6 * Address space accounting code <alan@lxorguk.ukuu.org.uk>
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 #include <linux/kernel.h>
12 #include <linux/slab.h>
13 #include <linux/backing-dev.h>
15 #include <linux/vmacache.h>
16 #include <linux/shm.h>
17 #include <linux/mman.h>
18 #include <linux/pagemap.h>
19 #include <linux/swap.h>
20 #include <linux/syscalls.h>
21 #include <linux/capability.h>
22 #include <linux/init.h>
23 #include <linux/file.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/hugetlb.h>
28 #include <linux/shmem_fs.h>
29 #include <linux/profile.h>
30 #include <linux/export.h>
31 #include <linux/mount.h>
32 #include <linux/mempolicy.h>
33 #include <linux/rmap.h>
34 #include <linux/mmu_notifier.h>
35 #include <linux/mmdebug.h>
36 #include <linux/perf_event.h>
37 #include <linux/audit.h>
38 #include <linux/khugepaged.h>
39 #include <linux/uprobes.h>
40 #include <linux/rbtree_augmented.h>
41 #include <linux/notifier.h>
42 #include <linux/memory.h>
43 #include <linux/printk.h>
44 #include <linux/userfaultfd_k.h>
45 #include <linux/moduleparam.h>
46 #include <linux/pkeys.h>
47 #include <linux/oom.h>
49 #include <linux/uaccess.h>
50 #include <asm/cacheflush.h>
52 #include <asm/mmu_context.h>
56 #ifndef arch_mmap_check
57 #define arch_mmap_check(addr, len, flags) (0)
60 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
61 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
62 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX;
63 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
65 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
66 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
67 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
68 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
71 static bool ignore_rlimit_data;
72 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
74 static void unmap_region(struct mm_struct *mm,
75 struct vm_area_struct *vma, struct vm_area_struct *prev,
76 unsigned long start, unsigned long end);
78 /* description of effects of mapping type and prot in current implementation.
79 * this is due to the limited x86 page protection hardware. The expected
80 * behavior is in parens:
83 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC
84 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes
85 * w: (no) no w: (no) no w: (yes) yes w: (no) no
86 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
88 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes
89 * w: (no) no w: (no) no w: (copy) copy w: (no) no
90 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
92 * On arm64, PROT_EXEC has the following behaviour for both MAP_SHARED and
98 pgprot_t protection_map[16] __ro_after_init = {
99 __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
100 __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
103 #ifndef CONFIG_ARCH_HAS_FILTER_PGPROT
104 static inline pgprot_t arch_filter_pgprot(pgprot_t prot)
110 pgprot_t vm_get_page_prot(unsigned long vm_flags)
112 pgprot_t ret = __pgprot(pgprot_val(protection_map[vm_flags &
113 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
114 pgprot_val(arch_vm_get_page_prot(vm_flags)));
116 return arch_filter_pgprot(ret);
118 EXPORT_SYMBOL(vm_get_page_prot);
120 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
122 return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
125 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
126 void vma_set_page_prot(struct vm_area_struct *vma)
128 unsigned long vm_flags = vma->vm_flags;
129 pgprot_t vm_page_prot;
131 vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
132 if (vma_wants_writenotify(vma, vm_page_prot)) {
133 vm_flags &= ~VM_SHARED;
134 vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags);
136 /* remove_protection_ptes reads vma->vm_page_prot without mmap_sem */
137 WRITE_ONCE(vma->vm_page_prot, vm_page_prot);
141 * Requires inode->i_mapping->i_mmap_rwsem
143 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
144 struct file *file, struct address_space *mapping)
146 if (vma->vm_flags & VM_DENYWRITE)
147 atomic_inc(&file_inode(file)->i_writecount);
148 if (vma->vm_flags & VM_SHARED)
149 mapping_unmap_writable(mapping);
151 flush_dcache_mmap_lock(mapping);
152 vma_interval_tree_remove(vma, &mapping->i_mmap);
153 flush_dcache_mmap_unlock(mapping);
157 * Unlink a file-based vm structure from its interval tree, to hide
158 * vma from rmap and vmtruncate before freeing its page tables.
160 void unlink_file_vma(struct vm_area_struct *vma)
162 struct file *file = vma->vm_file;
165 struct address_space *mapping = file->f_mapping;
166 i_mmap_lock_write(mapping);
167 __remove_shared_vm_struct(vma, file, mapping);
168 i_mmap_unlock_write(mapping);
173 * Close a vm structure and free it, returning the next.
175 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
177 struct vm_area_struct *next = vma->vm_next;
180 if (vma->vm_ops && vma->vm_ops->close)
181 vma->vm_ops->close(vma);
184 mpol_put(vma_policy(vma));
189 static int do_brk_flags(unsigned long addr, unsigned long request, unsigned long flags,
190 struct list_head *uf);
191 SYSCALL_DEFINE1(brk, unsigned long, brk)
193 unsigned long retval;
194 unsigned long newbrk, oldbrk;
195 struct mm_struct *mm = current->mm;
196 struct vm_area_struct *next;
197 unsigned long min_brk;
201 if (down_write_killable(&mm->mmap_sem))
204 #ifdef CONFIG_COMPAT_BRK
206 * CONFIG_COMPAT_BRK can still be overridden by setting
207 * randomize_va_space to 2, which will still cause mm->start_brk
208 * to be arbitrarily shifted
210 if (current->brk_randomized)
211 min_brk = mm->start_brk;
213 min_brk = mm->end_data;
215 min_brk = mm->start_brk;
221 * Check against rlimit here. If this check is done later after the test
222 * of oldbrk with newbrk then it can escape the test and let the data
223 * segment grow beyond its set limit the in case where the limit is
224 * not page aligned -Ram Gupta
226 if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
227 mm->end_data, mm->start_data))
230 newbrk = PAGE_ALIGN(brk);
231 oldbrk = PAGE_ALIGN(mm->brk);
232 if (oldbrk == newbrk)
235 /* Always allow shrinking brk. */
236 if (brk <= mm->brk) {
237 if (!do_munmap(mm, newbrk, oldbrk-newbrk, &uf))
242 /* Check against existing mmap mappings. */
243 next = find_vma(mm, oldbrk);
244 if (next && newbrk + PAGE_SIZE > vm_start_gap(next))
247 /* Ok, looks good - let it rip. */
248 if (do_brk_flags(oldbrk, newbrk-oldbrk, 0, &uf) < 0)
253 populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
254 up_write(&mm->mmap_sem);
255 userfaultfd_unmap_complete(mm, &uf);
257 mm_populate(oldbrk, newbrk - oldbrk);
262 up_write(&mm->mmap_sem);
266 static long vma_compute_subtree_gap(struct vm_area_struct *vma)
268 unsigned long max, prev_end, subtree_gap;
271 * Note: in the rare case of a VM_GROWSDOWN above a VM_GROWSUP, we
272 * allow two stack_guard_gaps between them here, and when choosing
273 * an unmapped area; whereas when expanding we only require one.
274 * That's a little inconsistent, but keeps the code here simpler.
276 max = vm_start_gap(vma);
278 prev_end = vm_end_gap(vma->vm_prev);
284 if (vma->vm_rb.rb_left) {
285 subtree_gap = rb_entry(vma->vm_rb.rb_left,
286 struct vm_area_struct, vm_rb)->rb_subtree_gap;
287 if (subtree_gap > max)
290 if (vma->vm_rb.rb_right) {
291 subtree_gap = rb_entry(vma->vm_rb.rb_right,
292 struct vm_area_struct, vm_rb)->rb_subtree_gap;
293 if (subtree_gap > max)
299 #ifdef CONFIG_DEBUG_VM_RB
300 static int browse_rb(struct mm_struct *mm)
302 struct rb_root *root = &mm->mm_rb;
303 int i = 0, j, bug = 0;
304 struct rb_node *nd, *pn = NULL;
305 unsigned long prev = 0, pend = 0;
307 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
308 struct vm_area_struct *vma;
309 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
310 if (vma->vm_start < prev) {
311 pr_emerg("vm_start %lx < prev %lx\n",
312 vma->vm_start, prev);
315 if (vma->vm_start < pend) {
316 pr_emerg("vm_start %lx < pend %lx\n",
317 vma->vm_start, pend);
320 if (vma->vm_start > vma->vm_end) {
321 pr_emerg("vm_start %lx > vm_end %lx\n",
322 vma->vm_start, vma->vm_end);
325 spin_lock(&mm->page_table_lock);
326 if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
327 pr_emerg("free gap %lx, correct %lx\n",
329 vma_compute_subtree_gap(vma));
332 spin_unlock(&mm->page_table_lock);
335 prev = vma->vm_start;
339 for (nd = pn; nd; nd = rb_prev(nd))
342 pr_emerg("backwards %d, forwards %d\n", j, i);
348 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
352 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
353 struct vm_area_struct *vma;
354 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
355 VM_BUG_ON_VMA(vma != ignore &&
356 vma->rb_subtree_gap != vma_compute_subtree_gap(vma),
361 static void validate_mm(struct mm_struct *mm)
365 unsigned long highest_address = 0;
366 struct vm_area_struct *vma = mm->mmap;
369 struct anon_vma *anon_vma = vma->anon_vma;
370 struct anon_vma_chain *avc;
373 anon_vma_lock_read(anon_vma);
374 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
375 anon_vma_interval_tree_verify(avc);
376 anon_vma_unlock_read(anon_vma);
379 highest_address = vm_end_gap(vma);
383 if (i != mm->map_count) {
384 pr_emerg("map_count %d vm_next %d\n", mm->map_count, i);
387 if (highest_address != mm->highest_vm_end) {
388 pr_emerg("mm->highest_vm_end %lx, found %lx\n",
389 mm->highest_vm_end, highest_address);
393 if (i != mm->map_count) {
395 pr_emerg("map_count %d rb %d\n", mm->map_count, i);
398 VM_BUG_ON_MM(bug, mm);
401 #define validate_mm_rb(root, ignore) do { } while (0)
402 #define validate_mm(mm) do { } while (0)
405 RB_DECLARE_CALLBACKS(static, vma_gap_callbacks, struct vm_area_struct, vm_rb,
406 unsigned long, rb_subtree_gap, vma_compute_subtree_gap)
409 * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
410 * vma->vm_prev->vm_end values changed, without modifying the vma's position
413 static void vma_gap_update(struct vm_area_struct *vma)
416 * As it turns out, RB_DECLARE_CALLBACKS() already created a callback
417 * function that does exacltly what we want.
419 vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
422 static inline void vma_rb_insert(struct vm_area_struct *vma,
423 struct rb_root *root)
425 /* All rb_subtree_gap values must be consistent prior to insertion */
426 validate_mm_rb(root, NULL);
428 rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
431 static void __vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
434 * Note rb_erase_augmented is a fairly large inline function,
435 * so make sure we instantiate it only once with our desired
436 * augmented rbtree callbacks.
438 rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
441 static __always_inline void vma_rb_erase_ignore(struct vm_area_struct *vma,
442 struct rb_root *root,
443 struct vm_area_struct *ignore)
446 * All rb_subtree_gap values must be consistent prior to erase,
447 * with the possible exception of the "next" vma being erased if
448 * next->vm_start was reduced.
450 validate_mm_rb(root, ignore);
452 __vma_rb_erase(vma, root);
455 static __always_inline void vma_rb_erase(struct vm_area_struct *vma,
456 struct rb_root *root)
459 * All rb_subtree_gap values must be consistent prior to erase,
460 * with the possible exception of the vma being erased.
462 validate_mm_rb(root, vma);
464 __vma_rb_erase(vma, root);
468 * vma has some anon_vma assigned, and is already inserted on that
469 * anon_vma's interval trees.
471 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
472 * vma must be removed from the anon_vma's interval trees using
473 * anon_vma_interval_tree_pre_update_vma().
