676f422f2e2c94d103646adc76e920cc75a549cd
[platform/kernel/linux-rpi.git] / mm / mmap.c
1 /*
2  * mm/mmap.c
3  *
4  * Written by obz.
5  *
6  * Address space accounting code        <alan@lxorguk.ukuu.org.uk>
7  */
8
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11 #include <linux/kernel.h>
12 #include <linux/slab.h>
13 #include <linux/backing-dev.h>
14 #include <linux/mm.h>
15 #include <linux/vmacache.h>
16 #include <linux/shm.h>
17 #include <linux/mman.h>
18 #include <linux/pagemap.h>
19 #include <linux/swap.h>
20 #include <linux/syscalls.h>
21 #include <linux/capability.h>
22 #include <linux/init.h>
23 #include <linux/file.h>
24 #include <linux/fs.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/hugetlb.h>
28 #include <linux/profile.h>
29 #include <linux/export.h>
30 #include <linux/mount.h>
31 #include <linux/mempolicy.h>
32 #include <linux/rmap.h>
33 #include <linux/mmu_notifier.h>
34 #include <linux/mmdebug.h>
35 #include <linux/perf_event.h>
36 #include <linux/audit.h>
37 #include <linux/khugepaged.h>
38 #include <linux/uprobes.h>
39 #include <linux/rbtree_augmented.h>
40 #include <linux/notifier.h>
41 #include <linux/memory.h>
42 #include <linux/printk.h>
43 #include <linux/userfaultfd_k.h>
44 #include <linux/moduleparam.h>
45
46 #include <asm/uaccess.h>
47 #include <asm/cacheflush.h>
48 #include <asm/tlb.h>
49 #include <asm/mmu_context.h>
50
51 #include "internal.h"
52
53 #ifndef arch_mmap_check
54 #define arch_mmap_check(addr, len, flags)       (0)
55 #endif
56
57 #ifndef arch_rebalance_pgtables
58 #define arch_rebalance_pgtables(addr, len)              (addr)
59 #endif
60
61 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
62 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
63 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX;
64 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
65 #endif
66 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
67 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
68 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
69 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
70 #endif
71
72 static bool ignore_rlimit_data = true;
73 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
74
75 static void unmap_region(struct mm_struct *mm,
76                 struct vm_area_struct *vma, struct vm_area_struct *prev,
77                 unsigned long start, unsigned long end);
78
79 /* description of effects of mapping type and prot in current implementation.
80  * this is due to the limited x86 page protection hardware.  The expected
81  * behavior is in parens:
82  *
83  * map_type     prot
84  *              PROT_NONE       PROT_READ       PROT_WRITE      PROT_EXEC
85  * MAP_SHARED   r: (no) no      r: (yes) yes    r: (no) yes     r: (no) yes
86  *              w: (no) no      w: (no) no      w: (yes) yes    w: (no) no
87  *              x: (no) no      x: (no) yes     x: (no) yes     x: (yes) yes
88  *
89  * MAP_PRIVATE  r: (no) no      r: (yes) yes    r: (no) yes     r: (no) yes
90  *              w: (no) no      w: (no) no      w: (copy) copy  w: (no) no
91  *              x: (no) no      x: (no) yes     x: (no) yes     x: (yes) yes
92  *
93  */
94 pgprot_t protection_map[16] = {
95         __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
96         __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
97 };
98
99 pgprot_t vm_get_page_prot(unsigned long vm_flags)
100 {
101         return __pgprot(pgprot_val(protection_map[vm_flags &
102                                 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
103                         pgprot_val(arch_vm_get_page_prot(vm_flags)));
104 }
105 EXPORT_SYMBOL(vm_get_page_prot);
106
107 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
108 {
109         return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
110 }
111
112 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
113 void vma_set_page_prot(struct vm_area_struct *vma)
114 {
115         unsigned long vm_flags = vma->vm_flags;
116
117         vma->vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
118         if (vma_wants_writenotify(vma)) {
119                 vm_flags &= ~VM_SHARED;
120                 vma->vm_page_prot = vm_pgprot_modify(vma->vm_page_prot,
121                                                      vm_flags);
122         }
123 }
124
125
126 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS;  /* heuristic overcommit */
127 int sysctl_overcommit_ratio __read_mostly = 50; /* default is 50% */
128 unsigned long sysctl_overcommit_kbytes __read_mostly;
129 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
130 unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
131 unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */
132 /*
133  * Make sure vm_committed_as in one cacheline and not cacheline shared with
134  * other variables. It can be updated by several CPUs frequently.
135  */
136 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
137
138 /*
139  * The global memory commitment made in the system can be a metric
140  * that can be used to drive ballooning decisions when Linux is hosted
141  * as a guest. On Hyper-V, the host implements a policy engine for dynamically
142  * balancing memory across competing virtual machines that are hosted.
143  * Several metrics drive this policy engine including the guest reported
144  * memory commitment.
145  */
146 unsigned long vm_memory_committed(void)
147 {
148         return percpu_counter_read_positive(&vm_committed_as);
149 }
150 EXPORT_SYMBOL_GPL(vm_memory_committed);
151
152 /*
153  * Check that a process has enough memory to allocate a new virtual
154  * mapping. 0 means there is enough memory for the allocation to
155  * succeed and -ENOMEM implies there is not.
156  *
157  * We currently support three overcommit policies, which are set via the
158  * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting
159  *
160  * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
161  * Additional code 2002 Jul 20 by Robert Love.
162  *
163  * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
164  *
165  * Note this is a helper function intended to be used by LSMs which
166  * wish to use this logic.
167  */
168 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
169 {
170         long free, allowed, reserve;
171
172         VM_WARN_ONCE(percpu_counter_read(&vm_committed_as) <
173                         -(s64)vm_committed_as_batch * num_online_cpus(),
174                         "memory commitment underflow");
175
176         vm_acct_memory(pages);
177
178         /*
179          * Sometimes we want to use more memory than we have
180          */
181         if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
182                 return 0;
183
184         if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
185                 free = global_page_state(NR_FREE_PAGES);
186                 free += global_page_state(NR_FILE_PAGES);
187
188                 /*
189                  * shmem pages shouldn't be counted as free in this
190                  * case, they can't be purged, only swapped out, and
191                  * that won't affect the overall amount of available
192                  * memory in the system.
193                  */
194                 free -= global_page_state(NR_SHMEM);
195
196                 free += get_nr_swap_pages();
197
198                 /*
199                  * Any slabs which are created with the
200                  * SLAB_RECLAIM_ACCOUNT flag claim to have contents
201                  * which are reclaimable, under pressure.  The dentry
202                  * cache and most inode caches should fall into this
203                  */
204                 free += global_page_state(NR_SLAB_RECLAIMABLE);
205
206                 /*
207                  * Leave reserved pages. The pages are not for anonymous pages.
208                  */
209                 if (free <= totalreserve_pages)
210                         goto error;
211                 else
212                         free -= totalreserve_pages;
213
214                 /*
215                  * Reserve some for root
216                  */
217                 if (!cap_sys_admin)
218                         free -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
219
220                 if (free > pages)
221                         return 0;
222
223                 goto error;
224         }
225
226         allowed = vm_commit_limit();
227         /*
228          * Reserve some for root
229          */
230         if (!cap_sys_admin)
231                 allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
232
233         /*
234          * Don't let a single process grow so big a user can't recover
235          */
236         if (mm) {
237                 reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);
238                 allowed -= min_t(long, mm->total_vm / 32, reserve);
239         }
240
241         if (percpu_counter_read_positive(&vm_committed_as) < allowed)
242                 return 0;
243 error:
244         vm_unacct_memory(pages);
245
246         return -ENOMEM;
247 }
248
249 /*
250  * Requires inode->i_mapping->i_mmap_rwsem
251  */
252 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
253                 struct file *file, struct address_space *mapping)
254 {
255         if (vma->vm_flags & VM_DENYWRITE)
256                 atomic_inc(&file_inode(file)->i_writecount);
257         if (vma->vm_flags & VM_SHARED)
258                 mapping_unmap_writable(mapping);
259
260         flush_dcache_mmap_lock(mapping);
261         vma_interval_tree_remove(vma, &mapping->i_mmap);
262         flush_dcache_mmap_unlock(mapping);
263 }
264
265 /*
266  * Unlink a file-based vm structure from its interval tree, to hide
267  * vma from rmap and vmtruncate before freeing its page tables.
268  */
269 void unlink_file_vma(struct vm_area_struct *vma)
270 {
271         struct file *file = vma->vm_file;
272
273         if (file) {
274                 struct address_space *mapping = file->f_mapping;
275                 i_mmap_lock_write(mapping);
276                 __remove_shared_vm_struct(vma, file, mapping);
277                 i_mmap_unlock_write(mapping);
278         }
279 }
280
281 /*
282  * Close a vm structure and free it, returning the next.
283  */
284 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
285 {
286         struct vm_area_struct *next = vma->vm_next;
287
288         might_sleep();
289         if (vma->vm_ops && vma->vm_ops->close)
290                 vma->vm_ops->close(vma);
291         if (vma->vm_file)
292                 fput(vma->vm_file);
293         mpol_put(vma_policy(vma));
294         kmem_cache_free(vm_area_cachep, vma);
295         return next;
296 }
297
298 static unsigned long do_brk(unsigned long addr, unsigned long len);
299
300 SYSCALL_DEFINE1(brk, unsigned long, brk)
301 {
302         unsigned long retval;
303         unsigned long newbrk, oldbrk;
304         struct mm_struct *mm = current->mm;
305         unsigned long min_brk;
306         bool populate;
307
308         down_write(&mm->mmap_sem);
309
310 #ifdef CONFIG_COMPAT_BRK
311         /*
312          * CONFIG_COMPAT_BRK can still be overridden by setting
313          * randomize_va_space to 2, which will still cause mm->start_brk
314          * to be arbitrarily shifted
315          */
316         if (current->brk_randomized)
317                 min_brk = mm->start_brk;
318         else
319                 min_brk = mm->end_data;
320 #else
321         min_brk = mm->start_brk;
322 #endif
323         if (brk < min_brk)
324                 goto out;
325
326         /*
327          * Check against rlimit here. If this check is done later after the test
328          * of oldbrk with newbrk then it can escape the test and let the data
329          * segment grow beyond its set limit the in case where the limit is
330          * not page aligned -Ram Gupta
331          */
332         if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
333                               mm->end_data, mm->start_data))
334                 goto out;
335
336         newbrk = PAGE_ALIGN(brk);
337         oldbrk = PAGE_ALIGN(mm->brk);
338         if (oldbrk == newbrk)
339                 goto set_brk;
340
341         /* Always allow shrinking brk. */
342         if (brk <= mm->brk) {
343                 if (!do_munmap(mm, newbrk, oldbrk-newbrk))
344                         goto set_brk;
345                 goto out;
346         }
347
348         /* Check against existing mmap mappings. */
349         if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
350                 goto out;
351
352         /* Ok, looks good - let it rip. */
353         if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
354                 goto out;
355
356 set_brk:
357         mm->brk = brk;
358         populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
359         up_write(&mm->mmap_sem);
360         if (populate)
361                 mm_populate(oldbrk, newbrk - oldbrk);
362         return brk;
363
364 out:
365         retval = mm->brk;
366         up_write(&mm->mmap_sem);
367         return retval;
368 }
369
370 static long vma_compute_subtree_gap(struct vm_area_struct *vma)
371 {
372         unsigned long max, subtree_gap;
373         max = vma->vm_start;
374         if (vma->vm_prev)
375                 max -= vma->vm_prev->vm_end;
376         if (vma->vm_rb.rb_left) {
377                 subtree_gap = rb_entry(vma->vm_rb.rb_left,
378                                 struct vm_area_struct, vm_rb)->rb_subtree_gap;
379                 if (subtree_gap > max)
380                         max = subtree_gap;
381         }
382         if (vma->vm_rb.rb_right) {
383                 subtree_gap = rb_entry(vma->vm_rb.rb_right,
384                                 struct vm_area_struct, vm_rb)->rb_subtree_gap;
385                 if (subtree_gap > max)
386                         max = subtree_gap;
387         }
388         return max;
389 }
390
391 #ifdef CONFIG_DEBUG_VM_RB
392 static int browse_rb(struct mm_struct *mm)
393 {
394         struct rb_root *root = &mm->mm_rb;
395         int i = 0, j, bug = 0;
396         struct rb_node *nd, *pn = NULL;
397         unsigned long prev = 0, pend = 0;
398
399         for (nd = rb_first(root); nd; nd = rb_next(nd)) {
400                 struct vm_area_struct *vma;
401                 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
402                 if (vma->vm_start < prev) {
403                         pr_emerg("vm_start %lx < prev %lx\n",
404                                   vma->vm_start, prev);
405                         bug = 1;
406                 }
407                 if (vma->vm_start < pend) {
408                         pr_emerg("vm_start %lx < pend %lx\n",
409                                   vma->vm_start, pend);
410                         bug = 1;
411                 }
412                 if (vma->vm_start > vma->vm_end) {
413                         pr_emerg("vm_start %lx > vm_end %lx\n",
414                                   vma->vm_start, vma->vm_end);
415                         bug = 1;
416                 }
417                 spin_lock(&mm->page_table_lock);
418                 if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
419                         pr_emerg("free gap %lx, correct %lx\n",
420                                vma->rb_subtree_gap,
421                                vma_compute_subtree_gap(vma));
422                         bug = 1;
423                 }
424                 spin_unlock(&mm->page_table_lock);
425                 i++;
426                 pn = nd;
427                 prev = vma->vm_start;
428                 pend = vma->vm_end;
429         }
430         j = 0;
431         for (nd = pn; nd; nd = rb_prev(nd))
432                 j++;
433         if (i != j) {
434                 pr_emerg("backwards %d, forwards %d\n", j, i);
435                 bug = 1;
436         }
437         return bug ? -1 : i;
438 }
439
440 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
441 {
442         struct rb_node *nd;
443
444         for (nd = rb_first(root); nd; nd = rb_next(nd)) {
445                 struct vm_area_struct *vma;
446                 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
447                 VM_BUG_ON_VMA(vma != ignore &&
448                         vma->rb_subtree_gap != vma_compute_subtree_gap(vma),
449                         vma);
450         }
451 }
452
453 static void validate_mm(struct mm_struct *mm)
454 {
455         int bug = 0;
456         int i = 0;
457         unsigned long highest_address = 0;
458         struct vm_area_struct *vma = mm->mmap;
459
460         while (vma) {
461                 struct anon_vma *anon_vma = vma->anon_vma;
462                 struct anon_vma_chain *avc;
463
464                 if (anon_vma) {
465                         anon_vma_lock_read(anon_vma);
466                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
467                                 anon_vma_interval_tree_verify(avc);
468                         anon_vma_unlock_read(anon_vma);
469                 }
470
471                 highest_address = vma->vm_end;
472                 vma = vma->vm_next;
473                 i++;
474         }
475         if (i != mm->map_count) {
476                 pr_emerg("map_count %d vm_next %d\n", mm->map_count, i);
477                 bug = 1;
478         }
479         if (highest_address != mm->highest_vm_end) {
480                 pr_emerg("mm->highest_vm_end %lx, found %lx\n",
481                           mm->highest_vm_end, highest_address);
482                 bug = 1;
483         }
484         i = browse_rb(mm);
485         if (i != mm->map_count) {
486                 if (i != -1)
487                         pr_emerg("map_count %d rb %d\n", mm->map_count, i);
488                 bug = 1;
489         }
490         VM_BUG_ON_MM(bug, mm);
491 }
492 #else
493 #define validate_mm_rb(root, ignore) do { } while (0)
494 #define validate_mm(mm) do { } while (0)
495 #endif
496
497 RB_DECLARE_CALLBACKS(static, vma_gap_callbacks, struct vm_area_struct, vm_rb,
498                      unsigned long, rb_subtree_gap, vma_compute_subtree_gap)
499
500 /*
501  * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
502  * vma->vm_prev->vm_end values changed, without modifying the vma's position
503  * in the rbtree.
