mm/huge_memory: use pfn_to_online_page() in split_huge_pages_all()
[platform/kernel/linux-rpi.git] / mm / mmap.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * mm/mmap.c
4  *
5  * Written by obz.
6  *
7  * Address space accounting code        <alan@lxorguk.ukuu.org.uk>
8  */
9
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11
12 #include <linux/kernel.h>
13 #include <linux/slab.h>
14 #include <linux/backing-dev.h>
15 #include <linux/mm.h>
16 #include <linux/vmacache.h>
17 #include <linux/shm.h>
18 #include <linux/mman.h>
19 #include <linux/pagemap.h>
20 #include <linux/swap.h>
21 #include <linux/syscalls.h>
22 #include <linux/capability.h>
23 #include <linux/init.h>
24 #include <linux/file.h>
25 #include <linux/fs.h>
26 #include <linux/personality.h>
27 #include <linux/security.h>
28 #include <linux/hugetlb.h>
29 #include <linux/shmem_fs.h>
30 #include <linux/profile.h>
31 #include <linux/export.h>
32 #include <linux/mount.h>
33 #include <linux/mempolicy.h>
34 #include <linux/rmap.h>
35 #include <linux/mmu_notifier.h>
36 #include <linux/mmdebug.h>
37 #include <linux/perf_event.h>
38 #include <linux/audit.h>
39 #include <linux/khugepaged.h>
40 #include <linux/uprobes.h>
41 #include <linux/rbtree_augmented.h>
42 #include <linux/notifier.h>
43 #include <linux/memory.h>
44 #include <linux/printk.h>
45 #include <linux/userfaultfd_k.h>
46 #include <linux/moduleparam.h>
47 #include <linux/pkeys.h>
48 #include <linux/oom.h>
49 #include <linux/sched/mm.h>
50
51 #include <linux/uaccess.h>
52 #include <asm/cacheflush.h>
53 #include <asm/tlb.h>
54 #include <asm/mmu_context.h>
55
56 #define CREATE_TRACE_POINTS
57 #include <trace/events/mmap.h>
58
59 #include "internal.h"
60
61 #ifndef arch_mmap_check
62 #define arch_mmap_check(addr, len, flags)       (0)
63 #endif
64
65 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
66 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
67 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX;
68 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
69 #endif
70 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
71 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
72 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
73 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
74 #endif
75
76 static bool ignore_rlimit_data;
77 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
78
79 static void unmap_region(struct mm_struct *mm,
80                 struct vm_area_struct *vma, struct vm_area_struct *prev,
81                 unsigned long start, unsigned long end);
82
83 /* description of effects of mapping type and prot in current implementation.
84  * this is due to the limited x86 page protection hardware.  The expected
85  * behavior is in parens:
86  *
87  * map_type     prot
88  *              PROT_NONE       PROT_READ       PROT_WRITE      PROT_EXEC
89  * MAP_SHARED   r: (no) no      r: (yes) yes    r: (no) yes     r: (no) yes
90  *              w: (no) no      w: (no) no      w: (yes) yes    w: (no) no
91  *              x: (no) no      x: (no) yes     x: (no) yes     x: (yes) yes
92  *
93  * MAP_PRIVATE  r: (no) no      r: (yes) yes    r: (no) yes     r: (no) yes
94  *              w: (no) no      w: (no) no      w: (copy) copy  w: (no) no
95  *              x: (no) no      x: (no) yes     x: (no) yes     x: (yes) yes
96  *
97  * On arm64, PROT_EXEC has the following behaviour for both MAP_SHARED and
98  * MAP_PRIVATE (with Enhanced PAN supported):
99  *                                                              r: (no) no
100  *                                                              w: (no) no
101  *                                                              x: (yes) yes
102  */
103 pgprot_t protection_map[16] __ro_after_init = {
104         __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
105         __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
106 };
107
108 #ifndef CONFIG_ARCH_HAS_FILTER_PGPROT
109 static inline pgprot_t arch_filter_pgprot(pgprot_t prot)
110 {
111         return prot;
112 }
113 #endif
114
115 pgprot_t vm_get_page_prot(unsigned long vm_flags)
116 {
117         pgprot_t ret = __pgprot(pgprot_val(protection_map[vm_flags &
118                                 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
119                         pgprot_val(arch_vm_get_page_prot(vm_flags)));
120
121         return arch_filter_pgprot(ret);
122 }
123 EXPORT_SYMBOL(vm_get_page_prot);
124
125 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
126 {
127         return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
128 }
129
130 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
131 void vma_set_page_prot(struct vm_area_struct *vma)
132 {
133         unsigned long vm_flags = vma->vm_flags;
134         pgprot_t vm_page_prot;
135
136         vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
137         if (vma_wants_writenotify(vma, vm_page_prot)) {
138                 vm_flags &= ~VM_SHARED;
139                 vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags);
140         }
141         /* remove_protection_ptes reads vma->vm_page_prot without mmap_lock */
142         WRITE_ONCE(vma->vm_page_prot, vm_page_prot);
143 }
144
145 /*
146  * Requires inode->i_mapping->i_mmap_rwsem
147  */
148 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
149                 struct file *file, struct address_space *mapping)
150 {
151         if (vma->vm_flags & VM_SHARED)
152                 mapping_unmap_writable(mapping);
153
154         flush_dcache_mmap_lock(mapping);
155         vma_interval_tree_remove(vma, &mapping->i_mmap);
156         flush_dcache_mmap_unlock(mapping);
157 }
158
159 /*
160  * Unlink a file-based vm structure from its interval tree, to hide
161  * vma from rmap and vmtruncate before freeing its page tables.
