Merge tag 'v4.9.209' of git://git.kernel.org/pub/scm/linux/kernel/git/stable/linux...
[platform/kernel/linux-amlogic.git] / mm / mmap.c
1 /*
2  * mm/mmap.c
3  *
4  * Written by obz.
5  *
6  * Address space accounting code        <alan@lxorguk.ukuu.org.uk>
7  */
8
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11 #include <linux/kernel.h>
12 #include <linux/slab.h>
13 #include <linux/backing-dev.h>
14 #include <linux/mm.h>
15 #include <linux/vmacache.h>
16 #include <linux/shm.h>
17 #include <linux/mman.h>
18 #include <linux/pagemap.h>
19 #include <linux/swap.h>
20 #include <linux/syscalls.h>
21 #include <linux/capability.h>
22 #include <linux/init.h>
23 #include <linux/file.h>
24 #include <linux/fs.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/hugetlb.h>
28 #include <linux/shmem_fs.h>
29 #include <linux/profile.h>
30 #include <linux/export.h>
31 #include <linux/mount.h>
32 #include <linux/mempolicy.h>
33 #include <linux/rmap.h>
34 #include <linux/mmu_notifier.h>
35 #include <linux/mmdebug.h>
36 #include <linux/perf_event.h>
37 #include <linux/audit.h>
38 #include <linux/khugepaged.h>
39 #include <linux/uprobes.h>
40 #include <linux/rbtree_augmented.h>
41 #include <linux/notifier.h>
42 #include <linux/memory.h>
43 #include <linux/printk.h>
44 #include <linux/userfaultfd_k.h>
45 #include <linux/moduleparam.h>
46 #include <linux/pkeys.h>
47
48 #include <asm/uaccess.h>
49 #include <asm/cacheflush.h>
50 #include <asm/tlb.h>
51 #include <asm/mmu_context.h>
52
53 #include "internal.h"
54
55 #ifndef arch_mmap_check
56 #define arch_mmap_check(addr, len, flags)       (0)
57 #endif
58
59 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
60 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
61 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX;
62 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
63 #endif
64 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
65 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
66 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
67 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
68 #endif
69
70 static bool ignore_rlimit_data;
71 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
72
73 static void unmap_region(struct mm_struct *mm,
74                 struct vm_area_struct *vma, struct vm_area_struct *prev,
75                 unsigned long start, unsigned long end);
76
77 /* description of effects of mapping type and prot in current implementation.
78  * this is due to the limited x86 page protection hardware.  The expected
79  * behavior is in parens:
80  *
81  * map_type     prot
82  *              PROT_NONE       PROT_READ       PROT_WRITE      PROT_EXEC
83  * MAP_SHARED   r: (no) no      r: (yes) yes    r: (no) yes     r: (no) yes
84  *              w: (no) no      w: (no) no      w: (yes) yes    w: (no) no
85  *              x: (no) no      x: (no) yes     x: (no) yes     x: (yes) yes
86  *
87  * MAP_PRIVATE  r: (no) no      r: (yes) yes    r: (no) yes     r: (no) yes
88  *              w: (no) no      w: (no) no      w: (copy) copy  w: (no) no
89  *              x: (no) no      x: (no) yes     x: (no) yes     x: (yes) yes
90  */
91 pgprot_t protection_map[16] = {
92         __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
93         __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
94 };
95
96 pgprot_t vm_get_page_prot(unsigned long vm_flags)
97 {
98         return __pgprot(pgprot_val(protection_map[vm_flags &
99                                 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
100                         pgprot_val(arch_vm_get_page_prot(vm_flags)));
101 }
102 EXPORT_SYMBOL(vm_get_page_prot);
103
104 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
105 {
106         return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
107 }
108
109 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
110 void vma_set_page_prot(struct vm_area_struct *vma)
111 {
112         unsigned long vm_flags = vma->vm_flags;
113         pgprot_t vm_page_prot;
114
115         vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
116         if (vma_wants_writenotify(vma, vm_page_prot)) {
117                 vm_flags &= ~VM_SHARED;
118                 vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags);
119         }
120         /* remove_protection_ptes reads vma->vm_page_prot without mmap_sem */
121         WRITE_ONCE(vma->vm_page_prot, vm_page_prot);
122 }
123
124 /*
125  * Requires inode->i_mapping->i_mmap_rwsem
126  */
127 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
128                 struct file *file, struct address_space *mapping)
129 {
130         if (vma->vm_flags & VM_DENYWRITE)
131                 atomic_inc(&file_inode(file)->i_writecount);
132         if (vma->vm_flags & VM_SHARED)
133                 mapping_unmap_writable(mapping);
134
135         flush_dcache_mmap_lock(mapping);
136         vma_interval_tree_remove(vma, &mapping->i_mmap);
137         flush_dcache_mmap_unlock(mapping);
138 }
139
140 /*
141  * Unlink a file-based vm structure from its interval tree, to hide
142  * vma from rmap and vmtruncate before freeing its page tables.
143  */
144 void unlink_file_vma(struct vm_area_struct *vma)
145 {
146         struct file *file = vma->vm_file;
147
148         if (file) {
149                 struct address_space *mapping = file->f_mapping;
150                 i_mmap_lock_write(mapping);
151                 __remove_shared_vm_struct(vma, file, mapping);
152                 i_mmap_unlock_write(mapping);
153         }
154 }
155
156 /*
157  * Close a vm structure and free it, returning the next.
158  */
159 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
160 {
161         struct vm_area_struct *next = vma->vm_next;
162
163         might_sleep();
164         if (vma->vm_ops && vma->vm_ops->close)
165                 vma->vm_ops->close(vma);
166         if (vma->vm_file)
167                 fput(vma->vm_file);
168         mpol_put(vma_policy(vma));
169         kmem_cache_free(vm_area_cachep, vma);
170         return next;
171 }
172
173 static int do_brk(unsigned long addr, unsigned long len);
174
175 SYSCALL_DEFINE1(brk, unsigned long, brk)
176 {
177         unsigned long retval;
178         unsigned long newbrk, oldbrk;
179         struct mm_struct *mm = current->mm;
180         struct vm_area_struct *next;
181         unsigned long min_brk;
182         bool populate;
183
184         if (down_write_killable(&mm->mmap_sem))
185                 return -EINTR;
186
187 #ifdef CONFIG_COMPAT_BRK
188         /*
189          * CONFIG_COMPAT_BRK can still be overridden by setting
190          * randomize_va_space to 2, which will still cause mm->start_brk
191          * to be arbitrarily shifted
192          */
193         if (current->brk_randomized)
194                 min_brk = mm->start_brk;
195         else
196                 min_brk = mm->end_data;
197 #else
198         min_brk = mm->start_brk;
199 #endif
200         if (brk < min_brk)
201                 goto out;
202
203         /*
204          * Check against rlimit here. If this check is done later after the test
205          * of oldbrk with newbrk then it can escape the test and let the data
206          * segment grow beyond its set limit the in case where the limit is
207          * not page aligned -Ram Gupta
208          */
209         if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
210                               mm->end_data, mm->start_data))
211                 goto out;
212
213         newbrk = PAGE_ALIGN(brk);
214         oldbrk = PAGE_ALIGN(mm->brk);
215         if (oldbrk == newbrk)
216                 goto set_brk;
217
218         /* Always allow shrinking brk. */
219         if (brk <= mm->brk) {
220                 if (!do_munmap(mm, newbrk, oldbrk-newbrk))
221                         goto set_brk;
222                 goto out;
223         }
224
225         /* Check against existing mmap mappings. */
226         next = find_vma(mm, oldbrk);
227         if (next && newbrk + PAGE_SIZE > vm_start_gap(next))
228                 goto out;
229
230         /* Ok, looks good - let it rip. */
231         if (do_brk(oldbrk, newbrk-oldbrk) < 0)
232                 goto out;
233
234 set_brk:
235         mm->brk = brk;
236         populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
237         up_write(&mm->mmap_sem);
238         if (populate)
239                 mm_populate(oldbrk, newbrk - oldbrk);
240         return brk;
241
242 out:
243         retval = mm->brk;
244         up_write(&mm->mmap_sem);
245         return retval;
246 }
247
248 static long vma_compute_subtree_gap(struct vm_area_struct *vma)
249 {
250         unsigned long max, prev_end, subtree_gap;
251
252         /*
253          * Note: in the rare case of a VM_GROWSDOWN above a VM_GROWSUP, we
254          * allow two stack_guard_gaps between them here, and when choosing
255          * an unmapped area; whereas when expanding we only require one.
256          * That's a little inconsistent, but keeps the code here simpler.
257          */
258         max = vm_start_gap(vma);
259         if (vma->vm_prev) {
260                 prev_end = vm_end_gap(vma->vm_prev);
261                 if (max > prev_end)
262                         max -= prev_end;
263                 else
264                         max = 0;
265         }
266         if (vma->vm_rb.rb_left) {
267                 subtree_gap = rb_entry(vma->vm_rb.rb_left,
268                                 struct vm_area_struct, vm_rb)->rb_subtree_gap;
269                 if (subtree_gap > max)
270                         max = subtree_gap;
271         }
272         if (vma->vm_rb.rb_right) {
273                 subtree_gap = rb_entry(vma->vm_rb.rb_right,
274                                 struct vm_area_struct, vm_rb)->rb_subtree_gap;
275                 if (subtree_gap > max)
276                         max = subtree_gap;
277         }
278         return max;
279 }
280
281 #ifdef CONFIG_DEBUG_VM_RB
282 static int browse_rb(struct mm_struct *mm)
283 {
284         struct rb_root *root = &mm->mm_rb;
285         int i = 0, j, bug = 0;
286         struct rb_node *nd, *pn = NULL;
287         unsigned long prev = 0, pend = 0;
288
289         for (nd = rb_first(root); nd; nd = rb_next(nd)) {
290                 struct vm_area_struct *vma;
291                 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
292                 if (vma->vm_start < prev) {
293                         pr_emerg("vm_start %lx < prev %lx\n",
294                                   vma->vm_start, prev);
295                         bug = 1;
296                 }
297                 if (vma->vm_start < pend) {
298                         pr_emerg("vm_start %lx < pend %lx\n",
299                                   vma->vm_start, pend);
300                         bug = 1;
301                 }
302                 if (vma->vm_start > vma->vm_end) {
303                         pr_emerg("vm_start %lx > vm_end %lx\n",
304                                   vma->vm_start, vma->vm_end);
305                         bug = 1;
306                 }
307                 spin_lock(&mm->page_table_lock);
308                 if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
309                         pr_emerg("free gap %lx, correct %lx\n",
310                                vma->rb_subtree_gap,
311                                vma_compute_subtree_gap(vma));
312                         bug = 1;
313                 }
314                 spin_unlock(&mm->page_table_lock);
315                 i++;
316                 pn = nd;
317                 prev = vma->vm_start;
318                 pend = vma->vm_end;
319         }
320         j = 0;
321         for (nd = pn; nd; nd = rb_prev(nd))
322                 j++;
323         if (i != j) {
324                 pr_emerg("backwards %d, forwards %d\n", j, i);
325                 bug = 1;
326         }
327         return bug ? -1 : i;
328 }
329
330 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
331 {
332         struct rb_node *nd;
333
334         for (nd = rb_first(root); nd; nd = rb_next(nd)) {
335                 struct vm_area_struct *vma;
336                 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
337                 VM_BUG_ON_VMA(vma != ignore &&
338                         vma->rb_subtree_gap != vma_compute_subtree_gap(vma),
339                         vma);
340         }
341 }
342
343 static void validate_mm(struct mm_struct *mm)
344 {
345         int bug = 0;
346         int i = 0;
347         unsigned long highest_address = 0;
348         struct vm_area_struct *vma = mm->mmap;
349
350         while (vma) {
351                 struct anon_vma *anon_vma = vma->anon_vma;
352                 struct anon_vma_chain *avc;
353
354                 if (anon_vma) {
355                         anon_vma_lock_read(anon_vma);
356                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
357                                 anon_vma_interval_tree_verify(avc);
358                         anon_vma_unlock_read(anon_vma);
359                 }
360
361                 highest_address = vm_end_gap(vma);
362                 vma = vma->vm_next;
363                 i++;
364         }
365         if (i != mm->map_count) {
366                 pr_emerg("map_count %d vm_next %d\n", mm->map_count, i);
367                 bug = 1;
368         }
369         if (highest_address != mm->highest_vm_end) {
370                 pr_emerg("mm->highest_vm_end %lx, found %lx\n",
371                           mm->highest_vm_end, highest_address);
372                 bug = 1;
373         }
374         i = browse_rb(mm);
375         if (i != mm->map_count) {
376                 if (i != -1)
377                         pr_emerg("map_count %d rb %d\n", mm->map_count, i);
378                 bug = 1;
379         }
380         VM_BUG_ON_MM(bug, mm);
381 }
382 #else
383 #define validate_mm_rb(root, ignore) do { } while (0)
384 #define validate_mm(mm) do { } while (0)
385 #endif
386
387 RB_DECLARE_CALLBACKS(static, vma_gap_callbacks, struct vm_area_struct, vm_rb,
388                      unsigned long, rb_subtree_gap, vma_compute_subtree_gap)
389
390 /*
391  * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
392  * vma->vm_prev->vm_end values changed, without modifying the vma's position
393  * in the rbtree.
394  */
395 static void vma_gap_update(struct vm_area_struct *vma)
396 {
397         /*
398          * As it turns out, RB_DECLARE_CALLBACKS() already created a callback
399          * function that does exacltly what we want.
400          */
401         vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
402 }
403
404 static inline void vma_rb_insert(struct vm_area_struct *vma,
405                                  struct rb_root *root)
406 {
407         /* All rb_subtree_gap values must be consistent prior to insertion */
408         validate_mm_rb(root, NULL);
409
410         rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
411 }
412
413 static void __vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
414 {
415         /*
416          * Note rb_erase_augmented is a fairly large inline function,
417          * so make sure we instantiate it only once with our desired
418          * augmented rbtree callbacks.
419          */
420         rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
421 }
422
423 static __always_inline void vma_rb_erase_ignore(struct vm_area_struct *vma,
424                                                 struct rb_root *root,
425                                                 struct vm_area_struct *ignore)
426 {
427         /*
428          * All rb_subtree_gap values must be consistent prior to erase,
429          * with the possible exception of the "next" vma being erased if
430          * next->vm_start was reduced.
431          */
432         validate_mm_rb(root, ignore);
433
434         __vma_rb_erase(vma, root);
435 }
436
437 static __always_inline void vma_rb_erase(struct vm_area_struct *vma,
438                                          struct rb_root *root)
439 {
440         /*
441          * All rb_subtree_gap values must be consistent prior to erase,
442          * with the possible exception of the vma being erased.
443          */
444         validate_mm_rb(root, vma);
445
446         __vma_rb_erase(vma, root);
447 }
448
449 /*
450  * vma has some anon_vma assigned, and is already inserted on that
451  * anon_vma's interval trees.
452  *
453  * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
454  * vma must be removed from the anon_vma's interval trees using
455  * anon_vma_interval_tree_pre_update_vma().
456  *
457  * After the update, the vma will be reinserted using
458  * anon_vma_interval_tree_post_update_vma().
459  *
460  * The entire update must be protected by exclusive mmap_sem and by
461  * the root anon_vma's mutex.
