1 // SPDX-License-Identifier: GPL-2.0-only
7 * Address space accounting code <alan@lxorguk.ukuu.org.uk>
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12 #include <linux/kernel.h>
13 #include <linux/slab.h>
14 #include <linux/backing-dev.h>
16 #include <linux/vmacache.h>
17 #include <linux/shm.h>
18 #include <linux/mman.h>
19 #include <linux/pagemap.h>
20 #include <linux/swap.h>
21 #include <linux/syscalls.h>
22 #include <linux/capability.h>
23 #include <linux/init.h>
24 #include <linux/file.h>
26 #include <linux/personality.h>
27 #include <linux/security.h>
28 #include <linux/hugetlb.h>
29 #include <linux/shmem_fs.h>
30 #include <linux/profile.h>
31 #include <linux/export.h>
32 #include <linux/mount.h>
33 #include <linux/mempolicy.h>
34 #include <linux/rmap.h>
35 #include <linux/mmu_notifier.h>
36 #include <linux/mmdebug.h>
37 #include <linux/perf_event.h>
38 #include <linux/audit.h>
39 #include <linux/khugepaged.h>
40 #include <linux/uprobes.h>
41 #include <linux/rbtree_augmented.h>
42 #include <linux/notifier.h>
43 #include <linux/memory.h>
44 #include <linux/printk.h>
45 #include <linux/userfaultfd_k.h>
46 #include <linux/moduleparam.h>
47 #include <linux/pkeys.h>
48 #include <linux/oom.h>
49 #include <linux/sched/mm.h>
51 #include <linux/uaccess.h>
52 #include <asm/cacheflush.h>
54 #include <asm/mmu_context.h>
58 #ifndef arch_mmap_check
59 #define arch_mmap_check(addr, len, flags) (0)
62 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
63 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
64 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX;
65 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
67 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
68 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
69 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
70 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
73 static bool ignore_rlimit_data;
74 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
76 static void unmap_region(struct mm_struct *mm,
77 struct vm_area_struct *vma, struct vm_area_struct *prev,
78 unsigned long start, unsigned long end);
80 /* description of effects of mapping type and prot in current implementation.
81 * this is due to the limited x86 page protection hardware. The expected
82 * behavior is in parens:
85 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC
86 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes
87 * w: (no) no w: (no) no w: (yes) yes w: (no) no
88 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
90 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes
91 * w: (no) no w: (no) no w: (copy) copy w: (no) no
92 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
94 pgprot_t protection_map[16] __ro_after_init = {
95 __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
96 __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
99 #ifndef CONFIG_ARCH_HAS_FILTER_PGPROT
100 static inline pgprot_t arch_filter_pgprot(pgprot_t prot)
106 pgprot_t vm_get_page_prot(unsigned long vm_flags)
108 pgprot_t ret = __pgprot(pgprot_val(protection_map[vm_flags &
109 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
110 pgprot_val(arch_vm_get_page_prot(vm_flags)));
112 return arch_filter_pgprot(ret);
114 EXPORT_SYMBOL(vm_get_page_prot);
116 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
118 return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
121 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
122 void vma_set_page_prot(struct vm_area_struct *vma)
124 unsigned long vm_flags = vma->vm_flags;
125 pgprot_t vm_page_prot;
127 vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
128 if (vma_wants_writenotify(vma, vm_page_prot)) {
129 vm_flags &= ~VM_SHARED;
130 vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags);
132 /* remove_protection_ptes reads vma->vm_page_prot without mmap_sem */
133 WRITE_ONCE(vma->vm_page_prot, vm_page_prot);
137 * Requires inode->i_mapping->i_mmap_rwsem
139 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
140 struct file *file, struct address_space *mapping)
142 if (vma->vm_flags & VM_DENYWRITE)
143 atomic_inc(&file_inode(file)->i_writecount);
144 if (vma->vm_flags & VM_SHARED)
145 mapping_unmap_writable(mapping);
147 flush_dcache_mmap_lock(mapping);
148 vma_interval_tree_remove(vma, &mapping->i_mmap);
149 flush_dcache_mmap_unlock(mapping);
153 * Unlink a file-based vm structure from its interval tree, to hide
154 * vma from rmap and vmtruncate before freeing its page tables.
156 void unlink_file_vma(struct vm_area_struct *vma)
158 struct file *file = vma->vm_file;
161 struct address_space *mapping = file->f_mapping;
162 i_mmap_lock_write(mapping);
163 __remove_shared_vm_struct(vma, file, mapping);
164 i_mmap_unlock_write(mapping);
169 * Close a vm structure and free it, returning the next.
171 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
173 struct vm_area_struct *next = vma->vm_next;
176 if (vma->vm_ops && vma->vm_ops->close)
177 vma->vm_ops->close(vma);
180 mpol_put(vma_policy(vma));
185 static int do_brk_flags(unsigned long addr, unsigned long request, unsigned long flags,
186 struct list_head *uf);
187 SYSCALL_DEFINE1(brk, unsigned long, brk)
189 unsigned long retval;
190 unsigned long newbrk, oldbrk, origbrk;
191 struct mm_struct *mm = current->mm;
192 struct vm_area_struct *next;
193 unsigned long min_brk;
195 bool downgraded = false;
198 brk = untagged_addr(brk);
200 if (down_write_killable(&mm->mmap_sem))
205 #ifdef CONFIG_COMPAT_BRK
207 * CONFIG_COMPAT_BRK can still be overridden by setting
208 * randomize_va_space to 2, which will still cause mm->start_brk
209 * to be arbitrarily shifted
211 if (current->brk_randomized)
212 min_brk = mm->start_brk;
214 min_brk = mm->end_data;
216 min_brk = mm->start_brk;
222 * Check against rlimit here. If this check is done later after the test
223 * of oldbrk with newbrk then it can escape the test and let the data
224 * segment grow beyond its set limit the in case where the limit is
225 * not page aligned -Ram Gupta
227 if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
228 mm->end_data, mm->start_data))
231 newbrk = PAGE_ALIGN(brk);
232 oldbrk = PAGE_ALIGN(mm->brk);
233 if (oldbrk == newbrk) {
239 * Always allow shrinking brk.
240 * __do_munmap() may downgrade mmap_sem to read.
242 if (brk <= mm->brk) {
246 * mm->brk must to be protected by write mmap_sem so update it
247 * before downgrading mmap_sem. When __do_munmap() fails,
248 * mm->brk will be restored from origbrk.
251 ret = __do_munmap(mm, newbrk, oldbrk-newbrk, &uf, true);
255 } else if (ret == 1) {
261 /* Check against existing mmap mappings. */
262 next = find_vma(mm, oldbrk);
263 if (next && newbrk + PAGE_SIZE > vm_start_gap(next))
266 /* Ok, looks good - let it rip. */
267 if (do_brk_flags(oldbrk, newbrk-oldbrk, 0, &uf) < 0)
272 populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
274 up_read(&mm->mmap_sem);
276 up_write(&mm->mmap_sem);
277 userfaultfd_unmap_complete(mm, &uf);
279 mm_populate(oldbrk, newbrk - oldbrk);
284 up_write(&mm->mmap_sem);
288 static inline unsigned long vma_compute_gap(struct vm_area_struct *vma)
290 unsigned long gap, prev_end;
293 * Note: in the rare case of a VM_GROWSDOWN above a VM_GROWSUP, we
294 * allow two stack_guard_gaps between them here, and when choosing
295 * an unmapped area; whereas when expanding we only require one.
296 * That's a little inconsistent, but keeps the code here simpler.
298 gap = vm_start_gap(vma);
300 prev_end = vm_end_gap(vma->vm_prev);
309 #ifdef CONFIG_DEBUG_VM_RB
310 static unsigned long vma_compute_subtree_gap(struct vm_area_struct *vma)
312 unsigned long max = vma_compute_gap(vma), subtree_gap;
313 if (vma->vm_rb.rb_left) {
314 subtree_gap = rb_entry(vma->vm_rb.rb_left,
315 struct vm_area_struct, vm_rb)->rb_subtree_gap;
316 if (subtree_gap > max)
319 if (vma->vm_rb.rb_right) {
320 subtree_gap = rb_entry(vma->vm_rb.rb_right,
321 struct vm_area_struct, vm_rb)->rb_subtree_gap;
322 if (subtree_gap > max)
328 static int browse_rb(struct mm_struct *mm)
330 struct rb_root *root = &mm->mm_rb;
331 int i = 0, j, bug = 0;
332 struct rb_node *nd, *pn = NULL;
333 unsigned long prev = 0, pend = 0;
335 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
336 struct vm_area_struct *vma;
337 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
338 if (vma->vm_start < prev) {
339 pr_emerg("vm_start %lx < prev %lx\n",
340 vma->vm_start, prev);
343 if (vma->vm_start < pend) {
344 pr_emerg("vm_start %lx < pend %lx\n",
345 vma->vm_start, pend);
348 if (vma->vm_start > vma->vm_end) {
349 pr_emerg("vm_start %lx > vm_end %lx\n",
350 vma->vm_start, vma->vm_end);
353 spin_lock(&mm->page_table_lock);
354 if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
355 pr_emerg("free gap %lx, correct %lx\n",
357 vma_compute_subtree_gap(vma));
360 spin_unlock(&mm->page_table_lock);
363 prev = vma->vm_start;
367 for (nd = pn; nd; nd = rb_prev(nd))
370 pr_emerg("backwards %d, forwards %d\n", j, i);
376 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
380 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
381 struct vm_area_struct *vma;
382 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
383 VM_BUG_ON_VMA(vma != ignore &&
384 vma->rb_subtree_gap != vma_compute_subtree_gap(vma),
389 static void validate_mm(struct mm_struct *mm)
393 unsigned long highest_address = 0;
394 struct vm_area_struct *vma = mm->mmap;
397 struct anon_vma *anon_vma = vma->anon_vma;
398 struct anon_vma_chain *avc;
401 anon_vma_lock_read(anon_vma);
402 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
403 anon_vma_interval_tree_verify(avc);
404 anon_vma_unlock_read(anon_vma);
407 highest_address = vm_end_gap(vma);
411 if (i != mm->map_count) {
412 pr_emerg("map_count %d vm_next %d\n", mm->map_count, i);
415 if (highest_address != mm->highest_vm_end) {
416 pr_emerg("mm->highest_vm_end %lx, found %lx\n",
417 mm->highest_vm_end, highest_address);
421 if (i != mm->map_count) {
423 pr_emerg("map_count %d rb %d\n", mm->map_count, i);
426 VM_BUG_ON_MM(bug, mm);
429 #define validate_mm_rb(root, ignore) do { } while (0)
430 #define validate_mm(mm) do { } while (0)
433 RB_DECLARE_CALLBACKS_MAX(static, vma_gap_callbacks,
434 struct vm_area_struct, vm_rb,
435 unsigned long, rb_subtree_gap, vma_compute_gap)
438 * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
439 * vma->vm_prev->vm_end values changed, without modifying the vma's position
442 static void vma_gap_update(struct vm_area_struct *vma)
445 * As it turns out, RB_DECLARE_CALLBACKS_MAX() already created
446 * a callback function that does exactly what we want.
448 vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
451 static inline void vma_rb_insert(struct vm_area_struct *vma,
452 struct rb_root *root)
454 /* All rb_subtree_gap values must be consistent prior to insertion */
455 validate_mm_rb(root, NULL);
457 rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
460 static void __vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
463 * Note rb_erase_augmented is a fairly large inline function,
464 * so make sure we instantiate it only once with our desired
465 * augmented rbtree callbacks.
467 rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
470 static __always_inline void vma_rb_erase_ignore(struct vm_area_struct *vma,
471 struct rb_root *root,
472 struct vm_area_struct *ignore)
475 * All rb_subtree_gap values must be consistent prior to erase,
476 * with the possible exception of the "next" vma being erased if
477 * next->vm_start was reduced.
