1 // SPDX-License-Identifier: GPL-2.0-only
7 * Address space accounting code <alan@lxorguk.ukuu.org.uk>
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12 #include <linux/kernel.h>
13 #include <linux/slab.h>
14 #include <linux/backing-dev.h>
16 #include <linux/mm_inline.h>
17 #include <linux/shm.h>
18 #include <linux/mman.h>
19 #include <linux/pagemap.h>
20 #include <linux/swap.h>
21 #include <linux/syscalls.h>
22 #include <linux/capability.h>
23 #include <linux/init.h>
24 #include <linux/file.h>
26 #include <linux/personality.h>
27 #include <linux/security.h>
28 #include <linux/hugetlb.h>
29 #include <linux/shmem_fs.h>
30 #include <linux/profile.h>
31 #include <linux/export.h>
32 #include <linux/mount.h>
33 #include <linux/mempolicy.h>
34 #include <linux/rmap.h>
35 #include <linux/mmu_notifier.h>
36 #include <linux/mmdebug.h>
37 #include <linux/perf_event.h>
38 #include <linux/audit.h>
39 #include <linux/khugepaged.h>
40 #include <linux/uprobes.h>
41 #include <linux/notifier.h>
42 #include <linux/memory.h>
43 #include <linux/printk.h>
44 #include <linux/userfaultfd_k.h>
45 #include <linux/moduleparam.h>
46 #include <linux/pkeys.h>
47 #include <linux/oom.h>
48 #include <linux/sched/mm.h>
50 #include <linux/uaccess.h>
51 #include <asm/cacheflush.h>
53 #include <asm/mmu_context.h>
55 #define CREATE_TRACE_POINTS
56 #include <trace/events/mmap.h>
60 #ifndef arch_mmap_check
61 #define arch_mmap_check(addr, len, flags) (0)
64 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
65 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
66 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX;
67 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
69 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
70 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
71 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
72 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
75 static bool ignore_rlimit_data;
76 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
78 static void unmap_region(struct mm_struct *mm, struct maple_tree *mt,
79 struct vm_area_struct *vma, struct vm_area_struct *prev,
80 struct vm_area_struct *next, unsigned long start,
83 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
85 return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
88 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
89 void vma_set_page_prot(struct vm_area_struct *vma)
91 unsigned long vm_flags = vma->vm_flags;
92 pgprot_t vm_page_prot;
94 vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
95 if (vma_wants_writenotify(vma, vm_page_prot)) {
96 vm_flags &= ~VM_SHARED;
97 vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags);
99 /* remove_protection_ptes reads vma->vm_page_prot without mmap_lock */
100 WRITE_ONCE(vma->vm_page_prot, vm_page_prot);
104 * Requires inode->i_mapping->i_mmap_rwsem
106 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
107 struct file *file, struct address_space *mapping)
109 if (vma->vm_flags & VM_SHARED)
110 mapping_unmap_writable(mapping);
112 flush_dcache_mmap_lock(mapping);
113 vma_interval_tree_remove(vma, &mapping->i_mmap);
114 flush_dcache_mmap_unlock(mapping);
118 * Unlink a file-based vm structure from its interval tree, to hide
119 * vma from rmap and vmtruncate before freeing its page tables.
121 void unlink_file_vma(struct vm_area_struct *vma)
123 struct file *file = vma->vm_file;
126 struct address_space *mapping = file->f_mapping;
127 i_mmap_lock_write(mapping);
128 __remove_shared_vm_struct(vma, file, mapping);
129 i_mmap_unlock_write(mapping);
134 * Close a vm structure and free it.
136 static void remove_vma(struct vm_area_struct *vma)
139 if (vma->vm_ops && vma->vm_ops->close)
140 vma->vm_ops->close(vma);
143 mpol_put(vma_policy(vma));
148 * check_brk_limits() - Use platform specific check of range & verify mlock
150 * @addr: The address to check
151 * @len: The size of increase.
153 * Return: 0 on success.
155 static int check_brk_limits(unsigned long addr, unsigned long len)
157 unsigned long mapped_addr;
159 mapped_addr = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
160 if (IS_ERR_VALUE(mapped_addr))
163 return mlock_future_check(current->mm, current->mm->def_flags, len);
165 static int do_brk_munmap(struct ma_state *mas, struct vm_area_struct *vma,
166 unsigned long newbrk, unsigned long oldbrk,
167 struct list_head *uf);
168 static int do_brk_flags(struct ma_state *mas, struct vm_area_struct *brkvma,
169 unsigned long addr, unsigned long request, unsigned long flags);
170 SYSCALL_DEFINE1(brk, unsigned long, brk)
172 unsigned long newbrk, oldbrk, origbrk;
173 struct mm_struct *mm = current->mm;
174 struct vm_area_struct *brkvma, *next = NULL;
175 unsigned long min_brk;
177 bool downgraded = false;
179 MA_STATE(mas, &mm->mm_mt, 0, 0);
181 if (mmap_write_lock_killable(mm))
186 #ifdef CONFIG_COMPAT_BRK
188 * CONFIG_COMPAT_BRK can still be overridden by setting
189 * randomize_va_space to 2, which will still cause mm->start_brk
190 * to be arbitrarily shifted
192 if (current->brk_randomized)
193 min_brk = mm->start_brk;
195 min_brk = mm->end_data;
197 min_brk = mm->start_brk;
203 * Check against rlimit here. If this check is done later after the test
204 * of oldbrk with newbrk then it can escape the test and let the data
205 * segment grow beyond its set limit the in case where the limit is
206 * not page aligned -Ram Gupta
208 if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
209 mm->end_data, mm->start_data))
212 newbrk = PAGE_ALIGN(brk);
213 oldbrk = PAGE_ALIGN(mm->brk);
214 if (oldbrk == newbrk) {
220 * Always allow shrinking brk.
221 * do_brk_munmap() may downgrade mmap_lock to read.
223 if (brk <= mm->brk) {
226 /* Search one past newbrk */
227 mas_set(&mas, newbrk);
228 brkvma = mas_find(&mas, oldbrk);
229 BUG_ON(brkvma == NULL);
230 if (brkvma->vm_start >= oldbrk)
231 goto out; /* mapping intersects with an existing non-brk vma. */
233 * mm->brk must be protected by write mmap_lock.
234 * do_brk_munmap() may downgrade the lock, so update it
235 * before calling do_brk_munmap().
238 ret = do_brk_munmap(&mas, brkvma, newbrk, oldbrk, &uf);
249 if (check_brk_limits(oldbrk, newbrk - oldbrk))
253 * Only check if the next VMA is within the stack_guard_gap of the
256 mas_set(&mas, oldbrk);
257 next = mas_find(&mas, newbrk - 1 + PAGE_SIZE + stack_guard_gap);
258 if (next && newbrk + PAGE_SIZE > vm_start_gap(next))
261 brkvma = mas_prev(&mas, mm->start_brk);
262 /* Ok, looks good - let it rip. */
263 if (do_brk_flags(&mas, brkvma, oldbrk, newbrk - oldbrk, 0) < 0)
269 populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
271 mmap_read_unlock(mm);
273 mmap_write_unlock(mm);
274 userfaultfd_unmap_complete(mm, &uf);
276 mm_populate(oldbrk, newbrk - oldbrk);
280 mmap_write_unlock(mm);
284 #if defined(CONFIG_DEBUG_VM_MAPLE_TREE)
285 extern void mt_validate(struct maple_tree *mt);
286 extern void mt_dump(const struct maple_tree *mt);
288 /* Validate the maple tree */
289 static void validate_mm_mt(struct mm_struct *mm)
291 struct maple_tree *mt = &mm->mm_mt;
292 struct vm_area_struct *vma_mt;
294 MA_STATE(mas, mt, 0, 0);
296 mt_validate(&mm->mm_mt);
297 mas_for_each(&mas, vma_mt, ULONG_MAX) {
298 if ((vma_mt->vm_start != mas.index) ||
299 (vma_mt->vm_end - 1 != mas.last)) {
300 pr_emerg("issue in %s\n", current->comm);
303 pr_emerg("mt piv: %p %lu - %lu\n", vma_mt,
304 mas.index, mas.last);
305 pr_emerg("mt vma: %p %lu - %lu\n", vma_mt,
306 vma_mt->vm_start, vma_mt->vm_end);
309 if (vma_mt->vm_end != mas.last + 1) {
310 pr_err("vma: %p vma_mt %lu-%lu\tmt %lu-%lu\n",
311 mm, vma_mt->vm_start, vma_mt->vm_end,
312 mas.index, mas.last);
315 VM_BUG_ON_MM(vma_mt->vm_end != mas.last + 1, mm);
316 if (vma_mt->vm_start != mas.index) {
317 pr_err("vma: %p vma_mt %p %lu - %lu doesn't match\n",
318 mm, vma_mt, vma_mt->vm_start, vma_mt->vm_end);
321 VM_BUG_ON_MM(vma_mt->vm_start != mas.index, mm);
326 static void validate_mm(struct mm_struct *mm)
330 struct vm_area_struct *vma;
331 MA_STATE(mas, &mm->mm_mt, 0, 0);
335 mas_for_each(&mas, vma, ULONG_MAX) {
336 #ifdef CONFIG_DEBUG_VM_RB
337 struct anon_vma *anon_vma = vma->anon_vma;
338 struct anon_vma_chain *avc;
341 anon_vma_lock_read(anon_vma);
342 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
343 anon_vma_interval_tree_verify(avc);
344 anon_vma_unlock_read(anon_vma);
349 if (i != mm->map_count) {
350 pr_emerg("map_count %d mas_for_each %d\n", mm->map_count, i);
353 VM_BUG_ON_MM(bug, mm);
356 #else /* !CONFIG_DEBUG_VM_MAPLE_TREE */
357 #define validate_mm_mt(root) do { } while (0)
358 #define validate_mm(mm) do { } while (0)
359 #endif /* CONFIG_DEBUG_VM_MAPLE_TREE */
362 * vma has some anon_vma assigned, and is already inserted on that
363 * anon_vma's interval trees.
365 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
366 * vma must be removed from the anon_vma's interval trees using
367 * anon_vma_interval_tree_pre_update_vma().
369 * After the update, the vma will be reinserted using
370 * anon_vma_interval_tree_post_update_vma().
372 * The entire update must be protected by exclusive mmap_lock and by
373 * the root anon_vma's mutex.
376 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
378 struct anon_vma_chain *avc;
380 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
381 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
385 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
387 struct anon_vma_chain *avc;
389 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
390 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
393 static unsigned long count_vma_pages_range(struct mm_struct *mm,
394 unsigned long addr, unsigned long end)
396 VMA_ITERATOR(vmi, mm, addr);
397 struct vm_area_struct *vma;
398 unsigned long nr_pages = 0;
400 for_each_vma_range(vmi, vma, end) {
401 unsigned long vm_start = max(addr, vma->vm_start);
402 unsigned long vm_end = min(end, vma->vm_end);
404 nr_pages += PHYS_PFN(vm_end - vm_start);
410 static void __vma_link_file(struct vm_area_struct *vma,
411 struct address_space *mapping)
413 if (vma->vm_flags & VM_SHARED)
414 mapping_allow_writable(mapping);
416 flush_dcache_mmap_lock(mapping);
417 vma_interval_tree_insert(vma, &mapping->i_mmap);
418 flush_dcache_mmap_unlock(mapping);
422 * vma_mas_store() - Store a VMA in the maple tree.
423 * @vma: The vm_area_struct
424 * @mas: The maple state
426 * Efficient way to store a VMA in the maple tree when the @mas has already
427 * walked to the correct location.
429 * Note: the end address is inclusive in the maple tree.
431 void vma_mas_store(struct vm_area_struct *vma, struct ma_state *mas)
433 trace_vma_store(mas->tree, vma);
434 mas_set_range(mas, vma->vm_start, vma->vm_end - 1);
435 mas_store_prealloc(mas, vma);
439 * vma_mas_remove() - Remove a VMA from the maple tree.
440 * @vma: The vm_area_struct
441 * @mas: The maple state
443 * Efficient way to remove a VMA from the maple tree when the @mas has already
444 * been established and points to the correct location.
445 * Note: the end address is inclusive in the maple tree.
447 void vma_mas_remove(struct vm_area_struct *vma, struct ma_state *mas)
449 trace_vma_mas_szero(mas->tree, vma->vm_start, vma->vm_end - 1);
450 mas->index = vma->vm_start;
451 mas->last = vma->vm_end - 1;
452 mas_store_prealloc(mas, NULL);
456 * vma_mas_szero() - Set a given range to zero. Used when modifying a
457 * vm_area_struct start or end.
