1 // SPDX-License-Identifier: GPL-2.0-only
7 * Address space accounting code <alan@lxorguk.ukuu.org.uk>
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12 #include <linux/kernel.h>
13 #include <linux/slab.h>
14 #include <linux/backing-dev.h>
16 #include <linux/vmacache.h>
17 #include <linux/shm.h>
18 #include <linux/mman.h>
19 #include <linux/pagemap.h>
20 #include <linux/swap.h>
21 #include <linux/syscalls.h>
22 #include <linux/capability.h>
23 #include <linux/init.h>
24 #include <linux/file.h>
26 #include <linux/personality.h>
27 #include <linux/security.h>
28 #include <linux/hugetlb.h>
29 #include <linux/shmem_fs.h>
30 #include <linux/profile.h>
31 #include <linux/export.h>
32 #include <linux/mount.h>
33 #include <linux/mempolicy.h>
34 #include <linux/rmap.h>
35 #include <linux/mmu_notifier.h>
36 #include <linux/mmdebug.h>
37 #include <linux/perf_event.h>
38 #include <linux/audit.h>
39 #include <linux/khugepaged.h>
40 #include <linux/uprobes.h>
41 #include <linux/rbtree_augmented.h>
42 #include <linux/notifier.h>
43 #include <linux/memory.h>
44 #include <linux/printk.h>
45 #include <linux/userfaultfd_k.h>
46 #include <linux/moduleparam.h>
47 #include <linux/pkeys.h>
48 #include <linux/oom.h>
49 #include <linux/sched/mm.h>
51 #include <linux/uaccess.h>
52 #include <asm/cacheflush.h>
54 #include <asm/mmu_context.h>
58 #ifndef arch_mmap_check
59 #define arch_mmap_check(addr, len, flags) (0)
62 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
63 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
64 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX;
65 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
67 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
68 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
69 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
70 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
73 static bool ignore_rlimit_data;
74 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
76 static void unmap_region(struct mm_struct *mm,
77 struct vm_area_struct *vma, struct vm_area_struct *prev,
78 unsigned long start, unsigned long end);
80 /* description of effects of mapping type and prot in current implementation.
81 * this is due to the limited x86 page protection hardware. The expected
82 * behavior is in parens:
85 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC
86 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes
87 * w: (no) no w: (no) no w: (yes) yes w: (no) no
88 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
90 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes
91 * w: (no) no w: (no) no w: (copy) copy w: (no) no
92 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
94 pgprot_t protection_map[16] __ro_after_init = {
95 __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
96 __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
99 #ifndef CONFIG_ARCH_HAS_FILTER_PGPROT
100 static inline pgprot_t arch_filter_pgprot(pgprot_t prot)
106 pgprot_t vm_get_page_prot(unsigned long vm_flags)
108 pgprot_t ret = __pgprot(pgprot_val(protection_map[vm_flags &
109 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
110 pgprot_val(arch_vm_get_page_prot(vm_flags)));
112 return arch_filter_pgprot(ret);
114 EXPORT_SYMBOL(vm_get_page_prot);
116 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
118 return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
121 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
122 void vma_set_page_prot(struct vm_area_struct *vma)
124 unsigned long vm_flags = vma->vm_flags;
125 pgprot_t vm_page_prot;
127 vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
128 if (vma_wants_writenotify(vma, vm_page_prot)) {
129 vm_flags &= ~VM_SHARED;
130 vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags);
132 /* remove_protection_ptes reads vma->vm_page_prot without mmap_sem */
133 WRITE_ONCE(vma->vm_page_prot, vm_page_prot);
137 * Requires inode->i_mapping->i_mmap_rwsem
139 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
140 struct file *file, struct address_space *mapping)
142 if (vma->vm_flags & VM_DENYWRITE)
143 atomic_inc(&file_inode(file)->i_writecount);
144 if (vma->vm_flags & VM_SHARED)
145 mapping_unmap_writable(mapping);
147 flush_dcache_mmap_lock(mapping);
148 vma_interval_tree_remove(vma, &mapping->i_mmap);
149 flush_dcache_mmap_unlock(mapping);
153 * Unlink a file-based vm structure from its interval tree, to hide
154 * vma from rmap and vmtruncate before freeing its page tables.
156 void unlink_file_vma(struct vm_area_struct *vma)
158 struct file *file = vma->vm_file;
161 struct address_space *mapping = file->f_mapping;
162 i_mmap_lock_write(mapping);
163 __remove_shared_vm_struct(vma, file, mapping);
164 i_mmap_unlock_write(mapping);
169 * Close a vm structure and free it, returning the next.
171 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
173 struct vm_area_struct *next = vma->vm_next;
176 if (vma->vm_ops && vma->vm_ops->close)
177 vma->vm_ops->close(vma);
180 mpol_put(vma_policy(vma));
185 static int do_brk_flags(unsigned long addr, unsigned long request, unsigned long flags,
186 struct list_head *uf);
187 SYSCALL_DEFINE1(brk, unsigned long, brk)
189 unsigned long retval;
190 unsigned long newbrk, oldbrk, origbrk;
191 struct mm_struct *mm = current->mm;
192 struct vm_area_struct *next;
193 unsigned long min_brk;
195 bool downgraded = false;
198 brk = untagged_addr(brk);
200 if (down_write_killable(&mm->mmap_sem))
205 #ifdef CONFIG_COMPAT_BRK
207 * CONFIG_COMPAT_BRK can still be overridden by setting
208 * randomize_va_space to 2, which will still cause mm->start_brk
209 * to be arbitrarily shifted
211 if (current->brk_randomized)
212 min_brk = mm->start_brk;
214 min_brk = mm->end_data;
216 min_brk = mm->start_brk;
222 * Check against rlimit here. If this check is done later after the test
223 * of oldbrk with newbrk then it can escape the test and let the data
224 * segment grow beyond its set limit the in case where the limit is
225 * not page aligned -Ram Gupta
227 if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
228 mm->end_data, mm->start_data))
231 newbrk = PAGE_ALIGN(brk);
232 oldbrk = PAGE_ALIGN(mm->brk);
233 if (oldbrk == newbrk) {
239 * Always allow shrinking brk.
240 * __do_munmap() may downgrade mmap_sem to read.
242 if (brk <= mm->brk) {
246 * mm->brk must to be protected by write mmap_sem so update it
247 * before downgrading mmap_sem. When __do_munmap() fails,
248 * mm->brk will be restored from origbrk.
251 ret = __do_munmap(mm, newbrk, oldbrk-newbrk, &uf, true);
255 } else if (ret == 1) {
261 /* Check against existing mmap mappings. */
262 next = find_vma(mm, oldbrk);
263 if (next && newbrk + PAGE_SIZE > vm_start_gap(next))
266 /* Ok, looks good - let it rip. */
267 if (do_brk_flags(oldbrk, newbrk-oldbrk, 0, &uf) < 0)
272 populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
274 up_read(&mm->mmap_sem);
276 up_write(&mm->mmap_sem);
277 userfaultfd_unmap_complete(mm, &uf);
279 mm_populate(oldbrk, newbrk - oldbrk);
284 up_write(&mm->mmap_sem);
288 static inline unsigned long vma_compute_gap(struct vm_area_struct *vma)
290 unsigned long gap, prev_end;
293 * Note: in the rare case of a VM_GROWSDOWN above a VM_GROWSUP, we
294 * allow two stack_guard_gaps between them here, and when choosing
295 * an unmapped area; whereas when expanding we only require one.
296 * That's a little inconsistent, but keeps the code here simpler.
298 gap = vm_start_gap(vma);
300 prev_end = vm_end_gap(vma->vm_prev);
309 #ifdef CONFIG_DEBUG_VM_RB
310 static unsigned long vma_compute_subtree_gap(struct vm_area_struct *vma)
312 unsigned long max = vma_compute_gap(vma), subtree_gap;
313 if (vma->vm_rb.rb_left) {
314 subtree_gap = rb_entry(vma->vm_rb.rb_left,
315 struct vm_area_struct, vm_rb)->rb_subtree_gap;
316 if (subtree_gap > max)
319 if (vma->vm_rb.rb_right) {
320 subtree_gap = rb_entry(vma->vm_rb.rb_right,
321 struct vm_area_struct, vm_rb)->rb_subtree_gap;
322 if (subtree_gap > max)
328 static int browse_rb(struct mm_struct *mm)
330 struct rb_root *root = &mm->mm_rb;
331 int i = 0, j, bug = 0;
332 struct rb_node *nd, *pn = NULL;
333 unsigned long prev = 0, pend = 0;
335 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
336 struct vm_area_struct *vma;
337 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
338 if (vma->vm_start < prev) {
339 pr_emerg("vm_start %lx < prev %lx\n",
340 vma->vm_start, prev);
343 if (vma->vm_start < pend) {
344 pr_emerg("vm_start %lx < pend %lx\n",
345 vma->vm_start, pend);
348 if (vma->vm_start > vma->vm_end) {
349 pr_emerg("vm_start %lx > vm_end %lx\n",
350 vma->vm_start, vma->vm_end);
353 spin_lock(&mm->page_table_lock);
354 if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
355 pr_emerg("free gap %lx, correct %lx\n",
357 vma_compute_subtree_gap(vma));
360 spin_unlock(&mm->page_table_lock);
363 prev = vma->vm_start;
367 for (nd = pn; nd; nd = rb_prev(nd))
370 pr_emerg("backwards %d, forwards %d\n", j, i);
376 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
380 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
381 struct vm_area_struct *vma;
382 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
383 VM_BUG_ON_VMA(vma != ignore &&
384 vma->rb_subtree_gap != vma_compute_subtree_gap(vma),
389 static void validate_mm(struct mm_struct *mm)
393 unsigned long highest_address = 0;
394 struct vm_area_struct *vma = mm->mmap;
397 struct anon_vma *anon_vma = vma->anon_vma;
398 struct anon_vma_chain *avc;
401 anon_vma_lock_read(anon_vma);
402 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
403 anon_vma_interval_tree_verify(avc);
404 anon_vma_unlock_read(anon_vma);
407 highest_address = vm_end_gap(vma);
411 if (i != mm->map_count) {
412 pr_emerg("map_count %d vm_next %d\n", mm->map_count, i);
415 if (highest_address != mm->highest_vm_end) {
416 pr_emerg("mm->highest_vm_end %lx, found %lx\n",
417 mm->highest_vm_end, highest_address);
421 if (i != mm->map_count) {
423 pr_emerg("map_count %d rb %d\n", mm->map_count, i);
426 VM_BUG_ON_MM(bug, mm);
429 #define validate_mm_rb(root, ignore) do { } while (0)
430 #define validate_mm(mm) do { } while (0)
433 RB_DECLARE_CALLBACKS_MAX(static, vma_gap_callbacks,
434 struct vm_area_struct, vm_rb,
435 unsigned long, rb_subtree_gap, vma_compute_gap)
438 * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
439 * vma->vm_prev->vm_end values changed, without modifying the vma's position
442 static void vma_gap_update(struct vm_area_struct *vma)
445 * As it turns out, RB_DECLARE_CALLBACKS_MAX() already created
446 * a callback function that does exactly what we want.
448 vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
451 static inline void vma_rb_insert(struct vm_area_struct *vma,
452 struct rb_root *root)
454 /* All rb_subtree_gap values must be consistent prior to insertion */
455 validate_mm_rb(root, NULL);
457 rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
460 static void __vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
463 * Note rb_erase_augmented is a fairly large inline function,
464 * so make sure we instantiate it only once with our desired
465 * augmented rbtree callbacks.
467 rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
470 static __always_inline void vma_rb_erase_ignore(struct vm_area_struct *vma,
471 struct rb_root *root,
472 struct vm_area_struct *ignore)
475 * All rb_subtree_gap values must be consistent prior to erase,
476 * with the possible exception of the "next" vma being erased if
477 * next->vm_start was reduced.