475 * After the update, the vma will be reinserted using
476 * anon_vma_interval_tree_post_update_vma().
478 * The entire update must be protected by exclusive mmap_sem and by
479 * the root anon_vma's mutex.
482 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
484 struct anon_vma_chain *avc;
486 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
487 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
491 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
493 struct anon_vma_chain *avc;
495 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
496 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
499 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
500 unsigned long end, struct vm_area_struct **pprev,
501 struct rb_node ***rb_link, struct rb_node **rb_parent)
503 struct rb_node **__rb_link, *__rb_parent, *rb_prev;
505 __rb_link = &mm->mm_rb.rb_node;
506 rb_prev = __rb_parent = NULL;
509 struct vm_area_struct *vma_tmp;
511 __rb_parent = *__rb_link;
512 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
514 if (vma_tmp->vm_end > addr) {
515 /* Fail if an existing vma overlaps the area */
516 if (vma_tmp->vm_start < end)
518 __rb_link = &__rb_parent->rb_left;
520 rb_prev = __rb_parent;
521 __rb_link = &__rb_parent->rb_right;
527 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
528 *rb_link = __rb_link;
529 *rb_parent = __rb_parent;
533 static unsigned long count_vma_pages_range(struct mm_struct *mm,
534 unsigned long addr, unsigned long end)
536 unsigned long nr_pages = 0;
537 struct vm_area_struct *vma;
539 /* Find first overlaping mapping */
540 vma = find_vma_intersection(mm, addr, end);
544 nr_pages = (min(end, vma->vm_end) -
545 max(addr, vma->vm_start)) >> PAGE_SHIFT;
547 /* Iterate over the rest of the overlaps */
548 for (vma = vma->vm_next; vma; vma = vma->vm_next) {
549 unsigned long overlap_len;
551 if (vma->vm_start > end)
554 overlap_len = min(end, vma->vm_end) - vma->vm_start;
555 nr_pages += overlap_len >> PAGE_SHIFT;
561 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
562 struct rb_node **rb_link, struct rb_node *rb_parent)
564 /* Update tracking information for the gap following the new vma. */
566 vma_gap_update(vma->vm_next);
568 mm->highest_vm_end = vm_end_gap(vma);
571 * vma->vm_prev wasn't known when we followed the rbtree to find the
572 * correct insertion point for that vma. As a result, we could not
573 * update the vma vm_rb parents rb_subtree_gap values on the way down.
574 * So, we first insert the vma with a zero rb_subtree_gap value
575 * (to be consistent with what we did on the way down), and then
576 * immediately update the gap to the correct value. Finally we
577 * rebalance the rbtree after all augmented values have been set.
579 rb_link_node(&vma->vm_rb, rb_parent, rb_link);
580 vma->rb_subtree_gap = 0;
582 vma_rb_insert(vma, &mm->mm_rb);
585 static void __vma_link_file(struct vm_area_struct *vma)
591 struct address_space *mapping = file->f_mapping;
593 if (vma->vm_flags & VM_DENYWRITE)
594 atomic_dec(&file_inode(file)->i_writecount);
595 if (vma->vm_flags & VM_SHARED)
596 atomic_inc(&mapping->i_mmap_writable);
598 flush_dcache_mmap_lock(mapping);
599 vma_interval_tree_insert(vma, &mapping->i_mmap);
600 flush_dcache_mmap_unlock(mapping);
605 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
606 struct vm_area_struct *prev, struct rb_node **rb_link,
607 struct rb_node *rb_parent)
609 __vma_link_list(mm, vma, prev, rb_parent);
610 __vma_link_rb(mm, vma, rb_link, rb_parent);
613 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
614 struct vm_area_struct *prev, struct rb_node **rb_link,
615 struct rb_node *rb_parent)
617 struct address_space *mapping = NULL;
620 mapping = vma->vm_file->f_mapping;
621 i_mmap_lock_write(mapping);
624 __vma_link(mm, vma, prev, rb_link, rb_parent);
625 __vma_link_file(vma);
628 i_mmap_unlock_write(mapping);
635 * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
636 * mm's list and rbtree. It has already been inserted into the interval tree.
638 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
640 struct vm_area_struct *prev;
641 struct rb_node **rb_link, *rb_parent;
643 if (find_vma_links(mm, vma->vm_start, vma->vm_end,
644 &prev, &rb_link, &rb_parent))
646 __vma_link(mm, vma, prev, rb_link, rb_parent);
650 static __always_inline void __vma_unlink_common(struct mm_struct *mm,
651 struct vm_area_struct *vma,
652 struct vm_area_struct *prev,
654 struct vm_area_struct *ignore)
656 struct vm_area_struct *next;
658 vma_rb_erase_ignore(vma, &mm->mm_rb, ignore);
661 prev->vm_next = next;
665 prev->vm_next = next;
670 next->vm_prev = prev;
673 vmacache_invalidate(mm);
676 static inline void __vma_unlink_prev(struct mm_struct *mm,
677 struct vm_area_struct *vma,
678 struct vm_area_struct *prev)
680 __vma_unlink_common(mm, vma, prev, true, vma);
684 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
685 * is already present in an i_mmap tree without adjusting the tree.
686 * The following helper function should be used when such adjustments
687 * are necessary. The "insert" vma (if any) is to be inserted
688 * before we drop the necessary locks.
690 int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
691 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
692 struct vm_area_struct *expand)
694 struct mm_struct *mm = vma->vm_mm;
695 struct vm_area_struct *next = vma->vm_next, *orig_vma = vma;
696 struct address_space *mapping = NULL;
697 struct rb_root_cached *root = NULL;
698 struct anon_vma *anon_vma = NULL;
699 struct file *file = vma->vm_file;
700 bool start_changed = false, end_changed = false;
701 long adjust_next = 0;
704 if (next && !insert) {
705 struct vm_area_struct *exporter = NULL, *importer = NULL;
707 if (end >= next->vm_end) {
709 * vma expands, overlapping all the next, and
710 * perhaps the one after too (mprotect case 6).
711 * The only other cases that gets here are
712 * case 1, case 7 and case 8.
714 if (next == expand) {
716 * The only case where we don't expand "vma"
717 * and we expand "next" instead is case 8.
719 VM_WARN_ON(end != next->vm_end);
721 * remove_next == 3 means we're
722 * removing "vma" and that to do so we
723 * swapped "vma" and "next".
726 VM_WARN_ON(file != next->vm_file);
729 VM_WARN_ON(expand != vma);
731 * case 1, 6, 7, remove_next == 2 is case 6,
732 * remove_next == 1 is case 1 or 7.
734 remove_next = 1 + (end > next->vm_end);
735 VM_WARN_ON(remove_next == 2 &&
736 end != next->vm_next->vm_end);
737 VM_WARN_ON(remove_next == 1 &&
738 end != next->vm_end);
739 /* trim end to next, for case 6 first pass */
747 * If next doesn't have anon_vma, import from vma after
748 * next, if the vma overlaps with it.
750 if (remove_next == 2 && !next->anon_vma)
751 exporter = next->vm_next;
753 } else if (end > next->vm_start) {
755 * vma expands, overlapping part of the next:
756 * mprotect case 5 shifting the boundary up.
758 adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
761 VM_WARN_ON(expand != importer);
762 } else if (end < vma->vm_end) {
764 * vma shrinks, and !insert tells it's not
765 * split_vma inserting another: so it must be
766 * mprotect case 4 shifting the boundary down.
768 adjust_next = -((vma->vm_end - end) >> PAGE_SHIFT);
771 VM_WARN_ON(expand != importer);
775 * Easily overlooked: when mprotect shifts the boundary,
776 * make sure the expanding vma has anon_vma set if the
777 * shrinking vma had, to cover any anon pages imported.
779 if (exporter && exporter->anon_vma && !importer->anon_vma) {
782 importer->anon_vma = exporter->anon_vma;
783 error = anon_vma_clone(importer, exporter);
789 vma_adjust_trans_huge(orig_vma, start, end, adjust_next);
792 mapping = file->f_mapping;
793 root = &mapping->i_mmap;
794 uprobe_munmap(vma, vma->vm_start, vma->vm_end);
797 uprobe_munmap(next, next->vm_start, next->vm_end);
799 i_mmap_lock_write(mapping);
802 * Put into interval tree now, so instantiated pages
803 * are visible to arm/parisc __flush_dcache_page
804 * throughout; but we cannot insert into address
805 * space until vma start or end is updated.
807 __vma_link_file(insert);
811 anon_vma = vma->anon_vma;
812 if (!anon_vma && adjust_next)
813 anon_vma = next->anon_vma;
815 VM_WARN_ON(adjust_next && next->anon_vma &&
816 anon_vma != next->anon_vma);
817 anon_vma_lock_write(anon_vma);
818 anon_vma_interval_tree_pre_update_vma(vma);
820 anon_vma_interval_tree_pre_update_vma(next);
824 flush_dcache_mmap_lock(mapping);
825 vma_interval_tree_remove(vma, root);
827 vma_interval_tree_remove(next, root);
830 if (start != vma->vm_start) {
831 vma->vm_start = start;
832 start_changed = true;
834 if (end != vma->vm_end) {
838 vma->vm_pgoff = pgoff;
840 next->vm_start += adjust_next << PAGE_SHIFT;
841 next->vm_pgoff += adjust_next;
846 vma_interval_tree_insert(next, root);
847 vma_interval_tree_insert(vma, root);
848 flush_dcache_mmap_unlock(mapping);
853 * vma_merge has merged next into vma, and needs
854 * us to remove next before dropping the locks.
856 if (remove_next != 3)
857 __vma_unlink_prev(mm, next, vma);
860 * vma is not before next if they've been
863 * pre-swap() next->vm_start was reduced so
864 * tell validate_mm_rb to ignore pre-swap()
865 * "next" (which is stored in post-swap()
868 __vma_unlink_common(mm, next, NULL, false, vma);
870 __remove_shared_vm_struct(next, file, mapping);
873 * split_vma has split insert from vma, and needs
874 * us to insert it before dropping the locks
875 * (it may either follow vma or precede it).
877 __insert_vm_struct(mm, insert);
883 mm->highest_vm_end = vm_end_gap(vma);
884 else if (!adjust_next)
885 vma_gap_update(next);
890 anon_vma_interval_tree_post_update_vma(vma);
892 anon_vma_interval_tree_post_update_vma(next);
893 anon_vma_unlock_write(anon_vma);
896 i_mmap_unlock_write(mapping);
907 uprobe_munmap(next, next->vm_start, next->vm_end);
911 anon_vma_merge(vma, next);
913 mpol_put(vma_policy(next));
916 * In mprotect's case 6 (see comments on vma_merge),
917 * we must remove another next too. It would clutter
918 * up the code too much to do both in one go.
920 if (remove_next != 3) {
922 * If "next" was removed and vma->vm_end was
923 * expanded (up) over it, in turn
924 * "next->vm_prev->vm_end" changed and the
925 * "vma->vm_next" gap must be updated.
930 * For the scope of the comment "next" and
931 * "vma" considered pre-swap(): if "vma" was
932 * removed, next->vm_start was expanded (down)
933 * over it and the "next" gap must be updated.
934 * Because of the swap() the post-swap() "vma"
935 * actually points to pre-swap() "next"
936 * (post-swap() "next" as opposed is now a
941 if (remove_next == 2) {
947 vma_gap_update(next);
950 * If remove_next == 2 we obviously can't
953 * If remove_next == 3 we can't reach this
954 * path because pre-swap() next is always not
955 * NULL. pre-swap() "next" is not being
956 * removed and its next->vm_end is not altered
957 * (and furthermore "end" already matches
958 * next->vm_end in remove_next == 3).
