Merge tag 'powerpc-4.9-1' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc...
[platform/kernel/linux-exynos.git] / mm / mmap.c
1 /*
2  * mm/mmap.c
3  *
4  * Written by obz.
5  *
6  * Address space accounting code        <alan@lxorguk.ukuu.org.uk>
7  */
8
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11 #include <linux/kernel.h>
12 #include <linux/slab.h>
13 #include <linux/backing-dev.h>
14 #include <linux/mm.h>
15 #include <linux/vmacache.h>
16 #include <linux/shm.h>
17 #include <linux/mman.h>
18 #include <linux/pagemap.h>
19 #include <linux/swap.h>
20 #include <linux/syscalls.h>
21 #include <linux/capability.h>
22 #include <linux/init.h>
23 #include <linux/file.h>
24 #include <linux/fs.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/hugetlb.h>
28 #include <linux/shmem_fs.h>
29 #include <linux/profile.h>
30 #include <linux/export.h>
31 #include <linux/mount.h>
32 #include <linux/mempolicy.h>
33 #include <linux/rmap.h>
34 #include <linux/mmu_notifier.h>
35 #include <linux/mmdebug.h>
36 #include <linux/perf_event.h>
37 #include <linux/audit.h>
38 #include <linux/khugepaged.h>
39 #include <linux/uprobes.h>
40 #include <linux/rbtree_augmented.h>
41 #include <linux/notifier.h>
42 #include <linux/memory.h>
43 #include <linux/printk.h>
44 #include <linux/userfaultfd_k.h>
45 #include <linux/moduleparam.h>
46 #include <linux/pkeys.h>
47
48 #include <asm/uaccess.h>
49 #include <asm/cacheflush.h>
50 #include <asm/tlb.h>
51 #include <asm/mmu_context.h>
52
53 #include "internal.h"
54
55 #ifndef arch_mmap_check
56 #define arch_mmap_check(addr, len, flags)       (0)
57 #endif
58
59 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
60 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
61 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX;
62 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
63 #endif
64 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
65 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
66 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
67 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
68 #endif
69
70 static bool ignore_rlimit_data;
71 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
72
73 static void unmap_region(struct mm_struct *mm,
74                 struct vm_area_struct *vma, struct vm_area_struct *prev,
75                 unsigned long start, unsigned long end);
76
77 /* description of effects of mapping type and prot in current implementation.
78  * this is due to the limited x86 page protection hardware.  The expected
79  * behavior is in parens:
80  *
81  * map_type     prot
82  *              PROT_NONE       PROT_READ       PROT_WRITE      PROT_EXEC
83  * MAP_SHARED   r: (no) no      r: (yes) yes    r: (no) yes     r: (no) yes
84  *              w: (no) no      w: (no) no      w: (yes) yes    w: (no) no
85  *              x: (no) no      x: (no) yes     x: (no) yes     x: (yes) yes
86  *
87  * MAP_PRIVATE  r: (no) no      r: (yes) yes    r: (no) yes     r: (no) yes
88  *              w: (no) no      w: (no) no      w: (copy) copy  w: (no) no
89  *              x: (no) no      x: (no) yes     x: (no) yes     x: (yes) yes
90  *
91  * On arm64, PROT_EXEC has the following behaviour for both MAP_SHARED and
92  * MAP_PRIVATE:
93  *                                                              r: (no) no
94  *                                                              w: (no) no
95  *                                                              x: (yes) yes
96  */
97 pgprot_t protection_map[16] = {
98         __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
99         __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
100 };
101
102 pgprot_t vm_get_page_prot(unsigned long vm_flags)
103 {
104         return __pgprot(pgprot_val(protection_map[vm_flags &
105                                 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
106                         pgprot_val(arch_vm_get_page_prot(vm_flags)));
107 }
108 EXPORT_SYMBOL(vm_get_page_prot);
109
110 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
111 {
112         return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
113 }
114
115 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
116 void vma_set_page_prot(struct vm_area_struct *vma)
117 {
118         unsigned long vm_flags = vma->vm_flags;
119
120         vma->vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
121         if (vma_wants_writenotify(vma)) {
122                 vm_flags &= ~VM_SHARED;
123                 vma->vm_page_prot = vm_pgprot_modify(vma->vm_page_prot,
124                                                      vm_flags);
125         }
126 }
127
128 /*
129  * Requires inode->i_mapping->i_mmap_rwsem
130  */
131 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
132                 struct file *file, struct address_space *mapping)
133 {
134         if (vma->vm_flags & VM_DENYWRITE)
135                 atomic_inc(&file_inode(file)->i_writecount);
136         if (vma->vm_flags & VM_SHARED)
137                 mapping_unmap_writable(mapping);
138
139         flush_dcache_mmap_lock(mapping);
140         vma_interval_tree_remove(vma, &mapping->i_mmap);
141         flush_dcache_mmap_unlock(mapping);
142 }
143
144 /*
145  * Unlink a file-based vm structure from its interval tree, to hide
146  * vma from rmap and vmtruncate before freeing its page tables.
147  */
148 void unlink_file_vma(struct vm_area_struct *vma)
149 {
150         struct file *file = vma->vm_file;
151
152         if (file) {
153                 struct address_space *mapping = file->f_mapping;
154                 i_mmap_lock_write(mapping);
155                 __remove_shared_vm_struct(vma, file, mapping);
156                 i_mmap_unlock_write(mapping);
157         }
158 }
159
160 /*
161  * Close a vm structure and free it, returning the next.
162  */
163 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
164 {
165         struct vm_area_struct *next = vma->vm_next;
166
167         might_sleep();
168         if (vma->vm_ops && vma->vm_ops->close)
169                 vma->vm_ops->close(vma);
170         if (vma->vm_file)
171                 fput(vma->vm_file);
172         mpol_put(vma_policy(vma));
173         kmem_cache_free(vm_area_cachep, vma);
174         return next;
175 }
176
177 static int do_brk(unsigned long addr, unsigned long len);
178
179 SYSCALL_DEFINE1(brk, unsigned long, brk)
180 {
181         unsigned long retval;
182         unsigned long newbrk, oldbrk;
183         struct mm_struct *mm = current->mm;
184         unsigned long min_brk;
185         bool populate;
186
187         if (down_write_killable(&mm->mmap_sem))
188                 return -EINTR;
189
190 #ifdef CONFIG_COMPAT_BRK
191         /*
192          * CONFIG_COMPAT_BRK can still be overridden by setting
193          * randomize_va_space to 2, which will still cause mm->start_brk
194          * to be arbitrarily shifted
195          */
196         if (current->brk_randomized)
197                 min_brk = mm->start_brk;
198         else
199                 min_brk = mm->end_data;
200 #else
201         min_brk = mm->start_brk;
202 #endif
203         if (brk < min_brk)
204                 goto out;
205
206         /*
207          * Check against rlimit here. If this check is done later after the test
208          * of oldbrk with newbrk then it can escape the test and let the data
209          * segment grow beyond its set limit the in case where the limit is
210          * not page aligned -Ram Gupta
211          */
212         if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
213                               mm->end_data, mm->start_data))
214                 goto out;
215
216         newbrk = PAGE_ALIGN(brk);
217         oldbrk = PAGE_ALIGN(mm->brk);
218         if (oldbrk == newbrk)
219                 goto set_brk;
220
221         /* Always allow shrinking brk. */
222         if (brk <= mm->brk) {
223                 if (!do_munmap(mm, newbrk, oldbrk-newbrk))
224                         goto set_brk;
225                 goto out;
226         }
227
228         /* Check against existing mmap mappings. */
229         if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
230                 goto out;
231
232         /* Ok, looks good - let it rip. */
233         if (do_brk(oldbrk, newbrk-oldbrk) < 0)
234                 goto out;
235
236 set_brk:
237         mm->brk = brk;
238         populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
239         up_write(&mm->mmap_sem);
240         if (populate)
241                 mm_populate(oldbrk, newbrk - oldbrk);
242         return brk;
243
244 out:
245         retval = mm->brk;
246         up_write(&mm->mmap_sem);
247         return retval;
248 }
249
250 static long vma_compute_subtree_gap(struct vm_area_struct *vma)
251 {
252         unsigned long max, subtree_gap;
253         max = vma->vm_start;
254         if (vma->vm_prev)
255                 max -= vma->vm_prev->vm_end;
256         if (vma->vm_rb.rb_left) {
257                 subtree_gap = rb_entry(vma->vm_rb.rb_left,
258                                 struct vm_area_struct, vm_rb)->rb_subtree_gap;
259                 if (subtree_gap > max)
260                         max = subtree_gap;
261         }
262         if (vma->vm_rb.rb_right) {
263                 subtree_gap = rb_entry(vma->vm_rb.rb_right,
264                                 struct vm_area_struct, vm_rb)->rb_subtree_gap;
265                 if (subtree_gap > max)
266                         max = subtree_gap;
267         }
268         return max;
269 }
270
271 #ifdef CONFIG_DEBUG_VM_RB
272 static int browse_rb(struct mm_struct *mm)
273 {
274         struct rb_root *root = &mm->mm_rb;
275         int i = 0, j, bug = 0;
276         struct rb_node *nd, *pn = NULL;
277         unsigned long prev = 0, pend = 0;
278
279         for (nd = rb_first(root); nd; nd = rb_next(nd)) {
280                 struct vm_area_struct *vma;
281                 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
282                 if (vma->vm_start < prev) {
283                         pr_emerg("vm_start %lx < prev %lx\n",
284                                   vma->vm_start, prev);
285                         bug = 1;
286                 }
287                 if (vma->vm_start < pend) {
288                         pr_emerg("vm_start %lx < pend %lx\n",
289                                   vma->vm_start, pend);
290                         bug = 1;
291                 }
292                 if (vma->vm_start > vma->vm_end) {
293                         pr_emerg("vm_start %lx > vm_end %lx\n",
294                                   vma->vm_start, vma->vm_end);
295                         bug = 1;
296                 }
297                 spin_lock(&mm->page_table_lock);
298                 if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
299                         pr_emerg("free gap %lx, correct %lx\n",
300                                vma->rb_subtree_gap,
301                                vma_compute_subtree_gap(vma));
302                         bug = 1;
303                 }
304                 spin_unlock(&mm->page_table_lock);
305                 i++;
306                 pn = nd;
307                 prev = vma->vm_start;
308                 pend = vma->vm_end;
309         }
310         j = 0;
311         for (nd = pn; nd; nd = rb_prev(nd))
312                 j++;
313         if (i != j) {
314                 pr_emerg("backwards %d, forwards %d\n", j, i);
315                 bug = 1;
316         }
317         return bug ? -1 : i;
318 }
319
320 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
321 {
322         struct rb_node *nd;
323
324         for (nd = rb_first(root); nd; nd = rb_next(nd)) {
325                 struct vm_area_struct *vma;
326                 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
327                 VM_BUG_ON_VMA(vma != ignore &&
328                         vma->rb_subtree_gap != vma_compute_subtree_gap(vma),
329                         vma);
330         }
331 }
332
333 static void validate_mm(struct mm_struct *mm)
334 {
335         int bug = 0;
336         int i = 0;
337         unsigned long highest_address = 0;
338         struct vm_area_struct *vma = mm->mmap;
339
340         while (vma) {
341                 struct anon_vma *anon_vma = vma->anon_vma;
342                 struct anon_vma_chain *avc;
343
344                 if (anon_vma) {
345                         anon_vma_lock_read(anon_vma);
346                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
347                                 anon_vma_interval_tree_verify(avc);
348                         anon_vma_unlock_read(anon_vma);
349                 }
350
351                 highest_address = vma->vm_end;
352                 vma = vma->vm_next;
353                 i++;
354         }
355         if (i != mm->map_count) {
356                 pr_emerg("map_count %d vm_next %d\n", mm->map_count, i);
357                 bug = 1;
358         }
359         if (highest_address != mm->highest_vm_end) {
360                 pr_emerg("mm->highest_vm_end %lx, found %lx\n",
361                           mm->highest_vm_end, highest_address);
362                 bug = 1;
363         }
364         i = browse_rb(mm);
365         if (i != mm->map_count) {
366                 if (i != -1)
367                         pr_emerg("map_count %d rb %d\n", mm->map_count, i);
368                 bug = 1;
369         }
370         VM_BUG_ON_MM(bug, mm);
371 }
372 #else
373 #define validate_mm_rb(root, ignore) do { } while (0)
374 #define validate_mm(mm) do { } while (0)
375 #endif
376
377 RB_DECLARE_CALLBACKS(static, vma_gap_callbacks, struct vm_area_struct, vm_rb,
378                      unsigned long, rb_subtree_gap, vma_compute_subtree_gap)
379
380 /*
381  * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
382  * vma->vm_prev->vm_end values changed, without modifying the vma's position
383  * in the rbtree.
384  */
385 static void vma_gap_update(struct vm_area_struct *vma)
386 {
387         /*
388          * As it turns out, RB_DECLARE_CALLBACKS() already created a callback
389          * function that does exacltly what we want.
390          */
391         vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
392 }
393
394 static inline void vma_rb_insert(struct vm_area_struct *vma,
395                                  struct rb_root *root)
396 {
397         /* All rb_subtree_gap values must be consistent prior to insertion */
398         validate_mm_rb(root, NULL);
399
400         rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
401 }
402
403 static void vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
404 {
405         /*
406          * All rb_subtree_gap values must be consistent prior to erase,
407          * with the possible exception of the vma being erased.
408          */
409         validate_mm_rb(root, vma);
410
411         /*
412          * Note rb_erase_augmented is a fairly large inline function,
413          * so make sure we instantiate it only once with our desired
414          * augmented rbtree callbacks.
415          */
416         rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
417 }
418
419 /*
420  * vma has some anon_vma assigned, and is already inserted on that
421  * anon_vma's interval trees.
422  *
423  * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
424  * vma must be removed from the anon_vma's interval trees using
425  * anon_vma_interval_tree_pre_update_vma().
426  *
427  * After the update, the vma will be reinserted using
428  * anon_vma_interval_tree_post_update_vma().
429  *
430  * The entire update must be protected by exclusive mmap_sem and by
431  * the root anon_vma's mutex.
