6 * Address space accounting code <alan@lxorguk.ukuu.org.uk>
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 #include <linux/kernel.h>
12 #include <linux/slab.h>
13 #include <linux/backing-dev.h>
15 #include <linux/vmacache.h>
16 #include <linux/shm.h>
17 #include <linux/mman.h>
18 #include <linux/pagemap.h>
19 #include <linux/swap.h>
20 #include <linux/syscalls.h>
21 #include <linux/capability.h>
22 #include <linux/init.h>
23 #include <linux/file.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/hugetlb.h>
28 #include <linux/profile.h>
29 #include <linux/export.h>
30 #include <linux/mount.h>
31 #include <linux/mempolicy.h>
32 #include <linux/rmap.h>
33 #include <linux/mmu_notifier.h>
34 #include <linux/mmdebug.h>
35 #include <linux/perf_event.h>
36 #include <linux/audit.h>
37 #include <linux/khugepaged.h>
38 #include <linux/uprobes.h>
39 #include <linux/rbtree_augmented.h>
40 #include <linux/notifier.h>
41 #include <linux/memory.h>
42 #include <linux/printk.h>
43 #include <linux/userfaultfd_k.h>
44 #include <linux/moduleparam.h>
46 #include <asm/uaccess.h>
47 #include <asm/cacheflush.h>
49 #include <asm/mmu_context.h>
53 #ifndef arch_mmap_check
54 #define arch_mmap_check(addr, len, flags) (0)
57 #ifndef arch_rebalance_pgtables
58 #define arch_rebalance_pgtables(addr, len) (addr)
61 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
62 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
63 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX;
64 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
66 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
67 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
68 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
69 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
72 static bool ignore_rlimit_data = true;
73 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
75 static void unmap_region(struct mm_struct *mm,
76 struct vm_area_struct *vma, struct vm_area_struct *prev,
77 unsigned long start, unsigned long end);
79 /* description of effects of mapping type and prot in current implementation.
80 * this is due to the limited x86 page protection hardware. The expected
81 * behavior is in parens:
84 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC
85 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes
86 * w: (no) no w: (no) no w: (yes) yes w: (no) no
87 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
89 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes
90 * w: (no) no w: (no) no w: (copy) copy w: (no) no
91 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
94 pgprot_t protection_map[16] = {
95 __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
96 __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
99 pgprot_t vm_get_page_prot(unsigned long vm_flags)
101 return __pgprot(pgprot_val(protection_map[vm_flags &
102 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
103 pgprot_val(arch_vm_get_page_prot(vm_flags)));
105 EXPORT_SYMBOL(vm_get_page_prot);
107 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
109 return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
112 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
113 void vma_set_page_prot(struct vm_area_struct *vma)
115 unsigned long vm_flags = vma->vm_flags;
117 vma->vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
118 if (vma_wants_writenotify(vma)) {
119 vm_flags &= ~VM_SHARED;
120 vma->vm_page_prot = vm_pgprot_modify(vma->vm_page_prot,
126 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS; /* heuristic overcommit */
127 int sysctl_overcommit_ratio __read_mostly = 50; /* default is 50% */
128 unsigned long sysctl_overcommit_kbytes __read_mostly;
129 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
130 unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
131 unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */
133 * Make sure vm_committed_as in one cacheline and not cacheline shared with
134 * other variables. It can be updated by several CPUs frequently.
136 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
139 * The global memory commitment made in the system can be a metric
140 * that can be used to drive ballooning decisions when Linux is hosted
141 * as a guest. On Hyper-V, the host implements a policy engine for dynamically
142 * balancing memory across competing virtual machines that are hosted.
143 * Several metrics drive this policy engine including the guest reported
146 unsigned long vm_memory_committed(void)
148 return percpu_counter_read_positive(&vm_committed_as);
150 EXPORT_SYMBOL_GPL(vm_memory_committed);
153 * Check that a process has enough memory to allocate a new virtual
154 * mapping. 0 means there is enough memory for the allocation to
155 * succeed and -ENOMEM implies there is not.
157 * We currently support three overcommit policies, which are set via the
158 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting
160 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
161 * Additional code 2002 Jul 20 by Robert Love.
163 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
165 * Note this is a helper function intended to be used by LSMs which
166 * wish to use this logic.
168 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
170 long free, allowed, reserve;
172 VM_WARN_ONCE(percpu_counter_read(&vm_committed_as) <
173 -(s64)vm_committed_as_batch * num_online_cpus(),
174 "memory commitment underflow");
176 vm_acct_memory(pages);
179 * Sometimes we want to use more memory than we have
181 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
184 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
185 free = global_page_state(NR_FREE_PAGES);
186 free += global_page_state(NR_FILE_PAGES);
189 * shmem pages shouldn't be counted as free in this
190 * case, they can't be purged, only swapped out, and
191 * that won't affect the overall amount of available
192 * memory in the system.
194 free -= global_page_state(NR_SHMEM);
196 free += get_nr_swap_pages();
199 * Any slabs which are created with the
200 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
201 * which are reclaimable, under pressure. The dentry
202 * cache and most inode caches should fall into this
204 free += global_page_state(NR_SLAB_RECLAIMABLE);
207 * Leave reserved pages. The pages are not for anonymous pages.
209 if (free <= totalreserve_pages)
212 free -= totalreserve_pages;
215 * Reserve some for root
218 free -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
226 allowed = vm_commit_limit();
228 * Reserve some for root
231 allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
234 * Don't let a single process grow so big a user can't recover
237 reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);
238 allowed -= min_t(long, mm->total_vm / 32, reserve);
241 if (percpu_counter_read_positive(&vm_committed_as) < allowed)
244 vm_unacct_memory(pages);
250 * Requires inode->i_mapping->i_mmap_rwsem
252 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
253 struct file *file, struct address_space *mapping)
255 if (vma->vm_flags & VM_DENYWRITE)
256 atomic_inc(&file_inode(file)->i_writecount);
257 if (vma->vm_flags & VM_SHARED)
258 mapping_unmap_writable(mapping);
260 flush_dcache_mmap_lock(mapping);
261 vma_interval_tree_remove(vma, &mapping->i_mmap);
262 flush_dcache_mmap_unlock(mapping);
266 * Unlink a file-based vm structure from its interval tree, to hide
267 * vma from rmap and vmtruncate before freeing its page tables.
269 void unlink_file_vma(struct vm_area_struct *vma)
271 struct file *file = vma->vm_file;
274 struct address_space *mapping = file->f_mapping;
275 i_mmap_lock_write(mapping);
276 __remove_shared_vm_struct(vma, file, mapping);
277 i_mmap_unlock_write(mapping);
282 * Close a vm structure and free it, returning the next.
284 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
286 struct vm_area_struct *next = vma->vm_next;
289 if (vma->vm_ops && vma->vm_ops->close)
290 vma->vm_ops->close(vma);
293 mpol_put(vma_policy(vma));
294 kmem_cache_free(vm_area_cachep, vma);
298 static unsigned long do_brk(unsigned long addr, unsigned long len);
300 SYSCALL_DEFINE1(brk, unsigned long, brk)
302 unsigned long retval;
303 unsigned long newbrk, oldbrk;
304 struct mm_struct *mm = current->mm;
305 unsigned long min_brk;
308 down_write(&mm->mmap_sem);
310 #ifdef CONFIG_COMPAT_BRK
312 * CONFIG_COMPAT_BRK can still be overridden by setting
313 * randomize_va_space to 2, which will still cause mm->start_brk
314 * to be arbitrarily shifted
316 if (current->brk_randomized)
317 min_brk = mm->start_brk;
319 min_brk = mm->end_data;
321 min_brk = mm->start_brk;
327 * Check against rlimit here. If this check is done later after the test
328 * of oldbrk with newbrk then it can escape the test and let the data
329 * segment grow beyond its set limit the in case where the limit is
330 * not page aligned -Ram Gupta
332 if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
333 mm->end_data, mm->start_data))
336 newbrk = PAGE_ALIGN(brk);
337 oldbrk = PAGE_ALIGN(mm->brk);
338 if (oldbrk == newbrk)
341 /* Always allow shrinking brk. */
342 if (brk <= mm->brk) {
343 if (!do_munmap(mm, newbrk, oldbrk-newbrk))
348 /* Check against existing mmap mappings. */
349 if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
352 /* Ok, looks good - let it rip. */
353 if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
358 populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
359 up_write(&mm->mmap_sem);
361 mm_populate(oldbrk, newbrk - oldbrk);
366 up_write(&mm->mmap_sem);
370 static long vma_compute_subtree_gap(struct vm_area_struct *vma)
372 unsigned long max, subtree_gap;
375 max -= vma->vm_prev->vm_end;
376 if (vma->vm_rb.rb_left) {
377 subtree_gap = rb_entry(vma->vm_rb.rb_left,
378 struct vm_area_struct, vm_rb)->rb_subtree_gap;
379 if (subtree_gap > max)
382 if (vma->vm_rb.rb_right) {
383 subtree_gap = rb_entry(vma->vm_rb.rb_right,
384 struct vm_area_struct, vm_rb)->rb_subtree_gap;
385 if (subtree_gap > max)
391 #ifdef CONFIG_DEBUG_VM_RB
392 static int browse_rb(struct mm_struct *mm)
394 struct rb_root *root = &mm->mm_rb;
395 int i = 0, j, bug = 0;
396 struct rb_node *nd, *pn = NULL;
397 unsigned long prev = 0, pend = 0;
399 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
400 struct vm_area_struct *vma;
401 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
402 if (vma->vm_start < prev) {
403 pr_emerg("vm_start %lx < prev %lx\n",
404 vma->vm_start, prev);
407 if (vma->vm_start < pend) {
408 pr_emerg("vm_start %lx < pend %lx\n",
409 vma->vm_start, pend);
412 if (vma->vm_start > vma->vm_end) {
413 pr_emerg("vm_start %lx > vm_end %lx\n",
414 vma->vm_start, vma->vm_end);
417 spin_lock(&mm->page_table_lock);
418 if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
419 pr_emerg("free gap %lx, correct %lx\n",
421 vma_compute_subtree_gap(vma));
424 spin_unlock(&mm->page_table_lock);
427 prev = vma->vm_start;
431 for (nd = pn; nd; nd = rb_prev(nd))
434 pr_emerg("backwards %d, forwards %d\n", j, i);
440 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
444 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
445 struct vm_area_struct *vma;
446 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
447 VM_BUG_ON_VMA(vma != ignore &&
448 vma->rb_subtree_gap != vma_compute_subtree_gap(vma),
453 static void validate_mm(struct mm_struct *mm)
457 unsigned long highest_address = 0;
458 struct vm_area_struct *vma = mm->mmap;
461 struct anon_vma *anon_vma = vma->anon_vma;
462 struct anon_vma_chain *avc;
465 anon_vma_lock_read(anon_vma);
466 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
467 anon_vma_interval_tree_verify(avc);
468 anon_vma_unlock_read(anon_vma);
471 highest_address = vma->vm_end;
475 if (i != mm->map_count) {
476 pr_emerg("map_count %d vm_next %d\n", mm->map_count, i);
479 if (highest_address != mm->highest_vm_end) {
480 pr_emerg("mm->highest_vm_end %lx, found %lx\n",
481 mm->highest_vm_end, highest_address);
485 if (i != mm->map_count) {
487 pr_emerg("map_count %d rb %d\n", mm->map_count, i);
490 VM_BUG_ON_MM(bug, mm);
493 #define validate_mm_rb(root, ignore) do { } while (0)
494 #define validate_mm(mm) do { } while (0)
497 RB_DECLARE_CALLBACKS(static, vma_gap_callbacks, struct vm_area_struct, vm_rb,
498 unsigned long, rb_subtree_gap, vma_compute_subtree_gap)
501 * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
502 * vma->vm_prev->vm_end values changed, without modifying the vma's position
505 static void vma_gap_update(struct vm_area_struct *vma)
508 * As it turns out, RB_DECLARE_CALLBACKS() already created a callback
509 * function that does exacltly what we want.