479 validate_mm_rb(root, ignore);
481 __vma_rb_erase(vma, root);
484 static __always_inline void vma_rb_erase(struct vm_area_struct *vma,
485 struct rb_root *root)
488 * All rb_subtree_gap values must be consistent prior to erase,
489 * with the possible exception of the vma being erased.
491 validate_mm_rb(root, vma);
493 __vma_rb_erase(vma, root);
497 * vma has some anon_vma assigned, and is already inserted on that
498 * anon_vma's interval trees.
500 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
501 * vma must be removed from the anon_vma's interval trees using
502 * anon_vma_interval_tree_pre_update_vma().
504 * After the update, the vma will be reinserted using
505 * anon_vma_interval_tree_post_update_vma().
507 * The entire update must be protected by exclusive mmap_sem and by
508 * the root anon_vma's mutex.
511 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
513 struct anon_vma_chain *avc;
515 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
516 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
520 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
522 struct anon_vma_chain *avc;
524 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
525 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
528 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
529 unsigned long end, struct vm_area_struct **pprev,
530 struct rb_node ***rb_link, struct rb_node **rb_parent)
532 struct rb_node **__rb_link, *__rb_parent, *rb_prev;
534 __rb_link = &mm->mm_rb.rb_node;
535 rb_prev = __rb_parent = NULL;
538 struct vm_area_struct *vma_tmp;
540 __rb_parent = *__rb_link;
541 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
543 if (vma_tmp->vm_end > addr) {
544 /* Fail if an existing vma overlaps the area */
545 if (vma_tmp->vm_start < end)
547 __rb_link = &__rb_parent->rb_left;
549 rb_prev = __rb_parent;
550 __rb_link = &__rb_parent->rb_right;
556 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
557 *rb_link = __rb_link;
558 *rb_parent = __rb_parent;
562 static unsigned long count_vma_pages_range(struct mm_struct *mm,
563 unsigned long addr, unsigned long end)
565 unsigned long nr_pages = 0;
566 struct vm_area_struct *vma;
568 /* Find first overlaping mapping */
569 vma = find_vma_intersection(mm, addr, end);
573 nr_pages = (min(end, vma->vm_end) -
574 max(addr, vma->vm_start)) >> PAGE_SHIFT;
576 /* Iterate over the rest of the overlaps */
577 for (vma = vma->vm_next; vma; vma = vma->vm_next) {
578 unsigned long overlap_len;
580 if (vma->vm_start > end)
583 overlap_len = min(end, vma->vm_end) - vma->vm_start;
584 nr_pages += overlap_len >> PAGE_SHIFT;
590 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
591 struct rb_node **rb_link, struct rb_node *rb_parent)
593 /* Update tracking information for the gap following the new vma. */
595 vma_gap_update(vma->vm_next);
597 mm->highest_vm_end = vm_end_gap(vma);
600 * vma->vm_prev wasn't known when we followed the rbtree to find the
601 * correct insertion point for that vma. As a result, we could not
602 * update the vma vm_rb parents rb_subtree_gap values on the way down.
603 * So, we first insert the vma with a zero rb_subtree_gap value
604 * (to be consistent with what we did on the way down), and then
605 * immediately update the gap to the correct value. Finally we
606 * rebalance the rbtree after all augmented values have been set.
608 rb_link_node(&vma->vm_rb, rb_parent, rb_link);
609 vma->rb_subtree_gap = 0;
611 vma_rb_insert(vma, &mm->mm_rb);
614 static void __vma_link_file(struct vm_area_struct *vma)
620 struct address_space *mapping = file->f_mapping;
622 if (vma->vm_flags & VM_DENYWRITE)
623 atomic_dec(&file_inode(file)->i_writecount);
624 if (vma->vm_flags & VM_SHARED)
625 atomic_inc(&mapping->i_mmap_writable);
627 flush_dcache_mmap_lock(mapping);
628 vma_interval_tree_insert(vma, &mapping->i_mmap);
629 flush_dcache_mmap_unlock(mapping);
634 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
635 struct vm_area_struct *prev, struct rb_node **rb_link,
636 struct rb_node *rb_parent)
638 __vma_link_list(mm, vma, prev);
639 __vma_link_rb(mm, vma, rb_link, rb_parent);
642 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
643 struct vm_area_struct *prev, struct rb_node **rb_link,
644 struct rb_node *rb_parent)
646 struct address_space *mapping = NULL;
649 mapping = vma->vm_file->f_mapping;
650 i_mmap_lock_write(mapping);
653 __vma_link(mm, vma, prev, rb_link, rb_parent);
654 __vma_link_file(vma);
657 i_mmap_unlock_write(mapping);
664 * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
665 * mm's list and rbtree. It has already been inserted into the interval tree.
667 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
669 struct vm_area_struct *prev;
670 struct rb_node **rb_link, *rb_parent;
672 if (find_vma_links(mm, vma->vm_start, vma->vm_end,
673 &prev, &rb_link, &rb_parent))
675 __vma_link(mm, vma, prev, rb_link, rb_parent);
679 static __always_inline void __vma_unlink_common(struct mm_struct *mm,
680 struct vm_area_struct *vma,
681 struct vm_area_struct *ignore)
683 vma_rb_erase_ignore(vma, &mm->mm_rb, ignore);
684 __vma_unlink_list(mm, vma);
686 vmacache_invalidate(mm);
690 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
691 * is already present in an i_mmap tree without adjusting the tree.
692 * The following helper function should be used when such adjustments
693 * are necessary. The "insert" vma (if any) is to be inserted
694 * before we drop the necessary locks.
696 int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
697 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
698 struct vm_area_struct *expand)
700 struct mm_struct *mm = vma->vm_mm;
701 struct vm_area_struct *next = vma->vm_next, *orig_vma = vma;
702 struct address_space *mapping = NULL;
703 struct rb_root_cached *root = NULL;
704 struct anon_vma *anon_vma = NULL;
705 struct file *file = vma->vm_file;
706 bool start_changed = false, end_changed = false;
707 long adjust_next = 0;
710 if (next && !insert) {
711 struct vm_area_struct *exporter = NULL, *importer = NULL;
713 if (end >= next->vm_end) {
715 * vma expands, overlapping all the next, and
716 * perhaps the one after too (mprotect case 6).
717 * The only other cases that gets here are
718 * case 1, case 7 and case 8.
720 if (next == expand) {
722 * The only case where we don't expand "vma"
723 * and we expand "next" instead is case 8.
725 VM_WARN_ON(end != next->vm_end);
727 * remove_next == 3 means we're
728 * removing "vma" and that to do so we
729 * swapped "vma" and "next".
732 VM_WARN_ON(file != next->vm_file);
735 VM_WARN_ON(expand != vma);
737 * case 1, 6, 7, remove_next == 2 is case 6,
738 * remove_next == 1 is case 1 or 7.
740 remove_next = 1 + (end > next->vm_end);
741 VM_WARN_ON(remove_next == 2 &&
742 end != next->vm_next->vm_end);
743 /* trim end to next, for case 6 first pass */
751 * If next doesn't have anon_vma, import from vma after
752 * next, if the vma overlaps with it.
754 if (remove_next == 2 && !next->anon_vma)
755 exporter = next->vm_next;
757 } else if (end > next->vm_start) {
759 * vma expands, overlapping part of the next:
760 * mprotect case 5 shifting the boundary up.
762 adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
765 VM_WARN_ON(expand != importer);
766 } else if (end < vma->vm_end) {
768 * vma shrinks, and !insert tells it's not
769 * split_vma inserting another: so it must be
770 * mprotect case 4 shifting the boundary down.
772 adjust_next = -((vma->vm_end - end) >> PAGE_SHIFT);
775 VM_WARN_ON(expand != importer);
779 * Easily overlooked: when mprotect shifts the boundary,
780 * make sure the expanding vma has anon_vma set if the
781 * shrinking vma had, to cover any anon pages imported.
783 if (exporter && exporter->anon_vma && !importer->anon_vma) {
786 importer->anon_vma = exporter->anon_vma;
787 error = anon_vma_clone(importer, exporter);
793 vma_adjust_trans_huge(orig_vma, start, end, adjust_next);
796 mapping = file->f_mapping;
797 root = &mapping->i_mmap;
798 uprobe_munmap(vma, vma->vm_start, vma->vm_end);
801 uprobe_munmap(next, next->vm_start, next->vm_end);
803 i_mmap_lock_write(mapping);
806 * Put into interval tree now, so instantiated pages
807 * are visible to arm/parisc __flush_dcache_page
808 * throughout; but we cannot insert into address
809 * space until vma start or end is updated.
811 __vma_link_file(insert);
815 anon_vma = vma->anon_vma;
816 if (!anon_vma && adjust_next)
817 anon_vma = next->anon_vma;
819 VM_WARN_ON(adjust_next && next->anon_vma &&
820 anon_vma != next->anon_vma);
821 anon_vma_lock_write(anon_vma);
822 anon_vma_interval_tree_pre_update_vma(vma);
824 anon_vma_interval_tree_pre_update_vma(next);
828 flush_dcache_mmap_lock(mapping);
829 vma_interval_tree_remove(vma, root);
831 vma_interval_tree_remove(next, root);
834 if (start != vma->vm_start) {
835 vma->vm_start = start;
836 start_changed = true;
838 if (end != vma->vm_end) {
842 vma->vm_pgoff = pgoff;
844 next->vm_start += adjust_next << PAGE_SHIFT;
845 next->vm_pgoff += adjust_next;
850 vma_interval_tree_insert(next, root);
851 vma_interval_tree_insert(vma, root);
852 flush_dcache_mmap_unlock(mapping);
857 * vma_merge has merged next into vma, and needs
858 * us to remove next before dropping the locks.
860 if (remove_next != 3)
861 __vma_unlink_common(mm, next, next);
864 * vma is not before next if they've been
867 * pre-swap() next->vm_start was reduced so
868 * tell validate_mm_rb to ignore pre-swap()
869 * "next" (which is stored in post-swap()
872 __vma_unlink_common(mm, next, vma);
874 __remove_shared_vm_struct(next, file, mapping);
877 * split_vma has split insert from vma, and needs
878 * us to insert it before dropping the locks
879 * (it may either follow vma or precede it).
881 __insert_vm_struct(mm, insert);
887 mm->highest_vm_end = vm_end_gap(vma);
888 else if (!adjust_next)
889 vma_gap_update(next);
894 anon_vma_interval_tree_post_update_vma(vma);
896 anon_vma_interval_tree_post_update_vma(next);
897 anon_vma_unlock_write(anon_vma);
900 i_mmap_unlock_write(mapping);
911 uprobe_munmap(next, next->vm_start, next->vm_end);
915 anon_vma_merge(vma, next);
917 mpol_put(vma_policy(next));
920 * In mprotect's case 6 (see comments on vma_merge),
921 * we must remove another next too. It would clutter
922 * up the code too much to do both in one go.
924 if (remove_next != 3) {
926 * If "next" was removed and vma->vm_end was
927 * expanded (up) over it, in turn
928 * "next->vm_prev->vm_end" changed and the
929 * "vma->vm_next" gap must be updated.
934 * For the scope of the comment "next" and
935 * "vma" considered pre-swap(): if "vma" was
936 * removed, next->vm_start was expanded (down)
937 * over it and the "next" gap must be updated.
938 * Because of the swap() the post-swap() "vma"
939 * actually points to pre-swap() "next"
940 * (post-swap() "next" as opposed is now a
945 if (remove_next == 2) {
951 vma_gap_update(next);
954 * If remove_next == 2 we obviously can't
957 * If remove_next == 3 we can't reach this
958 * path because pre-swap() next is always not
959 * NULL. pre-swap() "next" is not being
960 * removed and its next->vm_end is not altered
961 * (and furthermore "end" already matches
962 * next->vm_end in remove_next == 3).
964 * We reach this only in the remove_next == 1
965 * case if the "next" vma that was removed was
966 * the highest vma of the mm. However in such
967 * case next->vm_end == "end" and the extended
968 * "vma" has vma->vm_end == next->vm_end so
969 * mm->highest_vm_end doesn't need any update
970 * in remove_next == 1 case.