162  */
163 void unlink_file_vma(struct vm_area_struct *vma)
164 {
165         struct file *file = vma->vm_file;
166
167         if (file) {
168                 struct address_space *mapping = file->f_mapping;
169                 i_mmap_lock_write(mapping);
170                 __remove_shared_vm_struct(vma, file, mapping);
171                 i_mmap_unlock_write(mapping);
172         }
173 }
174
175 /*
176  * Close a vm structure and free it, returning the next.
177  */
178 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
179 {
180         struct vm_area_struct *next = vma->vm_next;
181
182         might_sleep();
183         if (vma->vm_ops && vma->vm_ops->close)
184                 vma->vm_ops->close(vma);
185         if (vma->vm_file)
186                 fput(vma->vm_file);
187         mpol_put(vma_policy(vma));
188         vm_area_free(vma);
189         return next;
190 }
191
192 static int do_brk_flags(unsigned long addr, unsigned long request, unsigned long flags,
193                 struct list_head *uf);
194 SYSCALL_DEFINE1(brk, unsigned long, brk)
195 {
196         unsigned long newbrk, oldbrk, origbrk;
197         struct mm_struct *mm = current->mm;
198         struct vm_area_struct *next;
199         unsigned long min_brk;
200         bool populate;
201         bool downgraded = false;
202         LIST_HEAD(uf);
203
204         if (mmap_write_lock_killable(mm))
205                 return -EINTR;
206
207         origbrk = mm->brk;
208
209 #ifdef CONFIG_COMPAT_BRK
210         /*
211          * CONFIG_COMPAT_BRK can still be overridden by setting
212          * randomize_va_space to 2, which will still cause mm->start_brk
213          * to be arbitrarily shifted
214          */
215         if (current->brk_randomized)
216                 min_brk = mm->start_brk;
217         else
218                 min_brk = mm->end_data;
219 #else
220         min_brk = mm->start_brk;
221 #endif
222         if (brk < min_brk)
223                 goto out;
224
225         /*
226          * Check against rlimit here. If this check is done later after the test
227          * of oldbrk with newbrk then it can escape the test and let the data
228          * segment grow beyond its set limit the in case where the limit is
229          * not page aligned -Ram Gupta
230          */
231         if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
232                               mm->end_data, mm->start_data))
233                 goto out;
234
235         newbrk = PAGE_ALIGN(brk);
236         oldbrk = PAGE_ALIGN(mm->brk);
237         if (oldbrk == newbrk) {
238                 mm->brk = brk;
239                 goto success;
240         }
241
242         /*
243          * Always allow shrinking brk.
244          * __do_munmap() may downgrade mmap_lock to read.
245          */
246         if (brk <= mm->brk) {
247                 int ret;
248
249                 /*
250                  * mm->brk must to be protected by write mmap_lock so update it
251                  * before downgrading mmap_lock. When __do_munmap() fails,
252                  * mm->brk will be restored from origbrk.
253                  */
254                 mm->brk = brk;
255                 ret = __do_munmap(mm, newbrk, oldbrk-newbrk, &uf, true);
256                 if (ret < 0) {
257                         mm->brk = origbrk;
258                         goto out;
259                 } else if (ret == 1) {
260                         downgraded = true;
261                 }
262                 goto success;
263         }
264
265         /* Check against existing mmap mappings. */
266         next = find_vma(mm, oldbrk);
267         if (next && newbrk + PAGE_SIZE > vm_start_gap(next))
268                 goto out;
269
270         /* Ok, looks good - let it rip. */
271         if (do_brk_flags(oldbrk, newbrk-oldbrk, 0, &uf) < 0)
272                 goto out;
273         mm->brk = brk;
274
275 success:
276         populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
277         if (downgraded)
278                 mmap_read_unlock(mm);
279         else
280                 mmap_write_unlock(mm);
281         userfaultfd_unmap_complete(mm, &uf);
282         if (populate)
283                 mm_populate(oldbrk, newbrk - oldbrk);
284         return brk;
285
286 out:
287         mmap_write_unlock(mm);
288         return origbrk;
289 }
290
291 static inline unsigned long vma_compute_gap(struct vm_area_struct *vma)
292 {
293         unsigned long gap, prev_end;
294
295         /*
296          * Note: in the rare case of a VM_GROWSDOWN above a VM_GROWSUP, we
297          * allow two stack_guard_gaps between them here, and when choosing
298          * an unmapped area; whereas when expanding we only require one.