432  */
433 static inline void
434 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
435 {
436         struct anon_vma_chain *avc;
437
438         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
439                 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
440 }
441
442 static inline void
443 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
444 {
445         struct anon_vma_chain *avc;
446
447         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
448                 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
449 }
450
451 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
452                 unsigned long end, struct vm_area_struct **pprev,
453                 struct rb_node ***rb_link, struct rb_node **rb_parent)
454 {
455         struct rb_node **__rb_link, *__rb_parent, *rb_prev;
456
457         __rb_link = &mm->mm_rb.rb_node;
458         rb_prev = __rb_parent = NULL;
459
460         while (*__rb_link) {
461                 struct vm_area_struct *vma_tmp;
462
463                 __rb_parent = *__rb_link;
464                 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
465
466                 if (vma_tmp->vm_end > addr) {
467                         /* Fail if an existing vma overlaps the area */
468                         if (vma_tmp->vm_start < end)
469                                 return -ENOMEM;
470                         __rb_link = &__rb_parent->rb_left;
471                 } else {
472                         rb_prev = __rb_parent;
473                         __rb_link = &__rb_parent->rb_right;
474                 }
475         }
476
477         *pprev = NULL;
478         if (rb_prev)
479                 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
480         *rb_link = __rb_link;
481         *rb_parent = __rb_parent;
482         return 0;
483 }
484
485 static unsigned long count_vma_pages_range(struct mm_struct *mm,
486                 unsigned long addr, unsigned long end)
487 {
488         unsigned long nr_pages = 0;
489         struct vm_area_struct *vma;
490
491         /* Find first overlaping mapping */
492         vma = find_vma_intersection(mm, addr, end);
493         if (!vma)
494                 return 0;
495
496         nr_pages = (min(end, vma->vm_end) -
497                 max(addr, vma->vm_start)) >> PAGE_SHIFT;
498
499         /* Iterate over the rest of the overlaps */
500         for (vma = vma->vm_next; vma; vma = vma->vm_next) {
501                 unsigned long overlap_len;
502
503                 if (vma->vm_start > end)
504                         break;
505
506                 overlap_len = min(end, vma->vm_end) - vma->vm_start;
507                 nr_pages += overlap_len >> PAGE_SHIFT;
508         }
509
510         return nr_pages;
511 }
512
513 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
514                 struct rb_node **rb_link, struct rb_node *rb_parent)
515 {
516         /* Update tracking information for the gap following the new vma. */
517         if (vma->vm_next)
518                 vma_gap_update(vma->vm_next);
519         else
520                 mm->highest_vm_end = vma->vm_end;
521
522         /*
523          * vma->vm_prev wasn't known when we followed the rbtree to find the
524          * correct insertion point for that vma. As a result, we could not
525          * update the vma vm_rb parents rb_subtree_gap values on the way down.
526          * So, we first insert the vma with a zero rb_subtree_gap value
527          * (to be consistent with what we did on the way down), and then
528          * immediately update the gap to the correct value. Finally we
529          * rebalance the rbtree after all augmented values have been set.
530          */
531         rb_link_node(&vma->vm_rb, rb_parent, rb_link);
532         vma->rb_subtree_gap = 0;
533         vma_gap_update(vma);
534         vma_rb_insert(vma, &mm->mm_rb);
535 }
536
537 static void __vma_link_file(struct vm_area_struct *vma)
538 {
539         struct file *file;
540
541         file = vma->vm_file;
542         if (file) {
543                 struct address_space *mapping = file->f_mapping;
544
545                 if (vma->vm_flags & VM_DENYWRITE)
546                         atomic_dec(&file_inode(file)->i_writecount);
547                 if (vma->vm_flags & VM_SHARED)
548                         atomic_inc(&mapping->i_mmap_writable);
549
550                 flush_dcache_mmap_lock(mapping);
551                 vma_interval_tree_insert(vma, &mapping->i_mmap);
552                 flush_dcache_mmap_unlock(mapping);
553         }
554 }
555
556 static void
557 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
558         struct vm_area_struct *prev, struct rb_node **rb_link,
559         struct rb_node *rb_parent)
560 {
561         __vma_link_list(mm, vma, prev, rb_parent);
562         __vma_link_rb(mm, vma, rb_link, rb_parent);
563 }
564
565 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
566                         struct vm_area_struct *prev, struct rb_node **rb_link,
567                         struct rb_node *rb_parent)
568 {
569         struct address_space *mapping = NULL;
570
571         if (vma->vm_file) {
572                 mapping = vma->vm_file->f_mapping;
573                 i_mmap_lock_write(mapping);
574         }
575
576         __vma_link(mm, vma, prev, rb_link, rb_parent);
577         __vma_link_file(vma);
578
579         if (mapping)
580                 i_mmap_unlock_write(mapping);
581
582         mm->map_count++;
583         validate_mm(mm);
584 }
585
586 /*
587  * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
588  * mm's list and rbtree.  It has already been inserted into the interval tree.
589  */
590 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
591 {
592         struct vm_area_struct *prev;
593         struct rb_node **rb_link, *rb_parent;
594
595         if (find_vma_links(mm, vma->vm_start, vma->vm_end,
596                            &prev, &rb_link, &rb_parent))
597                 BUG();
598         __vma_link(mm, vma, prev, rb_link, rb_parent);
599         mm->map_count++;
600 }
601
602 static inline void
603 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
604                 struct vm_area_struct *prev)
605 {
606         struct vm_area_struct *next;
607
608         vma_rb_erase(vma, &mm->mm_rb);
609         prev->vm_next = next = vma->vm_next;
610         if (next)
611                 next->vm_prev = prev;
612
613         /* Kill the cache */
614         vmacache_invalidate(mm);
615 }
616
617 /*
618  * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
619  * is already present in an i_mmap tree without adjusting the tree.
620  * The following helper function should be used when such adjustments
621  * are necessary.  The "insert" vma (if any) is to be inserted
622  * before we drop the necessary locks.
623  */
624 int vma_adjust(struct vm_area_struct *vma, unsigned long start,
625         unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
626 {
627         struct mm_struct *mm = vma->vm_mm;
628         struct vm_area_struct *next = vma->vm_next;
629         struct address_space *mapping = NULL;
630         struct rb_root *root = NULL;
631         struct anon_vma *anon_vma = NULL;
632         struct file *file = vma->vm_file;
633         bool start_changed = false, end_changed = false;
634         long adjust_next = 0;
635         int remove_next = 0;
636
637         if (next && !insert) {
638                 struct vm_area_struct *exporter = NULL, *importer = NULL;
639
640                 if (end >= next->vm_end) {
641                         /*
642                          * vma expands, overlapping all the next, and
643                          * perhaps the one after too (mprotect case 6).
644                          */
645                         remove_next = 1 + (end > next->vm_end);
646                         end = next->vm_end;
647                         exporter = next;
648                         importer = vma;
649
650                         /*
651                          * If next doesn't have anon_vma, import from vma after
652                          * next, if the vma overlaps with it.
653                          */
654                         if (remove_next == 2 && next && !next->anon_vma)
655                                 exporter = next->vm_next;
656
657                 } else if (end > next->vm_start) {
658                         /*
659                          * vma expands, overlapping part of the next:
660                          * mprotect case 5 shifting the boundary up.
661                          */
662                         adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
663                         exporter = next;
664                         importer = vma;
665                 } else if (end < vma->vm_end) {
666                         /*
667                          * vma shrinks, and !insert tells it's not
668                          * split_vma inserting another: so it must be
669                          * mprotect case 4 shifting the boundary down.
670                          */
671                         adjust_next = -((vma->vm_end - end) >> PAGE_SHIFT);
672                         exporter = vma;
673                         importer = next;
674                 }
675
676                 /*
677                  * Easily overlooked: when mprotect shifts the boundary,
678                  * make sure the expanding vma has anon_vma set if the
679                  * shrinking vma had, to cover any anon pages imported.
680                  */
681                 if (exporter && exporter->anon_vma && !importer->anon_vma) {
682                         int error;
683
684                         importer->anon_vma = exporter->anon_vma;
685                         error = anon_vma_clone(importer, exporter);
686                         if (error)
687                                 return error;
688                 }
689         }
690 again:
691         vma_adjust_trans_huge(vma, start, end, adjust_next);
692
693         if (file) {
694                 mapping = file->f_mapping;
695                 root = &mapping->i_mmap;
696                 uprobe_munmap(vma, vma->vm_start, vma->vm_end);
697
698                 if (adjust_next)
699                         uprobe_munmap(next, next->vm_start, next->vm_end);
700
701                 i_mmap_lock_write(mapping);
702                 if (insert) {
703                         /*
704                          * Put into interval tree now, so instantiated pages
705                          * are visible to arm/parisc __flush_dcache_page
706                          * throughout; but we cannot insert into address
707                          * space until vma start or end is updated.
708                          */
709                         __vma_link_file(insert);
710                 }
711         }
712
713         anon_vma = vma->anon_vma;
714         if (!anon_vma && adjust_next)
715                 anon_vma = next->anon_vma;
716         if (anon_vma) {
717                 VM_BUG_ON_VMA(adjust_next && next->anon_vma &&
718                           anon_vma != next->anon_vma, next);
719                 anon_vma_lock_write(anon_vma);
720                 anon_vma_interval_tree_pre_update_vma(vma);
721                 if (adjust_next)
722                         anon_vma_interval_tree_pre_update_vma(next);
723         }
724
725         if (root) {
726                 flush_dcache_mmap_lock(mapping);
727                 vma_interval_tree_remove(vma, root);
728                 if (adjust_next)
729                         vma_interval_tree_remove(next, root);
730         }
731
732         if (start != vma->vm_start) {
733                 vma->vm_start = start;
734                 start_changed = true;
735         }
736         if (end != vma->vm_end) {
737                 vma->vm_end = end;
738                 end_changed = true;
739         }
740         vma->vm_pgoff = pgoff;
741         if (adjust_next) {
742                 next->vm_start += adjust_next << PAGE_SHIFT;
743                 next->vm_pgoff += adjust_next;
744         }
745
746         if (root) {
747                 if (adjust_next)
748                         vma_interval_tree_insert(next, root);
749                 vma_interval_tree_insert(vma, root);
750                 flush_dcache_mmap_unlock(mapping);
751         }
752
753         if (remove_next) {
754                 /*
755                  * vma_merge has merged next into vma, and needs
756                  * us to remove next before dropping the locks.
757                  */
758                 __vma_unlink(mm, next, vma);
759                 if (file)
760                         __remove_shared_vm_struct(next, file, mapping);
761         } else if (insert) {
762                 /*
763                  * split_vma has split insert from vma, and needs
764                  * us to insert it before dropping the locks
765                  * (it may either follow vma or precede it).
766                  */
767                 __insert_vm_struct(mm, insert);
768         } else {
769                 if (start_changed)
770                         vma_gap_update(vma);
771                 if (end_changed) {
772                         if (!next)
773                                 mm->highest_vm_end = end;
774                         else if (!adjust_next)
775                                 vma_gap_update(next);
776                 }
777         }
778
779         if (anon_vma) {
780                 anon_vma_interval_tree_post_update_vma(vma);
781                 if (adjust_next)
782                         anon_vma_interval_tree_post_update_vma(next);
783                 anon_vma_unlock_write(anon_vma);
784         }
785         if (mapping)
786                 i_mmap_unlock_write(mapping);
787
788         if (root) {
789                 uprobe_mmap(vma);
790
791                 if (adjust_next)
792                         uprobe_mmap(next);
793         }
794
795         if (remove_next) {
796                 if (file) {
797                         uprobe_munmap(next, next->vm_start, next->vm_end);
798                         fput(file);
799                 }
800                 if (next->anon_vma)
801                         anon_vma_merge(vma, next);
802                 mm->map_count--;
803                 mpol_put(vma_policy(next));
804                 kmem_cache_free(vm_area_cachep, next);
805                 /*
806                  * In mprotect's case 6 (see comments on vma_merge),
807                  * we must remove another next too. It would clutter
808                  * up the code too much to do both in one go.
809                  */
810                 next = vma->vm_next;
811                 if (remove_next == 2) {
812                         remove_next = 1;
813                         end = next->vm_end;
814                         goto again;
815                 }
816                 else if (next)
817                         vma_gap_update(next);
818                 else
819                         mm->highest_vm_end = end;
820         }
821         if (insert && file)
822                 uprobe_mmap(insert);
823
824         validate_mm(mm);
825
826         return 0;
827 }
828
829 /*
830  * If the vma has a ->close operation then the driver probably needs to release
831  * per-vma resources, so we don't attempt to merge those.
832  */
833 static inline int is_mergeable_vma(struct vm_area_struct *vma,
834                                 struct file *file, unsigned long vm_flags,
835                                 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
836 {
837         /*
838          * VM_SOFTDIRTY should not prevent from VMA merging, if we
839          * match the flags but dirty bit -- the caller should mark
840          * merged VMA as dirty. If dirty bit won't be excluded from
841          * comparison, we increase pressue on the memory system forcing
842          * the kernel to generate new VMAs when old one could be
843          * extended instead.
844          */
845         if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
846                 return 0;
847         if (vma->vm_file != file)
848                 return 0;
849         if (vma->vm_ops && vma->vm_ops->close)
850                 return 0;
851         if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
852                 return 0;
853         return 1;
854 }
855
856 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
857                                         struct anon_vma *anon_vma2,
858                                         struct vm_area_struct *vma)
859 {
860         /*
861          * The list_is_singular() test is to avoid merging VMA cloned from
862          * parents. This can improve scalability caused by anon_vma lock.
863          */
864         if ((!anon_vma1 || !anon_vma2) && (!vma ||
865                 list_is_singular(&vma->anon_vma_chain)))
866                 return 1;
867         return anon_vma1 == anon_vma2;
868 }
869
870 /*
871  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
872  * in front of (at a lower virtual address and file offset than) the vma.
873  *
874  * We cannot merge two vmas if they have differently assigned (non-NULL)
875  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
876  *
877  * We don't check here for the merged mmap wrapping around the end of pagecache
878  * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
879  * wrap, nor mmaps which cover the final page at index -1UL.