479 validate_mm_rb(root, ignore);
481 __vma_rb_erase(vma, root);
484 static __always_inline void vma_rb_erase(struct vm_area_struct *vma,
485 struct rb_root *root)
488 * All rb_subtree_gap values must be consistent prior to erase,
489 * with the possible exception of the vma being erased.
491 validate_mm_rb(root, vma);
493 __vma_rb_erase(vma, root);
497 * vma has some anon_vma assigned, and is already inserted on that
498 * anon_vma's interval trees.
500 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
501 * vma must be removed from the anon_vma's interval trees using
502 * anon_vma_interval_tree_pre_update_vma().
504 * After the update, the vma will be reinserted using
505 * anon_vma_interval_tree_post_update_vma().
507 * The entire update must be protected by exclusive mmap_sem and by
508 * the root anon_vma's mutex.
511 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
513 struct anon_vma_chain *avc;
515 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
516 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
520 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
522 struct anon_vma_chain *avc;
524 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
525 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
528 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
529 unsigned long end, struct vm_area_struct **pprev,
530 struct rb_node ***rb_link, struct rb_node **rb_parent)
532 struct rb_node **__rb_link, *__rb_parent, *rb_prev;
534 __rb_link = &mm->mm_rb.rb_node;
535 rb_prev = __rb_parent = NULL;
538 struct vm_area_struct *vma_tmp;
540 __rb_parent = *__rb_link;
541 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
543 if (vma_tmp->vm_end > addr) {
544 /* Fail if an existing vma overlaps the area */
545 if (vma_tmp->vm_start < end)
547 __rb_link = &__rb_parent->rb_left;
549 rb_prev = __rb_parent;
550 __rb_link = &__rb_parent->rb_right;
556 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
557 *rb_link = __rb_link;
558 *rb_parent = __rb_parent;
562 static unsigned long count_vma_pages_range(struct mm_struct *mm,
563 unsigned long addr, unsigned long end)
565 unsigned long nr_pages = 0;
566 struct vm_area_struct *vma;
568 /* Find first overlaping mapping */
569 vma = find_vma_intersection(mm, addr, end);
573 nr_pages = (min(end, vma->vm_end) -
574 max(addr, vma->vm_start)) >> PAGE_SHIFT;
576 /* Iterate over the rest of the overlaps */
577 for (vma = vma->vm_next; vma; vma = vma->vm_next) {
578 unsigned long overlap_len;
580 if (vma->vm_start > end)
583 overlap_len = min(end, vma->vm_end) - vma->vm_start;
584 nr_pages += overlap_len >> PAGE_SHIFT;
590 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
591 struct rb_node **rb_link, struct rb_node *rb_parent)
593 /* Update tracking information for the gap following the new vma. */
595 vma_gap_update(vma->vm_next);
597 mm->highest_vm_end = vm_end_gap(vma);
600 * vma->vm_prev wasn't known when we followed the rbtree to find the
601 * correct insertion point for that vma. As a result, we could not
602 * update the vma vm_rb parents rb_subtree_gap values on the way down.
603 * So, we first insert the vma with a zero rb_subtree_gap value
604 * (to be consistent with what we did on the way down), and then
605 * immediately update the gap to the correct value. Finally we
606 * rebalance the rbtree after all augmented values have been set.
608 rb_link_node(&vma->vm_rb, rb_parent, rb_link);
609 vma->rb_subtree_gap = 0;
611 vma_rb_insert(vma, &mm->mm_rb);
614 static void __vma_link_file(struct vm_area_struct *vma)
620 struct address_space *mapping = file->f_mapping;
622 if (vma->vm_flags & VM_DENYWRITE)
623 atomic_dec(&file_inode(file)->i_writecount);
624 if (vma->vm_flags & VM_SHARED)
625 atomic_inc(&mapping->i_mmap_writable);
627 flush_dcache_mmap_lock(mapping);
628 vma_interval_tree_insert(vma, &mapping->i_mmap);
629 flush_dcache_mmap_unlock(mapping);
634 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
635 struct vm_area_struct *prev, struct rb_node **rb_link,
636 struct rb_node *rb_parent)
638 __vma_link_list(mm, vma, prev);
639 __vma_link_rb(mm, vma, rb_link, rb_parent);
642 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
643 struct vm_area_struct *prev, struct rb_node **rb_link,
644 struct rb_node *rb_parent)
646 struct address_space *mapping = NULL;
649 mapping = vma->vm_file->f_mapping;
650 i_mmap_lock_write(mapping);
653 __vma_link(mm, vma, prev, rb_link, rb_parent);
654 __vma_link_file(vma);
657 i_mmap_unlock_write(mapping);
664 * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
665 * mm's list and rbtree. It has already been inserted into the interval tree.
667 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
669 struct vm_area_struct *prev;
670 struct rb_node **rb_link, *rb_parent;
672 if (find_vma_links(mm, vma->vm_start, vma->vm_end,
673 &prev, &rb_link, &rb_parent))
675 __vma_link(mm, vma, prev, rb_link, rb_parent);
679 static __always_inline void __vma_unlink_common(struct mm_struct *mm,
680 struct vm_area_struct *vma,
681 struct vm_area_struct *ignore)
683 vma_rb_erase_ignore(vma, &mm->mm_rb, ignore);
684 __vma_unlink_list(mm, vma);
686 vmacache_invalidate(mm);
690 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
691 * is already present in an i_mmap tree without adjusting the tree.
692 * The following helper function should be used when such adjustments
693 * are necessary. The "insert" vma (if any) is to be inserted
694 * before we drop the necessary locks.
696 int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
697 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
698 struct vm_area_struct *expand)
700 struct mm_struct *mm = vma->vm_mm;
701 struct vm_area_struct *next = vma->vm_next, *orig_vma = vma;
702 struct address_space *mapping = NULL;
703 struct rb_root_cached *root = NULL;
704 struct anon_vma *anon_vma = NULL;
705 struct file *file = vma->vm_file;
706 bool start_changed = false, end_changed = false;
707 long adjust_next = 0;
710 if (next && !insert) {
711 struct vm_area_struct *exporter = NULL, *importer = NULL;
713 if (end >= next->vm_end) {
715 * vma expands, overlapping all the next, and
716 * perhaps the one after too (mprotect case 6).
717 * The only other cases that gets here are
718 * case 1, case 7 and case 8.
720 if (next == expand) {
722 * The only case where we don't expand "vma"
723 * and we expand "next" instead is case 8.
725 VM_WARN_ON(end != next->vm_end);
727 * remove_next == 3 means we're
728 * removing "vma" and that to do so we
729 * swapped "vma" and "next".
732 VM_WARN_ON(file != next->vm_file);
735 VM_WARN_ON(expand != vma);
737 * case 1, 6, 7, remove_next == 2 is case 6,
738 * remove_next == 1 is case 1 or 7.
740 remove_next = 1 + (end > next->vm_end);
741 VM_WARN_ON(remove_next == 2 &&
742 end != next->vm_next->vm_end);
743 /* trim end to next, for case 6 first pass */
751 * If next doesn't have anon_vma, import from vma after
752 * next, if the vma overlaps with it.
754 if (remove_next == 2 && !next->anon_vma)
755 exporter = next->vm_next;
757 } else if (end > next->vm_start) {
759 * vma expands, overlapping part of the next:
760 * mprotect case 5 shifting the boundary up.
762 adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
765 VM_WARN_ON(expand != importer);
766 } else if (end < vma->vm_end) {
768 * vma shrinks, and !insert tells it's not
769 * split_vma inserting another: so it must be
770 * mprotect case 4 shifting the boundary down.
772 adjust_next = -((vma->vm_end - end) >> PAGE_SHIFT);
775 VM_WARN_ON(expand != importer);
779 * Easily overlooked: when mprotect shifts the boundary,
780 * make sure the expanding vma has anon_vma set if the
781 * shrinking vma had, to cover any anon pages imported.
783 if (exporter && exporter->anon_vma && !importer->anon_vma) {
786 importer->anon_vma = exporter->anon_vma;
787 error = anon_vma_clone(importer, exporter);
793 vma_adjust_trans_huge(orig_vma, start, end, adjust_next);
796 mapping = file->f_mapping;
797 root = &mapping->i_mmap;
798 uprobe_munmap(vma, vma->vm_start, vma->vm_end);
801 uprobe_munmap(next, next->vm_start, next->vm_end);
803 i_mmap_lock_write(mapping);
806 * Put into interval tree now, so instantiated pages
807 * are visible to arm/parisc __flush_dcache_page
808 * throughout; but we cannot insert into address
809 * space until vma start or end is updated.
811 __vma_link_file(insert);
815 anon_vma = vma->anon_vma;
816 if (!anon_vma && adjust_next)
817 anon_vma = next->anon_vma;
819 VM_WARN_ON(adjust_next && next->anon_vma &&
820 anon_vma != next->anon_vma);
821 anon_vma_lock_write(anon_vma);
822 anon_vma_interval_tree_pre_update_vma(vma);
824 anon_vma_interval_tree_pre_update_vma(next);
828 flush_dcache_mmap_lock(mapping);
829 vma_interval_tree_remove(vma, root);
831 vma_interval_tree_remove(next, root);
834 if (start != vma->vm_start) {
835 vma->vm_start = start;
836 start_changed = true;
838 if (end != vma->vm_end) {
842 vma->vm_pgoff = pgoff;
844 next->vm_start += adjust_next << PAGE_SHIFT;
845 next->vm_pgoff += adjust_next;
850 vma_interval_tree_insert(next, root);
851 vma_interval_tree_insert(vma, root);
852 flush_dcache_mmap_unlock(mapping);
857 * vma_merge has merged next into vma, and needs
858 * us to remove next before dropping the locks.
860 if (remove_next != 3)
861 __vma_unlink_common(mm, next, next);
864 * vma is not before next if they've been
867 * pre-swap() next->vm_start was reduced so
868 * tell validate_mm_rb to ignore pre-swap()
869 * "next" (which is stored in post-swap()
872 __vma_unlink_common(mm, next, vma);
874 __remove_shared_vm_struct(next, file, mapping);
877 * split_vma has split insert from vma, and needs
878 * us to insert it before dropping the locks
879 * (it may either follow vma or precede it).
881 __insert_vm_struct(mm, insert);
887 mm->highest_vm_end = vm_end_gap(vma);
888 else if (!adjust_next)
889 vma_gap_update(next);
894 anon_vma_interval_tree_post_update_vma(vma);
896 anon_vma_interval_tree_post_update_vma(next);
897 anon_vma_unlock_write(anon_vma);
900 i_mmap_unlock_write(mapping);
911 uprobe_munmap(next, next->vm_start, next->vm_end);
915 anon_vma_merge(vma, next);
917 mpol_put(vma_policy(next));
920 * In mprotect's case 6 (see comments on vma_merge),
921 * we must remove another next too. It would clutter
922 * up the code too much to do both in one go.
924 if (remove_next != 3) {
926 * If "next" was removed and vma->vm_end was
927 * expanded (up) over it, in turn
928 * "next->vm_prev->vm_end" changed and the
929 * "vma->vm_next" gap must be updated.
934 * For the scope of the comment "next" and
935 * "vma" considered pre-swap(): if "vma" was
936 * removed, next->vm_start was expanded (down)
937 * over it and the "next" gap must be updated.
938 * Because of the swap() the post-swap() "vma"
939 * actually points to pre-swap() "next"
940 * (post-swap() "next" as opposed is now a
945 if (remove_next == 2) {
951 vma_gap_update(next);
954 * If remove_next == 2 we obviously can't
957 * If remove_next == 3 we can't reach this
958 * path because pre-swap() next is always not
959 * NULL. pre-swap() "next" is not being
960 * removed and its next->vm_end is not altered
961 * (and furthermore "end" already matches
962 * next->vm_end in remove_next == 3).
964 * We reach this only in the remove_next == 1
965 * case if the "next" vma that was removed was
966 * the highest vma of the mm. However in such
967 * case next->vm_end == "end" and the extended
968 * "vma" has vma->vm_end == next->vm_end so
969 * mm->highest_vm_end doesn't need any update
970 * in remove_next == 1 case.