972 VM_WARN_ON(mm->highest_vm_end != vm_end_gap(vma));
984 * If the vma has a ->close operation then the driver probably needs to release
985 * per-vma resources, so we don't attempt to merge those.
987 static inline int is_mergeable_vma(struct vm_area_struct *vma,
988 struct file *file, unsigned long vm_flags,
989 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
992 * VM_SOFTDIRTY should not prevent from VMA merging, if we
993 * match the flags but dirty bit -- the caller should mark
994 * merged VMA as dirty. If dirty bit won't be excluded from
995 * comparison, we increase pressure on the memory system forcing
996 * the kernel to generate new VMAs when old one could be
999 if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
1001 if (vma->vm_file != file)
1003 if (vma->vm_ops && vma->vm_ops->close)
1005 if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
1010 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
1011 struct anon_vma *anon_vma2,
1012 struct vm_area_struct *vma)
1015 * The list_is_singular() test is to avoid merging VMA cloned from
1016 * parents. This can improve scalability caused by anon_vma lock.
1018 if ((!anon_vma1 || !anon_vma2) && (!vma ||
1019 list_is_singular(&vma->anon_vma_chain)))
1021 return anon_vma1 == anon_vma2;
1025 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1026 * in front of (at a lower virtual address and file offset than) the vma.
1028 * We cannot merge two vmas if they have differently assigned (non-NULL)
1029 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1031 * We don't check here for the merged mmap wrapping around the end of pagecache
1032 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
1033 * wrap, nor mmaps which cover the final page at index -1UL.
1036 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
1037 struct anon_vma *anon_vma, struct file *file,
1039 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1041 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1042 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1043 if (vma->vm_pgoff == vm_pgoff)
1050 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1051 * beyond (at a higher virtual address and file offset than) the vma.
1053 * We cannot merge two vmas if they have differently assigned (non-NULL)
1054 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1057 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
1058 struct anon_vma *anon_vma, struct file *file,
1060 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1062 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1063 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1065 vm_pglen = vma_pages(vma);
1066 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
1073 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
1074 * whether that can be merged with its predecessor or its successor.
1075 * Or both (it neatly fills a hole).
1077 * In most cases - when called for mmap, brk or mremap - [addr,end) is
1078 * certain not to be mapped by the time vma_merge is called; but when
1079 * called for mprotect, it is certain to be already mapped (either at
1080 * an offset within prev, or at the start of next), and the flags of
1081 * this area are about to be changed to vm_flags - and the no-change
1082 * case has already been eliminated.
1084 * The following mprotect cases have to be considered, where AAAA is
1085 * the area passed down from mprotect_fixup, never extending beyond one
1086 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
1089 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN
1090 * cannot merge might become might become
1091 * PPNNNNNNNNNN PPPPPPPPPPNN
1092 * mmap, brk or case 4 below case 5 below
1095 * PPPP NNNN PPPPNNNNXXXX
1096 * might become might become
1097 * PPPPPPPPPPPP 1 or PPPPPPPPPPPP 6 or
1098 * PPPPPPPPNNNN 2 or PPPPPPPPXXXX 7 or
1099 * PPPPNNNNNNNN 3 PPPPXXXXXXXX 8
1101 * It is important for case 8 that the vma NNNN overlapping the
1102 * region AAAA is never going to extended over XXXX. Instead XXXX must
1103 * be extended in region AAAA and NNNN must be removed. This way in
1104 * all cases where vma_merge succeeds, the moment vma_adjust drops the
1105 * rmap_locks, the properties of the merged vma will be already
1106 * correct for the whole merged range. Some of those properties like
1107 * vm_page_prot/vm_flags may be accessed by rmap_walks and they must
1108 * be correct for the whole merged range immediately after the
1109 * rmap_locks are released. Otherwise if XXXX would be removed and
1110 * NNNN would be extended over the XXXX range, remove_migration_ptes
1111 * or other rmap walkers (if working on addresses beyond the "end"
1112 * parameter) may establish ptes with the wrong permissions of NNNN
1113 * instead of the right permissions of XXXX.
1115 struct vm_area_struct *vma_merge(struct mm_struct *mm,
1116 struct vm_area_struct *prev, unsigned long addr,
1117 unsigned long end, unsigned long vm_flags,
1118 struct anon_vma *anon_vma, struct file *file,
1119 pgoff_t pgoff, struct mempolicy *policy,
1120 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1122 pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1123 struct vm_area_struct *area, *next;
1127 * We later require that vma->vm_flags == vm_flags,
1128 * so this tests vma->vm_flags & VM_SPECIAL, too.
1130 if (vm_flags & VM_SPECIAL)
1134 next = prev->vm_next;
1138 if (area && area->vm_end == end) /* cases 6, 7, 8 */
1139 next = next->vm_next;
1141 /* verify some invariant that must be enforced by the caller */
1142 VM_WARN_ON(prev && addr <= prev->vm_start);
1143 VM_WARN_ON(area && end > area->vm_end);
1144 VM_WARN_ON(addr >= end);
1147 * Can it merge with the predecessor?
1149 if (prev && prev->vm_end == addr &&
1150 mpol_equal(vma_policy(prev), policy) &&
1151 can_vma_merge_after(prev, vm_flags,
1152 anon_vma, file, pgoff,
1153 vm_userfaultfd_ctx)) {
1155 * OK, it can. Can we now merge in the successor as well?
1157 if (next && end == next->vm_start &&
1158 mpol_equal(policy, vma_policy(next)) &&
1159 can_vma_merge_before(next, vm_flags,
1162 vm_userfaultfd_ctx) &&
1163 is_mergeable_anon_vma(prev->anon_vma,
1164 next->anon_vma, NULL)) {
1166 err = __vma_adjust(prev, prev->vm_start,
1167 next->vm_end, prev->vm_pgoff, NULL,
1169 } else /* cases 2, 5, 7 */
1170 err = __vma_adjust(prev, prev->vm_start,
1171 end, prev->vm_pgoff, NULL, prev);
1174 khugepaged_enter_vma_merge(prev, vm_flags);
1179 * Can this new request be merged in front of next?
1181 if (next && end == next->vm_start &&
1182 mpol_equal(policy, vma_policy(next)) &&
1183 can_vma_merge_before(next, vm_flags,
1184 anon_vma, file, pgoff+pglen,
1185 vm_userfaultfd_ctx)) {
1186 if (prev && addr < prev->vm_end) /* case 4 */
1187 err = __vma_adjust(prev, prev->vm_start,
1188 addr, prev->vm_pgoff, NULL, next);
1189 else { /* cases 3, 8 */
1190 err = __vma_adjust(area, addr, next->vm_end,
1191 next->vm_pgoff - pglen, NULL, next);
1193 * In case 3 area is already equal to next and
1194 * this is a noop, but in case 8 "area" has
1195 * been removed and next was expanded over it.
1201 khugepaged_enter_vma_merge(area, vm_flags);
1209 * Rough compatbility check to quickly see if it's even worth looking
1210 * at sharing an anon_vma.
1212 * They need to have the same vm_file, and the flags can only differ
1213 * in things that mprotect may change.
1215 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1216 * we can merge the two vma's. For example, we refuse to merge a vma if
1217 * there is a vm_ops->close() function, because that indicates that the
1218 * driver is doing some kind of reference counting. But that doesn't
1219 * really matter for the anon_vma sharing case.
1221 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1223 return a->vm_end == b->vm_start &&
1224 mpol_equal(vma_policy(a), vma_policy(b)) &&
1225 a->vm_file == b->vm_file &&
1226 !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC|VM_SOFTDIRTY)) &&
1227 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1231 * Do some basic sanity checking to see if we can re-use the anon_vma
1232 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1233 * the same as 'old', the other will be the new one that is trying
1234 * to share the anon_vma.
1236 * NOTE! This runs with mm_sem held for reading, so it is possible that
1237 * the anon_vma of 'old' is concurrently in the process of being set up
1238 * by another page fault trying to merge _that_. But that's ok: if it
1239 * is being set up, that automatically means that it will be a singleton
1240 * acceptable for merging, so we can do all of this optimistically. But
1241 * we do that READ_ONCE() to make sure that we never re-load the pointer.
1243 * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1244 * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1245 * is to return an anon_vma that is "complex" due to having gone through
1248 * We also make sure that the two vma's are compatible (adjacent,
1249 * and with the same memory policies). That's all stable, even with just
1250 * a read lock on the mm_sem.
1252 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1254 if (anon_vma_compatible(a, b)) {
1255 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1257 if (anon_vma && list_is_singular(&old->anon_vma_chain))
1264 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1265 * neighbouring vmas for a suitable anon_vma, before it goes off
1266 * to allocate a new anon_vma. It checks because a repetitive
1267 * sequence of mprotects and faults may otherwise lead to distinct
1268 * anon_vmas being allocated, preventing vma merge in subsequent
1271 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1273 struct anon_vma *anon_vma;
1274 struct vm_area_struct *near;
1276 near = vma->vm_next;
1280 anon_vma = reusable_anon_vma(near, vma, near);
1284 near = vma->vm_prev;
1288 anon_vma = reusable_anon_vma(near, near, vma);
1293 * There's no absolute need to look only at touching neighbours:
1294 * we could search further afield for "compatible" anon_vmas.
1295 * But it would probably just be a waste of time searching,
1296 * or lead to too many vmas hanging off the same anon_vma.
1297 * We're trying to allow mprotect remerging later on,
1298 * not trying to minimize memory used for anon_vmas.
1304 * If a hint addr is less than mmap_min_addr change hint to be as
1305 * low as possible but still greater than mmap_min_addr
1307 static inline unsigned long round_hint_to_min(unsigned long hint)
1310 if (((void *)hint != NULL) &&
1311 (hint < mmap_min_addr))
1312 return PAGE_ALIGN(mmap_min_addr);
1316 static inline int mlock_future_check(struct mm_struct *mm,
1317 unsigned long flags,
1320 unsigned long locked, lock_limit;
1322 /* mlock MCL_FUTURE? */
1323 if (flags & VM_LOCKED) {
1324 locked = len >> PAGE_SHIFT;
1325 locked += mm->locked_vm;
1326 lock_limit = rlimit(RLIMIT_MEMLOCK);
1327 lock_limit >>= PAGE_SHIFT;
1328 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1334 static inline u64 file_mmap_size_max(struct file *file, struct inode *inode)
1336 if (S_ISREG(inode->i_mode))
1337 return MAX_LFS_FILESIZE;
1339 if (S_ISBLK(inode->i_mode))
1340 return MAX_LFS_FILESIZE;
1342 if (S_ISSOCK(inode->i_mode))
1343 return MAX_LFS_FILESIZE;
1345 /* Special "we do even unsigned file positions" case */
1346 if (file->f_mode & FMODE_UNSIGNED_OFFSET)
1349 /* Yes, random drivers might want more. But I'm tired of buggy drivers */
1353 static inline bool file_mmap_ok(struct file *file, struct inode *inode,
1354 unsigned long pgoff, unsigned long len)
1356 u64 maxsize = file_mmap_size_max(file, inode);
1358 if (maxsize && len > maxsize)
1361 if (pgoff > maxsize >> PAGE_SHIFT)
1367 * The caller must hold down_write(¤t->mm->mmap_sem).
1369 unsigned long do_mmap(struct file *file, unsigned long addr,
1370 unsigned long len, unsigned long prot,
1371 unsigned long flags, vm_flags_t vm_flags,
1372 unsigned long pgoff, unsigned long *populate,
1373 struct list_head *uf)
1375 struct mm_struct *mm = current->mm;
1384 * Does the application expect PROT_READ to imply PROT_EXEC?
1386 * (the exception is when the underlying filesystem is noexec
1387 * mounted, in which case we dont add PROT_EXEC.)