504  */
505 static void vma_gap_update(struct vm_area_struct *vma)
506 {
507         /*
508          * As it turns out, RB_DECLARE_CALLBACKS() already created a callback
509          * function that does exacltly what we want.
510          */
511         vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
512 }
513
514 static inline void vma_rb_insert(struct vm_area_struct *vma,
515                                  struct rb_root *root)
516 {
517         /* All rb_subtree_gap values must be consistent prior to insertion */
518         validate_mm_rb(root, NULL);
519
520         rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
521 }
522
523 static void vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
524 {
525         /*
526          * All rb_subtree_gap values must be consistent prior to erase,
527          * with the possible exception of the vma being erased.
528          */
529         validate_mm_rb(root, vma);
530
531         /*
532          * Note rb_erase_augmented is a fairly large inline function,
533          * so make sure we instantiate it only once with our desired
534          * augmented rbtree callbacks.
535          */
536         rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
537 }
538
539 /*
540  * vma has some anon_vma assigned, and is already inserted on that
541  * anon_vma's interval trees.
542  *
543  * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
544  * vma must be removed from the anon_vma's interval trees using
545  * anon_vma_interval_tree_pre_update_vma().
546  *
547  * After the update, the vma will be reinserted using
548  * anon_vma_interval_tree_post_update_vma().
549  *
550  * The entire update must be protected by exclusive mmap_sem and by
551  * the root anon_vma's mutex.
552  */
553 static inline void
554 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
555 {
556         struct anon_vma_chain *avc;
557
558         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
559                 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
560 }
561
562 static inline void
563 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
564 {
565         struct anon_vma_chain *avc;
566
567         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
568                 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
569 }
570
571 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
572                 unsigned long end, struct vm_area_struct **pprev,
573                 struct rb_node ***rb_link, struct rb_node **rb_parent)
574 {
575         struct rb_node **__rb_link, *__rb_parent, *rb_prev;
576
577         __rb_link = &mm->mm_rb.rb_node;
578         rb_prev = __rb_parent = NULL;
579
580         while (*__rb_link) {
581                 struct vm_area_struct *vma_tmp;
582
583                 __rb_parent = *__rb_link;
584                 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
585
586                 if (vma_tmp->vm_end > addr) {
587                         /* Fail if an existing vma overlaps the area */
588                         if (vma_tmp->vm_start < end)
589                                 return -ENOMEM;
590                         __rb_link = &__rb_parent->rb_left;
591                 } else {
592                         rb_prev = __rb_parent;
593                         __rb_link = &__rb_parent->rb_right;
594                 }
595         }
596
597         *pprev = NULL;
598         if (rb_prev)
599                 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
600         *rb_link = __rb_link;
601         *rb_parent = __rb_parent;
602         return 0;
603 }
604
605 static unsigned long count_vma_pages_range(struct mm_struct *mm,
606                 unsigned long addr, unsigned long end)
607 {
608         unsigned long nr_pages = 0;
609         struct vm_area_struct *vma;
610
611         /* Find first overlaping mapping */
612         vma = find_vma_intersection(mm, addr, end);
613         if (!vma)
614                 return 0;
615
616         nr_pages = (min(end, vma->vm_end) -
617                 max(addr, vma->vm_start)) >> PAGE_SHIFT;
618
619         /* Iterate over the rest of the overlaps */
620         for (vma = vma->vm_next; vma; vma = vma->vm_next) {
621                 unsigned long overlap_len;
622
623                 if (vma->vm_start > end)
624                         break;
625
626                 overlap_len = min(end, vma->vm_end) - vma->vm_start;
627                 nr_pages += overlap_len >> PAGE_SHIFT;
628         }
629
630         return nr_pages;
631 }
632
633 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
634                 struct rb_node **rb_link, struct rb_node *rb_parent)
635 {
636         /* Update tracking information for the gap following the new vma. */
637         if (vma->vm_next)
638                 vma_gap_update(vma->vm_next);
639         else
640                 mm->highest_vm_end = vma->vm_end;
641
642         /*
643          * vma->vm_prev wasn't known when we followed the rbtree to find the
644          * correct insertion point for that vma. As a result, we could not
645          * update the vma vm_rb parents rb_subtree_gap values on the way down.
646          * So, we first insert the vma with a zero rb_subtree_gap value
647          * (to be consistent with what we did on the way down), and then
648          * immediately update the gap to the correct value. Finally we
649          * rebalance the rbtree after all augmented values have been set.
650          */
651         rb_link_node(&vma->vm_rb, rb_parent, rb_link);
652         vma->rb_subtree_gap = 0;
653         vma_gap_update(vma);
654         vma_rb_insert(vma, &mm->mm_rb);
655 }
656
657 static void __vma_link_file(struct vm_area_struct *vma)
658 {
659         struct file *file;
660
661         file = vma->vm_file;
662         if (file) {
663                 struct address_space *mapping = file->f_mapping;
664
665                 if (vma->vm_flags & VM_DENYWRITE)
666                         atomic_dec(&file_inode(file)->i_writecount);
667                 if (vma->vm_flags & VM_SHARED)
668                         atomic_inc(&mapping->i_mmap_writable);
669
670                 flush_dcache_mmap_lock(mapping);
671                 vma_interval_tree_insert(vma, &mapping->i_mmap);
672                 flush_dcache_mmap_unlock(mapping);
673         }
674 }
675
676 static void
677 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
678         struct vm_area_struct *prev, struct rb_node **rb_link,
679         struct rb_node *rb_parent)
680 {
681         __vma_link_list(mm, vma, prev, rb_parent);
682         __vma_link_rb(mm, vma, rb_link, rb_parent);
683 }
684
685 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
686                         struct vm_area_struct *prev, struct rb_node **rb_link,
687                         struct rb_node *rb_parent)
688 {
689         struct address_space *mapping = NULL;
690
691         if (vma->vm_file) {
692                 mapping = vma->vm_file->f_mapping;
693                 i_mmap_lock_write(mapping);
694         }
695
696         __vma_link(mm, vma, prev, rb_link, rb_parent);
697         __vma_link_file(vma);
698
699         if (mapping)
700                 i_mmap_unlock_write(mapping);
701
702         mm->map_count++;
703         validate_mm(mm);
704 }
705
706 /*
707  * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
708  * mm's list and rbtree.  It has already been inserted into the interval tree.
709  */
710 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
711 {
712         struct vm_area_struct *prev;
713         struct rb_node **rb_link, *rb_parent;
714
715         if (find_vma_links(mm, vma->vm_start, vma->vm_end,
716                            &prev, &rb_link, &rb_parent))
717                 BUG();
718         __vma_link(mm, vma, prev, rb_link, rb_parent);
719         mm->map_count++;
720 }
721
722 static inline void
723 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
724                 struct vm_area_struct *prev)
725 {
726         struct vm_area_struct *next;
727
728         vma_rb_erase(vma, &mm->mm_rb);
729         prev->vm_next = next = vma->vm_next;
730         if (next)
731                 next->vm_prev = prev;
732
733         /* Kill the cache */
734         vmacache_invalidate(mm);
735 }
736
737 /*
738  * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
739  * is already present in an i_mmap tree without adjusting the tree.
740  * The following helper function should be used when such adjustments
741  * are necessary.  The "insert" vma (if any) is to be inserted
742  * before we drop the necessary locks.
743  */
744 int vma_adjust(struct vm_area_struct *vma, unsigned long start,
745         unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
746 {
747         struct mm_struct *mm = vma->vm_mm;
748         struct vm_area_struct *next = vma->vm_next;
749         struct vm_area_struct *importer = NULL;
750         struct address_space *mapping = NULL;
751         struct rb_root *root = NULL;
752         struct anon_vma *anon_vma = NULL;
753         struct file *file = vma->vm_file;
754         bool start_changed = false, end_changed = false;
755         long adjust_next = 0;
756         int remove_next = 0;
757
758         if (next && !insert) {
759                 struct vm_area_struct *exporter = NULL;
760
761                 if (end >= next->vm_end) {
762                         /*
763                          * vma expands, overlapping all the next, and
764                          * perhaps the one after too (mprotect case 6).
765                          */
766 again:                  remove_next = 1 + (end > next->vm_end);
767                         end = next->vm_end;
768                         exporter = next;
769                         importer = vma;
770                 } else if (end > next->vm_start) {
771                         /*
772                          * vma expands, overlapping part of the next:
773                          * mprotect case 5 shifting the boundary up.
774                          */
775                         adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
776                         exporter = next;
777                         importer = vma;
778                 } else if (end < vma->vm_end) {
779                         /*
780                          * vma shrinks, and !insert tells it's not
781                          * split_vma inserting another: so it must be
782                          * mprotect case 4 shifting the boundary down.
783                          */
784                         adjust_next = -((vma->vm_end - end) >> PAGE_SHIFT);
785                         exporter = vma;
786                         importer = next;
787                 }
788
789                 /*
790                  * Easily overlooked: when mprotect shifts the boundary,
791                  * make sure the expanding vma has anon_vma set if the
792                  * shrinking vma had, to cover any anon pages imported.
793                  */
794                 if (exporter && exporter->anon_vma && !importer->anon_vma) {
795                         int error;
796
797                         importer->anon_vma = exporter->anon_vma;
798                         error = anon_vma_clone(importer, exporter);
799                         if (error)
800                                 return error;
801                 }
802         }
803
804         if (file) {
805                 mapping = file->f_mapping;
806                 root = &mapping->i_mmap;
807                 uprobe_munmap(vma, vma->vm_start, vma->vm_end);
808
809                 if (adjust_next)
810                         uprobe_munmap(next, next->vm_start, next->vm_end);
811
812                 i_mmap_lock_write(mapping);
813                 if (insert) {
814                         /*
815                          * Put into interval tree now, so instantiated pages
816                          * are visible to arm/parisc __flush_dcache_page
817                          * throughout; but we cannot insert into address
818                          * space until vma start or end is updated.
819                          */
820                         __vma_link_file(insert);
821                 }
822         }
823
824         vma_adjust_trans_huge(vma, start, end, adjust_next);
825
826         anon_vma = vma->anon_vma;
827         if (!anon_vma && adjust_next)
828                 anon_vma = next->anon_vma;
829         if (anon_vma) {
830                 VM_BUG_ON_VMA(adjust_next && next->anon_vma &&
831                           anon_vma != next->anon_vma, next);
832                 anon_vma_lock_write(anon_vma);
833                 anon_vma_interval_tree_pre_update_vma(vma);
834                 if (adjust_next)
835                         anon_vma_interval_tree_pre_update_vma(next);
836         }
837
838         if (root) {
839                 flush_dcache_mmap_lock(mapping);
840                 vma_interval_tree_remove(vma, root);
841                 if (adjust_next)
842                         vma_interval_tree_remove(next, root);
843         }
844
845         if (start != vma->vm_start) {
846                 vma->vm_start = start;
847                 start_changed = true;
848         }
849         if (end != vma->vm_end) {
850                 vma->vm_end = end;
851                 end_changed = true;
852         }
853         vma->vm_pgoff = pgoff;
854         if (adjust_next) {
855                 next->vm_start += adjust_next << PAGE_SHIFT;
856                 next->vm_pgoff += adjust_next;
857         }
858
859         if (root) {
860                 if (adjust_next)
861                         vma_interval_tree_insert(next, root);
862                 vma_interval_tree_insert(vma, root);
863                 flush_dcache_mmap_unlock(mapping);
864         }
865
866         if (remove_next) {
867                 /*
868                  * vma_merge has merged next into vma, and needs
869                  * us to remove next before dropping the locks.
870                  */
871                 __vma_unlink(mm, next, vma);
872                 if (file)
873                         __remove_shared_vm_struct(next, file, mapping);
874         } else if (insert) {
875                 /*
876                  * split_vma has split insert from vma, and needs
877                  * us to insert it before dropping the locks
878                  * (it may either follow vma or precede it).
879                  */
880                 __insert_vm_struct(mm, insert);
881         } else {
882                 if (start_changed)
883                         vma_gap_update(vma);
884                 if (end_changed) {
885                         if (!next)
886                                 mm->highest_vm_end = end;
887                         else if (!adjust_next)
888                                 vma_gap_update(next);
889                 }
890         }
891
892         if (anon_vma) {
893                 anon_vma_interval_tree_post_update_vma(vma);
894                 if (adjust_next)
895                         anon_vma_interval_tree_post_update_vma(next);
896                 anon_vma_unlock_write(anon_vma);
897         }
898         if (mapping)
899                 i_mmap_unlock_write(mapping);
900
901         if (root) {
902                 uprobe_mmap(vma);
903
904                 if (adjust_next)
905                         uprobe_mmap(next);
906         }
907
908         if (remove_next) {
909                 if (file) {
910                         uprobe_munmap(next, next->vm_start, next->vm_end);
911                         fput(file);
912                 }
913                 if (next->anon_vma)
914                         anon_vma_merge(vma, next);
915                 mm->map_count--;
916                 mpol_put(vma_policy(next));
917                 kmem_cache_free(vm_area_cachep, next);
918                 /*
919                  * In mprotect's case 6 (see comments on vma_merge),
920                  * we must remove another next too. It would clutter
921                  * up the code too much to do both in one go.