511 vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
514 static inline void vma_rb_insert(struct vm_area_struct *vma,
515 struct rb_root *root)
517 /* All rb_subtree_gap values must be consistent prior to insertion */
518 validate_mm_rb(root, NULL);
520 rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
523 static void vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
526 * All rb_subtree_gap values must be consistent prior to erase,
527 * with the possible exception of the vma being erased.
529 validate_mm_rb(root, vma);
532 * Note rb_erase_augmented is a fairly large inline function,
533 * so make sure we instantiate it only once with our desired
534 * augmented rbtree callbacks.
536 rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
540 * vma has some anon_vma assigned, and is already inserted on that
541 * anon_vma's interval trees.
543 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
544 * vma must be removed from the anon_vma's interval trees using
545 * anon_vma_interval_tree_pre_update_vma().
547 * After the update, the vma will be reinserted using
548 * anon_vma_interval_tree_post_update_vma().
550 * The entire update must be protected by exclusive mmap_sem and by
551 * the root anon_vma's mutex.
554 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
556 struct anon_vma_chain *avc;
558 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
559 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
563 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
565 struct anon_vma_chain *avc;
567 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
568 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
571 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
572 unsigned long end, struct vm_area_struct **pprev,
573 struct rb_node ***rb_link, struct rb_node **rb_parent)
575 struct rb_node **__rb_link, *__rb_parent, *rb_prev;
577 __rb_link = &mm->mm_rb.rb_node;
578 rb_prev = __rb_parent = NULL;
581 struct vm_area_struct *vma_tmp;
583 __rb_parent = *__rb_link;
584 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
586 if (vma_tmp->vm_end > addr) {
587 /* Fail if an existing vma overlaps the area */
588 if (vma_tmp->vm_start < end)
590 __rb_link = &__rb_parent->rb_left;
592 rb_prev = __rb_parent;
593 __rb_link = &__rb_parent->rb_right;
599 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
600 *rb_link = __rb_link;
601 *rb_parent = __rb_parent;
605 static unsigned long count_vma_pages_range(struct mm_struct *mm,
606 unsigned long addr, unsigned long end)
608 unsigned long nr_pages = 0;
609 struct vm_area_struct *vma;
611 /* Find first overlaping mapping */
612 vma = find_vma_intersection(mm, addr, end);
616 nr_pages = (min(end, vma->vm_end) -
617 max(addr, vma->vm_start)) >> PAGE_SHIFT;
619 /* Iterate over the rest of the overlaps */
620 for (vma = vma->vm_next; vma; vma = vma->vm_next) {
621 unsigned long overlap_len;
623 if (vma->vm_start > end)
626 overlap_len = min(end, vma->vm_end) - vma->vm_start;
627 nr_pages += overlap_len >> PAGE_SHIFT;
633 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
634 struct rb_node **rb_link, struct rb_node *rb_parent)
636 /* Update tracking information for the gap following the new vma. */
638 vma_gap_update(vma->vm_next);
640 mm->highest_vm_end = vma->vm_end;
643 * vma->vm_prev wasn't known when we followed the rbtree to find the
644 * correct insertion point for that vma. As a result, we could not
645 * update the vma vm_rb parents rb_subtree_gap values on the way down.
646 * So, we first insert the vma with a zero rb_subtree_gap value
647 * (to be consistent with what we did on the way down), and then
648 * immediately update the gap to the correct value. Finally we
649 * rebalance the rbtree after all augmented values have been set.
651 rb_link_node(&vma->vm_rb, rb_parent, rb_link);
652 vma->rb_subtree_gap = 0;
654 vma_rb_insert(vma, &mm->mm_rb);
657 static void __vma_link_file(struct vm_area_struct *vma)
663 struct address_space *mapping = file->f_mapping;
665 if (vma->vm_flags & VM_DENYWRITE)
666 atomic_dec(&file_inode(file)->i_writecount);
667 if (vma->vm_flags & VM_SHARED)
668 atomic_inc(&mapping->i_mmap_writable);
670 flush_dcache_mmap_lock(mapping);
671 vma_interval_tree_insert(vma, &mapping->i_mmap);
672 flush_dcache_mmap_unlock(mapping);
677 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
678 struct vm_area_struct *prev, struct rb_node **rb_link,
679 struct rb_node *rb_parent)
681 __vma_link_list(mm, vma, prev, rb_parent);
682 __vma_link_rb(mm, vma, rb_link, rb_parent);
685 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
686 struct vm_area_struct *prev, struct rb_node **rb_link,
687 struct rb_node *rb_parent)
689 struct address_space *mapping = NULL;
692 mapping = vma->vm_file->f_mapping;
693 i_mmap_lock_write(mapping);
696 __vma_link(mm, vma, prev, rb_link, rb_parent);
697 __vma_link_file(vma);
700 i_mmap_unlock_write(mapping);
707 * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
708 * mm's list and rbtree. It has already been inserted into the interval tree.
710 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
712 struct vm_area_struct *prev;
713 struct rb_node **rb_link, *rb_parent;
715 if (find_vma_links(mm, vma->vm_start, vma->vm_end,
716 &prev, &rb_link, &rb_parent))
718 __vma_link(mm, vma, prev, rb_link, rb_parent);
723 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
724 struct vm_area_struct *prev)
726 struct vm_area_struct *next;
728 vma_rb_erase(vma, &mm->mm_rb);
729 prev->vm_next = next = vma->vm_next;
731 next->vm_prev = prev;
734 vmacache_invalidate(mm);
738 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
739 * is already present in an i_mmap tree without adjusting the tree.
740 * The following helper function should be used when such adjustments
741 * are necessary. The "insert" vma (if any) is to be inserted
742 * before we drop the necessary locks.
744 int vma_adjust(struct vm_area_struct *vma, unsigned long start,
745 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
747 struct mm_struct *mm = vma->vm_mm;
748 struct vm_area_struct *next = vma->vm_next;
749 struct vm_area_struct *importer = NULL;
750 struct address_space *mapping = NULL;
751 struct rb_root *root = NULL;
752 struct anon_vma *anon_vma = NULL;
753 struct file *file = vma->vm_file;
754 bool start_changed = false, end_changed = false;
755 long adjust_next = 0;
758 if (next && !insert) {
759 struct vm_area_struct *exporter = NULL;
761 if (end >= next->vm_end) {
763 * vma expands, overlapping all the next, and
764 * perhaps the one after too (mprotect case 6).
766 again: remove_next = 1 + (end > next->vm_end);
770 } else if (end > next->vm_start) {
772 * vma expands, overlapping part of the next:
773 * mprotect case 5 shifting the boundary up.
775 adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
778 } else if (end < vma->vm_end) {
780 * vma shrinks, and !insert tells it's not
781 * split_vma inserting another: so it must be
782 * mprotect case 4 shifting the boundary down.
784 adjust_next = -((vma->vm_end - end) >> PAGE_SHIFT);
790 * Easily overlooked: when mprotect shifts the boundary,
791 * make sure the expanding vma has anon_vma set if the
792 * shrinking vma had, to cover any anon pages imported.
794 if (exporter && exporter->anon_vma && !importer->anon_vma) {
797 importer->anon_vma = exporter->anon_vma;
798 error = anon_vma_clone(importer, exporter);
805 mapping = file->f_mapping;
806 root = &mapping->i_mmap;
807 uprobe_munmap(vma, vma->vm_start, vma->vm_end);
810 uprobe_munmap(next, next->vm_start, next->vm_end);
812 i_mmap_lock_write(mapping);
815 * Put into interval tree now, so instantiated pages
816 * are visible to arm/parisc __flush_dcache_page
817 * throughout; but we cannot insert into address
818 * space until vma start or end is updated.
820 __vma_link_file(insert);
824 vma_adjust_trans_huge(vma, start, end, adjust_next);
826 anon_vma = vma->anon_vma;
827 if (!anon_vma && adjust_next)
828 anon_vma = next->anon_vma;
830 VM_BUG_ON_VMA(adjust_next && next->anon_vma &&
831 anon_vma != next->anon_vma, next);
832 anon_vma_lock_write(anon_vma);
833 anon_vma_interval_tree_pre_update_vma(vma);
835 anon_vma_interval_tree_pre_update_vma(next);
839 flush_dcache_mmap_lock(mapping);
840 vma_interval_tree_remove(vma, root);
842 vma_interval_tree_remove(next, root);
845 if (start != vma->vm_start) {
846 vma->vm_start = start;
847 start_changed = true;
849 if (end != vma->vm_end) {
853 vma->vm_pgoff = pgoff;
855 next->vm_start += adjust_next << PAGE_SHIFT;
856 next->vm_pgoff += adjust_next;
861 vma_interval_tree_insert(next, root);
862 vma_interval_tree_insert(vma, root);
863 flush_dcache_mmap_unlock(mapping);
868 * vma_merge has merged next into vma, and needs
869 * us to remove next before dropping the locks.
871 __vma_unlink(mm, next, vma);
873 __remove_shared_vm_struct(next, file, mapping);
876 * split_vma has split insert from vma, and needs
877 * us to insert it before dropping the locks
878 * (it may either follow vma or precede it).