462  */
463 static inline void
464 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
465 {
466         struct anon_vma_chain *avc;
467
468         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
469                 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
470 }
471
472 static inline void
473 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
474 {
475         struct anon_vma_chain *avc;
476
477         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
478                 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
479 }
480
481 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
482                 unsigned long end, struct vm_area_struct **pprev,
483                 struct rb_node ***rb_link, struct rb_node **rb_parent)
484 {
485         struct rb_node **__rb_link, *__rb_parent, *rb_prev;
486
487         __rb_link = &mm->mm_rb.rb_node;
488         rb_prev = __rb_parent = NULL;
489
490         while (*__rb_link) {
491                 struct vm_area_struct *vma_tmp;
492
493                 __rb_parent = *__rb_link;
494                 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
495
496                 if (vma_tmp->vm_end > addr) {
497                         /* Fail if an existing vma overlaps the area */
498                         if (vma_tmp->vm_start < end)
499                                 return -ENOMEM;
500                         __rb_link = &__rb_parent->rb_left;
501                 } else {
502                         rb_prev = __rb_parent;
503                         __rb_link = &__rb_parent->rb_right;
504                 }
505         }
506
507         *pprev = NULL;
508         if (rb_prev)
509                 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
510         *rb_link = __rb_link;
511         *rb_parent = __rb_parent;
512         return 0;
513 }
514
515 static unsigned long count_vma_pages_range(struct mm_struct *mm,
516                 unsigned long addr, unsigned long end)
517 {
518         unsigned long nr_pages = 0;
519         struct vm_area_struct *vma;
520
521         /* Find first overlaping mapping */
522         vma = find_vma_intersection(mm, addr, end);
523         if (!vma)
524                 return 0;
525
526         nr_pages = (min(end, vma->vm_end) -
527                 max(addr, vma->vm_start)) >> PAGE_SHIFT;
528
529         /* Iterate over the rest of the overlaps */
530         for (vma = vma->vm_next; vma; vma = vma->vm_next) {
531                 unsigned long overlap_len;
532
533                 if (vma->vm_start > end)
534                         break;
535
536                 overlap_len = min(end, vma->vm_end) - vma->vm_start;
537                 nr_pages += overlap_len >> PAGE_SHIFT;
538         }
539
540         return nr_pages;
541 }
542
543 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
544                 struct rb_node **rb_link, struct rb_node *rb_parent)
545 {
546         /* Update tracking information for the gap following the new vma. */
547         if (vma->vm_next)
548                 vma_gap_update(vma->vm_next);
549         else
550                 mm->highest_vm_end = vm_end_gap(vma);
551
552         /*
553          * vma->vm_prev wasn't known when we followed the rbtree to find the
554          * correct insertion point for that vma. As a result, we could not
555          * update the vma vm_rb parents rb_subtree_gap values on the way down.
556          * So, we first insert the vma with a zero rb_subtree_gap value
557          * (to be consistent with what we did on the way down), and then
558          * immediately update the gap to the correct value. Finally we
559          * rebalance the rbtree after all augmented values have been set.
560          */
561         rb_link_node(&vma->vm_rb, rb_parent, rb_link);
562         vma->rb_subtree_gap = 0;
563         vma_gap_update(vma);
564         vma_rb_insert(vma, &mm->mm_rb);
565 }
566
567 static void __vma_link_file(struct vm_area_struct *vma)
568 {
569         struct file *file;
570
571         file = vma->vm_file;
572         if (file) {
573                 struct address_space *mapping = file->f_mapping;
574
575                 if (vma->vm_flags & VM_DENYWRITE)
576                         atomic_dec(&file_inode(file)->i_writecount);
577                 if (vma->vm_flags & VM_SHARED)
578                         atomic_inc(&mapping->i_mmap_writable);
579
580                 flush_dcache_mmap_lock(mapping);
581                 vma_interval_tree_insert(vma, &mapping->i_mmap);
582                 flush_dcache_mmap_unlock(mapping);
583         }
584 }
585
586 static void
587 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
588         struct vm_area_struct *prev, struct rb_node **rb_link,
589         struct rb_node *rb_parent)
590 {
591         __vma_link_list(mm, vma, prev, rb_parent);
592         __vma_link_rb(mm, vma, rb_link, rb_parent);
593 }
594
595 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
596                         struct vm_area_struct *prev, struct rb_node **rb_link,
597                         struct rb_node *rb_parent)
598 {
599         struct address_space *mapping = NULL;
600
601         if (vma->vm_file) {
602                 mapping = vma->vm_file->f_mapping;
603                 i_mmap_lock_write(mapping);
604         }
605
606         __vma_link(mm, vma, prev, rb_link, rb_parent);
607         __vma_link_file(vma);
608
609         if (mapping)
610                 i_mmap_unlock_write(mapping);
611
612         mm->map_count++;
613         validate_mm(mm);
614 }
615
616 /*
617  * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
618  * mm's list and rbtree.  It has already been inserted into the interval tree.
619  */
620 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
621 {
622         struct vm_area_struct *prev;
623         struct rb_node **rb_link, *rb_parent;
624
625         if (find_vma_links(mm, vma->vm_start, vma->vm_end,
626                            &prev, &rb_link, &rb_parent))
627                 BUG();
628         __vma_link(mm, vma, prev, rb_link, rb_parent);
629         mm->map_count++;
630 }
631
632 static __always_inline void __vma_unlink_common(struct mm_struct *mm,
633                                                 struct vm_area_struct *vma,
634                                                 struct vm_area_struct *prev,
635                                                 bool has_prev,
636                                                 struct vm_area_struct *ignore)
637 {
638         struct vm_area_struct *next;
639
640         vma_rb_erase_ignore(vma, &mm->mm_rb, ignore);
641         next = vma->vm_next;
642         if (has_prev)
643                 prev->vm_next = next;
644         else {
645                 prev = vma->vm_prev;
646                 if (prev)
647                         prev->vm_next = next;
648                 else
649                         mm->mmap = next;
650         }
651         if (next)
652                 next->vm_prev = prev;
653
654         /* Kill the cache */
655         vmacache_invalidate(mm);
656 }
657
658 static inline void __vma_unlink_prev(struct mm_struct *mm,
659                                      struct vm_area_struct *vma,
660                                      struct vm_area_struct *prev)
661 {
662         __vma_unlink_common(mm, vma, prev, true, vma);
663 }
664
665 /*
666  * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
667  * is already present in an i_mmap tree without adjusting the tree.
668  * The following helper function should be used when such adjustments
669  * are necessary.  The "insert" vma (if any) is to be inserted
670  * before we drop the necessary locks.
671  */
672 int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
673         unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
674         struct vm_area_struct *expand)
675 {
676         struct mm_struct *mm = vma->vm_mm;
677         struct vm_area_struct *next = vma->vm_next, *orig_vma = vma;
678         struct address_space *mapping = NULL;
679         struct rb_root *root = NULL;
680         struct anon_vma *anon_vma = NULL;
681         struct file *file = vma->vm_file;
682         bool start_changed = false, end_changed = false;
683         long adjust_next = 0;
684         int remove_next = 0;
685
686         if (next && !insert) {
687                 struct vm_area_struct *exporter = NULL, *importer = NULL;
688
689                 if (end >= next->vm_end) {
690                         /*
691                          * vma expands, overlapping all the next, and
692                          * perhaps the one after too (mprotect case 6).
693                          * The only other cases that gets here are
694                          * case 1, case 7 and case 8.
695                          */
696                         if (next == expand) {
697                                 /*
698                                  * The only case where we don't expand "vma"
699                                  * and we expand "next" instead is case 8.
700                                  */
701                                 VM_WARN_ON(end != next->vm_end);
702                                 /*
703                                  * remove_next == 3 means we're
704                                  * removing "vma" and that to do so we
705                                  * swapped "vma" and "next".
706                                  */
707                                 remove_next = 3;
708                                 VM_WARN_ON(file != next->vm_file);
709                                 swap(vma, next);
710                         } else {
711                                 VM_WARN_ON(expand != vma);
712                                 /*
713                                  * case 1, 6, 7, remove_next == 2 is case 6,
714                                  * remove_next == 1 is case 1 or 7.
715                                  */
716                                 remove_next = 1 + (end > next->vm_end);
717                                 VM_WARN_ON(remove_next == 2 &&
718                                            end != next->vm_next->vm_end);
719                                 VM_WARN_ON(remove_next == 1 &&
720                                            end != next->vm_end);
721                                 /* trim end to next, for case 6 first pass */
722                                 end = next->vm_end;
723                         }
724
725                         exporter = next;
726                         importer = vma;
727
728                         /*
729                          * If next doesn't have anon_vma, import from vma after
730                          * next, if the vma overlaps with it.
731                          */
732                         if (remove_next == 2 && !next->anon_vma)
733                                 exporter = next->vm_next;
734
735                 } else if (end > next->vm_start) {
736                         /*
737                          * vma expands, overlapping part of the next:
738                          * mprotect case 5 shifting the boundary up.
739                          */
740                         adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
741                         exporter = next;
742                         importer = vma;
743                         VM_WARN_ON(expand != importer);
744                 } else if (end < vma->vm_end) {
745                         /*
746                          * vma shrinks, and !insert tells it's not
747                          * split_vma inserting another: so it must be
748                          * mprotect case 4 shifting the boundary down.
749                          */
750                         adjust_next = -((vma->vm_end - end) >> PAGE_SHIFT);
751                         exporter = vma;
752                         importer = next;
753                         VM_WARN_ON(expand != importer);
754                 }
755
756                 /*
757                  * Easily overlooked: when mprotect shifts the boundary,
758                  * make sure the expanding vma has anon_vma set if the
759                  * shrinking vma had, to cover any anon pages imported.
760                  */
761                 if (exporter && exporter->anon_vma && !importer->anon_vma) {
762                         int error;
763
764                         importer->anon_vma = exporter->anon_vma;
765                         error = anon_vma_clone(importer, exporter);
766                         if (error)
767                                 return error;
768                 }
769         }
770 again:
771         vma_adjust_trans_huge(orig_vma, start, end, adjust_next);
772
773         if (file) {
774                 mapping = file->f_mapping;
775                 root = &mapping->i_mmap;
776                 uprobe_munmap(vma, vma->vm_start, vma->vm_end);
777
778                 if (adjust_next)
779                         uprobe_munmap(next, next->vm_start, next->vm_end);
780
781                 i_mmap_lock_write(mapping);
782                 if (insert) {
783                         /*
784                          * Put into interval tree now, so instantiated pages
785                          * are visible to arm/parisc __flush_dcache_page
786                          * throughout; but we cannot insert into address
787                          * space until vma start or end is updated.
788                          */
789                         __vma_link_file(insert);
790                 }
791         }
792
793         anon_vma = vma->anon_vma;
794         if (!anon_vma && adjust_next)
795                 anon_vma = next->anon_vma;
796         if (anon_vma) {
797                 VM_WARN_ON(adjust_next && next->anon_vma &&
798                            anon_vma != next->anon_vma);
799                 anon_vma_lock_write(anon_vma);
800                 anon_vma_interval_tree_pre_update_vma(vma);
801                 if (adjust_next)
802                         anon_vma_interval_tree_pre_update_vma(next);
803         }
804
805         if (root) {
806                 flush_dcache_mmap_lock(mapping);
807                 vma_interval_tree_remove(vma, root);
808                 if (adjust_next)
809                         vma_interval_tree_remove(next, root);
810         }
811
812         if (start != vma->vm_start) {
813                 vma->vm_start = start;
814                 start_changed = true;
815         }
816         if (end != vma->vm_end) {
817                 vma->vm_end = end;
818                 end_changed = true;
819         }
820         vma->vm_pgoff = pgoff;
821         if (adjust_next) {
822                 next->vm_start += adjust_next << PAGE_SHIFT;
823                 next->vm_pgoff += adjust_next;
824         }
825
826         if (root) {
827                 if (adjust_next)
828                         vma_interval_tree_insert(next, root);
829                 vma_interval_tree_insert(vma, root);
830                 flush_dcache_mmap_unlock(mapping);
831         }
832
833         if (remove_next) {
834                 /*
835                  * vma_merge has merged next into vma, and needs
836                  * us to remove next before dropping the locks.
837                  */
838                 if (remove_next != 3)
839                         __vma_unlink_prev(mm, next, vma);
840                 else
841                         /*
842                          * vma is not before next if they've been
843                          * swapped.
844                          *
845                          * pre-swap() next->vm_start was reduced so
846                          * tell validate_mm_rb to ignore pre-swap()
847                          * "next" (which is stored in post-swap()
848                          * "vma").
849                          */
850                         __vma_unlink_common(mm, next, NULL, false, vma);
851                 if (file)
852                         __remove_shared_vm_struct(next, file, mapping);
853         } else if (insert) {
854                 /*
855                  * split_vma has split insert from vma, and needs
856                  * us to insert it before dropping the locks
857                  * (it may either follow vma or precede it).
858                  */
859                 __insert_vm_struct(mm, insert);
860         } else {
861                 if (start_changed)
862                         vma_gap_update(vma);
863                 if (end_changed) {
864                         if (!next)
865                                 mm->highest_vm_end = vm_end_gap(vma);
866                         else if (!adjust_next)
867                                 vma_gap_update(next);
868                 }
869         }
870
871         if (anon_vma) {
872                 anon_vma_interval_tree_post_update_vma(vma);
873                 if (adjust_next)
874                         anon_vma_interval_tree_post_update_vma(next);
875                 anon_vma_unlock_write(anon_vma);
876         }
877         if (mapping)
878                 i_mmap_unlock_write(mapping);
879
880         if (root) {
881                 uprobe_mmap(vma);
882
883                 if (adjust_next)
884                         uprobe_mmap(next);
885         }
886
887         if (remove_next) {
888                 if (file) {
889                         uprobe_munmap(next, next->vm_start, next->vm_end);
890                         fput(file);
891                 }
892                 if (next->anon_vma)
893                         anon_vma_merge(vma, next);
894                 mm->map_count--;
895                 mpol_put(vma_policy(next));
896                 kmem_cache_free(vm_area_cachep, next);
897                 /*
898                  * In mprotect's case 6 (see comments on vma_merge),
899                  * we must remove another next too. It would clutter
900                  * up the code too much to do both in one go.
901                  */
902                 if (remove_next != 3) {
903                         /*
904                          * If "next" was removed and vma->vm_end was
905                          * expanded (up) over it, in turn
906                          * "next->vm_prev->vm_end" changed and the
907                          * "vma->vm_next" gap must be updated.
908                          */
909                         next = vma->vm_next;
910                 } else {
911                         /*
912                          * For the scope of the comment "next" and
913                          * "vma" considered pre-swap(): if "vma" was
914                          * removed, next->vm_start was expanded (down)
915                          * over it and the "next" gap must be updated.
916                          * Because of the swap() the post-swap() "vma"
917                          * actually points to pre-swap() "next"
918                          * (post-swap() "next" as opposed is now a
919                          * dangling pointer).
920                          */
921                         next = vma;
922                 }
923                 if (remove_next == 2) {
924                         remove_next = 1;
925                         end = next->vm_end;
926                         goto again;
927                 }
928                 else if (next)
929                         vma_gap_update(next);
930                 else {
931                         /*
932                          * If remove_next == 2 we obviously can't
933                          * reach this path.