922                  */
923                 next = vma->vm_next;
924                 if (remove_next == 2)
925                         goto again;
926                 else if (next)
927                         vma_gap_update(next);
928                 else
929                         mm->highest_vm_end = end;
930         }
931         if (insert && file)
932                 uprobe_mmap(insert);
933
934         validate_mm(mm);
935
936         return 0;
937 }
938
939 /*
940  * If the vma has a ->close operation then the driver probably needs to release
941  * per-vma resources, so we don't attempt to merge those.
942  */
943 static inline int is_mergeable_vma(struct vm_area_struct *vma,
944                                 struct file *file, unsigned long vm_flags,
945                                 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
946 {
947         /*
948          * VM_SOFTDIRTY should not prevent from VMA merging, if we
949          * match the flags but dirty bit -- the caller should mark
950          * merged VMA as dirty. If dirty bit won't be excluded from
951          * comparison, we increase pressue on the memory system forcing
952          * the kernel to generate new VMAs when old one could be
953          * extended instead.
954          */
955         if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
956                 return 0;
957         if (vma->vm_file != file)
958                 return 0;
959         if (vma->vm_ops && vma->vm_ops->close)
960                 return 0;
961         if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
962                 return 0;
963         return 1;
964 }
965
966 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
967                                         struct anon_vma *anon_vma2,
968                                         struct vm_area_struct *vma)
969 {
970         /*
971          * The list_is_singular() test is to avoid merging VMA cloned from
972          * parents. This can improve scalability caused by anon_vma lock.
973          */
974         if ((!anon_vma1 || !anon_vma2) && (!vma ||
975                 list_is_singular(&vma->anon_vma_chain)))
976                 return 1;
977         return anon_vma1 == anon_vma2;
978 }
979
980 /*
981  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
982  * in front of (at a lower virtual address and file offset than) the vma.
983  *
984  * We cannot merge two vmas if they have differently assigned (non-NULL)
985  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
986  *
987  * We don't check here for the merged mmap wrapping around the end of pagecache
988  * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
989  * wrap, nor mmaps which cover the final page at index -1UL.
990  */
991 static int
992 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
993                      struct anon_vma *anon_vma, struct file *file,
994                      pgoff_t vm_pgoff,
995                      struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
996 {
997         if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
998             is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
999                 if (vma->vm_pgoff == vm_pgoff)
1000                         return 1;
1001         }
1002         return 0;
1003 }
1004
1005 /*
1006  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1007  * beyond (at a higher virtual address and file offset than) the vma.
1008  *
1009  * We cannot merge two vmas if they have differently assigned (non-NULL)
1010  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1011  */
1012 static int
1013 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
1014                     struct anon_vma *anon_vma, struct file *file,
1015                     pgoff_t vm_pgoff,
1016                     struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1017 {
1018         if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1019             is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1020                 pgoff_t vm_pglen;
1021                 vm_pglen = vma_pages(vma);
1022                 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
1023                         return 1;
1024         }
1025         return 0;
1026 }
1027
1028 /*
1029  * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
1030  * whether that can be merged with its predecessor or its successor.
1031  * Or both (it neatly fills a hole).
1032  *
1033  * In most cases - when called for mmap, brk or mremap - [addr,end) is
1034  * certain not to be mapped by the time vma_merge is called; but when
1035  * called for mprotect, it is certain to be already mapped (either at
1036  * an offset within prev, or at the start of next), and the flags of
1037  * this area are about to be changed to vm_flags - and the no-change
1038  * case has already been eliminated.
1039  *
1040  * The following mprotect cases have to be considered, where AAAA is
1041  * the area passed down from mprotect_fixup, never extending beyond one
1042  * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
1043  *
1044  *     AAAA             AAAA                AAAA          AAAA
1045  *    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPNNNNXXXX
1046  *    cannot merge    might become    might become    might become
1047  *                    PPNNNNNNNNNN    PPPPPPPPPPNN    PPPPPPPPPPPP 6 or
1048  *    mmap, brk or    case 4 below    case 5 below    PPPPPPPPXXXX 7 or
1049  *    mremap move:                                    PPPPNNNNNNNN 8
1050  *        AAAA
1051  *    PPPP    NNNN    PPPPPPPPPPPP    PPPPPPPPNNNN    PPPPNNNNNNNN
1052  *    might become    case 1 below    case 2 below    case 3 below
1053  *
1054  * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
1055  * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
1056  */
1057 struct vm_area_struct *vma_merge(struct mm_struct *mm,
1058                         struct vm_area_struct *prev, unsigned long addr,
1059                         unsigned long end, unsigned long vm_flags,
1060                         struct anon_vma *anon_vma, struct file *file,
1061                         pgoff_t pgoff, struct mempolicy *policy,
1062                         struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1063 {
1064         pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1065         struct vm_area_struct *area, *next;
1066         int err;
1067
1068         /*
1069          * We later require that vma->vm_flags == vm_flags,
1070          * so this tests vma->vm_flags & VM_SPECIAL, too.
1071          */
1072         if (vm_flags & VM_SPECIAL)
1073                 return NULL;
1074
1075         if (prev)
1076                 next = prev->vm_next;
1077         else
1078                 next = mm->mmap;
1079         area = next;
1080         if (next && next->vm_end == end)                /* cases 6, 7, 8 */
1081                 next = next->vm_next;
1082
1083         /*
1084          * Can it merge with the predecessor?
1085          */
1086         if (prev && prev->vm_end == addr &&
1087                         mpol_equal(vma_policy(prev), policy) &&
1088                         can_vma_merge_after(prev, vm_flags,
1089                                             anon_vma, file, pgoff,
1090                                             vm_userfaultfd_ctx)) {
1091                 /*
1092                  * OK, it can.  Can we now merge in the successor as well?
1093                  */
1094                 if (next && end == next->vm_start &&
1095                                 mpol_equal(policy, vma_policy(next)) &&
1096                                 can_vma_merge_before(next, vm_flags,
1097                                                      anon_vma, file,
1098                                                      pgoff+pglen,
1099                                                      vm_userfaultfd_ctx) &&
1100                                 is_mergeable_anon_vma(prev->anon_vma,
1101                                                       next->anon_vma, NULL)) {
1102                                                         /* cases 1, 6 */
1103                         err = vma_adjust(prev, prev->vm_start,
1104                                 next->vm_end, prev->vm_pgoff, NULL);
1105                 } else                                  /* cases 2, 5, 7 */
1106                         err = vma_adjust(prev, prev->vm_start,
1107                                 end, prev->vm_pgoff, NULL);
1108                 if (err)
1109                         return NULL;
1110                 khugepaged_enter_vma_merge(prev, vm_flags);
1111                 return prev;
1112         }
1113
1114         /*
1115          * Can this new request be merged in front of next?
1116          */
1117         if (next && end == next->vm_start &&
1118                         mpol_equal(policy, vma_policy(next)) &&
1119                         can_vma_merge_before(next, vm_flags,
1120                                              anon_vma, file, pgoff+pglen,
1121                                              vm_userfaultfd_ctx)) {
1122                 if (prev && addr < prev->vm_end)        /* case 4 */
1123                         err = vma_adjust(prev, prev->vm_start,
1124                                 addr, prev->vm_pgoff, NULL);
1125                 else                                    /* cases 3, 8 */
1126                         err = vma_adjust(area, addr, next->vm_end,
1127                                 next->vm_pgoff - pglen, NULL);
1128                 if (err)
1129                         return NULL;
1130                 khugepaged_enter_vma_merge(area, vm_flags);
1131                 return area;
1132         }
1133
1134         return NULL;
1135 }
1136
1137 /*
1138  * Rough compatbility check to quickly see if it's even worth looking
1139  * at sharing an anon_vma.
1140  *
1141  * They need to have the same vm_file, and the flags can only differ
1142  * in things that mprotect may change.
1143  *
1144  * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1145  * we can merge the two vma's. For example, we refuse to merge a vma if
1146  * there is a vm_ops->close() function, because that indicates that the
1147  * driver is doing some kind of reference counting. But that doesn't
1148  * really matter for the anon_vma sharing case.
1149  */
1150 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1151 {
1152         return a->vm_end == b->vm_start &&
1153                 mpol_equal(vma_policy(a), vma_policy(b)) &&
1154                 a->vm_file == b->vm_file &&
1155                 !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC|VM_SOFTDIRTY)) &&
1156                 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1157 }
1158
1159 /*
1160  * Do some basic sanity checking to see if we can re-use the anon_vma
1161  * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1162  * the same as 'old', the other will be the new one that is trying
1163  * to share the anon_vma.
1164  *
1165  * NOTE! This runs with mm_sem held for reading, so it is possible that
1166  * the anon_vma of 'old' is concurrently in the process of being set up
1167  * by another page fault trying to merge _that_. But that's ok: if it
1168  * is being set up, that automatically means that it will be a singleton
1169  * acceptable for merging, so we can do all of this optimistically. But
1170  * we do that READ_ONCE() to make sure that we never re-load the pointer.
1171  *
1172  * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1173  * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1174  * is to return an anon_vma that is "complex" due to having gone through
1175  * a fork).
1176  *
1177  * We also make sure that the two vma's are compatible (adjacent,
1178  * and with the same memory policies). That's all stable, even with just
1179  * a read lock on the mm_sem.
1180  */
1181 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1182 {
1183         if (anon_vma_compatible(a, b)) {
1184                 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1185
1186                 if (anon_vma && list_is_singular(&old->anon_vma_chain))
1187                         return anon_vma;
1188         }
1189         return NULL;
1190 }
1191
1192 /*
1193  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1194  * neighbouring vmas for a suitable anon_vma, before it goes off
1195  * to allocate a new anon_vma.  It checks because a repetitive
1196  * sequence of mprotects and faults may otherwise lead to distinct
1197  * anon_vmas being allocated, preventing vma merge in subsequent
1198  * mprotect.
1199  */
1200 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1201 {
1202         struct anon_vma *anon_vma;
1203         struct vm_area_struct *near;
1204
1205         near = vma->vm_next;
1206         if (!near)
1207                 goto try_prev;
1208
1209         anon_vma = reusable_anon_vma(near, vma, near);
1210         if (anon_vma)
1211                 return anon_vma;
1212 try_prev:
1213         near = vma->vm_prev;
1214         if (!near)
1215                 goto none;
1216
1217         anon_vma = reusable_anon_vma(near, near, vma);
1218         if (anon_vma)
1219                 return anon_vma;
1220 none:
1221         /*
1222          * There's no absolute need to look only at touching neighbours:
1223          * we could search further afield for "compatible" anon_vmas.
1224          * But it would probably just be a waste of time searching,
1225          * or lead to too many vmas hanging off the same anon_vma.
1226          * We're trying to allow mprotect remerging later on,
1227          * not trying to minimize memory used for anon_vmas.
1228          */
1229         return NULL;
1230 }
1231
1232 /*
1233  * If a hint addr is less than mmap_min_addr change hint to be as
1234  * low as possible but still greater than mmap_min_addr
1235  */
1236 static inline unsigned long round_hint_to_min(unsigned long hint)
1237 {
1238         hint &= PAGE_MASK;
1239         if (((void *)hint != NULL) &&
1240             (hint < mmap_min_addr))
1241                 return PAGE_ALIGN(mmap_min_addr);
1242         return hint;
1243 }
1244
1245 static inline int mlock_future_check(struct mm_struct *mm,
1246                                      unsigned long flags,
1247                                      unsigned long len)
1248 {
1249         unsigned long locked, lock_limit;
1250
1251         /*  mlock MCL_FUTURE? */
1252         if (flags & VM_LOCKED) {
1253                 locked = len >> PAGE_SHIFT;
1254                 locked += mm->locked_vm;
1255                 lock_limit = rlimit(RLIMIT_MEMLOCK);
1256                 lock_limit >>= PAGE_SHIFT;
1257                 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1258                         return -EAGAIN;
1259         }
1260         return 0;
1261 }
1262
1263 /*
1264  * The caller must hold down_write(&current->mm->mmap_sem).
1265  */
1266 unsigned long do_mmap(struct file *file, unsigned long addr,
1267                         unsigned long len, unsigned long prot,
1268                         unsigned long flags, vm_flags_t vm_flags,
1269                         unsigned long pgoff, unsigned long *populate)
1270 {
1271         struct mm_struct *mm = current->mm;
1272
1273         *populate = 0;
1274
1275         if (!len)
1276                 return -EINVAL;
1277
1278         /*
1279          * Does the application expect PROT_READ to imply PROT_EXEC?
1280          *
1281          * (the exception is when the underlying filesystem is noexec
1282          *  mounted, in which case we dont add PROT_EXEC.)
1283          */
1284         if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1285                 if (!(file && path_noexec(&file->f_path)))
1286                         prot |= PROT_EXEC;
1287
1288         if (!(flags & MAP_FIXED))
1289                 addr = round_hint_to_min(addr);
1290
1291         /* Careful about overflows.. */
1292         len = PAGE_ALIGN(len);
1293         if (!len)
1294                 return -ENOMEM;
1295
1296         /* offset overflow? */
1297         if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1298                 return -EOVERFLOW;
1299
1300         /* Too many mappings? */
1301         if (mm->map_count > sysctl_max_map_count)
1302                 return -ENOMEM;
1303
1304         /* Obtain the address to map to. we verify (or select) it and ensure
1305          * that it represents a valid section of the address space.
1306          */
1307         addr = get_unmapped_area(file, addr, len, pgoff, flags);
1308         if (offset_in_page(addr))
1309                 return addr;
1310
1311         /* Do simple checking here so the lower-level routines won't have
1312          * to. we assume access permissions have been handled by the open
1313          * of the memory object, so we don't do any here.