972 VM_WARN_ON(mm->highest_vm_end != vm_end_gap(vma));
984 * If the vma has a ->close operation then the driver probably needs to release
985 * per-vma resources, so we don't attempt to merge those.
987 static inline int is_mergeable_vma(struct vm_area_struct *vma,
988 struct file *file, unsigned long vm_flags,
989 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
992 * VM_SOFTDIRTY should not prevent from VMA merging, if we
993 * match the flags but dirty bit -- the caller should mark
994 * merged VMA as dirty. If dirty bit won't be excluded from
995 * comparison, we increase pressure on the memory system forcing
996 * the kernel to generate new VMAs when old one could be
999 if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
1001 if (vma->vm_file != file)
1003 if (vma->vm_ops && vma->vm_ops->close)
1005 if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
1010 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
1011 struct anon_vma *anon_vma2,
1012 struct vm_area_struct *vma)
1015 * The list_is_singular() test is to avoid merging VMA cloned from
1016 * parents. This can improve scalability caused by anon_vma lock.
1018 if ((!anon_vma1 || !anon_vma2) && (!vma ||
1019 list_is_singular(&vma->anon_vma_chain)))
1021 return anon_vma1 == anon_vma2;
1025 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1026 * in front of (at a lower virtual address and file offset than) the vma.
1028 * We cannot merge two vmas if they have differently assigned (non-NULL)
1029 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1031 * We don't check here for the merged mmap wrapping around the end of pagecache
1032 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
1033 * wrap, nor mmaps which cover the final page at index -1UL.
1036 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
1037 struct anon_vma *anon_vma, struct file *file,
1039 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1041 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1042 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1043 if (vma->vm_pgoff == vm_pgoff)
1050 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1051 * beyond (at a higher virtual address and file offset than) the vma.
1053 * We cannot merge two vmas if they have differently assigned (non-NULL)
1054 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1057 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
1058 struct anon_vma *anon_vma, struct file *file,
1060 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1062 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1063 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1065 vm_pglen = vma_pages(vma);
1066 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
1073 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
1074 * whether that can be merged with its predecessor or its successor.
1075 * Or both (it neatly fills a hole).
1077 * In most cases - when called for mmap, brk or mremap - [addr,end) is
1078 * certain not to be mapped by the time vma_merge is called; but when
1079 * called for mprotect, it is certain to be already mapped (either at
1080 * an offset within prev, or at the start of next), and the flags of
1081 * this area are about to be changed to vm_flags - and the no-change
1082 * case has already been eliminated.
1084 * The following mprotect cases have to be considered, where AAAA is
1085 * the area passed down from mprotect_fixup, never extending beyond one
1086 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
1089 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN
1090 * cannot merge might become might become
1091 * PPNNNNNNNNNN PPPPPPPPPPNN
1092 * mmap, brk or case 4 below case 5 below
1095 * PPPP NNNN PPPPNNNNXXXX
1096 * might become might become
1097 * PPPPPPPPPPPP 1 or PPPPPPPPPPPP 6 or
1098 * PPPPPPPPNNNN 2 or PPPPPPPPXXXX 7 or
1099 * PPPPNNNNNNNN 3 PPPPXXXXXXXX 8
1101 * It is important for case 8 that the vma NNNN overlapping the
1102 * region AAAA is never going to extended over XXXX. Instead XXXX must
1103 * be extended in region AAAA and NNNN must be removed. This way in
1104 * all cases where vma_merge succeeds, the moment vma_adjust drops the
1105 * rmap_locks, the properties of the merged vma will be already
1106 * correct for the whole merged range. Some of those properties like
1107 * vm_page_prot/vm_flags may be accessed by rmap_walks and they must
1108 * be correct for the whole merged range immediately after the
1109 * rmap_locks are released. Otherwise if XXXX would be removed and
1110 * NNNN would be extended over the XXXX range, remove_migration_ptes
1111 * or other rmap walkers (if working on addresses beyond the "end"
1112 * parameter) may establish ptes with the wrong permissions of NNNN
1113 * instead of the right permissions of XXXX.
1115 struct vm_area_struct *vma_merge(struct mm_struct *mm,
1116 struct vm_area_struct *prev, unsigned long addr,
1117 unsigned long end, unsigned long vm_flags,
1118 struct anon_vma *anon_vma, struct file *file,
1119 pgoff_t pgoff, struct mempolicy *policy,
1120 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1122 pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1123 struct vm_area_struct *area, *next;
1127 * We later require that vma->vm_flags == vm_flags,
1128 * so this tests vma->vm_flags & VM_SPECIAL, too.
1130 if (vm_flags & VM_SPECIAL)
1134 next = prev->vm_next;
1138 if (area && area->vm_end == end) /* cases 6, 7, 8 */
1139 next = next->vm_next;
1141 /* verify some invariant that must be enforced by the caller */
1142 VM_WARN_ON(prev && addr <= prev->vm_start);
1143 VM_WARN_ON(area && end > area->vm_end);
1144 VM_WARN_ON(addr >= end);
1147 * Can it merge with the predecessor?
1149 if (prev && prev->vm_end == addr &&
1150 mpol_equal(vma_policy(prev), policy) &&
1151 can_vma_merge_after(prev, vm_flags,
1152 anon_vma, file, pgoff,
1153 vm_userfaultfd_ctx)) {
1155 * OK, it can. Can we now merge in the successor as well?
1157 if (next && end == next->vm_start &&
1158 mpol_equal(policy, vma_policy(next)) &&
1159 can_vma_merge_before(next, vm_flags,
1162 vm_userfaultfd_ctx) &&
1163 is_mergeable_anon_vma(prev->anon_vma,
1164 next->anon_vma, NULL)) {
1166 err = __vma_adjust(prev, prev->vm_start,
1167 next->vm_end, prev->vm_pgoff, NULL,
1169 } else /* cases 2, 5, 7 */
1170 err = __vma_adjust(prev, prev->vm_start,
1171 end, prev->vm_pgoff, NULL, prev);
1174 khugepaged_enter_vma_merge(prev, vm_flags);
1179 * Can this new request be merged in front of next?
1181 if (next && end == next->vm_start &&
1182 mpol_equal(policy, vma_policy(next)) &&
1183 can_vma_merge_before(next, vm_flags,
1184 anon_vma, file, pgoff+pglen,
1185 vm_userfaultfd_ctx)) {
1186 if (prev && addr < prev->vm_end) /* case 4 */
1187 err = __vma_adjust(prev, prev->vm_start,
1188 addr, prev->vm_pgoff, NULL, next);
1189 else { /* cases 3, 8 */
1190 err = __vma_adjust(area, addr, next->vm_end,
1191 next->vm_pgoff - pglen, NULL, next);
1193 * In case 3 area is already equal to next and
1194 * this is a noop, but in case 8 "area" has
1195 * been removed and next was expanded over it.
1201 khugepaged_enter_vma_merge(area, vm_flags);
1209 * Rough compatbility check to quickly see if it's even worth looking
1210 * at sharing an anon_vma.
1212 * They need to have the same vm_file, and the flags can only differ
1213 * in things that mprotect may change.
1215 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1216 * we can merge the two vma's. For example, we refuse to merge a vma if
1217 * there is a vm_ops->close() function, because that indicates that the
1218 * driver is doing some kind of reference counting. But that doesn't
1219 * really matter for the anon_vma sharing case.
1221 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1223 return a->vm_end == b->vm_start &&
1224 mpol_equal(vma_policy(a), vma_policy(b)) &&
1225 a->vm_file == b->vm_file &&
1226 !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC|VM_SOFTDIRTY)) &&
1227 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1231 * Do some basic sanity checking to see if we can re-use the anon_vma
1232 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1233 * the same as 'old', the other will be the new one that is trying
1234 * to share the anon_vma.
1236 * NOTE! This runs with mm_sem held for reading, so it is possible that
1237 * the anon_vma of 'old' is concurrently in the process of being set up
1238 * by another page fault trying to merge _that_. But that's ok: if it
1239 * is being set up, that automatically means that it will be a singleton
1240 * acceptable for merging, so we can do all of this optimistically. But
1241 * we do that READ_ONCE() to make sure that we never re-load the pointer.
1243 * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1244 * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1245 * is to return an anon_vma that is "complex" due to having gone through
1248 * We also make sure that the two vma's are compatible (adjacent,
1249 * and with the same memory policies). That's all stable, even with just
1250 * a read lock on the mm_sem.
1252 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1254 if (anon_vma_compatible(a, b)) {
1255 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1257 if (anon_vma && list_is_singular(&old->anon_vma_chain))
1264 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1265 * neighbouring vmas for a suitable anon_vma, before it goes off
1266 * to allocate a new anon_vma. It checks because a repetitive
1267 * sequence of mprotects and faults may otherwise lead to distinct
1268 * anon_vmas being allocated, preventing vma merge in subsequent
1271 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1273 struct anon_vma *anon_vma = NULL;
1275 /* Try next first. */
1277 anon_vma = reusable_anon_vma(vma->vm_next, vma, vma->vm_next);
1282 /* Try prev next. */
1284 anon_vma = reusable_anon_vma(vma->vm_prev, vma->vm_prev, vma);
1287 * We might reach here with anon_vma == NULL if we can't find
1288 * any reusable anon_vma.
1289 * There's no absolute need to look only at touching neighbours:
1290 * we could search further afield for "compatible" anon_vmas.
1291 * But it would probably just be a waste of time searching,
1292 * or lead to too many vmas hanging off the same anon_vma.
1293 * We're trying to allow mprotect remerging later on,
1294 * not trying to minimize memory used for anon_vmas.
1300 * If a hint addr is less than mmap_min_addr change hint to be as
1301 * low as possible but still greater than mmap_min_addr
1303 static inline unsigned long round_hint_to_min(unsigned long hint)
1306 if (((void *)hint != NULL) &&
1307 (hint < mmap_min_addr))
1308 return PAGE_ALIGN(mmap_min_addr);
1312 static inline int mlock_future_check(struct mm_struct *mm,
1313 unsigned long flags,
1316 unsigned long locked, lock_limit;
1318 /* mlock MCL_FUTURE? */
1319 if (flags & VM_LOCKED) {
1320 locked = len >> PAGE_SHIFT;
1321 locked += mm->locked_vm;
1322 lock_limit = rlimit(RLIMIT_MEMLOCK);
1323 lock_limit >>= PAGE_SHIFT;
1324 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1330 static inline u64 file_mmap_size_max(struct file *file, struct inode *inode)
1332 if (S_ISREG(inode->i_mode))
1333 return MAX_LFS_FILESIZE;
1335 if (S_ISBLK(inode->i_mode))
1336 return MAX_LFS_FILESIZE;
1338 if (S_ISSOCK(inode->i_mode))
1339 return MAX_LFS_FILESIZE;
1341 /* Special "we do even unsigned file positions" case */
1342 if (file->f_mode & FMODE_UNSIGNED_OFFSET)
1345 /* Yes, random drivers might want more. But I'm tired of buggy drivers */
1349 static inline bool file_mmap_ok(struct file *file, struct inode *inode,
1350 unsigned long pgoff, unsigned long len)
1352 u64 maxsize = file_mmap_size_max(file, inode);
1354 if (maxsize && len > maxsize)
1357 if (pgoff > maxsize >> PAGE_SHIFT)
1363 * The caller must hold down_write(¤t->mm->mmap_sem).
1365 unsigned long do_mmap(struct file *file, unsigned long addr,
1366 unsigned long len, unsigned long prot,
1367 unsigned long flags, vm_flags_t vm_flags,
1368 unsigned long pgoff, unsigned long *populate,
1369 struct list_head *uf)
1371 struct mm_struct *mm = current->mm;
1380 * Does the application expect PROT_READ to imply PROT_EXEC?
1382 * (the exception is when the underlying filesystem is noexec
1383 * mounted, in which case we dont add PROT_EXEC.)