934                          *
935                          * If remove_next == 3 we can't reach this
936                          * path because pre-swap() next is always not
937                          * NULL. pre-swap() "next" is not being
938                          * removed and its next->vm_end is not altered
939                          * (and furthermore "end" already matches
940                          * next->vm_end in remove_next == 3).
941                          *
942                          * We reach this only in the remove_next == 1
943                          * case if the "next" vma that was removed was
944                          * the highest vma of the mm. However in such
945                          * case next->vm_end == "end" and the extended
946                          * "vma" has vma->vm_end == next->vm_end so
947                          * mm->highest_vm_end doesn't need any update
948                          * in remove_next == 1 case.
949                          */
950                         VM_WARN_ON(mm->highest_vm_end != vm_end_gap(vma));
951                 }
952         }
953         if (insert && file)
954                 uprobe_mmap(insert);
955
956         validate_mm(mm);
957
958         return 0;
959 }
960
961 /*
962  * If the vma has a ->close operation then the driver probably needs to release
963  * per-vma resources, so we don't attempt to merge those.
964  */
965 static inline int is_mergeable_vma(struct vm_area_struct *vma,
966                                 struct file *file, unsigned long vm_flags,
967                                 struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
968                                 const char __user *anon_name)
969 {
970         /*
971          * VM_SOFTDIRTY should not prevent from VMA merging, if we
972          * match the flags but dirty bit -- the caller should mark
973          * merged VMA as dirty. If dirty bit won't be excluded from
974          * comparison, we increase pressue on the memory system forcing
975          * the kernel to generate new VMAs when old one could be
976          * extended instead.
977          */
978         if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
979                 return 0;
980         if (vma->vm_file != file)
981                 return 0;
982         if (vma->vm_ops && vma->vm_ops->close)
983                 return 0;
984         if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
985                 return 0;
986         if (vma_get_anon_name(vma) != anon_name)
987                 return 0;
988         return 1;
989 }
990
991 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
992                                         struct anon_vma *anon_vma2,
993                                         struct vm_area_struct *vma)
994 {
995         /*
996          * The list_is_singular() test is to avoid merging VMA cloned from
997          * parents. This can improve scalability caused by anon_vma lock.
998          */
999         if ((!anon_vma1 || !anon_vma2) && (!vma ||
1000                 list_is_singular(&vma->anon_vma_chain)))
1001                 return 1;
1002         return anon_vma1 == anon_vma2;
1003 }
1004
1005 /*
1006  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1007  * in front of (at a lower virtual address and file offset than) the vma.
1008  *
1009  * We cannot merge two vmas if they have differently assigned (non-NULL)
1010  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1011  *
1012  * We don't check here for the merged mmap wrapping around the end of pagecache
1013  * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
1014  * wrap, nor mmaps which cover the final page at index -1UL.
1015  */
1016 static int
1017 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
1018                      struct anon_vma *anon_vma, struct file *file,
1019                      pgoff_t vm_pgoff,
1020                      struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
1021                      const char __user *anon_name)
1022 {
1023         if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name) &&
1024             is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1025                 if (vma->vm_pgoff == vm_pgoff)
1026                         return 1;
1027         }
1028         return 0;
1029 }
1030
1031 /*
1032  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1033  * beyond (at a higher virtual address and file offset than) the vma.
1034  *
1035  * We cannot merge two vmas if they have differently assigned (non-NULL)
1036  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1037  */
1038 static int
1039 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
1040                     struct anon_vma *anon_vma, struct file *file,
1041                     pgoff_t vm_pgoff,
1042                     struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
1043                     const char __user *anon_name)
1044 {
1045         if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name) &&
1046             is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1047                 pgoff_t vm_pglen;
1048                 vm_pglen = vma_pages(vma);
1049                 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
1050                         return 1;
1051         }
1052         return 0;
1053 }
1054
1055 /*
1056  * Given a mapping request (addr,end,vm_flags,file,pgoff,anon_name),
1057  * figure out whether that can be merged with its predecessor or its
1058  * successor.  Or both (it neatly fills a hole).
1059  *
1060  * In most cases - when called for mmap, brk or mremap - [addr,end) is
1061  * certain not to be mapped by the time vma_merge is called; but when
1062  * called for mprotect, it is certain to be already mapped (either at
1063  * an offset within prev, or at the start of next), and the flags of
1064  * this area are about to be changed to vm_flags - and the no-change
1065  * case has already been eliminated.
1066  *
1067  * The following mprotect cases have to be considered, where AAAA is
1068  * the area passed down from mprotect_fixup, never extending beyond one
1069  * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
1070  *
1071  *     AAAA             AAAA                AAAA          AAAA
1072  *    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPNNNNXXXX
1073  *    cannot merge    might become    might become    might become
1074  *                    PPNNNNNNNNNN    PPPPPPPPPPNN    PPPPPPPPPPPP 6 or
1075  *    mmap, brk or    case 4 below    case 5 below    PPPPPPPPXXXX 7 or
1076  *    mremap move:                                    PPPPXXXXXXXX 8
1077  *        AAAA
1078  *    PPPP    NNNN    PPPPPPPPPPPP    PPPPPPPPNNNN    PPPPNNNNNNNN
1079  *    might become    case 1 below    case 2 below    case 3 below
1080  *
1081  * It is important for case 8 that the the vma NNNN overlapping the
1082  * region AAAA is never going to extended over XXXX. Instead XXXX must
1083  * be extended in region AAAA and NNNN must be removed. This way in
1084  * all cases where vma_merge succeeds, the moment vma_adjust drops the
1085  * rmap_locks, the properties of the merged vma will be already
1086  * correct for the whole merged range. Some of those properties like
1087  * vm_page_prot/vm_flags may be accessed by rmap_walks and they must
1088  * be correct for the whole merged range immediately after the
1089  * rmap_locks are released. Otherwise if XXXX would be removed and
1090  * NNNN would be extended over the XXXX range, remove_migration_ptes
1091  * or other rmap walkers (if working on addresses beyond the "end"
1092  * parameter) may establish ptes with the wrong permissions of NNNN
1093  * instead of the right permissions of XXXX.
1094  */
1095 struct vm_area_struct *vma_merge(struct mm_struct *mm,
1096                         struct vm_area_struct *prev, unsigned long addr,
1097                         unsigned long end, unsigned long vm_flags,
1098                         struct anon_vma *anon_vma, struct file *file,
1099                         pgoff_t pgoff, struct mempolicy *policy,
1100                         struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
1101                         const char __user *anon_name)
1102 {
1103         pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1104         struct vm_area_struct *area, *next;
1105         int err;
1106
1107         /*
1108          * We later require that vma->vm_flags == vm_flags,
1109          * so this tests vma->vm_flags & VM_SPECIAL, too.
1110          */
1111         if (vm_flags & VM_SPECIAL)
1112                 return NULL;
1113
1114         if (prev)
1115                 next = prev->vm_next;
1116         else
1117                 next = mm->mmap;
1118         area = next;
1119         if (area && area->vm_end == end)                /* cases 6, 7, 8 */
1120                 next = next->vm_next;
1121
1122         /* verify some invariant that must be enforced by the caller */
1123         VM_WARN_ON(prev && addr <= prev->vm_start);
1124         VM_WARN_ON(area && end > area->vm_end);
1125         VM_WARN_ON(addr >= end);
1126
1127         /*
1128          * Can it merge with the predecessor?
1129          */
1130         if (prev && prev->vm_end == addr &&
1131                         mpol_equal(vma_policy(prev), policy) &&
1132                         can_vma_merge_after(prev, vm_flags,
1133                                             anon_vma, file, pgoff,
1134                                             vm_userfaultfd_ctx,
1135                                             anon_name)) {
1136                 /*
1137                  * OK, it can.  Can we now merge in the successor as well?
1138                  */
1139                 if (next && end == next->vm_start &&
1140                                 mpol_equal(policy, vma_policy(next)) &&
1141                                 can_vma_merge_before(next, vm_flags,
1142                                                      anon_vma, file,
1143                                                      pgoff+pglen,
1144                                                      vm_userfaultfd_ctx,
1145                                                      anon_name) &&
1146                                 is_mergeable_anon_vma(prev->anon_vma,
1147                                                       next->anon_vma, NULL)) {
1148                                                         /* cases 1, 6 */
1149                         err = __vma_adjust(prev, prev->vm_start,
1150                                          next->vm_end, prev->vm_pgoff, NULL,
1151                                          prev);
1152                 } else                                  /* cases 2, 5, 7 */
1153                         err = __vma_adjust(prev, prev->vm_start,
1154                                          end, prev->vm_pgoff, NULL, prev);
1155                 if (err)
1156                         return NULL;
1157                 khugepaged_enter_vma_merge(prev, vm_flags);
1158                 return prev;
1159         }
1160
1161         /*
1162          * Can this new request be merged in front of next?
1163          */
1164         if (next && end == next->vm_start &&
1165                         mpol_equal(policy, vma_policy(next)) &&
1166                         can_vma_merge_before(next, vm_flags,
1167                                              anon_vma, file, pgoff+pglen,
1168                                              vm_userfaultfd_ctx,
1169                                              anon_name)) {
1170                 if (prev && addr < prev->vm_end)        /* case 4 */
1171                         err = __vma_adjust(prev, prev->vm_start,
1172                                          addr, prev->vm_pgoff, NULL, next);
1173                 else {                                  /* cases 3, 8 */
1174                         err = __vma_adjust(area, addr, next->vm_end,
1175                                          next->vm_pgoff - pglen, NULL, next);
1176                         /*
1177                          * In case 3 area is already equal to next and
1178                          * this is a noop, but in case 8 "area" has
1179                          * been removed and next was expanded over it.
1180                          */
1181                         area = next;
1182                 }
1183                 if (err)
1184                         return NULL;
1185                 khugepaged_enter_vma_merge(area, vm_flags);
1186                 return area;
1187         }
1188
1189         return NULL;
1190 }
1191
1192 /*
1193  * Rough compatbility check to quickly see if it's even worth looking
1194  * at sharing an anon_vma.
1195  *
1196  * They need to have the same vm_file, and the flags can only differ
1197  * in things that mprotect may change.
1198  *
1199  * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1200  * we can merge the two vma's. For example, we refuse to merge a vma if
1201  * there is a vm_ops->close() function, because that indicates that the
1202  * driver is doing some kind of reference counting. But that doesn't
1203  * really matter for the anon_vma sharing case.
1204  */
1205 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1206 {
1207         return a->vm_end == b->vm_start &&
1208                 mpol_equal(vma_policy(a), vma_policy(b)) &&
1209                 a->vm_file == b->vm_file &&
1210                 !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC|VM_SOFTDIRTY)) &&
1211                 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1212 }
1213
1214 /*
1215  * Do some basic sanity checking to see if we can re-use the anon_vma
1216  * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1217  * the same as 'old', the other will be the new one that is trying
1218  * to share the anon_vma.
1219  *
1220  * NOTE! This runs with mm_sem held for reading, so it is possible that
1221  * the anon_vma of 'old' is concurrently in the process of being set up
1222  * by another page fault trying to merge _that_. But that's ok: if it
1223  * is being set up, that automatically means that it will be a singleton
1224  * acceptable for merging, so we can do all of this optimistically. But
1225  * we do that READ_ONCE() to make sure that we never re-load the pointer.
1226  *
1227  * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1228  * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1229  * is to return an anon_vma that is "complex" due to having gone through
1230  * a fork).
1231  *
1232  * We also make sure that the two vma's are compatible (adjacent,
1233  * and with the same memory policies). That's all stable, even with just
1234  * a read lock on the mm_sem.
1235  */
1236 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1237 {
1238         if (anon_vma_compatible(a, b)) {
1239                 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1240
1241                 if (anon_vma && list_is_singular(&old->anon_vma_chain))
1242                         return anon_vma;
1243         }
1244         return NULL;
1245 }
1246
1247 /*
1248  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1249  * neighbouring vmas for a suitable anon_vma, before it goes off
1250  * to allocate a new anon_vma.  It checks because a repetitive
1251  * sequence of mprotects and faults may otherwise lead to distinct
1252  * anon_vmas being allocated, preventing vma merge in subsequent
1253  * mprotect.
1254  */
1255 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1256 {
1257         struct anon_vma *anon_vma;
1258         struct vm_area_struct *near;
1259
1260         near = vma->vm_next;
1261         if (!near)
1262                 goto try_prev;
1263
1264         anon_vma = reusable_anon_vma(near, vma, near);
1265         if (anon_vma)
1266                 return anon_vma;
1267 try_prev:
1268         near = vma->vm_prev;
1269         if (!near)
1270                 goto none;
1271
1272         anon_vma = reusable_anon_vma(near, near, vma);
1273         if (anon_vma)
1274                 return anon_vma;
1275 none:
1276         /*
1277          * There's no absolute need to look only at touching neighbours:
1278          * we could search further afield for "compatible" anon_vmas.
1279          * But it would probably just be a waste of time searching,
1280          * or lead to too many vmas hanging off the same anon_vma.
1281          * We're trying to allow mprotect remerging later on,
1282          * not trying to minimize memory used for anon_vmas.
1283          */
1284         return NULL;
1285 }
1286
1287 /*
1288  * If a hint addr is less than mmap_min_addr change hint to be as
1289  * low as possible but still greater than mmap_min_addr
1290  */
1291 static inline unsigned long round_hint_to_min(unsigned long hint)
1292 {
1293         hint &= PAGE_MASK;
1294         if (((void *)hint != NULL) &&
1295             (hint < mmap_min_addr))
1296                 return PAGE_ALIGN(mmap_min_addr);
1297         return hint;
1298 }
1299
1300 static inline int mlock_future_check(struct mm_struct *mm,
1301                                      unsigned long flags,
1302                                      unsigned long len)
1303 {
1304         unsigned long locked, lock_limit;
1305
1306         /*  mlock MCL_FUTURE? */
1307         if (flags & VM_LOCKED) {
1308                 locked = len >> PAGE_SHIFT;
1309                 locked += mm->locked_vm;
1310                 lock_limit = rlimit(RLIMIT_MEMLOCK);
1311                 lock_limit >>= PAGE_SHIFT;
1312                 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1313                         return -EAGAIN;
1314         }
1315         return 0;
1316 }
1317
1318 static inline u64 file_mmap_size_max(struct file *file, struct inode *inode)
1319 {
1320         if (S_ISREG(inode->i_mode))
1321                 return MAX_LFS_FILESIZE;
1322
1323         if (S_ISBLK(inode->i_mode))
1324                 return MAX_LFS_FILESIZE;
1325
1326         /* Special "we do even unsigned file positions" case */
1327         if (file->f_mode & FMODE_UNSIGNED_OFFSET)
1328                 return 0;
1329
1330         /* Yes, random drivers might want more. But I'm tired of buggy drivers */
1331         return ULONG_MAX;
1332 }
1333
1334 static inline bool file_mmap_ok(struct file *file, struct inode *inode,
1335                                 unsigned long pgoff, unsigned long len)
1336 {
1337         u64 maxsize = file_mmap_size_max(file, inode);
1338
1339         if (maxsize && len > maxsize)
1340                 return false;
1341         maxsize -= len;
1342         if (pgoff > maxsize >> PAGE_SHIFT)
1343                 return false;
1344         return true;
1345 }
1346
1347 /*
1348  * The caller must hold down_write(&current->mm->mmap_sem).