880 __insert_vm_struct(mm, insert);
886 mm->highest_vm_end = end;
887 else if (!adjust_next)
888 vma_gap_update(next);
893 anon_vma_interval_tree_post_update_vma(vma);
895 anon_vma_interval_tree_post_update_vma(next);
896 anon_vma_unlock_write(anon_vma);
899 i_mmap_unlock_write(mapping);
910 uprobe_munmap(next, next->vm_start, next->vm_end);
914 anon_vma_merge(vma, next);
916 mpol_put(vma_policy(next));
917 kmem_cache_free(vm_area_cachep, next);
919 * In mprotect's case 6 (see comments on vma_merge),
920 * we must remove another next too. It would clutter
921 * up the code too much to do both in one go.
924 if (remove_next == 2)
927 vma_gap_update(next);
929 mm->highest_vm_end = end;
940 * If the vma has a ->close operation then the driver probably needs to release
941 * per-vma resources, so we don't attempt to merge those.
943 static inline int is_mergeable_vma(struct vm_area_struct *vma,
944 struct file *file, unsigned long vm_flags,
945 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
948 * VM_SOFTDIRTY should not prevent from VMA merging, if we
949 * match the flags but dirty bit -- the caller should mark
950 * merged VMA as dirty. If dirty bit won't be excluded from
951 * comparison, we increase pressue on the memory system forcing
952 * the kernel to generate new VMAs when old one could be
955 if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
957 if (vma->vm_file != file)
959 if (vma->vm_ops && vma->vm_ops->close)
961 if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
966 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
967 struct anon_vma *anon_vma2,
968 struct vm_area_struct *vma)
971 * The list_is_singular() test is to avoid merging VMA cloned from
972 * parents. This can improve scalability caused by anon_vma lock.
974 if ((!anon_vma1 || !anon_vma2) && (!vma ||
975 list_is_singular(&vma->anon_vma_chain)))
977 return anon_vma1 == anon_vma2;
981 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
982 * in front of (at a lower virtual address and file offset than) the vma.
984 * We cannot merge two vmas if they have differently assigned (non-NULL)
985 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
987 * We don't check here for the merged mmap wrapping around the end of pagecache
988 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
989 * wrap, nor mmaps which cover the final page at index -1UL.
992 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
993 struct anon_vma *anon_vma, struct file *file,
995 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
997 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
998 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
999 if (vma->vm_pgoff == vm_pgoff)
1006 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1007 * beyond (at a higher virtual address and file offset than) the vma.
1009 * We cannot merge two vmas if they have differently assigned (non-NULL)
1010 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1013 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
1014 struct anon_vma *anon_vma, struct file *file,
1016 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1018 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1019 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1021 vm_pglen = vma_pages(vma);
1022 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
1029 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
1030 * whether that can be merged with its predecessor or its successor.
1031 * Or both (it neatly fills a hole).
1033 * In most cases - when called for mmap, brk or mremap - [addr,end) is
1034 * certain not to be mapped by the time vma_merge is called; but when
1035 * called for mprotect, it is certain to be already mapped (either at
1036 * an offset within prev, or at the start of next), and the flags of
1037 * this area are about to be changed to vm_flags - and the no-change
1038 * case has already been eliminated.
1040 * The following mprotect cases have to be considered, where AAAA is
1041 * the area passed down from mprotect_fixup, never extending beyond one
1042 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
1044 * AAAA AAAA AAAA AAAA
1045 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN PPPPNNNNXXXX
1046 * cannot merge might become might become might become
1047 * PPNNNNNNNNNN PPPPPPPPPPNN PPPPPPPPPPPP 6 or
1048 * mmap, brk or case 4 below case 5 below PPPPPPPPXXXX 7 or
1049 * mremap move: PPPPNNNNNNNN 8
1051 * PPPP NNNN PPPPPPPPPPPP PPPPPPPPNNNN PPPPNNNNNNNN
1052 * might become case 1 below case 2 below case 3 below
1054 * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
1055 * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
1057 struct vm_area_struct *vma_merge(struct mm_struct *mm,
1058 struct vm_area_struct *prev, unsigned long addr,
1059 unsigned long end, unsigned long vm_flags,
1060 struct anon_vma *anon_vma, struct file *file,
1061 pgoff_t pgoff, struct mempolicy *policy,
1062 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1064 pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1065 struct vm_area_struct *area, *next;
1069 * We later require that vma->vm_flags == vm_flags,
1070 * so this tests vma->vm_flags & VM_SPECIAL, too.
1072 if (vm_flags & VM_SPECIAL)
1076 next = prev->vm_next;
1080 if (next && next->vm_end == end) /* cases 6, 7, 8 */
1081 next = next->vm_next;
1084 * Can it merge with the predecessor?
1086 if (prev && prev->vm_end == addr &&
1087 mpol_equal(vma_policy(prev), policy) &&
1088 can_vma_merge_after(prev, vm_flags,
1089 anon_vma, file, pgoff,
1090 vm_userfaultfd_ctx)) {
1092 * OK, it can. Can we now merge in the successor as well?
1094 if (next && end == next->vm_start &&
1095 mpol_equal(policy, vma_policy(next)) &&
1096 can_vma_merge_before(next, vm_flags,
1099 vm_userfaultfd_ctx) &&
1100 is_mergeable_anon_vma(prev->anon_vma,
1101 next->anon_vma, NULL)) {
1103 err = vma_adjust(prev, prev->vm_start,
1104 next->vm_end, prev->vm_pgoff, NULL);
1105 } else /* cases 2, 5, 7 */
1106 err = vma_adjust(prev, prev->vm_start,
1107 end, prev->vm_pgoff, NULL);
1110 khugepaged_enter_vma_merge(prev, vm_flags);
1115 * Can this new request be merged in front of next?
1117 if (next && end == next->vm_start &&
1118 mpol_equal(policy, vma_policy(next)) &&
1119 can_vma_merge_before(next, vm_flags,
1120 anon_vma, file, pgoff+pglen,
1121 vm_userfaultfd_ctx)) {
1122 if (prev && addr < prev->vm_end) /* case 4 */
1123 err = vma_adjust(prev, prev->vm_start,
1124 addr, prev->vm_pgoff, NULL);
1125 else /* cases 3, 8 */
1126 err = vma_adjust(area, addr, next->vm_end,
1127 next->vm_pgoff - pglen, NULL);
1130 khugepaged_enter_vma_merge(area, vm_flags);
1138 * Rough compatbility check to quickly see if it's even worth looking
1139 * at sharing an anon_vma.
1141 * They need to have the same vm_file, and the flags can only differ
1142 * in things that mprotect may change.
1144 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1145 * we can merge the two vma's. For example, we refuse to merge a vma if
1146 * there is a vm_ops->close() function, because that indicates that the
1147 * driver is doing some kind of reference counting. But that doesn't
1148 * really matter for the anon_vma sharing case.
1150 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1152 return a->vm_end == b->vm_start &&
1153 mpol_equal(vma_policy(a), vma_policy(b)) &&
1154 a->vm_file == b->vm_file &&
1155 !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC|VM_SOFTDIRTY)) &&
1156 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1160 * Do some basic sanity checking to see if we can re-use the anon_vma
1161 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1162 * the same as 'old', the other will be the new one that is trying
1163 * to share the anon_vma.
1165 * NOTE! This runs with mm_sem held for reading, so it is possible that
1166 * the anon_vma of 'old' is concurrently in the process of being set up
1167 * by another page fault trying to merge _that_. But that's ok: if it
1168 * is being set up, that automatically means that it will be a singleton
1169 * acceptable for merging, so we can do all of this optimistically. But
1170 * we do that READ_ONCE() to make sure that we never re-load the pointer.
1172 * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1173 * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1174 * is to return an anon_vma that is "complex" due to having gone through
1177 * We also make sure that the two vma's are compatible (adjacent,
1178 * and with the same memory policies). That's all stable, even with just
1179 * a read lock on the mm_sem.
1181 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1183 if (anon_vma_compatible(a, b)) {
1184 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1186 if (anon_vma && list_is_singular(&old->anon_vma_chain))
1193 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1194 * neighbouring vmas for a suitable anon_vma, before it goes off
1195 * to allocate a new anon_vma. It checks because a repetitive
1196 * sequence of mprotects and faults may otherwise lead to distinct
1197 * anon_vmas being allocated, preventing vma merge in subsequent
1200 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1202 struct anon_vma *anon_vma;
1203 struct vm_area_struct *near;
1205 near = vma->vm_next;
1209 anon_vma = reusable_anon_vma(near, vma, near);
1213 near = vma->vm_prev;
1217 anon_vma = reusable_anon_vma(near, near, vma);
1222 * There's no absolute need to look only at touching neighbours:
1223 * we could search further afield for "compatible" anon_vmas.
1224 * But it would probably just be a waste of time searching,
1225 * or lead to too many vmas hanging off the same anon_vma.
1226 * We're trying to allow mprotect remerging later on,
1227 * not trying to minimize memory used for anon_vmas.
1233 * If a hint addr is less than mmap_min_addr change hint to be as
1234 * low as possible but still greater than mmap_min_addr
1236 static inline unsigned long round_hint_to_min(unsigned long hint)
1239 if (((void *)hint != NULL) &&
1240 (hint < mmap_min_addr))
1241 return PAGE_ALIGN(mmap_min_addr);
1245 static inline int mlock_future_check(struct mm_struct *mm,
1246 unsigned long flags,
1249 unsigned long locked, lock_limit;
1251 /* mlock MCL_FUTURE? */
1252 if (flags & VM_LOCKED) {
1253 locked = len >> PAGE_SHIFT;
1254 locked += mm->locked_vm;
1255 lock_limit = rlimit(RLIMIT_MEMLOCK);
1256 lock_limit >>= PAGE_SHIFT;
1257 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1264 * The caller must hold down_write(¤t->mm->mmap_sem).
1266 unsigned long do_mmap(struct file *file, unsigned long addr,
1267 unsigned long len, unsigned long prot,
1268 unsigned long flags, vm_flags_t vm_flags,
1269 unsigned long pgoff, unsigned long *populate)
1271 struct mm_struct *mm = current->mm;
1279 * Does the application expect PROT_READ to imply PROT_EXEC?
1281 * (the exception is when the underlying filesystem is noexec
1282 * mounted, in which case we dont add PROT_EXEC.)
1284 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1285 if (!(file && path_noexec(&file->f_path)))
1288 if (!(flags & MAP_FIXED))
1289 addr = round_hint_to_min(addr);
1291 /* Careful about overflows.. */
1292 len = PAGE_ALIGN(len);
1296 /* offset overflow? */
1297 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1300 /* Too many mappings? */
1301 if (mm->map_count > sysctl_max_map_count)
1304 /* Obtain the address to map to. we verify (or select) it and ensure
1305 * that it represents a valid section of the address space.
1307 addr = get_unmapped_area(file, addr, len, pgoff, flags);
1308 if (offset_in_page(addr))
1311 /* Do simple checking here so the lower-level routines won't have
1312 * to. we assume access permissions have been handled by the open
1313 * of the memory object, so we don't do any here.