1314          */
1315         vm_flags |= calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
1316                         mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1317
1318         if (flags & MAP_LOCKED)
1319                 if (!can_do_mlock())
1320                         return -EPERM;
1321
1322         if (mlock_future_check(mm, vm_flags, len))
1323                 return -EAGAIN;
1324
1325         if (file) {
1326                 struct inode *inode = file_inode(file);
1327
1328                 switch (flags & MAP_TYPE) {
1329                 case MAP_SHARED:
1330                         if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1331                                 return -EACCES;
1332
1333                         /*
1334                          * Make sure we don't allow writing to an append-only
1335                          * file..
1336                          */
1337                         if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1338                                 return -EACCES;
1339
1340                         /*
1341                          * Make sure there are no mandatory locks on the file.
1342                          */
1343                         if (locks_verify_locked(file))
1344                                 return -EAGAIN;
1345
1346                         vm_flags |= VM_SHARED | VM_MAYSHARE;
1347                         if (!(file->f_mode & FMODE_WRITE))
1348                                 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1349
1350                         /* fall through */
1351                 case MAP_PRIVATE:
1352                         if (!(file->f_mode & FMODE_READ))
1353                                 return -EACCES;
1354                         if (path_noexec(&file->f_path)) {
1355                                 if (vm_flags & VM_EXEC)
1356                                         return -EPERM;
1357                                 vm_flags &= ~VM_MAYEXEC;
1358                         }
1359
1360                         if (!file->f_op->mmap)
1361                                 return -ENODEV;
1362                         if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1363                                 return -EINVAL;
1364                         break;
1365
1366                 default:
1367                         return -EINVAL;
1368                 }
1369         } else {
1370                 switch (flags & MAP_TYPE) {
1371                 case MAP_SHARED:
1372                         if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1373                                 return -EINVAL;
1374                         /*
1375                          * Ignore pgoff.
1376                          */
1377                         pgoff = 0;
1378                         vm_flags |= VM_SHARED | VM_MAYSHARE;
1379                         break;
1380                 case MAP_PRIVATE:
1381                         /*
1382                          * Set pgoff according to addr for anon_vma.
1383                          */
1384                         pgoff = addr >> PAGE_SHIFT;
1385                         break;
1386                 default:
1387                         return -EINVAL;
1388                 }
1389         }
1390
1391         /*
1392          * Set 'VM_NORESERVE' if we should not account for the
1393          * memory use of this mapping.
1394          */
1395         if (flags & MAP_NORESERVE) {
1396                 /* We honor MAP_NORESERVE if allowed to overcommit */
1397                 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1398                         vm_flags |= VM_NORESERVE;
1399
1400                 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1401                 if (file && is_file_hugepages(file))
1402                         vm_flags |= VM_NORESERVE;
1403         }
1404
1405         addr = mmap_region(file, addr, len, vm_flags, pgoff);
1406         if (!IS_ERR_VALUE(addr) &&
1407             ((vm_flags & VM_LOCKED) ||
1408              (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1409                 *populate = len;
1410         return addr;
1411 }
1412
1413 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1414                 unsigned long, prot, unsigned long, flags,
1415                 unsigned long, fd, unsigned long, pgoff)
1416 {
1417         struct file *file = NULL;
1418         unsigned long retval;
1419
1420         if (!(flags & MAP_ANONYMOUS)) {
1421                 audit_mmap_fd(fd, flags);
1422                 file = fget(fd);
1423                 if (!file)
1424                         return -EBADF;
1425                 if (is_file_hugepages(file))
1426                         len = ALIGN(len, huge_page_size(hstate_file(file)));
1427                 retval = -EINVAL;
1428                 if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file)))
1429                         goto out_fput;
1430         } else if (flags & MAP_HUGETLB) {
1431                 struct user_struct *user = NULL;
1432                 struct hstate *hs;
1433
1434                 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & SHM_HUGE_MASK);
1435                 if (!hs)
1436                         return -EINVAL;
1437
1438                 len = ALIGN(len, huge_page_size(hs));
1439                 /*
1440                  * VM_NORESERVE is used because the reservations will be
1441                  * taken when vm_ops->mmap() is called
1442                  * A dummy user value is used because we are not locking
1443                  * memory so no accounting is necessary
1444                  */
1445                 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1446                                 VM_NORESERVE,
1447                                 &user, HUGETLB_ANONHUGE_INODE,
1448                                 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1449                 if (IS_ERR(file))
1450                         return PTR_ERR(file);
1451         }
1452
1453         flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1454
1455         retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1456 out_fput:
1457         if (file)
1458                 fput(file);
1459         return retval;
1460 }
1461
1462 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1463 struct mmap_arg_struct {
1464         unsigned long addr;
1465         unsigned long len;
1466         unsigned long prot;
1467         unsigned long flags;
1468         unsigned long fd;
1469         unsigned long offset;
1470 };
1471
1472 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1473 {
1474         struct mmap_arg_struct a;
1475
1476         if (copy_from_user(&a, arg, sizeof(a)))
1477                 return -EFAULT;
1478         if (offset_in_page(a.offset))
1479                 return -EINVAL;
1480
1481         return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1482                               a.offset >> PAGE_SHIFT);
1483 }
1484 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1485
1486 /*
1487  * Some shared mappigns will want the pages marked read-only
1488  * to track write events. If so, we'll downgrade vm_page_prot
1489  * to the private version (using protection_map[] without the
1490  * VM_SHARED bit).
1491  */
1492 int vma_wants_writenotify(struct vm_area_struct *vma)
1493 {
1494         vm_flags_t vm_flags = vma->vm_flags;
1495         const struct vm_operations_struct *vm_ops = vma->vm_ops;
1496
1497         /* If it was private or non-writable, the write bit is already clear */
1498         if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1499                 return 0;
1500
1501         /* The backer wishes to know when pages are first written to? */
1502         if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite))
1503                 return 1;
1504
1505         /* The open routine did something to the protections that pgprot_modify
1506          * won't preserve? */
1507         if (pgprot_val(vma->vm_page_prot) !=
1508             pgprot_val(vm_pgprot_modify(vma->vm_page_prot, vm_flags)))
1509                 return 0;
1510
1511         /* Do we need to track softdirty? */
1512         if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY))
1513                 return 1;
1514
1515         /* Specialty mapping? */
1516         if (vm_flags & VM_PFNMAP)
1517                 return 0;
1518
1519         /* Can the mapping track the dirty pages? */
1520         return vma->vm_file && vma->vm_file->f_mapping &&
1521                 mapping_cap_account_dirty(vma->vm_file->f_mapping);
1522 }
1523
1524 /*
1525  * We account for memory if it's a private writeable mapping,
1526  * not hugepages and VM_NORESERVE wasn't set.
1527  */
1528 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1529 {
1530         /*
1531          * hugetlb has its own accounting separate from the core VM
1532          * VM_HUGETLB may not be set yet so we cannot check for that flag.
1533          */
1534         if (file && is_file_hugepages(file))
1535                 return 0;
1536
1537         return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1538 }
1539
1540 unsigned long mmap_region(struct file *file, unsigned long addr,
1541                 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff)
1542 {
1543         struct mm_struct *mm = current->mm;
1544         struct vm_area_struct *vma, *prev;
1545         int error;
1546         struct rb_node **rb_link, *rb_parent;
1547         unsigned long charged = 0;
1548
1549         /* Check against address space limit. */
1550         if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
1551                 unsigned long nr_pages;
1552
1553                 /*
1554                  * MAP_FIXED may remove pages of mappings that intersects with
1555                  * requested mapping. Account for the pages it would unmap.
1556                  */
1557                 nr_pages = count_vma_pages_range(mm, addr, addr + len);
1558
1559                 if (!may_expand_vm(mm, vm_flags,
1560                                         (len >> PAGE_SHIFT) - nr_pages))
1561                         return -ENOMEM;
1562         }
1563
1564         /* Clear old maps */
1565         while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
1566                               &rb_parent)) {
1567                 if (do_munmap(mm, addr, len))
1568                         return -ENOMEM;
1569         }
1570
1571         /*
1572          * Private writable mapping: check memory availability
1573          */
1574         if (accountable_mapping(file, vm_flags)) {
1575                 charged = len >> PAGE_SHIFT;
1576                 if (security_vm_enough_memory_mm(mm, charged))
1577                         return -ENOMEM;
1578                 vm_flags |= VM_ACCOUNT;
1579         }
1580
1581         /*
1582          * Can we just expand an old mapping?
1583          */
1584         vma = vma_merge(mm, prev, addr, addr + len, vm_flags,
1585                         NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX);
1586         if (vma)
1587                 goto out;
1588
1589         /*
1590          * Determine the object being mapped and call the appropriate
1591          * specific mapper. the address has already been validated, but
1592          * not unmapped, but the maps are removed from the list.
1593          */
1594         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1595         if (!vma) {
1596                 error = -ENOMEM;
1597                 goto unacct_error;
1598         }
1599
1600         vma->vm_mm = mm;
1601         vma->vm_start = addr;
1602         vma->vm_end = addr + len;
1603         vma->vm_flags = vm_flags;
1604         vma->vm_page_prot = vm_get_page_prot(vm_flags);
1605         vma->vm_pgoff = pgoff;
1606         INIT_LIST_HEAD(&vma->anon_vma_chain);
1607
1608         if (file) {
1609                 if (vm_flags & VM_DENYWRITE) {
1610                         error = deny_write_access(file);
1611                         if (error)
1612                                 goto free_vma;
1613                 }
1614                 if (vm_flags & VM_SHARED) {
1615                         error = mapping_map_writable(file->f_mapping);
1616                         if (error)
1617                                 goto allow_write_and_free_vma;
1618                 }
1619
1620                 /* ->mmap() can change vma->vm_file, but must guarantee that
1621                  * vma_link() below can deny write-access if VM_DENYWRITE is set
1622                  * and map writably if VM_SHARED is set. This usually means the
1623                  * new file must not have been exposed to user-space, yet.
1624                  */
1625                 vma->vm_file = get_file(file);
1626                 error = file->f_op->mmap(file, vma);
1627                 if (error)
1628                         goto unmap_and_free_vma;
1629
1630                 /* Can addr have changed??
1631                  *
1632                  * Answer: Yes, several device drivers can do it in their
1633                  *         f_op->mmap method. -DaveM
1634                  * Bug: If addr is changed, prev, rb_link, rb_parent should
1635                  *      be updated for vma_link()
1636                  */
1637                 WARN_ON_ONCE(addr != vma->vm_start);
1638
1639                 addr = vma->vm_start;
1640                 vm_flags = vma->vm_flags;
1641         } else if (vm_flags & VM_SHARED) {
1642                 error = shmem_zero_setup(vma);
1643                 if (error)
1644                         goto free_vma;
1645         }
1646
1647         vma_link(mm, vma, prev, rb_link, rb_parent);
1648         /* Once vma denies write, undo our temporary denial count */
1649         if (file) {
1650                 if (vm_flags & VM_SHARED)
1651                         mapping_unmap_writable(file->f_mapping);
1652                 if (vm_flags & VM_DENYWRITE)
1653                         allow_write_access(file);
1654         }
1655         file = vma->vm_file;
1656 out:
1657         perf_event_mmap(vma);
1658
1659         vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
1660         if (vm_flags & VM_LOCKED) {
1661                 if (!((vm_flags & VM_SPECIAL) || is_vm_hugetlb_page(vma) ||
1662                                         vma == get_gate_vma(current->mm)))
1663                         mm->locked_vm += (len >> PAGE_SHIFT);
1664                 else
1665                         vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
1666         }
1667
1668         if (file)
1669                 uprobe_mmap(vma);
1670
1671         /*
1672          * New (or expanded) vma always get soft dirty status.
1673          * Otherwise user-space soft-dirty page tracker won't
1674          * be able to distinguish situation when vma area unmapped,
1675          * then new mapped in-place (which must be aimed as
1676          * a completely new data area).