1385 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1386 if (!(file && path_noexec(&file->f_path)))
1389 /* force arch specific MAP_FIXED handling in get_unmapped_area */
1390 if (flags & MAP_FIXED_NOREPLACE)
1393 if (!(flags & MAP_FIXED))
1394 addr = round_hint_to_min(addr);
1396 /* Careful about overflows.. */
1397 len = PAGE_ALIGN(len);
1401 /* offset overflow? */
1402 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1405 /* Too many mappings? */
1406 if (mm->map_count > sysctl_max_map_count)
1409 /* Obtain the address to map to. we verify (or select) it and ensure
1410 * that it represents a valid section of the address space.
1412 addr = get_unmapped_area(file, addr, len, pgoff, flags);
1413 if (IS_ERR_VALUE(addr))
1416 if (flags & MAP_FIXED_NOREPLACE) {
1417 struct vm_area_struct *vma = find_vma(mm, addr);
1419 if (vma && vma->vm_start < addr + len)
1423 if (prot == PROT_EXEC) {
1424 pkey = execute_only_pkey(mm);
1429 /* Do simple checking here so the lower-level routines won't have
1430 * to. we assume access permissions have been handled by the open
1431 * of the memory object, so we don't do any here.
1433 vm_flags |= calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
1434 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1436 if (flags & MAP_LOCKED)
1437 if (!can_do_mlock())
1440 if (mlock_future_check(mm, vm_flags, len))
1444 struct inode *inode = file_inode(file);
1445 unsigned long flags_mask;
1447 if (!file_mmap_ok(file, inode, pgoff, len))
1450 flags_mask = LEGACY_MAP_MASK | file->f_op->mmap_supported_flags;
1452 switch (flags & MAP_TYPE) {
1455 * Force use of MAP_SHARED_VALIDATE with non-legacy
1456 * flags. E.g. MAP_SYNC is dangerous to use with
1457 * MAP_SHARED as you don't know which consistency model
1458 * you will get. We silently ignore unsupported flags
1459 * with MAP_SHARED to preserve backward compatibility.
1461 flags &= LEGACY_MAP_MASK;
1463 case MAP_SHARED_VALIDATE:
1464 if (flags & ~flags_mask)
1466 if (prot & PROT_WRITE) {
1467 if (!(file->f_mode & FMODE_WRITE))
1469 if (IS_SWAPFILE(file->f_mapping->host))
1474 * Make sure we don't allow writing to an append-only
1477 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1481 * Make sure there are no mandatory locks on the file.
1483 if (locks_verify_locked(file))
1486 vm_flags |= VM_SHARED | VM_MAYSHARE;
1487 if (!(file->f_mode & FMODE_WRITE))
1488 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1492 if (!(file->f_mode & FMODE_READ))
1494 if (path_noexec(&file->f_path)) {
1495 if (vm_flags & VM_EXEC)
1497 vm_flags &= ~VM_MAYEXEC;
1500 if (!file->f_op->mmap)
1502 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1510 switch (flags & MAP_TYPE) {
1512 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1518 vm_flags |= VM_SHARED | VM_MAYSHARE;
1522 * Set pgoff according to addr for anon_vma.
1524 pgoff = addr >> PAGE_SHIFT;
1532 * Set 'VM_NORESERVE' if we should not account for the
1533 * memory use of this mapping.
1535 if (flags & MAP_NORESERVE) {
1536 /* We honor MAP_NORESERVE if allowed to overcommit */
1537 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1538 vm_flags |= VM_NORESERVE;
1540 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1541 if (file && is_file_hugepages(file))
1542 vm_flags |= VM_NORESERVE;
1545 addr = mmap_region(file, addr, len, vm_flags, pgoff, uf);
1546 if (!IS_ERR_VALUE(addr) &&
1547 ((vm_flags & VM_LOCKED) ||
1548 (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1553 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1554 unsigned long prot, unsigned long flags,
1555 unsigned long fd, unsigned long pgoff)
1557 struct file *file = NULL;
1558 unsigned long retval;
1560 addr = untagged_addr(addr);
1562 if (!(flags & MAP_ANONYMOUS)) {
1563 audit_mmap_fd(fd, flags);
1567 if (is_file_hugepages(file))
1568 len = ALIGN(len, huge_page_size(hstate_file(file)));
1570 if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file)))
1572 } else if (flags & MAP_HUGETLB) {
1573 struct user_struct *user = NULL;
1576 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1580 len = ALIGN(len, huge_page_size(hs));
1582 * VM_NORESERVE is used because the reservations will be
1583 * taken when vm_ops->mmap() is called
1584 * A dummy user value is used because we are not locking
1585 * memory so no accounting is necessary
1587 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1589 &user, HUGETLB_ANONHUGE_INODE,
1590 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1592 return PTR_ERR(file);
1595 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1597 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1604 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1605 unsigned long, prot, unsigned long, flags,
1606 unsigned long, fd, unsigned long, pgoff)
1608 return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1611 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1612 struct mmap_arg_struct {
1616 unsigned long flags;
1618 unsigned long offset;
1621 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1623 struct mmap_arg_struct a;
1625 if (copy_from_user(&a, arg, sizeof(a)))
1627 if (offset_in_page(a.offset))
1630 return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1631 a.offset >> PAGE_SHIFT);
1633 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1636 * Some shared mappings will want the pages marked read-only
1637 * to track write events. If so, we'll downgrade vm_page_prot
1638 * to the private version (using protection_map[] without the
1641 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)
1643 vm_flags_t vm_flags = vma->vm_flags;
1644 const struct vm_operations_struct *vm_ops = vma->vm_ops;
1646 /* If it was private or non-writable, the write bit is already clear */
1647 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1650 /* The backer wishes to know when pages are first written to? */
1651 if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite))
1654 /* The open routine did something to the protections that pgprot_modify
1655 * won't preserve? */
1656 if (pgprot_val(vm_page_prot) !=
1657 pgprot_val(vm_pgprot_modify(vm_page_prot, vm_flags)))
1660 /* Do we need to track softdirty? */
1661 if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY))
1664 /* Specialty mapping? */
1665 if (vm_flags & VM_PFNMAP)
1668 /* Can the mapping track the dirty pages? */
1669 return vma->vm_file && vma->vm_file->f_mapping &&
1670 mapping_cap_account_dirty(vma->vm_file->f_mapping);
1674 * We account for memory if it's a private writeable mapping,
1675 * not hugepages and VM_NORESERVE wasn't set.
1677 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1680 * hugetlb has its own accounting separate from the core VM
1681 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1683 if (file && is_file_hugepages(file))
1686 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1689 unsigned long mmap_region(struct file *file, unsigned long addr,
1690 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
1691 struct list_head *uf)
1693 struct mm_struct *mm = current->mm;
1694 struct vm_area_struct *vma, *prev;
1696 struct rb_node **rb_link, *rb_parent;
1697 unsigned long charged = 0;
1699 /* Check against address space limit. */
1700 if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
1701 unsigned long nr_pages;
1704 * MAP_FIXED may remove pages of mappings that intersects with
1705 * requested mapping. Account for the pages it would unmap.
1707 nr_pages = count_vma_pages_range(mm, addr, addr + len);
1709 if (!may_expand_vm(mm, vm_flags,
1710 (len >> PAGE_SHIFT) - nr_pages))
1714 /* Clear old maps */
1715 while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
1717 if (do_munmap(mm, addr, len, uf))
1722 * Private writable mapping: check memory availability
1724 if (accountable_mapping(file, vm_flags)) {
1725 charged = len >> PAGE_SHIFT;
1726 if (security_vm_enough_memory_mm(mm, charged))
1728 vm_flags |= VM_ACCOUNT;
1732 * Can we just expand an old mapping?
1734 vma = vma_merge(mm, prev, addr, addr + len, vm_flags,
1735 NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX);
1740 * Determine the object being mapped and call the appropriate
1741 * specific mapper. the address has already been validated, but
1742 * not unmapped, but the maps are removed from the list.
1744 vma = vm_area_alloc(mm);
1750 vma->vm_start = addr;
1751 vma->vm_end = addr + len;
1752 vma->vm_flags = vm_flags;
1753 vma->vm_page_prot = vm_get_page_prot(vm_flags);
1754 vma->vm_pgoff = pgoff;
1757 if (vm_flags & VM_DENYWRITE) {
1758 error = deny_write_access(file);
1762 if (vm_flags & VM_SHARED) {
1763 error = mapping_map_writable(file->f_mapping);
1765 goto allow_write_and_free_vma;
1768 /* ->mmap() can change vma->vm_file, but must guarantee that
1769 * vma_link() below can deny write-access if VM_DENYWRITE is set
1770 * and map writably if VM_SHARED is set. This usually means the
1771 * new file must not have been exposed to user-space, yet.
1773 vma->vm_file = get_file(file);
1774 error = call_mmap(file, vma);
1776 goto unmap_and_free_vma;
1778 /* Can addr have changed??
1780 * Answer: Yes, several device drivers can do it in their
1781 * f_op->mmap method. -DaveM
1782 * Bug: If addr is changed, prev, rb_link, rb_parent should
1783 * be updated for vma_link()
1785 WARN_ON_ONCE(addr != vma->vm_start);
1787 addr = vma->vm_start;
1788 vm_flags = vma->vm_flags;
1789 } else if (vm_flags & VM_SHARED) {
1790 error = shmem_zero_setup(vma);
1794 vma_set_anonymous(vma);
1797 vma_link(mm, vma, prev, rb_link, rb_parent);
1798 /* Once vma denies write, undo our temporary denial count */
1800 if (vm_flags & VM_SHARED)
1801 mapping_unmap_writable(file->f_mapping);
1802 if (vm_flags & VM_DENYWRITE)
1803 allow_write_access(file);
1805 file = vma->vm_file;
1807 perf_event_mmap(vma);
1809 vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
1810 if (vm_flags & VM_LOCKED) {
1811 if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) ||
1812 is_vm_hugetlb_page(vma) ||
1813 vma == get_gate_vma(current->mm))
1814 vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
1816 mm->locked_vm += (len >> PAGE_SHIFT);
1823 * New (or expanded) vma always get soft dirty status.
1824 * Otherwise user-space soft-dirty page tracker won't
1825 * be able to distinguish situation when vma area unmapped,
1826 * then new mapped in-place (which must be aimed as
1827 * a completely new data area).