1315 vm_flags |= calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
1316 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1318 if (flags & MAP_LOCKED)
1319 if (!can_do_mlock())
1322 if (mlock_future_check(mm, vm_flags, len))
1326 struct inode *inode = file_inode(file);
1328 switch (flags & MAP_TYPE) {
1330 if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1334 * Make sure we don't allow writing to an append-only
1337 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1341 * Make sure there are no mandatory locks on the file.
1343 if (locks_verify_locked(file))
1346 vm_flags |= VM_SHARED | VM_MAYSHARE;
1347 if (!(file->f_mode & FMODE_WRITE))
1348 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1352 if (!(file->f_mode & FMODE_READ))
1354 if (path_noexec(&file->f_path)) {
1355 if (vm_flags & VM_EXEC)
1357 vm_flags &= ~VM_MAYEXEC;
1360 if (!file->f_op->mmap)
1362 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1370 switch (flags & MAP_TYPE) {
1372 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1378 vm_flags |= VM_SHARED | VM_MAYSHARE;
1382 * Set pgoff according to addr for anon_vma.
1384 pgoff = addr >> PAGE_SHIFT;
1392 * Set 'VM_NORESERVE' if we should not account for the
1393 * memory use of this mapping.
1395 if (flags & MAP_NORESERVE) {
1396 /* We honor MAP_NORESERVE if allowed to overcommit */
1397 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1398 vm_flags |= VM_NORESERVE;
1400 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1401 if (file && is_file_hugepages(file))
1402 vm_flags |= VM_NORESERVE;
1405 addr = mmap_region(file, addr, len, vm_flags, pgoff);
1406 if (!IS_ERR_VALUE(addr) &&
1407 ((vm_flags & VM_LOCKED) ||
1408 (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1413 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1414 unsigned long, prot, unsigned long, flags,
1415 unsigned long, fd, unsigned long, pgoff)
1417 struct file *file = NULL;
1418 unsigned long retval;
1420 if (!(flags & MAP_ANONYMOUS)) {
1421 audit_mmap_fd(fd, flags);
1425 if (is_file_hugepages(file))
1426 len = ALIGN(len, huge_page_size(hstate_file(file)));
1428 if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file)))
1430 } else if (flags & MAP_HUGETLB) {
1431 struct user_struct *user = NULL;
1434 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & SHM_HUGE_MASK);
1438 len = ALIGN(len, huge_page_size(hs));
1440 * VM_NORESERVE is used because the reservations will be
1441 * taken when vm_ops->mmap() is called
1442 * A dummy user value is used because we are not locking
1443 * memory so no accounting is necessary
1445 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1447 &user, HUGETLB_ANONHUGE_INODE,
1448 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1450 return PTR_ERR(file);
1453 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1455 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1462 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1463 struct mmap_arg_struct {
1467 unsigned long flags;
1469 unsigned long offset;
1472 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1474 struct mmap_arg_struct a;
1476 if (copy_from_user(&a, arg, sizeof(a)))
1478 if (offset_in_page(a.offset))
1481 return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1482 a.offset >> PAGE_SHIFT);
1484 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1487 * Some shared mappigns will want the pages marked read-only
1488 * to track write events. If so, we'll downgrade vm_page_prot
1489 * to the private version (using protection_map[] without the
1492 int vma_wants_writenotify(struct vm_area_struct *vma)
1494 vm_flags_t vm_flags = vma->vm_flags;
1495 const struct vm_operations_struct *vm_ops = vma->vm_ops;
1497 /* If it was private or non-writable, the write bit is already clear */
1498 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1501 /* The backer wishes to know when pages are first written to? */
1502 if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite))
1505 /* The open routine did something to the protections that pgprot_modify
1506 * won't preserve? */
1507 if (pgprot_val(vma->vm_page_prot) !=
1508 pgprot_val(vm_pgprot_modify(vma->vm_page_prot, vm_flags)))
1511 /* Do we need to track softdirty? */
1512 if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY))
1515 /* Specialty mapping? */
1516 if (vm_flags & VM_PFNMAP)
1519 /* Can the mapping track the dirty pages? */
1520 return vma->vm_file && vma->vm_file->f_mapping &&
1521 mapping_cap_account_dirty(vma->vm_file->f_mapping);
1525 * We account for memory if it's a private writeable mapping,
1526 * not hugepages and VM_NORESERVE wasn't set.
1528 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1531 * hugetlb has its own accounting separate from the core VM
1532 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1534 if (file && is_file_hugepages(file))
1537 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1540 unsigned long mmap_region(struct file *file, unsigned long addr,
1541 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff)
1543 struct mm_struct *mm = current->mm;
1544 struct vm_area_struct *vma, *prev;
1546 struct rb_node **rb_link, *rb_parent;
1547 unsigned long charged = 0;
1549 /* Check against address space limit. */
1550 if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
1551 unsigned long nr_pages;
1554 * MAP_FIXED may remove pages of mappings that intersects with
1555 * requested mapping. Account for the pages it would unmap.
1557 nr_pages = count_vma_pages_range(mm, addr, addr + len);
1559 if (!may_expand_vm(mm, vm_flags,
1560 (len >> PAGE_SHIFT) - nr_pages))
1564 /* Clear old maps */
1565 while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
1567 if (do_munmap(mm, addr, len))
1572 * Private writable mapping: check memory availability
1574 if (accountable_mapping(file, vm_flags)) {
1575 charged = len >> PAGE_SHIFT;
1576 if (security_vm_enough_memory_mm(mm, charged))
1578 vm_flags |= VM_ACCOUNT;
1582 * Can we just expand an old mapping?
1584 vma = vma_merge(mm, prev, addr, addr + len, vm_flags,
1585 NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX);
1590 * Determine the object being mapped and call the appropriate
1591 * specific mapper. the address has already been validated, but
1592 * not unmapped, but the maps are removed from the list.
1594 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1601 vma->vm_start = addr;
1602 vma->vm_end = addr + len;
1603 vma->vm_flags = vm_flags;
1604 vma->vm_page_prot = vm_get_page_prot(vm_flags);
1605 vma->vm_pgoff = pgoff;
1606 INIT_LIST_HEAD(&vma->anon_vma_chain);
1609 if (vm_flags & VM_DENYWRITE) {
1610 error = deny_write_access(file);
1614 if (vm_flags & VM_SHARED) {
1615 error = mapping_map_writable(file->f_mapping);
1617 goto allow_write_and_free_vma;
1620 /* ->mmap() can change vma->vm_file, but must guarantee that
1621 * vma_link() below can deny write-access if VM_DENYWRITE is set
1622 * and map writably if VM_SHARED is set. This usually means the
1623 * new file must not have been exposed to user-space, yet.
1625 vma->vm_file = get_file(file);
1626 error = file->f_op->mmap(file, vma);
1628 goto unmap_and_free_vma;
1630 /* Can addr have changed??
1632 * Answer: Yes, several device drivers can do it in their
1633 * f_op->mmap method. -DaveM
1634 * Bug: If addr is changed, prev, rb_link, rb_parent should
1635 * be updated for vma_link()
1637 WARN_ON_ONCE(addr != vma->vm_start);
1639 addr = vma->vm_start;
1640 vm_flags = vma->vm_flags;
1641 } else if (vm_flags & VM_SHARED) {
1642 error = shmem_zero_setup(vma);
1647 vma_link(mm, vma, prev, rb_link, rb_parent);
1648 /* Once vma denies write, undo our temporary denial count */
1650 if (vm_flags & VM_SHARED)
1651 mapping_unmap_writable(file->f_mapping);
1652 if (vm_flags & VM_DENYWRITE)
1653 allow_write_access(file);
1655 file = vma->vm_file;
1657 perf_event_mmap(vma);
1659 vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
1660 if (vm_flags & VM_LOCKED) {
1661 if (!((vm_flags & VM_SPECIAL) || is_vm_hugetlb_page(vma) ||
1662 vma == get_gate_vma(current->mm)))
1663 mm->locked_vm += (len >> PAGE_SHIFT);
1665 vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
1672 * New (or expanded) vma always get soft dirty status.
1673 * Otherwise user-space soft-dirty page tracker won't
1674 * be able to distinguish situation when vma area unmapped,
1675 * then new mapped in-place (which must be aimed as
1676 * a completely new data area).
1678 vma->vm_flags |= VM_SOFTDIRTY;
1680 vma_set_page_prot(vma);
1685 vma->vm_file = NULL;
1688 /* Undo any partial mapping done by a device driver. */
1689 unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1691 if (vm_flags & VM_SHARED)
1692 mapping_unmap_writable(file->f_mapping);
1693 allow_write_and_free_vma:
1694 if (vm_flags & VM_DENYWRITE)
1695 allow_write_access(file);
1697 kmem_cache_free(vm_area_cachep, vma);
1700 vm_unacct_memory(charged);
1704 unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1707 * We implement the search by looking for an rbtree node that
1708 * immediately follows a suitable gap. That is,
1709 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1710 * - gap_end = vma->vm_start >= info->low_limit + length;
1711 * - gap_end - gap_start >= length
1714 struct mm_struct *mm = current->mm;
1715 struct vm_area_struct *vma;
1716 unsigned long length, low_limit, high_limit, gap_start, gap_end;
1718 /* Adjust search length to account for worst case alignment overhead */
1719 length = info->length + info->align_mask;
1720 if (length < info->length)
1723 /* Adjust search limits by the desired length */
1724 if (info->high_limit < length)
1726 high_limit = info->high_limit - length;
1728 if (info->low_limit > high_limit)
1730 low_limit = info->low_limit + length;
1732 /* Check if rbtree root looks promising */
1733 if (RB_EMPTY_ROOT(&mm->mm_rb))
1735 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1736 if (vma->rb_subtree_gap < length)
1740 /* Visit left subtree if it looks promising */
1741 gap_end = vma->vm_start;
1742 if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1743 struct vm_area_struct *left =
1744 rb_entry(vma->vm_rb.rb_left,
1745 struct vm_area_struct, vm_rb);
1746 if (left->rb_subtree_gap >= length) {
1752 gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1754 /* Check if current node has a suitable gap */
1755 if (gap_start > high_limit)
1757 if (gap_end >= low_limit && gap_end - gap_start >= length)
1760 /* Visit right subtree if it looks promising */
1761 if (vma->vm_rb.rb_right) {
1762 struct vm_area_struct *right =
1763 rb_entry(vma->vm_rb.rb_right,
1764 struct vm_area_struct, vm_rb);
1765 if (right->rb_subtree_gap >= length) {
1771 /* Go back up the rbtree to find next candidate node */
1773 struct rb_node *prev = &vma->vm_rb;
1774 if (!rb_parent(prev))
1776 vma = rb_entry(rb_parent(prev),
1777 struct vm_area_struct, vm_rb);
1778 if (prev == vma->vm_rb.rb_left) {
1779 gap_start = vma->vm_prev->vm_end;
1780 gap_end = vma->vm_start;
1787 /* Check highest gap, which does not precede any rbtree node */
1788 gap_start = mm->highest_vm_end;
1789 gap_end = ULONG_MAX; /* Only for VM_BUG_ON below */
1790 if (gap_start > high_limit)
1794 /* We found a suitable gap. Clip it with the original low_limit. */
1795 if (gap_start < info->low_limit)
1796 gap_start = info->low_limit;
1798 /* Adjust gap address to the desired alignment */
1799 gap_start += (info->align_offset - gap_start) & info->align_mask;
1801 VM_BUG_ON(gap_start + info->length > info->high_limit);
1802 VM_BUG_ON(gap_start + info->length > gap_end);
1806 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1808 struct mm_struct *mm = current->mm;
1809 struct vm_area_struct *vma;
1810 unsigned long length, low_limit, high_limit, gap_start, gap_end;
1812 /* Adjust search length to account for worst case alignment overhead */
1813 length = info->length + info->align_mask;
1814 if (length < info->length)
1818 * Adjust search limits by the desired length.