1389 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1390 if (!(file && path_noexec(&file->f_path)))
1393 /* force arch specific MAP_FIXED handling in get_unmapped_area */
1394 if (flags & MAP_FIXED_NOREPLACE)
1397 if (!(flags & MAP_FIXED))
1398 addr = round_hint_to_min(addr);
1400 /* Careful about overflows.. */
1401 len = PAGE_ALIGN(len);
1405 /* offset overflow? */
1406 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1409 /* Too many mappings? */
1410 if (mm->map_count > sysctl_max_map_count)
1413 /* Obtain the address to map to. we verify (or select) it and ensure
1414 * that it represents a valid section of the address space.
1416 addr = get_unmapped_area(file, addr, len, pgoff, flags);
1417 if (IS_ERR_VALUE(addr))
1420 if (flags & MAP_FIXED_NOREPLACE) {
1421 struct vm_area_struct *vma = find_vma(mm, addr);
1423 if (vma && vma->vm_start < addr + len)
1427 if (prot == PROT_EXEC) {
1428 pkey = execute_only_pkey(mm);
1433 /* Do simple checking here so the lower-level routines won't have
1434 * to. we assume access permissions have been handled by the open
1435 * of the memory object, so we don't do any here.
1437 vm_flags |= calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
1438 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1440 if (flags & MAP_LOCKED)
1441 if (!can_do_mlock())
1444 if (mlock_future_check(mm, vm_flags, len))
1448 struct inode *inode = file_inode(file);
1449 unsigned long flags_mask;
1451 if (!file_mmap_ok(file, inode, pgoff, len))
1454 flags_mask = LEGACY_MAP_MASK | file->f_op->mmap_supported_flags;
1456 switch (flags & MAP_TYPE) {
1459 * Force use of MAP_SHARED_VALIDATE with non-legacy
1460 * flags. E.g. MAP_SYNC is dangerous to use with
1461 * MAP_SHARED as you don't know which consistency model
1462 * you will get. We silently ignore unsupported flags
1463 * with MAP_SHARED to preserve backward compatibility.
1465 flags &= LEGACY_MAP_MASK;
1467 case MAP_SHARED_VALIDATE:
1468 if (flags & ~flags_mask)
1470 if (prot & PROT_WRITE) {
1471 if (!(file->f_mode & FMODE_WRITE))
1473 if (IS_SWAPFILE(file->f_mapping->host))
1478 * Make sure we don't allow writing to an append-only
1481 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1485 * Make sure there are no mandatory locks on the file.
1487 if (locks_verify_locked(file))
1490 vm_flags |= VM_SHARED | VM_MAYSHARE;
1491 if (!(file->f_mode & FMODE_WRITE))
1492 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1496 if (!(file->f_mode & FMODE_READ))
1498 if (path_noexec(&file->f_path)) {
1499 if (vm_flags & VM_EXEC)
1501 vm_flags &= ~VM_MAYEXEC;
1504 if (!file->f_op->mmap)
1506 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1514 switch (flags & MAP_TYPE) {
1516 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1522 vm_flags |= VM_SHARED | VM_MAYSHARE;
1526 * Set pgoff according to addr for anon_vma.
1528 pgoff = addr >> PAGE_SHIFT;
1536 * Set 'VM_NORESERVE' if we should not account for the
1537 * memory use of this mapping.
1539 if (flags & MAP_NORESERVE) {
1540 /* We honor MAP_NORESERVE if allowed to overcommit */
1541 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1542 vm_flags |= VM_NORESERVE;
1544 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1545 if (file && is_file_hugepages(file))
1546 vm_flags |= VM_NORESERVE;
1549 addr = mmap_region(file, addr, len, vm_flags, pgoff, uf);
1550 if (!IS_ERR_VALUE(addr) &&
1551 ((vm_flags & VM_LOCKED) ||
1552 (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1557 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1558 unsigned long prot, unsigned long flags,
1559 unsigned long fd, unsigned long pgoff)
1561 struct file *file = NULL;
1562 unsigned long retval;
1564 addr = untagged_addr(addr);
1566 if (!(flags & MAP_ANONYMOUS)) {
1567 audit_mmap_fd(fd, flags);
1571 if (is_file_hugepages(file))
1572 len = ALIGN(len, huge_page_size(hstate_file(file)));
1574 if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file)))
1576 } else if (flags & MAP_HUGETLB) {
1577 struct user_struct *user = NULL;
1580 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1584 len = ALIGN(len, huge_page_size(hs));
1586 * VM_NORESERVE is used because the reservations will be
1587 * taken when vm_ops->mmap() is called
1588 * A dummy user value is used because we are not locking
1589 * memory so no accounting is necessary
1591 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1593 &user, HUGETLB_ANONHUGE_INODE,
1594 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1596 return PTR_ERR(file);
1599 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1601 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1608 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1609 unsigned long, prot, unsigned long, flags,
1610 unsigned long, fd, unsigned long, pgoff)
1612 return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1615 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1616 struct mmap_arg_struct {
1620 unsigned long flags;
1622 unsigned long offset;
1625 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1627 struct mmap_arg_struct a;
1629 if (copy_from_user(&a, arg, sizeof(a)))
1631 if (offset_in_page(a.offset))
1634 return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1635 a.offset >> PAGE_SHIFT);
1637 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1640 * Some shared mappings will want the pages marked read-only
1641 * to track write events. If so, we'll downgrade vm_page_prot
1642 * to the private version (using protection_map[] without the
1645 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)
1647 vm_flags_t vm_flags = vma->vm_flags;
1648 const struct vm_operations_struct *vm_ops = vma->vm_ops;
1650 /* If it was private or non-writable, the write bit is already clear */
1651 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1654 /* The backer wishes to know when pages are first written to? */
1655 if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite))
1658 /* The open routine did something to the protections that pgprot_modify
1659 * won't preserve? */
1660 if (pgprot_val(vm_page_prot) !=
1661 pgprot_val(vm_pgprot_modify(vm_page_prot, vm_flags)))
1664 /* Do we need to track softdirty? */
1665 if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY))
1668 /* Specialty mapping? */
1669 if (vm_flags & VM_PFNMAP)
1672 /* Can the mapping track the dirty pages? */
1673 return vma->vm_file && vma->vm_file->f_mapping &&
1674 mapping_cap_account_dirty(vma->vm_file->f_mapping);
1678 * We account for memory if it's a private writeable mapping,
1679 * not hugepages and VM_NORESERVE wasn't set.
1681 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1684 * hugetlb has its own accounting separate from the core VM
1685 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1687 if (file && is_file_hugepages(file))
1690 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1693 unsigned long mmap_region(struct file *file, unsigned long addr,
1694 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
1695 struct list_head *uf)
1697 struct mm_struct *mm = current->mm;
1698 struct vm_area_struct *vma, *prev;
1700 struct rb_node **rb_link, *rb_parent;
1701 unsigned long charged = 0;
1703 /* Check against address space limit. */
1704 if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
1705 unsigned long nr_pages;
1708 * MAP_FIXED may remove pages of mappings that intersects with
1709 * requested mapping. Account for the pages it would unmap.
1711 nr_pages = count_vma_pages_range(mm, addr, addr + len);
1713 if (!may_expand_vm(mm, vm_flags,
1714 (len >> PAGE_SHIFT) - nr_pages))
1718 /* Clear old maps */
1719 while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
1721 if (do_munmap(mm, addr, len, uf))
1726 * Private writable mapping: check memory availability
1728 if (accountable_mapping(file, vm_flags)) {
1729 charged = len >> PAGE_SHIFT;
1730 if (security_vm_enough_memory_mm(mm, charged))
1732 vm_flags |= VM_ACCOUNT;
1736 * Can we just expand an old mapping?
1738 vma = vma_merge(mm, prev, addr, addr + len, vm_flags,
1739 NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX);
1744 * Determine the object being mapped and call the appropriate
1745 * specific mapper. the address has already been validated, but
1746 * not unmapped, but the maps are removed from the list.
1748 vma = vm_area_alloc(mm);
1754 vma->vm_start = addr;
1755 vma->vm_end = addr + len;
1756 vma->vm_flags = vm_flags;
1757 vma->vm_page_prot = vm_get_page_prot(vm_flags);
1758 vma->vm_pgoff = pgoff;
1761 if (vm_flags & VM_DENYWRITE) {
1762 error = deny_write_access(file);
1766 if (vm_flags & VM_SHARED) {
1767 error = mapping_map_writable(file->f_mapping);
1769 goto allow_write_and_free_vma;
1772 /* ->mmap() can change vma->vm_file, but must guarantee that
1773 * vma_link() below can deny write-access if VM_DENYWRITE is set
1774 * and map writably if VM_SHARED is set. This usually means the
1775 * new file must not have been exposed to user-space, yet.
1777 vma->vm_file = get_file(file);
1778 error = call_mmap(file, vma);
1780 goto unmap_and_free_vma;
1782 /* Can addr have changed??
1784 * Answer: Yes, several device drivers can do it in their
1785 * f_op->mmap method. -DaveM
1786 * Bug: If addr is changed, prev, rb_link, rb_parent should
1787 * be updated for vma_link()
1789 WARN_ON_ONCE(addr != vma->vm_start);
1791 addr = vma->vm_start;
1792 vm_flags = vma->vm_flags;
1793 } else if (vm_flags & VM_SHARED) {
1794 error = shmem_zero_setup(vma);
1798 vma_set_anonymous(vma);
1801 vma_link(mm, vma, prev, rb_link, rb_parent);
1802 /* Once vma denies write, undo our temporary denial count */
1804 if (vm_flags & VM_SHARED)
1805 mapping_unmap_writable(file->f_mapping);
1806 if (vm_flags & VM_DENYWRITE)
1807 allow_write_access(file);
1809 file = vma->vm_file;
1811 perf_event_mmap(vma);
1813 vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
1814 if (vm_flags & VM_LOCKED) {
1815 if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) ||
1816 is_vm_hugetlb_page(vma) ||
1817 vma == get_gate_vma(current->mm))
1818 vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
1820 mm->locked_vm += (len >> PAGE_SHIFT);
1827 * New (or expanded) vma always get soft dirty status.
1828 * Otherwise user-space soft-dirty page tracker won't
1829 * be able to distinguish situation when vma area unmapped,
1830 * then new mapped in-place (which must be aimed as
1831 * a completely new data area).
1833 vma->vm_flags |= VM_SOFTDIRTY;
1835 vma_set_page_prot(vma);
1840 vma->vm_file = NULL;
1843 /* Undo any partial mapping done by a device driver. */
1844 unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1846 if (vm_flags & VM_SHARED)
1847 mapping_unmap_writable(file->f_mapping);
1848 allow_write_and_free_vma:
1849 if (vm_flags & VM_DENYWRITE)
1850 allow_write_access(file);
1855 vm_unacct_memory(charged);
1859 unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1862 * We implement the search by looking for an rbtree node that
1863 * immediately follows a suitable gap. That is,
1864 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1865 * - gap_end = vma->vm_start >= info->low_limit + length;
1866 * - gap_end - gap_start >= length
1869 struct mm_struct *mm = current->mm;
1870 struct vm_area_struct *vma;
1871 unsigned long length, low_limit, high_limit, gap_start, gap_end;
1873 /* Adjust search length to account for worst case alignment overhead */
1874 length = info->length + info->align_mask;
1875 if (length < info->length)
1878 /* Adjust search limits by the desired length */
1879 if (info->high_limit < length)
1881 high_limit = info->high_limit - length;
1883 if (info->low_limit > high_limit)
1885 low_limit = info->low_limit + length;
1887 /* Check if rbtree root looks promising */
1888 if (RB_EMPTY_ROOT(&mm->mm_rb))
1890 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1891 if (vma->rb_subtree_gap < length)
1895 /* Visit left subtree if it looks promising */
1896 gap_end = vm_start_gap(vma);
1897 if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1898 struct vm_area_struct *left =
1899 rb_entry(vma->vm_rb.rb_left,
1900 struct vm_area_struct, vm_rb);
1901 if (left->rb_subtree_gap >= length) {
1907 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
1909 /* Check if current node has a suitable gap */
1910 if (gap_start > high_limit)
1912 if (gap_end >= low_limit &&
1913 gap_end > gap_start && gap_end - gap_start >= length)
1916 /* Visit right subtree if it looks promising */
1917 if (vma->vm_rb.rb_right) {
1918 struct vm_area_struct *right =
1919 rb_entry(vma->vm_rb.rb_right,
1920 struct vm_area_struct, vm_rb);
1921 if (right->rb_subtree_gap >= length) {
1927 /* Go back up the rbtree to find next candidate node */
1929 struct rb_node *prev = &vma->vm_rb;
1930 if (!rb_parent(prev))
1932 vma = rb_entry(rb_parent(prev),
1933 struct vm_area_struct, vm_rb);
1934 if (prev == vma->vm_rb.rb_left) {
1935 gap_start = vm_end_gap(vma->vm_prev);
1936 gap_end = vm_start_gap(vma);
1943 /* Check highest gap, which does not precede any rbtree node */
1944 gap_start = mm->highest_vm_end;
1945 gap_end = ULONG_MAX; /* Only for VM_BUG_ON below */
1946 if (gap_start > high_limit)
1950 /* We found a suitable gap. Clip it with the original low_limit. */
1951 if (gap_start < info->low_limit)
1952 gap_start = info->low_limit;
1954 /* Adjust gap address to the desired alignment */
1955 gap_start += (info->align_offset - gap_start) & info->align_mask;
1957 VM_BUG_ON(gap_start + info->length > info->high_limit);
1958 VM_BUG_ON(gap_start + info->length > gap_end);
1962 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1964 struct mm_struct *mm = current->mm;
1965 struct vm_area_struct *vma;
1966 unsigned long length, low_limit, high_limit, gap_start, gap_end;
1968 /* Adjust search length to account for worst case alignment overhead */
1969 length = info->length + info->align_mask;
1970 if (length < info->length)
1974 * Adjust search limits by the desired length.