1829 vma->vm_flags |= VM_SOFTDIRTY;
1831 vma_set_page_prot(vma);
1836 vma->vm_file = NULL;
1839 /* Undo any partial mapping done by a device driver. */
1840 unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1842 if (vm_flags & VM_SHARED)
1843 mapping_unmap_writable(file->f_mapping);
1844 allow_write_and_free_vma:
1845 if (vm_flags & VM_DENYWRITE)
1846 allow_write_access(file);
1851 vm_unacct_memory(charged);
1855 unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1858 * We implement the search by looking for an rbtree node that
1859 * immediately follows a suitable gap. That is,
1860 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1861 * - gap_end = vma->vm_start >= info->low_limit + length;
1862 * - gap_end - gap_start >= length
1865 struct mm_struct *mm = current->mm;
1866 struct vm_area_struct *vma;
1867 unsigned long length, low_limit, high_limit, gap_start, gap_end;
1869 /* Adjust search length to account for worst case alignment overhead */
1870 length = info->length + info->align_mask;
1871 if (length < info->length)
1874 /* Adjust search limits by the desired length */
1875 if (info->high_limit < length)
1877 high_limit = info->high_limit - length;
1879 if (info->low_limit > high_limit)
1881 low_limit = info->low_limit + length;
1883 /* Check if rbtree root looks promising */
1884 if (RB_EMPTY_ROOT(&mm->mm_rb))
1886 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1887 if (vma->rb_subtree_gap < length)
1891 /* Visit left subtree if it looks promising */
1892 gap_end = vm_start_gap(vma);
1893 if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1894 struct vm_area_struct *left =
1895 rb_entry(vma->vm_rb.rb_left,
1896 struct vm_area_struct, vm_rb);
1897 if (left->rb_subtree_gap >= length) {
1903 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
1905 /* Check if current node has a suitable gap */
1906 if (gap_start > high_limit)
1908 if (gap_end >= low_limit &&
1909 gap_end > gap_start && gap_end - gap_start >= length)
1912 /* Visit right subtree if it looks promising */
1913 if (vma->vm_rb.rb_right) {
1914 struct vm_area_struct *right =
1915 rb_entry(vma->vm_rb.rb_right,
1916 struct vm_area_struct, vm_rb);
1917 if (right->rb_subtree_gap >= length) {
1923 /* Go back up the rbtree to find next candidate node */
1925 struct rb_node *prev = &vma->vm_rb;
1926 if (!rb_parent(prev))
1928 vma = rb_entry(rb_parent(prev),
1929 struct vm_area_struct, vm_rb);
1930 if (prev == vma->vm_rb.rb_left) {
1931 gap_start = vm_end_gap(vma->vm_prev);
1932 gap_end = vm_start_gap(vma);
1939 /* Check highest gap, which does not precede any rbtree node */
1940 gap_start = mm->highest_vm_end;
1941 gap_end = ULONG_MAX; /* Only for VM_BUG_ON below */
1942 if (gap_start > high_limit)
1946 /* We found a suitable gap. Clip it with the original low_limit. */
1947 if (gap_start < info->low_limit)
1948 gap_start = info->low_limit;
1950 /* Adjust gap address to the desired alignment */
1951 gap_start += (info->align_offset - gap_start) & info->align_mask;
1953 VM_BUG_ON(gap_start + info->length > info->high_limit);
1954 VM_BUG_ON(gap_start + info->length > gap_end);
1958 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1960 struct mm_struct *mm = current->mm;
1961 struct vm_area_struct *vma;
1962 unsigned long length, low_limit, high_limit, gap_start, gap_end;
1964 /* Adjust search length to account for worst case alignment overhead */
1965 length = info->length + info->align_mask;
1966 if (length < info->length)
1970 * Adjust search limits by the desired length.
1971 * See implementation comment at top of unmapped_area().
1973 gap_end = info->high_limit;
1974 if (gap_end < length)
1976 high_limit = gap_end - length;
1978 if (info->low_limit > high_limit)
1980 low_limit = info->low_limit + length;
1982 /* Check highest gap, which does not precede any rbtree node */
1983 gap_start = mm->highest_vm_end;
1984 if (gap_start <= high_limit)
1987 /* Check if rbtree root looks promising */
1988 if (RB_EMPTY_ROOT(&mm->mm_rb))
1990 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1991 if (vma->rb_subtree_gap < length)
1995 /* Visit right subtree if it looks promising */
1996 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
1997 if (gap_start <= high_limit && vma->vm_rb.rb_right) {
1998 struct vm_area_struct *right =
1999 rb_entry(vma->vm_rb.rb_right,
2000 struct vm_area_struct, vm_rb);
2001 if (right->rb_subtree_gap >= length) {
2008 /* Check if current node has a suitable gap */
2009 gap_end = vm_start_gap(vma);
2010 if (gap_end < low_limit)
2012 if (gap_start <= high_limit &&
2013 gap_end > gap_start && gap_end - gap_start >= length)
2016 /* Visit left subtree if it looks promising */
2017 if (vma->vm_rb.rb_left) {
2018 struct vm_area_struct *left =
2019 rb_entry(vma->vm_rb.rb_left,
2020 struct vm_area_struct, vm_rb);
2021 if (left->rb_subtree_gap >= length) {
2027 /* Go back up the rbtree to find next candidate node */
2029 struct rb_node *prev = &vma->vm_rb;
2030 if (!rb_parent(prev))
2032 vma = rb_entry(rb_parent(prev),
2033 struct vm_area_struct, vm_rb);
2034 if (prev == vma->vm_rb.rb_right) {
2035 gap_start = vma->vm_prev ?
2036 vm_end_gap(vma->vm_prev) : 0;
2043 /* We found a suitable gap. Clip it with the original high_limit. */
2044 if (gap_end > info->high_limit)
2045 gap_end = info->high_limit;
2048 /* Compute highest gap address at the desired alignment */
2049 gap_end -= info->length;
2050 gap_end -= (gap_end - info->align_offset) & info->align_mask;
2052 VM_BUG_ON(gap_end < info->low_limit);
2053 VM_BUG_ON(gap_end < gap_start);
2058 #ifndef arch_get_mmap_end
2059 #define arch_get_mmap_end(addr) (TASK_SIZE)
2062 #ifndef arch_get_mmap_base
2063 #define arch_get_mmap_base(addr, base) (base)
2066 /* Get an address range which is currently unmapped.
2067 * For shmat() with addr=0.
2069 * Ugly calling convention alert:
2070 * Return value with the low bits set means error value,
2072 * if (ret & ~PAGE_MASK)
2075 * This function "knows" that -ENOMEM has the bits set.
2077 #ifndef HAVE_ARCH_UNMAPPED_AREA
2079 arch_get_unmapped_area(struct file *filp, unsigned long addr,
2080 unsigned long len, unsigned long pgoff, unsigned long flags)
2082 struct mm_struct *mm = current->mm;
2083 struct vm_area_struct *vma, *prev;
2084 struct vm_unmapped_area_info info;
2085 const unsigned long mmap_end = arch_get_mmap_end(addr);
2087 if (len > mmap_end - mmap_min_addr)
2090 if (flags & MAP_FIXED)
2094 addr = PAGE_ALIGN(addr);
2095 vma = find_vma_prev(mm, addr, &prev);
2096 if (mmap_end - len >= addr && addr >= mmap_min_addr &&
2097 (!vma || addr + len <= vm_start_gap(vma)) &&
2098 (!prev || addr >= vm_end_gap(prev)))
2104 info.low_limit = mm->mmap_base;
2105 info.high_limit = mmap_end;
2106 info.align_mask = 0;
2107 return vm_unmapped_area(&info);
2112 * This mmap-allocator allocates new areas top-down from below the
2113 * stack's low limit (the base):
2115 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
2117 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
2118 unsigned long len, unsigned long pgoff,
2119 unsigned long flags)
2121 struct vm_area_struct *vma, *prev;
2122 struct mm_struct *mm = current->mm;
2123 struct vm_unmapped_area_info info;
2124 const unsigned long mmap_end = arch_get_mmap_end(addr);
2126 /* requested length too big for entire address space */
2127 if (len > mmap_end - mmap_min_addr)
2130 if (flags & MAP_FIXED)
2133 /* requesting a specific address */
2135 addr = PAGE_ALIGN(addr);
2136 vma = find_vma_prev(mm, addr, &prev);
2137 if (mmap_end - len >= addr && addr >= mmap_min_addr &&
2138 (!vma || addr + len <= vm_start_gap(vma)) &&
2139 (!prev || addr >= vm_end_gap(prev)))
2143 info.flags = VM_UNMAPPED_AREA_TOPDOWN;
2145 info.low_limit = max(PAGE_SIZE, mmap_min_addr);
2146 info.high_limit = arch_get_mmap_base(addr, mm->mmap_base);
2147 info.align_mask = 0;
2148 addr = vm_unmapped_area(&info);
2151 * A failed mmap() very likely causes application failure,
2152 * so fall back to the bottom-up function here. This scenario
2153 * can happen with large stack limits and large mmap()
2156 if (offset_in_page(addr)) {
2157 VM_BUG_ON(addr != -ENOMEM);
2159 info.low_limit = TASK_UNMAPPED_BASE;
2160 info.high_limit = mmap_end;
2161 addr = vm_unmapped_area(&info);
2169 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
2170 unsigned long pgoff, unsigned long flags)
2172 unsigned long (*get_area)(struct file *, unsigned long,
2173 unsigned long, unsigned long, unsigned long);
2175 unsigned long error = arch_mmap_check(addr, len, flags);
2179 /* Careful about overflows.. */
2180 if (len > TASK_SIZE)
2183 get_area = current->mm->get_unmapped_area;
2185 if (file->f_op->get_unmapped_area)
2186 get_area = file->f_op->get_unmapped_area;
2187 } else if (flags & MAP_SHARED) {
2189 * mmap_region() will call shmem_zero_setup() to create a file,
2190 * so use shmem's get_unmapped_area in case it can be huge.
2191 * do_mmap_pgoff() will clear pgoff, so match alignment.
2194 get_area = shmem_get_unmapped_area;
2197 addr = get_area(file, addr, len, pgoff, flags);
2198 if (IS_ERR_VALUE(addr))
2201 if (addr > TASK_SIZE - len)
2203 if (offset_in_page(addr))
2206 error = security_mmap_addr(addr);
2207 return error ? error : addr;
2210 EXPORT_SYMBOL(get_unmapped_area);
2212 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2213 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
2215 struct rb_node *rb_node;
2216 struct vm_area_struct *vma;
2218 /* Check the cache first. */
2219 vma = vmacache_find(mm, addr);
2223 rb_node = mm->mm_rb.rb_node;
2226 struct vm_area_struct *tmp;
2228 tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2230 if (tmp->vm_end > addr) {
2232 if (tmp->vm_start <= addr)
2234 rb_node = rb_node->rb_left;
2236 rb_node = rb_node->rb_right;
2240 vmacache_update(addr, vma);
2244 EXPORT_SYMBOL(find_vma);
2247 * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2249 struct vm_area_struct *
2250 find_vma_prev(struct mm_struct *mm, unsigned long addr,
2251 struct vm_area_struct **pprev)
2253 struct vm_area_struct *vma;
2255 vma = find_vma(mm, addr);
2257 *pprev = vma->vm_prev;
2259 struct rb_node *rb_node = rb_last(&mm->mm_rb);
2261 *pprev = rb_node ? rb_entry(rb_node, struct vm_area_struct, vm_rb) : NULL;
2267 * Verify that the stack growth is acceptable and
2268 * update accounting. This is shared with both the
2269 * grow-up and grow-down cases.
2271 static int acct_stack_growth(struct vm_area_struct *vma,
2272 unsigned long size, unsigned long grow)
2274 struct mm_struct *mm = vma->vm_mm;
2275 unsigned long new_start;
2277 /* address space limit tests */
2278 if (!may_expand_vm(mm, vma->vm_flags, grow))
2281 /* Stack limit test */
2282 if (size > rlimit(RLIMIT_STACK))
2285 /* mlock limit tests */
2286 if (vma->vm_flags & VM_LOCKED) {
2287 unsigned long locked;
2288 unsigned long limit;
2289 locked = mm->locked_vm + grow;
2290 limit = rlimit(RLIMIT_MEMLOCK);
2291 limit >>= PAGE_SHIFT;
2292 if (locked > limit && !capable(CAP_IPC_LOCK))
2296 /* Check to ensure the stack will not grow into a hugetlb-only region */
2297 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2299 if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2303 * Overcommit.. This must be the final test, as it will
2304 * update security statistics.
2306 if (security_vm_enough_memory_mm(mm, grow))
2312 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2314 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2315 * vma is the last one with address > vma->vm_end. Have to extend vma.
2317 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2319 struct mm_struct *mm = vma->vm_mm;
2320 struct vm_area_struct *next;
2321 unsigned long gap_addr;
2324 if (!(vma->vm_flags & VM_GROWSUP))
2327 /* Guard against exceeding limits of the address space. */
2328 address &= PAGE_MASK;
2329 if (address >= (TASK_SIZE & PAGE_MASK))
2331 address += PAGE_SIZE;
2333 /* Enforce stack_guard_gap */
2334 gap_addr = address + stack_guard_gap;
2336 /* Guard against overflow */
2337 if (gap_addr < address || gap_addr > TASK_SIZE)
2338 gap_addr = TASK_SIZE;
2340 next = vma->vm_next;
2341 if (next && next->vm_start < gap_addr &&
2342 (next->vm_flags & (VM_WRITE|VM_READ|VM_EXEC))) {
2343 if (!(next->vm_flags & VM_GROWSUP))
2345 /* Check that both stack segments have the same anon_vma? */
2348 /* We must make sure the anon_vma is allocated. */
2349 if (unlikely(anon_vma_prepare(vma)))
2353 * vma->vm_start/vm_end cannot change under us because the caller
2354 * is required to hold the mmap_sem in read mode. We need the
2355 * anon_vma lock to serialize against concurrent expand_stacks.