960 * We reach this only in the remove_next == 1
961 * case if the "next" vma that was removed was
962 * the highest vma of the mm. However in such
963 * case next->vm_end == "end" and the extended
964 * "vma" has vma->vm_end == next->vm_end so
965 * mm->highest_vm_end doesn't need any update
966 * in remove_next == 1 case.
968 VM_WARN_ON(mm->highest_vm_end != vm_end_gap(vma));
980 * If the vma has a ->close operation then the driver probably needs to release
981 * per-vma resources, so we don't attempt to merge those.
983 static inline int is_mergeable_vma(struct vm_area_struct *vma,
984 struct file *file, unsigned long vm_flags,
985 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
988 * VM_SOFTDIRTY should not prevent from VMA merging, if we
989 * match the flags but dirty bit -- the caller should mark
990 * merged VMA as dirty. If dirty bit won't be excluded from
991 * comparison, we increase pressue on the memory system forcing
992 * the kernel to generate new VMAs when old one could be
995 if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
997 if (vma->vm_file != file)
999 if (vma->vm_ops && vma->vm_ops->close)
1001 if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
1006 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
1007 struct anon_vma *anon_vma2,
1008 struct vm_area_struct *vma)
1011 * The list_is_singular() test is to avoid merging VMA cloned from
1012 * parents. This can improve scalability caused by anon_vma lock.
1014 if ((!anon_vma1 || !anon_vma2) && (!vma ||
1015 list_is_singular(&vma->anon_vma_chain)))
1017 return anon_vma1 == anon_vma2;
1021 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1022 * in front of (at a lower virtual address and file offset than) the vma.
1024 * We cannot merge two vmas if they have differently assigned (non-NULL)
1025 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1027 * We don't check here for the merged mmap wrapping around the end of pagecache
1028 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
1029 * wrap, nor mmaps which cover the final page at index -1UL.
1032 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
1033 struct anon_vma *anon_vma, struct file *file,
1035 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1037 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1038 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1039 if (vma->vm_pgoff == vm_pgoff)
1046 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1047 * beyond (at a higher virtual address and file offset than) the vma.
1049 * We cannot merge two vmas if they have differently assigned (non-NULL)
1050 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1053 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
1054 struct anon_vma *anon_vma, struct file *file,
1056 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1058 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1059 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1061 vm_pglen = vma_pages(vma);
1062 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
1069 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
1070 * whether that can be merged with its predecessor or its successor.
1071 * Or both (it neatly fills a hole).
1073 * In most cases - when called for mmap, brk or mremap - [addr,end) is
1074 * certain not to be mapped by the time vma_merge is called; but when
1075 * called for mprotect, it is certain to be already mapped (either at
1076 * an offset within prev, or at the start of next), and the flags of
1077 * this area are about to be changed to vm_flags - and the no-change
1078 * case has already been eliminated.
1080 * The following mprotect cases have to be considered, where AAAA is
1081 * the area passed down from mprotect_fixup, never extending beyond one
1082 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
1084 * AAAA AAAA AAAA AAAA
1085 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN PPPPNNNNXXXX
1086 * cannot merge might become might become might become
1087 * PPNNNNNNNNNN PPPPPPPPPPNN PPPPPPPPPPPP 6 or
1088 * mmap, brk or case 4 below case 5 below PPPPPPPPXXXX 7 or
1089 * mremap move: PPPPXXXXXXXX 8
1091 * PPPP NNNN PPPPPPPPPPPP PPPPPPPPNNNN PPPPNNNNNNNN
1092 * might become case 1 below case 2 below case 3 below
1094 * It is important for case 8 that the the vma NNNN overlapping the
1095 * region AAAA is never going to extended over XXXX. Instead XXXX must
1096 * be extended in region AAAA and NNNN must be removed. This way in
1097 * all cases where vma_merge succeeds, the moment vma_adjust drops the
1098 * rmap_locks, the properties of the merged vma will be already
1099 * correct for the whole merged range. Some of those properties like
1100 * vm_page_prot/vm_flags may be accessed by rmap_walks and they must
1101 * be correct for the whole merged range immediately after the
1102 * rmap_locks are released. Otherwise if XXXX would be removed and
1103 * NNNN would be extended over the XXXX range, remove_migration_ptes
1104 * or other rmap walkers (if working on addresses beyond the "end"
1105 * parameter) may establish ptes with the wrong permissions of NNNN
1106 * instead of the right permissions of XXXX.
1108 struct vm_area_struct *vma_merge(struct mm_struct *mm,
1109 struct vm_area_struct *prev, unsigned long addr,
1110 unsigned long end, unsigned long vm_flags,
1111 struct anon_vma *anon_vma, struct file *file,
1112 pgoff_t pgoff, struct mempolicy *policy,
1113 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1115 pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1116 struct vm_area_struct *area, *next;
1120 * We later require that vma->vm_flags == vm_flags,
1121 * so this tests vma->vm_flags & VM_SPECIAL, too.
1123 if (vm_flags & VM_SPECIAL)
1127 next = prev->vm_next;
1131 if (area && area->vm_end == end) /* cases 6, 7, 8 */
1132 next = next->vm_next;
1134 /* verify some invariant that must be enforced by the caller */
1135 VM_WARN_ON(prev && addr <= prev->vm_start);
1136 VM_WARN_ON(area && end > area->vm_end);
1137 VM_WARN_ON(addr >= end);
1140 * Can it merge with the predecessor?
1142 if (prev && prev->vm_end == addr &&
1143 mpol_equal(vma_policy(prev), policy) &&
1144 can_vma_merge_after(prev, vm_flags,
1145 anon_vma, file, pgoff,
1146 vm_userfaultfd_ctx)) {
1148 * OK, it can. Can we now merge in the successor as well?
1150 if (next && end == next->vm_start &&
1151 mpol_equal(policy, vma_policy(next)) &&
1152 can_vma_merge_before(next, vm_flags,
1155 vm_userfaultfd_ctx) &&
1156 is_mergeable_anon_vma(prev->anon_vma,
1157 next->anon_vma, NULL)) {
1159 err = __vma_adjust(prev, prev->vm_start,
1160 next->vm_end, prev->vm_pgoff, NULL,
1162 } else /* cases 2, 5, 7 */
1163 err = __vma_adjust(prev, prev->vm_start,
1164 end, prev->vm_pgoff, NULL, prev);
1167 khugepaged_enter_vma_merge(prev, vm_flags);
1172 * Can this new request be merged in front of next?
1174 if (next && end == next->vm_start &&
1175 mpol_equal(policy, vma_policy(next)) &&
1176 can_vma_merge_before(next, vm_flags,
1177 anon_vma, file, pgoff+pglen,
1178 vm_userfaultfd_ctx)) {
1179 if (prev && addr < prev->vm_end) /* case 4 */
1180 err = __vma_adjust(prev, prev->vm_start,
1181 addr, prev->vm_pgoff, NULL, next);
1182 else { /* cases 3, 8 */
1183 err = __vma_adjust(area, addr, next->vm_end,
1184 next->vm_pgoff - pglen, NULL, next);
1186 * In case 3 area is already equal to next and
1187 * this is a noop, but in case 8 "area" has
1188 * been removed and next was expanded over it.
1194 khugepaged_enter_vma_merge(area, vm_flags);
1202 * Rough compatbility check to quickly see if it's even worth looking
1203 * at sharing an anon_vma.
1205 * They need to have the same vm_file, and the flags can only differ
1206 * in things that mprotect may change.
1208 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1209 * we can merge the two vma's. For example, we refuse to merge a vma if
1210 * there is a vm_ops->close() function, because that indicates that the
1211 * driver is doing some kind of reference counting. But that doesn't
1212 * really matter for the anon_vma sharing case.
1214 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1216 return a->vm_end == b->vm_start &&
1217 mpol_equal(vma_policy(a), vma_policy(b)) &&
1218 a->vm_file == b->vm_file &&
1219 !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC|VM_SOFTDIRTY)) &&
1220 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1224 * Do some basic sanity checking to see if we can re-use the anon_vma
1225 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1226 * the same as 'old', the other will be the new one that is trying
1227 * to share the anon_vma.
1229 * NOTE! This runs with mm_sem held for reading, so it is possible that
1230 * the anon_vma of 'old' is concurrently in the process of being set up
1231 * by another page fault trying to merge _that_. But that's ok: if it
1232 * is being set up, that automatically means that it will be a singleton
1233 * acceptable for merging, so we can do all of this optimistically. But
1234 * we do that READ_ONCE() to make sure that we never re-load the pointer.
1236 * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1237 * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1238 * is to return an anon_vma that is "complex" due to having gone through
1241 * We also make sure that the two vma's are compatible (adjacent,
1242 * and with the same memory policies). That's all stable, even with just
1243 * a read lock on the mm_sem.
1245 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1247 if (anon_vma_compatible(a, b)) {
1248 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1250 if (anon_vma && list_is_singular(&old->anon_vma_chain))
1257 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1258 * neighbouring vmas for a suitable anon_vma, before it goes off
1259 * to allocate a new anon_vma. It checks because a repetitive
1260 * sequence of mprotects and faults may otherwise lead to distinct
1261 * anon_vmas being allocated, preventing vma merge in subsequent
1264 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1266 struct anon_vma *anon_vma;
1267 struct vm_area_struct *near;
1269 near = vma->vm_next;
1273 anon_vma = reusable_anon_vma(near, vma, near);
1277 near = vma->vm_prev;
1281 anon_vma = reusable_anon_vma(near, near, vma);
1286 * There's no absolute need to look only at touching neighbours:
1287 * we could search further afield for "compatible" anon_vmas.
1288 * But it would probably just be a waste of time searching,
1289 * or lead to too many vmas hanging off the same anon_vma.
1290 * We're trying to allow mprotect remerging later on,
1291 * not trying to minimize memory used for anon_vmas.
1297 * If a hint addr is less than mmap_min_addr change hint to be as
1298 * low as possible but still greater than mmap_min_addr
1300 static inline unsigned long round_hint_to_min(unsigned long hint)
1303 if (((void *)hint != NULL) &&
1304 (hint < mmap_min_addr))
1305 return PAGE_ALIGN(mmap_min_addr);
1309 static inline int mlock_future_check(struct mm_struct *mm,
1310 unsigned long flags,
1313 unsigned long locked, lock_limit;
1315 /* mlock MCL_FUTURE? */
1316 if (flags & VM_LOCKED) {
1317 locked = len >> PAGE_SHIFT;
1318 locked += mm->locked_vm;
1319 lock_limit = rlimit(RLIMIT_MEMLOCK);
1320 lock_limit >>= PAGE_SHIFT;
1321 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1327 static inline u64 file_mmap_size_max(struct file *file, struct inode *inode)
1329 if (S_ISREG(inode->i_mode))
1330 return MAX_LFS_FILESIZE;
1332 if (S_ISBLK(inode->i_mode))
1333 return MAX_LFS_FILESIZE;
1335 /* Special "we do even unsigned file positions" case */
1336 if (file->f_mode & FMODE_UNSIGNED_OFFSET)
1339 /* Yes, random drivers might want more. But I'm tired of buggy drivers */
1343 static inline bool file_mmap_ok(struct file *file, struct inode *inode,
1344 unsigned long pgoff, unsigned long len)
1346 u64 maxsize = file_mmap_size_max(file, inode);
1348 if (maxsize && len > maxsize)
1351 if (pgoff > maxsize >> PAGE_SHIFT)
1357 * The caller must hold down_write(¤t->mm->mmap_sem).
1359 unsigned long do_mmap(struct file *file, unsigned long addr,
1360 unsigned long len, unsigned long prot,
1361 unsigned long flags, vm_flags_t vm_flags,
1362 unsigned long pgoff, unsigned long *populate,
1363 struct list_head *uf)
1365 struct mm_struct *mm = current->mm;
1374 * Does the application expect PROT_READ to imply PROT_EXEC?