460 * @start: The start address to zero
461 * @end: The end address to zero.
463 static inline void vma_mas_szero(struct ma_state *mas, unsigned long start,
466 trace_vma_mas_szero(mas->tree, start, end - 1);
467 mas_set_range(mas, start, end - 1);
468 mas_store_prealloc(mas, NULL);
471 static int vma_link(struct mm_struct *mm, struct vm_area_struct *vma)
473 MA_STATE(mas, &mm->mm_mt, 0, 0);
474 struct address_space *mapping = NULL;
476 if (mas_preallocate(&mas, vma, GFP_KERNEL))
480 mapping = vma->vm_file->f_mapping;
481 i_mmap_lock_write(mapping);
484 vma_mas_store(vma, &mas);
487 __vma_link_file(vma, mapping);
488 i_mmap_unlock_write(mapping);
497 * vma_expand - Expand an existing VMA
499 * @mas: The maple state
500 * @vma: The vma to expand
501 * @start: The start of the vma
502 * @end: The exclusive end of the vma
503 * @pgoff: The page offset of vma
504 * @next: The current of next vma.
506 * Expand @vma to @start and @end. Can expand off the start and end. Will
507 * expand over @next if it's different from @vma and @end == @next->vm_end.
508 * Checking if the @vma can expand and merge with @next needs to be handled by
511 * Returns: 0 on success
513 inline int vma_expand(struct ma_state *mas, struct vm_area_struct *vma,
514 unsigned long start, unsigned long end, pgoff_t pgoff,
515 struct vm_area_struct *next)
517 struct mm_struct *mm = vma->vm_mm;
518 struct address_space *mapping = NULL;
519 struct rb_root_cached *root = NULL;
520 struct anon_vma *anon_vma = vma->anon_vma;
521 struct file *file = vma->vm_file;
522 bool remove_next = false;
524 if (next && (vma != next) && (end == next->vm_end)) {
526 if (next->anon_vma && !vma->anon_vma) {
529 anon_vma = next->anon_vma;
530 vma->anon_vma = anon_vma;
531 error = anon_vma_clone(vma, next);
537 /* Not merging but overwriting any part of next is not handled. */
538 VM_BUG_ON(next && !remove_next && next != vma && end > next->vm_start);
539 /* Only handles expanding */
540 VM_BUG_ON(vma->vm_start < start || vma->vm_end > end);
542 if (mas_preallocate(mas, vma, GFP_KERNEL))
545 vma_adjust_trans_huge(vma, start, end, 0);
548 mapping = file->f_mapping;
549 root = &mapping->i_mmap;
550 uprobe_munmap(vma, vma->vm_start, vma->vm_end);
551 i_mmap_lock_write(mapping);
555 anon_vma_lock_write(anon_vma);
556 anon_vma_interval_tree_pre_update_vma(vma);
560 flush_dcache_mmap_lock(mapping);
561 vma_interval_tree_remove(vma, root);
564 vma->vm_start = start;
566 vma->vm_pgoff = pgoff;
567 /* Note: mas must be pointing to the expanding VMA */
568 vma_mas_store(vma, mas);
571 vma_interval_tree_insert(vma, root);
572 flush_dcache_mmap_unlock(mapping);
575 /* Expanding over the next vma */
576 if (remove_next && file) {
577 __remove_shared_vm_struct(next, file, mapping);
581 anon_vma_interval_tree_post_update_vma(vma);
582 anon_vma_unlock_write(anon_vma);
586 i_mmap_unlock_write(mapping);
592 uprobe_munmap(next, next->vm_start, next->vm_end);
596 anon_vma_merge(vma, next);
598 mpol_put(vma_policy(next));
610 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
611 * is already present in an i_mmap tree without adjusting the tree.
612 * The following helper function should be used when such adjustments
613 * are necessary. The "insert" vma (if any) is to be inserted
614 * before we drop the necessary locks.
616 int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
617 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
618 struct vm_area_struct *expand)
620 struct mm_struct *mm = vma->vm_mm;
621 struct vm_area_struct *next_next, *next = find_vma(mm, vma->vm_end);
622 struct vm_area_struct *orig_vma = vma;
623 struct address_space *mapping = NULL;
624 struct rb_root_cached *root = NULL;
625 struct anon_vma *anon_vma = NULL;
626 struct file *file = vma->vm_file;
627 bool vma_changed = false;
628 long adjust_next = 0;
630 MA_STATE(mas, &mm->mm_mt, 0, 0);
631 struct vm_area_struct *exporter = NULL, *importer = NULL;
633 if (next && !insert) {
634 if (end >= next->vm_end) {
636 * vma expands, overlapping all the next, and
637 * perhaps the one after too (mprotect case 6).
638 * The only other cases that gets here are
639 * case 1, case 7 and case 8.
641 if (next == expand) {
643 * The only case where we don't expand "vma"
644 * and we expand "next" instead is case 8.
646 VM_WARN_ON(end != next->vm_end);
648 * remove_next == 3 means we're
649 * removing "vma" and that to do so we
650 * swapped "vma" and "next".
653 VM_WARN_ON(file != next->vm_file);
656 VM_WARN_ON(expand != vma);
658 * case 1, 6, 7, remove_next == 2 is case 6,
659 * remove_next == 1 is case 1 or 7.
661 remove_next = 1 + (end > next->vm_end);
662 if (remove_next == 2)
663 next_next = find_vma(mm, next->vm_end);
665 VM_WARN_ON(remove_next == 2 &&
666 end != next_next->vm_end);
673 * If next doesn't have anon_vma, import from vma after
674 * next, if the vma overlaps with it.
676 if (remove_next == 2 && !next->anon_vma)
677 exporter = next_next;
679 } else if (end > next->vm_start) {
681 * vma expands, overlapping part of the next:
682 * mprotect case 5 shifting the boundary up.
684 adjust_next = (end - next->vm_start);
687 VM_WARN_ON(expand != importer);
688 } else if (end < vma->vm_end) {
690 * vma shrinks, and !insert tells it's not
691 * split_vma inserting another: so it must be
692 * mprotect case 4 shifting the boundary down.
694 adjust_next = -(vma->vm_end - end);
697 VM_WARN_ON(expand != importer);
701 * Easily overlooked: when mprotect shifts the boundary,
702 * make sure the expanding vma has anon_vma set if the
703 * shrinking vma had, to cover any anon pages imported.
705 if (exporter && exporter->anon_vma && !importer->anon_vma) {
708 importer->anon_vma = exporter->anon_vma;
709 error = anon_vma_clone(importer, exporter);
715 if (mas_preallocate(&mas, vma, GFP_KERNEL))
718 vma_adjust_trans_huge(orig_vma, start, end, adjust_next);
720 mapping = file->f_mapping;
721 root = &mapping->i_mmap;
722 uprobe_munmap(vma, vma->vm_start, vma->vm_end);
725 uprobe_munmap(next, next->vm_start, next->vm_end);
727 i_mmap_lock_write(mapping);
728 if (insert && insert->vm_file) {
730 * Put into interval tree now, so instantiated pages
731 * are visible to arm/parisc __flush_dcache_page
732 * throughout; but we cannot insert into address
733 * space until vma start or end is updated.
735 __vma_link_file(insert, insert->vm_file->f_mapping);
739 anon_vma = vma->anon_vma;
740 if (!anon_vma && adjust_next)
741 anon_vma = next->anon_vma;
743 VM_WARN_ON(adjust_next && next->anon_vma &&
744 anon_vma != next->anon_vma);
745 anon_vma_lock_write(anon_vma);
746 anon_vma_interval_tree_pre_update_vma(vma);
748 anon_vma_interval_tree_pre_update_vma(next);
752 flush_dcache_mmap_lock(mapping);
753 vma_interval_tree_remove(vma, root);
755 vma_interval_tree_remove(next, root);
758 if (start != vma->vm_start) {
759 if ((vma->vm_start < start) &&
760 (!insert || (insert->vm_end != start))) {
761 vma_mas_szero(&mas, vma->vm_start, start);
762 VM_WARN_ON(insert && insert->vm_start > vma->vm_start);
766 vma->vm_start = start;
768 if (end != vma->vm_end) {
769 if (vma->vm_end > end) {
770 if (!insert || (insert->vm_start != end)) {
771 vma_mas_szero(&mas, end, vma->vm_end);
774 insert->vm_end < vma->vm_end);
783 vma_mas_store(vma, &mas);
785 vma->vm_pgoff = pgoff;
787 next->vm_start += adjust_next;
788 next->vm_pgoff += adjust_next >> PAGE_SHIFT;
789 vma_mas_store(next, &mas);
794 vma_interval_tree_insert(next, root);
795 vma_interval_tree_insert(vma, root);
796 flush_dcache_mmap_unlock(mapping);
799 if (remove_next && file) {
800 __remove_shared_vm_struct(next, file, mapping);
801 if (remove_next == 2)
802 __remove_shared_vm_struct(next_next, file, mapping);
805 * split_vma has split insert from vma, and needs
806 * us to insert it before dropping the locks
807 * (it may either follow vma or precede it).
810 vma_mas_store(insert, &mas);
815 anon_vma_interval_tree_post_update_vma(vma);
817 anon_vma_interval_tree_post_update_vma(next);
818 anon_vma_unlock_write(anon_vma);
822 i_mmap_unlock_write(mapping);
832 uprobe_munmap(next, next->vm_start, next->vm_end);
836 anon_vma_merge(vma, next);
838 mpol_put(vma_policy(next));
839 if (remove_next != 2)
840 BUG_ON(vma->vm_end < next->vm_end);
844 * In mprotect's case 6 (see comments on vma_merge),
845 * we must remove next_next too.
847 if (remove_next == 2) {
863 * If the vma has a ->close operation then the driver probably needs to release
864 * per-vma resources, so we don't attempt to merge those.
866 static inline int is_mergeable_vma(struct vm_area_struct *vma,
867 struct file *file, unsigned long vm_flags,
868 struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
869 struct anon_vma_name *anon_name)
872 * VM_SOFTDIRTY should not prevent from VMA merging, if we
873 * match the flags but dirty bit -- the caller should mark
874 * merged VMA as dirty. If dirty bit won't be excluded from
875 * comparison, we increase pressure on the memory system forcing
876 * the kernel to generate new VMAs when old one could be
879 if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
881 if (vma->vm_file != file)
883 if (vma->vm_ops && vma->vm_ops->close)
885 if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
887 if (!anon_vma_name_eq(anon_vma_name(vma), anon_name))
892 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
893 struct anon_vma *anon_vma2,
894 struct vm_area_struct *vma)
897 * The list_is_singular() test is to avoid merging VMA cloned from
898 * parents. This can improve scalability caused by anon_vma lock.
900 if ((!anon_vma1 || !anon_vma2) && (!vma ||
901 list_is_singular(&vma->anon_vma_chain)))
903 return anon_vma1 == anon_vma2;
907 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
908 * in front of (at a lower virtual address and file offset than) the vma.
910 * We cannot merge two vmas if they have differently assigned (non-NULL)
911 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
913 * We don't check here for the merged mmap wrapping around the end of pagecache
914 * indices (16TB on ia32) because do_mmap() does not permit mmap's which
915 * wrap, nor mmaps which cover the final page at index -1UL.
918 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
919 struct anon_vma *anon_vma, struct file *file,
921 struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
922 struct anon_vma_name *anon_name)
924 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name) &&
925 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
926 if (vma->vm_pgoff == vm_pgoff)
933 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
934 * beyond (at a higher virtual address and file offset than) the vma.
936 * We cannot merge two vmas if they have differently assigned (non-NULL)
937 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
940 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
941 struct anon_vma *anon_vma, struct file *file,
943 struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
944 struct anon_vma_name *anon_name)
946 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name) &&
947 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
949 vm_pglen = vma_pages(vma);
950 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
957 * Given a mapping request (addr,end,vm_flags,file,pgoff,anon_name),
958 * figure out whether that can be merged with its predecessor or its
959 * successor. Or both (it neatly fills a hole).
961 * In most cases - when called for mmap, brk or mremap - [addr,end) is
962 * certain not to be mapped by the time vma_merge is called; but when
963 * called for mprotect, it is certain to be already mapped (either at
964 * an offset within prev, or at the start of next), and the flags of
965 * this area are about to be changed to vm_flags - and the no-change
966 * case has already been eliminated.