880  */
881 static int
882 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
883                      struct anon_vma *anon_vma, struct file *file,
884                      pgoff_t vm_pgoff,
885                      struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
886 {
887         if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
888             is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
889                 if (vma->vm_pgoff == vm_pgoff)
890                         return 1;
891         }
892         return 0;
893 }
894
895 /*
896  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
897  * beyond (at a higher virtual address and file offset than) the vma.
898  *
899  * We cannot merge two vmas if they have differently assigned (non-NULL)
900  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
901  */
902 static int
903 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
904                     struct anon_vma *anon_vma, struct file *file,
905                     pgoff_t vm_pgoff,
906                     struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
907 {
908         if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
909             is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
910                 pgoff_t vm_pglen;
911                 vm_pglen = vma_pages(vma);
912                 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
913                         return 1;
914         }
915         return 0;
916 }
917
918 /*
919  * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
920  * whether that can be merged with its predecessor or its successor.
921  * Or both (it neatly fills a hole).
922  *
923  * In most cases - when called for mmap, brk or mremap - [addr,end) is
924  * certain not to be mapped by the time vma_merge is called; but when
925  * called for mprotect, it is certain to be already mapped (either at
926  * an offset within prev, or at the start of next), and the flags of
927  * this area are about to be changed to vm_flags - and the no-change
928  * case has already been eliminated.
929  *
930  * The following mprotect cases have to be considered, where AAAA is
931  * the area passed down from mprotect_fixup, never extending beyond one
932  * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
933  *
934  *     AAAA             AAAA                AAAA          AAAA
935  *    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPNNNNXXXX
936  *    cannot merge    might become    might become    might become
937  *                    PPNNNNNNNNNN    PPPPPPPPPPNN    PPPPPPPPPPPP 6 or
938  *    mmap, brk or    case 4 below    case 5 below    PPPPPPPPXXXX 7 or
939  *    mremap move:                                    PPPPNNNNNNNN 8
940  *        AAAA
941  *    PPPP    NNNN    PPPPPPPPPPPP    PPPPPPPPNNNN    PPPPNNNNNNNN
942  *    might become    case 1 below    case 2 below    case 3 below
943  *
944  * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
945  * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
946  */
947 struct vm_area_struct *vma_merge(struct mm_struct *mm,
948                         struct vm_area_struct *prev, unsigned long addr,
949                         unsigned long end, unsigned long vm_flags,
950                         struct anon_vma *anon_vma, struct file *file,
951                         pgoff_t pgoff, struct mempolicy *policy,
952                         struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
953 {
954         pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
955         struct vm_area_struct *area, *next;
956         int err;
957
958         /*
959          * We later require that vma->vm_flags == vm_flags,
960          * so this tests vma->vm_flags & VM_SPECIAL, too.
961          */
962         if (vm_flags & VM_SPECIAL)
963                 return NULL;
964
965         if (prev)
966                 next = prev->vm_next;
967         else
968                 next = mm->mmap;
969         area = next;
970         if (next && next->vm_end == end)                /* cases 6, 7, 8 */
971                 next = next->vm_next;
972
973         /*
974          * Can it merge with the predecessor?
975          */
976         if (prev && prev->vm_end == addr &&
977                         mpol_equal(vma_policy(prev), policy) &&
978                         can_vma_merge_after(prev, vm_flags,
979                                             anon_vma, file, pgoff,
980                                             vm_userfaultfd_ctx)) {
981                 /*
982                  * OK, it can.  Can we now merge in the successor as well?
983                  */
984                 if (next && end == next->vm_start &&
985                                 mpol_equal(policy, vma_policy(next)) &&
986                                 can_vma_merge_before(next, vm_flags,
987                                                      anon_vma, file,
988                                                      pgoff+pglen,
989                                                      vm_userfaultfd_ctx) &&
990                                 is_mergeable_anon_vma(prev->anon_vma,
991                                                       next->anon_vma, NULL)) {
992                                                         /* cases 1, 6 */
993                         err = vma_adjust(prev, prev->vm_start,
994                                 next->vm_end, prev->vm_pgoff, NULL);
995                 } else                                  /* cases 2, 5, 7 */
996                         err = vma_adjust(prev, prev->vm_start,
997                                 end, prev->vm_pgoff, NULL);
998                 if (err)
999                         return NULL;
1000                 khugepaged_enter_vma_merge(prev, vm_flags);
1001                 return prev;
1002         }
1003
1004         /*
1005          * Can this new request be merged in front of next?
1006          */
1007         if (next && end == next->vm_start &&
1008                         mpol_equal(policy, vma_policy(next)) &&
1009                         can_vma_merge_before(next, vm_flags,
1010                                              anon_vma, file, pgoff+pglen,
1011                                              vm_userfaultfd_ctx)) {
1012                 if (prev && addr < prev->vm_end)        /* case 4 */
1013                         err = vma_adjust(prev, prev->vm_start,
1014                                 addr, prev->vm_pgoff, NULL);
1015                 else                                    /* cases 3, 8 */
1016                         err = vma_adjust(area, addr, next->vm_end,
1017                                 next->vm_pgoff - pglen, NULL);
1018                 if (err)
1019                         return NULL;
1020                 khugepaged_enter_vma_merge(area, vm_flags);
1021                 return area;
1022         }
1023
1024         return NULL;
1025 }
1026
1027 /*
1028  * Rough compatbility check to quickly see if it's even worth looking
1029  * at sharing an anon_vma.
1030  *
1031  * They need to have the same vm_file, and the flags can only differ
1032  * in things that mprotect may change.
1033  *
1034  * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1035  * we can merge the two vma's. For example, we refuse to merge a vma if
1036  * there is a vm_ops->close() function, because that indicates that the
1037  * driver is doing some kind of reference counting. But that doesn't
1038  * really matter for the anon_vma sharing case.
1039  */
1040 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1041 {
1042         return a->vm_end == b->vm_start &&
1043                 mpol_equal(vma_policy(a), vma_policy(b)) &&
1044                 a->vm_file == b->vm_file &&
1045                 !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC|VM_SOFTDIRTY)) &&
1046                 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1047 }
1048
1049 /*
1050  * Do some basic sanity checking to see if we can re-use the anon_vma
1051  * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1052  * the same as 'old', the other will be the new one that is trying
1053  * to share the anon_vma.
1054  *
1055  * NOTE! This runs with mm_sem held for reading, so it is possible that
1056  * the anon_vma of 'old' is concurrently in the process of being set up
1057  * by another page fault trying to merge _that_. But that's ok: if it
1058  * is being set up, that automatically means that it will be a singleton
1059  * acceptable for merging, so we can do all of this optimistically. But
1060  * we do that READ_ONCE() to make sure that we never re-load the pointer.
1061  *
1062  * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1063  * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1064  * is to return an anon_vma that is "complex" due to having gone through
1065  * a fork).
1066  *
1067  * We also make sure that the two vma's are compatible (adjacent,
1068  * and with the same memory policies). That's all stable, even with just
1069  * a read lock on the mm_sem.
1070  */
1071 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1072 {
1073         if (anon_vma_compatible(a, b)) {
1074                 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1075
1076                 if (anon_vma && list_is_singular(&old->anon_vma_chain))
1077                         return anon_vma;
1078         }
1079         return NULL;
1080 }
1081
1082 /*
1083  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1084  * neighbouring vmas for a suitable anon_vma, before it goes off
1085  * to allocate a new anon_vma.  It checks because a repetitive
1086  * sequence of mprotects and faults may otherwise lead to distinct
1087  * anon_vmas being allocated, preventing vma merge in subsequent
1088  * mprotect.
1089  */
1090 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1091 {
1092         struct anon_vma *anon_vma;
1093         struct vm_area_struct *near;
1094
1095         near = vma->vm_next;
1096         if (!near)
1097                 goto try_prev;
1098
1099         anon_vma = reusable_anon_vma(near, vma, near);
1100         if (anon_vma)
1101                 return anon_vma;
1102 try_prev:
1103         near = vma->vm_prev;
1104         if (!near)
1105                 goto none;
1106
1107         anon_vma = reusable_anon_vma(near, near, vma);
1108         if (anon_vma)
1109                 return anon_vma;
1110 none:
1111         /*
1112          * There's no absolute need to look only at touching neighbours:
1113          * we could search further afield for "compatible" anon_vmas.
1114          * But it would probably just be a waste of time searching,
1115          * or lead to too many vmas hanging off the same anon_vma.
1116          * We're trying to allow mprotect remerging later on,
1117          * not trying to minimize memory used for anon_vmas.
1118          */
1119         return NULL;
1120 }
1121
1122 /*
1123  * If a hint addr is less than mmap_min_addr change hint to be as
1124  * low as possible but still greater than mmap_min_addr
1125  */
1126 static inline unsigned long round_hint_to_min(unsigned long hint)
1127 {
1128         hint &= PAGE_MASK;
1129         if (((void *)hint != NULL) &&
1130             (hint < mmap_min_addr))
1131                 return PAGE_ALIGN(mmap_min_addr);
1132         return hint;
1133 }
1134
1135 static inline int mlock_future_check(struct mm_struct *mm,
1136                                      unsigned long flags,
1137                                      unsigned long len)
1138 {
1139         unsigned long locked, lock_limit;
1140
1141         /*  mlock MCL_FUTURE? */
1142         if (flags & VM_LOCKED) {
1143                 locked = len >> PAGE_SHIFT;
1144                 locked += mm->locked_vm;
1145                 lock_limit = rlimit(RLIMIT_MEMLOCK);
1146                 lock_limit >>= PAGE_SHIFT;
1147                 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1148                         return -EAGAIN;
1149         }
1150         return 0;
1151 }
1152
1153 /*
1154  * The caller must hold down_write(&current->mm->mmap_sem).
1155  */
1156 unsigned long do_mmap(struct file *file, unsigned long addr,
1157                         unsigned long len, unsigned long prot,
1158                         unsigned long flags, vm_flags_t vm_flags,
1159                         unsigned long pgoff, unsigned long *populate)
1160 {
1161         struct mm_struct *mm = current->mm;
1162         int pkey = 0;
1163
1164         *populate = 0;
1165
1166         if (!len)
1167                 return -EINVAL;
1168
1169         /*
1170          * Does the application expect PROT_READ to imply PROT_EXEC?
1171          *
1172          * (the exception is when the underlying filesystem is noexec
1173          *  mounted, in which case we dont add PROT_EXEC.)
1174          */
1175         if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1176                 if (!(file && path_noexec(&file->f_path)))
1177                         prot |= PROT_EXEC;
1178
1179         if (!(flags & MAP_FIXED))
1180                 addr = round_hint_to_min(addr);
1181
1182         /* Careful about overflows.. */
1183         len = PAGE_ALIGN(len);
1184         if (!len)
1185                 return -ENOMEM;
1186
1187         /* offset overflow? */
1188         if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1189                 return -EOVERFLOW;
1190
1191         /* Too many mappings? */
1192         if (mm->map_count > sysctl_max_map_count)
1193                 return -ENOMEM;
1194
1195         /* Obtain the address to map to. we verify (or select) it and ensure
1196          * that it represents a valid section of the address space.
1197          */
1198         addr = get_unmapped_area(file, addr, len, pgoff, flags);
1199         if (offset_in_page(addr))
1200                 return addr;
1201
1202         if (prot == PROT_EXEC) {
1203                 pkey = execute_only_pkey(mm);
1204                 if (pkey < 0)
1205                         pkey = 0;
1206         }
1207
1208         /* Do simple checking here so the lower-level routines won't have
1209          * to. we assume access permissions have been handled by the open
1210          * of the memory object, so we don't do any here.
1211          */
1212         vm_flags |= calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
1213                         mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1214
1215         if (flags & MAP_LOCKED)
1216                 if (!can_do_mlock())
1217                         return -EPERM;
1218
1219         if (mlock_future_check(mm, vm_flags, len))
1220                 return -EAGAIN;
1221
1222         if (file) {
1223                 struct inode *inode = file_inode(file);
1224
1225                 switch (flags & MAP_TYPE) {
1226                 case MAP_SHARED:
1227                         if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1228                                 return -EACCES;
1229
1230                         /*
1231                          * Make sure we don't allow writing to an append-only
1232                          * file..
1233                          */
1234                         if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1235                                 return -EACCES;
1236
1237                         /*
1238                          * Make sure there are no mandatory locks on the file.
1239                          */
1240                         if (locks_verify_locked(file))
1241                                 return -EAGAIN;
1242
1243                         vm_flags |= VM_SHARED | VM_MAYSHARE;
1244                         if (!(file->f_mode & FMODE_WRITE))
1245                                 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1246
1247                         /* fall through */
1248                 case MAP_PRIVATE:
1249                         if (!(file->f_mode & FMODE_READ))
1250                                 return -EACCES;
1251                         if (path_noexec(&file->f_path)) {
1252                                 if (vm_flags & VM_EXEC)
1253                                         return -EPERM;
1254                                 vm_flags &= ~VM_MAYEXEC;
1255                         }
1256
1257                         if (!file->f_op->mmap)
1258                                 return -ENODEV;
1259                         if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1260                                 return -EINVAL;
1261                         break;
1262
1263                 default:
1264                         return -EINVAL;
1265                 }
1266         } else {
1267                 switch (flags & MAP_TYPE) {
1268                 case MAP_SHARED:
1269                         if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1270                                 return -EINVAL;
1271                         /*
1272                          * Ignore pgoff.
1273                          */
1274                         pgoff = 0;
1275                         vm_flags |= VM_SHARED | VM_MAYSHARE;
1276                         break;
1277                 case MAP_PRIVATE:
1278                         /*
1279                          * Set pgoff according to addr for anon_vma.
1280                          */
1281                         pgoff = addr >> PAGE_SHIFT;
1282                         break;
1283                 default:
1284                         return -EINVAL;
1285                 }
1286         }
1287
1288         /*
1289          * Set 'VM_NORESERVE' if we should not account for the
1290          * memory use of this mapping.