1376 * (the exception is when the underlying filesystem is noexec
1377 * mounted, in which case we dont add PROT_EXEC.)
1379 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1380 if (!(file && path_noexec(&file->f_path)))
1383 /* force arch specific MAP_FIXED handling in get_unmapped_area */
1384 if (flags & MAP_FIXED_NOREPLACE)
1387 if (!(flags & MAP_FIXED))
1388 addr = round_hint_to_min(addr);
1390 /* Careful about overflows.. */
1391 len = PAGE_ALIGN(len);
1395 /* offset overflow? */
1396 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1399 /* Too many mappings? */
1400 if (mm->map_count > sysctl_max_map_count)
1403 /* Obtain the address to map to. we verify (or select) it and ensure
1404 * that it represents a valid section of the address space.
1406 addr = get_unmapped_area(file, addr, len, pgoff, flags);
1407 if (offset_in_page(addr))
1410 if (flags & MAP_FIXED_NOREPLACE) {
1411 struct vm_area_struct *vma = find_vma(mm, addr);
1413 if (vma && vma->vm_start <= addr)
1417 if (prot == PROT_EXEC) {
1418 pkey = execute_only_pkey(mm);
1423 /* Do simple checking here so the lower-level routines won't have
1424 * to. we assume access permissions have been handled by the open
1425 * of the memory object, so we don't do any here.
1427 vm_flags |= calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
1428 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1430 if (flags & MAP_LOCKED)
1431 if (!can_do_mlock())
1434 if (mlock_future_check(mm, vm_flags, len))
1438 struct inode *inode = file_inode(file);
1439 unsigned long flags_mask;
1441 if (!file_mmap_ok(file, inode, pgoff, len))
1444 flags_mask = LEGACY_MAP_MASK | file->f_op->mmap_supported_flags;
1446 switch (flags & MAP_TYPE) {
1449 * Force use of MAP_SHARED_VALIDATE with non-legacy
1450 * flags. E.g. MAP_SYNC is dangerous to use with
1451 * MAP_SHARED as you don't know which consistency model
1452 * you will get. We silently ignore unsupported flags
1453 * with MAP_SHARED to preserve backward compatibility.
1455 flags &= LEGACY_MAP_MASK;
1457 case MAP_SHARED_VALIDATE:
1458 if (flags & ~flags_mask)
1460 if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1464 * Make sure we don't allow writing to an append-only
1467 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1471 * Make sure there are no mandatory locks on the file.
1473 if (locks_verify_locked(file))
1476 vm_flags |= VM_SHARED | VM_MAYSHARE;
1477 if (!(file->f_mode & FMODE_WRITE))
1478 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1482 if (!(file->f_mode & FMODE_READ))
1484 if (path_noexec(&file->f_path)) {
1485 if (vm_flags & VM_EXEC)
1487 vm_flags &= ~VM_MAYEXEC;
1490 if (!file->f_op->mmap)
1492 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1500 switch (flags & MAP_TYPE) {
1502 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1508 vm_flags |= VM_SHARED | VM_MAYSHARE;
1512 * Set pgoff according to addr for anon_vma.
1514 pgoff = addr >> PAGE_SHIFT;
1522 * Set 'VM_NORESERVE' if we should not account for the
1523 * memory use of this mapping.
1525 if (flags & MAP_NORESERVE) {
1526 /* We honor MAP_NORESERVE if allowed to overcommit */
1527 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1528 vm_flags |= VM_NORESERVE;
1530 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1531 if (file && is_file_hugepages(file))
1532 vm_flags |= VM_NORESERVE;
1535 addr = mmap_region(file, addr, len, vm_flags, pgoff, uf);
1536 if (!IS_ERR_VALUE(addr) &&
1537 ((vm_flags & VM_LOCKED) ||
1538 (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1543 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1544 unsigned long prot, unsigned long flags,
1545 unsigned long fd, unsigned long pgoff)
1547 struct file *file = NULL;
1548 unsigned long retval;
1550 if (!(flags & MAP_ANONYMOUS)) {
1551 audit_mmap_fd(fd, flags);
1555 if (is_file_hugepages(file))
1556 len = ALIGN(len, huge_page_size(hstate_file(file)));
1558 if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file)))
1560 } else if (flags & MAP_HUGETLB) {
1561 struct user_struct *user = NULL;
1564 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1568 len = ALIGN(len, huge_page_size(hs));
1570 * VM_NORESERVE is used because the reservations will be
1571 * taken when vm_ops->mmap() is called
1572 * A dummy user value is used because we are not locking
1573 * memory so no accounting is necessary
1575 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1577 &user, HUGETLB_ANONHUGE_INODE,
1578 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1580 return PTR_ERR(file);
1583 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1585 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1592 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1593 unsigned long, prot, unsigned long, flags,
1594 unsigned long, fd, unsigned long, pgoff)
1596 return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1599 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1600 struct mmap_arg_struct {
1604 unsigned long flags;
1606 unsigned long offset;
1609 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1611 struct mmap_arg_struct a;
1613 if (copy_from_user(&a, arg, sizeof(a)))
1615 if (offset_in_page(a.offset))
1618 return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1619 a.offset >> PAGE_SHIFT);
1621 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1624 * Some shared mappigns will want the pages marked read-only
1625 * to track write events. If so, we'll downgrade vm_page_prot
1626 * to the private version (using protection_map[] without the
1629 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)
1631 vm_flags_t vm_flags = vma->vm_flags;
1632 const struct vm_operations_struct *vm_ops = vma->vm_ops;
1634 /* If it was private or non-writable, the write bit is already clear */
1635 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1638 /* The backer wishes to know when pages are first written to? */
1639 if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite))
1642 /* The open routine did something to the protections that pgprot_modify
1643 * won't preserve? */
1644 if (pgprot_val(vm_page_prot) !=
1645 pgprot_val(vm_pgprot_modify(vm_page_prot, vm_flags)))
1648 /* Do we need to track softdirty? */
1649 if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY))
1652 /* Specialty mapping? */
1653 if (vm_flags & VM_PFNMAP)
1656 /* Can the mapping track the dirty pages? */
1657 return vma->vm_file && vma->vm_file->f_mapping &&
1658 mapping_cap_account_dirty(vma->vm_file->f_mapping);
1662 * We account for memory if it's a private writeable mapping,
1663 * not hugepages and VM_NORESERVE wasn't set.
1665 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1668 * hugetlb has its own accounting separate from the core VM
1669 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1671 if (file && is_file_hugepages(file))
1674 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1677 unsigned long mmap_region(struct file *file, unsigned long addr,
1678 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
1679 struct list_head *uf)
1681 struct mm_struct *mm = current->mm;
1682 struct vm_area_struct *vma, *prev;
1684 struct rb_node **rb_link, *rb_parent;
1685 unsigned long charged = 0;
1687 /* Check against address space limit. */
1688 if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
1689 unsigned long nr_pages;
1692 * MAP_FIXED may remove pages of mappings that intersects with
1693 * requested mapping. Account for the pages it would unmap.
1695 nr_pages = count_vma_pages_range(mm, addr, addr + len);
1697 if (!may_expand_vm(mm, vm_flags,
1698 (len >> PAGE_SHIFT) - nr_pages))
1702 /* Clear old maps */
1703 while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
1705 if (do_munmap(mm, addr, len, uf))
1710 * Private writable mapping: check memory availability
1712 if (accountable_mapping(file, vm_flags)) {
1713 charged = len >> PAGE_SHIFT;
1714 if (security_vm_enough_memory_mm(mm, charged))
1716 vm_flags |= VM_ACCOUNT;
1720 * Can we just expand an old mapping?
1722 vma = vma_merge(mm, prev, addr, addr + len, vm_flags,
1723 NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX);
1728 * Determine the object being mapped and call the appropriate
1729 * specific mapper. the address has already been validated, but
1730 * not unmapped, but the maps are removed from the list.
1732 vma = vm_area_alloc(mm);
1738 vma->vm_start = addr;
1739 vma->vm_end = addr + len;
1740 vma->vm_flags = vm_flags;
1741 vma->vm_page_prot = vm_get_page_prot(vm_flags);
1742 vma->vm_pgoff = pgoff;
1745 if (vm_flags & VM_DENYWRITE) {
1746 error = deny_write_access(file);
1750 if (vm_flags & VM_SHARED) {
1751 error = mapping_map_writable(file->f_mapping);
1753 goto allow_write_and_free_vma;
1756 /* ->mmap() can change vma->vm_file, but must guarantee that
1757 * vma_link() below can deny write-access if VM_DENYWRITE is set
1758 * and map writably if VM_SHARED is set. This usually means the
1759 * new file must not have been exposed to user-space, yet.
1761 vma->vm_file = get_file(file);
1762 error = call_mmap(file, vma);
1764 goto unmap_and_free_vma;
1766 /* Can addr have changed??
1768 * Answer: Yes, several device drivers can do it in their
1769 * f_op->mmap method. -DaveM
1770 * Bug: If addr is changed, prev, rb_link, rb_parent should
1771 * be updated for vma_link()
1773 WARN_ON_ONCE(addr != vma->vm_start);
1775 addr = vma->vm_start;
1776 vm_flags = vma->vm_flags;
1777 } else if (vm_flags & VM_SHARED) {
1778 error = shmem_zero_setup(vma);
1782 vma_set_anonymous(vma);
1785 vma_link(mm, vma, prev, rb_link, rb_parent);
1786 /* Once vma denies write, undo our temporary denial count */
1788 if (vm_flags & VM_SHARED)
1789 mapping_unmap_writable(file->f_mapping);
1790 if (vm_flags & VM_DENYWRITE)
1791 allow_write_access(file);
1793 file = vma->vm_file;
1795 perf_event_mmap(vma);
1797 vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
1798 if (vm_flags & VM_LOCKED) {
1799 if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) ||
1800 is_vm_hugetlb_page(vma) ||
1801 vma == get_gate_vma(current->mm))
1802 vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
1804 mm->locked_vm += (len >> PAGE_SHIFT);
1811 * New (or expanded) vma always get soft dirty status.
1812 * Otherwise user-space soft-dirty page tracker won't
1813 * be able to distinguish situation when vma area unmapped,
1814 * then new mapped in-place (which must be aimed as
1815 * a completely new data area).