1349  */
1350 unsigned long do_mmap(struct file *file, unsigned long addr,
1351                         unsigned long len, unsigned long prot,
1352                         unsigned long flags, vm_flags_t vm_flags,
1353                         unsigned long pgoff, unsigned long *populate)
1354 {
1355         struct mm_struct *mm = current->mm;
1356         int pkey = 0;
1357
1358         *populate = 0;
1359
1360         if (!len)
1361                 return -EINVAL;
1362
1363         /*
1364          * Does the application expect PROT_READ to imply PROT_EXEC?
1365          *
1366          * (the exception is when the underlying filesystem is noexec
1367          *  mounted, in which case we dont add PROT_EXEC.)
1368          */
1369         if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1370                 if (!(file && path_noexec(&file->f_path)))
1371                         prot |= PROT_EXEC;
1372
1373         if (!(flags & MAP_FIXED))
1374                 addr = round_hint_to_min(addr);
1375
1376         /* Careful about overflows.. */
1377         len = PAGE_ALIGN(len);
1378         if (!len)
1379                 return -ENOMEM;
1380
1381         /* offset overflow? */
1382         if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1383                 return -EOVERFLOW;
1384
1385         /* Too many mappings? */
1386         if (mm->map_count > sysctl_max_map_count)
1387                 return -ENOMEM;
1388
1389         /* Obtain the address to map to. we verify (or select) it and ensure
1390          * that it represents a valid section of the address space.
1391          */
1392         addr = get_unmapped_area(file, addr, len, pgoff, flags);
1393         if (offset_in_page(addr))
1394                 return addr;
1395
1396         if (prot == PROT_EXEC) {
1397                 pkey = execute_only_pkey(mm);
1398                 if (pkey < 0)
1399                         pkey = 0;
1400         }
1401
1402         /* Do simple checking here so the lower-level routines won't have
1403          * to. we assume access permissions have been handled by the open
1404          * of the memory object, so we don't do any here.
1405          */
1406         vm_flags |= calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
1407                         mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1408
1409         if (flags & MAP_LOCKED)
1410                 if (!can_do_mlock())
1411                         return -EPERM;
1412
1413         if (mlock_future_check(mm, vm_flags, len))
1414                 return -EAGAIN;
1415
1416         if (file) {
1417                 struct inode *inode = file_inode(file);
1418
1419                 if (!file_mmap_ok(file, inode, pgoff, len))
1420                         return -EOVERFLOW;
1421
1422                 switch (flags & MAP_TYPE) {
1423                 case MAP_SHARED:
1424                         if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1425                                 return -EACCES;
1426
1427                         /*
1428                          * Make sure we don't allow writing to an append-only
1429                          * file..
1430                          */
1431                         if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1432                                 return -EACCES;
1433
1434                         /*
1435                          * Make sure there are no mandatory locks on the file.
1436                          */
1437                         if (locks_verify_locked(file))
1438                                 return -EAGAIN;
1439
1440                         vm_flags |= VM_SHARED | VM_MAYSHARE;
1441                         if (!(file->f_mode & FMODE_WRITE))
1442                                 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1443
1444                         /* fall through */
1445                 case MAP_PRIVATE:
1446                         if (!(file->f_mode & FMODE_READ))
1447                                 return -EACCES;
1448                         if (path_noexec(&file->f_path)) {
1449                                 if (vm_flags & VM_EXEC)
1450                                         return -EPERM;
1451                                 vm_flags &= ~VM_MAYEXEC;
1452                         }
1453
1454                         if (!file->f_op->mmap)
1455                                 return -ENODEV;
1456                         if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1457                                 return -EINVAL;
1458                         break;
1459
1460                 default:
1461                         return -EINVAL;
1462                 }
1463         } else {
1464                 switch (flags & MAP_TYPE) {
1465                 case MAP_SHARED:
1466                         if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1467                                 return -EINVAL;
1468                         /*
1469                          * Ignore pgoff.
1470                          */
1471                         pgoff = 0;
1472                         vm_flags |= VM_SHARED | VM_MAYSHARE;
1473                         break;
1474                 case MAP_PRIVATE:
1475                         /*
1476                          * Set pgoff according to addr for anon_vma.
1477                          */
1478                         pgoff = addr >> PAGE_SHIFT;
1479                         break;
1480                 default:
1481                         return -EINVAL;
1482                 }
1483         }
1484
1485         /*
1486          * Set 'VM_NORESERVE' if we should not account for the
1487          * memory use of this mapping.
1488          */
1489         if (flags & MAP_NORESERVE) {
1490                 /* We honor MAP_NORESERVE if allowed to overcommit */
1491                 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1492                         vm_flags |= VM_NORESERVE;
1493
1494                 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1495                 if (file && is_file_hugepages(file))
1496                         vm_flags |= VM_NORESERVE;
1497         }
1498
1499         addr = mmap_region(file, addr, len, vm_flags, pgoff);
1500         if (!IS_ERR_VALUE(addr) &&
1501             ((vm_flags & VM_LOCKED) ||
1502              (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1503                 *populate = len;
1504         return addr;
1505 }
1506
1507 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1508                 unsigned long, prot, unsigned long, flags,
1509                 unsigned long, fd, unsigned long, pgoff)
1510 {
1511         struct file *file = NULL;
1512         unsigned long retval;
1513
1514         if (!(flags & MAP_ANONYMOUS)) {
1515                 audit_mmap_fd(fd, flags);
1516                 file = fget(fd);
1517                 if (!file)
1518                         return -EBADF;
1519                 if (is_file_hugepages(file))
1520                         len = ALIGN(len, huge_page_size(hstate_file(file)));
1521                 retval = -EINVAL;
1522                 if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file)))
1523                         goto out_fput;
1524         } else if (flags & MAP_HUGETLB) {
1525                 struct user_struct *user = NULL;
1526                 struct hstate *hs;
1527
1528                 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & SHM_HUGE_MASK);
1529                 if (!hs)
1530                         return -EINVAL;
1531
1532                 len = ALIGN(len, huge_page_size(hs));
1533                 /*
1534                  * VM_NORESERVE is used because the reservations will be
1535                  * taken when vm_ops->mmap() is called
1536                  * A dummy user value is used because we are not locking
1537                  * memory so no accounting is necessary
1538                  */
1539                 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1540                                 VM_NORESERVE,
1541                                 &user, HUGETLB_ANONHUGE_INODE,
1542                                 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1543                 if (IS_ERR(file))
1544                         return PTR_ERR(file);
1545         }
1546
1547         flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1548
1549         retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1550 out_fput:
1551         if (file)
1552                 fput(file);
1553         return retval;
1554 }
1555
1556 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1557 struct mmap_arg_struct {
1558         unsigned long addr;
1559         unsigned long len;
1560         unsigned long prot;
1561         unsigned long flags;
1562         unsigned long fd;
1563         unsigned long offset;
1564 };
1565
1566 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1567 {
1568         struct mmap_arg_struct a;
1569
1570         if (copy_from_user(&a, arg, sizeof(a)))
1571                 return -EFAULT;
1572         if (offset_in_page(a.offset))
1573                 return -EINVAL;
1574
1575         return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1576                               a.offset >> PAGE_SHIFT);
1577 }
1578 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1579
1580 /*
1581  * Some shared mappigns will want the pages marked read-only
1582  * to track write events. If so, we'll downgrade vm_page_prot
1583  * to the private version (using protection_map[] without the
1584  * VM_SHARED bit).
1585  */
1586 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)
1587 {
1588         vm_flags_t vm_flags = vma->vm_flags;
1589         const struct vm_operations_struct *vm_ops = vma->vm_ops;
1590
1591         /* If it was private or non-writable, the write bit is already clear */
1592         if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1593                 return 0;
1594
1595         /* The backer wishes to know when pages are first written to? */
1596         if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite))
1597                 return 1;
1598
1599         /* The open routine did something to the protections that pgprot_modify
1600          * won't preserve? */
1601         if (pgprot_val(vm_page_prot) !=
1602             pgprot_val(vm_pgprot_modify(vm_page_prot, vm_flags)))
1603                 return 0;
1604
1605         /* Do we need to track softdirty? */
1606         if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY))
1607                 return 1;
1608
1609         /* Specialty mapping? */
1610         if (vm_flags & VM_PFNMAP)
1611                 return 0;
1612
1613         /* Can the mapping track the dirty pages? */
1614         return vma->vm_file && vma->vm_file->f_mapping &&
1615                 mapping_cap_account_dirty(vma->vm_file->f_mapping);
1616 }
1617
1618 /*
1619  * We account for memory if it's a private writeable mapping,
1620  * not hugepages and VM_NORESERVE wasn't set.
1621  */
1622 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1623 {
1624         /*
1625          * hugetlb has its own accounting separate from the core VM
1626          * VM_HUGETLB may not be set yet so we cannot check for that flag.
1627          */
1628         if (file && is_file_hugepages(file))
1629                 return 0;
1630
1631         return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1632 }
1633
1634 unsigned long mmap_region(struct file *file, unsigned long addr,
1635                 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff)
1636 {
1637         struct mm_struct *mm = current->mm;
1638         struct vm_area_struct *vma, *prev;
1639         int error;
1640         struct rb_node **rb_link, *rb_parent;
1641         unsigned long charged = 0;
1642
1643         /* Check against address space limit. */
1644         if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
1645                 unsigned long nr_pages;
1646
1647                 /*
1648                  * MAP_FIXED may remove pages of mappings that intersects with
1649                  * requested mapping. Account for the pages it would unmap.
1650                  */
1651                 nr_pages = count_vma_pages_range(mm, addr, addr + len);
1652
1653                 if (!may_expand_vm(mm, vm_flags,
1654                                         (len >> PAGE_SHIFT) - nr_pages))
1655                         return -ENOMEM;
1656         }
1657
1658         /* Clear old maps */
1659         while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
1660                               &rb_parent)) {
1661                 if (do_munmap(mm, addr, len))
1662                         return -ENOMEM;
1663         }
1664
1665         /*
1666          * Private writable mapping: check memory availability
1667          */
1668         if (accountable_mapping(file, vm_flags)) {
1669                 charged = len >> PAGE_SHIFT;
1670                 if (security_vm_enough_memory_mm(mm, charged))
1671                         return -ENOMEM;
1672                 vm_flags |= VM_ACCOUNT;
1673         }
1674
1675         /*
1676          * Can we just expand an old mapping?
1677          */
1678         vma = vma_merge(mm, prev, addr, addr + len, vm_flags,
1679                         NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX, NULL);
1680         if (vma)
1681                 goto out;
1682
1683         /*
1684          * Determine the object being mapped and call the appropriate
1685          * specific mapper. the address has already been validated, but
1686          * not unmapped, but the maps are removed from the list.
1687          */
1688         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1689         if (!vma) {
1690                 error = -ENOMEM;
1691                 goto unacct_error;
1692         }
1693
1694         vma->vm_mm = mm;
1695         vma->vm_start = addr;
1696         vma->vm_end = addr + len;
1697         vma->vm_flags = vm_flags;
1698         vma->vm_page_prot = vm_get_page_prot(vm_flags);
1699         vma->vm_pgoff = pgoff;
1700         INIT_LIST_HEAD(&vma->anon_vma_chain);
1701
1702         if (file) {
1703                 if (vm_flags & VM_DENYWRITE) {
1704                         error = deny_write_access(file);
1705                         if (error)
1706                                 goto free_vma;
1707                 }
1708                 if (vm_flags & VM_SHARED) {
1709                         error = mapping_map_writable(file->f_mapping);
1710                         if (error)
1711                                 goto allow_write_and_free_vma;
1712                 }
1713
1714                 /* ->mmap() can change vma->vm_file, but must guarantee that
1715                  * vma_link() below can deny write-access if VM_DENYWRITE is set
1716                  * and map writably if VM_SHARED is set. This usually means the
1717                  * new file must not have been exposed to user-space, yet.
1718                  */
1719                 vma->vm_file = get_file(file);
1720                 error = file->f_op->mmap(file, vma);
1721                 if (error)
1722                         goto unmap_and_free_vma;
1723
1724                 /* Can addr have changed??
1725                  *
1726                  * Answer: Yes, several device drivers can do it in their
1727                  *         f_op->mmap method. -DaveM
1728                  * Bug: If addr is changed, prev, rb_link, rb_parent should
1729                  *      be updated for vma_link()
1730                  */
1731                 WARN_ON_ONCE(addr != vma->vm_start);
1732
1733                 addr = vma->vm_start;
1734                 vm_flags = vma->vm_flags;
1735         } else if (vm_flags & VM_SHARED) {
1736                 error = shmem_zero_setup(vma);
1737                 if (error)
1738                         goto free_vma;
1739         }
1740
1741         vma_link(mm, vma, prev, rb_link, rb_parent);
1742         /* Once vma denies write, undo our temporary denial count */
1743         if (file) {
1744                 if (vm_flags & VM_SHARED)
1745                         mapping_unmap_writable(file->f_mapping);
1746                 if (vm_flags & VM_DENYWRITE)
1747                         allow_write_access(file);
1748         }
1749         file = vma->vm_file;
1750 out:
1751         perf_event_mmap(vma);
1752
1753         vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
1754         if (vm_flags & VM_LOCKED) {
1755                 if (!((vm_flags & VM_SPECIAL) || is_vm_hugetlb_page(vma) ||
1756                                         vma == get_gate_vma(current->mm)))
1757                         mm->locked_vm += (len >> PAGE_SHIFT);
1758                 else
1759                         vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
1760         }
1761
1762         if (file)
1763                 uprobe_mmap(vma);
1764
1765         /*
1766          * New (or expanded) vma always get soft dirty status.
1767          * Otherwise user-space soft-dirty page tracker won't
1768          * be able to distinguish situation when vma area unmapped,
1769          * then new mapped in-place (which must be aimed as
1770          * a completely new data area).