1677          */
1678         vma->vm_flags |= VM_SOFTDIRTY;
1679
1680         vma_set_page_prot(vma);
1681
1682         return addr;
1683
1684 unmap_and_free_vma:
1685         vma->vm_file = NULL;
1686         fput(file);
1687
1688         /* Undo any partial mapping done by a device driver. */
1689         unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1690         charged = 0;
1691         if (vm_flags & VM_SHARED)
1692                 mapping_unmap_writable(file->f_mapping);
1693 allow_write_and_free_vma:
1694         if (vm_flags & VM_DENYWRITE)
1695                 allow_write_access(file);
1696 free_vma:
1697         kmem_cache_free(vm_area_cachep, vma);
1698 unacct_error:
1699         if (charged)
1700                 vm_unacct_memory(charged);
1701         return error;
1702 }
1703
1704 unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1705 {
1706         /*
1707          * We implement the search by looking for an rbtree node that
1708          * immediately follows a suitable gap. That is,
1709          * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1710          * - gap_end   = vma->vm_start        >= info->low_limit  + length;
1711          * - gap_end - gap_start >= length
1712          */
1713
1714         struct mm_struct *mm = current->mm;
1715         struct vm_area_struct *vma;
1716         unsigned long length, low_limit, high_limit, gap_start, gap_end;
1717
1718         /* Adjust search length to account for worst case alignment overhead */
1719         length = info->length + info->align_mask;
1720         if (length < info->length)
1721                 return -ENOMEM;
1722
1723         /* Adjust search limits by the desired length */
1724         if (info->high_limit < length)
1725                 return -ENOMEM;
1726         high_limit = info->high_limit - length;
1727
1728         if (info->low_limit > high_limit)
1729                 return -ENOMEM;
1730         low_limit = info->low_limit + length;
1731
1732         /* Check if rbtree root looks promising */
1733         if (RB_EMPTY_ROOT(&mm->mm_rb))
1734                 goto check_highest;
1735         vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1736         if (vma->rb_subtree_gap < length)
1737                 goto check_highest;
1738
1739         while (true) {
1740                 /* Visit left subtree if it looks promising */
1741                 gap_end = vma->vm_start;
1742                 if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1743                         struct vm_area_struct *left =
1744                                 rb_entry(vma->vm_rb.rb_left,
1745                                          struct vm_area_struct, vm_rb);
1746                         if (left->rb_subtree_gap >= length) {
1747                                 vma = left;
1748                                 continue;
1749                         }
1750                 }
1751
1752                 gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1753 check_current:
1754                 /* Check if current node has a suitable gap */
1755                 if (gap_start > high_limit)
1756                         return -ENOMEM;
1757                 if (gap_end >= low_limit && gap_end - gap_start >= length)
1758                         goto found;
1759
1760                 /* Visit right subtree if it looks promising */
1761                 if (vma->vm_rb.rb_right) {
1762                         struct vm_area_struct *right =
1763                                 rb_entry(vma->vm_rb.rb_right,
1764                                          struct vm_area_struct, vm_rb);
1765                         if (right->rb_subtree_gap >= length) {
1766                                 vma = right;
1767                                 continue;
1768                         }
1769                 }
1770
1771                 /* Go back up the rbtree to find next candidate node */
1772                 while (true) {
1773                         struct rb_node *prev = &vma->vm_rb;
1774                         if (!rb_parent(prev))
1775                                 goto check_highest;
1776                         vma = rb_entry(rb_parent(prev),
1777                                        struct vm_area_struct, vm_rb);
1778                         if (prev == vma->vm_rb.rb_left) {
1779                                 gap_start = vma->vm_prev->vm_end;
1780                                 gap_end = vma->vm_start;
1781                                 goto check_current;
1782                         }
1783                 }
1784         }
1785
1786 check_highest:
1787         /* Check highest gap, which does not precede any rbtree node */
1788         gap_start = mm->highest_vm_end;
1789         gap_end = ULONG_MAX;  /* Only for VM_BUG_ON below */
1790         if (gap_start > high_limit)
1791                 return -ENOMEM;
1792
1793 found:
1794         /* We found a suitable gap. Clip it with the original low_limit. */
1795         if (gap_start < info->low_limit)
1796                 gap_start = info->low_limit;
1797
1798         /* Adjust gap address to the desired alignment */
1799         gap_start += (info->align_offset - gap_start) & info->align_mask;
1800
1801         VM_BUG_ON(gap_start + info->length > info->high_limit);
1802         VM_BUG_ON(gap_start + info->length > gap_end);
1803         return gap_start;
1804 }
1805
1806 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1807 {
1808         struct mm_struct *mm = current->mm;
1809         struct vm_area_struct *vma;
1810         unsigned long length, low_limit, high_limit, gap_start, gap_end;
1811
1812         /* Adjust search length to account for worst case alignment overhead */
1813         length = info->length + info->align_mask;
1814         if (length < info->length)
1815                 return -ENOMEM;
1816
1817         /*
1818          * Adjust search limits by the desired length.
1819          * See implementation comment at top of unmapped_area().
1820          */
1821         gap_end = info->high_limit;
1822         if (gap_end < length)
1823                 return -ENOMEM;
1824         high_limit = gap_end - length;
1825
1826         if (info->low_limit > high_limit)
1827                 return -ENOMEM;
1828         low_limit = info->low_limit + length;
1829
1830         /* Check highest gap, which does not precede any rbtree node */
1831         gap_start = mm->highest_vm_end;
1832         if (gap_start <= high_limit)
1833                 goto found_highest;
1834
1835         /* Check if rbtree root looks promising */
1836         if (RB_EMPTY_ROOT(&mm->mm_rb))
1837                 return -ENOMEM;
1838         vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1839         if (vma->rb_subtree_gap < length)
1840                 return -ENOMEM;
1841
1842         while (true) {
1843                 /* Visit right subtree if it looks promising */
1844                 gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1845                 if (gap_start <= high_limit && vma->vm_rb.rb_right) {
1846                         struct vm_area_struct *right =
1847                                 rb_entry(vma->vm_rb.rb_right,
1848                                          struct vm_area_struct, vm_rb);
1849                         if (right->rb_subtree_gap >= length) {
1850                                 vma = right;
1851                                 continue;
1852                         }
1853                 }
1854
1855 check_current:
1856                 /* Check if current node has a suitable gap */
1857                 gap_end = vma->vm_start;
1858                 if (gap_end < low_limit)
1859                         return -ENOMEM;
1860                 if (gap_start <= high_limit && gap_end - gap_start >= length)
1861                         goto found;
1862
1863                 /* Visit left subtree if it looks promising */
1864                 if (vma->vm_rb.rb_left) {
1865                         struct vm_area_struct *left =
1866                                 rb_entry(vma->vm_rb.rb_left,
1867                                          struct vm_area_struct, vm_rb);
1868                         if (left->rb_subtree_gap >= length) {
1869                                 vma = left;
1870                                 continue;
1871                         }
1872                 }
1873
1874                 /* Go back up the rbtree to find next candidate node */
1875                 while (true) {
1876                         struct rb_node *prev = &vma->vm_rb;
1877                         if (!rb_parent(prev))
1878                                 return -ENOMEM;
1879                         vma = rb_entry(rb_parent(prev),
1880                                        struct vm_area_struct, vm_rb);
1881                         if (prev == vma->vm_rb.rb_right) {
1882                                 gap_start = vma->vm_prev ?
1883                                         vma->vm_prev->vm_end : 0;
1884                                 goto check_current;
1885                         }
1886                 }
1887         }
1888
1889 found:
1890         /* We found a suitable gap. Clip it with the original high_limit. */
1891         if (gap_end > info->high_limit)
1892                 gap_end = info->high_limit;
1893
1894 found_highest:
1895         /* Compute highest gap address at the desired alignment */
1896         gap_end -= info->length;
1897         gap_end -= (gap_end - info->align_offset) & info->align_mask;
1898
1899         VM_BUG_ON(gap_end < info->low_limit);
1900         VM_BUG_ON(gap_end < gap_start);
1901         return gap_end;
1902 }
1903
1904 /* Get an address range which is currently unmapped.
1905  * For shmat() with addr=0.
1906  *
1907  * Ugly calling convention alert:
1908  * Return value with the low bits set means error value,
1909  * ie
1910  *      if (ret & ~PAGE_MASK)
1911  *              error = ret;
1912  *
1913  * This function "knows" that -ENOMEM has the bits set.
1914  */
1915 #ifndef HAVE_ARCH_UNMAPPED_AREA
1916 unsigned long
1917 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1918                 unsigned long len, unsigned long pgoff, unsigned long flags)
1919 {
1920         struct mm_struct *mm = current->mm;
1921         struct vm_area_struct *vma;
1922         struct vm_unmapped_area_info info;
1923
1924         if (len > TASK_SIZE - mmap_min_addr)
1925                 return -ENOMEM;
1926
1927         if (flags & MAP_FIXED)
1928                 return addr;
1929
1930         if (addr) {
1931                 addr = PAGE_ALIGN(addr);
1932                 vma = find_vma(mm, addr);
1933                 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1934                     (!vma || addr + len <= vma->vm_start))
1935                         return addr;
1936         }
1937
1938         info.flags = 0;
1939         info.length = len;
1940         info.low_limit = mm->mmap_base;
1941         info.high_limit = TASK_SIZE;
1942         info.align_mask = 0;
1943         return vm_unmapped_area(&info);
1944 }
1945 #endif
1946
1947 /*
1948  * This mmap-allocator allocates new areas top-down from below the
1949  * stack's low limit (the base):
1950  */
1951 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1952 unsigned long
1953 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1954                           const unsigned long len, const unsigned long pgoff,
1955                           const unsigned long flags)
1956 {
1957         struct vm_area_struct *vma;
1958         struct mm_struct *mm = current->mm;
1959         unsigned long addr = addr0;
1960         struct vm_unmapped_area_info info;
1961
1962         /* requested length too big for entire address space */
1963         if (len > TASK_SIZE - mmap_min_addr)
1964                 return -ENOMEM;
1965
1966         if (flags & MAP_FIXED)
1967                 return addr;
1968
1969         /* requesting a specific address */
1970         if (addr) {
1971                 addr = PAGE_ALIGN(addr);
1972                 vma = find_vma(mm, addr);
1973                 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1974                                 (!vma || addr + len <= vma->vm_start))
1975                         return addr;
1976         }
1977
1978         info.flags = VM_UNMAPPED_AREA_TOPDOWN;
1979         info.length = len;
1980         info.low_limit = max(PAGE_SIZE, mmap_min_addr);
1981         info.high_limit = mm->mmap_base;
1982         info.align_mask = 0;
1983         addr = vm_unmapped_area(&info);
1984
1985         /*
1986          * A failed mmap() very likely causes application failure,
1987          * so fall back to the bottom-up function here. This scenario
1988          * can happen with large stack limits and large mmap()
1989          * allocations.
1990          */
1991         if (offset_in_page(addr)) {
1992                 VM_BUG_ON(addr != -ENOMEM);
1993                 info.flags = 0;
1994                 info.low_limit = TASK_UNMAPPED_BASE;
1995                 info.high_limit = TASK_SIZE;
1996                 addr = vm_unmapped_area(&info);
1997         }
1998
1999         return addr;
2000 }
2001 #endif
2002
2003 unsigned long
2004 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
2005                 unsigned long pgoff, unsigned long flags)
2006 {
2007         unsigned long (*get_area)(struct file *, unsigned long,
2008                                   unsigned long, unsigned long, unsigned long);
2009
2010         unsigned long error = arch_mmap_check(addr, len, flags);
2011         if (error)
2012                 return error;
2013
2014         /* Careful about overflows.. */
2015         if (len > TASK_SIZE)
2016                 return -ENOMEM;
2017
2018         get_area = current->mm->get_unmapped_area;
2019         if (file && file->f_op->get_unmapped_area)
2020                 get_area = file->f_op->get_unmapped_area;
2021         addr = get_area(file, addr, len, pgoff, flags);
2022         if (IS_ERR_VALUE(addr))
2023                 return addr;
2024
2025         if (addr > TASK_SIZE - len)
2026                 return -ENOMEM;
2027         if (offset_in_page(addr))
2028                 return -EINVAL;
2029
2030         addr = arch_rebalance_pgtables(addr, len);
2031         error = security_mmap_addr(addr);
2032         return error ? error : addr;
2033 }
2034
2035 EXPORT_SYMBOL(get_unmapped_area);
2036
2037 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
2038 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
2039 {
2040         struct rb_node *rb_node;
2041         struct vm_area_struct *vma;
2042
2043         /* Check the cache first. */
2044         vma = vmacache_find(mm, addr);
2045         if (likely(vma))
2046                 return vma;
2047
2048         rb_node = mm->mm_rb.rb_node;
2049
2050         while (rb_node) {
2051                 struct vm_area_struct *tmp;
2052
2053                 tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2054
2055                 if (tmp->vm_end > addr) {
2056                         vma = tmp;
2057                         if (tmp->vm_start <= addr)
2058                                 break;
2059                         rb_node = rb_node->rb_left;
2060                 } else
2061                         rb_node = rb_node->rb_right;
2062         }
2063
2064         if (vma)
2065                 vmacache_update(addr, vma);
2066         return vma;
2067 }
2068
2069 EXPORT_SYMBOL(find_vma);
2070
2071 /*
2072  * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2073  */
2074 struct vm_area_struct *
2075 find_vma_prev(struct mm_struct *mm, unsigned long addr,
2076                         struct vm_area_struct **pprev)
2077 {
2078         struct vm_area_struct *vma;
2079
2080         vma = find_vma(mm, addr);
2081         if (vma) {
2082                 *pprev = vma->vm_prev;
2083         } else {
2084                 struct rb_node *rb_node = mm->mm_rb.rb_node;
2085                 *pprev = NULL;
2086                 while (rb_node) {
2087                         *pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2088                         rb_node = rb_node->rb_right;
2089                 }
2090         }
2091         return vma;
2092 }
2093
2094 /*
2095  * Verify that the stack growth is acceptable and
2096  * update accounting. This is shared with both the
2097  * grow-up and grow-down cases.
2098  */
2099 static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow)
2100 {
2101         struct mm_struct *mm = vma->vm_mm;
2102         struct rlimit *rlim = current->signal->rlim;
2103         unsigned long new_start, actual_size;
2104
2105         /* address space limit tests */
2106         if (!may_expand_vm(mm, vma->vm_flags, grow))
2107                 return -ENOMEM;
2108
2109         /* Stack limit test */
2110         actual_size = size;
2111         if (size && (vma->vm_flags & (VM_GROWSUP | VM_GROWSDOWN)))
2112                 actual_size -= PAGE_SIZE;
2113         if (actual_size > READ_ONCE(rlim[RLIMIT_STACK].rlim_cur))
2114                 return -ENOMEM;
2115
2116         /* mlock limit tests */
2117         if (vma->vm_flags & VM_LOCKED) {
2118                 unsigned long locked;
2119                 unsigned long limit;
2120                 locked = mm->locked_vm + grow;
2121                 limit = READ_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur);
2122                 limit >>= PAGE_SHIFT;
2123                 if (locked > limit && !capable(CAP_IPC_LOCK))
2124                         return -ENOMEM;
2125         }
2126
2127         /* Check to ensure the stack will not grow into a hugetlb-only region */
2128         new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2129                         vma->vm_end - size;
2130         if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2131                 return -EFAULT;
2132
2133         /*
2134          * Overcommit..  This must be the final test, as it will
2135          * update security statistics.
2136          */
2137         if (security_vm_enough_memory_mm(mm, grow))
2138                 return -ENOMEM;
2139
2140         return 0;
2141 }
2142
2143 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2144 /*
2145  * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2146  * vma is the last one with address > vma->vm_end.  Have to extend vma.
2147  */
2148 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2149 {
2150         struct mm_struct *mm = vma->vm_mm;
2151         int error = 0;
2152
2153         if (!(vma->vm_flags & VM_GROWSUP))
2154                 return -EFAULT;
2155
2156         /* Guard against wrapping around to address 0. */
2157         if (address < PAGE_ALIGN(address+4))
2158                 address = PAGE_ALIGN(address+4);
2159         else
2160                 return -ENOMEM;
2161
2162         /* We must make sure the anon_vma is allocated. */
2163         if (unlikely(anon_vma_prepare(vma)))
2164                 return -ENOMEM;
2165
2166         /*
2167          * vma->vm_start/vm_end cannot change under us because the caller
2168          * is required to hold the mmap_sem in read mode.  We need the
2169          * anon_vma lock to serialize against concurrent expand_stacks.