1817 vma->vm_flags |= VM_SOFTDIRTY;
1819 vma_set_page_prot(vma);
1824 vma->vm_file = NULL;
1827 /* Undo any partial mapping done by a device driver. */
1828 unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1830 if (vm_flags & VM_SHARED)
1831 mapping_unmap_writable(file->f_mapping);
1832 allow_write_and_free_vma:
1833 if (vm_flags & VM_DENYWRITE)
1834 allow_write_access(file);
1839 vm_unacct_memory(charged);
1843 unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1846 * We implement the search by looking for an rbtree node that
1847 * immediately follows a suitable gap. That is,
1848 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1849 * - gap_end = vma->vm_start >= info->low_limit + length;
1850 * - gap_end - gap_start >= length
1853 struct mm_struct *mm = current->mm;
1854 struct vm_area_struct *vma;
1855 unsigned long length, low_limit, high_limit, gap_start, gap_end;
1857 /* Adjust search length to account for worst case alignment overhead */
1858 length = info->length + info->align_mask;
1859 if (length < info->length)
1862 /* Adjust search limits by the desired length */
1863 if (info->high_limit < length)
1865 high_limit = info->high_limit - length;
1867 if (info->low_limit > high_limit)
1869 low_limit = info->low_limit + length;
1871 /* Check if rbtree root looks promising */
1872 if (RB_EMPTY_ROOT(&mm->mm_rb))
1874 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1875 if (vma->rb_subtree_gap < length)
1879 /* Visit left subtree if it looks promising */
1880 gap_end = vm_start_gap(vma);
1881 if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1882 struct vm_area_struct *left =
1883 rb_entry(vma->vm_rb.rb_left,
1884 struct vm_area_struct, vm_rb);
1885 if (left->rb_subtree_gap >= length) {
1891 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
1893 /* Check if current node has a suitable gap */
1894 if (gap_start > high_limit)
1896 if (gap_end >= low_limit &&
1897 gap_end > gap_start && gap_end - gap_start >= length)
1900 /* Visit right subtree if it looks promising */
1901 if (vma->vm_rb.rb_right) {
1902 struct vm_area_struct *right =
1903 rb_entry(vma->vm_rb.rb_right,
1904 struct vm_area_struct, vm_rb);
1905 if (right->rb_subtree_gap >= length) {
1911 /* Go back up the rbtree to find next candidate node */
1913 struct rb_node *prev = &vma->vm_rb;
1914 if (!rb_parent(prev))
1916 vma = rb_entry(rb_parent(prev),
1917 struct vm_area_struct, vm_rb);
1918 if (prev == vma->vm_rb.rb_left) {
1919 gap_start = vm_end_gap(vma->vm_prev);
1920 gap_end = vm_start_gap(vma);
1927 /* Check highest gap, which does not precede any rbtree node */
1928 gap_start = mm->highest_vm_end;
1929 gap_end = ULONG_MAX; /* Only for VM_BUG_ON below */
1930 if (gap_start > high_limit)
1934 /* We found a suitable gap. Clip it with the original low_limit. */
1935 if (gap_start < info->low_limit)
1936 gap_start = info->low_limit;
1938 /* Adjust gap address to the desired alignment */
1939 gap_start += (info->align_offset - gap_start) & info->align_mask;
1941 VM_BUG_ON(gap_start + info->length > info->high_limit);
1942 VM_BUG_ON(gap_start + info->length > gap_end);
1946 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1948 struct mm_struct *mm = current->mm;
1949 struct vm_area_struct *vma;
1950 unsigned long length, low_limit, high_limit, gap_start, gap_end;
1952 /* Adjust search length to account for worst case alignment overhead */
1953 length = info->length + info->align_mask;
1954 if (length < info->length)
1958 * Adjust search limits by the desired length.
1959 * See implementation comment at top of unmapped_area().
1961 gap_end = info->high_limit;
1962 if (gap_end < length)
1964 high_limit = gap_end - length;
1966 if (info->low_limit > high_limit)
1968 low_limit = info->low_limit + length;
1970 /* Check highest gap, which does not precede any rbtree node */
1971 gap_start = mm->highest_vm_end;
1972 if (gap_start <= high_limit)
1975 /* Check if rbtree root looks promising */
1976 if (RB_EMPTY_ROOT(&mm->mm_rb))
1978 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1979 if (vma->rb_subtree_gap < length)
1983 /* Visit right subtree if it looks promising */
1984 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
1985 if (gap_start <= high_limit && vma->vm_rb.rb_right) {
1986 struct vm_area_struct *right =
1987 rb_entry(vma->vm_rb.rb_right,
1988 struct vm_area_struct, vm_rb);
1989 if (right->rb_subtree_gap >= length) {
1996 /* Check if current node has a suitable gap */
1997 gap_end = vm_start_gap(vma);
1998 if (gap_end < low_limit)
2000 if (gap_start <= high_limit &&
2001 gap_end > gap_start && gap_end - gap_start >= length)
2004 /* Visit left subtree if it looks promising */
2005 if (vma->vm_rb.rb_left) {
2006 struct vm_area_struct *left =
2007 rb_entry(vma->vm_rb.rb_left,
2008 struct vm_area_struct, vm_rb);
2009 if (left->rb_subtree_gap >= length) {
2015 /* Go back up the rbtree to find next candidate node */
2017 struct rb_node *prev = &vma->vm_rb;
2018 if (!rb_parent(prev))
2020 vma = rb_entry(rb_parent(prev),
2021 struct vm_area_struct, vm_rb);
2022 if (prev == vma->vm_rb.rb_right) {
2023 gap_start = vma->vm_prev ?
2024 vm_end_gap(vma->vm_prev) : 0;
2031 /* We found a suitable gap. Clip it with the original high_limit. */
2032 if (gap_end > info->high_limit)
2033 gap_end = info->high_limit;
2036 /* Compute highest gap address at the desired alignment */
2037 gap_end -= info->length;
2038 gap_end -= (gap_end - info->align_offset) & info->align_mask;
2040 VM_BUG_ON(gap_end < info->low_limit);
2041 VM_BUG_ON(gap_end < gap_start);
2045 /* Get an address range which is currently unmapped.
2046 * For shmat() with addr=0.
2048 * Ugly calling convention alert:
2049 * Return value with the low bits set means error value,
2051 * if (ret & ~PAGE_MASK)
2054 * This function "knows" that -ENOMEM has the bits set.
2056 #ifndef HAVE_ARCH_UNMAPPED_AREA
2058 arch_get_unmapped_area(struct file *filp, unsigned long addr,
2059 unsigned long len, unsigned long pgoff, unsigned long flags)
2061 struct mm_struct *mm = current->mm;
2062 struct vm_area_struct *vma, *prev;
2063 struct vm_unmapped_area_info info;
2065 if (len > TASK_SIZE - mmap_min_addr)
2068 if (flags & MAP_FIXED)
2072 addr = PAGE_ALIGN(addr);
2073 vma = find_vma_prev(mm, addr, &prev);
2074 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
2075 (!vma || addr + len <= vm_start_gap(vma)) &&
2076 (!prev || addr >= vm_end_gap(prev)))
2082 info.low_limit = mm->mmap_base;
2083 info.high_limit = TASK_SIZE;
2084 info.align_mask = 0;
2085 return vm_unmapped_area(&info);
2090 * This mmap-allocator allocates new areas top-down from below the
2091 * stack's low limit (the base):
2093 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
2095 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
2096 const unsigned long len, const unsigned long pgoff,
2097 const unsigned long flags)
2099 struct vm_area_struct *vma, *prev;
2100 struct mm_struct *mm = current->mm;
2101 unsigned long addr = addr0;
2102 struct vm_unmapped_area_info info;
2104 /* requested length too big for entire address space */
2105 if (len > TASK_SIZE - mmap_min_addr)
2108 if (flags & MAP_FIXED)
2111 /* requesting a specific address */
2113 addr = PAGE_ALIGN(addr);
2114 vma = find_vma_prev(mm, addr, &prev);
2115 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
2116 (!vma || addr + len <= vm_start_gap(vma)) &&
2117 (!prev || addr >= vm_end_gap(prev)))
2121 info.flags = VM_UNMAPPED_AREA_TOPDOWN;
2123 info.low_limit = max(PAGE_SIZE, mmap_min_addr);
2124 info.high_limit = mm->mmap_base;
2125 info.align_mask = 0;
2126 addr = vm_unmapped_area(&info);
2129 * A failed mmap() very likely causes application failure,
2130 * so fall back to the bottom-up function here. This scenario
2131 * can happen with large stack limits and large mmap()
2134 if (offset_in_page(addr)) {
2135 VM_BUG_ON(addr != -ENOMEM);
2137 info.low_limit = TASK_UNMAPPED_BASE;
2138 info.high_limit = TASK_SIZE;
2139 addr = vm_unmapped_area(&info);
2147 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
2148 unsigned long pgoff, unsigned long flags)
2150 unsigned long (*get_area)(struct file *, unsigned long,
2151 unsigned long, unsigned long, unsigned long);
2153 unsigned long error = arch_mmap_check(addr, len, flags);
2157 /* Careful about overflows.. */
2158 if (len > TASK_SIZE)
2161 get_area = current->mm->get_unmapped_area;
2163 if (file->f_op->get_unmapped_area)
2164 get_area = file->f_op->get_unmapped_area;
2165 } else if (flags & MAP_SHARED) {
2167 * mmap_region() will call shmem_zero_setup() to create a file,
2168 * so use shmem's get_unmapped_area in case it can be huge.
2169 * do_mmap_pgoff() will clear pgoff, so match alignment.
2172 get_area = shmem_get_unmapped_area;
2175 addr = get_area(file, addr, len, pgoff, flags);
2176 if (IS_ERR_VALUE(addr))
2179 if (addr > TASK_SIZE - len)
2181 if (offset_in_page(addr))
2184 error = security_mmap_addr(addr);
2185 return error ? error : addr;
2188 EXPORT_SYMBOL(get_unmapped_area);
2190 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2191 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
2193 struct rb_node *rb_node;
2194 struct vm_area_struct *vma;
2196 /* Check the cache first. */
2197 vma = vmacache_find(mm, addr);
2201 rb_node = mm->mm_rb.rb_node;
2204 struct vm_area_struct *tmp;
2206 tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2208 if (tmp->vm_end > addr) {
2210 if (tmp->vm_start <= addr)
2212 rb_node = rb_node->rb_left;
2214 rb_node = rb_node->rb_right;
2218 vmacache_update(addr, vma);
2222 EXPORT_SYMBOL(find_vma);
2225 * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2227 struct vm_area_struct *
2228 find_vma_prev(struct mm_struct *mm, unsigned long addr,
2229 struct vm_area_struct **pprev)
2231 struct vm_area_struct *vma;
2233 vma = find_vma(mm, addr);
2235 *pprev = vma->vm_prev;
2237 struct rb_node *rb_node = mm->mm_rb.rb_node;
2240 *pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2241 rb_node = rb_node->rb_right;
2248 * Verify that the stack growth is acceptable and
2249 * update accounting. This is shared with both the
2250 * grow-up and grow-down cases.
2252 static int acct_stack_growth(struct vm_area_struct *vma,
2253 unsigned long size, unsigned long grow)
2255 struct mm_struct *mm = vma->vm_mm;
2256 unsigned long new_start;
2258 /* address space limit tests */
2259 if (!may_expand_vm(mm, vma->vm_flags, grow))
2262 /* Stack limit test */
2263 if (size > rlimit(RLIMIT_STACK))
2266 /* mlock limit tests */
2267 if (vma->vm_flags & VM_LOCKED) {
2268 unsigned long locked;
2269 unsigned long limit;
2270 locked = mm->locked_vm + grow;
2271 limit = rlimit(RLIMIT_MEMLOCK);
2272 limit >>= PAGE_SHIFT;
2273 if (locked > limit && !capable(CAP_IPC_LOCK))
2277 /* Check to ensure the stack will not grow into a hugetlb-only region */
2278 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2280 if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2284 * Overcommit.. This must be the final test, as it will
2285 * update security statistics.
2287 if (security_vm_enough_memory_mm(mm, grow))
2293 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2295 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2296 * vma is the last one with address > vma->vm_end. Have to extend vma.
2298 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2300 struct mm_struct *mm = vma->vm_mm;
2301 struct vm_area_struct *next;
2302 unsigned long gap_addr;
2305 if (!(vma->vm_flags & VM_GROWSUP))
2308 /* Guard against exceeding limits of the address space. */
2309 address &= PAGE_MASK;
2310 if (address >= (TASK_SIZE & PAGE_MASK))
2312 address += PAGE_SIZE;
2314 /* Enforce stack_guard_gap */
2315 gap_addr = address + stack_guard_gap;
2317 /* Guard against overflow */
2318 if (gap_addr < address || gap_addr > TASK_SIZE)
2319 gap_addr = TASK_SIZE;
2321 next = vma->vm_next;
2322 if (next && next->vm_start < gap_addr &&
2323 (next->vm_flags & (VM_WRITE|VM_READ|VM_EXEC))) {
2324 if (!(next->vm_flags & VM_GROWSUP))
2326 /* Check that both stack segments have the same anon_vma? */
2329 /* We must make sure the anon_vma is allocated. */
2330 if (unlikely(anon_vma_prepare(vma)))
2334 * vma->vm_start/vm_end cannot change under us because the caller
2335 * is required to hold the mmap_sem in read mode. We need the
2336 * anon_vma lock to serialize against concurrent expand_stacks.