1771          */
1772         vma->vm_flags |= VM_SOFTDIRTY;
1773
1774         vma_set_page_prot(vma);
1775
1776         return addr;
1777
1778 unmap_and_free_vma:
1779         vma->vm_file = NULL;
1780         fput(file);
1781
1782         /* Undo any partial mapping done by a device driver. */
1783         unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1784         charged = 0;
1785         if (vm_flags & VM_SHARED)
1786                 mapping_unmap_writable(file->f_mapping);
1787 allow_write_and_free_vma:
1788         if (vm_flags & VM_DENYWRITE)
1789                 allow_write_access(file);
1790 free_vma:
1791         kmem_cache_free(vm_area_cachep, vma);
1792 unacct_error:
1793         if (charged)
1794                 vm_unacct_memory(charged);
1795         return error;
1796 }
1797
1798 unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1799 {
1800         /*
1801          * We implement the search by looking for an rbtree node that
1802          * immediately follows a suitable gap. That is,
1803          * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1804          * - gap_end   = vma->vm_start        >= info->low_limit  + length;
1805          * - gap_end - gap_start >= length
1806          */
1807
1808         struct mm_struct *mm = current->mm;
1809         struct vm_area_struct *vma;
1810         unsigned long length, low_limit, high_limit, gap_start, gap_end;
1811
1812         /* Adjust search length to account for worst case alignment overhead */
1813         length = info->length + info->align_mask;
1814         if (length < info->length)
1815                 return -ENOMEM;
1816
1817         /* Adjust search limits by the desired length */
1818         if (info->high_limit < length)
1819                 return -ENOMEM;
1820         high_limit = info->high_limit - length;
1821
1822         if (info->low_limit > high_limit)
1823                 return -ENOMEM;
1824         low_limit = info->low_limit + length;
1825
1826         /* Check if rbtree root looks promising */
1827         if (RB_EMPTY_ROOT(&mm->mm_rb))
1828                 goto check_highest;
1829         vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1830         if (vma->rb_subtree_gap < length)
1831                 goto check_highest;
1832
1833         while (true) {
1834                 /* Visit left subtree if it looks promising */
1835                 gap_end = vm_start_gap(vma);
1836                 if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1837                         struct vm_area_struct *left =
1838                                 rb_entry(vma->vm_rb.rb_left,
1839                                          struct vm_area_struct, vm_rb);
1840                         if (left->rb_subtree_gap >= length) {
1841                                 vma = left;
1842                                 continue;
1843                         }
1844                 }
1845
1846                 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
1847 check_current:
1848                 /* Check if current node has a suitable gap */
1849                 if (gap_start > high_limit)
1850                         return -ENOMEM;
1851                 if (gap_end >= low_limit &&
1852                     gap_end > gap_start && gap_end - gap_start >= length)
1853                         goto found;
1854
1855                 /* Visit right subtree if it looks promising */
1856                 if (vma->vm_rb.rb_right) {
1857                         struct vm_area_struct *right =
1858                                 rb_entry(vma->vm_rb.rb_right,
1859                                          struct vm_area_struct, vm_rb);
1860                         if (right->rb_subtree_gap >= length) {
1861                                 vma = right;
1862                                 continue;
1863                         }
1864                 }
1865
1866                 /* Go back up the rbtree to find next candidate node */
1867                 while (true) {
1868                         struct rb_node *prev = &vma->vm_rb;
1869                         if (!rb_parent(prev))
1870                                 goto check_highest;
1871                         vma = rb_entry(rb_parent(prev),
1872                                        struct vm_area_struct, vm_rb);
1873                         if (prev == vma->vm_rb.rb_left) {
1874                                 gap_start = vm_end_gap(vma->vm_prev);
1875                                 gap_end = vm_start_gap(vma);
1876                                 goto check_current;
1877                         }
1878                 }
1879         }
1880
1881 check_highest:
1882         /* Check highest gap, which does not precede any rbtree node */
1883         gap_start = mm->highest_vm_end;
1884         gap_end = ULONG_MAX;  /* Only for VM_BUG_ON below */
1885         if (gap_start > high_limit)
1886                 return -ENOMEM;
1887
1888 found:
1889         /* We found a suitable gap. Clip it with the original low_limit. */
1890         if (gap_start < info->low_limit)
1891                 gap_start = info->low_limit;
1892
1893         /* Adjust gap address to the desired alignment */
1894         gap_start += (info->align_offset - gap_start) & info->align_mask;
1895
1896         VM_BUG_ON(gap_start + info->length > info->high_limit);
1897         VM_BUG_ON(gap_start + info->length > gap_end);
1898         return gap_start;
1899 }
1900
1901 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1902 {
1903         struct mm_struct *mm = current->mm;
1904         struct vm_area_struct *vma;
1905         unsigned long length, low_limit, high_limit, gap_start, gap_end;
1906
1907         /* Adjust search length to account for worst case alignment overhead */
1908         length = info->length + info->align_mask;
1909         if (length < info->length)
1910                 return -ENOMEM;
1911
1912         /*
1913          * Adjust search limits by the desired length.
1914          * See implementation comment at top of unmapped_area().
1915          */
1916         gap_end = info->high_limit;
1917         if (gap_end < length)
1918                 return -ENOMEM;
1919         high_limit = gap_end - length;
1920
1921         if (info->low_limit > high_limit)
1922                 return -ENOMEM;
1923         low_limit = info->low_limit + length;
1924
1925         /* Check highest gap, which does not precede any rbtree node */
1926         gap_start = mm->highest_vm_end;
1927         if (gap_start <= high_limit)
1928                 goto found_highest;
1929
1930         /* Check if rbtree root looks promising */
1931         if (RB_EMPTY_ROOT(&mm->mm_rb))
1932                 return -ENOMEM;
1933         vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1934         if (vma->rb_subtree_gap < length)
1935                 return -ENOMEM;
1936
1937         while (true) {
1938                 /* Visit right subtree if it looks promising */
1939                 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
1940                 if (gap_start <= high_limit && vma->vm_rb.rb_right) {
1941                         struct vm_area_struct *right =
1942                                 rb_entry(vma->vm_rb.rb_right,
1943                                          struct vm_area_struct, vm_rb);
1944                         if (right->rb_subtree_gap >= length) {
1945                                 vma = right;
1946                                 continue;
1947                         }
1948                 }
1949
1950 check_current:
1951                 /* Check if current node has a suitable gap */
1952                 gap_end = vm_start_gap(vma);
1953                 if (gap_end < low_limit)
1954                         return -ENOMEM;
1955                 if (gap_start <= high_limit &&
1956                     gap_end > gap_start && gap_end - gap_start >= length)
1957                         goto found;
1958
1959                 /* Visit left subtree if it looks promising */
1960                 if (vma->vm_rb.rb_left) {
1961                         struct vm_area_struct *left =
1962                                 rb_entry(vma->vm_rb.rb_left,
1963                                          struct vm_area_struct, vm_rb);
1964                         if (left->rb_subtree_gap >= length) {
1965                                 vma = left;
1966                                 continue;
1967                         }
1968                 }
1969
1970                 /* Go back up the rbtree to find next candidate node */
1971                 while (true) {
1972                         struct rb_node *prev = &vma->vm_rb;
1973                         if (!rb_parent(prev))
1974                                 return -ENOMEM;
1975                         vma = rb_entry(rb_parent(prev),
1976                                        struct vm_area_struct, vm_rb);
1977                         if (prev == vma->vm_rb.rb_right) {
1978                                 gap_start = vma->vm_prev ?
1979                                         vm_end_gap(vma->vm_prev) : 0;
1980                                 goto check_current;
1981                         }
1982                 }
1983         }
1984
1985 found:
1986         /* We found a suitable gap. Clip it with the original high_limit. */
1987         if (gap_end > info->high_limit)
1988                 gap_end = info->high_limit;
1989
1990 found_highest:
1991         /* Compute highest gap address at the desired alignment */
1992         gap_end -= info->length;
1993         gap_end -= (gap_end - info->align_offset) & info->align_mask;
1994
1995         VM_BUG_ON(gap_end < info->low_limit);
1996         VM_BUG_ON(gap_end < gap_start);
1997         return gap_end;
1998 }
1999
2000 /* Get an address range which is currently unmapped.
2001  * For shmat() with addr=0.
2002  *
2003  * Ugly calling convention alert:
2004  * Return value with the low bits set means error value,
2005  * ie
2006  *      if (ret & ~PAGE_MASK)
2007  *              error = ret;
2008  *
2009  * This function "knows" that -ENOMEM has the bits set.
2010  */
2011 #ifndef HAVE_ARCH_UNMAPPED_AREA
2012 unsigned long
2013 arch_get_unmapped_area(struct file *filp, unsigned long addr,
2014                 unsigned long len, unsigned long pgoff, unsigned long flags)
2015 {
2016         struct mm_struct *mm = current->mm;
2017         struct vm_area_struct *vma, *prev;
2018         struct vm_unmapped_area_info info;
2019
2020         if (len > TASK_SIZE - mmap_min_addr)
2021                 return -ENOMEM;
2022
2023         if (flags & MAP_FIXED)
2024                 return addr;
2025
2026         if (addr) {
2027                 addr = PAGE_ALIGN(addr);
2028                 vma = find_vma_prev(mm, addr, &prev);
2029                 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
2030                     (!vma || addr + len <= vm_start_gap(vma)) &&
2031                     (!prev || addr >= vm_end_gap(prev)))
2032                         return addr;
2033         }
2034
2035         info.flags = 0;
2036         info.length = len;
2037         info.low_limit = mm->mmap_base;
2038         info.high_limit = TASK_SIZE;
2039         info.align_mask = 0;
2040         return vm_unmapped_area(&info);
2041 }
2042 #endif
2043
2044 /*
2045  * This mmap-allocator allocates new areas top-down from below the
2046  * stack's low limit (the base):
2047  */
2048 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
2049 unsigned long
2050 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
2051                           const unsigned long len, const unsigned long pgoff,
2052                           const unsigned long flags)
2053 {
2054         struct vm_area_struct *vma, *prev;
2055         struct mm_struct *mm = current->mm;
2056         unsigned long addr = addr0;
2057         struct vm_unmapped_area_info info;
2058
2059         /* requested length too big for entire address space */
2060         if (len > TASK_SIZE - mmap_min_addr)
2061                 return -ENOMEM;
2062
2063         if (flags & MAP_FIXED)
2064                 return addr;
2065
2066         /* requesting a specific address */
2067         if (addr) {
2068                 addr = PAGE_ALIGN(addr);
2069                 vma = find_vma_prev(mm, addr, &prev);
2070                 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
2071                                 (!vma || addr + len <= vm_start_gap(vma)) &&
2072                                 (!prev || addr >= vm_end_gap(prev)))
2073                         return addr;
2074         }
2075
2076         info.flags = VM_UNMAPPED_AREA_TOPDOWN;
2077         info.length = len;
2078         info.low_limit = max(PAGE_SIZE, mmap_min_addr);
2079         info.high_limit = mm->mmap_base;
2080         info.align_mask = 0;
2081         addr = vm_unmapped_area(&info);
2082
2083         /*
2084          * A failed mmap() very likely causes application failure,
2085          * so fall back to the bottom-up function here. This scenario
2086          * can happen with large stack limits and large mmap()
2087          * allocations.
2088          */
2089         if (offset_in_page(addr)) {
2090                 VM_BUG_ON(addr != -ENOMEM);
2091                 info.flags = 0;
2092                 info.low_limit = TASK_UNMAPPED_BASE;
2093                 info.high_limit = TASK_SIZE;
2094                 addr = vm_unmapped_area(&info);
2095         }
2096
2097         return addr;
2098 }
2099 #endif
2100
2101 unsigned long
2102 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
2103                 unsigned long pgoff, unsigned long flags)
2104 {
2105         unsigned long (*get_area)(struct file *, unsigned long,
2106                                   unsigned long, unsigned long, unsigned long);
2107
2108         unsigned long error = arch_mmap_check(addr, len, flags);
2109         if (error)
2110                 return error;
2111
2112         /* Careful about overflows.. */
2113         if (len > TASK_SIZE)
2114                 return -ENOMEM;
2115
2116         get_area = current->mm->get_unmapped_area;
2117         if (file) {
2118                 if (file->f_op->get_unmapped_area)
2119                         get_area = file->f_op->get_unmapped_area;
2120         } else if (flags & MAP_SHARED) {
2121                 /*
2122                  * mmap_region() will call shmem_zero_setup() to create a file,
2123                  * so use shmem's get_unmapped_area in case it can be huge.
2124                  * do_mmap_pgoff() will clear pgoff, so match alignment.
2125                  */
2126                 pgoff = 0;
2127                 get_area = shmem_get_unmapped_area;
2128         }
2129
2130         addr = get_area(file, addr, len, pgoff, flags);
2131         if (IS_ERR_VALUE(addr))
2132                 return addr;
2133
2134         if (addr > TASK_SIZE - len)
2135                 return -ENOMEM;
2136         if (offset_in_page(addr))
2137                 return -EINVAL;
2138
2139         error = security_mmap_addr(addr);
2140         return error ? error : addr;
2141 }
2142
2143 EXPORT_SYMBOL(get_unmapped_area);
2144
2145 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
2146 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
2147 {
2148         struct rb_node *rb_node;
2149         struct vm_area_struct *vma;
2150
2151         /* Check the cache first. */
2152         vma = vmacache_find(mm, addr);
2153         if (likely(vma))
2154                 return vma;
2155
2156         rb_node = mm->mm_rb.rb_node;
2157
2158         while (rb_node) {
2159                 struct vm_area_struct *tmp;
2160
2161                 tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2162
2163                 if (tmp->vm_end > addr) {
2164                         vma = tmp;
2165                         if (tmp->vm_start <= addr)
2166                                 break;
2167                         rb_node = rb_node->rb_left;
2168                 } else
2169                         rb_node = rb_node->rb_right;
2170         }
2171
2172         if (vma)
2173                 vmacache_update(addr, vma);
2174         return vma;
2175 }
2176
2177 EXPORT_SYMBOL(find_vma);
2178
2179 /*
2180  * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2181  */
2182 struct vm_area_struct *
2183 find_vma_prev(struct mm_struct *mm, unsigned long addr,
2184                         struct vm_area_struct **pprev)
2185 {
2186         struct vm_area_struct *vma;
2187
2188         vma = find_vma(mm, addr);
2189         if (vma) {
2190                 *pprev = vma->vm_prev;
2191         } else {
2192                 struct rb_node *rb_node = mm->mm_rb.rb_node;
2193                 *pprev = NULL;
2194                 while (rb_node) {
2195                         *pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2196                         rb_node = rb_node->rb_right;
2197                 }
2198         }
2199         return vma;
2200 }
2201
2202 /*
2203  * Verify that the stack growth is acceptable and
2204  * update accounting. This is shared with both the
2205  * grow-up and grow-down cases.
2206  */
2207 static int acct_stack_growth(struct vm_area_struct *vma,
2208                              unsigned long size, unsigned long grow)
2209 {
2210         struct mm_struct *mm = vma->vm_mm;
2211         struct rlimit *rlim = current->signal->rlim;
2212         unsigned long new_start;
2213
2214         /* address space limit tests */
2215         if (!may_expand_vm(mm, vma->vm_flags, grow))
2216                 return -ENOMEM;
2217
2218         /* Stack limit test */
2219         if (size > READ_ONCE(rlim[RLIMIT_STACK].rlim_cur))
2220                 return -ENOMEM;
2221
2222         /* mlock limit tests */
2223         if (vma->vm_flags & VM_LOCKED) {
2224                 unsigned long locked;
2225                 unsigned long limit;
2226                 locked = mm->locked_vm + grow;
2227                 limit = READ_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur);
2228                 limit >>= PAGE_SHIFT;
2229                 if (locked > limit && !capable(CAP_IPC_LOCK))
2230                         return -ENOMEM;
2231         }
2232
2233         /* Check to ensure the stack will not grow into a hugetlb-only region */
2234         new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2235                         vma->vm_end - size;
2236         if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2237                 return -EFAULT;
2238
2239         /*
2240          * Overcommit..  This must be the final test, as it will
2241          * update security statistics.
2242          */
2243         if (security_vm_enough_memory_mm(mm, grow))
2244                 return -ENOMEM;
2245
2246         return 0;
2247 }
2248
2249 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2250 /*
2251  * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2252  * vma is the last one with address > vma->vm_end.  Have to extend vma.