1975 * See implementation comment at top of unmapped_area().
1977 gap_end = info->high_limit;
1978 if (gap_end < length)
1980 high_limit = gap_end - length;
1982 if (info->low_limit > high_limit)
1984 low_limit = info->low_limit + length;
1986 /* Check highest gap, which does not precede any rbtree node */
1987 gap_start = mm->highest_vm_end;
1988 if (gap_start <= high_limit)
1991 /* Check if rbtree root looks promising */
1992 if (RB_EMPTY_ROOT(&mm->mm_rb))
1994 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1995 if (vma->rb_subtree_gap < length)
1999 /* Visit right subtree if it looks promising */
2000 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
2001 if (gap_start <= high_limit && vma->vm_rb.rb_right) {
2002 struct vm_area_struct *right =
2003 rb_entry(vma->vm_rb.rb_right,
2004 struct vm_area_struct, vm_rb);
2005 if (right->rb_subtree_gap >= length) {
2012 /* Check if current node has a suitable gap */
2013 gap_end = vm_start_gap(vma);
2014 if (gap_end < low_limit)
2016 if (gap_start <= high_limit &&
2017 gap_end > gap_start && gap_end - gap_start >= length)
2020 /* Visit left subtree if it looks promising */
2021 if (vma->vm_rb.rb_left) {
2022 struct vm_area_struct *left =
2023 rb_entry(vma->vm_rb.rb_left,
2024 struct vm_area_struct, vm_rb);
2025 if (left->rb_subtree_gap >= length) {
2031 /* Go back up the rbtree to find next candidate node */
2033 struct rb_node *prev = &vma->vm_rb;
2034 if (!rb_parent(prev))
2036 vma = rb_entry(rb_parent(prev),
2037 struct vm_area_struct, vm_rb);
2038 if (prev == vma->vm_rb.rb_right) {
2039 gap_start = vma->vm_prev ?
2040 vm_end_gap(vma->vm_prev) : 0;
2047 /* We found a suitable gap. Clip it with the original high_limit. */
2048 if (gap_end > info->high_limit)
2049 gap_end = info->high_limit;
2052 /* Compute highest gap address at the desired alignment */
2053 gap_end -= info->length;
2054 gap_end -= (gap_end - info->align_offset) & info->align_mask;
2056 VM_BUG_ON(gap_end < info->low_limit);
2057 VM_BUG_ON(gap_end < gap_start);
2062 #ifndef arch_get_mmap_end
2063 #define arch_get_mmap_end(addr) (TASK_SIZE)
2066 #ifndef arch_get_mmap_base
2067 #define arch_get_mmap_base(addr, base) (base)
2070 /* Get an address range which is currently unmapped.
2071 * For shmat() with addr=0.
2073 * Ugly calling convention alert:
2074 * Return value with the low bits set means error value,
2076 * if (ret & ~PAGE_MASK)
2079 * This function "knows" that -ENOMEM has the bits set.
2081 #ifndef HAVE_ARCH_UNMAPPED_AREA
2083 arch_get_unmapped_area(struct file *filp, unsigned long addr,
2084 unsigned long len, unsigned long pgoff, unsigned long flags)
2086 struct mm_struct *mm = current->mm;
2087 struct vm_area_struct *vma, *prev;
2088 struct vm_unmapped_area_info info;
2089 const unsigned long mmap_end = arch_get_mmap_end(addr);
2091 if (len > mmap_end - mmap_min_addr)
2094 if (flags & MAP_FIXED)
2098 addr = PAGE_ALIGN(addr);
2099 vma = find_vma_prev(mm, addr, &prev);
2100 if (mmap_end - len >= addr && addr >= mmap_min_addr &&
2101 (!vma || addr + len <= vm_start_gap(vma)) &&
2102 (!prev || addr >= vm_end_gap(prev)))
2108 info.low_limit = mm->mmap_base;
2109 info.high_limit = mmap_end;
2110 info.align_mask = 0;
2111 return vm_unmapped_area(&info);
2116 * This mmap-allocator allocates new areas top-down from below the
2117 * stack's low limit (the base):
2119 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
2121 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
2122 unsigned long len, unsigned long pgoff,
2123 unsigned long flags)
2125 struct vm_area_struct *vma, *prev;
2126 struct mm_struct *mm = current->mm;
2127 struct vm_unmapped_area_info info;
2128 const unsigned long mmap_end = arch_get_mmap_end(addr);
2130 /* requested length too big for entire address space */
2131 if (len > mmap_end - mmap_min_addr)
2134 if (flags & MAP_FIXED)
2137 /* requesting a specific address */
2139 addr = PAGE_ALIGN(addr);
2140 vma = find_vma_prev(mm, addr, &prev);
2141 if (mmap_end - len >= addr && addr >= mmap_min_addr &&
2142 (!vma || addr + len <= vm_start_gap(vma)) &&
2143 (!prev || addr >= vm_end_gap(prev)))
2147 info.flags = VM_UNMAPPED_AREA_TOPDOWN;
2149 info.low_limit = max(PAGE_SIZE, mmap_min_addr);
2150 info.high_limit = arch_get_mmap_base(addr, mm->mmap_base);
2151 info.align_mask = 0;
2152 addr = vm_unmapped_area(&info);
2155 * A failed mmap() very likely causes application failure,
2156 * so fall back to the bottom-up function here. This scenario
2157 * can happen with large stack limits and large mmap()
2160 if (offset_in_page(addr)) {
2161 VM_BUG_ON(addr != -ENOMEM);
2163 info.low_limit = TASK_UNMAPPED_BASE;
2164 info.high_limit = mmap_end;
2165 addr = vm_unmapped_area(&info);
2173 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
2174 unsigned long pgoff, unsigned long flags)
2176 unsigned long (*get_area)(struct file *, unsigned long,
2177 unsigned long, unsigned long, unsigned long);
2179 unsigned long error = arch_mmap_check(addr, len, flags);
2183 /* Careful about overflows.. */
2184 if (len > TASK_SIZE)
2187 get_area = current->mm->get_unmapped_area;
2189 if (file->f_op->get_unmapped_area)
2190 get_area = file->f_op->get_unmapped_area;
2191 } else if (flags & MAP_SHARED) {
2193 * mmap_region() will call shmem_zero_setup() to create a file,
2194 * so use shmem's get_unmapped_area in case it can be huge.
2195 * do_mmap_pgoff() will clear pgoff, so match alignment.
2198 get_area = shmem_get_unmapped_area;
2201 addr = get_area(file, addr, len, pgoff, flags);
2202 if (IS_ERR_VALUE(addr))
2205 if (addr > TASK_SIZE - len)
2207 if (offset_in_page(addr))
2210 error = security_mmap_addr(addr);
2211 return error ? error : addr;
2214 EXPORT_SYMBOL(get_unmapped_area);
2216 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2217 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
2219 struct rb_node *rb_node;
2220 struct vm_area_struct *vma;
2222 /* Check the cache first. */
2223 vma = vmacache_find(mm, addr);
2227 rb_node = mm->mm_rb.rb_node;
2230 struct vm_area_struct *tmp;
2232 tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2234 if (tmp->vm_end > addr) {
2236 if (tmp->vm_start <= addr)
2238 rb_node = rb_node->rb_left;
2240 rb_node = rb_node->rb_right;
2244 vmacache_update(addr, vma);
2248 EXPORT_SYMBOL(find_vma);
2251 * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2253 struct vm_area_struct *
2254 find_vma_prev(struct mm_struct *mm, unsigned long addr,
2255 struct vm_area_struct **pprev)
2257 struct vm_area_struct *vma;
2259 vma = find_vma(mm, addr);
2261 *pprev = vma->vm_prev;
2263 struct rb_node *rb_node = rb_last(&mm->mm_rb);
2265 *pprev = rb_node ? rb_entry(rb_node, struct vm_area_struct, vm_rb) : NULL;
2271 * Verify that the stack growth is acceptable and
2272 * update accounting. This is shared with both the
2273 * grow-up and grow-down cases.
2275 static int acct_stack_growth(struct vm_area_struct *vma,
2276 unsigned long size, unsigned long grow)
2278 struct mm_struct *mm = vma->vm_mm;
2279 unsigned long new_start;
2281 /* address space limit tests */
2282 if (!may_expand_vm(mm, vma->vm_flags, grow))
2285 /* Stack limit test */
2286 if (size > rlimit(RLIMIT_STACK))
2289 /* mlock limit tests */
2290 if (vma->vm_flags & VM_LOCKED) {
2291 unsigned long locked;
2292 unsigned long limit;
2293 locked = mm->locked_vm + grow;
2294 limit = rlimit(RLIMIT_MEMLOCK);
2295 limit >>= PAGE_SHIFT;
2296 if (locked > limit && !capable(CAP_IPC_LOCK))
2300 /* Check to ensure the stack will not grow into a hugetlb-only region */
2301 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2303 if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2307 * Overcommit.. This must be the final test, as it will
2308 * update security statistics.
2310 if (security_vm_enough_memory_mm(mm, grow))
2316 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2318 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2319 * vma is the last one with address > vma->vm_end. Have to extend vma.
2321 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2323 struct mm_struct *mm = vma->vm_mm;
2324 struct vm_area_struct *next;
2325 unsigned long gap_addr;
2328 if (!(vma->vm_flags & VM_GROWSUP))
2331 /* Guard against exceeding limits of the address space. */
2332 address &= PAGE_MASK;
2333 if (address >= (TASK_SIZE & PAGE_MASK))
2335 address += PAGE_SIZE;
2337 /* Enforce stack_guard_gap */
2338 gap_addr = address + stack_guard_gap;
2340 /* Guard against overflow */
2341 if (gap_addr < address || gap_addr > TASK_SIZE)
2342 gap_addr = TASK_SIZE;
2344 next = vma->vm_next;
2345 if (next && next->vm_start < gap_addr &&
2346 (next->vm_flags & (VM_WRITE|VM_READ|VM_EXEC))) {
2347 if (!(next->vm_flags & VM_GROWSUP))
2349 /* Check that both stack segments have the same anon_vma? */
2352 /* We must make sure the anon_vma is allocated. */
2353 if (unlikely(anon_vma_prepare(vma)))
2357 * vma->vm_start/vm_end cannot change under us because the caller
2358 * is required to hold the mmap_sem in read mode. We need the
2359 * anon_vma lock to serialize against concurrent expand_stacks.