968 * The following mprotect cases have to be considered, where AAAA is
969 * the area passed down from mprotect_fixup, never extending beyond one
970 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
973 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN
974 * cannot merge might become might become
975 * PPNNNNNNNNNN PPPPPPPPPPNN
976 * mmap, brk or case 4 below case 5 below
979 * PPPP NNNN PPPPNNNNXXXX
980 * might become might become
981 * PPPPPPPPPPPP 1 or PPPPPPPPPPPP 6 or
982 * PPPPPPPPNNNN 2 or PPPPPPPPXXXX 7 or
983 * PPPPNNNNNNNN 3 PPPPXXXXXXXX 8
985 * It is important for case 8 that the vma NNNN overlapping the
986 * region AAAA is never going to extended over XXXX. Instead XXXX must
987 * be extended in region AAAA and NNNN must be removed. This way in
988 * all cases where vma_merge succeeds, the moment vma_adjust drops the
989 * rmap_locks, the properties of the merged vma will be already
990 * correct for the whole merged range. Some of those properties like
991 * vm_page_prot/vm_flags may be accessed by rmap_walks and they must
992 * be correct for the whole merged range immediately after the
993 * rmap_locks are released. Otherwise if XXXX would be removed and
994 * NNNN would be extended over the XXXX range, remove_migration_ptes
995 * or other rmap walkers (if working on addresses beyond the "end"
996 * parameter) may establish ptes with the wrong permissions of NNNN
997 * instead of the right permissions of XXXX.
999 struct vm_area_struct *vma_merge(struct mm_struct *mm,
1000 struct vm_area_struct *prev, unsigned long addr,
1001 unsigned long end, unsigned long vm_flags,
1002 struct anon_vma *anon_vma, struct file *file,
1003 pgoff_t pgoff, struct mempolicy *policy,
1004 struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
1005 struct anon_vma_name *anon_name)
1007 pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1008 struct vm_area_struct *mid, *next, *res;
1010 bool merge_prev = false;
1011 bool merge_next = false;
1014 * We later require that vma->vm_flags == vm_flags,
1015 * so this tests vma->vm_flags & VM_SPECIAL, too.
1017 if (vm_flags & VM_SPECIAL)
1020 next = find_vma(mm, prev ? prev->vm_end : 0);
1022 if (next && next->vm_end == end) /* cases 6, 7, 8 */
1023 next = find_vma(mm, next->vm_end);
1025 /* verify some invariant that must be enforced by the caller */
1026 VM_WARN_ON(prev && addr <= prev->vm_start);
1027 VM_WARN_ON(mid && end > mid->vm_end);
1028 VM_WARN_ON(addr >= end);
1030 /* Can we merge the predecessor? */
1031 if (prev && prev->vm_end == addr &&
1032 mpol_equal(vma_policy(prev), policy) &&
1033 can_vma_merge_after(prev, vm_flags,
1034 anon_vma, file, pgoff,
1035 vm_userfaultfd_ctx, anon_name)) {
1038 /* Can we merge the successor? */
1039 if (next && end == next->vm_start &&
1040 mpol_equal(policy, vma_policy(next)) &&
1041 can_vma_merge_before(next, vm_flags,
1042 anon_vma, file, pgoff+pglen,
1043 vm_userfaultfd_ctx, anon_name)) {
1046 /* Can we merge both the predecessor and the successor? */
1047 if (merge_prev && merge_next &&
1048 is_mergeable_anon_vma(prev->anon_vma,
1049 next->anon_vma, NULL)) { /* cases 1, 6 */
1050 err = __vma_adjust(prev, prev->vm_start,
1051 next->vm_end, prev->vm_pgoff, NULL,
1054 } else if (merge_prev) { /* cases 2, 5, 7 */
1055 err = __vma_adjust(prev, prev->vm_start,
1056 end, prev->vm_pgoff, NULL, prev);
1058 } else if (merge_next) {
1059 if (prev && addr < prev->vm_end) /* case 4 */
1060 err = __vma_adjust(prev, prev->vm_start,
1061 addr, prev->vm_pgoff, NULL, next);
1062 else /* cases 3, 8 */
1063 err = __vma_adjust(mid, addr, next->vm_end,
1064 next->vm_pgoff - pglen, NULL, next);
1069 * Cannot merge with predecessor or successor or error in __vma_adjust?
1073 khugepaged_enter_vma(res, vm_flags);
1078 * Rough compatibility check to quickly see if it's even worth looking
1079 * at sharing an anon_vma.
1081 * They need to have the same vm_file, and the flags can only differ
1082 * in things that mprotect may change.
1084 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1085 * we can merge the two vma's. For example, we refuse to merge a vma if
1086 * there is a vm_ops->close() function, because that indicates that the
1087 * driver is doing some kind of reference counting. But that doesn't
1088 * really matter for the anon_vma sharing case.
1090 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1092 return a->vm_end == b->vm_start &&
1093 mpol_equal(vma_policy(a), vma_policy(b)) &&
1094 a->vm_file == b->vm_file &&
1095 !((a->vm_flags ^ b->vm_flags) & ~(VM_ACCESS_FLAGS | VM_SOFTDIRTY)) &&
1096 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1100 * Do some basic sanity checking to see if we can re-use the anon_vma
1101 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1102 * the same as 'old', the other will be the new one that is trying
1103 * to share the anon_vma.
1105 * NOTE! This runs with mmap_lock held for reading, so it is possible that
1106 * the anon_vma of 'old' is concurrently in the process of being set up
1107 * by another page fault trying to merge _that_. But that's ok: if it
1108 * is being set up, that automatically means that it will be a singleton
1109 * acceptable for merging, so we can do all of this optimistically. But
1110 * we do that READ_ONCE() to make sure that we never re-load the pointer.
1112 * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1113 * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1114 * is to return an anon_vma that is "complex" due to having gone through
1117 * We also make sure that the two vma's are compatible (adjacent,
1118 * and with the same memory policies). That's all stable, even with just
1119 * a read lock on the mmap_lock.
1121 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1123 if (anon_vma_compatible(a, b)) {
1124 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1126 if (anon_vma && list_is_singular(&old->anon_vma_chain))
1133 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1134 * neighbouring vmas for a suitable anon_vma, before it goes off
1135 * to allocate a new anon_vma. It checks because a repetitive
1136 * sequence of mprotects and faults may otherwise lead to distinct
1137 * anon_vmas being allocated, preventing vma merge in subsequent
1140 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1142 MA_STATE(mas, &vma->vm_mm->mm_mt, vma->vm_end, vma->vm_end);
1143 struct anon_vma *anon_vma = NULL;
1144 struct vm_area_struct *prev, *next;
1146 /* Try next first. */
1147 next = mas_walk(&mas);
1149 anon_vma = reusable_anon_vma(next, vma, next);
1154 prev = mas_prev(&mas, 0);
1155 VM_BUG_ON_VMA(prev != vma, vma);
1156 prev = mas_prev(&mas, 0);
1157 /* Try prev next. */
1159 anon_vma = reusable_anon_vma(prev, prev, vma);
1162 * We might reach here with anon_vma == NULL if we can't find
1163 * any reusable anon_vma.
1164 * There's no absolute need to look only at touching neighbours:
1165 * we could search further afield for "compatible" anon_vmas.
1166 * But it would probably just be a waste of time searching,
1167 * or lead to too many vmas hanging off the same anon_vma.
1168 * We're trying to allow mprotect remerging later on,
1169 * not trying to minimize memory used for anon_vmas.
1175 * If a hint addr is less than mmap_min_addr change hint to be as
1176 * low as possible but still greater than mmap_min_addr
1178 static inline unsigned long round_hint_to_min(unsigned long hint)
1181 if (((void *)hint != NULL) &&
1182 (hint < mmap_min_addr))
1183 return PAGE_ALIGN(mmap_min_addr);
1187 int mlock_future_check(struct mm_struct *mm, unsigned long flags,
1190 unsigned long locked, lock_limit;
1192 /* mlock MCL_FUTURE? */
1193 if (flags & VM_LOCKED) {
1194 locked = len >> PAGE_SHIFT;
1195 locked += mm->locked_vm;
1196 lock_limit = rlimit(RLIMIT_MEMLOCK);
1197 lock_limit >>= PAGE_SHIFT;
1198 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1204 static inline u64 file_mmap_size_max(struct file *file, struct inode *inode)
1206 if (S_ISREG(inode->i_mode))
1207 return MAX_LFS_FILESIZE;
1209 if (S_ISBLK(inode->i_mode))
1210 return MAX_LFS_FILESIZE;
1212 if (S_ISSOCK(inode->i_mode))
1213 return MAX_LFS_FILESIZE;
1215 /* Special "we do even unsigned file positions" case */
1216 if (file->f_mode & FMODE_UNSIGNED_OFFSET)
1219 /* Yes, random drivers might want more. But I'm tired of buggy drivers */
1223 static inline bool file_mmap_ok(struct file *file, struct inode *inode,
1224 unsigned long pgoff, unsigned long len)
1226 u64 maxsize = file_mmap_size_max(file, inode);
1228 if (maxsize && len > maxsize)
1231 if (pgoff > maxsize >> PAGE_SHIFT)
1237 * The caller must write-lock current->mm->mmap_lock.
1239 unsigned long do_mmap(struct file *file, unsigned long addr,
1240 unsigned long len, unsigned long prot,
1241 unsigned long flags, unsigned long pgoff,
1242 unsigned long *populate, struct list_head *uf)
1244 struct mm_struct *mm = current->mm;
1245 vm_flags_t vm_flags;
1255 * Does the application expect PROT_READ to imply PROT_EXEC?
1257 * (the exception is when the underlying filesystem is noexec
1258 * mounted, in which case we dont add PROT_EXEC.)
1260 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1261 if (!(file && path_noexec(&file->f_path)))
1264 /* force arch specific MAP_FIXED handling in get_unmapped_area */
1265 if (flags & MAP_FIXED_NOREPLACE)
1268 if (!(flags & MAP_FIXED))
1269 addr = round_hint_to_min(addr);
1271 /* Careful about overflows.. */
1272 len = PAGE_ALIGN(len);
1276 /* offset overflow? */
1277 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1280 /* Too many mappings? */
1281 if (mm->map_count > sysctl_max_map_count)
1284 /* Obtain the address to map to. we verify (or select) it and ensure
1285 * that it represents a valid section of the address space.
1287 addr = get_unmapped_area(file, addr, len, pgoff, flags);
1288 if (IS_ERR_VALUE(addr))
1291 if (flags & MAP_FIXED_NOREPLACE) {
1292 if (find_vma_intersection(mm, addr, addr + len))
1296 if (prot == PROT_EXEC) {
1297 pkey = execute_only_pkey(mm);
1302 /* Do simple checking here so the lower-level routines won't have
1303 * to. we assume access permissions have been handled by the open
1304 * of the memory object, so we don't do any here.
1306 vm_flags = calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
1307 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1309 if (flags & MAP_LOCKED)
1310 if (!can_do_mlock())
1313 if (mlock_future_check(mm, vm_flags, len))
1317 struct inode *inode = file_inode(file);
1318 unsigned long flags_mask;
1320 if (!file_mmap_ok(file, inode, pgoff, len))
1323 flags_mask = LEGACY_MAP_MASK | file->f_op->mmap_supported_flags;
1325 switch (flags & MAP_TYPE) {
1328 * Force use of MAP_SHARED_VALIDATE with non-legacy
1329 * flags. E.g. MAP_SYNC is dangerous to use with
1330 * MAP_SHARED as you don't know which consistency model
1331 * you will get. We silently ignore unsupported flags
1332 * with MAP_SHARED to preserve backward compatibility.
1334 flags &= LEGACY_MAP_MASK;
1336 case MAP_SHARED_VALIDATE:
1337 if (flags & ~flags_mask)
1339 if (prot & PROT_WRITE) {
1340 if (!(file->f_mode & FMODE_WRITE))
1342 if (IS_SWAPFILE(file->f_mapping->host))
1347 * Make sure we don't allow writing to an append-only
1350 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1353 vm_flags |= VM_SHARED | VM_MAYSHARE;
1354 if (!(file->f_mode & FMODE_WRITE))
1355 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1358 if (!(file->f_mode & FMODE_READ))
1360 if (path_noexec(&file->f_path)) {
1361 if (vm_flags & VM_EXEC)
1363 vm_flags &= ~VM_MAYEXEC;
1366 if (!file->f_op->mmap)
1368 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1376 switch (flags & MAP_TYPE) {
1378 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1384 vm_flags |= VM_SHARED | VM_MAYSHARE;
1388 * Set pgoff according to addr for anon_vma.
1390 pgoff = addr >> PAGE_SHIFT;
1398 * Set 'VM_NORESERVE' if we should not account for the
1399 * memory use of this mapping.