1291          */
1292         if (flags & MAP_NORESERVE) {
1293                 /* We honor MAP_NORESERVE if allowed to overcommit */
1294                 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1295                         vm_flags |= VM_NORESERVE;
1296
1297                 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1298                 if (file && is_file_hugepages(file))
1299                         vm_flags |= VM_NORESERVE;
1300         }
1301
1302         addr = mmap_region(file, addr, len, vm_flags, pgoff);
1303         if (!IS_ERR_VALUE(addr) &&
1304             ((vm_flags & VM_LOCKED) ||
1305              (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1306                 *populate = len;
1307         return addr;
1308 }
1309
1310 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1311                 unsigned long, prot, unsigned long, flags,
1312                 unsigned long, fd, unsigned long, pgoff)
1313 {
1314         struct file *file = NULL;
1315         unsigned long retval;
1316
1317         if (!(flags & MAP_ANONYMOUS)) {
1318                 audit_mmap_fd(fd, flags);
1319                 file = fget(fd);
1320                 if (!file)
1321                         return -EBADF;
1322                 if (is_file_hugepages(file))
1323                         len = ALIGN(len, huge_page_size(hstate_file(file)));
1324                 retval = -EINVAL;
1325                 if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file)))
1326                         goto out_fput;
1327         } else if (flags & MAP_HUGETLB) {
1328                 struct user_struct *user = NULL;
1329                 struct hstate *hs;
1330
1331                 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & SHM_HUGE_MASK);
1332                 if (!hs)
1333                         return -EINVAL;
1334
1335                 len = ALIGN(len, huge_page_size(hs));
1336                 /*
1337                  * VM_NORESERVE is used because the reservations will be
1338                  * taken when vm_ops->mmap() is called
1339                  * A dummy user value is used because we are not locking
1340                  * memory so no accounting is necessary
1341                  */
1342                 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1343                                 VM_NORESERVE,
1344                                 &user, HUGETLB_ANONHUGE_INODE,
1345                                 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1346                 if (IS_ERR(file))
1347                         return PTR_ERR(file);
1348         }
1349
1350         flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1351
1352         retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1353 out_fput:
1354         if (file)
1355                 fput(file);
1356         return retval;
1357 }
1358
1359 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1360 struct mmap_arg_struct {
1361         unsigned long addr;
1362         unsigned long len;
1363         unsigned long prot;
1364         unsigned long flags;
1365         unsigned long fd;
1366         unsigned long offset;
1367 };
1368
1369 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1370 {
1371         struct mmap_arg_struct a;
1372
1373         if (copy_from_user(&a, arg, sizeof(a)))
1374                 return -EFAULT;
1375         if (offset_in_page(a.offset))
1376                 return -EINVAL;
1377
1378         return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1379                               a.offset >> PAGE_SHIFT);
1380 }
1381 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1382
1383 /*
1384  * Some shared mappigns will want the pages marked read-only
1385  * to track write events. If so, we'll downgrade vm_page_prot
1386  * to the private version (using protection_map[] without the
1387  * VM_SHARED bit).
1388  */
1389 int vma_wants_writenotify(struct vm_area_struct *vma)
1390 {
1391         vm_flags_t vm_flags = vma->vm_flags;
1392         const struct vm_operations_struct *vm_ops = vma->vm_ops;
1393
1394         /* If it was private or non-writable, the write bit is already clear */
1395         if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1396                 return 0;
1397
1398         /* The backer wishes to know when pages are first written to? */
1399         if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite))
1400                 return 1;
1401
1402         /* The open routine did something to the protections that pgprot_modify
1403          * won't preserve? */
1404         if (pgprot_val(vma->vm_page_prot) !=
1405             pgprot_val(vm_pgprot_modify(vma->vm_page_prot, vm_flags)))
1406                 return 0;
1407
1408         /* Do we need to track softdirty? */
1409         if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY))
1410                 return 1;
1411
1412         /* Specialty mapping? */
1413         if (vm_flags & VM_PFNMAP)
1414                 return 0;
1415
1416         /* Can the mapping track the dirty pages? */
1417         return vma->vm_file && vma->vm_file->f_mapping &&
1418                 mapping_cap_account_dirty(vma->vm_file->f_mapping);
1419 }
1420
1421 /*
1422  * We account for memory if it's a private writeable mapping,
1423  * not hugepages and VM_NORESERVE wasn't set.
1424  */
1425 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1426 {
1427         /*
1428          * hugetlb has its own accounting separate from the core VM
1429          * VM_HUGETLB may not be set yet so we cannot check for that flag.
1430          */
1431         if (file && is_file_hugepages(file))
1432                 return 0;
1433
1434         return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1435 }
1436
1437 unsigned long mmap_region(struct file *file, unsigned long addr,
1438                 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff)
1439 {
1440         struct mm_struct *mm = current->mm;
1441         struct vm_area_struct *vma, *prev;
1442         int error;
1443         struct rb_node **rb_link, *rb_parent;
1444         unsigned long charged = 0;
1445
1446         /* Check against address space limit. */
1447         if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
1448                 unsigned long nr_pages;
1449
1450                 /*
1451                  * MAP_FIXED may remove pages of mappings that intersects with
1452                  * requested mapping. Account for the pages it would unmap.
1453                  */
1454                 nr_pages = count_vma_pages_range(mm, addr, addr + len);
1455
1456                 if (!may_expand_vm(mm, vm_flags,
1457                                         (len >> PAGE_SHIFT) - nr_pages))
1458                         return -ENOMEM;
1459         }
1460
1461         /* Clear old maps */
1462         while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
1463                               &rb_parent)) {
1464                 if (do_munmap(mm, addr, len))
1465                         return -ENOMEM;
1466         }
1467
1468         /*
1469          * Private writable mapping: check memory availability
1470          */
1471         if (accountable_mapping(file, vm_flags)) {
1472                 charged = len >> PAGE_SHIFT;
1473                 if (security_vm_enough_memory_mm(mm, charged))
1474                         return -ENOMEM;
1475                 vm_flags |= VM_ACCOUNT;
1476         }
1477
1478         /*
1479          * Can we just expand an old mapping?
1480          */
1481         vma = vma_merge(mm, prev, addr, addr + len, vm_flags,
1482                         NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX);
1483         if (vma)
1484                 goto out;
1485
1486         /*
1487          * Determine the object being mapped and call the appropriate
1488          * specific mapper. the address has already been validated, but
1489          * not unmapped, but the maps are removed from the list.
1490          */
1491         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1492         if (!vma) {
1493                 error = -ENOMEM;
1494                 goto unacct_error;
1495         }
1496
1497         vma->vm_mm = mm;
1498         vma->vm_start = addr;
1499         vma->vm_end = addr + len;
1500         vma->vm_flags = vm_flags;
1501         vma->vm_page_prot = vm_get_page_prot(vm_flags);
1502         vma->vm_pgoff = pgoff;
1503         INIT_LIST_HEAD(&vma->anon_vma_chain);
1504
1505         if (file) {
1506                 if (vm_flags & VM_DENYWRITE) {
1507                         error = deny_write_access(file);
1508                         if (error)
1509                                 goto free_vma;
1510                 }
1511                 if (vm_flags & VM_SHARED) {
1512                         error = mapping_map_writable(file->f_mapping);
1513                         if (error)
1514                                 goto allow_write_and_free_vma;
1515                 }
1516
1517                 /* ->mmap() can change vma->vm_file, but must guarantee that
1518                  * vma_link() below can deny write-access if VM_DENYWRITE is set
1519                  * and map writably if VM_SHARED is set. This usually means the
1520                  * new file must not have been exposed to user-space, yet.
1521                  */
1522                 vma->vm_file = get_file(file);
1523                 error = file->f_op->mmap(file, vma);
1524                 if (error)
1525                         goto unmap_and_free_vma;
1526
1527                 /* Can addr have changed??
1528                  *
1529                  * Answer: Yes, several device drivers can do it in their
1530                  *         f_op->mmap method. -DaveM
1531                  * Bug: If addr is changed, prev, rb_link, rb_parent should
1532                  *      be updated for vma_link()
1533                  */
1534                 WARN_ON_ONCE(addr != vma->vm_start);
1535
1536                 addr = vma->vm_start;
1537                 vm_flags = vma->vm_flags;
1538         } else if (vm_flags & VM_SHARED) {
1539                 error = shmem_zero_setup(vma);
1540                 if (error)
1541                         goto free_vma;
1542         }
1543
1544         vma_link(mm, vma, prev, rb_link, rb_parent);
1545         /* Once vma denies write, undo our temporary denial count */
1546         if (file) {
1547                 if (vm_flags & VM_SHARED)
1548                         mapping_unmap_writable(file->f_mapping);
1549                 if (vm_flags & VM_DENYWRITE)
1550                         allow_write_access(file);
1551         }
1552         file = vma->vm_file;
1553 out:
1554         perf_event_mmap(vma);
1555
1556         vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
1557         if (vm_flags & VM_LOCKED) {
1558                 if (!((vm_flags & VM_SPECIAL) || is_vm_hugetlb_page(vma) ||
1559                                         vma == get_gate_vma(current->mm)))
1560                         mm->locked_vm += (len >> PAGE_SHIFT);
1561                 else
1562                         vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
1563         }
1564
1565         if (file)
1566                 uprobe_mmap(vma);
1567
1568         /*
1569          * New (or expanded) vma always get soft dirty status.
1570          * Otherwise user-space soft-dirty page tracker won't
1571          * be able to distinguish situation when vma area unmapped,
1572          * then new mapped in-place (which must be aimed as
1573          * a completely new data area).
1574          */
1575         vma->vm_flags |= VM_SOFTDIRTY;
1576
1577         vma_set_page_prot(vma);
1578
1579         return addr;
1580
1581 unmap_and_free_vma:
1582         vma->vm_file = NULL;
1583         fput(file);
1584
1585         /* Undo any partial mapping done by a device driver. */
1586         unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1587         charged = 0;
1588         if (vm_flags & VM_SHARED)
1589                 mapping_unmap_writable(file->f_mapping);
1590 allow_write_and_free_vma:
1591         if (vm_flags & VM_DENYWRITE)
1592                 allow_write_access(file);
1593 free_vma:
1594         kmem_cache_free(vm_area_cachep, vma);
1595 unacct_error:
1596         if (charged)
1597                 vm_unacct_memory(charged);
1598         return error;
1599 }
1600
1601 unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1602 {
1603         /*
1604          * We implement the search by looking for an rbtree node that
1605          * immediately follows a suitable gap. That is,
1606          * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1607          * - gap_end   = vma->vm_start        >= info->low_limit  + length;
1608          * - gap_end - gap_start >= length
1609          */
1610
1611         struct mm_struct *mm = current->mm;
1612         struct vm_area_struct *vma;
1613         unsigned long length, low_limit, high_limit, gap_start, gap_end;
1614
1615         /* Adjust search length to account for worst case alignment overhead */
1616         length = info->length + info->align_mask;
1617         if (length < info->length)
1618                 return -ENOMEM;
1619
1620         /* Adjust search limits by the desired length */
1621         if (info->high_limit < length)
1622                 return -ENOMEM;
1623         high_limit = info->high_limit - length;
1624
1625         if (info->low_limit > high_limit)
1626                 return -ENOMEM;
1627         low_limit = info->low_limit + length;
1628
1629         /* Check if rbtree root looks promising */
1630         if (RB_EMPTY_ROOT(&mm->mm_rb))
1631                 goto check_highest;
1632         vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1633         if (vma->rb_subtree_gap < length)
1634                 goto check_highest;
1635
1636         while (true) {
1637                 /* Visit left subtree if it looks promising */
1638                 gap_end = vma->vm_start;
1639                 if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1640                         struct vm_area_struct *left =
1641                                 rb_entry(vma->vm_rb.rb_left,
1642                                          struct vm_area_struct, vm_rb);
1643                         if (left->rb_subtree_gap >= length) {
1644                                 vma = left;
1645                                 continue;
1646                         }
1647                 }
1648
1649                 gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1650 check_current:
1651                 /* Check if current node has a suitable gap */
1652                 if (gap_start > high_limit)
1653                         return -ENOMEM;
1654                 if (gap_end >= low_limit && gap_end - gap_start >= length)
1655                         goto found;
1656
1657                 /* Visit right subtree if it looks promising */
1658                 if (vma->vm_rb.rb_right) {
1659                         struct vm_area_struct *right =
1660                                 rb_entry(vma->vm_rb.rb_right,
1661                                          struct vm_area_struct, vm_rb);
1662                         if (right->rb_subtree_gap >= length) {
1663                                 vma = right;
1664                                 continue;
1665                         }
1666                 }
1667
1668                 /* Go back up the rbtree to find next candidate node */
1669                 while (true) {
1670                         struct rb_node *prev = &vma->vm_rb;
1671                         if (!rb_parent(prev))
1672                                 goto check_highest;
1673                         vma = rb_entry(rb_parent(prev),
1674                                        struct vm_area_struct, vm_rb);
1675                         if (prev == vma->vm_rb.rb_left) {
1676                                 gap_start = vma->vm_prev->vm_end;
1677                                 gap_end = vma->vm_start;
1678                                 goto check_current;
1679                         }
1680                 }
1681         }
1682
1683 check_highest:
1684         /* Check highest gap, which does not precede any rbtree node */
1685         gap_start = mm->highest_vm_end;
1686         gap_end = ULONG_MAX;  /* Only for VM_BUG_ON below */
1687         if (gap_start > high_limit)
1688                 return -ENOMEM;
1689
1690 found:
1691         /* We found a suitable gap. Clip it with the original low_limit. */
1692         if (gap_start < info->low_limit)
1693                 gap_start = info->low_limit;
1694
1695         /* Adjust gap address to the desired alignment */
1696         gap_start += (info->align_offset - gap_start) & info->align_mask;
1697
1698         VM_BUG_ON(gap_start + info->length > info->high_limit);
1699         VM_BUG_ON(gap_start + info->length > gap_end);
1700         return gap_start;
1701 }
1702
1703 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1704 {
1705         struct mm_struct *mm = current->mm;
1706         struct vm_area_struct *vma;
1707         unsigned long length, low_limit, high_limit, gap_start, gap_end;
1708
1709         /* Adjust search length to account for worst case alignment overhead */
1710         length = info->length + info->align_mask;
1711         if (length < info->length)
1712                 return -ENOMEM;
1713
1714         /*
1715          * Adjust search limits by the desired length.