1819 * See implementation comment at top of unmapped_area().
1821 gap_end = info->high_limit;
1822 if (gap_end < length)
1824 high_limit = gap_end - length;
1826 if (info->low_limit > high_limit)
1828 low_limit = info->low_limit + length;
1830 /* Check highest gap, which does not precede any rbtree node */
1831 gap_start = mm->highest_vm_end;
1832 if (gap_start <= high_limit)
1835 /* Check if rbtree root looks promising */
1836 if (RB_EMPTY_ROOT(&mm->mm_rb))
1838 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1839 if (vma->rb_subtree_gap < length)
1843 /* Visit right subtree if it looks promising */
1844 gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1845 if (gap_start <= high_limit && vma->vm_rb.rb_right) {
1846 struct vm_area_struct *right =
1847 rb_entry(vma->vm_rb.rb_right,
1848 struct vm_area_struct, vm_rb);
1849 if (right->rb_subtree_gap >= length) {
1856 /* Check if current node has a suitable gap */
1857 gap_end = vma->vm_start;
1858 if (gap_end < low_limit)
1860 if (gap_start <= high_limit && gap_end - gap_start >= length)
1863 /* Visit left subtree if it looks promising */
1864 if (vma->vm_rb.rb_left) {
1865 struct vm_area_struct *left =
1866 rb_entry(vma->vm_rb.rb_left,
1867 struct vm_area_struct, vm_rb);
1868 if (left->rb_subtree_gap >= length) {
1874 /* Go back up the rbtree to find next candidate node */
1876 struct rb_node *prev = &vma->vm_rb;
1877 if (!rb_parent(prev))
1879 vma = rb_entry(rb_parent(prev),
1880 struct vm_area_struct, vm_rb);
1881 if (prev == vma->vm_rb.rb_right) {
1882 gap_start = vma->vm_prev ?
1883 vma->vm_prev->vm_end : 0;
1890 /* We found a suitable gap. Clip it with the original high_limit. */
1891 if (gap_end > info->high_limit)
1892 gap_end = info->high_limit;
1895 /* Compute highest gap address at the desired alignment */
1896 gap_end -= info->length;
1897 gap_end -= (gap_end - info->align_offset) & info->align_mask;
1899 VM_BUG_ON(gap_end < info->low_limit);
1900 VM_BUG_ON(gap_end < gap_start);
1904 /* Get an address range which is currently unmapped.
1905 * For shmat() with addr=0.
1907 * Ugly calling convention alert:
1908 * Return value with the low bits set means error value,
1910 * if (ret & ~PAGE_MASK)
1913 * This function "knows" that -ENOMEM has the bits set.
1915 #ifndef HAVE_ARCH_UNMAPPED_AREA
1917 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1918 unsigned long len, unsigned long pgoff, unsigned long flags)
1920 struct mm_struct *mm = current->mm;
1921 struct vm_area_struct *vma;
1922 struct vm_unmapped_area_info info;
1924 if (len > TASK_SIZE - mmap_min_addr)
1927 if (flags & MAP_FIXED)
1931 addr = PAGE_ALIGN(addr);
1932 vma = find_vma(mm, addr);
1933 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1934 (!vma || addr + len <= vma->vm_start))
1940 info.low_limit = mm->mmap_base;
1941 info.high_limit = TASK_SIZE;
1942 info.align_mask = 0;
1943 return vm_unmapped_area(&info);
1948 * This mmap-allocator allocates new areas top-down from below the
1949 * stack's low limit (the base):
1951 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1953 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1954 const unsigned long len, const unsigned long pgoff,
1955 const unsigned long flags)
1957 struct vm_area_struct *vma;
1958 struct mm_struct *mm = current->mm;
1959 unsigned long addr = addr0;
1960 struct vm_unmapped_area_info info;
1962 /* requested length too big for entire address space */
1963 if (len > TASK_SIZE - mmap_min_addr)
1966 if (flags & MAP_FIXED)
1969 /* requesting a specific address */
1971 addr = PAGE_ALIGN(addr);
1972 vma = find_vma(mm, addr);
1973 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1974 (!vma || addr + len <= vma->vm_start))
1978 info.flags = VM_UNMAPPED_AREA_TOPDOWN;
1980 info.low_limit = max(PAGE_SIZE, mmap_min_addr);
1981 info.high_limit = mm->mmap_base;
1982 info.align_mask = 0;
1983 addr = vm_unmapped_area(&info);
1986 * A failed mmap() very likely causes application failure,
1987 * so fall back to the bottom-up function here. This scenario
1988 * can happen with large stack limits and large mmap()
1991 if (offset_in_page(addr)) {
1992 VM_BUG_ON(addr != -ENOMEM);
1994 info.low_limit = TASK_UNMAPPED_BASE;
1995 info.high_limit = TASK_SIZE;
1996 addr = vm_unmapped_area(&info);
2004 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
2005 unsigned long pgoff, unsigned long flags)
2007 unsigned long (*get_area)(struct file *, unsigned long,
2008 unsigned long, unsigned long, unsigned long);
2010 unsigned long error = arch_mmap_check(addr, len, flags);
2014 /* Careful about overflows.. */
2015 if (len > TASK_SIZE)
2018 get_area = current->mm->get_unmapped_area;
2019 if (file && file->f_op->get_unmapped_area)
2020 get_area = file->f_op->get_unmapped_area;
2021 addr = get_area(file, addr, len, pgoff, flags);
2022 if (IS_ERR_VALUE(addr))
2025 if (addr > TASK_SIZE - len)
2027 if (offset_in_page(addr))
2030 addr = arch_rebalance_pgtables(addr, len);
2031 error = security_mmap_addr(addr);
2032 return error ? error : addr;
2035 EXPORT_SYMBOL(get_unmapped_area);
2037 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2038 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
2040 struct rb_node *rb_node;
2041 struct vm_area_struct *vma;
2043 /* Check the cache first. */
2044 vma = vmacache_find(mm, addr);
2048 rb_node = mm->mm_rb.rb_node;
2051 struct vm_area_struct *tmp;
2053 tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2055 if (tmp->vm_end > addr) {
2057 if (tmp->vm_start <= addr)
2059 rb_node = rb_node->rb_left;
2061 rb_node = rb_node->rb_right;
2065 vmacache_update(addr, vma);
2069 EXPORT_SYMBOL(find_vma);
2072 * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2074 struct vm_area_struct *
2075 find_vma_prev(struct mm_struct *mm, unsigned long addr,
2076 struct vm_area_struct **pprev)
2078 struct vm_area_struct *vma;
2080 vma = find_vma(mm, addr);
2082 *pprev = vma->vm_prev;
2084 struct rb_node *rb_node = mm->mm_rb.rb_node;
2087 *pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2088 rb_node = rb_node->rb_right;
2095 * Verify that the stack growth is acceptable and
2096 * update accounting. This is shared with both the
2097 * grow-up and grow-down cases.
2099 static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow)
2101 struct mm_struct *mm = vma->vm_mm;
2102 struct rlimit *rlim = current->signal->rlim;
2103 unsigned long new_start, actual_size;
2105 /* address space limit tests */
2106 if (!may_expand_vm(mm, vma->vm_flags, grow))
2109 /* Stack limit test */
2111 if (size && (vma->vm_flags & (VM_GROWSUP | VM_GROWSDOWN)))
2112 actual_size -= PAGE_SIZE;
2113 if (actual_size > READ_ONCE(rlim[RLIMIT_STACK].rlim_cur))
2116 /* mlock limit tests */
2117 if (vma->vm_flags & VM_LOCKED) {
2118 unsigned long locked;
2119 unsigned long limit;
2120 locked = mm->locked_vm + grow;
2121 limit = READ_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur);
2122 limit >>= PAGE_SHIFT;
2123 if (locked > limit && !capable(CAP_IPC_LOCK))
2127 /* Check to ensure the stack will not grow into a hugetlb-only region */
2128 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2130 if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2134 * Overcommit.. This must be the final test, as it will
2135 * update security statistics.
2137 if (security_vm_enough_memory_mm(mm, grow))
2143 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2145 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2146 * vma is the last one with address > vma->vm_end. Have to extend vma.
2148 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2150 struct mm_struct *mm = vma->vm_mm;
2153 if (!(vma->vm_flags & VM_GROWSUP))
2156 /* Guard against wrapping around to address 0. */
2157 if (address < PAGE_ALIGN(address+4))
2158 address = PAGE_ALIGN(address+4);
2162 /* We must make sure the anon_vma is allocated. */
2163 if (unlikely(anon_vma_prepare(vma)))
2167 * vma->vm_start/vm_end cannot change under us because the caller
2168 * is required to hold the mmap_sem in read mode. We need the
2169 * anon_vma lock to serialize against concurrent expand_stacks.
2171 anon_vma_lock_write(vma->anon_vma);
2173 /* Somebody else might have raced and expanded it already */
2174 if (address > vma->vm_end) {
2175 unsigned long size, grow;
2177 size = address - vma->vm_start;
2178 grow = (address - vma->vm_end) >> PAGE_SHIFT;
2181 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2182 error = acct_stack_growth(vma, size, grow);
2185 * vma_gap_update() doesn't support concurrent
2186 * updates, but we only hold a shared mmap_sem
2187 * lock here, so we need to protect against
2188 * concurrent vma expansions.
2189 * anon_vma_lock_write() doesn't help here, as
2190 * we don't guarantee that all growable vmas
2191 * in a mm share the same root anon vma.