2338 anon_vma_lock_write(vma->anon_vma);
2340 /* Somebody else might have raced and expanded it already */
2341 if (address > vma->vm_end) {
2342 unsigned long size, grow;
2344 size = address - vma->vm_start;
2345 grow = (address - vma->vm_end) >> PAGE_SHIFT;
2348 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2349 error = acct_stack_growth(vma, size, grow);
2352 * vma_gap_update() doesn't support concurrent
2353 * updates, but we only hold a shared mmap_sem
2354 * lock here, so we need to protect against
2355 * concurrent vma expansions.
2356 * anon_vma_lock_write() doesn't help here, as
2357 * we don't guarantee that all growable vmas
2358 * in a mm share the same root anon vma.
2359 * So, we reuse mm->page_table_lock to guard
2360 * against concurrent vma expansions.
2362 spin_lock(&mm->page_table_lock);
2363 if (vma->vm_flags & VM_LOCKED)
2364 mm->locked_vm += grow;
2365 vm_stat_account(mm, vma->vm_flags, grow);
2366 anon_vma_interval_tree_pre_update_vma(vma);
2367 vma->vm_end = address;
2368 anon_vma_interval_tree_post_update_vma(vma);
2370 vma_gap_update(vma->vm_next);
2372 mm->highest_vm_end = vm_end_gap(vma);
2373 spin_unlock(&mm->page_table_lock);
2375 perf_event_mmap(vma);
2379 anon_vma_unlock_write(vma->anon_vma);
2380 khugepaged_enter_vma_merge(vma, vma->vm_flags);
2384 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2387 * vma is the first one with address < vma->vm_start. Have to extend vma.
2389 int expand_downwards(struct vm_area_struct *vma,
2390 unsigned long address)
2392 struct mm_struct *mm = vma->vm_mm;
2393 struct vm_area_struct *prev;
2396 address &= PAGE_MASK;
2397 error = security_mmap_addr(address);
2401 /* Enforce stack_guard_gap */
2402 prev = vma->vm_prev;
2403 /* Check that both stack segments have the same anon_vma? */
2404 if (prev && !(prev->vm_flags & VM_GROWSDOWN) &&
2405 (prev->vm_flags & (VM_WRITE|VM_READ|VM_EXEC))) {
2406 if (address - prev->vm_end < stack_guard_gap)
2410 /* We must make sure the anon_vma is allocated. */
2411 if (unlikely(anon_vma_prepare(vma)))
2415 * vma->vm_start/vm_end cannot change under us because the caller
2416 * is required to hold the mmap_sem in read mode. We need the
2417 * anon_vma lock to serialize against concurrent expand_stacks.
2419 anon_vma_lock_write(vma->anon_vma);
2421 /* Somebody else might have raced and expanded it already */
2422 if (address < vma->vm_start) {
2423 unsigned long size, grow;
2425 size = vma->vm_end - address;
2426 grow = (vma->vm_start - address) >> PAGE_SHIFT;
2429 if (grow <= vma->vm_pgoff) {
2430 error = acct_stack_growth(vma, size, grow);
2433 * vma_gap_update() doesn't support concurrent
2434 * updates, but we only hold a shared mmap_sem
2435 * lock here, so we need to protect against
2436 * concurrent vma expansions.
2437 * anon_vma_lock_write() doesn't help here, as
2438 * we don't guarantee that all growable vmas
2439 * in a mm share the same root anon vma.
2440 * So, we reuse mm->page_table_lock to guard
2441 * against concurrent vma expansions.
2443 spin_lock(&mm->page_table_lock);
2444 if (vma->vm_flags & VM_LOCKED)
2445 mm->locked_vm += grow;
2446 vm_stat_account(mm, vma->vm_flags, grow);
2447 anon_vma_interval_tree_pre_update_vma(vma);
2448 vma->vm_start = address;
2449 vma->vm_pgoff -= grow;
2450 anon_vma_interval_tree_post_update_vma(vma);
2451 vma_gap_update(vma);
2452 spin_unlock(&mm->page_table_lock);
2454 perf_event_mmap(vma);
2458 anon_vma_unlock_write(vma->anon_vma);
2459 khugepaged_enter_vma_merge(vma, vma->vm_flags);
2464 /* enforced gap between the expanding stack and other mappings. */
2465 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT;
2467 static int __init cmdline_parse_stack_guard_gap(char *p)
2472 val = simple_strtoul(p, &endptr, 10);
2474 stack_guard_gap = val << PAGE_SHIFT;
2478 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap);
2480 #ifdef CONFIG_STACK_GROWSUP
2481 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2483 return expand_upwards(vma, address);
2486 struct vm_area_struct *
2487 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2489 struct vm_area_struct *vma, *prev;
2492 vma = find_vma_prev(mm, addr, &prev);
2493 if (vma && (vma->vm_start <= addr))
2495 if (!prev || expand_stack(prev, addr))
2497 if (prev->vm_flags & VM_LOCKED)
2498 populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2502 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2504 return expand_downwards(vma, address);
2507 struct vm_area_struct *
2508 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2510 struct vm_area_struct *vma;
2511 unsigned long start;
2514 vma = find_vma(mm, addr);
2517 if (vma->vm_start <= addr)
2519 if (!(vma->vm_flags & VM_GROWSDOWN))
2521 start = vma->vm_start;
2522 if (expand_stack(vma, addr))
2524 if (vma->vm_flags & VM_LOCKED)
2525 populate_vma_page_range(vma, addr, start, NULL);
2530 EXPORT_SYMBOL_GPL(find_extend_vma);
2533 * Ok - we have the memory areas we should free on the vma list,
2534 * so release them, and do the vma updates.
2536 * Called with the mm semaphore held.
2538 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2540 unsigned long nr_accounted = 0;
2542 /* Update high watermark before we lower total_vm */
2543 update_hiwater_vm(mm);
2545 long nrpages = vma_pages(vma);
2547 if (vma->vm_flags & VM_ACCOUNT)
2548 nr_accounted += nrpages;
2549 vm_stat_account(mm, vma->vm_flags, -nrpages);
2550 vma = remove_vma(vma);
2552 vm_unacct_memory(nr_accounted);
2557 * Get rid of page table information in the indicated region.
2559 * Called with the mm semaphore held.
2561 static void unmap_region(struct mm_struct *mm,
2562 struct vm_area_struct *vma, struct vm_area_struct *prev,
2563 unsigned long start, unsigned long end)
2565 struct vm_area_struct *next = prev ? prev->vm_next : mm->mmap;
2566 struct mmu_gather tlb;
2569 tlb_gather_mmu(&tlb, mm, start, end);
2570 update_hiwater_rss(mm);
2571 unmap_vmas(&tlb, vma, start, end);
2572 free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2573 next ? next->vm_start : USER_PGTABLES_CEILING);
2574 tlb_finish_mmu(&tlb, start, end);
2578 * Create a list of vma's touched by the unmap, removing them from the mm's
2579 * vma list as we go..
2582 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2583 struct vm_area_struct *prev, unsigned long end)
2585 struct vm_area_struct **insertion_point;
2586 struct vm_area_struct *tail_vma = NULL;
2588 insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2589 vma->vm_prev = NULL;
2591 vma_rb_erase(vma, &mm->mm_rb);
2595 } while (vma && vma->vm_start < end);
2596 *insertion_point = vma;
2598 vma->vm_prev = prev;
2599 vma_gap_update(vma);
2601 mm->highest_vm_end = prev ? vm_end_gap(prev) : 0;
2602 tail_vma->vm_next = NULL;
2604 /* Kill the cache */
2605 vmacache_invalidate(mm);
2609 * __split_vma() bypasses sysctl_max_map_count checking. We use this where it
2610 * has already been checked or doesn't make sense to fail.
2612 int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2613 unsigned long addr, int new_below)
2615 struct vm_area_struct *new;
2618 if (vma->vm_ops && vma->vm_ops->split) {
2619 err = vma->vm_ops->split(vma, addr);
2624 new = vm_area_dup(vma);
2631 new->vm_start = addr;
2632 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2635 err = vma_dup_policy(vma, new);
2639 err = anon_vma_clone(new, vma);
2644 get_file(new->vm_file);
2646 if (new->vm_ops && new->vm_ops->open)
2647 new->vm_ops->open(new);
2650 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2651 ((addr - new->vm_start) >> PAGE_SHIFT), new);
2653 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2659 /* Clean everything up if vma_adjust failed. */
2660 if (new->vm_ops && new->vm_ops->close)
2661 new->vm_ops->close(new);
2664 unlink_anon_vmas(new);
2666 mpol_put(vma_policy(new));
2673 * Split a vma into two pieces at address 'addr', a new vma is allocated
2674 * either for the first part or the tail.
2676 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2677 unsigned long addr, int new_below)
2679 if (mm->map_count >= sysctl_max_map_count)
2682 return __split_vma(mm, vma, addr, new_below);
2685 /* Munmap is split into 2 main parts -- this part which finds
2686 * what needs doing, and the areas themselves, which do the
2687 * work. This now handles partial unmappings.
2688 * Jeremy Fitzhardinge <jeremy@goop.org>
2690 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2691 struct list_head *uf)
2694 struct vm_area_struct *vma, *prev, *last;
2696 if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2699 len = PAGE_ALIGN(len);
2703 /* Find the first overlapping VMA */
2704 vma = find_vma(mm, start);
2707 prev = vma->vm_prev;
2708 /* we have start < vma->vm_end */
2710 /* if it doesn't overlap, we have nothing.. */
2712 if (vma->vm_start >= end)
2716 * If we need to split any vma, do it now to save pain later.
2718 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2719 * unmapped vm_area_struct will remain in use: so lower split_vma
2720 * places tmp vma above, and higher split_vma places tmp vma below.
2722 if (start > vma->vm_start) {
2726 * Make sure that map_count on return from munmap() will
2727 * not exceed its limit; but let map_count go just above
2728 * its limit temporarily, to help free resources as expected.
2730 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2733 error = __split_vma(mm, vma, start, 0);
2739 /* Does it split the last one? */
2740 last = find_vma(mm, end);
2741 if (last && end > last->vm_start) {
2742 int error = __split_vma(mm, last, end, 1);
2746 vma = prev ? prev->vm_next : mm->mmap;
2750 * If userfaultfd_unmap_prep returns an error the vmas
2751 * will remain splitted, but userland will get a
2752 * highly unexpected error anyway. This is no
2753 * different than the case where the first of the two
2754 * __split_vma fails, but we don't undo the first
2755 * split, despite we could. This is unlikely enough
2756 * failure that it's not worth optimizing it for.
2758 int error = userfaultfd_unmap_prep(vma, start, end, uf);
2764 * unlock any mlock()ed ranges before detaching vmas
2766 if (mm->locked_vm) {
2767 struct vm_area_struct *tmp = vma;
2768 while (tmp && tmp->vm_start < end) {
2769 if (tmp->vm_flags & VM_LOCKED) {
2770 mm->locked_vm -= vma_pages(tmp);
2771 munlock_vma_pages_all(tmp);
2778 * Remove the vma's, and unmap the actual pages
2780 detach_vmas_to_be_unmapped(mm, vma, prev, end);
2781 unmap_region(mm, vma, prev, start, end);
2783 arch_unmap(mm, vma, start, end);
2785 /* Fix up all other VM information */
2786 remove_vma_list(mm, vma);
2791 int vm_munmap(unsigned long start, size_t len)
2794 struct mm_struct *mm = current->mm;
2797 if (down_write_killable(&mm->mmap_sem))
2800 ret = do_munmap(mm, start, len, &uf);
2801 up_write(&mm->mmap_sem);
2802 userfaultfd_unmap_complete(mm, &uf);
2805 EXPORT_SYMBOL(vm_munmap);
2807 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2809 profile_munmap(addr);
2810 return vm_munmap(addr, len);
2815 * Emulation of deprecated remap_file_pages() syscall.