1716          * See implementation comment at top of unmapped_area().
1717          */
1718         gap_end = info->high_limit;
1719         if (gap_end < length)
1720                 return -ENOMEM;
1721         high_limit = gap_end - length;
1722
1723         if (info->low_limit > high_limit)
1724                 return -ENOMEM;
1725         low_limit = info->low_limit + length;
1726
1727         /* Check highest gap, which does not precede any rbtree node */
1728         gap_start = mm->highest_vm_end;
1729         if (gap_start <= high_limit)
1730                 goto found_highest;
1731
1732         /* Check if rbtree root looks promising */
1733         if (RB_EMPTY_ROOT(&mm->mm_rb))
1734                 return -ENOMEM;
1735         vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1736         if (vma->rb_subtree_gap < length)
1737                 return -ENOMEM;
1738
1739         while (true) {
1740                 /* Visit right subtree if it looks promising */
1741                 gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1742                 if (gap_start <= high_limit && vma->vm_rb.rb_right) {
1743                         struct vm_area_struct *right =
1744                                 rb_entry(vma->vm_rb.rb_right,
1745                                          struct vm_area_struct, vm_rb);
1746                         if (right->rb_subtree_gap >= length) {
1747                                 vma = right;
1748                                 continue;
1749                         }
1750                 }
1751
1752 check_current:
1753                 /* Check if current node has a suitable gap */
1754                 gap_end = vma->vm_start;
1755                 if (gap_end < low_limit)
1756                         return -ENOMEM;
1757                 if (gap_start <= high_limit && gap_end - gap_start >= length)
1758                         goto found;
1759
1760                 /* Visit left subtree if it looks promising */
1761                 if (vma->vm_rb.rb_left) {
1762                         struct vm_area_struct *left =
1763                                 rb_entry(vma->vm_rb.rb_left,
1764                                          struct vm_area_struct, vm_rb);
1765                         if (left->rb_subtree_gap >= length) {
1766                                 vma = left;
1767                                 continue;
1768                         }
1769                 }
1770
1771                 /* Go back up the rbtree to find next candidate node */
1772                 while (true) {
1773                         struct rb_node *prev = &vma->vm_rb;
1774                         if (!rb_parent(prev))
1775                                 return -ENOMEM;
1776                         vma = rb_entry(rb_parent(prev),
1777                                        struct vm_area_struct, vm_rb);
1778                         if (prev == vma->vm_rb.rb_right) {
1779                                 gap_start = vma->vm_prev ?
1780                                         vma->vm_prev->vm_end : 0;
1781                                 goto check_current;
1782                         }
1783                 }
1784         }
1785
1786 found:
1787         /* We found a suitable gap. Clip it with the original high_limit. */
1788         if (gap_end > info->high_limit)
1789                 gap_end = info->high_limit;
1790
1791 found_highest:
1792         /* Compute highest gap address at the desired alignment */
1793         gap_end -= info->length;
1794         gap_end -= (gap_end - info->align_offset) & info->align_mask;
1795
1796         VM_BUG_ON(gap_end < info->low_limit);
1797         VM_BUG_ON(gap_end < gap_start);
1798         return gap_end;
1799 }
1800
1801 /* Get an address range which is currently unmapped.
1802  * For shmat() with addr=0.
1803  *
1804  * Ugly calling convention alert:
1805  * Return value with the low bits set means error value,
1806  * ie
1807  *      if (ret & ~PAGE_MASK)
1808  *              error = ret;
1809  *
1810  * This function "knows" that -ENOMEM has the bits set.
1811  */
1812 #ifndef HAVE_ARCH_UNMAPPED_AREA
1813 unsigned long
1814 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1815                 unsigned long len, unsigned long pgoff, unsigned long flags)
1816 {
1817         struct mm_struct *mm = current->mm;
1818         struct vm_area_struct *vma;
1819         struct vm_unmapped_area_info info;
1820
1821         if (len > TASK_SIZE - mmap_min_addr)
1822                 return -ENOMEM;
1823
1824         if (flags & MAP_FIXED)
1825                 return addr;
1826
1827         if (addr) {
1828                 addr = PAGE_ALIGN(addr);
1829                 vma = find_vma(mm, addr);
1830                 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1831                     (!vma || addr + len <= vma->vm_start))
1832                         return addr;
1833         }
1834
1835         info.flags = 0;
1836         info.length = len;
1837         info.low_limit = mm->mmap_base;
1838         info.high_limit = TASK_SIZE;
1839         info.align_mask = 0;
1840         return vm_unmapped_area(&info);
1841 }
1842 #endif
1843
1844 /*
1845  * This mmap-allocator allocates new areas top-down from below the
1846  * stack's low limit (the base):
1847  */
1848 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1849 unsigned long
1850 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1851                           const unsigned long len, const unsigned long pgoff,
1852                           const unsigned long flags)
1853 {
1854         struct vm_area_struct *vma;
1855         struct mm_struct *mm = current->mm;
1856         unsigned long addr = addr0;
1857         struct vm_unmapped_area_info info;
1858
1859         /* requested length too big for entire address space */
1860         if (len > TASK_SIZE - mmap_min_addr)
1861                 return -ENOMEM;
1862
1863         if (flags & MAP_FIXED)
1864                 return addr;
1865
1866         /* requesting a specific address */
1867         if (addr) {
1868                 addr = PAGE_ALIGN(addr);
1869                 vma = find_vma(mm, addr);
1870                 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1871                                 (!vma || addr + len <= vma->vm_start))
1872                         return addr;
1873         }
1874
1875         info.flags = VM_UNMAPPED_AREA_TOPDOWN;
1876         info.length = len;
1877         info.low_limit = max(PAGE_SIZE, mmap_min_addr);
1878         info.high_limit = mm->mmap_base;
1879         info.align_mask = 0;
1880         addr = vm_unmapped_area(&info);
1881
1882         /*
1883          * A failed mmap() very likely causes application failure,
1884          * so fall back to the bottom-up function here. This scenario
1885          * can happen with large stack limits and large mmap()
1886          * allocations.
1887          */
1888         if (offset_in_page(addr)) {
1889                 VM_BUG_ON(addr != -ENOMEM);
1890                 info.flags = 0;
1891                 info.low_limit = TASK_UNMAPPED_BASE;
1892                 info.high_limit = TASK_SIZE;
1893                 addr = vm_unmapped_area(&info);
1894         }
1895
1896         return addr;
1897 }
1898 #endif
1899
1900 unsigned long
1901 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1902                 unsigned long pgoff, unsigned long flags)
1903 {
1904         unsigned long (*get_area)(struct file *, unsigned long,
1905                                   unsigned long, unsigned long, unsigned long);
1906
1907         unsigned long error = arch_mmap_check(addr, len, flags);
1908         if (error)
1909                 return error;
1910
1911         /* Careful about overflows.. */
1912         if (len > TASK_SIZE)
1913                 return -ENOMEM;
1914
1915         get_area = current->mm->get_unmapped_area;
1916         if (file) {
1917                 if (file->f_op->get_unmapped_area)
1918                         get_area = file->f_op->get_unmapped_area;
1919         } else if (flags & MAP_SHARED) {
1920                 /*
1921                  * mmap_region() will call shmem_zero_setup() to create a file,
1922                  * so use shmem's get_unmapped_area in case it can be huge.
1923                  * do_mmap_pgoff() will clear pgoff, so match alignment.
1924                  */
1925                 pgoff = 0;
1926                 get_area = shmem_get_unmapped_area;
1927         }
1928
1929         addr = get_area(file, addr, len, pgoff, flags);
1930         if (IS_ERR_VALUE(addr))
1931                 return addr;
1932
1933         if (addr > TASK_SIZE - len)
1934                 return -ENOMEM;
1935         if (offset_in_page(addr))
1936                 return -EINVAL;
1937
1938         error = security_mmap_addr(addr);
1939         return error ? error : addr;
1940 }
1941
1942 EXPORT_SYMBOL(get_unmapped_area);
1943
1944 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
1945 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
1946 {
1947         struct rb_node *rb_node;
1948         struct vm_area_struct *vma;
1949
1950         /* Check the cache first. */
1951         vma = vmacache_find(mm, addr);
1952         if (likely(vma))
1953                 return vma;
1954
1955         rb_node = mm->mm_rb.rb_node;
1956
1957         while (rb_node) {
1958                 struct vm_area_struct *tmp;
1959
1960                 tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
1961
1962                 if (tmp->vm_end > addr) {
1963                         vma = tmp;
1964                         if (tmp->vm_start <= addr)
1965                                 break;
1966                         rb_node = rb_node->rb_left;
1967                 } else
1968                         rb_node = rb_node->rb_right;
1969         }
1970
1971         if (vma)
1972                 vmacache_update(addr, vma);
1973         return vma;
1974 }
1975
1976 EXPORT_SYMBOL(find_vma);
1977
1978 /*
1979  * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
1980  */
1981 struct vm_area_struct *
1982 find_vma_prev(struct mm_struct *mm, unsigned long addr,
1983                         struct vm_area_struct **pprev)
1984 {
1985         struct vm_area_struct *vma;
1986
1987         vma = find_vma(mm, addr);
1988         if (vma) {
1989                 *pprev = vma->vm_prev;
1990         } else {
1991                 struct rb_node *rb_node = mm->mm_rb.rb_node;
1992                 *pprev = NULL;
1993                 while (rb_node) {
1994                         *pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb);
1995                         rb_node = rb_node->rb_right;
1996                 }
1997         }
1998         return vma;
1999 }
2000
2001 /*
2002  * Verify that the stack growth is acceptable and
2003  * update accounting. This is shared with both the
2004  * grow-up and grow-down cases.
2005  */
2006 static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow)
2007 {
2008         struct mm_struct *mm = vma->vm_mm;
2009         struct rlimit *rlim = current->signal->rlim;
2010         unsigned long new_start, actual_size;
2011
2012         /* address space limit tests */
2013         if (!may_expand_vm(mm, vma->vm_flags, grow))
2014                 return -ENOMEM;
2015
2016         /* Stack limit test */
2017         actual_size = size;
2018         if (size && (vma->vm_flags & (VM_GROWSUP | VM_GROWSDOWN)))
2019                 actual_size -= PAGE_SIZE;
2020         if (actual_size > READ_ONCE(rlim[RLIMIT_STACK].rlim_cur))
2021                 return -ENOMEM;
2022
2023         /* mlock limit tests */
2024         if (vma->vm_flags & VM_LOCKED) {
2025                 unsigned long locked;
2026                 unsigned long limit;
2027                 locked = mm->locked_vm + grow;
2028                 limit = READ_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur);
2029                 limit >>= PAGE_SHIFT;
2030                 if (locked > limit && !capable(CAP_IPC_LOCK))
2031                         return -ENOMEM;
2032         }
2033
2034         /* Check to ensure the stack will not grow into a hugetlb-only region */
2035         new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2036                         vma->vm_end - size;
2037         if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2038                 return -EFAULT;
2039
2040         /*
2041          * Overcommit..  This must be the final test, as it will
2042          * update security statistics.
2043          */
2044         if (security_vm_enough_memory_mm(mm, grow))
2045                 return -ENOMEM;
2046
2047         return 0;
2048 }
2049
2050 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2051 /*
2052  * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2053  * vma is the last one with address > vma->vm_end.  Have to extend vma.
2054  */
2055 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2056 {
2057         struct mm_struct *mm = vma->vm_mm;
2058         int error = 0;
2059
2060         if (!(vma->vm_flags & VM_GROWSUP))
2061                 return -EFAULT;
2062
2063         /* Guard against wrapping around to address 0. */
2064         if (address < PAGE_ALIGN(address+4))
2065                 address = PAGE_ALIGN(address+4);
2066         else
2067                 return -ENOMEM;
2068
2069         /* We must make sure the anon_vma is allocated. */
2070         if (unlikely(anon_vma_prepare(vma)))
2071                 return -ENOMEM;
2072
2073         /*
2074          * vma->vm_start/vm_end cannot change under us because the caller
2075          * is required to hold the mmap_sem in read mode.  We need the
2076          * anon_vma lock to serialize against concurrent expand_stacks.
2077          */
2078         anon_vma_lock_write(vma->anon_vma);
2079
2080         /* Somebody else might have raced and expanded it already */
2081         if (address > vma->vm_end) {
2082                 unsigned long size, grow;
2083
2084                 size = address - vma->vm_start;
2085                 grow = (address - vma->vm_end) >> PAGE_SHIFT;
2086
2087                 error = -ENOMEM;
2088                 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2089                         error = acct_stack_growth(vma, size, grow);
2090                         if (!error) {
2091                                 /*
2092                                  * vma_gap_update() doesn't support concurrent
2093                                  * updates, but we only hold a shared mmap_sem
2094                                  * lock here, so we need to protect against
2095                                  * concurrent vma expansions.
2096                                  * anon_vma_lock_write() doesn't help here, as
2097                                  * we don't guarantee that all growable vmas
2098                                  * in a mm share the same root anon vma.
2099                                  * So, we reuse mm->page_table_lock to guard
2100                                  * against concurrent vma expansions.
2101                                  */
2102                                 spin_lock(&mm->page_table_lock);
2103                                 if (vma->vm_flags & VM_LOCKED)
2104                                         mm->locked_vm += grow;
2105                                 vm_stat_account(mm, vma->vm_flags, grow);
2106                                 anon_vma_interval_tree_pre_update_vma(vma);
2107                                 vma->vm_end = address;
2108                                 anon_vma_interval_tree_post_update_vma(vma);
2109                                 if (vma->vm_next)
2110                                         vma_gap_update(vma->vm_next);
2111                                 else
2112                                         mm->highest_vm_end = address;
2113                                 spin_unlock(&mm->page_table_lock);
2114
2115                                 perf_event_mmap(vma);
2116                         }
2117                 }
2118         }
2119         anon_vma_unlock_write(vma->anon_vma);
2120         khugepaged_enter_vma_merge(vma, vma->vm_flags);
2121         validate_mm(mm);
2122         return error;
2123 }
2124 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2125
2126 /*
2127  * vma is the first one with address < vma->vm_start.  Have to extend vma.