2192 * So, we reuse mm->page_table_lock to guard
2193 * against concurrent vma expansions.
2195 spin_lock(&mm->page_table_lock);
2196 if (vma->vm_flags & VM_LOCKED)
2197 mm->locked_vm += grow;
2198 vm_stat_account(mm, vma->vm_flags, grow);
2199 anon_vma_interval_tree_pre_update_vma(vma);
2200 vma->vm_end = address;
2201 anon_vma_interval_tree_post_update_vma(vma);
2203 vma_gap_update(vma->vm_next);
2205 mm->highest_vm_end = address;
2206 spin_unlock(&mm->page_table_lock);
2208 perf_event_mmap(vma);
2212 anon_vma_unlock_write(vma->anon_vma);
2213 khugepaged_enter_vma_merge(vma, vma->vm_flags);
2217 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2220 * vma is the first one with address < vma->vm_start. Have to extend vma.
2222 int expand_downwards(struct vm_area_struct *vma,
2223 unsigned long address)
2225 struct mm_struct *mm = vma->vm_mm;
2228 address &= PAGE_MASK;
2229 error = security_mmap_addr(address);
2233 /* We must make sure the anon_vma is allocated. */
2234 if (unlikely(anon_vma_prepare(vma)))
2238 * vma->vm_start/vm_end cannot change under us because the caller
2239 * is required to hold the mmap_sem in read mode. We need the
2240 * anon_vma lock to serialize against concurrent expand_stacks.
2242 anon_vma_lock_write(vma->anon_vma);
2244 /* Somebody else might have raced and expanded it already */
2245 if (address < vma->vm_start) {
2246 unsigned long size, grow;
2248 size = vma->vm_end - address;
2249 grow = (vma->vm_start - address) >> PAGE_SHIFT;
2252 if (grow <= vma->vm_pgoff) {
2253 error = acct_stack_growth(vma, size, grow);
2256 * vma_gap_update() doesn't support concurrent
2257 * updates, but we only hold a shared mmap_sem
2258 * lock here, so we need to protect against
2259 * concurrent vma expansions.
2260 * anon_vma_lock_write() doesn't help here, as
2261 * we don't guarantee that all growable vmas
2262 * in a mm share the same root anon vma.
2263 * So, we reuse mm->page_table_lock to guard
2264 * against concurrent vma expansions.
2266 spin_lock(&mm->page_table_lock);
2267 if (vma->vm_flags & VM_LOCKED)
2268 mm->locked_vm += grow;
2269 vm_stat_account(mm, vma->vm_flags, grow);
2270 anon_vma_interval_tree_pre_update_vma(vma);
2271 vma->vm_start = address;
2272 vma->vm_pgoff -= grow;
2273 anon_vma_interval_tree_post_update_vma(vma);
2274 vma_gap_update(vma);
2275 spin_unlock(&mm->page_table_lock);
2277 perf_event_mmap(vma);
2281 anon_vma_unlock_write(vma->anon_vma);
2282 khugepaged_enter_vma_merge(vma, vma->vm_flags);
2288 * Note how expand_stack() refuses to expand the stack all the way to
2289 * abut the next virtual mapping, *unless* that mapping itself is also
2290 * a stack mapping. We want to leave room for a guard page, after all
2291 * (the guard page itself is not added here, that is done by the
2292 * actual page faulting logic)
2294 * This matches the behavior of the guard page logic (see mm/memory.c:
2295 * check_stack_guard_page()), which only allows the guard page to be
2296 * removed under these circumstances.
2298 #ifdef CONFIG_STACK_GROWSUP
2299 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2301 struct vm_area_struct *next;
2303 address &= PAGE_MASK;
2304 next = vma->vm_next;
2305 if (next && next->vm_start == address + PAGE_SIZE) {
2306 if (!(next->vm_flags & VM_GROWSUP))
2309 return expand_upwards(vma, address);
2312 struct vm_area_struct *
2313 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2315 struct vm_area_struct *vma, *prev;
2318 vma = find_vma_prev(mm, addr, &prev);
2319 if (vma && (vma->vm_start <= addr))
2321 if (!prev || expand_stack(prev, addr))
2323 if (prev->vm_flags & VM_LOCKED)
2324 populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2328 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2330 struct vm_area_struct *prev;
2332 address &= PAGE_MASK;
2333 prev = vma->vm_prev;
2334 if (prev && prev->vm_end == address) {
2335 if (!(prev->vm_flags & VM_GROWSDOWN))
2338 return expand_downwards(vma, address);
2341 struct vm_area_struct *
2342 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2344 struct vm_area_struct *vma;
2345 unsigned long start;
2348 vma = find_vma(mm, addr);
2351 if (vma->vm_start <= addr)
2353 if (!(vma->vm_flags & VM_GROWSDOWN))
2355 start = vma->vm_start;
2356 if (expand_stack(vma, addr))
2358 if (vma->vm_flags & VM_LOCKED)
2359 populate_vma_page_range(vma, addr, start, NULL);
2364 EXPORT_SYMBOL_GPL(find_extend_vma);
2367 * Ok - we have the memory areas we should free on the vma list,
2368 * so release them, and do the vma updates.
2370 * Called with the mm semaphore held.
2372 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2374 unsigned long nr_accounted = 0;
2376 /* Update high watermark before we lower total_vm */
2377 update_hiwater_vm(mm);
2379 long nrpages = vma_pages(vma);
2381 if (vma->vm_flags & VM_ACCOUNT)
2382 nr_accounted += nrpages;
2383 vm_stat_account(mm, vma->vm_flags, -nrpages);
2384 vma = remove_vma(vma);
2386 vm_unacct_memory(nr_accounted);
2391 * Get rid of page table information in the indicated region.
2393 * Called with the mm semaphore held.
2395 static void unmap_region(struct mm_struct *mm,
2396 struct vm_area_struct *vma, struct vm_area_struct *prev,
2397 unsigned long start, unsigned long end)
2399 struct vm_area_struct *next = prev ? prev->vm_next : mm->mmap;
2400 struct mmu_gather tlb;
2403 tlb_gather_mmu(&tlb, mm, start, end);
2404 update_hiwater_rss(mm);
2405 unmap_vmas(&tlb, vma, start, end);
2406 free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2407 next ? next->vm_start : USER_PGTABLES_CEILING);
2408 tlb_finish_mmu(&tlb, start, end);
2412 * Create a list of vma's touched by the unmap, removing them from the mm's
2413 * vma list as we go..
2416 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2417 struct vm_area_struct *prev, unsigned long end)
2419 struct vm_area_struct **insertion_point;
2420 struct vm_area_struct *tail_vma = NULL;
2422 insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2423 vma->vm_prev = NULL;
2425 vma_rb_erase(vma, &mm->mm_rb);
2429 } while (vma && vma->vm_start < end);
2430 *insertion_point = vma;
2432 vma->vm_prev = prev;
2433 vma_gap_update(vma);
2435 mm->highest_vm_end = prev ? prev->vm_end : 0;
2436 tail_vma->vm_next = NULL;
2438 /* Kill the cache */
2439 vmacache_invalidate(mm);
2443 * __split_vma() bypasses sysctl_max_map_count checking. We use this on the
2444 * munmap path where it doesn't make sense to fail.
2446 static int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2447 unsigned long addr, int new_below)
2449 struct vm_area_struct *new;
2452 if (is_vm_hugetlb_page(vma) && (addr &
2453 ~(huge_page_mask(hstate_vma(vma)))))
2456 new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2460 /* most fields are the same, copy all, and then fixup */
2463 INIT_LIST_HEAD(&new->anon_vma_chain);
2468 new->vm_start = addr;
2469 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2472 err = vma_dup_policy(vma, new);
2476 err = anon_vma_clone(new, vma);
2481 get_file(new->vm_file);
2483 if (new->vm_ops && new->vm_ops->open)
2484 new->vm_ops->open(new);
2487 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2488 ((addr - new->vm_start) >> PAGE_SHIFT), new);
2490 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2496 /* Clean everything up if vma_adjust failed. */
2497 if (new->vm_ops && new->vm_ops->close)
2498 new->vm_ops->close(new);
2501 unlink_anon_vmas(new);
2503 mpol_put(vma_policy(new));
2505 kmem_cache_free(vm_area_cachep, new);
2510 * Split a vma into two pieces at address 'addr', a new vma is allocated
2511 * either for the first part or the tail.
2513 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2514 unsigned long addr, int new_below)
2516 if (mm->map_count >= sysctl_max_map_count)
2519 return __split_vma(mm, vma, addr, new_below);
2522 /* Munmap is split into 2 main parts -- this part which finds
2523 * what needs doing, and the areas themselves, which do the
2524 * work. This now handles partial unmappings.
2525 * Jeremy Fitzhardinge <jeremy@goop.org>
2527 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
2530 struct vm_area_struct *vma, *prev, *last;
2532 if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2535 len = PAGE_ALIGN(len);
2539 /* Find the first overlapping VMA */
2540 vma = find_vma(mm, start);
2543 prev = vma->vm_prev;
2544 /* we have start < vma->vm_end */
2546 /* if it doesn't overlap, we have nothing.. */
2548 if (vma->vm_start >= end)
2552 * If we need to split any vma, do it now to save pain later.
2554 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2555 * unmapped vm_area_struct will remain in use: so lower split_vma
2556 * places tmp vma above, and higher split_vma places tmp vma below.
2558 if (start > vma->vm_start) {
2562 * Make sure that map_count on return from munmap() will
2563 * not exceed its limit; but let map_count go just above
2564 * its limit temporarily, to help free resources as expected.
2566 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2569 error = __split_vma(mm, vma, start, 0);
2575 /* Does it split the last one? */
2576 last = find_vma(mm, end);
2577 if (last && end > last->vm_start) {
2578 int error = __split_vma(mm, last, end, 1);
2582 vma = prev ? prev->vm_next : mm->mmap;
2585 * unlock any mlock()ed ranges before detaching vmas
2587 if (mm->locked_vm) {
2588 struct vm_area_struct *tmp = vma;
2589 while (tmp && tmp->vm_start < end) {
2590 if (tmp->vm_flags & VM_LOCKED) {
2591 mm->locked_vm -= vma_pages(tmp);
2592 munlock_vma_pages_all(tmp);
2599 * Remove the vma's, and unmap the actual pages
2601 detach_vmas_to_be_unmapped(mm, vma, prev, end);
2602 unmap_region(mm, vma, prev, start, end);
2604 arch_unmap(mm, vma, start, end);
2606 /* Fix up all other VM information */
2607 remove_vma_list(mm, vma);
2612 int vm_munmap(unsigned long start, size_t len)
2615 struct mm_struct *mm = current->mm;
2617 down_write(&mm->mmap_sem);
2618 ret = do_munmap(mm, start, len);
2619 up_write(&mm->mmap_sem);
2622 EXPORT_SYMBOL(vm_munmap);
2624 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2626 profile_munmap(addr);
2627 return vm_munmap(addr, len);
2632 * Emulation of deprecated remap_file_pages() syscall.