2817 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
2818 unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
2821 struct mm_struct *mm = current->mm;
2822 struct vm_area_struct *vma;
2823 unsigned long populate = 0;
2824 unsigned long ret = -EINVAL;
2827 pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/vm/remap_file_pages.rst.\n",
2828 current->comm, current->pid);
2832 start = start & PAGE_MASK;
2833 size = size & PAGE_MASK;
2835 if (start + size <= start)
2838 /* Does pgoff wrap? */
2839 if (pgoff + (size >> PAGE_SHIFT) < pgoff)
2842 if (down_write_killable(&mm->mmap_sem))
2845 vma = find_vma(mm, start);
2847 if (!vma || !(vma->vm_flags & VM_SHARED))
2850 if (start < vma->vm_start)
2853 if (start + size > vma->vm_end) {
2854 struct vm_area_struct *next;
2856 for (next = vma->vm_next; next; next = next->vm_next) {
2857 /* hole between vmas ? */
2858 if (next->vm_start != next->vm_prev->vm_end)
2861 if (next->vm_file != vma->vm_file)
2864 if (next->vm_flags != vma->vm_flags)
2867 if (start + size <= next->vm_end)
2875 prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
2876 prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
2877 prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
2879 flags &= MAP_NONBLOCK;
2880 flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
2881 if (vma->vm_flags & VM_LOCKED) {
2882 struct vm_area_struct *tmp;
2883 flags |= MAP_LOCKED;
2885 /* drop PG_Mlocked flag for over-mapped range */
2886 for (tmp = vma; tmp->vm_start >= start + size;
2887 tmp = tmp->vm_next) {
2889 * Split pmd and munlock page on the border
2892 vma_adjust_trans_huge(tmp, start, start + size, 0);
2894 munlock_vma_pages_range(tmp,
2895 max(tmp->vm_start, start),
2896 min(tmp->vm_end, start + size));
2900 file = get_file(vma->vm_file);
2901 ret = do_mmap_pgoff(vma->vm_file, start, size,
2902 prot, flags, pgoff, &populate, NULL);
2905 up_write(&mm->mmap_sem);
2907 mm_populate(ret, populate);
2908 if (!IS_ERR_VALUE(ret))
2913 static inline void verify_mm_writelocked(struct mm_struct *mm)
2915 #ifdef CONFIG_DEBUG_VM
2916 if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2918 up_read(&mm->mmap_sem);
2924 * this is really a simplified "do_mmap". it only handles
2925 * anonymous maps. eventually we may be able to do some
2926 * brk-specific accounting here.
2928 static int do_brk_flags(unsigned long addr, unsigned long len, unsigned long flags, struct list_head *uf)
2930 struct mm_struct *mm = current->mm;
2931 struct vm_area_struct *vma, *prev;
2932 struct rb_node **rb_link, *rb_parent;
2933 pgoff_t pgoff = addr >> PAGE_SHIFT;
2936 /* Until we need other flags, refuse anything except VM_EXEC. */
2937 if ((flags & (~VM_EXEC)) != 0)
2939 flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2941 error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2942 if (offset_in_page(error))
2945 error = mlock_future_check(mm, mm->def_flags, len);
2950 * mm->mmap_sem is required to protect against another thread
2951 * changing the mappings in case we sleep.
2953 verify_mm_writelocked(mm);
2956 * Clear old maps. this also does some error checking for us
2958 while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
2960 if (do_munmap(mm, addr, len, uf))
2964 /* Check against address space limits *after* clearing old maps... */
2965 if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
2968 if (mm->map_count > sysctl_max_map_count)
2971 if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
2974 /* Can we just expand an old private anonymous mapping? */
2975 vma = vma_merge(mm, prev, addr, addr + len, flags,
2976 NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX);
2981 * create a vma struct for an anonymous mapping
2983 vma = vm_area_alloc(mm);
2985 vm_unacct_memory(len >> PAGE_SHIFT);
2989 vma_set_anonymous(vma);
2990 vma->vm_start = addr;
2991 vma->vm_end = addr + len;
2992 vma->vm_pgoff = pgoff;
2993 vma->vm_flags = flags;
2994 vma->vm_page_prot = vm_get_page_prot(flags);
2995 vma_link(mm, vma, prev, rb_link, rb_parent);
2997 perf_event_mmap(vma);
2998 mm->total_vm += len >> PAGE_SHIFT;
2999 mm->data_vm += len >> PAGE_SHIFT;
3000 if (flags & VM_LOCKED)
3001 mm->locked_vm += (len >> PAGE_SHIFT);
3002 vma->vm_flags |= VM_SOFTDIRTY;
3006 int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags)
3008 struct mm_struct *mm = current->mm;
3014 len = PAGE_ALIGN(request);
3020 if (down_write_killable(&mm->mmap_sem))
3023 ret = do_brk_flags(addr, len, flags, &uf);
3024 populate = ((mm->def_flags & VM_LOCKED) != 0);
3025 up_write(&mm->mmap_sem);
3026 userfaultfd_unmap_complete(mm, &uf);
3027 if (populate && !ret)
3028 mm_populate(addr, len);
3031 EXPORT_SYMBOL(vm_brk_flags);
3033 int vm_brk(unsigned long addr, unsigned long len)
3035 return vm_brk_flags(addr, len, 0);
3037 EXPORT_SYMBOL(vm_brk);
3039 /* Release all mmaps. */
3040 void exit_mmap(struct mm_struct *mm)
3042 struct mmu_gather tlb;
3043 struct vm_area_struct *vma;
3044 unsigned long nr_accounted = 0;
3046 /* mm's last user has gone, and its about to be pulled down */
3047 mmu_notifier_release(mm);
3049 if (unlikely(mm_is_oom_victim(mm))) {
3051 * Manually reap the mm to free as much memory as possible.
3052 * Then, as the oom reaper does, set MMF_OOM_SKIP to disregard
3053 * this mm from further consideration. Taking mm->mmap_sem for
3054 * write after setting MMF_OOM_SKIP will guarantee that the oom
3055 * reaper will not run on this mm again after mmap_sem is
3058 * Nothing can be holding mm->mmap_sem here and the above call
3059 * to mmu_notifier_release(mm) ensures mmu notifier callbacks in
3060 * __oom_reap_task_mm() will not block.
3062 * This needs to be done before calling munlock_vma_pages_all(),
3063 * which clears VM_LOCKED, otherwise the oom reaper cannot
3066 (void)__oom_reap_task_mm(mm);
3068 set_bit(MMF_OOM_SKIP, &mm->flags);
3069 down_write(&mm->mmap_sem);
3070 up_write(&mm->mmap_sem);
3073 if (mm->locked_vm) {
3076 if (vma->vm_flags & VM_LOCKED)
3077 munlock_vma_pages_all(vma);
3085 if (!vma) /* Can happen if dup_mmap() received an OOM */
3090 tlb_gather_mmu(&tlb, mm, 0, -1);
3091 /* update_hiwater_rss(mm) here? but nobody should be looking */
3092 /* Use -1 here to ensure all VMAs in the mm are unmapped */
3093 unmap_vmas(&tlb, vma, 0, -1);
3094 free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
3095 tlb_finish_mmu(&tlb, 0, -1);
3098 * Walk the list again, actually closing and freeing it,
3099 * with preemption enabled, without holding any MM locks.
3102 if (vma->vm_flags & VM_ACCOUNT)
3103 nr_accounted += vma_pages(vma);
3104 vma = remove_vma(vma);
3106 vm_unacct_memory(nr_accounted);
3109 /* Insert vm structure into process list sorted by address
3110 * and into the inode's i_mmap tree. If vm_file is non-NULL
3111 * then i_mmap_rwsem is taken here.
3113 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
3115 struct vm_area_struct *prev;
3116 struct rb_node **rb_link, *rb_parent;
3118 if (find_vma_links(mm, vma->vm_start, vma->vm_end,
3119 &prev, &rb_link, &rb_parent))
3121 if ((vma->vm_flags & VM_ACCOUNT) &&
3122 security_vm_enough_memory_mm(mm, vma_pages(vma)))
3126 * The vm_pgoff of a purely anonymous vma should be irrelevant
3127 * until its first write fault, when page's anon_vma and index
3128 * are set. But now set the vm_pgoff it will almost certainly
3129 * end up with (unless mremap moves it elsewhere before that
3130 * first wfault), so /proc/pid/maps tells a consistent story.
3132 * By setting it to reflect the virtual start address of the
3133 * vma, merges and splits can happen in a seamless way, just
3134 * using the existing file pgoff checks and manipulations.
3135 * Similarly in do_mmap_pgoff and in do_brk.
3137 if (vma_is_anonymous(vma)) {
3138 BUG_ON(vma->anon_vma);
3139 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
3142 vma_link(mm, vma, prev, rb_link, rb_parent);
3147 * Copy the vma structure to a new location in the same mm,
3148 * prior to moving page table entries, to effect an mremap move.
3150 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
3151 unsigned long addr, unsigned long len, pgoff_t pgoff,
3152 bool *need_rmap_locks)
3154 struct vm_area_struct *vma = *vmap;
3155 unsigned long vma_start = vma->vm_start;
3156 struct mm_struct *mm = vma->vm_mm;
3157 struct vm_area_struct *new_vma, *prev;
3158 struct rb_node **rb_link, *rb_parent;
3159 bool faulted_in_anon_vma = true;
3162 * If anonymous vma has not yet been faulted, update new pgoff
3163 * to match new location, to increase its chance of merging.
3165 if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
3166 pgoff = addr >> PAGE_SHIFT;
3167 faulted_in_anon_vma = false;
3170 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
3171 return NULL; /* should never get here */
3172 new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
3173 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
3174 vma->vm_userfaultfd_ctx);
3177 * Source vma may have been merged into new_vma
3179 if (unlikely(vma_start >= new_vma->vm_start &&
3180 vma_start < new_vma->vm_end)) {
3182 * The only way we can get a vma_merge with
3183 * self during an mremap is if the vma hasn't
3184 * been faulted in yet and we were allowed to
3185 * reset the dst vma->vm_pgoff to the
3186 * destination address of the mremap to allow
3187 * the merge to happen. mremap must change the
3188 * vm_pgoff linearity between src and dst vmas
3189 * (in turn preventing a vma_merge) to be
3190 * safe. It is only safe to keep the vm_pgoff
3191 * linear if there are no pages mapped yet.
3193 VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
3194 *vmap = vma = new_vma;
3196 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
3198 new_vma = vm_area_dup(vma);
3201 new_vma->vm_start = addr;
3202 new_vma->vm_end = addr + len;
3203 new_vma->vm_pgoff = pgoff;
3204 if (vma_dup_policy(vma, new_vma))
3206 if (anon_vma_clone(new_vma, vma))
3207 goto out_free_mempol;
3208 if (new_vma->vm_file)
3209 get_file(new_vma->vm_file);
3210 if (new_vma->vm_ops && new_vma->vm_ops->open)
3211 new_vma->vm_ops->open(new_vma);
3212 vma_link(mm, new_vma, prev, rb_link, rb_parent);
3213 *need_rmap_locks = false;
3218 mpol_put(vma_policy(new_vma));
3220 vm_area_free(new_vma);
3226 * Return true if the calling process may expand its vm space by the passed
3229 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
3231 if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
3234 if (is_data_mapping(flags) &&
3235 mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
3236 /* Workaround for Valgrind */
3237 if (rlimit(RLIMIT_DATA) == 0 &&
3238 mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
3241 pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n",
3242 current->comm, current->pid,
3243 (mm->data_vm + npages) << PAGE_SHIFT,
3244 rlimit(RLIMIT_DATA),
3245 ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data");
3247 if (!ignore_rlimit_data)
3254 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
3256 mm->total_vm += npages;
3258 if (is_exec_mapping(flags))
3259 mm->exec_vm += npages;
3260 else if (is_stack_mapping(flags))
3261 mm->stack_vm += npages;
3262 else if (is_data_mapping(flags))
3263 mm->data_vm += npages;
3266 static vm_fault_t special_mapping_fault(struct vm_fault *vmf);
3269 * Having a close hook prevents vma merging regardless of flags.