2361 anon_vma_lock_write(vma->anon_vma);
2363 /* Somebody else might have raced and expanded it already */
2364 if (address > vma->vm_end) {
2365 unsigned long size, grow;
2367 size = address - vma->vm_start;
2368 grow = (address - vma->vm_end) >> PAGE_SHIFT;
2371 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2372 error = acct_stack_growth(vma, size, grow);
2375 * vma_gap_update() doesn't support concurrent
2376 * updates, but we only hold a shared mmap_sem
2377 * lock here, so we need to protect against
2378 * concurrent vma expansions.
2379 * anon_vma_lock_write() doesn't help here, as
2380 * we don't guarantee that all growable vmas
2381 * in a mm share the same root anon vma.
2382 * So, we reuse mm->page_table_lock to guard
2383 * against concurrent vma expansions.
2385 spin_lock(&mm->page_table_lock);
2386 if (vma->vm_flags & VM_LOCKED)
2387 mm->locked_vm += grow;
2388 vm_stat_account(mm, vma->vm_flags, grow);
2389 anon_vma_interval_tree_pre_update_vma(vma);
2390 vma->vm_end = address;
2391 anon_vma_interval_tree_post_update_vma(vma);
2393 vma_gap_update(vma->vm_next);
2395 mm->highest_vm_end = vm_end_gap(vma);
2396 spin_unlock(&mm->page_table_lock);
2398 perf_event_mmap(vma);
2402 anon_vma_unlock_write(vma->anon_vma);
2403 khugepaged_enter_vma_merge(vma, vma->vm_flags);
2407 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2410 * vma is the first one with address < vma->vm_start. Have to extend vma.
2412 int expand_downwards(struct vm_area_struct *vma,
2413 unsigned long address)
2415 struct mm_struct *mm = vma->vm_mm;
2416 struct vm_area_struct *prev;
2419 address &= PAGE_MASK;
2420 if (address < mmap_min_addr)
2423 /* Enforce stack_guard_gap */
2424 prev = vma->vm_prev;
2425 /* Check that both stack segments have the same anon_vma? */
2426 if (prev && !(prev->vm_flags & VM_GROWSDOWN) &&
2427 (prev->vm_flags & (VM_WRITE|VM_READ|VM_EXEC))) {
2428 if (address - prev->vm_end < stack_guard_gap)
2432 /* We must make sure the anon_vma is allocated. */
2433 if (unlikely(anon_vma_prepare(vma)))
2437 * vma->vm_start/vm_end cannot change under us because the caller
2438 * is required to hold the mmap_sem in read mode. We need the
2439 * anon_vma lock to serialize against concurrent expand_stacks.
2441 anon_vma_lock_write(vma->anon_vma);
2443 /* Somebody else might have raced and expanded it already */
2444 if (address < vma->vm_start) {
2445 unsigned long size, grow;
2447 size = vma->vm_end - address;
2448 grow = (vma->vm_start - address) >> PAGE_SHIFT;
2451 if (grow <= vma->vm_pgoff) {
2452 error = acct_stack_growth(vma, size, grow);
2455 * vma_gap_update() doesn't support concurrent
2456 * updates, but we only hold a shared mmap_sem
2457 * lock here, so we need to protect against
2458 * concurrent vma expansions.
2459 * anon_vma_lock_write() doesn't help here, as
2460 * we don't guarantee that all growable vmas
2461 * in a mm share the same root anon vma.
2462 * So, we reuse mm->page_table_lock to guard
2463 * against concurrent vma expansions.
2465 spin_lock(&mm->page_table_lock);
2466 if (vma->vm_flags & VM_LOCKED)
2467 mm->locked_vm += grow;
2468 vm_stat_account(mm, vma->vm_flags, grow);
2469 anon_vma_interval_tree_pre_update_vma(vma);
2470 vma->vm_start = address;
2471 vma->vm_pgoff -= grow;
2472 anon_vma_interval_tree_post_update_vma(vma);
2473 vma_gap_update(vma);
2474 spin_unlock(&mm->page_table_lock);
2476 perf_event_mmap(vma);
2480 anon_vma_unlock_write(vma->anon_vma);
2481 khugepaged_enter_vma_merge(vma, vma->vm_flags);
2486 /* enforced gap between the expanding stack and other mappings. */
2487 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT;
2489 static int __init cmdline_parse_stack_guard_gap(char *p)
2494 val = simple_strtoul(p, &endptr, 10);
2496 stack_guard_gap = val << PAGE_SHIFT;
2500 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap);
2502 #ifdef CONFIG_STACK_GROWSUP
2503 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2505 return expand_upwards(vma, address);
2508 struct vm_area_struct *
2509 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2511 struct vm_area_struct *vma, *prev;
2514 vma = find_vma_prev(mm, addr, &prev);
2515 if (vma && (vma->vm_start <= addr))
2517 /* don't alter vm_end if the coredump is running */
2518 if (!prev || !mmget_still_valid(mm) || expand_stack(prev, addr))
2520 if (prev->vm_flags & VM_LOCKED)
2521 populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2525 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2527 return expand_downwards(vma, address);
2530 struct vm_area_struct *
2531 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2533 struct vm_area_struct *vma;
2534 unsigned long start;
2537 vma = find_vma(mm, addr);
2540 if (vma->vm_start <= addr)
2542 if (!(vma->vm_flags & VM_GROWSDOWN))
2544 /* don't alter vm_start if the coredump is running */
2545 if (!mmget_still_valid(mm))
2547 start = vma->vm_start;
2548 if (expand_stack(vma, addr))
2550 if (vma->vm_flags & VM_LOCKED)
2551 populate_vma_page_range(vma, addr, start, NULL);
2556 EXPORT_SYMBOL_GPL(find_extend_vma);
2559 * Ok - we have the memory areas we should free on the vma list,
2560 * so release them, and do the vma updates.
2562 * Called with the mm semaphore held.
2564 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2566 unsigned long nr_accounted = 0;
2568 /* Update high watermark before we lower total_vm */
2569 update_hiwater_vm(mm);
2571 long nrpages = vma_pages(vma);
2573 if (vma->vm_flags & VM_ACCOUNT)
2574 nr_accounted += nrpages;
2575 vm_stat_account(mm, vma->vm_flags, -nrpages);
2576 vma = remove_vma(vma);
2578 vm_unacct_memory(nr_accounted);
2583 * Get rid of page table information in the indicated region.
2585 * Called with the mm semaphore held.
2587 static void unmap_region(struct mm_struct *mm,
2588 struct vm_area_struct *vma, struct vm_area_struct *prev,
2589 unsigned long start, unsigned long end)
2591 struct vm_area_struct *next = prev ? prev->vm_next : mm->mmap;
2592 struct mmu_gather tlb;
2595 tlb_gather_mmu(&tlb, mm, start, end);
2596 update_hiwater_rss(mm);
2597 unmap_vmas(&tlb, vma, start, end);
2598 free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2599 next ? next->vm_start : USER_PGTABLES_CEILING);
2600 tlb_finish_mmu(&tlb, start, end);
2604 * Create a list of vma's touched by the unmap, removing them from the mm's
2605 * vma list as we go..
2608 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2609 struct vm_area_struct *prev, unsigned long end)
2611 struct vm_area_struct **insertion_point;
2612 struct vm_area_struct *tail_vma = NULL;
2614 insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2615 vma->vm_prev = NULL;
2617 vma_rb_erase(vma, &mm->mm_rb);
2621 } while (vma && vma->vm_start < end);
2622 *insertion_point = vma;
2624 vma->vm_prev = prev;
2625 vma_gap_update(vma);
2627 mm->highest_vm_end = prev ? vm_end_gap(prev) : 0;
2628 tail_vma->vm_next = NULL;
2630 /* Kill the cache */
2631 vmacache_invalidate(mm);
2635 * __split_vma() bypasses sysctl_max_map_count checking. We use this where it
2636 * has already been checked or doesn't make sense to fail.
2638 int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2639 unsigned long addr, int new_below)
2641 struct vm_area_struct *new;
2644 if (vma->vm_ops && vma->vm_ops->split) {
2645 err = vma->vm_ops->split(vma, addr);
2650 new = vm_area_dup(vma);
2657 new->vm_start = addr;
2658 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2661 err = vma_dup_policy(vma, new);
2665 err = anon_vma_clone(new, vma);
2670 get_file(new->vm_file);
2672 if (new->vm_ops && new->vm_ops->open)
2673 new->vm_ops->open(new);
2676 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2677 ((addr - new->vm_start) >> PAGE_SHIFT), new);
2679 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2685 /* Clean everything up if vma_adjust failed. */
2686 if (new->vm_ops && new->vm_ops->close)
2687 new->vm_ops->close(new);
2690 unlink_anon_vmas(new);
2692 mpol_put(vma_policy(new));
2699 * Split a vma into two pieces at address 'addr', a new vma is allocated
2700 * either for the first part or the tail.
2702 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2703 unsigned long addr, int new_below)
2705 if (mm->map_count >= sysctl_max_map_count)
2708 return __split_vma(mm, vma, addr, new_below);
2711 /* Munmap is split into 2 main parts -- this part which finds
2712 * what needs doing, and the areas themselves, which do the
2713 * work. This now handles partial unmappings.
2714 * Jeremy Fitzhardinge <jeremy@goop.org>
2716 int __do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2717 struct list_head *uf, bool downgrade)
2720 struct vm_area_struct *vma, *prev, *last;
2722 if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2725 len = PAGE_ALIGN(len);
2731 * arch_unmap() might do unmaps itself. It must be called
2732 * and finish any rbtree manipulation before this code
2733 * runs and also starts to manipulate the rbtree.
2735 arch_unmap(mm, start, end);
2737 /* Find the first overlapping VMA */
2738 vma = find_vma(mm, start);
2741 prev = vma->vm_prev;
2742 /* we have start < vma->vm_end */
2744 /* if it doesn't overlap, we have nothing.. */
2745 if (vma->vm_start >= end)
2749 * If we need to split any vma, do it now to save pain later.
2751 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2752 * unmapped vm_area_struct will remain in use: so lower split_vma
2753 * places tmp vma above, and higher split_vma places tmp vma below.
2755 if (start > vma->vm_start) {
2759 * Make sure that map_count on return from munmap() will
2760 * not exceed its limit; but let map_count go just above
2761 * its limit temporarily, to help free resources as expected.
2763 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2766 error = __split_vma(mm, vma, start, 0);
2772 /* Does it split the last one? */
2773 last = find_vma(mm, end);
2774 if (last && end > last->vm_start) {
2775 int error = __split_vma(mm, last, end, 1);
2779 vma = prev ? prev->vm_next : mm->mmap;
2783 * If userfaultfd_unmap_prep returns an error the vmas
2784 * will remain splitted, but userland will get a
2785 * highly unexpected error anyway. This is no
2786 * different than the case where the first of the two
2787 * __split_vma fails, but we don't undo the first
2788 * split, despite we could. This is unlikely enough
2789 * failure that it's not worth optimizing it for.
2791 int error = userfaultfd_unmap_prep(vma, start, end, uf);
2797 * unlock any mlock()ed ranges before detaching vmas
2799 if (mm->locked_vm) {
2800 struct vm_area_struct *tmp = vma;
2801 while (tmp && tmp->vm_start < end) {
2802 if (tmp->vm_flags & VM_LOCKED) {
2803 mm->locked_vm -= vma_pages(tmp);
2804 munlock_vma_pages_all(tmp);
2811 /* Detach vmas from rbtree */
2812 detach_vmas_to_be_unmapped(mm, vma, prev, end);
2815 downgrade_write(&mm->mmap_sem);
2817 unmap_region(mm, vma, prev, start, end);
2819 /* Fix up all other VM information */
2820 remove_vma_list(mm, vma);
2822 return downgrade ? 1 : 0;
2825 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2826 struct list_head *uf)
2828 return __do_munmap(mm, start, len, uf, false);
2831 static int __vm_munmap(unsigned long start, size_t len, bool downgrade)
2834 struct mm_struct *mm = current->mm;
2837 if (down_write_killable(&mm->mmap_sem))
2840 ret = __do_munmap(mm, start, len, &uf, downgrade);
2842 * Returning 1 indicates mmap_sem is downgraded.
