;
2870 * special mappings have no vm_file, and in that case, the mm
2871 * uses vm_pgoff internally. So we have to subtract it from here.
2872 * We are allowed to do this because we are the mm; do not copy
2873 * this code into drivers!
2875 pgoff = vmf->pgoff - vma->vm_pgoff;
2877 for (pages = vma->vm_private_data; pgoff && *pages; ++pages)
2881 struct page *page = *pages;
2887 return VM_FAULT_SIGBUS;
2891 * Having a close hook prevents vma merging regardless of flags.
2893 static void special_mapping_close(struct vm_area_struct *vma)
2897 static const struct vm_operations_struct special_mapping_vmops = {
2898 .close = special_mapping_close,
2899 .fault = special_mapping_fault,
2903 * Called with mm->mmap_sem held for writing.
2904 * Insert a new vma covering the given region, with the given flags.
2905 * Its pages are supplied by the given array of struct page *.
2906 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
2907 * The region past the last page supplied will always produce SIGBUS.
2908 * The array pointer and the pages it points to are assumed to stay alive
2909 * for as long as this mapping might exist.
2911 int install_special_mapping(struct mm_struct *mm,
2912 unsigned long addr, unsigned long len,
2913 unsigned long vm_flags, struct page **pages)
2916 struct vm_area_struct *vma;
2918 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2919 if (unlikely(vma == NULL))
2922 INIT_LIST_HEAD(&vma->anon_vma_chain);
2924 vma->vm_start = addr;
2925 vma->vm_end = addr + len;
2927 vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
2928 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2930 vma->vm_ops = &special_mapping_vmops;
2931 vma->vm_private_data = pages;
2933 ret = insert_vm_struct(mm, vma);
2937 mm->total_vm += len >> PAGE_SHIFT;
2939 perf_event_mmap(vma);
2944 kmem_cache_free(vm_area_cachep, vma);
2948 static DEFINE_MUTEX(mm_all_locks_mutex);
2950 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
2952 if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
2954 * The LSB of head.next can't change from under us
2955 * because we hold the mm_all_locks_mutex.
2957 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem);
2959 * We can safely modify head.next after taking the
2960 * anon_vma->root->rwsem. If some other vma in this mm shares
2961 * the same anon_vma we won't take it again.
2963 * No need of atomic instructions here, head.next
2964 * can't change from under us thanks to the
2965 * anon_vma->root->rwsem.
2967 if (__test_and_set_bit(0, (unsigned long *)
2968 &anon_vma->root->rb_root.rb_node))
2973 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
2975 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2977 * AS_MM_ALL_LOCKS can't change from under us because
2978 * we hold the mm_all_locks_mutex.
2980 * Operations on ->flags have to be atomic because
2981 * even if AS_MM_ALL_LOCKS is stable thanks to the
2982 * mm_all_locks_mutex, there may be other cpus
2983 * changing other bitflags in parallel to us.
2985 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
2987 mutex_lock_nest_lock(&mapping->i_mmap_mutex, &mm->mmap_sem);
2992 * This operation locks against the VM for all pte/vma/mm related
2993 * operations that could ever happen on a certain mm. This includes
2994 * vmtruncate, try_to_unmap, and all page faults.
2996 * The caller must take the mmap_sem in write mode before calling
2997 * mm_take_all_locks(). The caller isn't allowed to release the
2998 * mmap_sem until mm_drop_all_locks() returns.
3000 * mmap_sem in write mode is required in order to block all operations
3001 * that could modify pagetables and free pages without need of
3002 * altering the vma layout (for example populate_range() with
3003 * nonlinear vmas). It's also needed in write mode to avoid new
3004 * anon_vmas to be associated with existing vmas.
3006 * A single task can't take more than one mm_take_all_locks() in a row
3007 * or it would deadlock.
3009 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3010 * mapping->flags avoid to take the same lock twice, if more than one
3011 * vma in this mm is backed by the same anon_vma or address_space.
3013 * We can take all the locks in random order because the VM code
3014 * taking i_mmap_mutex or anon_vma->rwsem outside the mmap_sem never
3015 * takes more than one of them in a row. Secondly we're protected
3016 * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex.
3018 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3019 * that may have to take thousand of locks.
3021 * mm_take_all_locks() can fail if it's interrupted by signals.
3023 int mm_take_all_locks(struct mm_struct *mm)
3025 struct vm_area_struct *vma;
3026 struct anon_vma_chain *avc;
3028 BUG_ON(down_read_trylock(&mm->mmap_sem));
3030 mutex_lock(&mm_all_locks_mutex);
3032 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3033 if (signal_pending(current))
3035 if (vma->vm_file && vma->vm_file->f_mapping)
3036 vm_lock_mapping(mm, vma->vm_file->f_mapping);
3039 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3040 if (signal_pending(current))
3043 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3044 vm_lock_anon_vma(mm, avc->anon_vma);
3050 mm_drop_all_locks(mm);
3054 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3056 if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3058 * The LSB of head.next can't change to 0 from under
3059 * us because we hold the mm_all_locks_mutex.