2128  */
2129 int expand_downwards(struct vm_area_struct *vma,
2130                                    unsigned long address)
2131 {
2132         struct mm_struct *mm = vma->vm_mm;
2133         int error;
2134
2135         address &= PAGE_MASK;
2136         error = security_mmap_addr(address);
2137         if (error)
2138                 return error;
2139
2140         /* We must make sure the anon_vma is allocated. */
2141         if (unlikely(anon_vma_prepare(vma)))
2142                 return -ENOMEM;
2143
2144         /*
2145          * vma->vm_start/vm_end cannot change under us because the caller
2146          * is required to hold the mmap_sem in read mode.  We need the
2147          * anon_vma lock to serialize against concurrent expand_stacks.
2148          */
2149         anon_vma_lock_write(vma->anon_vma);
2150
2151         /* Somebody else might have raced and expanded it already */
2152         if (address < vma->vm_start) {
2153                 unsigned long size, grow;
2154
2155                 size = vma->vm_end - address;
2156                 grow = (vma->vm_start - address) >> PAGE_SHIFT;
2157
2158                 error = -ENOMEM;
2159                 if (grow <= vma->vm_pgoff) {
2160                         error = acct_stack_growth(vma, size, grow);
2161                         if (!error) {
2162                                 /*
2163                                  * vma_gap_update() doesn't support concurrent
2164                                  * updates, but we only hold a shared mmap_sem
2165                                  * lock here, so we need to protect against
2166                                  * concurrent vma expansions.
2167                                  * anon_vma_lock_write() doesn't help here, as
2168                                  * we don't guarantee that all growable vmas
2169                                  * in a mm share the same root anon vma.
2170                                  * So, we reuse mm->page_table_lock to guard
2171                                  * against concurrent vma expansions.
2172                                  */
2173                                 spin_lock(&mm->page_table_lock);
2174                                 if (vma->vm_flags & VM_LOCKED)
2175                                         mm->locked_vm += grow;
2176                                 vm_stat_account(mm, vma->vm_flags, grow);
2177                                 anon_vma_interval_tree_pre_update_vma(vma);
2178                                 vma->vm_start = address;
2179                                 vma->vm_pgoff -= grow;
2180                                 anon_vma_interval_tree_post_update_vma(vma);
2181                                 vma_gap_update(vma);
2182                                 spin_unlock(&mm->page_table_lock);
2183
2184                                 perf_event_mmap(vma);
2185                         }
2186                 }
2187         }
2188         anon_vma_unlock_write(vma->anon_vma);
2189         khugepaged_enter_vma_merge(vma, vma->vm_flags);
2190         validate_mm(mm);
2191         return error;
2192 }
2193
2194 /*
2195  * Note how expand_stack() refuses to expand the stack all the way to
2196  * abut the next virtual mapping, *unless* that mapping itself is also
2197  * a stack mapping. We want to leave room for a guard page, after all
2198  * (the guard page itself is not added here, that is done by the
2199  * actual page faulting logic)
2200  *
2201  * This matches the behavior of the guard page logic (see mm/memory.c:
2202  * check_stack_guard_page()), which only allows the guard page to be
2203  * removed under these circumstances.
2204  */
2205 #ifdef CONFIG_STACK_GROWSUP
2206 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2207 {
2208         struct vm_area_struct *next;
2209
2210         address &= PAGE_MASK;
2211         next = vma->vm_next;
2212         if (next && next->vm_start == address + PAGE_SIZE) {
2213                 if (!(next->vm_flags & VM_GROWSUP))
2214                         return -ENOMEM;
2215         }
2216         return expand_upwards(vma, address);
2217 }
2218
2219 struct vm_area_struct *
2220 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2221 {
2222         struct vm_area_struct *vma, *prev;
2223
2224         addr &= PAGE_MASK;
2225         vma = find_vma_prev(mm, addr, &prev);
2226         if (vma && (vma->vm_start <= addr))
2227                 return vma;
2228         if (!prev || expand_stack(prev, addr))
2229                 return NULL;
2230         if (prev->vm_flags & VM_LOCKED)
2231                 populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2232         return prev;
2233 }
2234 #else
2235 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2236 {
2237         struct vm_area_struct *prev;
2238
2239         address &= PAGE_MASK;
2240         prev = vma->vm_prev;
2241         if (prev && prev->vm_end == address) {
2242                 if (!(prev->vm_flags & VM_GROWSDOWN))
2243                         return -ENOMEM;
2244         }
2245         return expand_downwards(vma, address);
2246 }
2247
2248 struct vm_area_struct *
2249 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2250 {
2251         struct vm_area_struct *vma;
2252         unsigned long start;
2253
2254         addr &= PAGE_MASK;
2255         vma = find_vma(mm, addr);
2256         if (!vma)
2257                 return NULL;
2258         if (vma->vm_start <= addr)
2259                 return vma;
2260         if (!(vma->vm_flags & VM_GROWSDOWN))
2261                 return NULL;
2262         start = vma->vm_start;
2263         if (expand_stack(vma, addr))
2264                 return NULL;
2265         if (vma->vm_flags & VM_LOCKED)
2266                 populate_vma_page_range(vma, addr, start, NULL);
2267         return vma;
2268 }
2269 #endif
2270
2271 EXPORT_SYMBOL_GPL(find_extend_vma);
2272
2273 /*
2274  * Ok - we have the memory areas we should free on the vma list,
2275  * so release them, and do the vma updates.
2276  *
2277  * Called with the mm semaphore held.
2278  */
2279 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2280 {
2281         unsigned long nr_accounted = 0;
2282
2283         /* Update high watermark before we lower total_vm */
2284         update_hiwater_vm(mm);
2285         do {
2286                 long nrpages = vma_pages(vma);
2287
2288                 if (vma->vm_flags & VM_ACCOUNT)
2289                         nr_accounted += nrpages;
2290                 vm_stat_account(mm, vma->vm_flags, -nrpages);
2291                 vma = remove_vma(vma);
2292         } while (vma);
2293         vm_unacct_memory(nr_accounted);
2294         validate_mm(mm);
2295 }
2296
2297 /*
2298  * Get rid of page table information in the indicated region.
2299  *
2300  * Called with the mm semaphore held.
2301  */
2302 static void unmap_region(struct mm_struct *mm,
2303                 struct vm_area_struct *vma, struct vm_area_struct *prev,
2304                 unsigned long start, unsigned long end)
2305 {
2306         struct vm_area_struct *next = prev ? prev->vm_next : mm->mmap;
2307         struct mmu_gather tlb;
2308
2309         lru_add_drain();
2310         tlb_gather_mmu(&tlb, mm, start, end);
2311         update_hiwater_rss(mm);
2312         unmap_vmas(&tlb, vma, start, end);
2313         free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2314                                  next ? next->vm_start : USER_PGTABLES_CEILING);
2315         tlb_finish_mmu(&tlb, start, end);
2316 }
2317
2318 /*
2319  * Create a list of vma's touched by the unmap, removing them from the mm's
2320  * vma list as we go..
2321  */
2322 static void
2323 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2324         struct vm_area_struct *prev, unsigned long end)
2325 {
2326         struct vm_area_struct **insertion_point;
2327         struct vm_area_struct *tail_vma = NULL;
2328
2329         insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2330         vma->vm_prev = NULL;
2331         do {
2332                 vma_rb_erase(vma, &mm->mm_rb);
2333                 mm->map_count--;
2334                 tail_vma = vma;
2335                 vma = vma->vm_next;
2336         } while (vma && vma->vm_start < end);
2337         *insertion_point = vma;
2338         if (vma) {
2339                 vma->vm_prev = prev;
2340                 vma_gap_update(vma);
2341         } else
2342                 mm->highest_vm_end = prev ? prev->vm_end : 0;
2343         tail_vma->vm_next = NULL;
2344
2345         /* Kill the cache */
2346         vmacache_invalidate(mm);
2347 }
2348
2349 /*
2350  * __split_vma() bypasses sysctl_max_map_count checking.  We use this on the
2351  * munmap path where it doesn't make sense to fail.
2352  */
2353 static int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2354               unsigned long addr, int new_below)
2355 {
2356         struct vm_area_struct *new;
2357         int err;
2358
2359         if (is_vm_hugetlb_page(vma) && (addr &
2360                                         ~(huge_page_mask(hstate_vma(vma)))))
2361                 return -EINVAL;
2362
2363         new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2364         if (!new)
2365                 return -ENOMEM;
2366
2367         /* most fields are the same, copy all, and then fixup */
2368         *new = *vma;
2369
2370         INIT_LIST_HEAD(&new->anon_vma_chain);
2371
2372         if (new_below)
2373                 new->vm_end = addr;
2374         else {
2375                 new->vm_start = addr;
2376                 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2377         }
2378
2379         err = vma_dup_policy(vma, new);
2380         if (err)
2381                 goto out_free_vma;
2382
2383         err = anon_vma_clone(new, vma);
2384         if (err)
2385                 goto out_free_mpol;
2386
2387         if (new->vm_file)
2388                 get_file(new->vm_file);
2389
2390         if (new->vm_ops && new->vm_ops->open)
2391                 new->vm_ops->open(new);
2392
2393         if (new_below)
2394                 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2395                         ((addr - new->vm_start) >> PAGE_SHIFT), new);
2396         else
2397                 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2398
2399         /* Success. */
2400         if (!err)
2401                 return 0;
2402
2403         /* Clean everything up if vma_adjust failed. */
2404         if (new->vm_ops && new->vm_ops->close)
2405                 new->vm_ops->close(new);
2406         if (new->vm_file)
2407                 fput(new->vm_file);
2408         unlink_anon_vmas(new);
2409  out_free_mpol:
2410         mpol_put(vma_policy(new));
2411  out_free_vma:
2412         kmem_cache_free(vm_area_cachep, new);
2413         return err;
2414 }
2415
2416 /*
2417  * Split a vma into two pieces at address 'addr', a new vma is allocated
2418  * either for the first part or the tail.
2419  */
2420 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2421               unsigned long addr, int new_below)
2422 {
2423         if (mm->map_count >= sysctl_max_map_count)
2424                 return -ENOMEM;
2425
2426         return __split_vma(mm, vma, addr, new_below);
2427 }
2428
2429 /* Munmap is split into 2 main parts -- this part which finds
2430  * what needs doing, and the areas themselves, which do the
2431  * work.  This now handles partial unmappings.
2432  * Jeremy Fitzhardinge <jeremy@goop.org>
2433  */
2434 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
2435 {
2436         unsigned long end;
2437         struct vm_area_struct *vma, *prev, *last;
2438
2439         if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2440                 return -EINVAL;
2441
2442         len = PAGE_ALIGN(len);
2443         if (len == 0)
2444                 return -EINVAL;
2445
2446         /* Find the first overlapping VMA */
2447         vma = find_vma(mm, start);
2448         if (!vma)
2449                 return 0;
2450         prev = vma->vm_prev;
2451         /* we have  start < vma->vm_end  */
2452
2453         /* if it doesn't overlap, we have nothing.. */
2454         end = start + len;
2455         if (vma->vm_start >= end)
2456                 return 0;
2457
2458         /*
2459          * If we need to split any vma, do it now to save pain later.
2460          *
2461          * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2462          * unmapped vm_area_struct will remain in use: so lower split_vma
2463          * places tmp vma above, and higher split_vma places tmp vma below.
2464          */
2465         if (start > vma->vm_start) {
2466                 int error;
2467
2468                 /*
2469                  * Make sure that map_count on return from munmap() will
2470                  * not exceed its limit; but let map_count go just above
2471                  * its limit temporarily, to help free resources as expected.
2472                  */
2473                 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2474                         return -ENOMEM;
2475
2476                 error = __split_vma(mm, vma, start, 0);
2477                 if (error)
2478                         return error;
2479                 prev = vma;
2480         }
2481
2482         /* Does it split the last one? */
2483         last = find_vma(mm, end);
2484         if (last && end > last->vm_start) {
2485                 int error = __split_vma(mm, last, end, 1);
2486                 if (error)
2487                         return error;
2488         }
2489         vma = prev ? prev->vm_next : mm->mmap;
2490
2491         /*
2492          * unlock any mlock()ed ranges before detaching vmas
2493          */
2494         if (mm->locked_vm) {
2495                 struct vm_area_struct *tmp = vma;
2496                 while (tmp && tmp->vm_start < end) {
2497                         if (tmp->vm_flags & VM_LOCKED) {
2498                                 mm->locked_vm -= vma_pages(tmp);
2499                                 munlock_vma_pages_all(tmp);
2500                         }
2501                         tmp = tmp->vm_next;
2502                 }
2503         }
2504
2505         /*
2506          * Remove the vma's, and unmap the actual pages
2507          */
2508         detach_vmas_to_be_unmapped(mm, vma, prev, end);
2509         unmap_region(mm, vma, prev, start, end);
2510
2511         arch_unmap(mm, vma, start, end);
2512
2513         /* Fix up all other VM information */
2514         remove_vma_list(mm, vma);
2515
2516         return 0;
2517 }
2518
2519 int vm_munmap(unsigned long start, size_t len)
2520 {
2521         int ret;
2522         struct mm_struct *mm = current->mm;
2523
2524         if (down_write_killable(&mm->mmap_sem))
2525                 return -EINTR;
2526
2527         ret = do_munmap(mm, start, len);
2528         up_write(&mm->mmap_sem);
2529         return ret;
2530 }
2531 EXPORT_SYMBOL(vm_munmap);
2532
2533 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2534 {
2535         int ret;
2536         struct mm_struct *mm = current->mm;
2537
2538         profile_munmap(addr);
2539         if (down_write_killable(&mm->mmap_sem))
2540                 return -EINTR;
2541         ret = do_munmap(mm, addr, len);
2542         up_write(&mm->mmap_sem);
2543         return ret;
2544 }
2545
2546
2547 /*
2548  * Emulation of deprecated remap_file_pages() syscall.