1401 if (flags & MAP_NORESERVE) {
1402 /* We honor MAP_NORESERVE if allowed to overcommit */
1403 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1404 vm_flags |= VM_NORESERVE;
1406 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1407 if (file && is_file_hugepages(file))
1408 vm_flags |= VM_NORESERVE;
1411 addr = mmap_region(file, addr, len, vm_flags, pgoff, uf);
1412 if (!IS_ERR_VALUE(addr) &&
1413 ((vm_flags & VM_LOCKED) ||
1414 (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1419 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1420 unsigned long prot, unsigned long flags,
1421 unsigned long fd, unsigned long pgoff)
1423 struct file *file = NULL;
1424 unsigned long retval;
1426 if (!(flags & MAP_ANONYMOUS)) {
1427 audit_mmap_fd(fd, flags);
1431 if (is_file_hugepages(file)) {
1432 len = ALIGN(len, huge_page_size(hstate_file(file)));
1433 } else if (unlikely(flags & MAP_HUGETLB)) {
1437 } else if (flags & MAP_HUGETLB) {
1440 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1444 len = ALIGN(len, huge_page_size(hs));
1446 * VM_NORESERVE is used because the reservations will be
1447 * taken when vm_ops->mmap() is called
1449 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1451 HUGETLB_ANONHUGE_INODE,
1452 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1454 return PTR_ERR(file);
1457 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1464 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1465 unsigned long, prot, unsigned long, flags,
1466 unsigned long, fd, unsigned long, pgoff)
1468 return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1471 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1472 struct mmap_arg_struct {
1476 unsigned long flags;
1478 unsigned long offset;
1481 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1483 struct mmap_arg_struct a;
1485 if (copy_from_user(&a, arg, sizeof(a)))
1487 if (offset_in_page(a.offset))
1490 return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1491 a.offset >> PAGE_SHIFT);
1493 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1496 * Some shared mappings will want the pages marked read-only
1497 * to track write events. If so, we'll downgrade vm_page_prot
1498 * to the private version (using protection_map[] without the
1501 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)
1503 vm_flags_t vm_flags = vma->vm_flags;
1504 const struct vm_operations_struct *vm_ops = vma->vm_ops;
1506 /* If it was private or non-writable, the write bit is already clear */
1507 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1510 /* The backer wishes to know when pages are first written to? */
1511 if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite))
1514 /* The open routine did something to the protections that pgprot_modify
1515 * won't preserve? */
1516 if (pgprot_val(vm_page_prot) !=
1517 pgprot_val(vm_pgprot_modify(vm_page_prot, vm_flags)))
1521 * Do we need to track softdirty? hugetlb does not support softdirty
1524 if (vma_soft_dirty_enabled(vma) && !is_vm_hugetlb_page(vma))
1527 /* Specialty mapping? */
1528 if (vm_flags & VM_PFNMAP)
1531 /* Can the mapping track the dirty pages? */
1532 return vma->vm_file && vma->vm_file->f_mapping &&
1533 mapping_can_writeback(vma->vm_file->f_mapping);
1537 * We account for memory if it's a private writeable mapping,
1538 * not hugepages and VM_NORESERVE wasn't set.
1540 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1543 * hugetlb has its own accounting separate from the core VM
1544 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1546 if (file && is_file_hugepages(file))
1549 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1553 * unmapped_area() - Find an area between the low_limit and the high_limit with
1554 * the correct alignment and offset, all from @info. Note: current->mm is used
1557 * @info: The unmapped area information including the range (low_limit -
1558 * hight_limit), the alignment offset and mask.
1560 * Return: A memory address or -ENOMEM.
1562 static unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1564 unsigned long length, gap;
1566 MA_STATE(mas, ¤t->mm->mm_mt, 0, 0);
1568 /* Adjust search length to account for worst case alignment overhead */
1569 length = info->length + info->align_mask;
1570 if (length < info->length)
1573 if (mas_empty_area(&mas, info->low_limit, info->high_limit - 1,
1578 gap += (info->align_offset - gap) & info->align_mask;
1583 * unmapped_area_topdown() - Find an area between the low_limit and the
1584 * high_limit with * the correct alignment and offset at the highest available
1585 * address, all from @info. Note: current->mm is used for the search.
1587 * @info: The unmapped area information including the range (low_limit -
1588 * hight_limit), the alignment offset and mask.
1590 * Return: A memory address or -ENOMEM.
1592 static unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1594 unsigned long length, gap;
1596 MA_STATE(mas, ¤t->mm->mm_mt, 0, 0);
1597 /* Adjust search length to account for worst case alignment overhead */
1598 length = info->length + info->align_mask;
1599 if (length < info->length)
1602 if (mas_empty_area_rev(&mas, info->low_limit, info->high_limit - 1,
1606 gap = mas.last + 1 - info->length;
1607 gap -= (gap - info->align_offset) & info->align_mask;
1612 * Search for an unmapped address range.
1614 * We are looking for a range that:
1615 * - does not intersect with any VMA;
1616 * - is contained within the [low_limit, high_limit) interval;
1617 * - is at least the desired size.
1618 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
1620 unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info)
1624 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
1625 addr = unmapped_area_topdown(info);
1627 addr = unmapped_area(info);
1629 trace_vm_unmapped_area(addr, info);
1633 /* Get an address range which is currently unmapped.
1634 * For shmat() with addr=0.
1636 * Ugly calling convention alert:
1637 * Return value with the low bits set means error value,
1639 * if (ret & ~PAGE_MASK)
1642 * This function "knows" that -ENOMEM has the bits set.
1645 generic_get_unmapped_area(struct file *filp, unsigned long addr,
1646 unsigned long len, unsigned long pgoff,
1647 unsigned long flags)
1649 struct mm_struct *mm = current->mm;
1650 struct vm_area_struct *vma, *prev;
1651 struct vm_unmapped_area_info info;
1652 const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags);
1654 if (len > mmap_end - mmap_min_addr)
1657 if (flags & MAP_FIXED)
1661 addr = PAGE_ALIGN(addr);
1662 vma = find_vma_prev(mm, addr, &prev);
1663 if (mmap_end - len >= addr && addr >= mmap_min_addr &&
1664 (!vma || addr + len <= vm_start_gap(vma)) &&
1665 (!prev || addr >= vm_end_gap(prev)))
1671 info.low_limit = mm->mmap_base;
1672 info.high_limit = mmap_end;
1673 info.align_mask = 0;
1674 info.align_offset = 0;
1675 return vm_unmapped_area(&info);
1678 #ifndef HAVE_ARCH_UNMAPPED_AREA
1680 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1681 unsigned long len, unsigned long pgoff,
1682 unsigned long flags)
1684 return generic_get_unmapped_area(filp, addr, len, pgoff, flags);
1689 * This mmap-allocator allocates new areas top-down from below the
1690 * stack's low limit (the base):
1693 generic_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
1694 unsigned long len, unsigned long pgoff,
1695 unsigned long flags)
1697 struct vm_area_struct *vma, *prev;
1698 struct mm_struct *mm = current->mm;
1699 struct vm_unmapped_area_info info;
1700 const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags);
1702 /* requested length too big for entire address space */
1703 if (len > mmap_end - mmap_min_addr)
1706 if (flags & MAP_FIXED)
1709 /* requesting a specific address */
1711 addr = PAGE_ALIGN(addr);
1712 vma = find_vma_prev(mm, addr, &prev);
1713 if (mmap_end - len >= addr && addr >= mmap_min_addr &&
1714 (!vma || addr + len <= vm_start_gap(vma)) &&
1715 (!prev || addr >= vm_end_gap(prev)))
1719 info.flags = VM_UNMAPPED_AREA_TOPDOWN;
1721 info.low_limit = max(PAGE_SIZE, mmap_min_addr);
1722 info.high_limit = arch_get_mmap_base(addr, mm->mmap_base);
1723 info.align_mask = 0;
1724 info.align_offset = 0;
1725 addr = vm_unmapped_area(&info);
1728 * A failed mmap() very likely causes application failure,
1729 * so fall back to the bottom-up function here. This scenario
1730 * can happen with large stack limits and large mmap()
1733 if (offset_in_page(addr)) {
1734 VM_BUG_ON(addr != -ENOMEM);
1736 info.low_limit = TASK_UNMAPPED_BASE;
1737 info.high_limit = mmap_end;
1738 addr = vm_unmapped_area(&info);
1744 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1746 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
1747 unsigned long len, unsigned long pgoff,
1748 unsigned long flags)
1750 return generic_get_unmapped_area_topdown(filp, addr, len, pgoff, flags);
1755 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1756 unsigned long pgoff, unsigned long flags)
1758 unsigned long (*get_area)(struct file *, unsigned long,
1759 unsigned long, unsigned long, unsigned long);
1761 unsigned long error = arch_mmap_check(addr, len, flags);
1765 /* Careful about overflows.. */
1766 if (len > TASK_SIZE)
1769 get_area = current->mm->get_unmapped_area;
1771 if (file->f_op->get_unmapped_area)
1772 get_area = file->f_op->get_unmapped_area;
1773 } else if (flags & MAP_SHARED) {
1775 * mmap_region() will call shmem_zero_setup() to create a file,
1776 * so use shmem's get_unmapped_area in case it can be huge.
1777 * do_mmap() will clear pgoff, so match alignment.
1780 get_area = shmem_get_unmapped_area;
1781 } else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
1782 /* Ensures that larger anonymous mappings are THP aligned. */
1783 get_area = thp_get_unmapped_area;
1786 addr = get_area(file, addr, len, pgoff, flags);
1787 if (IS_ERR_VALUE(addr))
1790 if (addr > TASK_SIZE - len)
1792 if (offset_in_page(addr))
1795 error = security_mmap_addr(addr);
1796 return error ? error : addr;
1799 EXPORT_SYMBOL(get_unmapped_area);
1802 * find_vma_intersection() - Look up the first VMA which intersects the interval
1803 * @mm: The process address space.
1804 * @start_addr: The inclusive start user address.
1805 * @end_addr: The exclusive end user address.
1807 * Returns: The first VMA within the provided range, %NULL otherwise. Assumes
1808 * start_addr < end_addr.
1810 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
1811 unsigned long start_addr,
1812 unsigned long end_addr)
1814 unsigned long index = start_addr;
1816 mmap_assert_locked(mm);
1817 return mt_find(&mm->mm_mt, &index, end_addr - 1);
1819 EXPORT_SYMBOL(find_vma_intersection);
1822 * find_vma() - Find the VMA for a given address, or the next VMA.
1823 * @mm: The mm_struct to check
1824 * @addr: The address
1826 * Returns: The VMA associated with addr, or the next VMA.
1827 * May return %NULL in the case of no VMA at addr or above.
1829 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
1831 unsigned long index = addr;
1833 mmap_assert_locked(mm);
1834 return mt_find(&mm->mm_mt, &index, ULONG_MAX);
1836 EXPORT_SYMBOL(find_vma);
1839 * find_vma_prev() - Find the VMA for a given address, or the next vma and
1840 * set %pprev to the previous VMA, if any.
1841 * @mm: The mm_struct to check
1842 * @addr: The address
1843 * @pprev: The pointer to set to the previous VMA
1845 * Note that RCU lock is missing here since the external mmap_lock() is used
1848 * Returns: The VMA associated with @addr, or the next vma.
1849 * May return %NULL in the case of no vma at addr or above.
1851 struct vm_area_struct *
1852 find_vma_prev(struct mm_struct *mm, unsigned long addr,
1853 struct vm_area_struct **pprev)
1855 struct vm_area_struct *vma;
1856 MA_STATE(mas, &mm->mm_mt, addr, addr);
1858 vma = mas_walk(&mas);
1859 *pprev = mas_prev(&mas, 0);
1861 vma = mas_next(&mas, ULONG_MAX);
1866 * Verify that the stack growth is acceptable and
1867 * update accounting. This is shared with both the
1868 * grow-up and grow-down cases.
1870 static int acct_stack_growth(struct vm_area_struct *vma,
1871 unsigned long size, unsigned long grow)
1873 struct mm_struct *mm = vma->vm_mm;
1874 unsigned long new_start;
1876 /* address space limit tests */
1877 if (!may_expand_vm(mm, vma->vm_flags, grow))
1880 /* Stack limit test */
1881 if (size > rlimit(RLIMIT_STACK))
1884 /* mlock limit tests */
1885 if (mlock_future_check(mm, vma->vm_flags, grow << PAGE_SHIFT))
1888 /* Check to ensure the stack will not grow into a hugetlb-only region */
1889 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
1891 if (is_hugepage_only_range(vma->vm_mm, new_start, size))
1895 * Overcommit.. This must be the final test, as it will
1896 * update security statistics.