2253  */
2254 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2255 {
2256         struct mm_struct *mm = vma->vm_mm;
2257         struct vm_area_struct *next;
2258         unsigned long gap_addr;
2259         int error = 0;
2260
2261         if (!(vma->vm_flags & VM_GROWSUP))
2262                 return -EFAULT;
2263
2264         /* Guard against exceeding limits of the address space. */
2265         address &= PAGE_MASK;
2266         if (address >= (TASK_SIZE & PAGE_MASK))
2267                 return -ENOMEM;
2268         address += PAGE_SIZE;
2269
2270         /* Enforce stack_guard_gap */
2271         gap_addr = address + stack_guard_gap;
2272
2273         /* Guard against overflow */
2274         if (gap_addr < address || gap_addr > TASK_SIZE)
2275                 gap_addr = TASK_SIZE;
2276
2277         next = vma->vm_next;
2278         if (next && next->vm_start < gap_addr &&
2279                         (next->vm_flags & (VM_WRITE|VM_READ|VM_EXEC))) {
2280                 if (!(next->vm_flags & VM_GROWSUP))
2281                         return -ENOMEM;
2282                 /* Check that both stack segments have the same anon_vma? */
2283         }
2284
2285         /* We must make sure the anon_vma is allocated. */
2286         if (unlikely(anon_vma_prepare(vma)))
2287                 return -ENOMEM;
2288
2289         /*
2290          * vma->vm_start/vm_end cannot change under us because the caller
2291          * is required to hold the mmap_sem in read mode.  We need the
2292          * anon_vma lock to serialize against concurrent expand_stacks.
2293          */
2294         anon_vma_lock_write(vma->anon_vma);
2295
2296         /* Somebody else might have raced and expanded it already */
2297         if (address > vma->vm_end) {
2298                 unsigned long size, grow;
2299
2300                 size = address - vma->vm_start;
2301                 grow = (address - vma->vm_end) >> PAGE_SHIFT;
2302
2303                 error = -ENOMEM;
2304                 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2305                         error = acct_stack_growth(vma, size, grow);
2306                         if (!error) {
2307                                 /*
2308                                  * vma_gap_update() doesn't support concurrent
2309                                  * updates, but we only hold a shared mmap_sem
2310                                  * lock here, so we need to protect against
2311                                  * concurrent vma expansions.
2312                                  * anon_vma_lock_write() doesn't help here, as
2313                                  * we don't guarantee that all growable vmas
2314                                  * in a mm share the same root anon vma.
2315                                  * So, we reuse mm->page_table_lock to guard
2316                                  * against concurrent vma expansions.
2317                                  */
2318                                 spin_lock(&mm->page_table_lock);
2319                                 if (vma->vm_flags & VM_LOCKED)
2320                                         mm->locked_vm += grow;
2321                                 vm_stat_account(mm, vma->vm_flags, grow);
2322                                 anon_vma_interval_tree_pre_update_vma(vma);
2323                                 vma->vm_end = address;
2324                                 anon_vma_interval_tree_post_update_vma(vma);
2325                                 if (vma->vm_next)
2326                                         vma_gap_update(vma->vm_next);
2327                                 else
2328                                         mm->highest_vm_end = vm_end_gap(vma);
2329                                 spin_unlock(&mm->page_table_lock);
2330
2331                                 perf_event_mmap(vma);
2332                         }
2333                 }
2334         }
2335         anon_vma_unlock_write(vma->anon_vma);
2336         khugepaged_enter_vma_merge(vma, vma->vm_flags);
2337         validate_mm(mm);
2338         return error;
2339 }
2340 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2341
2342 /*
2343  * vma is the first one with address < vma->vm_start.  Have to extend vma.
2344  */
2345 int expand_downwards(struct vm_area_struct *vma,
2346                                    unsigned long address)
2347 {
2348         struct mm_struct *mm = vma->vm_mm;
2349         struct vm_area_struct *prev;
2350         unsigned long gap_addr;
2351         int error = 0;
2352
2353         address &= PAGE_MASK;
2354         if (address < mmap_min_addr)
2355                 return -EPERM;
2356
2357         /* Enforce stack_guard_gap */
2358         gap_addr = address - stack_guard_gap;
2359         if (gap_addr > address)
2360                 return -ENOMEM;
2361         prev = vma->vm_prev;
2362         if (prev && prev->vm_end > gap_addr &&
2363                         (prev->vm_flags & (VM_WRITE|VM_READ|VM_EXEC))) {
2364                 if (!(prev->vm_flags & VM_GROWSDOWN))
2365                         return -ENOMEM;
2366                 /* Check that both stack segments have the same anon_vma? */
2367         }
2368
2369         /* We must make sure the anon_vma is allocated. */
2370         if (unlikely(anon_vma_prepare(vma)))
2371                 return -ENOMEM;
2372
2373         /*
2374          * vma->vm_start/vm_end cannot change under us because the caller
2375          * is required to hold the mmap_sem in read mode.  We need the
2376          * anon_vma lock to serialize against concurrent expand_stacks.
2377          */
2378         anon_vma_lock_write(vma->anon_vma);
2379
2380         /* Somebody else might have raced and expanded it already */
2381         if (address < vma->vm_start) {
2382                 unsigned long size, grow;
2383
2384                 size = vma->vm_end - address;
2385                 grow = (vma->vm_start - address) >> PAGE_SHIFT;
2386
2387                 error = -ENOMEM;
2388                 if (grow <= vma->vm_pgoff) {
2389                         error = acct_stack_growth(vma, size, grow);
2390                         if (!error) {
2391                                 /*
2392                                  * vma_gap_update() doesn't support concurrent
2393                                  * updates, but we only hold a shared mmap_sem
2394                                  * lock here, so we need to protect against
2395                                  * concurrent vma expansions.
2396                                  * anon_vma_lock_write() doesn't help here, as
2397                                  * we don't guarantee that all growable vmas
2398                                  * in a mm share the same root anon vma.
2399                                  * So, we reuse mm->page_table_lock to guard
2400                                  * against concurrent vma expansions.
2401                                  */
2402                                 spin_lock(&mm->page_table_lock);
2403                                 if (vma->vm_flags & VM_LOCKED)
2404                                         mm->locked_vm += grow;
2405                                 vm_stat_account(mm, vma->vm_flags, grow);
2406                                 anon_vma_interval_tree_pre_update_vma(vma);
2407                                 vma->vm_start = address;
2408                                 vma->vm_pgoff -= grow;
2409                                 anon_vma_interval_tree_post_update_vma(vma);
2410                                 vma_gap_update(vma);
2411                                 spin_unlock(&mm->page_table_lock);
2412
2413                                 perf_event_mmap(vma);
2414                         }
2415                 }
2416         }
2417         anon_vma_unlock_write(vma->anon_vma);
2418         khugepaged_enter_vma_merge(vma, vma->vm_flags);
2419         validate_mm(mm);
2420         return error;
2421 }
2422
2423 /* enforced gap between the expanding stack and other mappings. */
2424 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT;
2425
2426 static int __init cmdline_parse_stack_guard_gap(char *p)
2427 {
2428         unsigned long val;
2429         char *endptr;
2430
2431         val = simple_strtoul(p, &endptr, 10);
2432         if (!*endptr)
2433                 stack_guard_gap = val << PAGE_SHIFT;
2434
2435         return 0;
2436 }
2437 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap);
2438
2439 #ifdef CONFIG_STACK_GROWSUP
2440 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2441 {
2442         return expand_upwards(vma, address);
2443 }
2444
2445 struct vm_area_struct *
2446 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2447 {
2448         struct vm_area_struct *vma, *prev;
2449
2450         addr &= PAGE_MASK;
2451         vma = find_vma_prev(mm, addr, &prev);
2452         if (vma && (vma->vm_start <= addr))
2453                 return vma;
2454         /* don't alter vm_end if the coredump is running */
2455         if (!prev || !mmget_still_valid(mm) || expand_stack(prev, addr))
2456                 return NULL;
2457         if (prev->vm_flags & VM_LOCKED)
2458                 populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2459         return prev;
2460 }
2461 #else
2462 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2463 {
2464         return expand_downwards(vma, address);
2465 }
2466
2467 struct vm_area_struct *
2468 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2469 {
2470         struct vm_area_struct *vma;
2471         unsigned long start;
2472
2473         addr &= PAGE_MASK;
2474         vma = find_vma(mm, addr);
2475         if (!vma)
2476                 return NULL;
2477         if (vma->vm_start <= addr)
2478                 return vma;
2479         if (!(vma->vm_flags & VM_GROWSDOWN))
2480                 return NULL;
2481         /* don't alter vm_start if the coredump is running */
2482         if (!mmget_still_valid(mm))
2483                 return NULL;
2484         start = vma->vm_start;
2485         if (expand_stack(vma, addr))
2486                 return NULL;
2487         if (vma->vm_flags & VM_LOCKED)
2488                 populate_vma_page_range(vma, addr, start, NULL);
2489         return vma;
2490 }
2491 #endif
2492
2493 EXPORT_SYMBOL_GPL(find_extend_vma);
2494
2495 /*
2496  * Ok - we have the memory areas we should free on the vma list,
2497  * so release them, and do the vma updates.
2498  *
2499  * Called with the mm semaphore held.
2500  */
2501 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2502 {
2503         unsigned long nr_accounted = 0;
2504
2505         /* Update high watermark before we lower total_vm */
2506         update_hiwater_vm(mm);
2507         do {
2508                 long nrpages = vma_pages(vma);
2509
2510                 if (vma->vm_flags & VM_ACCOUNT)
2511                         nr_accounted += nrpages;
2512                 vm_stat_account(mm, vma->vm_flags, -nrpages);
2513                 vma = remove_vma(vma);
2514         } while (vma);
2515         vm_unacct_memory(nr_accounted);
2516         validate_mm(mm);
2517 }
2518
2519 /*
2520  * Get rid of page table information in the indicated region.
2521  *
2522  * Called with the mm semaphore held.
2523  */
2524 static void unmap_region(struct mm_struct *mm,
2525                 struct vm_area_struct *vma, struct vm_area_struct *prev,
2526                 unsigned long start, unsigned long end)
2527 {
2528         struct vm_area_struct *next = prev ? prev->vm_next : mm->mmap;
2529         struct mmu_gather tlb;
2530
2531         lru_add_drain();
2532         tlb_gather_mmu(&tlb, mm, start, end);
2533         update_hiwater_rss(mm);
2534         unmap_vmas(&tlb, vma, start, end);
2535         free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2536                                  next ? next->vm_start : USER_PGTABLES_CEILING);
2537         tlb_finish_mmu(&tlb, start, end);
2538 }
2539
2540 /*
2541  * Create a list of vma's touched by the unmap, removing them from the mm's
2542  * vma list as we go..
2543  */
2544 static void
2545 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2546         struct vm_area_struct *prev, unsigned long end)
2547 {
2548         struct vm_area_struct **insertion_point;
2549         struct vm_area_struct *tail_vma = NULL;
2550
2551         insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2552         vma->vm_prev = NULL;
2553         do {
2554                 vma_rb_erase(vma, &mm->mm_rb);
2555                 mm->map_count--;
2556                 tail_vma = vma;
2557                 vma = vma->vm_next;
2558         } while (vma && vma->vm_start < end);
2559         *insertion_point = vma;
2560         if (vma) {
2561                 vma->vm_prev = prev;
2562                 vma_gap_update(vma);
2563         } else
2564                 mm->highest_vm_end = prev ? vm_end_gap(prev) : 0;
2565         tail_vma->vm_next = NULL;
2566
2567         /* Kill the cache */
2568         vmacache_invalidate(mm);
2569 }
2570
2571 /*
2572  * __split_vma() bypasses sysctl_max_map_count checking.  We use this on the
2573  * munmap path where it doesn't make sense to fail.
2574  */
2575 static int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2576               unsigned long addr, int new_below)
2577 {
2578         struct vm_area_struct *new;
2579         int err;
2580
2581         if (vma->vm_ops && vma->vm_ops->split) {
2582                 err = vma->vm_ops->split(vma, addr);
2583                 if (err)
2584                         return err;
2585         }
2586
2587         new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2588         if (!new)
2589                 return -ENOMEM;
2590
2591         /* most fields are the same, copy all, and then fixup */
2592         *new = *vma;
2593
2594         INIT_LIST_HEAD(&new->anon_vma_chain);
2595
2596         if (new_below)
2597                 new->vm_end = addr;
2598         else {
2599                 new->vm_start = addr;
2600                 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2601         }
2602
2603         err = vma_dup_policy(vma, new);
2604         if (err)
2605                 goto out_free_vma;
2606
2607         err = anon_vma_clone(new, vma);
2608         if (err)
2609                 goto out_free_mpol;
2610
2611         if (new->vm_file)
2612                 get_file(new->vm_file);
2613
2614         if (new->vm_ops && new->vm_ops->open)
2615                 new->vm_ops->open(new);
2616
2617         if (new_below)
2618                 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2619                         ((addr - new->vm_start) >> PAGE_SHIFT), new);
2620         else
2621                 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2622
2623         /* Success. */
2624         if (!err)
2625                 return 0;
2626
2627         /* Clean everything up if vma_adjust failed. */
2628         if (new->vm_ops && new->vm_ops->close)
2629                 new->vm_ops->close(new);
2630         if (new->vm_file)
2631                 fput(new->vm_file);
2632         unlink_anon_vmas(new);
2633  out_free_mpol:
2634         mpol_put(vma_policy(new));
2635  out_free_vma:
2636         kmem_cache_free(vm_area_cachep, new);
2637         return err;
2638 }
2639
2640 /*
2641  * Split a vma into two pieces at address 'addr', a new vma is allocated
2642  * either for the first part or the tail.
2643  */
2644 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2645               unsigned long addr, int new_below)
2646 {
2647         if (mm->map_count >= sysctl_max_map_count)
2648                 return -ENOMEM;
2649
2650         return __split_vma(mm, vma, addr, new_below);
2651 }
2652
2653 /* Munmap is split into 2 main parts -- this part which finds
2654  * what needs doing, and the areas themselves, which do the
2655  * work.  This now handles partial unmappings.
2656  * Jeremy Fitzhardinge <jeremy@goop.org>
2657  */
2658 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
2659 {
2660         unsigned long end;
2661         struct vm_area_struct *vma, *prev, *last;
2662
2663         if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2664                 return -EINVAL;
2665
2666         len = PAGE_ALIGN(len);
2667         if (len == 0)
2668                 return -EINVAL;
2669
2670         /* Find the first overlapping VMA */
2671         vma = find_vma(mm, start);
2672         if (!vma)
2673                 return 0;
2674         prev = vma->vm_prev;
2675         /* we have  start < vma->vm_end  */
2676
2677         /* if it doesn't overlap, we have nothing.. */
2678         end = start + len;
2679         if (vma->vm_start >= end)
2680                 return 0;
2681
2682         /*
2683          * If we need to split any vma, do it now to save pain later.
2684          *
2685          * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2686          * unmapped vm_area_struct will remain in use: so lower split_vma
2687          * places tmp vma above, and higher split_vma places tmp vma below.
2688          */
2689         if (start > vma->vm_start) {
2690                 int error;
2691
2692                 /*
2693                  * Make sure that map_count on return from munmap() will
2694                  * not exceed its limit; but let map_count go just above
2695                  * its limit temporarily, to help free resources as expected.