299          * That's a little inconsistent, but keeps the code here simpler.
300          */
301         gap = vm_start_gap(vma);
302         if (vma->vm_prev) {
303                 prev_end = vm_end_gap(vma->vm_prev);
304                 if (gap > prev_end)
305                         gap -= prev_end;
306                 else
307                         gap = 0;
308         }
309         return gap;
310 }
311
312 #ifdef CONFIG_DEBUG_VM_RB
313 static unsigned long vma_compute_subtree_gap(struct vm_area_struct *vma)
314 {
315         unsigned long max = vma_compute_gap(vma), subtree_gap;
316         if (vma->vm_rb.rb_left) {
317                 subtree_gap = rb_entry(vma->vm_rb.rb_left,
318                                 struct vm_area_struct, vm_rb)->rb_subtree_gap;
319                 if (subtree_gap > max)
320                         max = subtree_gap;
321         }
322         if (vma->vm_rb.rb_right) {
323                 subtree_gap = rb_entry(vma->vm_rb.rb_right,
324                                 struct vm_area_struct, vm_rb)->rb_subtree_gap;
325                 if (subtree_gap > max)
326                         max = subtree_gap;
327         }
328         return max;
329 }
330
331 static int browse_rb(struct mm_struct *mm)
332 {
333         struct rb_root *root = &mm->mm_rb;
334         int i = 0, j, bug = 0;
335         struct rb_node *nd, *pn = NULL;
336         unsigned long prev = 0, pend = 0;
337
338         for (nd = rb_first(root); nd; nd = rb_next(nd)) {
339                 struct vm_area_struct *vma;
340                 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
341                 if (vma->vm_start < prev) {
342                         pr_emerg("vm_start %lx < prev %lx\n",
343                                   vma->vm_start, prev);
344                         bug = 1;
345                 }
346                 if (vma->vm_start < pend) {
347                         pr_emerg("vm_start %lx < pend %lx\n",
348                                   vma->vm_start, pend);
349                         bug = 1;
350                 }
351                 if (vma->vm_start > vma->vm_end) {
352                         pr_emerg("vm_start %lx > vm_end %lx\n",
353                                   vma->vm_start, vma->vm_end);
354                         bug = 1;
355                 }
356                 spin_lock(&mm->page_table_lock);
357                 if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
358                         pr_emerg("free gap %lx, correct %lx\n",
359                                vma->rb_subtree_gap,
360                                vma_compute_subtree_gap(vma));
361                         bug = 1;
362                 }
363                 spin_unlock(&mm->page_table_lock);
364                 i++;
365                 pn = nd;
366                 prev = vma->vm_start;
367                 pend = vma->vm_end;
368         }
369         j = 0;
370         for (nd = pn; nd; nd = rb_prev(nd))
371                 j++;
372         if (i != j) {
373                 pr_emerg("backwards %d, forwards %d\n", j, i);
374                 bug = 1;
375         }
376         return bug ? -1 : i;
377 }
378
379 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
380 {
381         struct rb_node *nd;
382
383         for (nd = rb_first(root); nd; nd = rb_next(nd)) {
384                 struct vm_area_struct *vma;
385                 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
386                 VM_BUG_ON_VMA(vma != ignore &&
387                         vma->rb_subtree_gap != vma_compute_subtree_gap(vma),
388                         vma);
389         }
390 }
391
392 static void validate_mm(struct mm_struct *mm)
393 {
394         int bug = 0;
395         int i = 0;
396         unsigned long highest_address = 0;
397         struct vm_area_struct *vma = mm->mmap;
398
399         while (vma) {
400                 struct anon_vma *anon_vma = vma->anon_vma;
401                 struct anon_vma_chain *avc;
402
403                 if (anon_vma) {
404                         anon_vma_lock_read(anon_vma);
405                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
406                                 anon_vma_interval_tree_verify(avc);
407                         anon_vma_unlock_read(anon_vma);
408                 }
409
410                 highest_address = vm_end_gap(vma);
411                 vma = vma->vm_next;
412                 i++;
413         }
414         if (i != mm->map_count) {
415                 pr_emerg("map_count %d vm_next %d\n", mm->map_count, i);
416                 bug = 1;
417         }
418         if (highest_address != mm->highest_vm_end) {
419                 pr_emerg("mm->highest_vm_end %lx, found %lx\n",
420                           mm->highest_vm_end, highest_address);
421                 bug = 1;
422         }
423         i = browse_rb(mm);
424         if (i != mm->map_count) {
425                 if (i != -1)
426                         pr_emerg("map_count %d rb %d\n", mm->map_count, i);
427                 bug = 1;
428         }
429         VM_BUG_ON_MM(bug, mm);
430 }
431 #else
432 #define validate_mm_rb(root, ignore) do { } while (0)
433 #define validate_mm(mm) do { } while (0)
434 #endif
435
436 RB_DECLARE_CALLBACKS_MAX(static, vma_gap_callbacks,
437                          struct vm_area_struct, vm_rb,
438                          unsigned long, rb_subtree_gap, vma_compute_gap)
439
440 /*
441  * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
442  * vma->vm_prev->vm_end values changed, without modifying the vma's position
443  * in the rbtree.