1898 if (security_vm_enough_memory_mm(mm, grow))
1904 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
1906 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
1907 * vma is the last one with address > vma->vm_end. Have to extend vma.
1909 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
1911 struct mm_struct *mm = vma->vm_mm;
1912 struct vm_area_struct *next;
1913 unsigned long gap_addr;
1915 MA_STATE(mas, &mm->mm_mt, 0, 0);
1917 if (!(vma->vm_flags & VM_GROWSUP))
1920 /* Guard against exceeding limits of the address space. */
1921 address &= PAGE_MASK;
1922 if (address >= (TASK_SIZE & PAGE_MASK))
1924 address += PAGE_SIZE;
1926 /* Enforce stack_guard_gap */
1927 gap_addr = address + stack_guard_gap;
1929 /* Guard against overflow */
1930 if (gap_addr < address || gap_addr > TASK_SIZE)
1931 gap_addr = TASK_SIZE;
1933 next = find_vma_intersection(mm, vma->vm_end, gap_addr);
1934 if (next && vma_is_accessible(next)) {
1935 if (!(next->vm_flags & VM_GROWSUP))
1937 /* Check that both stack segments have the same anon_vma? */
1940 if (mas_preallocate(&mas, vma, GFP_KERNEL))
1943 /* We must make sure the anon_vma is allocated. */
1944 if (unlikely(anon_vma_prepare(vma))) {
1950 * vma->vm_start/vm_end cannot change under us because the caller
1951 * is required to hold the mmap_lock in read mode. We need the
1952 * anon_vma lock to serialize against concurrent expand_stacks.
1954 anon_vma_lock_write(vma->anon_vma);
1956 /* Somebody else might have raced and expanded it already */
1957 if (address > vma->vm_end) {
1958 unsigned long size, grow;
1960 size = address - vma->vm_start;
1961 grow = (address - vma->vm_end) >> PAGE_SHIFT;
1964 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
1965 error = acct_stack_growth(vma, size, grow);
1968 * We only hold a shared mmap_lock lock here, so
1969 * we need to protect against concurrent vma
1970 * expansions. anon_vma_lock_write() doesn't
1971 * help here, as we don't guarantee that all
1972 * growable vmas in a mm share the same root
1973 * anon vma. So, we reuse mm->page_table_lock
1974 * to guard against concurrent vma expansions.
1976 spin_lock(&mm->page_table_lock);
1977 if (vma->vm_flags & VM_LOCKED)
1978 mm->locked_vm += grow;
1979 vm_stat_account(mm, vma->vm_flags, grow);
1980 anon_vma_interval_tree_pre_update_vma(vma);
1981 vma->vm_end = address;
1982 /* Overwrite old entry in mtree. */
1983 vma_mas_store(vma, &mas);
1984 anon_vma_interval_tree_post_update_vma(vma);
1985 spin_unlock(&mm->page_table_lock);
1987 perf_event_mmap(vma);
1991 anon_vma_unlock_write(vma->anon_vma);
1992 khugepaged_enter_vma(vma, vma->vm_flags);
1996 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
1999 * vma is the first one with address < vma->vm_start. Have to extend vma.
2001 int expand_downwards(struct vm_area_struct *vma, unsigned long address)
2003 struct mm_struct *mm = vma->vm_mm;
2004 MA_STATE(mas, &mm->mm_mt, vma->vm_start, vma->vm_start);
2005 struct vm_area_struct *prev;
2008 address &= PAGE_MASK;
2009 if (address < mmap_min_addr)
2012 /* Enforce stack_guard_gap */
2013 prev = mas_prev(&mas, 0);
2014 /* Check that both stack segments have the same anon_vma? */
2015 if (prev && !(prev->vm_flags & VM_GROWSDOWN) &&
2016 vma_is_accessible(prev)) {
2017 if (address - prev->vm_end < stack_guard_gap)
2021 if (mas_preallocate(&mas, vma, GFP_KERNEL))
2024 /* We must make sure the anon_vma is allocated. */
2025 if (unlikely(anon_vma_prepare(vma))) {
2031 * vma->vm_start/vm_end cannot change under us because the caller
2032 * is required to hold the mmap_lock in read mode. We need the
2033 * anon_vma lock to serialize against concurrent expand_stacks.
2035 anon_vma_lock_write(vma->anon_vma);
2037 /* Somebody else might have raced and expanded it already */
2038 if (address < vma->vm_start) {
2039 unsigned long size, grow;
2041 size = vma->vm_end - address;
2042 grow = (vma->vm_start - address) >> PAGE_SHIFT;
2045 if (grow <= vma->vm_pgoff) {
2046 error = acct_stack_growth(vma, size, grow);
2049 * We only hold a shared mmap_lock lock here, so
2050 * we need to protect against concurrent vma
2051 * expansions. anon_vma_lock_write() doesn't
2052 * help here, as we don't guarantee that all
2053 * growable vmas in a mm share the same root
2054 * anon vma. So, we reuse mm->page_table_lock
2055 * to guard against concurrent vma expansions.
2057 spin_lock(&mm->page_table_lock);
2058 if (vma->vm_flags & VM_LOCKED)
2059 mm->locked_vm += grow;
2060 vm_stat_account(mm, vma->vm_flags, grow);
2061 anon_vma_interval_tree_pre_update_vma(vma);
2062 vma->vm_start = address;
2063 vma->vm_pgoff -= grow;
2064 /* Overwrite old entry in mtree. */
2065 vma_mas_store(vma, &mas);
2066 anon_vma_interval_tree_post_update_vma(vma);
2067 spin_unlock(&mm->page_table_lock);
2069 perf_event_mmap(vma);
2073 anon_vma_unlock_write(vma->anon_vma);
2074 khugepaged_enter_vma(vma, vma->vm_flags);
2079 /* enforced gap between the expanding stack and other mappings. */
2080 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT;
2082 static int __init cmdline_parse_stack_guard_gap(char *p)
2087 val = simple_strtoul(p, &endptr, 10);
2089 stack_guard_gap = val << PAGE_SHIFT;
2093 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap);
2095 #ifdef CONFIG_STACK_GROWSUP
2096 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2098 return expand_upwards(vma, address);
2101 struct vm_area_struct *
2102 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2104 struct vm_area_struct *vma, *prev;
2107 vma = find_vma_prev(mm, addr, &prev);
2108 if (vma && (vma->vm_start <= addr))
2110 if (!prev || expand_stack(prev, addr))
2112 if (prev->vm_flags & VM_LOCKED)
2113 populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2117 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2119 return expand_downwards(vma, address);
2122 struct vm_area_struct *
2123 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2125 struct vm_area_struct *vma;
2126 unsigned long start;
2129 vma = find_vma(mm, addr);
2132 if (vma->vm_start <= addr)
2134 if (!(vma->vm_flags & VM_GROWSDOWN))
2136 start = vma->vm_start;
2137 if (expand_stack(vma, addr))
2139 if (vma->vm_flags & VM_LOCKED)
2140 populate_vma_page_range(vma, addr, start, NULL);
2145 EXPORT_SYMBOL_GPL(find_extend_vma);
2148 * Ok - we have the memory areas we should free on a maple tree so release them,
2149 * and do the vma updates.
2151 * Called with the mm semaphore held.
2153 static inline void remove_mt(struct mm_struct *mm, struct ma_state *mas)
2155 unsigned long nr_accounted = 0;
2156 struct vm_area_struct *vma;
2158 /* Update high watermark before we lower total_vm */
2159 update_hiwater_vm(mm);
2160 mas_for_each(mas, vma, ULONG_MAX) {
2161 long nrpages = vma_pages(vma);
2163 if (vma->vm_flags & VM_ACCOUNT)
2164 nr_accounted += nrpages;
2165 vm_stat_account(mm, vma->vm_flags, -nrpages);
2168 vm_unacct_memory(nr_accounted);
2173 * Get rid of page table information in the indicated region.
2175 * Called with the mm semaphore held.
2177 static void unmap_region(struct mm_struct *mm, struct maple_tree *mt,
2178 struct vm_area_struct *vma, struct vm_area_struct *prev,
2179 struct vm_area_struct *next,
2180 unsigned long start, unsigned long end)
2182 struct mmu_gather tlb;
2185 tlb_gather_mmu(&tlb, mm);
2186 update_hiwater_rss(mm);
2187 unmap_vmas(&tlb, mt, vma, start, end);
2188 free_pgtables(&tlb, mt, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2189 next ? next->vm_start : USER_PGTABLES_CEILING);
2190 tlb_finish_mmu(&tlb);
2194 * __split_vma() bypasses sysctl_max_map_count checking. We use this where it
2195 * has already been checked or doesn't make sense to fail.
2197 int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2198 unsigned long addr, int new_below)
2200 struct vm_area_struct *new;
2204 if (vma->vm_ops && vma->vm_ops->may_split) {
2205 err = vma->vm_ops->may_split(vma, addr);
2210 new = vm_area_dup(vma);
2217 new->vm_start = addr;
2218 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2221 err = vma_dup_policy(vma, new);
2225 err = anon_vma_clone(new, vma);
2230 get_file(new->vm_file);
2232 if (new->vm_ops && new->vm_ops->open)
2233 new->vm_ops->open(new);
2236 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2237 ((addr - new->vm_start) >> PAGE_SHIFT), new);
2239 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2245 /* Avoid vm accounting in close() operation */
2246 new->vm_start = new->vm_end;
2248 /* Clean everything up if vma_adjust failed. */
2249 if (new->vm_ops && new->vm_ops->close)
2250 new->vm_ops->close(new);
2253 unlink_anon_vmas(new);
2255 mpol_put(vma_policy(new));
2263 * Split a vma into two pieces at address 'addr', a new vma is allocated
2264 * either for the first part or the tail.
2266 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2267 unsigned long addr, int new_below)
2269 if (mm->map_count >= sysctl_max_map_count)
2272 return __split_vma(mm, vma, addr, new_below);
2275 static inline int munmap_sidetree(struct vm_area_struct *vma,
2276 struct ma_state *mas_detach)
2278 mas_set_range(mas_detach, vma->vm_start, vma->vm_end - 1);
2279 if (mas_store_gfp(mas_detach, vma, GFP_KERNEL))
2282 if (vma->vm_flags & VM_LOCKED)
2283 vma->vm_mm->locked_vm -= vma_pages(vma);
2289 * do_mas_align_munmap() - munmap the aligned region from @start to @end.
2290 * @mas: The maple_state, ideally set up to alter the correct tree location.
2291 * @vma: The starting vm_area_struct
2292 * @mm: The mm_struct
2293 * @start: The aligned start address to munmap.
2294 * @end: The aligned end address to munmap.
2295 * @uf: The userfaultfd list_head
2296 * @downgrade: Set to true to attempt a write downgrade of the mmap_sem
2298 * If @downgrade is true, check return code for potential release of the lock.
2301 do_mas_align_munmap(struct ma_state *mas, struct vm_area_struct *vma,
2302 struct mm_struct *mm, unsigned long start,
2303 unsigned long end, struct list_head *uf, bool downgrade)
2305 struct vm_area_struct *prev, *next = NULL;
2306 struct maple_tree mt_detach;
2308 int error = -ENOMEM;
2309 MA_STATE(mas_detach, &mt_detach, 0, 0);
2310 mt_init_flags(&mt_detach, MT_FLAGS_LOCK_EXTERN);
2311 mt_set_external_lock(&mt_detach, &mm->mmap_lock);
2313 if (mas_preallocate(mas, vma, GFP_KERNEL))
2316 mas->last = end - 1;
2318 * If we need to split any vma, do it now to save pain later.
2320 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2321 * unmapped vm_area_struct will remain in use: so lower split_vma
2322 * places tmp vma above, and higher split_vma places tmp vma below.
2325 /* Does it split the first one? */
2326 if (start > vma->vm_start) {
2329 * Make sure that map_count on return from munmap() will
2330 * not exceed its limit; but let map_count go just above
2331 * its limit temporarily, to help free resources as expected.
2333 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2334 goto map_count_exceeded;
2337 * mas_pause() is not needed since mas->index needs to be set
2338 * differently than vma->vm_end anyways.
2340 error = __split_vma(mm, vma, start, 0);
2342 goto start_split_failed;
2344 mas_set(mas, start);
2345 vma = mas_walk(mas);
2348 prev = mas_prev(mas, 0);
2349 if (unlikely((!prev)))
2350 mas_set(mas, start);
2353 * Detach a range of VMAs from the mm. Using next as a temp variable as
2354 * it is always overwritten.