2170          */
2171         anon_vma_lock_write(vma->anon_vma);
2172
2173         /* Somebody else might have raced and expanded it already */
2174         if (address > vma->vm_end) {
2175                 unsigned long size, grow;
2176
2177                 size = address - vma->vm_start;
2178                 grow = (address - vma->vm_end) >> PAGE_SHIFT;
2179
2180                 error = -ENOMEM;
2181                 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2182                         error = acct_stack_growth(vma, size, grow);
2183                         if (!error) {
2184                                 /*
2185                                  * vma_gap_update() doesn't support concurrent
2186                                  * updates, but we only hold a shared mmap_sem
2187                                  * lock here, so we need to protect against
2188                                  * concurrent vma expansions.
2189                                  * anon_vma_lock_write() doesn't help here, as
2190                                  * we don't guarantee that all growable vmas
2191                                  * in a mm share the same root anon vma.
2192                                  * So, we reuse mm->page_table_lock to guard
2193                                  * against concurrent vma expansions.
2194                                  */
2195                                 spin_lock(&mm->page_table_lock);
2196                                 if (vma->vm_flags & VM_LOCKED)
2197                                         mm->locked_vm += grow;
2198                                 vm_stat_account(mm, vma->vm_flags, grow);
2199                                 anon_vma_interval_tree_pre_update_vma(vma);
2200                                 vma->vm_end = address;
2201                                 anon_vma_interval_tree_post_update_vma(vma);
2202                                 if (vma->vm_next)
2203                                         vma_gap_update(vma->vm_next);
2204                                 else
2205                                         mm->highest_vm_end = address;
2206                                 spin_unlock(&mm->page_table_lock);
2207
2208                                 perf_event_mmap(vma);
2209                         }
2210                 }
2211         }
2212         anon_vma_unlock_write(vma->anon_vma);
2213         khugepaged_enter_vma_merge(vma, vma->vm_flags);
2214         validate_mm(mm);
2215         return error;
2216 }
2217 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2218
2219 /*
2220  * vma is the first one with address < vma->vm_start.  Have to extend vma.
2221  */
2222 int expand_downwards(struct vm_area_struct *vma,
2223                                    unsigned long address)
2224 {
2225         struct mm_struct *mm = vma->vm_mm;
2226         int error;
2227
2228         address &= PAGE_MASK;
2229         error = security_mmap_addr(address);
2230         if (error)
2231                 return error;
2232
2233         /* We must make sure the anon_vma is allocated. */
2234         if (unlikely(anon_vma_prepare(vma)))
2235                 return -ENOMEM;
2236
2237         /*
2238          * vma->vm_start/vm_end cannot change under us because the caller
2239          * is required to hold the mmap_sem in read mode.  We need the
2240          * anon_vma lock to serialize against concurrent expand_stacks.
2241          */
2242         anon_vma_lock_write(vma->anon_vma);
2243
2244         /* Somebody else might have raced and expanded it already */
2245         if (address < vma->vm_start) {
2246                 unsigned long size, grow;
2247
2248                 size = vma->vm_end - address;
2249                 grow = (vma->vm_start - address) >> PAGE_SHIFT;
2250
2251                 error = -ENOMEM;
2252                 if (grow <= vma->vm_pgoff) {
2253                         error = acct_stack_growth(vma, size, grow);
2254                         if (!error) {
2255                                 /*
2256                                  * vma_gap_update() doesn't support concurrent
2257                                  * updates, but we only hold a shared mmap_sem
2258                                  * lock here, so we need to protect against
2259                                  * concurrent vma expansions.
2260                                  * anon_vma_lock_write() doesn't help here, as
2261                                  * we don't guarantee that all growable vmas
2262                                  * in a mm share the same root anon vma.
2263                                  * So, we reuse mm->page_table_lock to guard
2264                                  * against concurrent vma expansions.
2265                                  */
2266                                 spin_lock(&mm->page_table_lock);
2267                                 if (vma->vm_flags & VM_LOCKED)
2268                                         mm->locked_vm += grow;
2269                                 vm_stat_account(mm, vma->vm_flags, grow);
2270                                 anon_vma_interval_tree_pre_update_vma(vma);
2271                                 vma->vm_start = address;
2272                                 vma->vm_pgoff -= grow;
2273                                 anon_vma_interval_tree_post_update_vma(vma);
2274                                 vma_gap_update(vma);
2275                                 spin_unlock(&mm->page_table_lock);
2276
2277                                 perf_event_mmap(vma);
2278                         }
2279                 }
2280         }
2281         anon_vma_unlock_write(vma->anon_vma);
2282         khugepaged_enter_vma_merge(vma, vma->vm_flags);
2283         validate_mm(mm);
2284         return error;
2285 }
2286
2287 /*
2288  * Note how expand_stack() refuses to expand the stack all the way to
2289  * abut the next virtual mapping, *unless* that mapping itself is also
2290  * a stack mapping. We want to leave room for a guard page, after all
2291  * (the guard page itself is not added here, that is done by the
2292  * actual page faulting logic)
2293  *
2294  * This matches the behavior of the guard page logic (see mm/memory.c:
2295  * check_stack_guard_page()), which only allows the guard page to be
2296  * removed under these circumstances.
2297  */
2298 #ifdef CONFIG_STACK_GROWSUP
2299 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2300 {
2301         struct vm_area_struct *next;
2302
2303         address &= PAGE_MASK;
2304         next = vma->vm_next;
2305         if (next && next->vm_start == address + PAGE_SIZE) {
2306                 if (!(next->vm_flags & VM_GROWSUP))
2307                         return -ENOMEM;
2308         }
2309         return expand_upwards(vma, address);
2310 }
2311
2312 struct vm_area_struct *
2313 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2314 {
2315         struct vm_area_struct *vma, *prev;
2316
2317         addr &= PAGE_MASK;
2318         vma = find_vma_prev(mm, addr, &prev);
2319         if (vma && (vma->vm_start <= addr))
2320                 return vma;
2321         if (!prev || expand_stack(prev, addr))
2322                 return NULL;
2323         if (prev->vm_flags & VM_LOCKED)
2324                 populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2325         return prev;
2326 }
2327 #else
2328 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2329 {
2330         struct vm_area_struct *prev;
2331
2332         address &= PAGE_MASK;
2333         prev = vma->vm_prev;
2334         if (prev && prev->vm_end == address) {
2335                 if (!(prev->vm_flags & VM_GROWSDOWN))
2336                         return -ENOMEM;
2337         }
2338         return expand_downwards(vma, address);
2339 }
2340
2341 struct vm_area_struct *
2342 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2343 {
2344         struct vm_area_struct *vma;
2345         unsigned long start;
2346
2347         addr &= PAGE_MASK;
2348         vma = find_vma(mm, addr);
2349         if (!vma)
2350                 return NULL;
2351         if (vma->vm_start <= addr)
2352                 return vma;
2353         if (!(vma->vm_flags & VM_GROWSDOWN))
2354                 return NULL;
2355         start = vma->vm_start;
2356         if (expand_stack(vma, addr))
2357                 return NULL;
2358         if (vma->vm_flags & VM_LOCKED)
2359                 populate_vma_page_range(vma, addr, start, NULL);
2360         return vma;
2361 }
2362 #endif
2363
2364 EXPORT_SYMBOL_GPL(find_extend_vma);
2365
2366 /*
2367  * Ok - we have the memory areas we should free on the vma list,
2368  * so release them, and do the vma updates.
2369  *
2370  * Called with the mm semaphore held.
2371  */
2372 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2373 {
2374         unsigned long nr_accounted = 0;
2375
2376         /* Update high watermark before we lower total_vm */
2377         update_hiwater_vm(mm);
2378         do {
2379                 long nrpages = vma_pages(vma);
2380
2381                 if (vma->vm_flags & VM_ACCOUNT)
2382                         nr_accounted += nrpages;
2383                 vm_stat_account(mm, vma->vm_flags, -nrpages);
2384                 vma = remove_vma(vma);
2385         } while (vma);
2386         vm_unacct_memory(nr_accounted);
2387         validate_mm(mm);
2388 }
2389
2390 /*
2391  * Get rid of page table information in the indicated region.
2392  *
2393  * Called with the mm semaphore held.
2394  */
2395 static void unmap_region(struct mm_struct *mm,
2396                 struct vm_area_struct *vma, struct vm_area_struct *prev,
2397                 unsigned long start, unsigned long end)
2398 {
2399         struct vm_area_struct *next = prev ? prev->vm_next : mm->mmap;
2400         struct mmu_gather tlb;
2401
2402         lru_add_drain();
2403         tlb_gather_mmu(&tlb, mm, start, end);
2404         update_hiwater_rss(mm);
2405         unmap_vmas(&tlb, vma, start, end);
2406         free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2407                                  next ? next->vm_start : USER_PGTABLES_CEILING);
2408         tlb_finish_mmu(&tlb, start, end);
2409 }
2410
2411 /*
2412  * Create a list of vma's touched by the unmap, removing them from the mm's
2413  * vma list as we go..
2414  */
2415 static void
2416 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2417         struct vm_area_struct *prev, unsigned long end)
2418 {
2419         struct vm_area_struct **insertion_point;
2420         struct vm_area_struct *tail_vma = NULL;
2421
2422         insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2423         vma->vm_prev = NULL;
2424         do {
2425                 vma_rb_erase(vma, &mm->mm_rb);
2426                 mm->map_count--;
2427                 tail_vma = vma;
2428                 vma = vma->vm_next;
2429         } while (vma && vma->vm_start < end);
2430         *insertion_point = vma;
2431         if (vma) {
2432                 vma->vm_prev = prev;
2433                 vma_gap_update(vma);
2434         } else
2435                 mm->highest_vm_end = prev ? prev->vm_end : 0;
2436         tail_vma->vm_next = NULL;
2437
2438         /* Kill the cache */
2439         vmacache_invalidate(mm);
2440 }
2441
2442 /*
2443  * __split_vma() bypasses sysctl_max_map_count checking.  We use this on the
2444  * munmap path where it doesn't make sense to fail.
2445  */
2446 static int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2447               unsigned long addr, int new_below)
2448 {
2449         struct vm_area_struct *new;
2450         int err;
2451
2452         if (is_vm_hugetlb_page(vma) && (addr &
2453                                         ~(huge_page_mask(hstate_vma(vma)))))
2454                 return -EINVAL;
2455
2456         new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2457         if (!new)
2458                 return -ENOMEM;
2459
2460         /* most fields are the same, copy all, and then fixup */
2461         *new = *vma;
2462
2463         INIT_LIST_HEAD(&new->anon_vma_chain);
2464
2465         if (new_below)
2466                 new->vm_end = addr;
2467         else {
2468                 new->vm_start = addr;
2469                 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2470         }
2471
2472         err = vma_dup_policy(vma, new);
2473         if (err)
2474                 goto out_free_vma;
2475
2476         err = anon_vma_clone(new, vma);
2477         if (err)
2478                 goto out_free_mpol;
2479
2480         if (new->vm_file)
2481                 get_file(new->vm_file);
2482
2483         if (new->vm_ops && new->vm_ops->open)
2484                 new->vm_ops->open(new);
2485
2486         if (new_below)
2487                 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2488                         ((addr - new->vm_start) >> PAGE_SHIFT), new);
2489         else
2490                 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2491
2492         /* Success. */
2493         if (!err)
2494                 return 0;
2495
2496         /* Clean everything up if vma_adjust failed. */
2497         if (new->vm_ops && new->vm_ops->close)
2498                 new->vm_ops->close(new);
2499         if (new->vm_file)
2500                 fput(new->vm_file);
2501         unlink_anon_vmas(new);
2502  out_free_mpol:
2503         mpol_put(vma_policy(new));
2504  out_free_vma:
2505         kmem_cache_free(vm_area_cachep, new);
2506         return err;
2507 }
2508
2509 /*
2510  * Split a vma into two pieces at address 'addr', a new vma is allocated
2511  * either for the first part or the tail.
2512  */
2513 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2514               unsigned long addr, int new_below)
2515 {
2516         if (mm->map_count >= sysctl_max_map_count)
2517                 return -ENOMEM;
2518
2519         return __split_vma(mm, vma, addr, new_below);
2520 }
2521
2522 /* Munmap is split into 2 main parts -- this part which finds
2523  * what needs doing, and the areas themselves, which do the
2524  * work.  This now handles partial unmappings.
2525  * Jeremy Fitzhardinge <jeremy@goop.org>
2526  */
2527 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
2528 {
2529         unsigned long end;
2530         struct vm_area_struct *vma, *prev, *last;
2531
2532         if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2533                 return -EINVAL;
2534
2535         len = PAGE_ALIGN(len);
2536         if (len == 0)
2537                 return -EINVAL;
2538
2539         /* Find the first overlapping VMA */
2540         vma = find_vma(mm, start);
2541         if (!vma)
2542                 return 0;
2543         prev = vma->vm_prev;
2544         /* we have  start < vma->vm_end  */
2545
2546         /* if it doesn't overlap, we have nothing.. */
2547         end = start + len;
2548         if (vma->vm_start >= end)
2549                 return 0;
2550
2551         /*
2552          * If we need to split any vma, do it now to save pain later.
2553          *
2554          * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2555          * unmapped vm_area_struct will remain in use: so lower split_vma
2556          * places tmp vma above, and higher split_vma places tmp vma below.
2557          */
2558         if (start > vma->vm_start) {
2559                 int error;
2560
2561                 /*
2562                  * Make sure that map_count on return from munmap() will
2563                  * not exceed its limit; but let map_count go just above
2564                  * its limit temporarily, to help free resources as expected.