2696                  */
2697                 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2698                         return -ENOMEM;
2699
2700                 error = __split_vma(mm, vma, start, 0);
2701                 if (error)
2702                         return error;
2703                 prev = vma;
2704         }
2705
2706         /* Does it split the last one? */
2707         last = find_vma(mm, end);
2708         if (last && end > last->vm_start) {
2709                 int error = __split_vma(mm, last, end, 1);
2710                 if (error)
2711                         return error;
2712         }
2713         vma = prev ? prev->vm_next : mm->mmap;
2714
2715         /*
2716          * unlock any mlock()ed ranges before detaching vmas
2717          */
2718         if (mm->locked_vm) {
2719                 struct vm_area_struct *tmp = vma;
2720                 while (tmp && tmp->vm_start < end) {
2721                         if (tmp->vm_flags & VM_LOCKED) {
2722                                 mm->locked_vm -= vma_pages(tmp);
2723                                 munlock_vma_pages_all(tmp);
2724                         }
2725                         tmp = tmp->vm_next;
2726                 }
2727         }
2728
2729         /*
2730          * Remove the vma's, and unmap the actual pages
2731          */
2732         detach_vmas_to_be_unmapped(mm, vma, prev, end);
2733         unmap_region(mm, vma, prev, start, end);
2734
2735         arch_unmap(mm, vma, start, end);
2736
2737         /* Fix up all other VM information */
2738         remove_vma_list(mm, vma);
2739
2740         return 0;
2741 }
2742 EXPORT_SYMBOL(do_munmap);
2743
2744 int vm_munmap(unsigned long start, size_t len)
2745 {
2746         int ret;
2747         struct mm_struct *mm = current->mm;
2748
2749         if (down_write_killable(&mm->mmap_sem))
2750                 return -EINTR;
2751
2752         ret = do_munmap(mm, start, len);
2753         up_write(&mm->mmap_sem);
2754         return ret;
2755 }
2756 EXPORT_SYMBOL(vm_munmap);
2757
2758 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2759 {
2760         int ret;
2761         struct mm_struct *mm = current->mm;
2762
2763         profile_munmap(addr);
2764         if (down_write_killable(&mm->mmap_sem))
2765                 return -EINTR;
2766         ret = do_munmap(mm, addr, len);
2767         up_write(&mm->mmap_sem);
2768         return ret;
2769 }
2770
2771
2772 /*
2773  * Emulation of deprecated remap_file_pages() syscall.
2774  */
2775 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
2776                 unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
2777 {
2778
2779         struct mm_struct *mm = current->mm;
2780         struct vm_area_struct *vma;
2781         unsigned long populate = 0;
2782         unsigned long ret = -EINVAL;
2783         struct file *file;
2784
2785         pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/vm/remap_file_pages.txt.\n",
2786                      current->comm, current->pid);
2787
2788         if (prot)
2789                 return ret;
2790         start = start & PAGE_MASK;
2791         size = size & PAGE_MASK;
2792
2793         if (start + size <= start)
2794                 return ret;
2795
2796         /* Does pgoff wrap? */
2797         if (pgoff + (size >> PAGE_SHIFT) < pgoff)
2798                 return ret;
2799
2800         if (down_write_killable(&mm->mmap_sem))
2801                 return -EINTR;
2802
2803         vma = find_vma(mm, start);
2804
2805         if (!vma || !(vma->vm_flags & VM_SHARED))
2806                 goto out;
2807
2808         if (start < vma->vm_start)
2809                 goto out;
2810
2811         if (start + size > vma->vm_end) {
2812                 struct vm_area_struct *next;
2813
2814                 for (next = vma->vm_next; next; next = next->vm_next) {
2815                         /* hole between vmas ? */
2816                         if (next->vm_start != next->vm_prev->vm_end)
2817                                 goto out;
2818
2819                         if (next->vm_file != vma->vm_file)
2820                                 goto out;
2821
2822                         if (next->vm_flags != vma->vm_flags)
2823                                 goto out;
2824
2825                         if (start + size <= next->vm_end)
2826                                 break;
2827                 }
2828
2829                 if (!next)
2830                         goto out;
2831         }
2832
2833         prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
2834         prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
2835         prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
2836
2837         flags &= MAP_NONBLOCK;
2838         flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
2839         if (vma->vm_flags & VM_LOCKED) {
2840                 struct vm_area_struct *tmp;
2841                 flags |= MAP_LOCKED;
2842
2843                 /* drop PG_Mlocked flag for over-mapped range */
2844                 for (tmp = vma; tmp->vm_start >= start + size;
2845                                 tmp = tmp->vm_next) {
2846                         /*
2847                          * Split pmd and munlock page on the border
2848                          * of the range.
2849                          */
2850                         vma_adjust_trans_huge(tmp, start, start + size, 0);
2851
2852                         munlock_vma_pages_range(tmp,
2853                                         max(tmp->vm_start, start),
2854                                         min(tmp->vm_end, start + size));
2855                 }
2856         }
2857
2858         file = get_file(vma->vm_file);
2859         ret = do_mmap_pgoff(vma->vm_file, start, size,
2860                         prot, flags, pgoff, &populate);
2861         fput(file);
2862 out:
2863         up_write(&mm->mmap_sem);
2864         if (populate)
2865                 mm_populate(ret, populate);
2866         if (!IS_ERR_VALUE(ret))
2867                 ret = 0;
2868         return ret;
2869 }
2870
2871 static inline void verify_mm_writelocked(struct mm_struct *mm)
2872 {
2873 #ifdef CONFIG_DEBUG_VM
2874         if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2875                 WARN_ON(1);
2876                 up_read(&mm->mmap_sem);
2877         }
2878 #endif
2879 }
2880
2881 /*
2882  *  this is really a simplified "do_mmap".  it only handles
2883  *  anonymous maps.  eventually we may be able to do some
2884  *  brk-specific accounting here.
2885  */
2886 static int do_brk(unsigned long addr, unsigned long len)
2887 {
2888         struct mm_struct *mm = current->mm;
2889         struct vm_area_struct *vma, *prev;
2890         unsigned long flags;
2891         struct rb_node **rb_link, *rb_parent;
2892         pgoff_t pgoff = addr >> PAGE_SHIFT;
2893         int error;
2894
2895         flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2896
2897         error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2898         if (offset_in_page(error))
2899                 return error;
2900
2901         error = mlock_future_check(mm, mm->def_flags, len);
2902         if (error)
2903                 return error;
2904
2905         /*
2906          * mm->mmap_sem is required to protect against another thread
2907          * changing the mappings in case we sleep.
2908          */
2909         verify_mm_writelocked(mm);
2910
2911         /*
2912          * Clear old maps.  this also does some error checking for us
2913          */
2914         while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
2915                               &rb_parent)) {
2916                 if (do_munmap(mm, addr, len))
2917                         return -ENOMEM;
2918         }
2919
2920         /* Check against address space limits *after* clearing old maps... */
2921         if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
2922                 return -ENOMEM;
2923
2924         if (mm->map_count > sysctl_max_map_count)
2925                 return -ENOMEM;
2926
2927         if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
2928                 return -ENOMEM;
2929
2930         /* Can we just expand an old private anonymous mapping? */
2931         vma = vma_merge(mm, prev, addr, addr + len, flags,
2932                         NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX, NULL);
2933         if (vma)
2934                 goto out;
2935
2936         /*
2937          * create a vma struct for an anonymous mapping
2938          */
2939         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2940         if (!vma) {
2941                 vm_unacct_memory(len >> PAGE_SHIFT);
2942                 return -ENOMEM;
2943         }
2944
2945         INIT_LIST_HEAD(&vma->anon_vma_chain);
2946         vma->vm_mm = mm;
2947         vma->vm_start = addr;
2948         vma->vm_end = addr + len;
2949         vma->vm_pgoff = pgoff;
2950         vma->vm_flags = flags;
2951         vma->vm_page_prot = vm_get_page_prot(flags);
2952         vma_link(mm, vma, prev, rb_link, rb_parent);
2953 out:
2954         perf_event_mmap(vma);
2955         mm->total_vm += len >> PAGE_SHIFT;
2956         mm->data_vm += len >> PAGE_SHIFT;
2957         if (flags & VM_LOCKED)
2958                 mm->locked_vm += (len >> PAGE_SHIFT);
2959         vma->vm_flags |= VM_SOFTDIRTY;
2960         return 0;
2961 }
2962
2963 int vm_brk(unsigned long addr, unsigned long request)
2964 {
2965         struct mm_struct *mm = current->mm;
2966         unsigned long len;
2967         int ret;
2968         bool populate;
2969
2970         len = PAGE_ALIGN(request);
2971         if (len < request)
2972                 return -ENOMEM;
2973         if (!len)
2974                 return 0;
2975
2976         if (down_write_killable(&mm->mmap_sem))
2977                 return -EINTR;
2978
2979         ret = do_brk(addr, len);
2980         populate = ((mm->def_flags & VM_LOCKED) != 0);
2981         up_write(&mm->mmap_sem);
2982         if (populate && !ret)
2983                 mm_populate(addr, len);
2984         return ret;
2985 }
2986 EXPORT_SYMBOL(vm_brk);
2987
2988 /* Release all mmaps. */
2989 void exit_mmap(struct mm_struct *mm)
2990 {
2991         struct mmu_gather tlb;
2992         struct vm_area_struct *vma;
2993         unsigned long nr_accounted = 0;
2994
2995         /* mm's last user has gone, and its about to be pulled down */
2996         mmu_notifier_release(mm);
2997
2998         if (mm->locked_vm) {
2999                 vma = mm->mmap;
3000                 while (vma) {
3001                         if (vma->vm_flags & VM_LOCKED)
3002                                 munlock_vma_pages_all(vma);
3003                         vma = vma->vm_next;
3004                 }
3005         }
3006
3007         arch_exit_mmap(mm);
3008
3009         vma = mm->mmap;
3010         if (!vma)       /* Can happen if dup_mmap() received an OOM */
3011                 return;
3012
3013         lru_add_drain();
3014         flush_cache_mm(mm);
3015         tlb_gather_mmu(&tlb, mm, 0, -1);
3016         /* update_hiwater_rss(mm) here? but nobody should be looking */
3017         /* Use -1 here to ensure all VMAs in the mm are unmapped */
3018         unmap_vmas(&tlb, vma, 0, -1);
3019
3020         free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
3021         tlb_finish_mmu(&tlb, 0, -1);
3022
3023         /*
3024          * Walk the list again, actually closing and freeing it,
3025          * with preemption enabled, without holding any MM locks.
3026          */
3027         while (vma) {
3028                 if (vma->vm_flags & VM_ACCOUNT)
3029                         nr_accounted += vma_pages(vma);
3030                 vma = remove_vma(vma);
3031         }
3032         vm_unacct_memory(nr_accounted);
3033 }
3034
3035 /* Insert vm structure into process list sorted by address
3036  * and into the inode's i_mmap tree.  If vm_file is non-NULL
3037  * then i_mmap_rwsem is taken here.
3038  */
3039 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
3040 {
3041         struct vm_area_struct *prev;
3042         struct rb_node **rb_link, *rb_parent;
3043
3044         if (find_vma_links(mm, vma->vm_start, vma->vm_end,
3045                            &prev, &rb_link, &rb_parent))
3046                 return -ENOMEM;
3047         if ((vma->vm_flags & VM_ACCOUNT) &&
3048              security_vm_enough_memory_mm(mm, vma_pages(vma)))
3049                 return -ENOMEM;
3050
3051         /*
3052          * The vm_pgoff of a purely anonymous vma should be irrelevant
3053          * until its first write fault, when page's anon_vma and index
3054          * are set.  But now set the vm_pgoff it will almost certainly
3055          * end up with (unless mremap moves it elsewhere before that
3056          * first wfault), so /proc/pid/maps tells a consistent story.
3057          *
3058          * By setting it to reflect the virtual start address of the
3059          * vma, merges and splits can happen in a seamless way, just
3060          * using the existing file pgoff checks and manipulations.
3061          * Similarly in do_mmap_pgoff and in do_brk.
3062          */
3063         if (vma_is_anonymous(vma)) {
3064                 BUG_ON(vma->anon_vma);
3065                 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
3066         }
3067
3068         vma_link(mm, vma, prev, rb_link, rb_parent);
3069         return 0;
3070 }
3071
3072 /*
3073  * Copy the vma structure to a new location in the same mm,
3074  * prior to moving page table entries, to effect an mremap move.
3075  */
3076 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
3077         unsigned long addr, unsigned long len, pgoff_t pgoff,
3078         bool *need_rmap_locks)
3079 {
3080         struct vm_area_struct *vma = *vmap;
3081         unsigned long vma_start = vma->vm_start;
3082         struct mm_struct *mm = vma->vm_mm;
3083         struct vm_area_struct *new_vma, *prev;
3084         struct rb_node **rb_link, *rb_parent;
3085         bool faulted_in_anon_vma = true;
3086
3087         /*
3088          * If anonymous vma has not yet been faulted, update new pgoff
3089          * to match new location, to increase its chance of merging.
3090          */
3091         if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
3092                 pgoff = addr >> PAGE_SHIFT;
3093                 faulted_in_anon_vma = false;
3094         }
3095
3096         if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
3097                 return NULL;    /* should never get here */
3098         new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
3099                             vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
3100                             vma->vm_userfaultfd_ctx, vma_get_anon_name(vma));
3101         if (new_vma) {
3102                 /*
3103                  * Source vma may have been merged into new_vma
3104                  */
3105                 if (unlikely(vma_start >= new_vma->vm_start &&
3106                              vma_start < new_vma->vm_end)) {
3107                         /*
3108                          * The only way we can get a vma_merge with
3109                          * self during an mremap is if the vma hasn't
3110                          * been faulted in yet and we were allowed to
3111                          * reset the dst vma->vm_pgoff to the
3112                          * destination address of the mremap to allow
3113                          * the merge to happen. mremap must change the
3114                          * vm_pgoff linearity between src and dst vmas
3115                          * (in turn preventing a vma_merge) to be
3116                          * safe. It is only safe to keep the vm_pgoff
3117                          * linear if there are no pages mapped yet.
3118                          */
3119                         VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
3120                         *vmap = vma = new_vma;
3121                 }
3122                 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
3123         } else {
3124                 new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
3125                 if (!new_vma)
3126                         goto out;
3127                 *new_vma = *vma;
3128                 new_vma->vm_start = addr;
3129                 new_vma->vm_end = addr + len;
3130                 new_vma->vm_pgoff = pgoff;
3131                 if (vma_dup_policy(vma, new_vma))
3132                         goto out_free_vma;
3133                 INIT_LIST_HEAD(&new_vma->anon_vma_chain);
3134                 if (anon_vma_clone(new_vma, vma))
3135                         goto out_free_mempol;
3136                 if (new_vma->vm_file)
3137                         get_file(new_vma->vm_file);
3138                 if (new_vma->vm_ops && new_vma->vm_ops->open)
3139                         new_vma->vm_ops->open(new_vma);
3140                 vma_link(mm, new_vma, prev, rb_link, rb_parent);
3141                 *need_rmap_locks = false;
3142         }
3143         return new_vma;
3144
3145 out_free_mempol:
3146         mpol_put(vma_policy(new_vma));
3147 out_free_vma:
3148         kmem_cache_free(vm_area_cachep, new_vma);
3149 out:
3150         return NULL;
3151 }
3152
3153 /*
3154  * Return true if the calling process may expand its vm space by the passed
3155  * number of pages
3156  */
3157 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
3158 {
3159         if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
3160                 return false;
3161
3162         if (is_data_mapping(flags) &&
3163             mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
3164                 /* Workaround for Valgrind */
3165                 if (rlimit(RLIMIT_DATA) == 0 &&
3166                     mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
3167                         return true;
3168                 if (!ignore_rlimit_data) {
3169                         pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits or use boot option ignore_rlimit_data.\n",
3170                                      current->comm, current->pid,
3171                                      (mm->data_vm + npages) << PAGE_SHIFT,
3172                                      rlimit(RLIMIT_DATA));
3173                         return false;
3174                 }
3175         }
3176
3177         return true;
3178 }
3179
3180 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
3181 {
3182         mm->total_vm += npages;
3183
3184         if (is_exec_mapping(flags))
3185                 mm->exec_vm += npages;
3186         else if (is_stack_mapping(flags))
3187                 mm->stack_vm += npages;
3188         else if (is_data_mapping(flags))
3189                 mm->data_vm += npages;
3190 }
3191
3192 static int special_mapping_fault(struct vm_area_struct *vma,
3193                                  struct vm_fault *vmf);
3194
3195 /*
3196  * Having a close hook prevents vma merging regardless of flags.