2356 mas_for_each(mas, next, end - 1) {
2357 /* Does it split the end? */
2358 if (next->vm_end > end) {
2359 struct vm_area_struct *split;
2361 error = __split_vma(mm, next, end, 1);
2363 goto end_split_failed;
2366 split = mas_prev(mas, 0);
2367 error = munmap_sidetree(split, &mas_detach);
2369 goto munmap_sidetree_failed;
2376 error = munmap_sidetree(next, &mas_detach);
2378 goto munmap_sidetree_failed;
2381 #ifdef CONFIG_DEBUG_VM_MAPLE_TREE
2382 BUG_ON(next->vm_start < start);
2383 BUG_ON(next->vm_start > end);
2388 next = mas_next(mas, ULONG_MAX);
2392 * If userfaultfd_unmap_prep returns an error the vmas
2393 * will remain split, but userland will get a
2394 * highly unexpected error anyway. This is no
2395 * different than the case where the first of the two
2396 * __split_vma fails, but we don't undo the first
2397 * split, despite we could. This is unlikely enough
2398 * failure that it's not worth optimizing it for.
2400 error = userfaultfd_unmap_prep(mm, start, end, uf);
2403 goto userfaultfd_error;
2406 /* Point of no return */
2407 mas_set_range(mas, start, end - 1);
2408 #if defined(CONFIG_DEBUG_VM_MAPLE_TREE)
2409 /* Make sure no VMAs are about to be lost. */
2411 MA_STATE(test, &mt_detach, start, end - 1);
2412 struct vm_area_struct *vma_mas, *vma_test;
2416 vma_test = mas_find(&test, end - 1);
2417 mas_for_each(mas, vma_mas, end - 1) {
2418 BUG_ON(vma_mas != vma_test);
2420 vma_test = mas_next(&test, end - 1);
2423 BUG_ON(count != test_count);
2424 mas_set_range(mas, start, end - 1);
2427 mas_store_prealloc(mas, NULL);
2428 mm->map_count -= count;
2430 * Do not downgrade mmap_lock if we are next to VM_GROWSDOWN or
2431 * VM_GROWSUP VMA. Such VMAs can change their size under
2432 * down_read(mmap_lock) and collide with the VMA we are about to unmap.
2435 if (next && (next->vm_flags & VM_GROWSDOWN))
2437 else if (prev && (prev->vm_flags & VM_GROWSUP))
2440 mmap_write_downgrade(mm);
2443 unmap_region(mm, &mt_detach, vma, prev, next, start, end);
2444 /* Statistics and freeing VMAs */
2445 mas_set(&mas_detach, start);
2446 remove_mt(mm, &mas_detach);
2447 __mt_destroy(&mt_detach);
2451 return downgrade ? 1 : 0;
2454 munmap_sidetree_failed:
2456 __mt_destroy(&mt_detach);
2464 * do_mas_munmap() - munmap a given range.
2465 * @mas: The maple state
2466 * @mm: The mm_struct
2467 * @start: The start address to munmap
2468 * @len: The length of the range to munmap
2469 * @uf: The userfaultfd list_head
2470 * @downgrade: set to true if the user wants to attempt to write_downgrade the
2473 * This function takes a @mas that is either pointing to the previous VMA or set
2474 * to MA_START and sets it up to remove the mapping(s). The @len will be
2475 * aligned and any arch_unmap work will be preformed.
2477 * Returns: -EINVAL on failure, 1 on success and unlock, 0 otherwise.
2479 int do_mas_munmap(struct ma_state *mas, struct mm_struct *mm,
2480 unsigned long start, size_t len, struct list_head *uf,
2484 struct vm_area_struct *vma;
2486 if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2489 end = start + PAGE_ALIGN(len);
2493 /* arch_unmap() might do unmaps itself. */
2494 arch_unmap(mm, start, end);
2496 /* Find the first overlapping VMA */
2497 vma = mas_find(mas, end - 1);
2501 return do_mas_align_munmap(mas, vma, mm, start, end, uf, downgrade);
2504 /* do_munmap() - Wrapper function for non-maple tree aware do_munmap() calls.
2505 * @mm: The mm_struct
2506 * @start: The start address to munmap
2507 * @len: The length to be munmapped.
2508 * @uf: The userfaultfd list_head
2510 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2511 struct list_head *uf)
2513 MA_STATE(mas, &mm->mm_mt, start, start);
2515 return do_mas_munmap(&mas, mm, start, len, uf, false);
2518 unsigned long mmap_region(struct file *file, unsigned long addr,
2519 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2520 struct list_head *uf)
2522 struct mm_struct *mm = current->mm;
2523 struct vm_area_struct *vma = NULL;
2524 struct vm_area_struct *next, *prev, *merge;
2525 pgoff_t pglen = len >> PAGE_SHIFT;
2526 unsigned long charged = 0;
2527 unsigned long end = addr + len;
2528 unsigned long merge_start = addr, merge_end = end;
2531 MA_STATE(mas, &mm->mm_mt, addr, end - 1);
2533 /* Check against address space limit. */
2534 if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
2535 unsigned long nr_pages;
2538 * MAP_FIXED may remove pages of mappings that intersects with
2539 * requested mapping. Account for the pages it would unmap.
2541 nr_pages = count_vma_pages_range(mm, addr, end);
2543 if (!may_expand_vm(mm, vm_flags,
2544 (len >> PAGE_SHIFT) - nr_pages))
2548 /* Unmap any existing mapping in the area */
2549 if (do_mas_munmap(&mas, mm, addr, len, uf, false))
2553 * Private writable mapping: check memory availability
2555 if (accountable_mapping(file, vm_flags)) {
2556 charged = len >> PAGE_SHIFT;
2557 if (security_vm_enough_memory_mm(mm, charged))
2559 vm_flags |= VM_ACCOUNT;
2562 next = mas_next(&mas, ULONG_MAX);
2563 prev = mas_prev(&mas, 0);
2564 if (vm_flags & VM_SPECIAL)
2567 /* Attempt to expand an old mapping */
2569 if (next && next->vm_start == end && !vma_policy(next) &&
2570 can_vma_merge_before(next, vm_flags, NULL, file, pgoff+pglen,
2571 NULL_VM_UFFD_CTX, NULL)) {
2572 merge_end = next->vm_end;
2574 vm_pgoff = next->vm_pgoff - pglen;
2578 if (prev && prev->vm_end == addr && !vma_policy(prev) &&
2579 (vma ? can_vma_merge_after(prev, vm_flags, vma->anon_vma, file,
2580 pgoff, vma->vm_userfaultfd_ctx, NULL) :
2581 can_vma_merge_after(prev, vm_flags, NULL, file, pgoff,
2582 NULL_VM_UFFD_CTX, NULL))) {
2583 merge_start = prev->vm_start;
2585 vm_pgoff = prev->vm_pgoff;
2589 /* Actually expand, if possible */
2591 !vma_expand(&mas, vma, merge_start, merge_end, vm_pgoff, next)) {
2592 khugepaged_enter_vma(vma, vm_flags);
2600 * Determine the object being mapped and call the appropriate
2601 * specific mapper. the address has already been validated, but
2602 * not unmapped, but the maps are removed from the list.
2604 vma = vm_area_alloc(mm);
2610 vma->vm_start = addr;
2612 vma->vm_flags = vm_flags;
2613 vma->vm_page_prot = vm_get_page_prot(vm_flags);
2614 vma->vm_pgoff = pgoff;
2617 if (vm_flags & VM_SHARED) {
2618 error = mapping_map_writable(file->f_mapping);
2623 vma->vm_file = get_file(file);
2624 error = call_mmap(file, vma);
2626 goto unmap_and_free_vma;
2628 /* Can addr have changed??
2630 * Answer: Yes, several device drivers can do it in their
2631 * f_op->mmap method. -DaveM
2633 WARN_ON_ONCE(addr != vma->vm_start);
2635 addr = vma->vm_start;
2639 * If vm_flags changed after call_mmap(), we should try merge
2640 * vma again as we may succeed this time.
2642 if (unlikely(vm_flags != vma->vm_flags && prev)) {
2643 merge = vma_merge(mm, prev, vma->vm_start, vma->vm_end, vma->vm_flags,
2644 NULL, vma->vm_file, vma->vm_pgoff, NULL, NULL_VM_UFFD_CTX, NULL);
2647 * ->mmap() can change vma->vm_file and fput
2648 * the original file. So fput the vma->vm_file
2649 * here or we would add an extra fput for file
2650 * and cause general protection fault
2656 /* Update vm_flags to pick up the change. */
2657 addr = vma->vm_start;
2658 vm_flags = vma->vm_flags;
2659 goto unmap_writable;
2663 vm_flags = vma->vm_flags;
2664 } else if (vm_flags & VM_SHARED) {
2665 error = shmem_zero_setup(vma);
2669 vma_set_anonymous(vma);
2672 /* Allow architectures to sanity-check the vm_flags */
2673 if (!arch_validate_flags(vma->vm_flags)) {
2676 goto unmap_and_free_vma;
2681 if (mas_preallocate(&mas, vma, GFP_KERNEL)) {
2684 goto unmap_and_free_vma;
2690 i_mmap_lock_write(vma->vm_file->f_mapping);
2692 vma_mas_store(vma, &mas);
2695 if (vma->vm_flags & VM_SHARED)
2696 mapping_allow_writable(vma->vm_file->f_mapping);
2698 flush_dcache_mmap_lock(vma->vm_file->f_mapping);
2699 vma_interval_tree_insert(vma, &vma->vm_file->f_mapping->i_mmap);
2700 flush_dcache_mmap_unlock(vma->vm_file->f_mapping);
2701 i_mmap_unlock_write(vma->vm_file->f_mapping);
2705 * vma_merge() calls khugepaged_enter_vma() either, the below
2706 * call covers the non-merge case.
2708 khugepaged_enter_vma(vma, vma->vm_flags);
2710 /* Once vma denies write, undo our temporary denial count */
2712 if (file && vm_flags & VM_SHARED)
2713 mapping_unmap_writable(file->f_mapping);
2714 file = vma->vm_file;
2716 perf_event_mmap(vma);
2718 vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
2719 if (vm_flags & VM_LOCKED) {
2720 if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) ||
2721 is_vm_hugetlb_page(vma) ||
2722 vma == get_gate_vma(current->mm))
2723 vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
2725 mm->locked_vm += (len >> PAGE_SHIFT);
2732 * New (or expanded) vma always get soft dirty status.
2733 * Otherwise user-space soft-dirty page tracker won't
2734 * be able to distinguish situation when vma area unmapped,
2735 * then new mapped in-place (which must be aimed as
2736 * a completely new data area).
2738 vma->vm_flags |= VM_SOFTDIRTY;
2740 vma_set_page_prot(vma);
2747 vma->vm_file = NULL;
2749 /* Undo any partial mapping done by a device driver. */
2750 unmap_region(mm, mas.tree, vma, prev, next, vma->vm_start, vma->vm_end);
2751 if (vm_flags & VM_SHARED)
2752 mapping_unmap_writable(file->f_mapping);
2757 vm_unacct_memory(charged);
2762 static int __vm_munmap(unsigned long start, size_t len, bool downgrade)
2765 struct mm_struct *mm = current->mm;
2767 MA_STATE(mas, &mm->mm_mt, start, start);
2769 if (mmap_write_lock_killable(mm))
2772 ret = do_mas_munmap(&mas, mm, start, len, &uf, downgrade);
2774 * Returning 1 indicates mmap_lock is downgraded.
2775 * But 1 is not legal return value of vm_munmap() and munmap(), reset
2776 * it to 0 before return.
2779 mmap_read_unlock(mm);
2782 mmap_write_unlock(mm);
2784 userfaultfd_unmap_complete(mm, &uf);
2788 int vm_munmap(unsigned long start, size_t len)
2790 return __vm_munmap(start, len, false);
2792 EXPORT_SYMBOL(vm_munmap);
2794 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2796 addr = untagged_addr(addr);
2797 return __vm_munmap(addr, len, true);
2802 * Emulation of deprecated remap_file_pages() syscall.