2357 anon_vma_lock_write(vma->anon_vma);
2359 /* Somebody else might have raced and expanded it already */
2360 if (address > vma->vm_end) {
2361 unsigned long size, grow;
2363 size = address - vma->vm_start;
2364 grow = (address - vma->vm_end) >> PAGE_SHIFT;
2367 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2368 error = acct_stack_growth(vma, size, grow);
2371 * vma_gap_update() doesn't support concurrent
2372 * updates, but we only hold a shared mmap_sem
2373 * lock here, so we need to protect against
2374 * concurrent vma expansions.
2375 * anon_vma_lock_write() doesn't help here, as
2376 * we don't guarantee that all growable vmas
2377 * in a mm share the same root anon vma.
2378 * So, we reuse mm->page_table_lock to guard
2379 * against concurrent vma expansions.
2381 spin_lock(&mm->page_table_lock);
2382 if (vma->vm_flags & VM_LOCKED)
2383 mm->locked_vm += grow;
2384 vm_stat_account(mm, vma->vm_flags, grow);
2385 anon_vma_interval_tree_pre_update_vma(vma);
2386 vma->vm_end = address;
2387 anon_vma_interval_tree_post_update_vma(vma);
2389 vma_gap_update(vma->vm_next);
2391 mm->highest_vm_end = vm_end_gap(vma);
2392 spin_unlock(&mm->page_table_lock);
2394 perf_event_mmap(vma);
2398 anon_vma_unlock_write(vma->anon_vma);
2399 khugepaged_enter_vma_merge(vma, vma->vm_flags);
2403 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2406 * vma is the first one with address < vma->vm_start. Have to extend vma.
2408 int expand_downwards(struct vm_area_struct *vma,
2409 unsigned long address)
2411 struct mm_struct *mm = vma->vm_mm;
2412 struct vm_area_struct *prev;
2415 address &= PAGE_MASK;
2416 if (address < mmap_min_addr)
2419 /* Enforce stack_guard_gap */
2420 prev = vma->vm_prev;
2421 /* Check that both stack segments have the same anon_vma? */
2422 if (prev && !(prev->vm_flags & VM_GROWSDOWN) &&
2423 (prev->vm_flags & (VM_WRITE|VM_READ|VM_EXEC))) {
2424 if (address - prev->vm_end < stack_guard_gap)
2428 /* We must make sure the anon_vma is allocated. */
2429 if (unlikely(anon_vma_prepare(vma)))
2433 * vma->vm_start/vm_end cannot change under us because the caller
2434 * is required to hold the mmap_sem in read mode. We need the
2435 * anon_vma lock to serialize against concurrent expand_stacks.
2437 anon_vma_lock_write(vma->anon_vma);
2439 /* Somebody else might have raced and expanded it already */
2440 if (address < vma->vm_start) {
2441 unsigned long size, grow;
2443 size = vma->vm_end - address;
2444 grow = (vma->vm_start - address) >> PAGE_SHIFT;
2447 if (grow <= vma->vm_pgoff) {
2448 error = acct_stack_growth(vma, size, grow);
2451 * vma_gap_update() doesn't support concurrent
2452 * updates, but we only hold a shared mmap_sem
2453 * lock here, so we need to protect against
2454 * concurrent vma expansions.
2455 * anon_vma_lock_write() doesn't help here, as
2456 * we don't guarantee that all growable vmas
2457 * in a mm share the same root anon vma.
2458 * So, we reuse mm->page_table_lock to guard
2459 * against concurrent vma expansions.
2461 spin_lock(&mm->page_table_lock);
2462 if (vma->vm_flags & VM_LOCKED)
2463 mm->locked_vm += grow;
2464 vm_stat_account(mm, vma->vm_flags, grow);
2465 anon_vma_interval_tree_pre_update_vma(vma);
2466 vma->vm_start = address;
2467 vma->vm_pgoff -= grow;
2468 anon_vma_interval_tree_post_update_vma(vma);
2469 vma_gap_update(vma);
2470 spin_unlock(&mm->page_table_lock);
2472 perf_event_mmap(vma);
2476 anon_vma_unlock_write(vma->anon_vma);
2477 khugepaged_enter_vma_merge(vma, vma->vm_flags);
2482 /* enforced gap between the expanding stack and other mappings. */
2483 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT;
2485 static int __init cmdline_parse_stack_guard_gap(char *p)
2490 val = simple_strtoul(p, &endptr, 10);
2492 stack_guard_gap = val << PAGE_SHIFT;
2496 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap);
2498 #ifdef CONFIG_STACK_GROWSUP
2499 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2501 return expand_upwards(vma, address);
2504 struct vm_area_struct *
2505 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2507 struct vm_area_struct *vma, *prev;
2510 vma = find_vma_prev(mm, addr, &prev);
2511 if (vma && (vma->vm_start <= addr))
2513 /* don't alter vm_end if the coredump is running */
2514 if (!prev || !mmget_still_valid(mm) || expand_stack(prev, addr))
2516 if (prev->vm_flags & VM_LOCKED)
2517 populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2521 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2523 return expand_downwards(vma, address);
2526 struct vm_area_struct *
2527 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2529 struct vm_area_struct *vma;
2530 unsigned long start;
2533 vma = find_vma(mm, addr);
2536 if (vma->vm_start <= addr)
2538 if (!(vma->vm_flags & VM_GROWSDOWN))
2540 /* don't alter vm_start if the coredump is running */
2541 if (!mmget_still_valid(mm))
2543 start = vma->vm_start;
2544 if (expand_stack(vma, addr))
2546 if (vma->vm_flags & VM_LOCKED)
2547 populate_vma_page_range(vma, addr, start, NULL);
2552 EXPORT_SYMBOL_GPL(find_extend_vma);
2555 * Ok - we have the memory areas we should free on the vma list,
2556 * so release them, and do the vma updates.
2558 * Called with the mm semaphore held.
2560 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2562 unsigned long nr_accounted = 0;
2564 /* Update high watermark before we lower total_vm */
2565 update_hiwater_vm(mm);
2567 long nrpages = vma_pages(vma);
2569 if (vma->vm_flags & VM_ACCOUNT)
2570 nr_accounted += nrpages;
2571 vm_stat_account(mm, vma->vm_flags, -nrpages);
2572 vma = remove_vma(vma);
2574 vm_unacct_memory(nr_accounted);
2579 * Get rid of page table information in the indicated region.
2581 * Called with the mm semaphore held.
2583 static void unmap_region(struct mm_struct *mm,
2584 struct vm_area_struct *vma, struct vm_area_struct *prev,
2585 unsigned long start, unsigned long end)
2587 struct vm_area_struct *next = prev ? prev->vm_next : mm->mmap;
2588 struct mmu_gather tlb;
2591 tlb_gather_mmu(&tlb, mm, start, end);
2592 update_hiwater_rss(mm);
2593 unmap_vmas(&tlb, vma, start, end);
2594 free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2595 next ? next->vm_start : USER_PGTABLES_CEILING);
2596 tlb_finish_mmu(&tlb, start, end);
2600 * Create a list of vma's touched by the unmap, removing them from the mm's
2601 * vma list as we go..
2604 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2605 struct vm_area_struct *prev, unsigned long end)
2607 struct vm_area_struct **insertion_point;
2608 struct vm_area_struct *tail_vma = NULL;
2610 insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2611 vma->vm_prev = NULL;
2613 vma_rb_erase(vma, &mm->mm_rb);
2617 } while (vma && vma->vm_start < end);
2618 *insertion_point = vma;
2620 vma->vm_prev = prev;
2621 vma_gap_update(vma);
2623 mm->highest_vm_end = prev ? vm_end_gap(prev) : 0;
2624 tail_vma->vm_next = NULL;
2626 /* Kill the cache */
2627 vmacache_invalidate(mm);
2631 * __split_vma() bypasses sysctl_max_map_count checking. We use this where it
2632 * has already been checked or doesn't make sense to fail.
2634 int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2635 unsigned long addr, int new_below)
2637 struct vm_area_struct *new;
2640 if (vma->vm_ops && vma->vm_ops->split) {
2641 err = vma->vm_ops->split(vma, addr);
2646 new = vm_area_dup(vma);
2653 new->vm_start = addr;
2654 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2657 err = vma_dup_policy(vma, new);
2661 err = anon_vma_clone(new, vma);
2666 get_file(new->vm_file);
2668 if (new->vm_ops && new->vm_ops->open)
2669 new->vm_ops->open(new);
2672 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2673 ((addr - new->vm_start) >> PAGE_SHIFT), new);
2675 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2681 /* Clean everything up if vma_adjust failed. */
2682 if (new->vm_ops && new->vm_ops->close)
2683 new->vm_ops->close(new);
2686 unlink_anon_vmas(new);
2688 mpol_put(vma_policy(new));
2695 * Split a vma into two pieces at address 'addr', a new vma is allocated
2696 * either for the first part or the tail.
2698 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2699 unsigned long addr, int new_below)
2701 if (mm->map_count >= sysctl_max_map_count)
2704 return __split_vma(mm, vma, addr, new_below);
2707 /* Munmap is split into 2 main parts -- this part which finds
2708 * what needs doing, and the areas themselves, which do the
2709 * work. This now handles partial unmappings.
2710 * Jeremy Fitzhardinge <jeremy@goop.org>
2712 int __do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2713 struct list_head *uf, bool downgrade)
2716 struct vm_area_struct *vma, *prev, *last;
2718 if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2721 len = PAGE_ALIGN(len);
2727 * arch_unmap() might do unmaps itself. It must be called
2728 * and finish any rbtree manipulation before this code
2729 * runs and also starts to manipulate the rbtree.
2731 arch_unmap(mm, start, end);
2733 /* Find the first overlapping VMA */
2734 vma = find_vma(mm, start);
2737 prev = vma->vm_prev;
2738 /* we have start < vma->vm_end */
2740 /* if it doesn't overlap, we have nothing.. */
2741 if (vma->vm_start >= end)
2745 * If we need to split any vma, do it now to save pain later.
2747 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2748 * unmapped vm_area_struct will remain in use: so lower split_vma
2749 * places tmp vma above, and higher split_vma places tmp vma below.
2751 if (start > vma->vm_start) {
2755 * Make sure that map_count on return from munmap() will
2756 * not exceed its limit; but let map_count go just above
2757 * its limit temporarily, to help free resources as expected.
2759 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2762 error = __split_vma(mm, vma, start, 0);
2768 /* Does it split the last one? */
2769 last = find_vma(mm, end);
2770 if (last && end > last->vm_start) {
2771 int error = __split_vma(mm, last, end, 1);
2775 vma = prev ? prev->vm_next : mm->mmap;
2779 * If userfaultfd_unmap_prep returns an error the vmas
2780 * will remain splitted, but userland will get a
2781 * highly unexpected error anyway. This is no
2782 * different than the case where the first of the two
2783 * __split_vma fails, but we don't undo the first
2784 * split, despite we could. This is unlikely enough
2785 * failure that it's not worth optimizing it for.
2787 int error = userfaultfd_unmap_prep(vma, start, end, uf);
2793 * unlock any mlock()ed ranges before detaching vmas
2795 if (mm->locked_vm) {
2796 struct vm_area_struct *tmp = vma;
2797 while (tmp && tmp->vm_start < end) {
2798 if (tmp->vm_flags & VM_LOCKED) {
2799 mm->locked_vm -= vma_pages(tmp);
2800 munlock_vma_pages_all(tmp);
2807 /* Detach vmas from rbtree */
2808 detach_vmas_to_be_unmapped(mm, vma, prev, end);
2811 downgrade_write(&mm->mmap_sem);
2813 unmap_region(mm, vma, prev, start, end);
2815 /* Fix up all other VM information */
2816 remove_vma_list(mm, vma);
2818 return downgrade ? 1 : 0;
2821 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2822 struct list_head *uf)
2824 return __do_munmap(mm, start, len, uf, false);
2827 static int __vm_munmap(unsigned long start, size_t len, bool downgrade)
2830 struct mm_struct *mm = current->mm;
2833 if (down_write_killable(&mm->mmap_sem))
2836 ret = __do_munmap(mm, start, len, &uf, downgrade);
2838 * Returning 1 indicates mmap_sem is downgraded.