2634 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
2635 unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
2638 struct mm_struct *mm = current->mm;
2639 struct vm_area_struct *vma;
2640 unsigned long populate = 0;
2641 unsigned long ret = -EINVAL;
2644 pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. "
2645 "See Documentation/vm/remap_file_pages.txt.\n",
2646 current->comm, current->pid);
2650 start = start & PAGE_MASK;
2651 size = size & PAGE_MASK;
2653 if (start + size <= start)
2656 /* Does pgoff wrap? */
2657 if (pgoff + (size >> PAGE_SHIFT) < pgoff)
2660 down_write(&mm->mmap_sem);
2661 vma = find_vma(mm, start);
2663 if (!vma || !(vma->vm_flags & VM_SHARED))
2666 if (start < vma->vm_start)
2669 if (start + size > vma->vm_end) {
2670 struct vm_area_struct *next;
2672 for (next = vma->vm_next; next; next = next->vm_next) {
2673 /* hole between vmas ? */
2674 if (next->vm_start != next->vm_prev->vm_end)
2677 if (next->vm_file != vma->vm_file)
2680 if (next->vm_flags != vma->vm_flags)
2683 if (start + size <= next->vm_end)
2691 prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
2692 prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
2693 prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
2695 flags &= MAP_NONBLOCK;
2696 flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
2697 if (vma->vm_flags & VM_LOCKED) {
2698 struct vm_area_struct *tmp;
2699 flags |= MAP_LOCKED;
2701 /* drop PG_Mlocked flag for over-mapped range */
2702 for (tmp = vma; tmp->vm_start >= start + size;
2703 tmp = tmp->vm_next) {
2704 munlock_vma_pages_range(tmp,
2705 max(tmp->vm_start, start),
2706 min(tmp->vm_end, start + size));
2710 file = get_file(vma->vm_file);
2711 ret = do_mmap_pgoff(vma->vm_file, start, size,
2712 prot, flags, pgoff, &populate);
2715 up_write(&mm->mmap_sem);
2717 mm_populate(ret, populate);
2718 if (!IS_ERR_VALUE(ret))
2723 static inline void verify_mm_writelocked(struct mm_struct *mm)
2725 #ifdef CONFIG_DEBUG_VM
2726 if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2728 up_read(&mm->mmap_sem);
2734 * this is really a simplified "do_mmap". it only handles
2735 * anonymous maps. eventually we may be able to do some
2736 * brk-specific accounting here.
2738 static unsigned long do_brk(unsigned long addr, unsigned long len)
2740 struct mm_struct *mm = current->mm;
2741 struct vm_area_struct *vma, *prev;
2742 unsigned long flags;
2743 struct rb_node **rb_link, *rb_parent;
2744 pgoff_t pgoff = addr >> PAGE_SHIFT;
2747 len = PAGE_ALIGN(len);
2751 flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2753 error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2754 if (offset_in_page(error))
2757 error = mlock_future_check(mm, mm->def_flags, len);
2762 * mm->mmap_sem is required to protect against another thread
2763 * changing the mappings in case we sleep.
2765 verify_mm_writelocked(mm);
2768 * Clear old maps. this also does some error checking for us
2770 while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
2772 if (do_munmap(mm, addr, len))
2776 /* Check against address space limits *after* clearing old maps... */
2777 if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
2780 if (mm->map_count > sysctl_max_map_count)
2783 if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
2786 /* Can we just expand an old private anonymous mapping? */
2787 vma = vma_merge(mm, prev, addr, addr + len, flags,
2788 NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX);
2793 * create a vma struct for an anonymous mapping
2795 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2797 vm_unacct_memory(len >> PAGE_SHIFT);
2801 INIT_LIST_HEAD(&vma->anon_vma_chain);
2803 vma->vm_start = addr;
2804 vma->vm_end = addr + len;
2805 vma->vm_pgoff = pgoff;
2806 vma->vm_flags = flags;
2807 vma->vm_page_prot = vm_get_page_prot(flags);
2808 vma_link(mm, vma, prev, rb_link, rb_parent);
2810 perf_event_mmap(vma);
2811 mm->total_vm += len >> PAGE_SHIFT;
2812 mm->data_vm += len >> PAGE_SHIFT;
2813 if (flags & VM_LOCKED)
2814 mm->locked_vm += (len >> PAGE_SHIFT);
2815 vma->vm_flags |= VM_SOFTDIRTY;
2819 unsigned long vm_brk(unsigned long addr, unsigned long len)
2821 struct mm_struct *mm = current->mm;
2825 down_write(&mm->mmap_sem);
2826 ret = do_brk(addr, len);
2827 populate = ((mm->def_flags & VM_LOCKED) != 0);
2828 up_write(&mm->mmap_sem);
2830 mm_populate(addr, len);
2833 EXPORT_SYMBOL(vm_brk);
2835 /* Release all mmaps. */
2836 void exit_mmap(struct mm_struct *mm)
2838 struct mmu_gather tlb;
2839 struct vm_area_struct *vma;
2840 unsigned long nr_accounted = 0;
2842 /* mm's last user has gone, and its about to be pulled down */
2843 mmu_notifier_release(mm);
2845 if (mm->locked_vm) {
2848 if (vma->vm_flags & VM_LOCKED)
2849 munlock_vma_pages_all(vma);
2857 if (!vma) /* Can happen if dup_mmap() received an OOM */
2862 tlb_gather_mmu(&tlb, mm, 0, -1);
2863 /* update_hiwater_rss(mm) here? but nobody should be looking */
2864 /* Use -1 here to ensure all VMAs in the mm are unmapped */
2865 unmap_vmas(&tlb, vma, 0, -1);
2867 free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
2868 tlb_finish_mmu(&tlb, 0, -1);
2871 * Walk the list again, actually closing and freeing it,
2872 * with preemption enabled, without holding any MM locks.
2875 if (vma->vm_flags & VM_ACCOUNT)
2876 nr_accounted += vma_pages(vma);
2877 vma = remove_vma(vma);
2879 vm_unacct_memory(nr_accounted);
2882 /* Insert vm structure into process list sorted by address
2883 * and into the inode's i_mmap tree. If vm_file is non-NULL
2884 * then i_mmap_rwsem is taken here.
2886 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
2888 struct vm_area_struct *prev;
2889 struct rb_node **rb_link, *rb_parent;
2891 if (find_vma_links(mm, vma->vm_start, vma->vm_end,
2892 &prev, &rb_link, &rb_parent))
2894 if ((vma->vm_flags & VM_ACCOUNT) &&
2895 security_vm_enough_memory_mm(mm, vma_pages(vma)))
2899 * The vm_pgoff of a purely anonymous vma should be irrelevant
2900 * until its first write fault, when page's anon_vma and index
2901 * are set. But now set the vm_pgoff it will almost certainly
2902 * end up with (unless mremap moves it elsewhere before that
2903 * first wfault), so /proc/pid/maps tells a consistent story.
2905 * By setting it to reflect the virtual start address of the
2906 * vma, merges and splits can happen in a seamless way, just
2907 * using the existing file pgoff checks and manipulations.
2908 * Similarly in do_mmap_pgoff and in do_brk.
2910 if (vma_is_anonymous(vma)) {
2911 BUG_ON(vma->anon_vma);
2912 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2915 vma_link(mm, vma, prev, rb_link, rb_parent);
2920 * Copy the vma structure to a new location in the same mm,
2921 * prior to moving page table entries, to effect an mremap move.
2923 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2924 unsigned long addr, unsigned long len, pgoff_t pgoff,
2925 bool *need_rmap_locks)
2927 struct vm_area_struct *vma = *vmap;
2928 unsigned long vma_start = vma->vm_start;
2929 struct mm_struct *mm = vma->vm_mm;
2930 struct vm_area_struct *new_vma, *prev;
2931 struct rb_node **rb_link, *rb_parent;
2932 bool faulted_in_anon_vma = true;
2935 * If anonymous vma has not yet been faulted, update new pgoff
2936 * to match new location, to increase its chance of merging.
2938 if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
2939 pgoff = addr >> PAGE_SHIFT;
2940 faulted_in_anon_vma = false;
2943 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
2944 return NULL; /* should never get here */
2945 new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2946 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
2947 vma->vm_userfaultfd_ctx);
2950 * Source vma may have been merged into new_vma
2952 if (unlikely(vma_start >= new_vma->vm_start &&
2953 vma_start < new_vma->vm_end)) {
2955 * The only way we can get a vma_merge with
2956 * self during an mremap is if the vma hasn't
2957 * been faulted in yet and we were allowed to
2958 * reset the dst vma->vm_pgoff to the
2959 * destination address of the mremap to allow
2960 * the merge to happen. mremap must change the
2961 * vm_pgoff linearity between src and dst vmas
2962 * (in turn preventing a vma_merge) to be
2963 * safe. It is only safe to keep the vm_pgoff
2964 * linear if there are no pages mapped yet.
2966 VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
2967 *vmap = vma = new_vma;
2969 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
2971 new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2975 new_vma->vm_start = addr;
2976 new_vma->vm_end = addr + len;
2977 new_vma->vm_pgoff = pgoff;
2978 if (vma_dup_policy(vma, new_vma))
2980 INIT_LIST_HEAD(&new_vma->anon_vma_chain);
2981 if (anon_vma_clone(new_vma, vma))
2982 goto out_free_mempol;
2983 if (new_vma->vm_file)
2984 get_file(new_vma->vm_file);
2985 if (new_vma->vm_ops && new_vma->vm_ops->open)
2986 new_vma->vm_ops->open(new_vma);
2987 vma_link(mm, new_vma, prev, rb_link, rb_parent);
2988 *need_rmap_locks = false;
2993 mpol_put(vma_policy(new_vma));
2995 kmem_cache_free(vm_area_cachep, new_vma);
3001 * Return true if the calling process may expand its vm space by the passed
3004 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
3006 if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
3009 if (is_data_mapping(flags) &&
3010 mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
3011 if (ignore_rlimit_data)
3012 pr_warn_once("%s (%d): VmData %lu exceed data ulimit "
3013 "%lu. Will be forbidden soon.\n",
3014 current->comm, current->pid,
3015 (mm->data_vm + npages) << PAGE_SHIFT,
3016 rlimit(RLIMIT_DATA));
3024 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
3026 mm->total_vm += npages;
3028 if (is_exec_mapping(flags))
3029 mm->exec_vm += npages;
3030 else if (is_stack_mapping(flags))
3031 mm->stack_vm += npages;
3032 else if (is_data_mapping(flags))
3033 mm->data_vm += npages;
3036 static int special_mapping_fault(struct vm_area_struct *vma,
3037 struct vm_fault *vmf);
3040 * Having a close hook prevents vma merging regardless of flags.