2804 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
2805 unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
2808 struct mm_struct *mm = current->mm;
2809 struct vm_area_struct *vma;
2810 unsigned long populate = 0;
2811 unsigned long ret = -EINVAL;
2814 pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/mm/remap_file_pages.rst.\n",
2815 current->comm, current->pid);
2819 start = start & PAGE_MASK;
2820 size = size & PAGE_MASK;
2822 if (start + size <= start)
2825 /* Does pgoff wrap? */
2826 if (pgoff + (size >> PAGE_SHIFT) < pgoff)
2829 if (mmap_write_lock_killable(mm))
2832 vma = vma_lookup(mm, start);
2834 if (!vma || !(vma->vm_flags & VM_SHARED))
2837 if (start + size > vma->vm_end) {
2838 VMA_ITERATOR(vmi, mm, vma->vm_end);
2839 struct vm_area_struct *next, *prev = vma;
2841 for_each_vma_range(vmi, next, start + size) {
2842 /* hole between vmas ? */
2843 if (next->vm_start != prev->vm_end)
2846 if (next->vm_file != vma->vm_file)
2849 if (next->vm_flags != vma->vm_flags)
2859 prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
2860 prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
2861 prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
2863 flags &= MAP_NONBLOCK;
2864 flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
2865 if (vma->vm_flags & VM_LOCKED)
2866 flags |= MAP_LOCKED;
2868 file = get_file(vma->vm_file);
2869 ret = do_mmap(vma->vm_file, start, size,
2870 prot, flags, pgoff, &populate, NULL);
2873 mmap_write_unlock(mm);
2875 mm_populate(ret, populate);
2876 if (!IS_ERR_VALUE(ret))
2882 * brk_munmap() - Unmap a parital vma.
2883 * @mas: The maple tree state.
2884 * @vma: The vma to be modified
2885 * @newbrk: the start of the address to unmap
2886 * @oldbrk: The end of the address to unmap
2887 * @uf: The userfaultfd list_head
2889 * Returns: 1 on success.
2890 * unmaps a partial VMA mapping. Does not handle alignment, downgrades lock if
2893 static int do_brk_munmap(struct ma_state *mas, struct vm_area_struct *vma,
2894 unsigned long newbrk, unsigned long oldbrk,
2895 struct list_head *uf)
2897 struct mm_struct *mm = vma->vm_mm;
2900 arch_unmap(mm, newbrk, oldbrk);
2901 ret = do_mas_align_munmap(mas, vma, mm, newbrk, oldbrk, uf, true);
2907 * do_brk_flags() - Increase the brk vma if the flags match.
2908 * @mas: The maple tree state.
2909 * @addr: The start address
2910 * @len: The length of the increase
2912 * @flags: The VMA Flags
2914 * Extend the brk VMA from addr to addr + len. If the VMA is NULL or the flags
2915 * do not match then create a new anonymous VMA. Eventually we may be able to
2916 * do some brk-specific accounting here.
2918 static int do_brk_flags(struct ma_state *mas, struct vm_area_struct *vma,
2919 unsigned long addr, unsigned long len, unsigned long flags)
2921 struct mm_struct *mm = current->mm;
2925 * Check against address space limits by the changed size
2926 * Note: This happens *after* clearing old mappings in some code paths.
2928 flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2929 if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
2932 if (mm->map_count > sysctl_max_map_count)
2935 if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
2939 * Expand the existing vma if possible; Note that singular lists do not
2940 * occur after forking, so the expand will only happen on new VMAs.
2943 (!vma->anon_vma || list_is_singular(&vma->anon_vma_chain)) &&
2944 ((vma->vm_flags & ~VM_SOFTDIRTY) == flags)) {
2945 mas->index = vma->vm_start;
2946 mas->last = addr + len - 1;
2947 vma_adjust_trans_huge(vma, addr, addr + len, 0);
2948 if (vma->anon_vma) {
2949 anon_vma_lock_write(vma->anon_vma);
2950 anon_vma_interval_tree_pre_update_vma(vma);
2952 vma->vm_end = addr + len;
2953 vma->vm_flags |= VM_SOFTDIRTY;
2954 if (mas_store_gfp(mas, vma, GFP_KERNEL))
2955 goto mas_expand_failed;
2957 if (vma->anon_vma) {
2958 anon_vma_interval_tree_post_update_vma(vma);
2959 anon_vma_unlock_write(vma->anon_vma);
2961 khugepaged_enter_vma(vma, flags);
2965 /* create a vma struct for an anonymous mapping */
2966 vma = vm_area_alloc(mm);
2968 goto vma_alloc_fail;
2970 vma_set_anonymous(vma);
2971 vma->vm_start = addr;
2972 vma->vm_end = addr + len;
2973 vma->vm_pgoff = addr >> PAGE_SHIFT;
2974 vma->vm_flags = flags;
2975 vma->vm_page_prot = vm_get_page_prot(flags);
2976 mas_set_range(mas, vma->vm_start, addr + len - 1);
2977 if (mas_store_gfp(mas, vma, GFP_KERNEL))
2978 goto mas_store_fail;
2982 perf_event_mmap(vma);
2983 mm->total_vm += len >> PAGE_SHIFT;
2984 mm->data_vm += len >> PAGE_SHIFT;
2985 if (flags & VM_LOCKED)
2986 mm->locked_vm += (len >> PAGE_SHIFT);
2987 vma->vm_flags |= VM_SOFTDIRTY;
2994 vm_unacct_memory(len >> PAGE_SHIFT);
2998 if (vma->anon_vma) {
2999 anon_vma_interval_tree_post_update_vma(vma);
3000 anon_vma_unlock_write(vma->anon_vma);
3005 int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags)
3007 struct mm_struct *mm = current->mm;
3008 struct vm_area_struct *vma = NULL;
3013 MA_STATE(mas, &mm->mm_mt, addr, addr);
3015 len = PAGE_ALIGN(request);
3021 if (mmap_write_lock_killable(mm))
3024 /* Until we need other flags, refuse anything except VM_EXEC. */
3025 if ((flags & (~VM_EXEC)) != 0)
3028 ret = check_brk_limits(addr, len);
3032 ret = do_mas_munmap(&mas, mm, addr, len, &uf, 0);
3036 vma = mas_prev(&mas, 0);
3037 if (!vma || vma->vm_end != addr || vma_policy(vma) ||
3038 !can_vma_merge_after(vma, flags, NULL, NULL,
3039 addr >> PAGE_SHIFT, NULL_VM_UFFD_CTX, NULL))
3042 ret = do_brk_flags(&mas, vma, addr, len, flags);
3043 populate = ((mm->def_flags & VM_LOCKED) != 0);
3044 mmap_write_unlock(mm);
3045 userfaultfd_unmap_complete(mm, &uf);
3046 if (populate && !ret)
3047 mm_populate(addr, len);
3052 mmap_write_unlock(mm);
3055 EXPORT_SYMBOL(vm_brk_flags);
3057 int vm_brk(unsigned long addr, unsigned long len)
3059 return vm_brk_flags(addr, len, 0);
3061 EXPORT_SYMBOL(vm_brk);
3063 /* Release all mmaps. */
3064 void exit_mmap(struct mm_struct *mm)
3066 struct mmu_gather tlb;
3067 struct vm_area_struct *vma;
3068 unsigned long nr_accounted = 0;
3069 MA_STATE(mas, &mm->mm_mt, 0, 0);
3072 /* mm's last user has gone, and its about to be pulled down */
3073 mmu_notifier_release(mm);
3078 vma = mas_find(&mas, ULONG_MAX);
3080 /* Can happen if dup_mmap() received an OOM */
3081 mmap_read_unlock(mm);
3087 tlb_gather_mmu_fullmm(&tlb, mm);
3088 /* update_hiwater_rss(mm) here? but nobody should be looking */
3089 /* Use ULONG_MAX here to ensure all VMAs in the mm are unmapped */
3090 unmap_vmas(&tlb, &mm->mm_mt, vma, 0, ULONG_MAX);
3091 mmap_read_unlock(mm);
3094 * Set MMF_OOM_SKIP to hide this task from the oom killer/reaper
3095 * because the memory has been already freed.
3097 set_bit(MMF_OOM_SKIP, &mm->flags);
3098 mmap_write_lock(mm);
3099 free_pgtables(&tlb, &mm->mm_mt, vma, FIRST_USER_ADDRESS,
3100 USER_PGTABLES_CEILING);
3101 tlb_finish_mmu(&tlb);
3104 * Walk the list again, actually closing and freeing it, with preemption
3105 * enabled, without holding any MM locks besides the unreachable
3109 if (vma->vm_flags & VM_ACCOUNT)
3110 nr_accounted += vma_pages(vma);
3114 } while ((vma = mas_find(&mas, ULONG_MAX)) != NULL);
3116 BUG_ON(count != mm->map_count);
3118 trace_exit_mmap(mm);
3119 __mt_destroy(&mm->mm_mt);
3120 mmap_write_unlock(mm);
3121 vm_unacct_memory(nr_accounted);
3124 /* Insert vm structure into process list sorted by address
3125 * and into the inode's i_mmap tree. If vm_file is non-NULL
3126 * then i_mmap_rwsem is taken here.
3128 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
3130 unsigned long charged = vma_pages(vma);
3133 if (find_vma_intersection(mm, vma->vm_start, vma->vm_end))
3136 if ((vma->vm_flags & VM_ACCOUNT) &&
3137 security_vm_enough_memory_mm(mm, charged))
3141 * The vm_pgoff of a purely anonymous vma should be irrelevant
3142 * until its first write fault, when page's anon_vma and index
3143 * are set. But now set the vm_pgoff it will almost certainly
3144 * end up with (unless mremap moves it elsewhere before that
3145 * first wfault), so /proc/pid/maps tells a consistent story.
3147 * By setting it to reflect the virtual start address of the
3148 * vma, merges and splits can happen in a seamless way, just
3149 * using the existing file pgoff checks and manipulations.
3150 * Similarly in do_mmap and in do_brk_flags.
3152 if (vma_is_anonymous(vma)) {
3153 BUG_ON(vma->anon_vma);
3154 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
3157 if (vma_link(mm, vma)) {
3158 vm_unacct_memory(charged);
3166 * Copy the vma structure to a new location in the same mm,
3167 * prior to moving page table entries, to effect an mremap move.
3169 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
3170 unsigned long addr, unsigned long len, pgoff_t pgoff,
3171 bool *need_rmap_locks)
3173 struct vm_area_struct *vma = *vmap;
3174 unsigned long vma_start = vma->vm_start;
3175 struct mm_struct *mm = vma->vm_mm;
3176 struct vm_area_struct *new_vma, *prev;
3177 bool faulted_in_anon_vma = true;
3181 * If anonymous vma has not yet been faulted, update new pgoff
3182 * to match new location, to increase its chance of merging.
3184 if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
3185 pgoff = addr >> PAGE_SHIFT;
3186 faulted_in_anon_vma = false;
3189 new_vma = find_vma_prev(mm, addr, &prev);
3190 if (new_vma && new_vma->vm_start < addr + len)
3191 return NULL; /* should never get here */
3193 new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
3194 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
3195 vma->vm_userfaultfd_ctx, anon_vma_name(vma));
3198 * Source vma may have been merged into new_vma
3200 if (unlikely(vma_start >= new_vma->vm_start &&
3201 vma_start < new_vma->vm_end)) {
3203 * The only way we can get a vma_merge with
3204 * self during an mremap is if the vma hasn't
3205 * been faulted in yet and we were allowed to
3206 * reset the dst vma->vm_pgoff to the
3207 * destination address of the mremap to allow
3208 * the merge to happen. mremap must change the
3209 * vm_pgoff linearity between src and dst vmas
3210 * (in turn preventing a vma_merge) to be
3211 * safe. It is only safe to keep the vm_pgoff
3212 * linear if there are no pages mapped yet.
3214 VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
3215 *vmap = vma = new_vma;
3217 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
3219 new_vma = vm_area_dup(vma);
3222 new_vma->vm_start = addr;
3223 new_vma->vm_end = addr + len;
3224 new_vma->vm_pgoff = pgoff;
3225 if (vma_dup_policy(vma, new_vma))
3227 if (anon_vma_clone(new_vma, vma))
3228 goto out_free_mempol;
3229 if (new_vma->vm_file)
3230 get_file(new_vma->vm_file);
3231 if (new_vma->vm_ops && new_vma->vm_ops->open)
3232 new_vma->vm_ops->open(new_vma);
3233 if (vma_link(mm, new_vma))
3235 *need_rmap_locks = false;
3241 if (new_vma->vm_ops && new_vma->vm_ops->close)
3242 new_vma->vm_ops->close(new_vma);
3244 mpol_put(vma_policy(new_vma));
3246 vm_area_free(new_vma);
3253 * Return true if the calling process may expand its vm space by the passed
3256 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
3258 if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
3261 if (is_data_mapping(flags) &&
3262 mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
3263 /* Workaround for Valgrind */
3264 if (rlimit(RLIMIT_DATA) == 0 &&
3265 mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
3268 pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n",
3269 current->comm, current->pid,
3270 (mm->data_vm + npages) << PAGE_SHIFT,
3271 rlimit(RLIMIT_DATA),
3272 ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data");
3274 if (!ignore_rlimit_data)
3281 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
3283 WRITE_ONCE(mm->total_vm, READ_ONCE(mm->total_vm)+npages);
3285 if (is_exec_mapping(flags))
3286 mm->exec_vm += npages;
3287 else if (is_stack_mapping(flags))
3288 mm->stack_vm += npages;
3289 else if (is_data_mapping(flags))
3290 mm->data_vm += npages;
3293 static vm_fault_t special_mapping_fault(struct vm_fault *vmf);
3296 * Having a close hook prevents vma merging regardless of flags.