2843 * But 1 is not legal return value of vm_munmap() and munmap(), reset
2844 * it to 0 before return.
2847 up_read(&mm->mmap_sem);
2850 up_write(&mm->mmap_sem);
2852 userfaultfd_unmap_complete(mm, &uf);
2856 int vm_munmap(unsigned long start, size_t len)
2858 return __vm_munmap(start, len, false);
2860 EXPORT_SYMBOL(vm_munmap);
2862 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2864 addr = untagged_addr(addr);
2865 profile_munmap(addr);
2866 return __vm_munmap(addr, len, true);
2871 * Emulation of deprecated remap_file_pages() syscall.
2873 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
2874 unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
2877 struct mm_struct *mm = current->mm;
2878 struct vm_area_struct *vma;
2879 unsigned long populate = 0;
2880 unsigned long ret = -EINVAL;
2883 pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/vm/remap_file_pages.rst.\n",
2884 current->comm, current->pid);
2888 start = start & PAGE_MASK;
2889 size = size & PAGE_MASK;
2891 if (start + size <= start)
2894 /* Does pgoff wrap? */
2895 if (pgoff + (size >> PAGE_SHIFT) < pgoff)
2898 if (down_write_killable(&mm->mmap_sem))
2901 vma = find_vma(mm, start);
2903 if (!vma || !(vma->vm_flags & VM_SHARED))
2906 if (start < vma->vm_start)
2909 if (start + size > vma->vm_end) {
2910 struct vm_area_struct *next;
2912 for (next = vma->vm_next; next; next = next->vm_next) {
2913 /* hole between vmas ? */
2914 if (next->vm_start != next->vm_prev->vm_end)
2917 if (next->vm_file != vma->vm_file)
2920 if (next->vm_flags != vma->vm_flags)
2923 if (start + size <= next->vm_end)
2931 prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
2932 prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
2933 prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
2935 flags &= MAP_NONBLOCK;
2936 flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
2937 if (vma->vm_flags & VM_LOCKED) {
2938 struct vm_area_struct *tmp;
2939 flags |= MAP_LOCKED;
2941 /* drop PG_Mlocked flag for over-mapped range */
2942 for (tmp = vma; tmp->vm_start >= start + size;
2943 tmp = tmp->vm_next) {
2945 * Split pmd and munlock page on the border
2948 vma_adjust_trans_huge(tmp, start, start + size, 0);
2950 munlock_vma_pages_range(tmp,
2951 max(tmp->vm_start, start),
2952 min(tmp->vm_end, start + size));
2956 file = get_file(vma->vm_file);
2957 ret = do_mmap_pgoff(vma->vm_file, start, size,
2958 prot, flags, pgoff, &populate, NULL);
2961 up_write(&mm->mmap_sem);
2963 mm_populate(ret, populate);
2964 if (!IS_ERR_VALUE(ret))
2970 * this is really a simplified "do_mmap". it only handles
2971 * anonymous maps. eventually we may be able to do some
2972 * brk-specific accounting here.
2974 static int do_brk_flags(unsigned long addr, unsigned long len, unsigned long flags, struct list_head *uf)
2976 struct mm_struct *mm = current->mm;
2977 struct vm_area_struct *vma, *prev;
2978 struct rb_node **rb_link, *rb_parent;
2979 pgoff_t pgoff = addr >> PAGE_SHIFT;
2981 unsigned long mapped_addr;
2983 /* Until we need other flags, refuse anything except VM_EXEC. */
2984 if ((flags & (~VM_EXEC)) != 0)
2986 flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2988 mapped_addr = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2989 if (IS_ERR_VALUE(mapped_addr))
2992 error = mlock_future_check(mm, mm->def_flags, len);
2997 * Clear old maps. this also does some error checking for us
2999 while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
3001 if (do_munmap(mm, addr, len, uf))
3005 /* Check against address space limits *after* clearing old maps... */
3006 if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
3009 if (mm->map_count > sysctl_max_map_count)
3012 if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
3015 /* Can we just expand an old private anonymous mapping? */
3016 vma = vma_merge(mm, prev, addr, addr + len, flags,
3017 NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX);
3022 * create a vma struct for an anonymous mapping
3024 vma = vm_area_alloc(mm);
3026 vm_unacct_memory(len >> PAGE_SHIFT);
3030 vma_set_anonymous(vma);
3031 vma->vm_start = addr;
3032 vma->vm_end = addr + len;
3033 vma->vm_pgoff = pgoff;
3034 vma->vm_flags = flags;
3035 vma->vm_page_prot = vm_get_page_prot(flags);
3036 vma_link(mm, vma, prev, rb_link, rb_parent);
3038 perf_event_mmap(vma);
3039 mm->total_vm += len >> PAGE_SHIFT;
3040 mm->data_vm += len >> PAGE_SHIFT;
3041 if (flags & VM_LOCKED)
3042 mm->locked_vm += (len >> PAGE_SHIFT);
3043 vma->vm_flags |= VM_SOFTDIRTY;
3047 int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags)
3049 struct mm_struct *mm = current->mm;
3055 len = PAGE_ALIGN(request);
3061 if (down_write_killable(&mm->mmap_sem))
3064 ret = do_brk_flags(addr, len, flags, &uf);
3065 populate = ((mm->def_flags & VM_LOCKED) != 0);
3066 up_write(&mm->mmap_sem);
3067 userfaultfd_unmap_complete(mm, &uf);
3068 if (populate && !ret)
3069 mm_populate(addr, len);
3072 EXPORT_SYMBOL(vm_brk_flags);
3074 int vm_brk(unsigned long addr, unsigned long len)
3076 return vm_brk_flags(addr, len, 0);
3078 EXPORT_SYMBOL(vm_brk);
3080 /* Release all mmaps. */
3081 void exit_mmap(struct mm_struct *mm)
3083 struct mmu_gather tlb;
3084 struct vm_area_struct *vma;
3085 unsigned long nr_accounted = 0;
3087 /* mm's last user has gone, and its about to be pulled down */
3088 mmu_notifier_release(mm);
3090 if (unlikely(mm_is_oom_victim(mm))) {
3092 * Manually reap the mm to free as much memory as possible.
3093 * Then, as the oom reaper does, set MMF_OOM_SKIP to disregard
3094 * this mm from further consideration. Taking mm->mmap_sem for
3095 * write after setting MMF_OOM_SKIP will guarantee that the oom
3096 * reaper will not run on this mm again after mmap_sem is
3099 * Nothing can be holding mm->mmap_sem here and the above call
3100 * to mmu_notifier_release(mm) ensures mmu notifier callbacks in
3101 * __oom_reap_task_mm() will not block.
3103 * This needs to be done before calling munlock_vma_pages_all(),
3104 * which clears VM_LOCKED, otherwise the oom reaper cannot
3107 (void)__oom_reap_task_mm(mm);
3109 set_bit(MMF_OOM_SKIP, &mm->flags);
3110 down_write(&mm->mmap_sem);
3111 up_write(&mm->mmap_sem);
3114 if (mm->locked_vm) {
3117 if (vma->vm_flags & VM_LOCKED)
3118 munlock_vma_pages_all(vma);
3126 if (!vma) /* Can happen if dup_mmap() received an OOM */
3131 tlb_gather_mmu(&tlb, mm, 0, -1);
3132 /* update_hiwater_rss(mm) here? but nobody should be looking */
3133 /* Use -1 here to ensure all VMAs in the mm are unmapped */
3134 unmap_vmas(&tlb, vma, 0, -1);
3135 free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
3136 tlb_finish_mmu(&tlb, 0, -1);
3139 * Walk the list again, actually closing and freeing it,
3140 * with preemption enabled, without holding any MM locks.
3143 if (vma->vm_flags & VM_ACCOUNT)
3144 nr_accounted += vma_pages(vma);
3145 vma = remove_vma(vma);
3147 vm_unacct_memory(nr_accounted);
3150 /* Insert vm structure into process list sorted by address
3151 * and into the inode's i_mmap tree. If vm_file is non-NULL
3152 * then i_mmap_rwsem is taken here.
3154 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
3156 struct vm_area_struct *prev;
3157 struct rb_node **rb_link, *rb_parent;
3159 if (find_vma_links(mm, vma->vm_start, vma->vm_end,
3160 &prev, &rb_link, &rb_parent))
3162 if ((vma->vm_flags & VM_ACCOUNT) &&
3163 security_vm_enough_memory_mm(mm, vma_pages(vma)))
3167 * The vm_pgoff of a purely anonymous vma should be irrelevant
3168 * until its first write fault, when page's anon_vma and index
3169 * are set. But now set the vm_pgoff it will almost certainly
3170 * end up with (unless mremap moves it elsewhere before that
3171 * first wfault), so /proc/pid/maps tells a consistent story.
3173 * By setting it to reflect the virtual start address of the
3174 * vma, merges and splits can happen in a seamless way, just
3175 * using the existing file pgoff checks and manipulations.
3176 * Similarly in do_mmap_pgoff and in do_brk.
3178 if (vma_is_anonymous(vma)) {
3179 BUG_ON(vma->anon_vma);
3180 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
3183 vma_link(mm, vma, prev, rb_link, rb_parent);
3188 * Copy the vma structure to a new location in the same mm,
3189 * prior to moving page table entries, to effect an mremap move.
3191 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
3192 unsigned long addr, unsigned long len, pgoff_t pgoff,
3193 bool *need_rmap_locks)
3195 struct vm_area_struct *vma = *vmap;
3196 unsigned long vma_start = vma->vm_start;
3197 struct mm_struct *mm = vma->vm_mm;
3198 struct vm_area_struct *new_vma, *prev;
3199 struct rb_node **rb_link, *rb_parent;
3200 bool faulted_in_anon_vma = true;
3203 * If anonymous vma has not yet been faulted, update new pgoff
3204 * to match new location, to increase its chance of merging.
3206 if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
3207 pgoff = addr >> PAGE_SHIFT;
3208 faulted_in_anon_vma = false;
3211 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
3212 return NULL; /* should never get here */
3213 new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
3214 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
3215 vma->vm_userfaultfd_ctx);
3218 * Source vma may have been merged into new_vma
3220 if (unlikely(vma_start >= new_vma->vm_start &&
3221 vma_start < new_vma->vm_end)) {
3223 * The only way we can get a vma_merge with
3224 * self during an mremap is if the vma hasn't
3225 * been faulted in yet and we were allowed to
3226 * reset the dst vma->vm_pgoff to the
3227 * destination address of the mremap to allow
3228 * the merge to happen. mremap must change the
3229 * vm_pgoff linearity between src and dst vmas
3230 * (in turn preventing a vma_merge) to be
3231 * safe. It is only safe to keep the vm_pgoff
3232 * linear if there are no pages mapped yet.