2839 * But 1 is not legal return value of vm_munmap() and munmap(), reset
2840 * it to 0 before return.
2843 up_read(&mm->mmap_sem);
2846 up_write(&mm->mmap_sem);
2848 userfaultfd_unmap_complete(mm, &uf);
2852 int vm_munmap(unsigned long start, size_t len)
2854 return __vm_munmap(start, len, false);
2856 EXPORT_SYMBOL(vm_munmap);
2858 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2860 addr = untagged_addr(addr);
2861 profile_munmap(addr);
2862 return __vm_munmap(addr, len, true);
2867 * Emulation of deprecated remap_file_pages() syscall.
2869 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
2870 unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
2873 struct mm_struct *mm = current->mm;
2874 struct vm_area_struct *vma;
2875 unsigned long populate = 0;
2876 unsigned long ret = -EINVAL;
2879 pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/vm/remap_file_pages.rst.\n",
2880 current->comm, current->pid);
2884 start = start & PAGE_MASK;
2885 size = size & PAGE_MASK;
2887 if (start + size <= start)
2890 /* Does pgoff wrap? */
2891 if (pgoff + (size >> PAGE_SHIFT) < pgoff)
2894 if (down_write_killable(&mm->mmap_sem))
2897 vma = find_vma(mm, start);
2899 if (!vma || !(vma->vm_flags & VM_SHARED))
2902 if (start < vma->vm_start)
2905 if (start + size > vma->vm_end) {
2906 struct vm_area_struct *next;
2908 for (next = vma->vm_next; next; next = next->vm_next) {
2909 /* hole between vmas ? */
2910 if (next->vm_start != next->vm_prev->vm_end)
2913 if (next->vm_file != vma->vm_file)
2916 if (next->vm_flags != vma->vm_flags)
2919 if (start + size <= next->vm_end)
2927 prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
2928 prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
2929 prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
2931 flags &= MAP_NONBLOCK;
2932 flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
2933 if (vma->vm_flags & VM_LOCKED) {
2934 struct vm_area_struct *tmp;
2935 flags |= MAP_LOCKED;
2937 /* drop PG_Mlocked flag for over-mapped range */
2938 for (tmp = vma; tmp->vm_start >= start + size;
2939 tmp = tmp->vm_next) {
2941 * Split pmd and munlock page on the border
2944 vma_adjust_trans_huge(tmp, start, start + size, 0);
2946 munlock_vma_pages_range(tmp,
2947 max(tmp->vm_start, start),
2948 min(tmp->vm_end, start + size));
2952 file = get_file(vma->vm_file);
2953 ret = do_mmap_pgoff(vma->vm_file, start, size,
2954 prot, flags, pgoff, &populate, NULL);
2957 up_write(&mm->mmap_sem);
2959 mm_populate(ret, populate);
2960 if (!IS_ERR_VALUE(ret))
2966 * this is really a simplified "do_mmap". it only handles
2967 * anonymous maps. eventually we may be able to do some
2968 * brk-specific accounting here.
2970 static int do_brk_flags(unsigned long addr, unsigned long len, unsigned long flags, struct list_head *uf)
2972 struct mm_struct *mm = current->mm;
2973 struct vm_area_struct *vma, *prev;
2974 struct rb_node **rb_link, *rb_parent;
2975 pgoff_t pgoff = addr >> PAGE_SHIFT;
2977 unsigned long mapped_addr;
2979 /* Until we need other flags, refuse anything except VM_EXEC. */
2980 if ((flags & (~VM_EXEC)) != 0)
2982 flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2984 mapped_addr = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2985 if (IS_ERR_VALUE(mapped_addr))
2988 error = mlock_future_check(mm, mm->def_flags, len);
2993 * Clear old maps. this also does some error checking for us
2995 while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
2997 if (do_munmap(mm, addr, len, uf))
3001 /* Check against address space limits *after* clearing old maps... */
3002 if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
3005 if (mm->map_count > sysctl_max_map_count)
3008 if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
3011 /* Can we just expand an old private anonymous mapping? */
3012 vma = vma_merge(mm, prev, addr, addr + len, flags,
3013 NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX);
3018 * create a vma struct for an anonymous mapping
3020 vma = vm_area_alloc(mm);
3022 vm_unacct_memory(len >> PAGE_SHIFT);
3026 vma_set_anonymous(vma);
3027 vma->vm_start = addr;
3028 vma->vm_end = addr + len;
3029 vma->vm_pgoff = pgoff;
3030 vma->vm_flags = flags;
3031 vma->vm_page_prot = vm_get_page_prot(flags);
3032 vma_link(mm, vma, prev, rb_link, rb_parent);
3034 perf_event_mmap(vma);
3035 mm->total_vm += len >> PAGE_SHIFT;
3036 mm->data_vm += len >> PAGE_SHIFT;
3037 if (flags & VM_LOCKED)
3038 mm->locked_vm += (len >> PAGE_SHIFT);
3039 vma->vm_flags |= VM_SOFTDIRTY;
3043 int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags)
3045 struct mm_struct *mm = current->mm;
3051 len = PAGE_ALIGN(request);
3057 if (down_write_killable(&mm->mmap_sem))
3060 ret = do_brk_flags(addr, len, flags, &uf);
3061 populate = ((mm->def_flags & VM_LOCKED) != 0);
3062 up_write(&mm->mmap_sem);
3063 userfaultfd_unmap_complete(mm, &uf);
3064 if (populate && !ret)
3065 mm_populate(addr, len);
3068 EXPORT_SYMBOL(vm_brk_flags);
3070 int vm_brk(unsigned long addr, unsigned long len)
3072 return vm_brk_flags(addr, len, 0);
3074 EXPORT_SYMBOL(vm_brk);
3076 /* Release all mmaps. */
3077 void exit_mmap(struct mm_struct *mm)
3079 struct mmu_gather tlb;
3080 struct vm_area_struct *vma;
3081 unsigned long nr_accounted = 0;
3083 /* mm's last user has gone, and its about to be pulled down */
3084 mmu_notifier_release(mm);
3086 if (unlikely(mm_is_oom_victim(mm))) {
3088 * Manually reap the mm to free as much memory as possible.
3089 * Then, as the oom reaper does, set MMF_OOM_SKIP to disregard
3090 * this mm from further consideration. Taking mm->mmap_sem for
3091 * write after setting MMF_OOM_SKIP will guarantee that the oom
3092 * reaper will not run on this mm again after mmap_sem is
3095 * Nothing can be holding mm->mmap_sem here and the above call
3096 * to mmu_notifier_release(mm) ensures mmu notifier callbacks in
3097 * __oom_reap_task_mm() will not block.
3099 * This needs to be done before calling munlock_vma_pages_all(),
3100 * which clears VM_LOCKED, otherwise the oom reaper cannot
3103 (void)__oom_reap_task_mm(mm);
3105 set_bit(MMF_OOM_SKIP, &mm->flags);
3106 down_write(&mm->mmap_sem);
3107 up_write(&mm->mmap_sem);
3110 if (mm->locked_vm) {
3113 if (vma->vm_flags & VM_LOCKED)
3114 munlock_vma_pages_all(vma);
3122 if (!vma) /* Can happen if dup_mmap() received an OOM */
3127 tlb_gather_mmu(&tlb, mm, 0, -1);
3128 /* update_hiwater_rss(mm) here? but nobody should be looking */
3129 /* Use -1 here to ensure all VMAs in the mm are unmapped */
3130 unmap_vmas(&tlb, vma, 0, -1);
3131 free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
3132 tlb_finish_mmu(&tlb, 0, -1);
3135 * Walk the list again, actually closing and freeing it,
3136 * with preemption enabled, without holding any MM locks.
3139 if (vma->vm_flags & VM_ACCOUNT)
3140 nr_accounted += vma_pages(vma);
3141 vma = remove_vma(vma);
3143 vm_unacct_memory(nr_accounted);
3146 /* Insert vm structure into process list sorted by address
3147 * and into the inode's i_mmap tree. If vm_file is non-NULL
3148 * then i_mmap_rwsem is taken here.
3150 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
3152 struct vm_area_struct *prev;
3153 struct rb_node **rb_link, *rb_parent;
3155 if (find_vma_links(mm, vma->vm_start, vma->vm_end,
3156 &prev, &rb_link, &rb_parent))
3158 if ((vma->vm_flags & VM_ACCOUNT) &&
3159 security_vm_enough_memory_mm(mm, vma_pages(vma)))
3163 * The vm_pgoff of a purely anonymous vma should be irrelevant
3164 * until its first write fault, when page's anon_vma and index
3165 * are set. But now set the vm_pgoff it will almost certainly
3166 * end up with (unless mremap moves it elsewhere before that
3167 * first wfault), so /proc/pid/maps tells a consistent story.
3169 * By setting it to reflect the virtual start address of the
3170 * vma, merges and splits can happen in a seamless way, just
3171 * using the existing file pgoff checks and manipulations.
3172 * Similarly in do_mmap_pgoff and in do_brk.
3174 if (vma_is_anonymous(vma)) {
3175 BUG_ON(vma->anon_vma);
3176 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
3179 vma_link(mm, vma, prev, rb_link, rb_parent);
3184 * Copy the vma structure to a new location in the same mm,
3185 * prior to moving page table entries, to effect an mremap move.
3187 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
3188 unsigned long addr, unsigned long len, pgoff_t pgoff,
3189 bool *need_rmap_locks)
3191 struct vm_area_struct *vma = *vmap;
3192 unsigned long vma_start = vma->vm_start;
3193 struct mm_struct *mm = vma->vm_mm;
3194 struct vm_area_struct *new_vma, *prev;
3195 struct rb_node **rb_link, *rb_parent;
3196 bool faulted_in_anon_vma = true;
3199 * If anonymous vma has not yet been faulted, update new pgoff
3200 * to match new location, to increase its chance of merging.
3202 if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
3203 pgoff = addr >> PAGE_SHIFT;
3204 faulted_in_anon_vma = false;
3207 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
3208 return NULL; /* should never get here */
3209 new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
3210 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
3211 vma->vm_userfaultfd_ctx);
3214 * Source vma may have been merged into new_vma
3216 if (unlikely(vma_start >= new_vma->vm_start &&
3217 vma_start < new_vma->vm_end)) {
3219 * The only way we can get a vma_merge with
3220 * self during an mremap is if the vma hasn't
3221 * been faulted in yet and we were allowed to
3222 * reset the dst vma->vm_pgoff to the
3223 * destination address of the mremap to allow
3224 * the merge to happen. mremap must change the
3225 * vm_pgoff linearity between src and dst vmas
3226 * (in turn preventing a vma_merge) to be
3227 * safe. It is only safe to keep the vm_pgoff
3228 * linear if there are no pages mapped yet.