3298 static void special_mapping_close(struct vm_area_struct *vma)
3302 static const char *special_mapping_name(struct vm_area_struct *vma)
3304 return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3307 static int special_mapping_mremap(struct vm_area_struct *new_vma)
3309 struct vm_special_mapping *sm = new_vma->vm_private_data;
3311 if (WARN_ON_ONCE(current->mm != new_vma->vm_mm))
3315 return sm->mremap(sm, new_vma);
3320 static int special_mapping_split(struct vm_area_struct *vma, unsigned long addr)
3323 * Forbid splitting special mappings - kernel has expectations over
3324 * the number of pages in mapping. Together with VM_DONTEXPAND
3325 * the size of vma should stay the same over the special mapping's
3331 static const struct vm_operations_struct special_mapping_vmops = {
3332 .close = special_mapping_close,
3333 .fault = special_mapping_fault,
3334 .mremap = special_mapping_mremap,
3335 .name = special_mapping_name,
3336 /* vDSO code relies that VVAR can't be accessed remotely */
3338 .may_split = special_mapping_split,
3341 static const struct vm_operations_struct legacy_special_mapping_vmops = {
3342 .close = special_mapping_close,
3343 .fault = special_mapping_fault,
3346 static vm_fault_t special_mapping_fault(struct vm_fault *vmf)
3348 struct vm_area_struct *vma = vmf->vma;
3350 struct page **pages;
3352 if (vma->vm_ops == &legacy_special_mapping_vmops) {
3353 pages = vma->vm_private_data;
3355 struct vm_special_mapping *sm = vma->vm_private_data;
3358 return sm->fault(sm, vmf->vma, vmf);
3363 for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3367 struct page *page = *pages;
3373 return VM_FAULT_SIGBUS;
3376 static struct vm_area_struct *__install_special_mapping(
3377 struct mm_struct *mm,
3378 unsigned long addr, unsigned long len,
3379 unsigned long vm_flags, void *priv,
3380 const struct vm_operations_struct *ops)
3383 struct vm_area_struct *vma;
3386 vma = vm_area_alloc(mm);
3387 if (unlikely(vma == NULL))
3388 return ERR_PTR(-ENOMEM);
3390 vma->vm_start = addr;
3391 vma->vm_end = addr + len;
3393 vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
3394 vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
3395 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3398 vma->vm_private_data = priv;
3400 ret = insert_vm_struct(mm, vma);
3404 vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3406 perf_event_mmap(vma);
3414 return ERR_PTR(ret);
3417 bool vma_is_special_mapping(const struct vm_area_struct *vma,
3418 const struct vm_special_mapping *sm)
3420 return vma->vm_private_data == sm &&
3421 (vma->vm_ops == &special_mapping_vmops ||
3422 vma->vm_ops == &legacy_special_mapping_vmops);
3426 * Called with mm->mmap_lock held for writing.
3427 * Insert a new vma covering the given region, with the given flags.
3428 * Its pages are supplied by the given array of struct page *.
3429 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3430 * The region past the last page supplied will always produce SIGBUS.
3431 * The array pointer and the pages it points to are assumed to stay alive
3432 * for as long as this mapping might exist.
3434 struct vm_area_struct *_install_special_mapping(
3435 struct mm_struct *mm,
3436 unsigned long addr, unsigned long len,
3437 unsigned long vm_flags, const struct vm_special_mapping *spec)
3439 return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3440 &special_mapping_vmops);
3443 int install_special_mapping(struct mm_struct *mm,
3444 unsigned long addr, unsigned long len,
3445 unsigned long vm_flags, struct page **pages)
3447 struct vm_area_struct *vma = __install_special_mapping(
3448 mm, addr, len, vm_flags, (void *)pages,
3449 &legacy_special_mapping_vmops);
3451 return PTR_ERR_OR_ZERO(vma);
3454 static DEFINE_MUTEX(mm_all_locks_mutex);
3456 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3458 if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3460 * The LSB of head.next can't change from under us
3461 * because we hold the mm_all_locks_mutex.
3463 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_lock);
3465 * We can safely modify head.next after taking the
3466 * anon_vma->root->rwsem. If some other vma in this mm shares
3467 * the same anon_vma we won't take it again.
3469 * No need of atomic instructions here, head.next
3470 * can't change from under us thanks to the
3471 * anon_vma->root->rwsem.
3473 if (__test_and_set_bit(0, (unsigned long *)
3474 &anon_vma->root->rb_root.rb_root.rb_node))
3479 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3481 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3483 * AS_MM_ALL_LOCKS can't change from under us because
3484 * we hold the mm_all_locks_mutex.
3486 * Operations on ->flags have to be atomic because
3487 * even if AS_MM_ALL_LOCKS is stable thanks to the
3488 * mm_all_locks_mutex, there may be other cpus
3489 * changing other bitflags in parallel to us.
3491 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3493 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_lock);
3498 * This operation locks against the VM for all pte/vma/mm related
3499 * operations that could ever happen on a certain mm. This includes
3500 * vmtruncate, try_to_unmap, and all page faults.
3502 * The caller must take the mmap_lock in write mode before calling
3503 * mm_take_all_locks(). The caller isn't allowed to release the
3504 * mmap_lock until mm_drop_all_locks() returns.
3506 * mmap_lock in write mode is required in order to block all operations
3507 * that could modify pagetables and free pages without need of
3508 * altering the vma layout. It's also needed in write mode to avoid new
3509 * anon_vmas to be associated with existing vmas.
3511 * A single task can't take more than one mm_take_all_locks() in a row
3512 * or it would deadlock.
3514 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3515 * mapping->flags avoid to take the same lock twice, if more than one
3516 * vma in this mm is backed by the same anon_vma or address_space.
3518 * We take locks in following order, accordingly to comment at beginning
3520 * - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3522 * - all i_mmap_rwsem locks;
3523 * - all anon_vma->rwseml
3525 * We can take all locks within these types randomly because the VM code
3526 * doesn't nest them and we protected from parallel mm_take_all_locks() by
3527 * mm_all_locks_mutex.
3529 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3530 * that may have to take thousand of locks.
3532 * mm_take_all_locks() can fail if it's interrupted by signals.
3534 int mm_take_all_locks(struct mm_struct *mm)
3536 struct vm_area_struct *vma;
3537 struct anon_vma_chain *avc;
3538 MA_STATE(mas, &mm->mm_mt, 0, 0);
3540 mmap_assert_write_locked(mm);
3542 mutex_lock(&mm_all_locks_mutex);
3544 mas_for_each(&mas, vma, ULONG_MAX) {
3545 if (signal_pending(current))
3547 if (vma->vm_file && vma->vm_file->f_mapping &&
3548 is_vm_hugetlb_page(vma))
3549 vm_lock_mapping(mm, vma->vm_file->f_mapping);
3553 mas_for_each(&mas, vma, ULONG_MAX) {
3554 if (signal_pending(current))
3556 if (vma->vm_file && vma->vm_file->f_mapping &&
3557 !is_vm_hugetlb_page(vma))
3558 vm_lock_mapping(mm, vma->vm_file->f_mapping);
3562 mas_for_each(&mas, vma, ULONG_MAX) {
3563 if (signal_pending(current))
3566 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3567 vm_lock_anon_vma(mm, avc->anon_vma);
3573 mm_drop_all_locks(mm);
3577 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3579 if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3581 * The LSB of head.next can't change to 0 from under
3582 * us because we hold the mm_all_locks_mutex.
3584 * We must however clear the bitflag before unlocking
3585 * the vma so the users using the anon_vma->rb_root will
3586 * never see our bitflag.
3588 * No need of atomic instructions here, head.next
3589 * can't change from under us until we release the
3590 * anon_vma->root->rwsem.
3592 if (!__test_and_clear_bit(0, (unsigned long *)
3593 &anon_vma->root->rb_root.rb_root.rb_node))
3595 anon_vma_unlock_write(anon_vma);
3599 static void vm_unlock_mapping(struct address_space *mapping)
3601 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3603 * AS_MM_ALL_LOCKS can't change to 0 from under us
3604 * because we hold the mm_all_locks_mutex.
3606 i_mmap_unlock_write(mapping);
3607 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3614 * The mmap_lock cannot be released by the caller until
3615 * mm_drop_all_locks() returns.
3617 void mm_drop_all_locks(struct mm_struct *mm)
3619 struct vm_area_struct *vma;
3620 struct anon_vma_chain *avc;
3621 MA_STATE(mas, &mm->mm_mt, 0, 0);
3623 mmap_assert_write_locked(mm);
3624 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3626 mas_for_each(&mas, vma, ULONG_MAX) {
3628 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3629 vm_unlock_anon_vma(avc->anon_vma);
3630 if (vma->vm_file && vma->vm_file->f_mapping)
3631 vm_unlock_mapping(vma->vm_file->f_mapping);
3634 mutex_unlock(&mm_all_locks_mutex);
3638 * initialise the percpu counter for VM
3640 void __init mmap_init(void)
3644 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3649 * Initialise sysctl_user_reserve_kbytes.
3651 * This is intended to prevent a user from starting a single memory hogging
3652 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3655 * The default value is min(3% of free memory, 128MB)
3656 * 128MB is enough to recover with sshd/login, bash, and top/kill.
3658 static int init_user_reserve(void)
3660 unsigned long free_kbytes;
3662 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3664 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3667 subsys_initcall(init_user_reserve);
3670 * Initialise sysctl_admin_reserve_kbytes.
3672 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3673 * to log in and kill a memory hogging process.
3675 * Systems with more than 256MB will reserve 8MB, enough to recover
3676 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3677 * only reserve 3% of free pages by default.
3679 static int init_admin_reserve(void)
3681 unsigned long free_kbytes;
3683 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3685 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3688 subsys_initcall(init_admin_reserve);
3691 * Reinititalise user and admin reserves if memory is added or removed.
3693 * The default user reserve max is 128MB, and the default max for the
3694 * admin reserve is 8MB. These are usually, but not always, enough to
3695 * enable recovery from a memory hogging process using login/sshd, a shell,
3696 * and tools like top. It may make sense to increase or even disable the
3697 * reserve depending on the existence of swap or variations in the recovery
3698 * tools. So, the admin may have changed them.
3700 * If memory is added and the reserves have been eliminated or increased above
3701 * the default max, then we'll trust the admin.
3703 * If memory is removed and there isn't enough free memory, then we
3704 * need to reset the reserves.
3706 * Otherwise keep the reserve set by the admin.
3708 static int reserve_mem_notifier(struct notifier_block *nb,
3709 unsigned long action, void *data)
3711 unsigned long tmp, free_kbytes;
3715 /* Default max is 128MB. Leave alone if modified by operator. */
3716 tmp = sysctl_user_reserve_kbytes;
3717 if (0 < tmp && tmp < (1UL << 17))
3718 init_user_reserve();
3720 /* Default max is 8MB. Leave alone if modified by operator. */
3721 tmp = sysctl_admin_reserve_kbytes;
3722 if (0 < tmp && tmp < (1UL << 13))
3723 init_admin_reserve();
3727 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3729 if (sysctl_user_reserve_kbytes > free_kbytes) {
3730 init_user_reserve();
3731 pr_info("vm.user_reserve_kbytes reset to %lu\n",
3732 sysctl_user_reserve_kbytes);
3735 if (sysctl_admin_reserve_kbytes > free_kbytes) {
3736 init_admin_reserve();
3737 pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3738 sysctl_admin_reserve_kbytes);
3747 static struct notifier_block reserve_mem_nb = {
3748 .notifier_call = reserve_mem_notifier,
3751 static int __meminit init_reserve_notifier(void)
3753 if (register_hotmemory_notifier(&reserve_mem_nb))
3754 pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3758 subsys_initcall(init_reserve_notifier);