2565                  */
2566                 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2567                         return -ENOMEM;
2568
2569                 error = __split_vma(mm, vma, start, 0);
2570                 if (error)
2571                         return error;
2572                 prev = vma;
2573         }
2574
2575         /* Does it split the last one? */
2576         last = find_vma(mm, end);
2577         if (last && end > last->vm_start) {
2578                 int error = __split_vma(mm, last, end, 1);
2579                 if (error)
2580                         return error;
2581         }
2582         vma = prev ? prev->vm_next : mm->mmap;
2583
2584         /*
2585          * unlock any mlock()ed ranges before detaching vmas
2586          */
2587         if (mm->locked_vm) {
2588                 struct vm_area_struct *tmp = vma;
2589                 while (tmp && tmp->vm_start < end) {
2590                         if (tmp->vm_flags & VM_LOCKED) {
2591                                 mm->locked_vm -= vma_pages(tmp);
2592                                 munlock_vma_pages_all(tmp);
2593                         }
2594                         tmp = tmp->vm_next;
2595                 }
2596         }
2597
2598         /*
2599          * Remove the vma's, and unmap the actual pages
2600          */
2601         detach_vmas_to_be_unmapped(mm, vma, prev, end);
2602         unmap_region(mm, vma, prev, start, end);
2603
2604         arch_unmap(mm, vma, start, end);
2605
2606         /* Fix up all other VM information */
2607         remove_vma_list(mm, vma);
2608
2609         return 0;
2610 }
2611
2612 int vm_munmap(unsigned long start, size_t len)
2613 {
2614         int ret;
2615         struct mm_struct *mm = current->mm;
2616
2617         down_write(&mm->mmap_sem);
2618         ret = do_munmap(mm, start, len);
2619         up_write(&mm->mmap_sem);
2620         return ret;
2621 }
2622 EXPORT_SYMBOL(vm_munmap);
2623
2624 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2625 {
2626         profile_munmap(addr);
2627         return vm_munmap(addr, len);
2628 }
2629
2630
2631 /*
2632  * Emulation of deprecated remap_file_pages() syscall.
2633  */
2634 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
2635                 unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
2636 {
2637
2638         struct mm_struct *mm = current->mm;
2639         struct vm_area_struct *vma;
2640         unsigned long populate = 0;
2641         unsigned long ret = -EINVAL;
2642         struct file *file;
2643
2644         pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. "
2645                         "See Documentation/vm/remap_file_pages.txt.\n",
2646                         current->comm, current->pid);
2647
2648         if (prot)
2649                 return ret;
2650         start = start & PAGE_MASK;
2651         size = size & PAGE_MASK;
2652
2653         if (start + size <= start)
2654                 return ret;
2655
2656         /* Does pgoff wrap? */
2657         if (pgoff + (size >> PAGE_SHIFT) < pgoff)
2658                 return ret;
2659
2660         down_write(&mm->mmap_sem);
2661         vma = find_vma(mm, start);
2662
2663         if (!vma || !(vma->vm_flags & VM_SHARED))
2664                 goto out;
2665
2666         if (start < vma->vm_start)
2667                 goto out;
2668
2669         if (start + size > vma->vm_end) {
2670                 struct vm_area_struct *next;
2671
2672                 for (next = vma->vm_next; next; next = next->vm_next) {
2673                         /* hole between vmas ? */
2674                         if (next->vm_start != next->vm_prev->vm_end)
2675                                 goto out;
2676
2677                         if (next->vm_file != vma->vm_file)
2678                                 goto out;
2679
2680                         if (next->vm_flags != vma->vm_flags)
2681                                 goto out;
2682
2683                         if (start + size <= next->vm_end)
2684                                 break;
2685                 }
2686
2687                 if (!next)
2688                         goto out;
2689         }
2690
2691         prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
2692         prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
2693         prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
2694
2695         flags &= MAP_NONBLOCK;
2696         flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
2697         if (vma->vm_flags & VM_LOCKED) {
2698                 struct vm_area_struct *tmp;
2699                 flags |= MAP_LOCKED;
2700
2701                 /* drop PG_Mlocked flag for over-mapped range */
2702                 for (tmp = vma; tmp->vm_start >= start + size;
2703                                 tmp = tmp->vm_next) {
2704                         munlock_vma_pages_range(tmp,
2705                                         max(tmp->vm_start, start),
2706                                         min(tmp->vm_end, start + size));
2707                 }
2708         }
2709
2710         file = get_file(vma->vm_file);
2711         ret = do_mmap_pgoff(vma->vm_file, start, size,
2712                         prot, flags, pgoff, &populate);
2713         fput(file);
2714 out:
2715         up_write(&mm->mmap_sem);
2716         if (populate)
2717                 mm_populate(ret, populate);
2718         if (!IS_ERR_VALUE(ret))
2719                 ret = 0;
2720         return ret;
2721 }
2722
2723 static inline void verify_mm_writelocked(struct mm_struct *mm)
2724 {
2725 #ifdef CONFIG_DEBUG_VM
2726         if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2727                 WARN_ON(1);
2728                 up_read(&mm->mmap_sem);
2729         }
2730 #endif
2731 }
2732
2733 /*
2734  *  this is really a simplified "do_mmap".  it only handles
2735  *  anonymous maps.  eventually we may be able to do some
2736  *  brk-specific accounting here.
2737  */
2738 static unsigned long do_brk(unsigned long addr, unsigned long len)
2739 {
2740         struct mm_struct *mm = current->mm;
2741         struct vm_area_struct *vma, *prev;
2742         unsigned long flags;
2743         struct rb_node **rb_link, *rb_parent;
2744         pgoff_t pgoff = addr >> PAGE_SHIFT;
2745         int error;
2746
2747         len = PAGE_ALIGN(len);
2748         if (!len)
2749                 return addr;
2750
2751         flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2752
2753         error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2754         if (offset_in_page(error))
2755                 return error;
2756
2757         error = mlock_future_check(mm, mm->def_flags, len);
2758         if (error)
2759                 return error;
2760
2761         /*
2762          * mm->mmap_sem is required to protect against another thread
2763          * changing the mappings in case we sleep.
2764          */
2765         verify_mm_writelocked(mm);
2766
2767         /*
2768          * Clear old maps.  this also does some error checking for us
2769          */
2770         while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
2771                               &rb_parent)) {
2772                 if (do_munmap(mm, addr, len))
2773                         return -ENOMEM;
2774         }
2775
2776         /* Check against address space limits *after* clearing old maps... */
2777         if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
2778                 return -ENOMEM;
2779
2780         if (mm->map_count > sysctl_max_map_count)
2781                 return -ENOMEM;
2782
2783         if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
2784                 return -ENOMEM;
2785
2786         /* Can we just expand an old private anonymous mapping? */
2787         vma = vma_merge(mm, prev, addr, addr + len, flags,
2788                         NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX);
2789         if (vma)
2790                 goto out;
2791
2792         /*
2793          * create a vma struct for an anonymous mapping
2794          */
2795         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2796         if (!vma) {
2797                 vm_unacct_memory(len >> PAGE_SHIFT);
2798                 return -ENOMEM;
2799         }
2800
2801         INIT_LIST_HEAD(&vma->anon_vma_chain);
2802         vma->vm_mm = mm;
2803         vma->vm_start = addr;
2804         vma->vm_end = addr + len;
2805         vma->vm_pgoff = pgoff;
2806         vma->vm_flags = flags;
2807         vma->vm_page_prot = vm_get_page_prot(flags);
2808         vma_link(mm, vma, prev, rb_link, rb_parent);
2809 out:
2810         perf_event_mmap(vma);
2811         mm->total_vm += len >> PAGE_SHIFT;
2812         mm->data_vm += len >> PAGE_SHIFT;
2813         if (flags & VM_LOCKED)
2814                 mm->locked_vm += (len >> PAGE_SHIFT);
2815         vma->vm_flags |= VM_SOFTDIRTY;
2816         return addr;
2817 }
2818
2819 unsigned long vm_brk(unsigned long addr, unsigned long len)
2820 {
2821         struct mm_struct *mm = current->mm;
2822         unsigned long ret;
2823         bool populate;
2824
2825         down_write(&mm->mmap_sem);
2826         ret = do_brk(addr, len);
2827         populate = ((mm->def_flags & VM_LOCKED) != 0);
2828         up_write(&mm->mmap_sem);
2829         if (populate)
2830                 mm_populate(addr, len);
2831         return ret;
2832 }
2833 EXPORT_SYMBOL(vm_brk);
2834
2835 /* Release all mmaps. */
2836 void exit_mmap(struct mm_struct *mm)
2837 {
2838         struct mmu_gather tlb;
2839         struct vm_area_struct *vma;
2840         unsigned long nr_accounted = 0;
2841
2842         /* mm's last user has gone, and its about to be pulled down */
2843         mmu_notifier_release(mm);
2844
2845         if (mm->locked_vm) {
2846                 vma = mm->mmap;
2847                 while (vma) {
2848                         if (vma->vm_flags & VM_LOCKED)
2849                                 munlock_vma_pages_all(vma);
2850                         vma = vma->vm_next;
2851                 }
2852         }
2853
2854         arch_exit_mmap(mm);
2855
2856         vma = mm->mmap;
2857         if (!vma)       /* Can happen if dup_mmap() received an OOM */
2858                 return;
2859
2860         lru_add_drain();
2861         flush_cache_mm(mm);
2862         tlb_gather_mmu(&tlb, mm, 0, -1);
2863         /* update_hiwater_rss(mm) here? but nobody should be looking */
2864         /* Use -1 here to ensure all VMAs in the mm are unmapped */
2865         unmap_vmas(&tlb, vma, 0, -1);
2866
2867         free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
2868         tlb_finish_mmu(&tlb, 0, -1);
2869
2870         /*
2871          * Walk the list again, actually closing and freeing it,
2872          * with preemption enabled, without holding any MM locks.
2873          */
2874         while (vma) {
2875                 if (vma->vm_flags & VM_ACCOUNT)
2876                         nr_accounted += vma_pages(vma);
2877                 vma = remove_vma(vma);
2878         }
2879         vm_unacct_memory(nr_accounted);
2880 }
2881
2882 /* Insert vm structure into process list sorted by address
2883  * and into the inode's i_mmap tree.  If vm_file is non-NULL
2884  * then i_mmap_rwsem is taken here.
2885  */
2886 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
2887 {
2888         struct vm_area_struct *prev;
2889         struct rb_node **rb_link, *rb_parent;
2890
2891         if (find_vma_links(mm, vma->vm_start, vma->vm_end,
2892                            &prev, &rb_link, &rb_parent))
2893                 return -ENOMEM;
2894         if ((vma->vm_flags & VM_ACCOUNT) &&
2895              security_vm_enough_memory_mm(mm, vma_pages(vma)))
2896                 return -ENOMEM;
2897
2898         /*
2899          * The vm_pgoff of a purely anonymous vma should be irrelevant
2900          * until its first write fault, when page's anon_vma and index
2901          * are set.  But now set the vm_pgoff it will almost certainly
2902          * end up with (unless mremap moves it elsewhere before that
2903          * first wfault), so /proc/pid/maps tells a consistent story.
2904          *
2905          * By setting it to reflect the virtual start address of the
2906          * vma, merges and splits can happen in a seamless way, just
2907          * using the existing file pgoff checks and manipulations.
2908          * Similarly in do_mmap_pgoff and in do_brk.
2909          */
2910         if (vma_is_anonymous(vma)) {
2911                 BUG_ON(vma->anon_vma);
2912                 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2913         }
2914
2915         vma_link(mm, vma, prev, rb_link, rb_parent);
2916         return 0;
2917 }
2918
2919 /*
2920  * Copy the vma structure to a new location in the same mm,
2921  * prior to moving page table entries, to effect an mremap move.
2922  */
2923 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2924         unsigned long addr, unsigned long len, pgoff_t pgoff,
2925         bool *need_rmap_locks)
2926 {
2927         struct vm_area_struct *vma = *vmap;
2928         unsigned long vma_start = vma->vm_start;
2929         struct mm_struct *mm = vma->vm_mm;
2930         struct vm_area_struct *new_vma, *prev;
2931         struct rb_node **rb_link, *rb_parent;
2932         bool faulted_in_anon_vma = true;
2933
2934         /*
2935          * If anonymous vma has not yet been faulted, update new pgoff
2936          * to match new location, to increase its chance of merging.
2937          */
2938         if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
2939                 pgoff = addr >> PAGE_SHIFT;
2940                 faulted_in_anon_vma = false;
2941         }
2942
2943         if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
2944                 return NULL;    /* should never get here */
2945         new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2946                             vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
2947                             vma->vm_userfaultfd_ctx);
2948         if (new_vma) {
2949                 /*
2950                  * Source vma may have been merged into new_vma
2951                  */
2952                 if (unlikely(vma_start >= new_vma->vm_start &&
2953                              vma_start < new_vma->vm_end)) {
2954                         /*
2955                          * The only way we can get a vma_merge with
2956                          * self during an mremap is if the vma hasn't
2957                          * been faulted in yet and we were allowed to
2958                          * reset the dst vma->vm_pgoff to the
2959                          * destination address of the mremap to allow
2960                          * the merge to happen. mremap must change the
2961                          * vm_pgoff linearity between src and dst vmas
2962                          * (in turn preventing a vma_merge) to be
2963                          * safe. It is only safe to keep the vm_pgoff
2964                          * linear if there are no pages mapped yet.
2965                          */
2966                         VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
2967                         *vmap = vma = new_vma;
2968                 }
2969                 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
2970         } else {
2971                 new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2972                 if (!new_vma)
2973                         goto out;
2974                 *new_vma = *vma;
2975                 new_vma->vm_start = addr;
2976                 new_vma->vm_end = addr + len;
2977                 new_vma->vm_pgoff = pgoff;
2978                 if (vma_dup_policy(vma, new_vma))
2979                         goto out_free_vma;
2980                 INIT_LIST_HEAD(&new_vma->anon_vma_chain);
2981                 if (anon_vma_clone(new_vma, vma))
2982                         goto out_free_mempol;
2983                 if (new_vma->vm_file)
2984                         get_file(new_vma->vm_file);
2985                 if (new_vma->vm_ops && new_vma->vm_ops->open)
2986                         new_vma->vm_ops->open(new_vma);
2987                 vma_link(mm, new_vma, prev, rb_link, rb_parent);
2988                 *need_rmap_locks = false;
2989         }
2990         return new_vma;
2991
2992 out_free_mempol:
2993         mpol_put(vma_policy(new_vma));
2994 out_free_vma:
2995         kmem_cache_free(vm_area_cachep, new_vma);
2996 out:
2997         return NULL;
2998 }
2999
3000 /*
3001  * Return true if the calling process may expand its vm space by the passed
3002  * number of pages
3003  */
3004 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
3005 {
3006         if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
3007                 return false;
3008
3009         if (is_data_mapping(flags) &&
3010             mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
3011                 if (ignore_rlimit_data)
3012                         pr_warn_once("%s (%d): VmData %lu exceed data ulimit "
3013                                      "%lu. Will be forbidden soon.\n",
3014                                      current->comm, current->pid,
3015                                      (mm->data_vm + npages) << PAGE_SHIFT,
3016                                      rlimit(RLIMIT_DATA));
3017                 else
3018                         return false;
3019         }
3020
3021         return true;
3022 }
3023
3024 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
3025 {
3026         mm->total_vm += npages;
3027
3028         if (is_exec_mapping(flags))
3029                 mm->exec_vm += npages;
3030         else if (is_stack_mapping(flags))
3031                 mm->stack_vm += npages;
3032         else if (is_data_mapping(flags))
3033                 mm->data_vm += npages;
3034 }
3035
3036 static int special_mapping_fault(struct vm_area_struct *vma,
3037                                  struct vm_fault *vmf);
3038
3039 /*
3040  * Having a close hook prevents vma merging regardless of flags.