3042 static void special_mapping_close(struct vm_area_struct *vma)
3046 static const char *special_mapping_name(struct vm_area_struct *vma)
3048 return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3051 static const struct vm_operations_struct special_mapping_vmops = {
3052 .close = special_mapping_close,
3053 .fault = special_mapping_fault,
3054 .name = special_mapping_name,
3057 static const struct vm_operations_struct legacy_special_mapping_vmops = {
3058 .close = special_mapping_close,
3059 .fault = special_mapping_fault,
3062 static int special_mapping_fault(struct vm_area_struct *vma,
3063 struct vm_fault *vmf)
3066 struct page **pages;
3068 if (vma->vm_ops == &legacy_special_mapping_vmops) {
3069 pages = vma->vm_private_data;
3071 struct vm_special_mapping *sm = vma->vm_private_data;
3074 return sm->fault(sm, vma, vmf);
3079 for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3083 struct page *page = *pages;
3089 return VM_FAULT_SIGBUS;
3092 static struct vm_area_struct *__install_special_mapping(
3093 struct mm_struct *mm,
3094 unsigned long addr, unsigned long len,
3095 unsigned long vm_flags, void *priv,
3096 const struct vm_operations_struct *ops)
3099 struct vm_area_struct *vma;
3101 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
3102 if (unlikely(vma == NULL))
3103 return ERR_PTR(-ENOMEM);
3105 INIT_LIST_HEAD(&vma->anon_vma_chain);
3107 vma->vm_start = addr;
3108 vma->vm_end = addr + len;
3110 vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
3111 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3114 vma->vm_private_data = priv;
3116 ret = insert_vm_struct(mm, vma);
3120 vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3122 perf_event_mmap(vma);
3127 kmem_cache_free(vm_area_cachep, vma);
3128 return ERR_PTR(ret);
3132 * Called with mm->mmap_sem held for writing.
3133 * Insert a new vma covering the given region, with the given flags.
3134 * Its pages are supplied by the given array of struct page *.
3135 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3136 * The region past the last page supplied will always produce SIGBUS.
3137 * The array pointer and the pages it points to are assumed to stay alive
3138 * for as long as this mapping might exist.
3140 struct vm_area_struct *_install_special_mapping(
3141 struct mm_struct *mm,
3142 unsigned long addr, unsigned long len,
3143 unsigned long vm_flags, const struct vm_special_mapping *spec)
3145 return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3146 &special_mapping_vmops);
3149 int install_special_mapping(struct mm_struct *mm,
3150 unsigned long addr, unsigned long len,
3151 unsigned long vm_flags, struct page **pages)
3153 struct vm_area_struct *vma = __install_special_mapping(
3154 mm, addr, len, vm_flags, (void *)pages,
3155 &legacy_special_mapping_vmops);
3157 return PTR_ERR_OR_ZERO(vma);
3160 static DEFINE_MUTEX(mm_all_locks_mutex);
3162 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3164 if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3166 * The LSB of head.next can't change from under us
3167 * because we hold the mm_all_locks_mutex.
3169 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem);
3171 * We can safely modify head.next after taking the
3172 * anon_vma->root->rwsem. If some other vma in this mm shares
3173 * the same anon_vma we won't take it again.
3175 * No need of atomic instructions here, head.next
3176 * can't change from under us thanks to the
3177 * anon_vma->root->rwsem.
3179 if (__test_and_set_bit(0, (unsigned long *)
3180 &anon_vma->root->rb_root.rb_node))
3185 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3187 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3189 * AS_MM_ALL_LOCKS can't change from under us because
3190 * we hold the mm_all_locks_mutex.
3192 * Operations on ->flags have to be atomic because
3193 * even if AS_MM_ALL_LOCKS is stable thanks to the
3194 * mm_all_locks_mutex, there may be other cpus
3195 * changing other bitflags in parallel to us.
3197 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3199 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_sem);
3204 * This operation locks against the VM for all pte/vma/mm related
3205 * operations that could ever happen on a certain mm. This includes
3206 * vmtruncate, try_to_unmap, and all page faults.
3208 * The caller must take the mmap_sem in write mode before calling
3209 * mm_take_all_locks(). The caller isn't allowed to release the
3210 * mmap_sem until mm_drop_all_locks() returns.
3212 * mmap_sem in write mode is required in order to block all operations
3213 * that could modify pagetables and free pages without need of
3214 * altering the vma layout. It's also needed in write mode to avoid new
3215 * anon_vmas to be associated with existing vmas.
3217 * A single task can't take more than one mm_take_all_locks() in a row
3218 * or it would deadlock.
3220 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3221 * mapping->flags avoid to take the same lock twice, if more than one
3222 * vma in this mm is backed by the same anon_vma or address_space.
3224 * We take locks in following order, accordingly to comment at beginning
3226 * - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3228 * - all i_mmap_rwsem locks;
3229 * - all anon_vma->rwseml
3231 * We can take all locks within these types randomly because the VM code
3232 * doesn't nest them and we protected from parallel mm_take_all_locks() by
3233 * mm_all_locks_mutex.
3235 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3236 * that may have to take thousand of locks.
3238 * mm_take_all_locks() can fail if it's interrupted by signals.
3240 int mm_take_all_locks(struct mm_struct *mm)
3242 struct vm_area_struct *vma;
3243 struct anon_vma_chain *avc;
3245 BUG_ON(down_read_trylock(&mm->mmap_sem));
3247 mutex_lock(&mm_all_locks_mutex);
3249 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3250 if (signal_pending(current))
3252 if (vma->vm_file && vma->vm_file->f_mapping &&
3253 is_vm_hugetlb_page(vma))
3254 vm_lock_mapping(mm, vma->vm_file->f_mapping);
3257 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3258 if (signal_pending(current))
3260 if (vma->vm_file && vma->vm_file->f_mapping &&
3261 !is_vm_hugetlb_page(vma))
3262 vm_lock_mapping(mm, vma->vm_file->f_mapping);
3265 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3266 if (signal_pending(current))
3269 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3270 vm_lock_anon_vma(mm, avc->anon_vma);
3276 mm_drop_all_locks(mm);
3280 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3282 if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3284 * The LSB of head.next can't change to 0 from under
3285 * us because we hold the mm_all_locks_mutex.
3287 * We must however clear the bitflag before unlocking
3288 * the vma so the users using the anon_vma->rb_root will
3289 * never see our bitflag.
3291 * No need of atomic instructions here, head.next
3292 * can't change from under us until we release the
3293 * anon_vma->root->rwsem.
3295 if (!__test_and_clear_bit(0, (unsigned long *)
3296 &anon_vma->root->rb_root.rb_node))
3298 anon_vma_unlock_write(anon_vma);
3302 static void vm_unlock_mapping(struct address_space *mapping)
3304 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3306 * AS_MM_ALL_LOCKS can't change to 0 from under us
3307 * because we hold the mm_all_locks_mutex.
3309 i_mmap_unlock_write(mapping);
3310 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3317 * The mmap_sem cannot be released by the caller until
3318 * mm_drop_all_locks() returns.
3320 void mm_drop_all_locks(struct mm_struct *mm)
3322 struct vm_area_struct *vma;
3323 struct anon_vma_chain *avc;
3325 BUG_ON(down_read_trylock(&mm->mmap_sem));
3326 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3328 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3330 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3331 vm_unlock_anon_vma(avc->anon_vma);
3332 if (vma->vm_file && vma->vm_file->f_mapping)
3333 vm_unlock_mapping(vma->vm_file->f_mapping);
3336 mutex_unlock(&mm_all_locks_mutex);
3340 * initialise the VMA slab
3342 void __init mmap_init(void)
3346 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3351 * Initialise sysctl_user_reserve_kbytes.
3353 * This is intended to prevent a user from starting a single memory hogging
3354 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3357 * The default value is min(3% of free memory, 128MB)
3358 * 128MB is enough to recover with sshd/login, bash, and top/kill.
3360 static int init_user_reserve(void)
3362 unsigned long free_kbytes;
3364 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3366 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3369 subsys_initcall(init_user_reserve);
3372 * Initialise sysctl_admin_reserve_kbytes.
3374 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3375 * to log in and kill a memory hogging process.
3377 * Systems with more than 256MB will reserve 8MB, enough to recover
3378 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3379 * only reserve 3% of free pages by default.
3381 static int init_admin_reserve(void)
3383 unsigned long free_kbytes;
3385 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3387 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3390 subsys_initcall(init_admin_reserve);
3393 * Reinititalise user and admin reserves if memory is added or removed.
3395 * The default user reserve max is 128MB, and the default max for the
3396 * admin reserve is 8MB. These are usually, but not always, enough to
3397 * enable recovery from a memory hogging process using login/sshd, a shell,
3398 * and tools like top. It may make sense to increase or even disable the
3399 * reserve depending on the existence of swap or variations in the recovery
3400 * tools. So, the admin may have changed them.
3402 * If memory is added and the reserves have been eliminated or increased above
3403 * the default max, then we'll trust the admin.
3405 * If memory is removed and there isn't enough free memory, then we
3406 * need to reset the reserves.
3408 * Otherwise keep the reserve set by the admin.
3410 static int reserve_mem_notifier(struct notifier_block *nb,
3411 unsigned long action, void *data)
3413 unsigned long tmp, free_kbytes;
3417 /* Default max is 128MB. Leave alone if modified by operator. */
3418 tmp = sysctl_user_reserve_kbytes;
3419 if (0 < tmp && tmp < (1UL << 17))
3420 init_user_reserve();
3422 /* Default max is 8MB. Leave alone if modified by operator. */
3423 tmp = sysctl_admin_reserve_kbytes;
3424 if (0 < tmp && tmp < (1UL << 13))
3425 init_admin_reserve();
3429 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3431 if (sysctl_user_reserve_kbytes > free_kbytes) {
3432 init_user_reserve();
3433 pr_info("vm.user_reserve_kbytes reset to %lu\n",
3434 sysctl_user_reserve_kbytes);
3437 if (sysctl_admin_reserve_kbytes > free_kbytes) {
3438 init_admin_reserve();
3439 pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3440 sysctl_admin_reserve_kbytes);
3449 static struct notifier_block reserve_mem_nb = {
3450 .notifier_call = reserve_mem_notifier,
3453 static int __meminit init_reserve_notifier(void)
3455 if (register_hotmemory_notifier(&reserve_mem_nb))
3456 pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3460 subsys_initcall(init_reserve_notifier);