3230 VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
3231 *vmap = vma = new_vma;
3233 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
3235 new_vma = vm_area_dup(vma);
3238 new_vma->vm_start = addr;
3239 new_vma->vm_end = addr + len;
3240 new_vma->vm_pgoff = pgoff;
3241 if (vma_dup_policy(vma, new_vma))
3243 if (anon_vma_clone(new_vma, vma))
3244 goto out_free_mempol;
3245 if (new_vma->vm_file)
3246 get_file(new_vma->vm_file);
3247 if (new_vma->vm_ops && new_vma->vm_ops->open)
3248 new_vma->vm_ops->open(new_vma);
3249 vma_link(mm, new_vma, prev, rb_link, rb_parent);
3250 *need_rmap_locks = false;
3255 mpol_put(vma_policy(new_vma));
3257 vm_area_free(new_vma);
3263 * Return true if the calling process may expand its vm space by the passed
3266 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
3268 if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
3271 if (is_data_mapping(flags) &&
3272 mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
3273 /* Workaround for Valgrind */
3274 if (rlimit(RLIMIT_DATA) == 0 &&
3275 mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
3278 pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n",
3279 current->comm, current->pid,
3280 (mm->data_vm + npages) << PAGE_SHIFT,
3281 rlimit(RLIMIT_DATA),
3282 ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data");
3284 if (!ignore_rlimit_data)
3291 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
3293 mm->total_vm += npages;
3295 if (is_exec_mapping(flags))
3296 mm->exec_vm += npages;
3297 else if (is_stack_mapping(flags))
3298 mm->stack_vm += npages;
3299 else if (is_data_mapping(flags))
3300 mm->data_vm += npages;
3303 static vm_fault_t special_mapping_fault(struct vm_fault *vmf);
3306 * Having a close hook prevents vma merging regardless of flags.
3308 static void special_mapping_close(struct vm_area_struct *vma)
3312 static const char *special_mapping_name(struct vm_area_struct *vma)
3314 return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3317 static int special_mapping_mremap(struct vm_area_struct *new_vma)
3319 struct vm_special_mapping *sm = new_vma->vm_private_data;
3321 if (WARN_ON_ONCE(current->mm != new_vma->vm_mm))
3325 return sm->mremap(sm, new_vma);
3330 static const struct vm_operations_struct special_mapping_vmops = {
3331 .close = special_mapping_close,
3332 .fault = special_mapping_fault,
3333 .mremap = special_mapping_mremap,
3334 .name = special_mapping_name,
3335 /* vDSO code relies that VVAR can't be accessed remotely */
3339 static const struct vm_operations_struct legacy_special_mapping_vmops = {
3340 .close = special_mapping_close,
3341 .fault = special_mapping_fault,
3344 static vm_fault_t special_mapping_fault(struct vm_fault *vmf)
3346 struct vm_area_struct *vma = vmf->vma;
3348 struct page **pages;
3350 if (vma->vm_ops == &legacy_special_mapping_vmops) {
3351 pages = vma->vm_private_data;
3353 struct vm_special_mapping *sm = vma->vm_private_data;
3356 return sm->fault(sm, vmf->vma, vmf);
3361 for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3365 struct page *page = *pages;
3371 return VM_FAULT_SIGBUS;
3374 static struct vm_area_struct *__install_special_mapping(
3375 struct mm_struct *mm,
3376 unsigned long addr, unsigned long len,
3377 unsigned long vm_flags, void *priv,
3378 const struct vm_operations_struct *ops)
3381 struct vm_area_struct *vma;
3383 vma = vm_area_alloc(mm);
3384 if (unlikely(vma == NULL))
3385 return ERR_PTR(-ENOMEM);
3387 vma->vm_start = addr;
3388 vma->vm_end = addr + len;
3390 vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
3391 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3394 vma->vm_private_data = priv;
3396 ret = insert_vm_struct(mm, vma);
3400 vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3402 perf_event_mmap(vma);
3408 return ERR_PTR(ret);
3411 bool vma_is_special_mapping(const struct vm_area_struct *vma,
3412 const struct vm_special_mapping *sm)
3414 return vma->vm_private_data == sm &&
3415 (vma->vm_ops == &special_mapping_vmops ||
3416 vma->vm_ops == &legacy_special_mapping_vmops);
3420 * Called with mm->mmap_sem held for writing.
3421 * Insert a new vma covering the given region, with the given flags.
3422 * Its pages are supplied by the given array of struct page *.
3423 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3424 * The region past the last page supplied will always produce SIGBUS.
3425 * The array pointer and the pages it points to are assumed to stay alive
3426 * for as long as this mapping might exist.
3428 struct vm_area_struct *_install_special_mapping(
3429 struct mm_struct *mm,
3430 unsigned long addr, unsigned long len,
3431 unsigned long vm_flags, const struct vm_special_mapping *spec)
3433 return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3434 &special_mapping_vmops);
3437 int install_special_mapping(struct mm_struct *mm,
3438 unsigned long addr, unsigned long len,
3439 unsigned long vm_flags, struct page **pages)
3441 struct vm_area_struct *vma = __install_special_mapping(
3442 mm, addr, len, vm_flags, (void *)pages,
3443 &legacy_special_mapping_vmops);
3445 return PTR_ERR_OR_ZERO(vma);
3448 static DEFINE_MUTEX(mm_all_locks_mutex);
3450 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3452 if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3454 * The LSB of head.next can't change from under us
3455 * because we hold the mm_all_locks_mutex.
3457 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem);
3459 * We can safely modify head.next after taking the
3460 * anon_vma->root->rwsem. If some other vma in this mm shares
3461 * the same anon_vma we won't take it again.
3463 * No need of atomic instructions here, head.next
3464 * can't change from under us thanks to the
3465 * anon_vma->root->rwsem.
3467 if (__test_and_set_bit(0, (unsigned long *)
3468 &anon_vma->root->rb_root.rb_root.rb_node))
3473 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3475 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3477 * AS_MM_ALL_LOCKS can't change from under us because
3478 * we hold the mm_all_locks_mutex.
3480 * Operations on ->flags have to be atomic because
3481 * even if AS_MM_ALL_LOCKS is stable thanks to the
3482 * mm_all_locks_mutex, there may be other cpus
3483 * changing other bitflags in parallel to us.
3485 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3487 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_sem);
3492 * This operation locks against the VM for all pte/vma/mm related
3493 * operations that could ever happen on a certain mm. This includes
3494 * vmtruncate, try_to_unmap, and all page faults.
3496 * The caller must take the mmap_sem in write mode before calling
3497 * mm_take_all_locks(). The caller isn't allowed to release the
3498 * mmap_sem until mm_drop_all_locks() returns.
3500 * mmap_sem in write mode is required in order to block all operations
3501 * that could modify pagetables and free pages without need of
3502 * altering the vma layout. It's also needed in write mode to avoid new
3503 * anon_vmas to be associated with existing vmas.
3505 * A single task can't take more than one mm_take_all_locks() in a row
3506 * or it would deadlock.
3508 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3509 * mapping->flags avoid to take the same lock twice, if more than one
3510 * vma in this mm is backed by the same anon_vma or address_space.
3512 * We take locks in following order, accordingly to comment at beginning
3514 * - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3516 * - all i_mmap_rwsem locks;
3517 * - all anon_vma->rwseml
3519 * We can take all locks within these types randomly because the VM code
3520 * doesn't nest them and we protected from parallel mm_take_all_locks() by
3521 * mm_all_locks_mutex.
3523 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3524 * that may have to take thousand of locks.
3526 * mm_take_all_locks() can fail if it's interrupted by signals.
3528 int mm_take_all_locks(struct mm_struct *mm)
3530 struct vm_area_struct *vma;
3531 struct anon_vma_chain *avc;
3533 BUG_ON(down_read_trylock(&mm->mmap_sem));
3535 mutex_lock(&mm_all_locks_mutex);
3537 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3538 if (signal_pending(current))
3540 if (vma->vm_file && vma->vm_file->f_mapping &&
3541 is_vm_hugetlb_page(vma))
3542 vm_lock_mapping(mm, vma->vm_file->f_mapping);
3545 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3546 if (signal_pending(current))
3548 if (vma->vm_file && vma->vm_file->f_mapping &&
3549 !is_vm_hugetlb_page(vma))
3550 vm_lock_mapping(mm, vma->vm_file->f_mapping);
3553 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3554 if (signal_pending(current))
3557 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3558 vm_lock_anon_vma(mm, avc->anon_vma);
3564 mm_drop_all_locks(mm);
3568 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3570 if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3572 * The LSB of head.next can't change to 0 from under
3573 * us because we hold the mm_all_locks_mutex.
3575 * We must however clear the bitflag before unlocking
3576 * the vma so the users using the anon_vma->rb_root will
3577 * never see our bitflag.
3579 * No need of atomic instructions here, head.next
3580 * can't change from under us until we release the
3581 * anon_vma->root->rwsem.
3583 if (!__test_and_clear_bit(0, (unsigned long *)
3584 &anon_vma->root->rb_root.rb_root.rb_node))
3586 anon_vma_unlock_write(anon_vma);
3590 static void vm_unlock_mapping(struct address_space *mapping)
3592 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3594 * AS_MM_ALL_LOCKS can't change to 0 from under us
3595 * because we hold the mm_all_locks_mutex.
3597 i_mmap_unlock_write(mapping);
3598 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3605 * The mmap_sem cannot be released by the caller until
3606 * mm_drop_all_locks() returns.
3608 void mm_drop_all_locks(struct mm_struct *mm)
3610 struct vm_area_struct *vma;
3611 struct anon_vma_chain *avc;
3613 BUG_ON(down_read_trylock(&mm->mmap_sem));
3614 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3616 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3618 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3619 vm_unlock_anon_vma(avc->anon_vma);
3620 if (vma->vm_file && vma->vm_file->f_mapping)
3621 vm_unlock_mapping(vma->vm_file->f_mapping);
3624 mutex_unlock(&mm_all_locks_mutex);
3628 * initialise the percpu counter for VM
3630 void __init mmap_init(void)
3634 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3639 * Initialise sysctl_user_reserve_kbytes.
3641 * This is intended to prevent a user from starting a single memory hogging
3642 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3645 * The default value is min(3% of free memory, 128MB)
3646 * 128MB is enough to recover with sshd/login, bash, and top/kill.
3648 static int init_user_reserve(void)
3650 unsigned long free_kbytes;
3652 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3654 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3657 subsys_initcall(init_user_reserve);
3660 * Initialise sysctl_admin_reserve_kbytes.
3662 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3663 * to log in and kill a memory hogging process.
3665 * Systems with more than 256MB will reserve 8MB, enough to recover
3666 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3667 * only reserve 3% of free pages by default.
3669 static int init_admin_reserve(void)
3671 unsigned long free_kbytes;
3673 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3675 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3678 subsys_initcall(init_admin_reserve);
3681 * Reinititalise user and admin reserves if memory is added or removed.
3683 * The default user reserve max is 128MB, and the default max for the
3684 * admin reserve is 8MB. These are usually, but not always, enough to
3685 * enable recovery from a memory hogging process using login/sshd, a shell,
3686 * and tools like top. It may make sense to increase or even disable the
3687 * reserve depending on the existence of swap or variations in the recovery
3688 * tools. So, the admin may have changed them.
3690 * If memory is added and the reserves have been eliminated or increased above
3691 * the default max, then we'll trust the admin.
3693 * If memory is removed and there isn't enough free memory, then we
3694 * need to reset the reserves.
3696 * Otherwise keep the reserve set by the admin.
3698 static int reserve_mem_notifier(struct notifier_block *nb,
3699 unsigned long action, void *data)
3701 unsigned long tmp, free_kbytes;
3705 /* Default max is 128MB. Leave alone if modified by operator. */
3706 tmp = sysctl_user_reserve_kbytes;
3707 if (0 < tmp && tmp < (1UL << 17))
3708 init_user_reserve();
3710 /* Default max is 8MB. Leave alone if modified by operator. */
3711 tmp = sysctl_admin_reserve_kbytes;
3712 if (0 < tmp && tmp < (1UL << 13))
3713 init_admin_reserve();
3717 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3719 if (sysctl_user_reserve_kbytes > free_kbytes) {
3720 init_user_reserve();
3721 pr_info("vm.user_reserve_kbytes reset to %lu\n",
3722 sysctl_user_reserve_kbytes);
3725 if (sysctl_admin_reserve_kbytes > free_kbytes) {
3726 init_admin_reserve();
3727 pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3728 sysctl_admin_reserve_kbytes);
3737 static struct notifier_block reserve_mem_nb = {
3738 .notifier_call = reserve_mem_notifier,
3741 static int __meminit init_reserve_notifier(void)
3743 if (register_hotmemory_notifier(&reserve_mem_nb))
3744 pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3748 subsys_initcall(init_reserve_notifier);