3041  */
3042 static void special_mapping_close(struct vm_area_struct *vma)
3043 {
3044 }
3045
3046 static const char *special_mapping_name(struct vm_area_struct *vma)
3047 {
3048         return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3049 }
3050
3051 static const struct vm_operations_struct special_mapping_vmops = {
3052         .close = special_mapping_close,
3053         .fault = special_mapping_fault,
3054         .name = special_mapping_name,
3055 };
3056
3057 static const struct vm_operations_struct legacy_special_mapping_vmops = {
3058         .close = special_mapping_close,
3059         .fault = special_mapping_fault,
3060 };
3061
3062 static int special_mapping_fault(struct vm_area_struct *vma,
3063                                 struct vm_fault *vmf)
3064 {
3065         pgoff_t pgoff;
3066         struct page **pages;
3067
3068         if (vma->vm_ops == &legacy_special_mapping_vmops) {
3069                 pages = vma->vm_private_data;
3070         } else {
3071                 struct vm_special_mapping *sm = vma->vm_private_data;
3072
3073                 if (sm->fault)
3074                         return sm->fault(sm, vma, vmf);
3075
3076                 pages = sm->pages;
3077         }
3078
3079         for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3080                 pgoff--;
3081
3082         if (*pages) {
3083                 struct page *page = *pages;
3084                 get_page(page);
3085                 vmf->page = page;
3086                 return 0;
3087         }
3088
3089         return VM_FAULT_SIGBUS;
3090 }
3091
3092 static struct vm_area_struct *__install_special_mapping(
3093         struct mm_struct *mm,
3094         unsigned long addr, unsigned long len,
3095         unsigned long vm_flags, void *priv,
3096         const struct vm_operations_struct *ops)
3097 {
3098         int ret;
3099         struct vm_area_struct *vma;
3100
3101         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
3102         if (unlikely(vma == NULL))
3103                 return ERR_PTR(-ENOMEM);
3104
3105         INIT_LIST_HEAD(&vma->anon_vma_chain);
3106         vma->vm_mm = mm;
3107         vma->vm_start = addr;
3108         vma->vm_end = addr + len;
3109
3110         vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
3111         vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3112
3113         vma->vm_ops = ops;
3114         vma->vm_private_data = priv;
3115
3116         ret = insert_vm_struct(mm, vma);
3117         if (ret)
3118                 goto out;
3119
3120         vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3121
3122         perf_event_mmap(vma);
3123
3124         return vma;
3125
3126 out:
3127         kmem_cache_free(vm_area_cachep, vma);
3128         return ERR_PTR(ret);
3129 }
3130
3131 /*
3132  * Called with mm->mmap_sem held for writing.
3133  * Insert a new vma covering the given region, with the given flags.
3134  * Its pages are supplied by the given array of struct page *.
3135  * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3136  * The region past the last page supplied will always produce SIGBUS.
3137  * The array pointer and the pages it points to are assumed to stay alive
3138  * for as long as this mapping might exist.
3139  */
3140 struct vm_area_struct *_install_special_mapping(
3141         struct mm_struct *mm,
3142         unsigned long addr, unsigned long len,
3143         unsigned long vm_flags, const struct vm_special_mapping *spec)
3144 {
3145         return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3146                                         &special_mapping_vmops);
3147 }
3148
3149 int install_special_mapping(struct mm_struct *mm,
3150                             unsigned long addr, unsigned long len,
3151                             unsigned long vm_flags, struct page **pages)
3152 {
3153         struct vm_area_struct *vma = __install_special_mapping(
3154                 mm, addr, len, vm_flags, (void *)pages,
3155                 &legacy_special_mapping_vmops);
3156
3157         return PTR_ERR_OR_ZERO(vma);
3158 }
3159
3160 static DEFINE_MUTEX(mm_all_locks_mutex);
3161
3162 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3163 {
3164         if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3165                 /*
3166                  * The LSB of head.next can't change from under us
3167                  * because we hold the mm_all_locks_mutex.
3168                  */
3169                 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem);
3170                 /*
3171                  * We can safely modify head.next after taking the
3172                  * anon_vma->root->rwsem. If some other vma in this mm shares
3173                  * the same anon_vma we won't take it again.
3174                  *
3175                  * No need of atomic instructions here, head.next
3176                  * can't change from under us thanks to the
3177                  * anon_vma->root->rwsem.
3178                  */
3179                 if (__test_and_set_bit(0, (unsigned long *)
3180                                        &anon_vma->root->rb_root.rb_node))
3181                         BUG();
3182         }
3183 }
3184
3185 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3186 {
3187         if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3188                 /*
3189                  * AS_MM_ALL_LOCKS can't change from under us because
3190                  * we hold the mm_all_locks_mutex.
3191                  *
3192                  * Operations on ->flags have to be atomic because
3193                  * even if AS_MM_ALL_LOCKS is stable thanks to the
3194                  * mm_all_locks_mutex, there may be other cpus
3195                  * changing other bitflags in parallel to us.
3196                  */
3197                 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3198                         BUG();
3199                 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_sem);
3200         }
3201 }
3202
3203 /*
3204  * This operation locks against the VM for all pte/vma/mm related
3205  * operations that could ever happen on a certain mm. This includes
3206  * vmtruncate, try_to_unmap, and all page faults.
3207  *
3208  * The caller must take the mmap_sem in write mode before calling
3209  * mm_take_all_locks(). The caller isn't allowed to release the
3210  * mmap_sem until mm_drop_all_locks() returns.
3211  *
3212  * mmap_sem in write mode is required in order to block all operations
3213  * that could modify pagetables and free pages without need of
3214  * altering the vma layout. It's also needed in write mode to avoid new
3215  * anon_vmas to be associated with existing vmas.
3216  *
3217  * A single task can't take more than one mm_take_all_locks() in a row
3218  * or it would deadlock.
3219  *
3220  * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3221  * mapping->flags avoid to take the same lock twice, if more than one
3222  * vma in this mm is backed by the same anon_vma or address_space.
3223  *
3224  * We take locks in following order, accordingly to comment at beginning
3225  * of mm/rmap.c:
3226  *   - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3227  *     hugetlb mapping);
3228  *   - all i_mmap_rwsem locks;
3229  *   - all anon_vma->rwseml
3230  *
3231  * We can take all locks within these types randomly because the VM code
3232  * doesn't nest them and we protected from parallel mm_take_all_locks() by
3233  * mm_all_locks_mutex.
3234  *
3235  * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3236  * that may have to take thousand of locks.
3237  *
3238  * mm_take_all_locks() can fail if it's interrupted by signals.
3239  */
3240 int mm_take_all_locks(struct mm_struct *mm)
3241 {
3242         struct vm_area_struct *vma;
3243         struct anon_vma_chain *avc;
3244
3245         BUG_ON(down_read_trylock(&mm->mmap_sem));
3246
3247         mutex_lock(&mm_all_locks_mutex);
3248
3249         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3250                 if (signal_pending(current))
3251                         goto out_unlock;
3252                 if (vma->vm_file && vma->vm_file->f_mapping &&
3253                                 is_vm_hugetlb_page(vma))
3254                         vm_lock_mapping(mm, vma->vm_file->f_mapping);
3255         }
3256
3257         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3258                 if (signal_pending(current))
3259                         goto out_unlock;
3260                 if (vma->vm_file && vma->vm_file->f_mapping &&
3261                                 !is_vm_hugetlb_page(vma))
3262                         vm_lock_mapping(mm, vma->vm_file->f_mapping);
3263         }
3264
3265         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3266                 if (signal_pending(current))
3267                         goto out_unlock;
3268                 if (vma->anon_vma)
3269                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3270                                 vm_lock_anon_vma(mm, avc->anon_vma);
3271         }
3272
3273         return 0;
3274
3275 out_unlock:
3276         mm_drop_all_locks(mm);
3277         return -EINTR;
3278 }
3279
3280 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3281 {
3282         if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3283                 /*
3284                  * The LSB of head.next can't change to 0 from under
3285                  * us because we hold the mm_all_locks_mutex.
3286                  *
3287                  * We must however clear the bitflag before unlocking
3288                  * the vma so the users using the anon_vma->rb_root will
3289                  * never see our bitflag.
3290                  *
3291                  * No need of atomic instructions here, head.next
3292                  * can't change from under us until we release the
3293                  * anon_vma->root->rwsem.
3294                  */
3295                 if (!__test_and_clear_bit(0, (unsigned long *)
3296                                           &anon_vma->root->rb_root.rb_node))
3297                         BUG();
3298                 anon_vma_unlock_write(anon_vma);
3299         }
3300 }
3301
3302 static void vm_unlock_mapping(struct address_space *mapping)
3303 {
3304         if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3305                 /*
3306                  * AS_MM_ALL_LOCKS can't change to 0 from under us
3307                  * because we hold the mm_all_locks_mutex.
3308                  */
3309                 i_mmap_unlock_write(mapping);
3310                 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3311                                         &mapping->flags))
3312                         BUG();
3313         }
3314 }
3315
3316 /*
3317  * The mmap_sem cannot be released by the caller until
3318  * mm_drop_all_locks() returns.
3319  */
3320 void mm_drop_all_locks(struct mm_struct *mm)
3321 {
3322         struct vm_area_struct *vma;
3323         struct anon_vma_chain *avc;
3324
3325         BUG_ON(down_read_trylock(&mm->mmap_sem));
3326         BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3327
3328         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3329                 if (vma->anon_vma)
3330                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3331                                 vm_unlock_anon_vma(avc->anon_vma);
3332                 if (vma->vm_file && vma->vm_file->f_mapping)
3333                         vm_unlock_mapping(vma->vm_file->f_mapping);
3334         }
3335
3336         mutex_unlock(&mm_all_locks_mutex);
3337 }
3338
3339 /*
3340  * initialise the VMA slab
3341  */
3342 void __init mmap_init(void)
3343 {
3344         int ret;
3345
3346         ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3347         VM_BUG_ON(ret);
3348 }
3349
3350 /*
3351  * Initialise sysctl_user_reserve_kbytes.
3352  *
3353  * This is intended to prevent a user from starting a single memory hogging
3354  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3355  * mode.
3356  *
3357  * The default value is min(3% of free memory, 128MB)
3358  * 128MB is enough to recover with sshd/login, bash, and top/kill.
3359  */
3360 static int init_user_reserve(void)
3361 {
3362         unsigned long free_kbytes;
3363
3364         free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3365
3366         sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3367         return 0;
3368 }
3369 subsys_initcall(init_user_reserve);
3370
3371 /*
3372  * Initialise sysctl_admin_reserve_kbytes.
3373  *
3374  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3375  * to log in and kill a memory hogging process.
3376  *
3377  * Systems with more than 256MB will reserve 8MB, enough to recover
3378  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3379  * only reserve 3% of free pages by default.
3380  */
3381 static int init_admin_reserve(void)
3382 {
3383         unsigned long free_kbytes;
3384
3385         free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3386
3387         sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3388         return 0;
3389 }
3390 subsys_initcall(init_admin_reserve);
3391
3392 /*
3393  * Reinititalise user and admin reserves if memory is added or removed.
3394  *
3395  * The default user reserve max is 128MB, and the default max for the
3396  * admin reserve is 8MB. These are usually, but not always, enough to
3397  * enable recovery from a memory hogging process using login/sshd, a shell,
3398  * and tools like top. It may make sense to increase or even disable the
3399  * reserve depending on the existence of swap or variations in the recovery
3400  * tools. So, the admin may have changed them.
3401  *
3402  * If memory is added and the reserves have been eliminated or increased above
3403  * the default max, then we'll trust the admin.
3404  *
3405  * If memory is removed and there isn't enough free memory, then we
3406  * need to reset the reserves.
3407  *
3408  * Otherwise keep the reserve set by the admin.
3409  */
3410 static int reserve_mem_notifier(struct notifier_block *nb,
3411                              unsigned long action, void *data)
3412 {
3413         unsigned long tmp, free_kbytes;
3414
3415         switch (action) {
3416         case MEM_ONLINE:
3417                 /* Default max is 128MB. Leave alone if modified by operator. */
3418                 tmp = sysctl_user_reserve_kbytes;
3419                 if (0 < tmp && tmp < (1UL << 17))
3420                         init_user_reserve();
3421
3422                 /* Default max is 8MB.  Leave alone if modified by operator. */
3423                 tmp = sysctl_admin_reserve_kbytes;
3424                 if (0 < tmp && tmp < (1UL << 13))
3425                         init_admin_reserve();
3426
3427                 break;
3428         case MEM_OFFLINE:
3429                 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3430
3431                 if (sysctl_user_reserve_kbytes > free_kbytes) {
3432                         init_user_reserve();
3433                         pr_info("vm.user_reserve_kbytes reset to %lu\n",
3434                                 sysctl_user_reserve_kbytes);
3435                 }
3436
3437                 if (sysctl_admin_reserve_kbytes > free_kbytes) {
3438                         init_admin_reserve();
3439                         pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3440                                 sysctl_admin_reserve_kbytes);
3441                 }
3442                 break;
3443         default:
3444                 break;
3445         }
3446         return NOTIFY_OK;
3447 }
3448
3449 static struct notifier_block reserve_mem_nb = {
3450         .notifier_call = reserve_mem_notifier,
3451 };
3452
3453 static int __meminit init_reserve_notifier(void)
3454 {
3455         if (register_hotmemory_notifier(&reserve_mem_nb))
3456                 pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3457
3458         return 0;
3459 }
3460 subsys_initcall(init_reserve_notifier);