3234 VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
3235 *vmap = vma = new_vma;
3237 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
3239 new_vma = vm_area_dup(vma);
3242 new_vma->vm_start = addr;
3243 new_vma->vm_end = addr + len;
3244 new_vma->vm_pgoff = pgoff;
3245 if (vma_dup_policy(vma, new_vma))
3247 if (anon_vma_clone(new_vma, vma))
3248 goto out_free_mempol;
3249 if (new_vma->vm_file)
3250 get_file(new_vma->vm_file);
3251 if (new_vma->vm_ops && new_vma->vm_ops->open)
3252 new_vma->vm_ops->open(new_vma);
3253 vma_link(mm, new_vma, prev, rb_link, rb_parent);
3254 *need_rmap_locks = false;
3259 mpol_put(vma_policy(new_vma));
3261 vm_area_free(new_vma);
3267 * Return true if the calling process may expand its vm space by the passed
3270 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
3272 if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
3275 if (is_data_mapping(flags) &&
3276 mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
3277 /* Workaround for Valgrind */
3278 if (rlimit(RLIMIT_DATA) == 0 &&
3279 mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
3282 pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n",
3283 current->comm, current->pid,
3284 (mm->data_vm + npages) << PAGE_SHIFT,
3285 rlimit(RLIMIT_DATA),
3286 ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data");
3288 if (!ignore_rlimit_data)
3295 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
3297 mm->total_vm += npages;
3299 if (is_exec_mapping(flags))
3300 mm->exec_vm += npages;
3301 else if (is_stack_mapping(flags))
3302 mm->stack_vm += npages;
3303 else if (is_data_mapping(flags))
3304 mm->data_vm += npages;
3307 static vm_fault_t special_mapping_fault(struct vm_fault *vmf);
3310 * Having a close hook prevents vma merging regardless of flags.
3312 static void special_mapping_close(struct vm_area_struct *vma)
3316 static const char *special_mapping_name(struct vm_area_struct *vma)
3318 return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3321 static int special_mapping_mremap(struct vm_area_struct *new_vma)
3323 struct vm_special_mapping *sm = new_vma->vm_private_data;
3325 if (WARN_ON_ONCE(current->mm != new_vma->vm_mm))
3329 return sm->mremap(sm, new_vma);
3334 static const struct vm_operations_struct special_mapping_vmops = {
3335 .close = special_mapping_close,
3336 .fault = special_mapping_fault,
3337 .mremap = special_mapping_mremap,
3338 .name = special_mapping_name,
3341 static const struct vm_operations_struct legacy_special_mapping_vmops = {
3342 .close = special_mapping_close,
3343 .fault = special_mapping_fault,
3346 static vm_fault_t special_mapping_fault(struct vm_fault *vmf)
3348 struct vm_area_struct *vma = vmf->vma;
3350 struct page **pages;
3352 if (vma->vm_ops == &legacy_special_mapping_vmops) {
3353 pages = vma->vm_private_data;
3355 struct vm_special_mapping *sm = vma->vm_private_data;
3358 return sm->fault(sm, vmf->vma, vmf);
3363 for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3367 struct page *page = *pages;
3373 return VM_FAULT_SIGBUS;
3376 static struct vm_area_struct *__install_special_mapping(
3377 struct mm_struct *mm,
3378 unsigned long addr, unsigned long len,
3379 unsigned long vm_flags, void *priv,
3380 const struct vm_operations_struct *ops)
3383 struct vm_area_struct *vma;
3385 vma = vm_area_alloc(mm);
3386 if (unlikely(vma == NULL))
3387 return ERR_PTR(-ENOMEM);
3389 vma->vm_start = addr;
3390 vma->vm_end = addr + len;
3392 vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
3393 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3396 vma->vm_private_data = priv;
3398 ret = insert_vm_struct(mm, vma);
3402 vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3404 perf_event_mmap(vma);
3410 return ERR_PTR(ret);
3413 bool vma_is_special_mapping(const struct vm_area_struct *vma,
3414 const struct vm_special_mapping *sm)
3416 return vma->vm_private_data == sm &&
3417 (vma->vm_ops == &special_mapping_vmops ||
3418 vma->vm_ops == &legacy_special_mapping_vmops);
3422 * Called with mm->mmap_sem held for writing.
3423 * Insert a new vma covering the given region, with the given flags.
3424 * Its pages are supplied by the given array of struct page *.
3425 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3426 * The region past the last page supplied will always produce SIGBUS.
3427 * The array pointer and the pages it points to are assumed to stay alive
3428 * for as long as this mapping might exist.
3430 struct vm_area_struct *_install_special_mapping(
3431 struct mm_struct *mm,
3432 unsigned long addr, unsigned long len,
3433 unsigned long vm_flags, const struct vm_special_mapping *spec)
3435 return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3436 &special_mapping_vmops);
3439 int install_special_mapping(struct mm_struct *mm,
3440 unsigned long addr, unsigned long len,
3441 unsigned long vm_flags, struct page **pages)
3443 struct vm_area_struct *vma = __install_special_mapping(
3444 mm, addr, len, vm_flags, (void *)pages,
3445 &legacy_special_mapping_vmops);
3447 return PTR_ERR_OR_ZERO(vma);
3450 static DEFINE_MUTEX(mm_all_locks_mutex);
3452 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3454 if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3456 * The LSB of head.next can't change from under us
3457 * because we hold the mm_all_locks_mutex.
3459 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem);
3461 * We can safely modify head.next after taking the
3462 * anon_vma->root->rwsem. If some other vma in this mm shares
3463 * the same anon_vma we won't take it again.
3465 * No need of atomic instructions here, head.next
3466 * can't change from under us thanks to the
3467 * anon_vma->root->rwsem.
3469 if (__test_and_set_bit(0, (unsigned long *)
3470 &anon_vma->root->rb_root.rb_root.rb_node))
3475 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3477 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3479 * AS_MM_ALL_LOCKS can't change from under us because
3480 * we hold the mm_all_locks_mutex.
3482 * Operations on ->flags have to be atomic because
3483 * even if AS_MM_ALL_LOCKS is stable thanks to the
3484 * mm_all_locks_mutex, there may be other cpus
3485 * changing other bitflags in parallel to us.
3487 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3489 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_sem);
3494 * This operation locks against the VM for all pte/vma/mm related
3495 * operations that could ever happen on a certain mm. This includes
3496 * vmtruncate, try_to_unmap, and all page faults.
3498 * The caller must take the mmap_sem in write mode before calling
3499 * mm_take_all_locks(). The caller isn't allowed to release the
3500 * mmap_sem until mm_drop_all_locks() returns.
3502 * mmap_sem in write mode is required in order to block all operations
3503 * that could modify pagetables and free pages without need of
3504 * altering the vma layout. It's also needed in write mode to avoid new
3505 * anon_vmas to be associated with existing vmas.
3507 * A single task can't take more than one mm_take_all_locks() in a row
3508 * or it would deadlock.
3510 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3511 * mapping->flags avoid to take the same lock twice, if more than one
3512 * vma in this mm is backed by the same anon_vma or address_space.
3514 * We take locks in following order, accordingly to comment at beginning
3516 * - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3518 * - all i_mmap_rwsem locks;
3519 * - all anon_vma->rwseml
3521 * We can take all locks within these types randomly because the VM code
3522 * doesn't nest them and we protected from parallel mm_take_all_locks() by
3523 * mm_all_locks_mutex.
3525 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3526 * that may have to take thousand of locks.
3528 * mm_take_all_locks() can fail if it's interrupted by signals.
3530 int mm_take_all_locks(struct mm_struct *mm)
3532 struct vm_area_struct *vma;
3533 struct anon_vma_chain *avc;
3535 BUG_ON(down_read_trylock(&mm->mmap_sem));
3537 mutex_lock(&mm_all_locks_mutex);
3539 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3540 if (signal_pending(current))
3542 if (vma->vm_file && vma->vm_file->f_mapping &&
3543 is_vm_hugetlb_page(vma))
3544 vm_lock_mapping(mm, vma->vm_file->f_mapping);
3547 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3548 if (signal_pending(current))
3550 if (vma->vm_file && vma->vm_file->f_mapping &&
3551 !is_vm_hugetlb_page(vma))
3552 vm_lock_mapping(mm, vma->vm_file->f_mapping);
3555 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3556 if (signal_pending(current))
3559 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3560 vm_lock_anon_vma(mm, avc->anon_vma);
3566 mm_drop_all_locks(mm);
3570 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3572 if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3574 * The LSB of head.next can't change to 0 from under
3575 * us because we hold the mm_all_locks_mutex.
3577 * We must however clear the bitflag before unlocking
3578 * the vma so the users using the anon_vma->rb_root will
3579 * never see our bitflag.
3581 * No need of atomic instructions here, head.next
3582 * can't change from under us until we release the
3583 * anon_vma->root->rwsem.
3585 if (!__test_and_clear_bit(0, (unsigned long *)
3586 &anon_vma->root->rb_root.rb_root.rb_node))
3588 anon_vma_unlock_write(anon_vma);
3592 static void vm_unlock_mapping(struct address_space *mapping)
3594 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3596 * AS_MM_ALL_LOCKS can't change to 0 from under us
3597 * because we hold the mm_all_locks_mutex.
3599 i_mmap_unlock_write(mapping);
3600 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3607 * The mmap_sem cannot be released by the caller until
3608 * mm_drop_all_locks() returns.
3610 void mm_drop_all_locks(struct mm_struct *mm)
3612 struct vm_area_struct *vma;
3613 struct anon_vma_chain *avc;
3615 BUG_ON(down_read_trylock(&mm->mmap_sem));
3616 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3618 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3620 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3621 vm_unlock_anon_vma(avc->anon_vma);
3622 if (vma->vm_file && vma->vm_file->f_mapping)
3623 vm_unlock_mapping(vma->vm_file->f_mapping);
3626 mutex_unlock(&mm_all_locks_mutex);
3630 * initialise the percpu counter for VM
3632 void __init mmap_init(void)
3636 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3641 * Initialise sysctl_user_reserve_kbytes.
3643 * This is intended to prevent a user from starting a single memory hogging
3644 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3647 * The default value is min(3% of free memory, 128MB)
3648 * 128MB is enough to recover with sshd/login, bash, and top/kill.
3650 static int init_user_reserve(void)
3652 unsigned long free_kbytes;
3654 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3656 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3659 subsys_initcall(init_user_reserve);
3662 * Initialise sysctl_admin_reserve_kbytes.
3664 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3665 * to log in and kill a memory hogging process.
3667 * Systems with more than 256MB will reserve 8MB, enough to recover
3668 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3669 * only reserve 3% of free pages by default.
3671 static int init_admin_reserve(void)
3673 unsigned long free_kbytes;
3675 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3677 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3680 subsys_initcall(init_admin_reserve);
3683 * Reinititalise user and admin reserves if memory is added or removed.
3685 * The default user reserve max is 128MB, and the default max for the
3686 * admin reserve is 8MB. These are usually, but not always, enough to
3687 * enable recovery from a memory hogging process using login/sshd, a shell,
3688 * and tools like top. It may make sense to increase or even disable the
3689 * reserve depending on the existence of swap or variations in the recovery
3690 * tools. So, the admin may have changed them.
3692 * If memory is added and the reserves have been eliminated or increased above
3693 * the default max, then we'll trust the admin.
3695 * If memory is removed and there isn't enough free memory, then we
3696 * need to reset the reserves.
3698 * Otherwise keep the reserve set by the admin.
3700 static int reserve_mem_notifier(struct notifier_block *nb,
3701 unsigned long action, void *data)
3703 unsigned long tmp, free_kbytes;
3707 /* Default max is 128MB. Leave alone if modified by operator. */
3708 tmp = sysctl_user_reserve_kbytes;
3709 if (0 < tmp && tmp < (1UL << 17))
3710 init_user_reserve();
3712 /* Default max is 8MB. Leave alone if modified by operator. */
3713 tmp = sysctl_admin_reserve_kbytes;
3714 if (0 < tmp && tmp < (1UL << 13))
3715 init_admin_reserve();
3719 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3721 if (sysctl_user_reserve_kbytes > free_kbytes) {
3722 init_user_reserve();
3723 pr_info("vm.user_reserve_kbytes reset to %lu\n",
3724 sysctl_user_reserve_kbytes);
3727 if (sysctl_admin_reserve_kbytes > free_kbytes) {
3728 init_admin_reserve();
3729 pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3730 sysctl_admin_reserve_kbytes);
3739 static struct notifier_block reserve_mem_nb = {
3740 .notifier_call = reserve_mem_notifier,
3743 static int __meminit init_reserve_notifier(void)
3745 if (register_hotmemory_notifier(&reserve_mem_nb))
3746 pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3750 subsys_initcall(init_reserve_notifier);