3197  */
3198 static void special_mapping_close(struct vm_area_struct *vma)
3199 {
3200 }
3201
3202 static const char *special_mapping_name(struct vm_area_struct *vma)
3203 {
3204         return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3205 }
3206
3207 static int special_mapping_mremap(struct vm_area_struct *new_vma)
3208 {
3209         struct vm_special_mapping *sm = new_vma->vm_private_data;
3210
3211         if (sm->mremap)
3212                 return sm->mremap(sm, new_vma);
3213         return 0;
3214 }
3215
3216 static const struct vm_operations_struct special_mapping_vmops = {
3217         .close = special_mapping_close,
3218         .fault = special_mapping_fault,
3219         .mremap = special_mapping_mremap,
3220         .name = special_mapping_name,
3221 };
3222
3223 static const struct vm_operations_struct legacy_special_mapping_vmops = {
3224         .close = special_mapping_close,
3225         .fault = special_mapping_fault,
3226 };
3227
3228 static int special_mapping_fault(struct vm_area_struct *vma,
3229                                 struct vm_fault *vmf)
3230 {
3231         pgoff_t pgoff;
3232         struct page **pages;
3233
3234         if (vma->vm_ops == &legacy_special_mapping_vmops) {
3235                 pages = vma->vm_private_data;
3236         } else {
3237                 struct vm_special_mapping *sm = vma->vm_private_data;
3238
3239                 if (sm->fault)
3240                         return sm->fault(sm, vma, vmf);
3241
3242                 pages = sm->pages;
3243         }
3244
3245         for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3246                 pgoff--;
3247
3248         if (*pages) {
3249                 struct page *page = *pages;
3250                 get_page(page);
3251                 vmf->page = page;
3252                 return 0;
3253         }
3254
3255         return VM_FAULT_SIGBUS;
3256 }
3257
3258 static struct vm_area_struct *__install_special_mapping(
3259         struct mm_struct *mm,
3260         unsigned long addr, unsigned long len,
3261         unsigned long vm_flags, void *priv,
3262         const struct vm_operations_struct *ops)
3263 {
3264         int ret;
3265         struct vm_area_struct *vma;
3266
3267         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
3268         if (unlikely(vma == NULL))
3269                 return ERR_PTR(-ENOMEM);
3270
3271         INIT_LIST_HEAD(&vma->anon_vma_chain);
3272         vma->vm_mm = mm;
3273         vma->vm_start = addr;
3274         vma->vm_end = addr + len;
3275
3276         vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
3277         vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3278
3279         vma->vm_ops = ops;
3280         vma->vm_private_data = priv;
3281
3282         ret = insert_vm_struct(mm, vma);
3283         if (ret)
3284                 goto out;
3285
3286         vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3287
3288         perf_event_mmap(vma);
3289
3290         return vma;
3291
3292 out:
3293         kmem_cache_free(vm_area_cachep, vma);
3294         return ERR_PTR(ret);
3295 }
3296
3297 bool vma_is_special_mapping(const struct vm_area_struct *vma,
3298         const struct vm_special_mapping *sm)
3299 {
3300         return vma->vm_private_data == sm &&
3301                 (vma->vm_ops == &special_mapping_vmops ||
3302                  vma->vm_ops == &legacy_special_mapping_vmops);
3303 }
3304
3305 /*
3306  * Called with mm->mmap_sem held for writing.
3307  * Insert a new vma covering the given region, with the given flags.
3308  * Its pages are supplied by the given array of struct page *.
3309  * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3310  * The region past the last page supplied will always produce SIGBUS.
3311  * The array pointer and the pages it points to are assumed to stay alive
3312  * for as long as this mapping might exist.
3313  */
3314 struct vm_area_struct *_install_special_mapping(
3315         struct mm_struct *mm,
3316         unsigned long addr, unsigned long len,
3317         unsigned long vm_flags, const struct vm_special_mapping *spec)
3318 {
3319         return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3320                                         &special_mapping_vmops);
3321 }
3322
3323 int install_special_mapping(struct mm_struct *mm,
3324                             unsigned long addr, unsigned long len,
3325                             unsigned long vm_flags, struct page **pages)
3326 {
3327         struct vm_area_struct *vma = __install_special_mapping(
3328                 mm, addr, len, vm_flags, (void *)pages,
3329                 &legacy_special_mapping_vmops);
3330
3331         return PTR_ERR_OR_ZERO(vma);
3332 }
3333
3334 static DEFINE_MUTEX(mm_all_locks_mutex);
3335
3336 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3337 {
3338         if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3339                 /*
3340                  * The LSB of head.next can't change from under us
3341                  * because we hold the mm_all_locks_mutex.
3342                  */
3343                 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem);
3344                 /*
3345                  * We can safely modify head.next after taking the
3346                  * anon_vma->root->rwsem. If some other vma in this mm shares
3347                  * the same anon_vma we won't take it again.
3348                  *
3349                  * No need of atomic instructions here, head.next
3350                  * can't change from under us thanks to the
3351                  * anon_vma->root->rwsem.
3352                  */
3353                 if (__test_and_set_bit(0, (unsigned long *)
3354                                        &anon_vma->root->rb_root.rb_node))
3355                         BUG();
3356         }
3357 }
3358
3359 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3360 {
3361         if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3362                 /*
3363                  * AS_MM_ALL_LOCKS can't change from under us because
3364                  * we hold the mm_all_locks_mutex.
3365                  *
3366                  * Operations on ->flags have to be atomic because
3367                  * even if AS_MM_ALL_LOCKS is stable thanks to the
3368                  * mm_all_locks_mutex, there may be other cpus
3369                  * changing other bitflags in parallel to us.
3370                  */
3371                 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3372                         BUG();
3373                 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_sem);
3374         }
3375 }
3376
3377 /*
3378  * This operation locks against the VM for all pte/vma/mm related
3379  * operations that could ever happen on a certain mm. This includes
3380  * vmtruncate, try_to_unmap, and all page faults.
3381  *
3382  * The caller must take the mmap_sem in write mode before calling
3383  * mm_take_all_locks(). The caller isn't allowed to release the
3384  * mmap_sem until mm_drop_all_locks() returns.
3385  *
3386  * mmap_sem in write mode is required in order to block all operations
3387  * that could modify pagetables and free pages without need of
3388  * altering the vma layout. It's also needed in write mode to avoid new
3389  * anon_vmas to be associated with existing vmas.
3390  *
3391  * A single task can't take more than one mm_take_all_locks() in a row
3392  * or it would deadlock.
3393  *
3394  * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3395  * mapping->flags avoid to take the same lock twice, if more than one
3396  * vma in this mm is backed by the same anon_vma or address_space.
3397  *
3398  * We take locks in following order, accordingly to comment at beginning
3399  * of mm/rmap.c:
3400  *   - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3401  *     hugetlb mapping);
3402  *   - all i_mmap_rwsem locks;
3403  *   - all anon_vma->rwseml
3404  *
3405  * We can take all locks within these types randomly because the VM code
3406  * doesn't nest them and we protected from parallel mm_take_all_locks() by
3407  * mm_all_locks_mutex.
3408  *
3409  * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3410  * that may have to take thousand of locks.
3411  *
3412  * mm_take_all_locks() can fail if it's interrupted by signals.
3413  */
3414 int mm_take_all_locks(struct mm_struct *mm)
3415 {
3416         struct vm_area_struct *vma;
3417         struct anon_vma_chain *avc;
3418
3419         BUG_ON(down_read_trylock(&mm->mmap_sem));
3420
3421         mutex_lock(&mm_all_locks_mutex);
3422
3423         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3424                 if (signal_pending(current))
3425                         goto out_unlock;
3426                 if (vma->vm_file && vma->vm_file->f_mapping &&
3427                                 is_vm_hugetlb_page(vma))
3428                         vm_lock_mapping(mm, vma->vm_file->f_mapping);
3429         }
3430
3431         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3432                 if (signal_pending(current))
3433                         goto out_unlock;
3434                 if (vma->vm_file && vma->vm_file->f_mapping &&
3435                                 !is_vm_hugetlb_page(vma))
3436                         vm_lock_mapping(mm, vma->vm_file->f_mapping);
3437         }
3438
3439         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3440                 if (signal_pending(current))
3441                         goto out_unlock;
3442                 if (vma->anon_vma)
3443                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3444                                 vm_lock_anon_vma(mm, avc->anon_vma);
3445         }
3446
3447         return 0;
3448
3449 out_unlock:
3450         mm_drop_all_locks(mm);
3451         return -EINTR;
3452 }
3453
3454 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3455 {
3456         if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3457                 /*
3458                  * The LSB of head.next can't change to 0 from under
3459                  * us because we hold the mm_all_locks_mutex.
3460                  *
3461                  * We must however clear the bitflag before unlocking
3462                  * the vma so the users using the anon_vma->rb_root will
3463                  * never see our bitflag.
3464                  *
3465                  * No need of atomic instructions here, head.next
3466                  * can't change from under us until we release the
3467                  * anon_vma->root->rwsem.
3468                  */
3469                 if (!__test_and_clear_bit(0, (unsigned long *)
3470                                           &anon_vma->root->rb_root.rb_node))
3471                         BUG();
3472                 anon_vma_unlock_write(anon_vma);
3473         }
3474 }
3475
3476 static void vm_unlock_mapping(struct address_space *mapping)
3477 {
3478         if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3479                 /*
3480                  * AS_MM_ALL_LOCKS can't change to 0 from under us
3481                  * because we hold the mm_all_locks_mutex.
3482                  */
3483                 i_mmap_unlock_write(mapping);
3484                 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3485                                         &mapping->flags))
3486                         BUG();
3487         }
3488 }
3489
3490 /*
3491  * The mmap_sem cannot be released by the caller until
3492  * mm_drop_all_locks() returns.
3493  */
3494 void mm_drop_all_locks(struct mm_struct *mm)
3495 {
3496         struct vm_area_struct *vma;
3497         struct anon_vma_chain *avc;
3498
3499         BUG_ON(down_read_trylock(&mm->mmap_sem));
3500         BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3501
3502         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3503                 if (vma->anon_vma)
3504                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3505                                 vm_unlock_anon_vma(avc->anon_vma);
3506                 if (vma->vm_file && vma->vm_file->f_mapping)
3507                         vm_unlock_mapping(vma->vm_file->f_mapping);
3508         }
3509
3510         mutex_unlock(&mm_all_locks_mutex);
3511 }
3512
3513 /*
3514  * initialise the VMA slab
3515  */
3516 void __init mmap_init(void)
3517 {
3518         int ret;
3519
3520         ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3521         VM_BUG_ON(ret);
3522 }
3523
3524 /*
3525  * Initialise sysctl_user_reserve_kbytes.
3526  *
3527  * This is intended to prevent a user from starting a single memory hogging
3528  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3529  * mode.
3530  *
3531  * The default value is min(3% of free memory, 128MB)
3532  * 128MB is enough to recover with sshd/login, bash, and top/kill.
3533  */
3534 static int init_user_reserve(void)
3535 {
3536         unsigned long free_kbytes;
3537
3538         free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3539
3540         sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3541         return 0;
3542 }
3543 subsys_initcall(init_user_reserve);
3544
3545 /*
3546  * Initialise sysctl_admin_reserve_kbytes.
3547  *
3548  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3549  * to log in and kill a memory hogging process.
3550  *
3551  * Systems with more than 256MB will reserve 8MB, enough to recover
3552  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3553  * only reserve 3% of free pages by default.
3554  */
3555 static int init_admin_reserve(void)
3556 {
3557         unsigned long free_kbytes;
3558
3559         free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3560
3561         sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3562         return 0;
3563 }
3564 subsys_initcall(init_admin_reserve);
3565
3566 /*
3567  * Reinititalise user and admin reserves if memory is added or removed.
3568  *
3569  * The default user reserve max is 128MB, and the default max for the
3570  * admin reserve is 8MB. These are usually, but not always, enough to
3571  * enable recovery from a memory hogging process using login/sshd, a shell,
3572  * and tools like top. It may make sense to increase or even disable the
3573  * reserve depending on the existence of swap or variations in the recovery
3574  * tools. So, the admin may have changed them.
3575  *
3576  * If memory is added and the reserves have been eliminated or increased above
3577  * the default max, then we'll trust the admin.
3578  *
3579  * If memory is removed and there isn't enough free memory, then we
3580  * need to reset the reserves.
3581  *
3582  * Otherwise keep the reserve set by the admin.
3583  */
3584 static int reserve_mem_notifier(struct notifier_block *nb,
3585                              unsigned long action, void *data)
3586 {
3587         unsigned long tmp, free_kbytes;
3588
3589         switch (action) {
3590         case MEM_ONLINE:
3591                 /* Default max is 128MB. Leave alone if modified by operator. */
3592                 tmp = sysctl_user_reserve_kbytes;
3593                 if (0 < tmp && tmp < (1UL << 17))
3594                         init_user_reserve();
3595
3596                 /* Default max is 8MB.  Leave alone if modified by operator. */
3597                 tmp = sysctl_admin_reserve_kbytes;
3598                 if (0 < tmp && tmp < (1UL << 13))
3599                         init_admin_reserve();
3600
3601                 break;
3602         case MEM_OFFLINE:
3603                 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3604
3605                 if (sysctl_user_reserve_kbytes > free_kbytes) {
3606                         init_user_reserve();
3607                         pr_info("vm.user_reserve_kbytes reset to %lu\n",
3608                                 sysctl_user_reserve_kbytes);
3609                 }
3610
3611                 if (sysctl_admin_reserve_kbytes > free_kbytes) {
3612                         init_admin_reserve();
3613                         pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3614                                 sysctl_admin_reserve_kbytes);
3615                 }
3616                 break;
3617         default:
3618                 break;
3619         }
3620         return NOTIFY_OK;
3621 }
3622
3623 static struct notifier_block reserve_mem_nb = {
3624         .notifier_call = reserve_mem_notifier,
3625 };
3626
3627 static int __meminit init_reserve_notifier(void)
3628 {
3629         if (register_hotmemory_notifier(&reserve_mem_nb))
3630                 pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3631
3632         return 0;
3633 }
3634 subsys_initcall(init_reserve_notifier);