2549  */
2550 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
2551                 unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
2552 {
2553
2554         struct mm_struct *mm = current->mm;
2555         struct vm_area_struct *vma;
2556         unsigned long populate = 0;
2557         unsigned long ret = -EINVAL;
2558         struct file *file;
2559
2560         pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/vm/remap_file_pages.txt.\n",
2561                      current->comm, current->pid);
2562
2563         if (prot)
2564                 return ret;
2565         start = start & PAGE_MASK;
2566         size = size & PAGE_MASK;
2567
2568         if (start + size <= start)
2569                 return ret;
2570
2571         /* Does pgoff wrap? */
2572         if (pgoff + (size >> PAGE_SHIFT) < pgoff)
2573                 return ret;
2574
2575         if (down_write_killable(&mm->mmap_sem))
2576                 return -EINTR;
2577
2578         vma = find_vma(mm, start);
2579
2580         if (!vma || !(vma->vm_flags & VM_SHARED))
2581                 goto out;
2582
2583         if (start < vma->vm_start)
2584                 goto out;
2585
2586         if (start + size > vma->vm_end) {
2587                 struct vm_area_struct *next;
2588
2589                 for (next = vma->vm_next; next; next = next->vm_next) {
2590                         /* hole between vmas ? */
2591                         if (next->vm_start != next->vm_prev->vm_end)
2592                                 goto out;
2593
2594                         if (next->vm_file != vma->vm_file)
2595                                 goto out;
2596
2597                         if (next->vm_flags != vma->vm_flags)
2598                                 goto out;
2599
2600                         if (start + size <= next->vm_end)
2601                                 break;
2602                 }
2603
2604                 if (!next)
2605                         goto out;
2606         }
2607
2608         prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
2609         prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
2610         prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
2611
2612         flags &= MAP_NONBLOCK;
2613         flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
2614         if (vma->vm_flags & VM_LOCKED) {
2615                 struct vm_area_struct *tmp;
2616                 flags |= MAP_LOCKED;
2617
2618                 /* drop PG_Mlocked flag for over-mapped range */
2619                 for (tmp = vma; tmp->vm_start >= start + size;
2620                                 tmp = tmp->vm_next) {
2621                         /*
2622                          * Split pmd and munlock page on the border
2623                          * of the range.
2624                          */
2625                         vma_adjust_trans_huge(tmp, start, start + size, 0);
2626
2627                         munlock_vma_pages_range(tmp,
2628                                         max(tmp->vm_start, start),
2629                                         min(tmp->vm_end, start + size));
2630                 }
2631         }
2632
2633         file = get_file(vma->vm_file);
2634         ret = do_mmap_pgoff(vma->vm_file, start, size,
2635                         prot, flags, pgoff, &populate);
2636         fput(file);
2637 out:
2638         up_write(&mm->mmap_sem);
2639         if (populate)
2640                 mm_populate(ret, populate);
2641         if (!IS_ERR_VALUE(ret))
2642                 ret = 0;
2643         return ret;
2644 }
2645
2646 static inline void verify_mm_writelocked(struct mm_struct *mm)
2647 {
2648 #ifdef CONFIG_DEBUG_VM
2649         if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2650                 WARN_ON(1);
2651                 up_read(&mm->mmap_sem);
2652         }
2653 #endif
2654 }
2655
2656 /*
2657  *  this is really a simplified "do_mmap".  it only handles
2658  *  anonymous maps.  eventually we may be able to do some
2659  *  brk-specific accounting here.
2660  */
2661 static int do_brk(unsigned long addr, unsigned long request)
2662 {
2663         struct mm_struct *mm = current->mm;
2664         struct vm_area_struct *vma, *prev;
2665         unsigned long flags, len;
2666         struct rb_node **rb_link, *rb_parent;
2667         pgoff_t pgoff = addr >> PAGE_SHIFT;
2668         int error;
2669
2670         len = PAGE_ALIGN(request);
2671         if (len < request)
2672                 return -ENOMEM;
2673         if (!len)
2674                 return 0;
2675
2676         flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2677
2678         error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2679         if (offset_in_page(error))
2680                 return error;
2681
2682         error = mlock_future_check(mm, mm->def_flags, len);
2683         if (error)
2684                 return error;
2685
2686         /*
2687          * mm->mmap_sem is required to protect against another thread
2688          * changing the mappings in case we sleep.
2689          */
2690         verify_mm_writelocked(mm);
2691
2692         /*
2693          * Clear old maps.  this also does some error checking for us
2694          */
2695         while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
2696                               &rb_parent)) {
2697                 if (do_munmap(mm, addr, len))
2698                         return -ENOMEM;
2699         }
2700
2701         /* Check against address space limits *after* clearing old maps... */
2702         if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
2703                 return -ENOMEM;
2704
2705         if (mm->map_count > sysctl_max_map_count)
2706                 return -ENOMEM;
2707
2708         if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
2709                 return -ENOMEM;
2710
2711         /* Can we just expand an old private anonymous mapping? */
2712         vma = vma_merge(mm, prev, addr, addr + len, flags,
2713                         NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX);
2714         if (vma)
2715                 goto out;
2716
2717         /*
2718          * create a vma struct for an anonymous mapping
2719          */
2720         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2721         if (!vma) {
2722                 vm_unacct_memory(len >> PAGE_SHIFT);
2723                 return -ENOMEM;
2724         }
2725
2726         INIT_LIST_HEAD(&vma->anon_vma_chain);
2727         vma->vm_mm = mm;
2728         vma->vm_start = addr;
2729         vma->vm_end = addr + len;
2730         vma->vm_pgoff = pgoff;
2731         vma->vm_flags = flags;
2732         vma->vm_page_prot = vm_get_page_prot(flags);
2733         vma_link(mm, vma, prev, rb_link, rb_parent);
2734 out:
2735         perf_event_mmap(vma);
2736         mm->total_vm += len >> PAGE_SHIFT;
2737         mm->data_vm += len >> PAGE_SHIFT;
2738         if (flags & VM_LOCKED)
2739                 mm->locked_vm += (len >> PAGE_SHIFT);
2740         vma->vm_flags |= VM_SOFTDIRTY;
2741         return 0;
2742 }
2743
2744 int vm_brk(unsigned long addr, unsigned long len)
2745 {
2746         struct mm_struct *mm = current->mm;
2747         int ret;
2748         bool populate;
2749
2750         if (down_write_killable(&mm->mmap_sem))
2751                 return -EINTR;
2752
2753         ret = do_brk(addr, len);
2754         populate = ((mm->def_flags & VM_LOCKED) != 0);
2755         up_write(&mm->mmap_sem);
2756         if (populate && !ret)
2757                 mm_populate(addr, len);
2758         return ret;
2759 }
2760 EXPORT_SYMBOL(vm_brk);
2761
2762 /* Release all mmaps. */
2763 void exit_mmap(struct mm_struct *mm)
2764 {
2765         struct mmu_gather tlb;
2766         struct vm_area_struct *vma;
2767         unsigned long nr_accounted = 0;
2768
2769         /* mm's last user has gone, and its about to be pulled down */
2770         mmu_notifier_release(mm);
2771
2772         if (mm->locked_vm) {
2773                 vma = mm->mmap;
2774                 while (vma) {
2775                         if (vma->vm_flags & VM_LOCKED)
2776                                 munlock_vma_pages_all(vma);
2777                         vma = vma->vm_next;
2778                 }
2779         }
2780
2781         arch_exit_mmap(mm);
2782
2783         vma = mm->mmap;
2784         if (!vma)       /* Can happen if dup_mmap() received an OOM */
2785                 return;
2786
2787         lru_add_drain();
2788         flush_cache_mm(mm);
2789         tlb_gather_mmu(&tlb, mm, 0, -1);
2790         /* update_hiwater_rss(mm) here? but nobody should be looking */
2791         /* Use -1 here to ensure all VMAs in the mm are unmapped */
2792         unmap_vmas(&tlb, vma, 0, -1);
2793
2794         free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
2795         tlb_finish_mmu(&tlb, 0, -1);
2796
2797         /*
2798          * Walk the list again, actually closing and freeing it,
2799          * with preemption enabled, without holding any MM locks.
2800          */
2801         while (vma) {
2802                 if (vma->vm_flags & VM_ACCOUNT)
2803                         nr_accounted += vma_pages(vma);
2804                 vma = remove_vma(vma);
2805         }
2806         vm_unacct_memory(nr_accounted);
2807 }
2808
2809 /* Insert vm structure into process list sorted by address
2810  * and into the inode's i_mmap tree.  If vm_file is non-NULL
2811  * then i_mmap_rwsem is taken here.
2812  */
2813 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
2814 {
2815         struct vm_area_struct *prev;
2816         struct rb_node **rb_link, *rb_parent;
2817
2818         if (find_vma_links(mm, vma->vm_start, vma->vm_end,
2819                            &prev, &rb_link, &rb_parent))
2820                 return -ENOMEM;
2821         if ((vma->vm_flags & VM_ACCOUNT) &&
2822              security_vm_enough_memory_mm(mm, vma_pages(vma)))
2823                 return -ENOMEM;
2824
2825         /*
2826          * The vm_pgoff of a purely anonymous vma should be irrelevant
2827          * until its first write fault, when page's anon_vma and index
2828          * are set.  But now set the vm_pgoff it will almost certainly
2829          * end up with (unless mremap moves it elsewhere before that
2830          * first wfault), so /proc/pid/maps tells a consistent story.
2831          *
2832          * By setting it to reflect the virtual start address of the
2833          * vma, merges and splits can happen in a seamless way, just
2834          * using the existing file pgoff checks and manipulations.
2835          * Similarly in do_mmap_pgoff and in do_brk.
2836          */
2837         if (vma_is_anonymous(vma)) {
2838                 BUG_ON(vma->anon_vma);
2839                 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2840         }
2841
2842         vma_link(mm, vma, prev, rb_link, rb_parent);
2843         return 0;
2844 }
2845
2846 /*
2847  * Copy the vma structure to a new location in the same mm,
2848  * prior to moving page table entries, to effect an mremap move.
2849  */
2850 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2851         unsigned long addr, unsigned long len, pgoff_t pgoff,
2852         bool *need_rmap_locks)
2853 {
2854         struct vm_area_struct *vma = *vmap;
2855         unsigned long vma_start = vma->vm_start;
2856         struct mm_struct *mm = vma->vm_mm;
2857         struct vm_area_struct *new_vma, *prev;
2858         struct rb_node **rb_link, *rb_parent;
2859         bool faulted_in_anon_vma = true;
2860
2861         /*
2862          * If anonymous vma has not yet been faulted, update new pgoff
2863          * to match new location, to increase its chance of merging.
2864          */
2865         if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
2866                 pgoff = addr >> PAGE_SHIFT;
2867                 faulted_in_anon_vma = false;
2868         }
2869
2870         if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
2871                 return NULL;    /* should never get here */
2872         new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2873                             vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
2874                             vma->vm_userfaultfd_ctx);
2875         if (new_vma) {
2876                 /*
2877                  * Source vma may have been merged into new_vma
2878                  */
2879                 if (unlikely(vma_start >= new_vma->vm_start &&
2880                              vma_start < new_vma->vm_end)) {
2881                         /*
2882                          * The only way we can get a vma_merge with
2883                          * self during an mremap is if the vma hasn't
2884                          * been faulted in yet and we were allowed to
2885                          * reset the dst vma->vm_pgoff to the
2886                          * destination address of the mremap to allow
2887                          * the merge to happen. mremap must change the
2888                          * vm_pgoff linearity between src and dst vmas
2889                          * (in turn preventing a vma_merge) to be
2890                          * safe. It is only safe to keep the vm_pgoff
2891                          * linear if there are no pages mapped yet.
2892                          */
2893                         VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
2894                         *vmap = vma = new_vma;
2895                 }
2896                 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
2897         } else {
2898                 new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2899                 if (!new_vma)
2900                         goto out;
2901                 *new_vma = *vma;
2902                 new_vma->vm_start = addr;
2903                 new_vma->vm_end = addr + len;
2904                 new_vma->vm_pgoff = pgoff;
2905                 if (vma_dup_policy(vma, new_vma))
2906                         goto out_free_vma;
2907                 INIT_LIST_HEAD(&new_vma->anon_vma_chain);
2908                 if (anon_vma_clone(new_vma, vma))
2909                         goto out_free_mempol;
2910                 if (new_vma->vm_file)
2911                         get_file(new_vma->vm_file);
2912                 if (new_vma->vm_ops && new_vma->vm_ops->open)
2913                         new_vma->vm_ops->open(new_vma);
2914                 vma_link(mm, new_vma, prev, rb_link, rb_parent);
2915                 *need_rmap_locks = false;
2916         }
2917         return new_vma;
2918
2919 out_free_mempol:
2920         mpol_put(vma_policy(new_vma));
2921 out_free_vma:
2922         kmem_cache_free(vm_area_cachep, new_vma);
2923 out:
2924         return NULL;
2925 }
2926
2927 /*
2928  * Return true if the calling process may expand its vm space by the passed
2929  * number of pages
2930  */
2931 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
2932 {
2933         if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
2934                 return false;
2935
2936         if (is_data_mapping(flags) &&
2937             mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
2938                 /* Workaround for Valgrind */
2939                 if (rlimit(RLIMIT_DATA) == 0 &&
2940                     mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
2941                         return true;
2942                 if (!ignore_rlimit_data) {
2943                         pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits or use boot option ignore_rlimit_data.\n",
2944                                      current->comm, current->pid,
2945                                      (mm->data_vm + npages) << PAGE_SHIFT,
2946                                      rlimit(RLIMIT_DATA));
2947                         return false;
2948                 }
2949         }
2950
2951         return true;
2952 }
2953
2954 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
2955 {
2956         mm->total_vm += npages;
2957
2958         if (is_exec_mapping(flags))
2959                 mm->exec_vm += npages;
2960         else if (is_stack_mapping(flags))
2961                 mm->stack_vm += npages;
2962         else if (is_data_mapping(flags))
2963                 mm->data_vm += npages;
2964 }
2965
2966 static int special_mapping_fault(struct vm_area_struct *vma,
2967                                  struct vm_fault *vmf);
2968
2969 /*
2970  * Having a close hook prevents vma merging regardless of flags.