3061 * We must however clear the bitflag before unlocking
3062 * the vma so the users using the anon_vma->rb_root will
3063 * never see our bitflag.
3065 * No need of atomic instructions here, head.next
3066 * can't change from under us until we release the
3067 * anon_vma->root->rwsem.
3069 if (!__test_and_clear_bit(0, (unsigned long *)
3070 &anon_vma->root->rb_root.rb_node))
3072 anon_vma_unlock_write(anon_vma);
3076 static void vm_unlock_mapping(struct address_space *mapping)
3078 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3080 * AS_MM_ALL_LOCKS can't change to 0 from under us
3081 * because we hold the mm_all_locks_mutex.
3083 mutex_unlock(&mapping->i_mmap_mutex);
3084 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3091 * The mmap_sem cannot be released by the caller until
3092 * mm_drop_all_locks() returns.
3094 void mm_drop_all_locks(struct mm_struct *mm)
3096 struct vm_area_struct *vma;
3097 struct anon_vma_chain *avc;
3099 BUG_ON(down_read_trylock(&mm->mmap_sem));
3100 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3102 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3104 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3105 vm_unlock_anon_vma(avc->anon_vma);
3106 if (vma->vm_file && vma->vm_file->f_mapping)
3107 vm_unlock_mapping(vma->vm_file->f_mapping);
3110 mutex_unlock(&mm_all_locks_mutex);
3114 * initialise the VMA slab
3116 void __init mmap_init(void)
3120 ret = percpu_counter_init(&vm_committed_as, 0);
3125 * Initialise sysctl_user_reserve_kbytes.
3127 * This is intended to prevent a user from starting a single memory hogging
3128 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3131 * The default value is min(3% of free memory, 128MB)
3132 * 128MB is enough to recover with sshd/login, bash, and top/kill.
3134 static int init_user_reserve(void)
3136 unsigned long free_kbytes;
3138 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3140 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3143 module_init(init_user_reserve)
3146 * Initialise sysctl_admin_reserve_kbytes.
3148 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3149 * to log in and kill a memory hogging process.
3151 * Systems with more than 256MB will reserve 8MB, enough to recover
3152 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3153 * only reserve 3% of free pages by default.
3155 static int init_admin_reserve(void)
3157 unsigned long free_kbytes;
3159 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3161 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3164 module_init(init_admin_reserve)
3167 * Reinititalise user and admin reserves if memory is added or removed.
3169 * The default user reserve max is 128MB, and the default max for the
3170 * admin reserve is 8MB. These are usually, but not always, enough to
3171 * enable recovery from a memory hogging process using login/sshd, a shell,
3172 * and tools like top. It may make sense to increase or even disable the
3173 * reserve depending on the existence of swap or variations in the recovery
3174 * tools. So, the admin may have changed them.
3176 * If memory is added and the reserves have been eliminated or increased above
3177 * the default max, then we'll trust the admin.
3179 * If memory is removed and there isn't enough free memory, then we
3180 * need to reset the reserves.
3182 * Otherwise keep the reserve set by the admin.
3184 static int reserve_mem_notifier(struct notifier_block *nb,
3185 unsigned long action, void *data)
3187 unsigned long tmp, free_kbytes;
3191 /* Default max is 128MB. Leave alone if modified by operator. */
3192 tmp = sysctl_user_reserve_kbytes;
3193 if (0 < tmp && tmp < (1UL << 17))
3194 init_user_reserve();
3196 /* Default max is 8MB. Leave alone if modified by operator. */
3197 tmp = sysctl_admin_reserve_kbytes;
3198 if (0 < tmp && tmp < (1UL << 13))
3199 init_admin_reserve();
3203 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3205 if (sysctl_user_reserve_kbytes > free_kbytes) {
3206 init_user_reserve();
3207 pr_info("vm.user_reserve_kbytes reset to %lu\n",
3208 sysctl_user_reserve_kbytes);
3211 if (sysctl_admin_reserve_kbytes > free_kbytes) {
3212 init_admin_reserve();
3213 pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3214 sysctl_admin_reserve_kbytes);
3223 static struct notifier_block reserve_mem_nb = {
3224 .notifier_call = reserve_mem_notifier,
3227 static int __meminit init_reserve_notifier(void)
3229 if (register_hotmemory_notifier(&reserve_mem_nb))
3230 printk("Failed registering memory add/remove notifier for admin reserve");
3234 module_init(init_reserve_notifier)