3271 static void special_mapping_close(struct vm_area_struct *vma)
3275 static const char *special_mapping_name(struct vm_area_struct *vma)
3277 return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3280 static int special_mapping_mremap(struct vm_area_struct *new_vma)
3282 struct vm_special_mapping *sm = new_vma->vm_private_data;
3284 if (WARN_ON_ONCE(current->mm != new_vma->vm_mm))
3288 return sm->mremap(sm, new_vma);
3293 static const struct vm_operations_struct special_mapping_vmops = {
3294 .close = special_mapping_close,
3295 .fault = special_mapping_fault,
3296 .mremap = special_mapping_mremap,
3297 .name = special_mapping_name,
3300 static const struct vm_operations_struct legacy_special_mapping_vmops = {
3301 .close = special_mapping_close,
3302 .fault = special_mapping_fault,
3305 static vm_fault_t special_mapping_fault(struct vm_fault *vmf)
3307 struct vm_area_struct *vma = vmf->vma;
3309 struct page **pages;
3311 if (vma->vm_ops == &legacy_special_mapping_vmops) {
3312 pages = vma->vm_private_data;
3314 struct vm_special_mapping *sm = vma->vm_private_data;
3317 return sm->fault(sm, vmf->vma, vmf);
3322 for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3326 struct page *page = *pages;
3332 return VM_FAULT_SIGBUS;
3335 static struct vm_area_struct *__install_special_mapping(
3336 struct mm_struct *mm,
3337 unsigned long addr, unsigned long len,
3338 unsigned long vm_flags, void *priv,
3339 const struct vm_operations_struct *ops)
3342 struct vm_area_struct *vma;
3344 vma = vm_area_alloc(mm);
3345 if (unlikely(vma == NULL))
3346 return ERR_PTR(-ENOMEM);
3348 vma->vm_start = addr;
3349 vma->vm_end = addr + len;
3351 vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
3352 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3355 vma->vm_private_data = priv;
3357 ret = insert_vm_struct(mm, vma);
3361 vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3363 perf_event_mmap(vma);
3369 return ERR_PTR(ret);
3372 bool vma_is_special_mapping(const struct vm_area_struct *vma,
3373 const struct vm_special_mapping *sm)
3375 return vma->vm_private_data == sm &&
3376 (vma->vm_ops == &special_mapping_vmops ||
3377 vma->vm_ops == &legacy_special_mapping_vmops);
3381 * Called with mm->mmap_sem held for writing.
3382 * Insert a new vma covering the given region, with the given flags.
3383 * Its pages are supplied by the given array of struct page *.
3384 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3385 * The region past the last page supplied will always produce SIGBUS.
3386 * The array pointer and the pages it points to are assumed to stay alive
3387 * for as long as this mapping might exist.
3389 struct vm_area_struct *_install_special_mapping(
3390 struct mm_struct *mm,
3391 unsigned long addr, unsigned long len,
3392 unsigned long vm_flags, const struct vm_special_mapping *spec)
3394 return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3395 &special_mapping_vmops);
3398 int install_special_mapping(struct mm_struct *mm,
3399 unsigned long addr, unsigned long len,
3400 unsigned long vm_flags, struct page **pages)
3402 struct vm_area_struct *vma = __install_special_mapping(
3403 mm, addr, len, vm_flags, (void *)pages,
3404 &legacy_special_mapping_vmops);
3406 return PTR_ERR_OR_ZERO(vma);
3409 static DEFINE_MUTEX(mm_all_locks_mutex);
3411 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3413 if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3415 * The LSB of head.next can't change from under us
3416 * because we hold the mm_all_locks_mutex.
3418 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem);
3420 * We can safely modify head.next after taking the
3421 * anon_vma->root->rwsem. If some other vma in this mm shares
3422 * the same anon_vma we won't take it again.
3424 * No need of atomic instructions here, head.next
3425 * can't change from under us thanks to the
3426 * anon_vma->root->rwsem.
3428 if (__test_and_set_bit(0, (unsigned long *)
3429 &anon_vma->root->rb_root.rb_root.rb_node))
3434 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3436 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3438 * AS_MM_ALL_LOCKS can't change from under us because
3439 * we hold the mm_all_locks_mutex.
3441 * Operations on ->flags have to be atomic because
3442 * even if AS_MM_ALL_LOCKS is stable thanks to the
3443 * mm_all_locks_mutex, there may be other cpus
3444 * changing other bitflags in parallel to us.
3446 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3448 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_sem);
3453 * This operation locks against the VM for all pte/vma/mm related
3454 * operations that could ever happen on a certain mm. This includes
3455 * vmtruncate, try_to_unmap, and all page faults.
3457 * The caller must take the mmap_sem in write mode before calling
3458 * mm_take_all_locks(). The caller isn't allowed to release the
3459 * mmap_sem until mm_drop_all_locks() returns.
3461 * mmap_sem in write mode is required in order to block all operations
3462 * that could modify pagetables and free pages without need of
3463 * altering the vma layout. It's also needed in write mode to avoid new
3464 * anon_vmas to be associated with existing vmas.
3466 * A single task can't take more than one mm_take_all_locks() in a row
3467 * or it would deadlock.
3469 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3470 * mapping->flags avoid to take the same lock twice, if more than one
3471 * vma in this mm is backed by the same anon_vma or address_space.
3473 * We take locks in following order, accordingly to comment at beginning
3475 * - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3477 * - all i_mmap_rwsem locks;
3478 * - all anon_vma->rwseml
3480 * We can take all locks within these types randomly because the VM code
3481 * doesn't nest them and we protected from parallel mm_take_all_locks() by
3482 * mm_all_locks_mutex.
3484 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3485 * that may have to take thousand of locks.
3487 * mm_take_all_locks() can fail if it's interrupted by signals.
3489 int mm_take_all_locks(struct mm_struct *mm)
3491 struct vm_area_struct *vma;
3492 struct anon_vma_chain *avc;
3494 BUG_ON(down_read_trylock(&mm->mmap_sem));
3496 mutex_lock(&mm_all_locks_mutex);
3498 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3499 if (signal_pending(current))
3501 if (vma->vm_file && vma->vm_file->f_mapping &&
3502 is_vm_hugetlb_page(vma))
3503 vm_lock_mapping(mm, vma->vm_file->f_mapping);
3506 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3507 if (signal_pending(current))
3509 if (vma->vm_file && vma->vm_file->f_mapping &&
3510 !is_vm_hugetlb_page(vma))
3511 vm_lock_mapping(mm, vma->vm_file->f_mapping);
3514 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3515 if (signal_pending(current))
3518 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3519 vm_lock_anon_vma(mm, avc->anon_vma);
3525 mm_drop_all_locks(mm);
3529 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3531 if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3533 * The LSB of head.next can't change to 0 from under
3534 * us because we hold the mm_all_locks_mutex.
3536 * We must however clear the bitflag before unlocking
3537 * the vma so the users using the anon_vma->rb_root will
3538 * never see our bitflag.
3540 * No need of atomic instructions here, head.next
3541 * can't change from under us until we release the
3542 * anon_vma->root->rwsem.
3544 if (!__test_and_clear_bit(0, (unsigned long *)
3545 &anon_vma->root->rb_root.rb_root.rb_node))
3547 anon_vma_unlock_write(anon_vma);
3551 static void vm_unlock_mapping(struct address_space *mapping)
3553 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3555 * AS_MM_ALL_LOCKS can't change to 0 from under us
3556 * because we hold the mm_all_locks_mutex.
3558 i_mmap_unlock_write(mapping);
3559 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3566 * The mmap_sem cannot be released by the caller until
3567 * mm_drop_all_locks() returns.
3569 void mm_drop_all_locks(struct mm_struct *mm)
3571 struct vm_area_struct *vma;
3572 struct anon_vma_chain *avc;
3574 BUG_ON(down_read_trylock(&mm->mmap_sem));
3575 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3577 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3579 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3580 vm_unlock_anon_vma(avc->anon_vma);
3581 if (vma->vm_file && vma->vm_file->f_mapping)
3582 vm_unlock_mapping(vma->vm_file->f_mapping);
3585 mutex_unlock(&mm_all_locks_mutex);
3589 * initialise the percpu counter for VM
3591 void __init mmap_init(void)
3595 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3600 * Initialise sysctl_user_reserve_kbytes.
3602 * This is intended to prevent a user from starting a single memory hogging
3603 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3606 * The default value is min(3% of free memory, 128MB)
3607 * 128MB is enough to recover with sshd/login, bash, and top/kill.
3609 static int init_user_reserve(void)
3611 unsigned long free_kbytes;
3613 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3615 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3618 subsys_initcall(init_user_reserve);
3621 * Initialise sysctl_admin_reserve_kbytes.
3623 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3624 * to log in and kill a memory hogging process.
3626 * Systems with more than 256MB will reserve 8MB, enough to recover
3627 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3628 * only reserve 3% of free pages by default.
3630 static int init_admin_reserve(void)
3632 unsigned long free_kbytes;
3634 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3636 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3639 subsys_initcall(init_admin_reserve);
3642 * Reinititalise user and admin reserves if memory is added or removed.
3644 * The default user reserve max is 128MB, and the default max for the
3645 * admin reserve is 8MB. These are usually, but not always, enough to
3646 * enable recovery from a memory hogging process using login/sshd, a shell,
3647 * and tools like top. It may make sense to increase or even disable the
3648 * reserve depending on the existence of swap or variations in the recovery
3649 * tools. So, the admin may have changed them.
3651 * If memory is added and the reserves have been eliminated or increased above
3652 * the default max, then we'll trust the admin.
3654 * If memory is removed and there isn't enough free memory, then we
3655 * need to reset the reserves.
3657 * Otherwise keep the reserve set by the admin.
3659 static int reserve_mem_notifier(struct notifier_block *nb,
3660 unsigned long action, void *data)
3662 unsigned long tmp, free_kbytes;
3666 /* Default max is 128MB. Leave alone if modified by operator. */
3667 tmp = sysctl_user_reserve_kbytes;
3668 if (0 < tmp && tmp < (1UL << 17))
3669 init_user_reserve();
3671 /* Default max is 8MB. Leave alone if modified by operator. */
3672 tmp = sysctl_admin_reserve_kbytes;
3673 if (0 < tmp && tmp < (1UL << 13))
3674 init_admin_reserve();
3678 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3680 if (sysctl_user_reserve_kbytes > free_kbytes) {
3681 init_user_reserve();
3682 pr_info("vm.user_reserve_kbytes reset to %lu\n",
3683 sysctl_user_reserve_kbytes);
3686 if (sysctl_admin_reserve_kbytes > free_kbytes) {
3687 init_admin_reserve();
3688 pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3689 sysctl_admin_reserve_kbytes);
3698 static struct notifier_block reserve_mem_nb = {
3699 .notifier_call = reserve_mem_notifier,
3702 static int __meminit init_reserve_notifier(void)
3704 if (register_hotmemory_notifier(&reserve_mem_nb))
3705 pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3709 subsys_initcall(init_reserve_notifier);