2971  */
2972 static void special_mapping_close(struct vm_area_struct *vma)
2973 {
2974 }
2975
2976 static const char *special_mapping_name(struct vm_area_struct *vma)
2977 {
2978         return ((struct vm_special_mapping *)vma->vm_private_data)->name;
2979 }
2980
2981 static int special_mapping_mremap(struct vm_area_struct *new_vma)
2982 {
2983         struct vm_special_mapping *sm = new_vma->vm_private_data;
2984
2985         if (sm->mremap)
2986                 return sm->mremap(sm, new_vma);
2987         return 0;
2988 }
2989
2990 static const struct vm_operations_struct special_mapping_vmops = {
2991         .close = special_mapping_close,
2992         .fault = special_mapping_fault,
2993         .mremap = special_mapping_mremap,
2994         .name = special_mapping_name,
2995 };
2996
2997 static const struct vm_operations_struct legacy_special_mapping_vmops = {
2998         .close = special_mapping_close,
2999         .fault = special_mapping_fault,
3000 };
3001
3002 static int special_mapping_fault(struct vm_area_struct *vma,
3003                                 struct vm_fault *vmf)
3004 {
3005         pgoff_t pgoff;
3006         struct page **pages;
3007
3008         if (vma->vm_ops == &legacy_special_mapping_vmops) {
3009                 pages = vma->vm_private_data;
3010         } else {
3011                 struct vm_special_mapping *sm = vma->vm_private_data;
3012
3013                 if (sm->fault)
3014                         return sm->fault(sm, vma, vmf);
3015
3016                 pages = sm->pages;
3017         }
3018
3019         for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3020                 pgoff--;
3021
3022         if (*pages) {
3023                 struct page *page = *pages;
3024                 get_page(page);
3025                 vmf->page = page;
3026                 return 0;
3027         }
3028
3029         return VM_FAULT_SIGBUS;
3030 }
3031
3032 static struct vm_area_struct *__install_special_mapping(
3033         struct mm_struct *mm,
3034         unsigned long addr, unsigned long len,
3035         unsigned long vm_flags, void *priv,
3036         const struct vm_operations_struct *ops)
3037 {
3038         int ret;
3039         struct vm_area_struct *vma;
3040
3041         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
3042         if (unlikely(vma == NULL))
3043                 return ERR_PTR(-ENOMEM);
3044
3045         INIT_LIST_HEAD(&vma->anon_vma_chain);
3046         vma->vm_mm = mm;
3047         vma->vm_start = addr;
3048         vma->vm_end = addr + len;
3049
3050         vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
3051         vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3052
3053         vma->vm_ops = ops;
3054         vma->vm_private_data = priv;
3055
3056         ret = insert_vm_struct(mm, vma);
3057         if (ret)
3058                 goto out;
3059
3060         vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3061
3062         perf_event_mmap(vma);
3063
3064         return vma;
3065
3066 out:
3067         kmem_cache_free(vm_area_cachep, vma);
3068         return ERR_PTR(ret);
3069 }
3070
3071 bool vma_is_special_mapping(const struct vm_area_struct *vma,
3072         const struct vm_special_mapping *sm)
3073 {
3074         return vma->vm_private_data == sm &&
3075                 (vma->vm_ops == &special_mapping_vmops ||
3076                  vma->vm_ops == &legacy_special_mapping_vmops);
3077 }
3078
3079 /*
3080  * Called with mm->mmap_sem held for writing.
3081  * Insert a new vma covering the given region, with the given flags.
3082  * Its pages are supplied by the given array of struct page *.
3083  * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3084  * The region past the last page supplied will always produce SIGBUS.
3085  * The array pointer and the pages it points to are assumed to stay alive
3086  * for as long as this mapping might exist.
3087  */
3088 struct vm_area_struct *_install_special_mapping(
3089         struct mm_struct *mm,
3090         unsigned long addr, unsigned long len,
3091         unsigned long vm_flags, const struct vm_special_mapping *spec)
3092 {
3093         return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3094                                         &special_mapping_vmops);
3095 }
3096
3097 int install_special_mapping(struct mm_struct *mm,
3098                             unsigned long addr, unsigned long len,
3099                             unsigned long vm_flags, struct page **pages)
3100 {
3101         struct vm_area_struct *vma = __install_special_mapping(
3102                 mm, addr, len, vm_flags, (void *)pages,
3103                 &legacy_special_mapping_vmops);
3104
3105         return PTR_ERR_OR_ZERO(vma);
3106 }
3107
3108 static DEFINE_MUTEX(mm_all_locks_mutex);
3109
3110 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3111 {
3112         if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3113                 /*
3114                  * The LSB of head.next can't change from under us
3115                  * because we hold the mm_all_locks_mutex.
3116                  */
3117                 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem);
3118                 /*
3119                  * We can safely modify head.next after taking the
3120                  * anon_vma->root->rwsem. If some other vma in this mm shares
3121                  * the same anon_vma we won't take it again.
3122                  *
3123                  * No need of atomic instructions here, head.next
3124                  * can't change from under us thanks to the
3125                  * anon_vma->root->rwsem.
3126                  */
3127                 if (__test_and_set_bit(0, (unsigned long *)
3128                                        &anon_vma->root->rb_root.rb_node))
3129                         BUG();
3130         }
3131 }
3132
3133 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3134 {
3135         if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3136                 /*
3137                  * AS_MM_ALL_LOCKS can't change from under us because
3138                  * we hold the mm_all_locks_mutex.
3139                  *
3140                  * Operations on ->flags have to be atomic because
3141                  * even if AS_MM_ALL_LOCKS is stable thanks to the
3142                  * mm_all_locks_mutex, there may be other cpus
3143                  * changing other bitflags in parallel to us.
3144                  */
3145                 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3146                         BUG();
3147                 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_sem);
3148         }
3149 }
3150
3151 /*
3152  * This operation locks against the VM for all pte/vma/mm related
3153  * operations that could ever happen on a certain mm. This includes
3154  * vmtruncate, try_to_unmap, and all page faults.
3155  *
3156  * The caller must take the mmap_sem in write mode before calling
3157  * mm_take_all_locks(). The caller isn't allowed to release the
3158  * mmap_sem until mm_drop_all_locks() returns.
3159  *
3160  * mmap_sem in write mode is required in order to block all operations
3161  * that could modify pagetables and free pages without need of
3162  * altering the vma layout. It's also needed in write mode to avoid new
3163  * anon_vmas to be associated with existing vmas.
3164  *
3165  * A single task can't take more than one mm_take_all_locks() in a row
3166  * or it would deadlock.
3167  *
3168  * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3169  * mapping->flags avoid to take the same lock twice, if more than one
3170  * vma in this mm is backed by the same anon_vma or address_space.
3171  *
3172  * We take locks in following order, accordingly to comment at beginning
3173  * of mm/rmap.c:
3174  *   - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3175  *     hugetlb mapping);
3176  *   - all i_mmap_rwsem locks;
3177  *   - all anon_vma->rwseml
3178  *
3179  * We can take all locks within these types randomly because the VM code
3180  * doesn't nest them and we protected from parallel mm_take_all_locks() by
3181  * mm_all_locks_mutex.
3182  *
3183  * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3184  * that may have to take thousand of locks.
3185  *
3186  * mm_take_all_locks() can fail if it's interrupted by signals.
3187  */
3188 int mm_take_all_locks(struct mm_struct *mm)
3189 {
3190         struct vm_area_struct *vma;
3191         struct anon_vma_chain *avc;
3192
3193         BUG_ON(down_read_trylock(&mm->mmap_sem));
3194
3195         mutex_lock(&mm_all_locks_mutex);
3196
3197         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3198                 if (signal_pending(current))
3199                         goto out_unlock;
3200                 if (vma->vm_file && vma->vm_file->f_mapping &&
3201                                 is_vm_hugetlb_page(vma))
3202                         vm_lock_mapping(mm, vma->vm_file->f_mapping);
3203         }
3204
3205         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3206                 if (signal_pending(current))
3207                         goto out_unlock;
3208                 if (vma->vm_file && vma->vm_file->f_mapping &&
3209                                 !is_vm_hugetlb_page(vma))
3210                         vm_lock_mapping(mm, vma->vm_file->f_mapping);
3211         }
3212
3213         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3214                 if (signal_pending(current))
3215                         goto out_unlock;
3216                 if (vma->anon_vma)
3217                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3218                                 vm_lock_anon_vma(mm, avc->anon_vma);
3219         }
3220
3221         return 0;
3222
3223 out_unlock:
3224         mm_drop_all_locks(mm);
3225         return -EINTR;
3226 }
3227
3228 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3229 {
3230         if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3231                 /*
3232                  * The LSB of head.next can't change to 0 from under
3233                  * us because we hold the mm_all_locks_mutex.
3234                  *
3235                  * We must however clear the bitflag before unlocking
3236                  * the vma so the users using the anon_vma->rb_root will
3237                  * never see our bitflag.
3238                  *
3239                  * No need of atomic instructions here, head.next
3240                  * can't change from under us until we release the
3241                  * anon_vma->root->rwsem.
3242                  */
3243                 if (!__test_and_clear_bit(0, (unsigned long *)
3244                                           &anon_vma->root->rb_root.rb_node))
3245                         BUG();
3246                 anon_vma_unlock_write(anon_vma);
3247         }
3248 }
3249
3250 static void vm_unlock_mapping(struct address_space *mapping)
3251 {
3252         if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3253                 /*
3254                  * AS_MM_ALL_LOCKS can't change to 0 from under us
3255                  * because we hold the mm_all_locks_mutex.
3256                  */
3257                 i_mmap_unlock_write(mapping);
3258                 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3259                                         &mapping->flags))
3260                         BUG();
3261         }
3262 }
3263
3264 /*
3265  * The mmap_sem cannot be released by the caller until
3266  * mm_drop_all_locks() returns.
3267  */
3268 void mm_drop_all_locks(struct mm_struct *mm)
3269 {
3270         struct vm_area_struct *vma;
3271         struct anon_vma_chain *avc;
3272
3273         BUG_ON(down_read_trylock(&mm->mmap_sem));
3274         BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3275
3276         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3277                 if (vma->anon_vma)
3278                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3279                                 vm_unlock_anon_vma(avc->anon_vma);
3280                 if (vma->vm_file && vma->vm_file->f_mapping)
3281                         vm_unlock_mapping(vma->vm_file->f_mapping);
3282         }
3283
3284         mutex_unlock(&mm_all_locks_mutex);
3285 }
3286
3287 /*
3288  * initialise the VMA slab
3289  */
3290 void __init mmap_init(void)
3291 {
3292         int ret;
3293
3294         ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3295         VM_BUG_ON(ret);
3296 }
3297
3298 /*
3299  * Initialise sysctl_user_reserve_kbytes.
3300  *
3301  * This is intended to prevent a user from starting a single memory hogging
3302  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3303  * mode.
3304  *
3305  * The default value is min(3% of free memory, 128MB)
3306  * 128MB is enough to recover with sshd/login, bash, and top/kill.
3307  */
3308 static int init_user_reserve(void)
3309 {
3310         unsigned long free_kbytes;
3311
3312         free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3313
3314         sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3315         return 0;
3316 }
3317 subsys_initcall(init_user_reserve);
3318
3319 /*
3320  * Initialise sysctl_admin_reserve_kbytes.
3321  *
3322  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3323  * to log in and kill a memory hogging process.
3324  *
3325  * Systems with more than 256MB will reserve 8MB, enough to recover
3326  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3327  * only reserve 3% of free pages by default.
3328  */
3329 static int init_admin_reserve(void)
3330 {
3331         unsigned long free_kbytes;
3332
3333         free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3334
3335         sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3336         return 0;
3337 }
3338 subsys_initcall(init_admin_reserve);
3339
3340 /*
3341  * Reinititalise user and admin reserves if memory is added or removed.
3342  *
3343  * The default user reserve max is 128MB, and the default max for the
3344  * admin reserve is 8MB. These are usually, but not always, enough to
3345  * enable recovery from a memory hogging process using login/sshd, a shell,
3346  * and tools like top. It may make sense to increase or even disable the
3347  * reserve depending on the existence of swap or variations in the recovery
3348  * tools. So, the admin may have changed them.
3349  *
3350  * If memory is added and the reserves have been eliminated or increased above
3351  * the default max, then we'll trust the admin.
3352  *
3353  * If memory is removed and there isn't enough free memory, then we
3354  * need to reset the reserves.
3355  *
3356  * Otherwise keep the reserve set by the admin.
3357  */
3358 static int reserve_mem_notifier(struct notifier_block *nb,
3359                              unsigned long action, void *data)
3360 {
3361         unsigned long tmp, free_kbytes;
3362
3363         switch (action) {
3364         case MEM_ONLINE:
3365                 /* Default max is 128MB. Leave alone if modified by operator. */
3366                 tmp = sysctl_user_reserve_kbytes;
3367                 if (0 < tmp && tmp < (1UL << 17))
3368                         init_user_reserve();
3369
3370                 /* Default max is 8MB.  Leave alone if modified by operator. */
3371                 tmp = sysctl_admin_reserve_kbytes;
3372                 if (0 < tmp && tmp < (1UL << 13))
3373                         init_admin_reserve();
3374
3375                 break;
3376         case MEM_OFFLINE:
3377                 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3378
3379                 if (sysctl_user_reserve_kbytes > free_kbytes) {
3380                         init_user_reserve();
3381                         pr_info("vm.user_reserve_kbytes reset to %lu\n",
3382                                 sysctl_user_reserve_kbytes);
3383                 }
3384
3385                 if (sysctl_admin_reserve_kbytes > free_kbytes) {
3386                         init_admin_reserve();
3387                         pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3388                                 sysctl_admin_reserve_kbytes);
3389                 }
3390                 break;
3391         default:
3392                 break;
3393         }
3394         return NOTIFY_OK;
3395 }
3396
3397 static struct notifier_block reserve_mem_nb = {
3398         .notifier_call = reserve_mem_notifier,
3399 };
3400
3401 static int __meminit init_reserve_notifier(void)
3402 {
3403         if (register_hotmemory_notifier(&reserve_mem_nb))
3404                 pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3405
3406         return 0;
3407 }
3408 subsys_initcall(init_reserve_notifier);