444  */
445 static void vma_gap_update(struct vm_area_struct *vma)
446 {
447         /*
448          * As it turns out, RB_DECLARE_CALLBACKS_MAX() already created
449          * a callback function that does exactly what we want.
450          */
451         vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
452 }
453
454 static inline void vma_rb_insert(struct vm_area_struct *vma,
455                                  struct rb_root *root)
456 {
457         /* All rb_subtree_gap values must be consistent prior to insertion */
458         validate_mm_rb(root, NULL);
459
460         rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
461 }
462
463 static void __vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
464 {
465         /*
466          * Note rb_erase_augmented is a fairly large inline function,
467          * so make sure we instantiate it only once with our desired
468          * augmented rbtree callbacks.
469          */
470         rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
471 }
472
473 static __always_inline void vma_rb_erase_ignore(struct vm_area_struct *vma,
474                                                 struct rb_root *root,
475                                                 struct vm_area_struct *ignore)
476 {
477         /*
478          * All rb_subtree_gap values must be consistent prior to erase,
479          * with the possible exception of
480          *
481          * a. the "next" vma being erased if next->vm_start was reduced in
482          *    __vma_adjust() -> __vma_unlink()
483          * b. the vma being erased in detach_vmas_to_be_unmapped() ->
484          *    vma_rb_erase()
485          */
486         validate_mm_rb(root, ignore);
487
488         __vma_rb_erase(vma, root);
489 }
490
491 static __always_inline void vma_rb_erase(struct vm_area_struct *vma,
492                                          struct rb_root *root)
493 {
494         vma_rb_erase_ignore(vma, root, vma);
495 }
496
497 /*
498  * vma has some anon_vma assigned, and is already inserted on that
499  * anon_vma's interval trees.
500  *
501  * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
502  * vma must be removed from the anon_vma's interval trees using
503  * anon_vma_interval_tree_pre_update_vma().
504  *
505  * After the update, the vma will be reinserted using
506  * anon_vma_interval_tree_post_update_vma().
507  *
508  * The entire update must be protected by exclusive mmap_lock and by
509  * the root anon_vma's mutex.
510  */
511 static inline void
512 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
513 {
514         struct anon_vma_chain *avc;
515
516         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
517                 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
518 }
519
520 static inline void
521 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
522 {
523         struct anon_vma_chain *avc;
524
525         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
526                 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
527 }
528
529 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
530                 unsigned long end, struct vm_area_struct **pprev,
531                 struct rb_node ***rb_link, struct rb_node **rb_parent)
532 {
533         struct rb_node **__rb_link, *__rb_parent, *rb_prev;
534
535         mmap_assert_locked(mm);
536         __rb_link = &mm->mm_rb.rb_node;
537         rb_prev = __rb_parent = NULL;
538
539         while (*__rb_link) {
540                 struct vm_area_struct *vma_tmp;
541
542                 __rb_parent = *__rb_link;
543                 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
544
545                 if (vma_tmp->vm_end > addr) {
546                         /* Fail if an existing vma overlaps the area */
547                         if (vma_tmp->vm_start < end)
548                                 return -ENOMEM;
549                         __rb_link = &__rb_parent->rb_left;
550                 } else {
551                         rb_prev = __rb_parent;
552                         __rb_link = &__rb_parent->rb_right;
553                 }
554         }
555
556         *pprev = NULL;
557         if (rb_prev)
558                 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
559         *rb_link = __rb_link;
560         *rb_parent = __rb_parent;
561         return 0;
562 }
563
564 /*
565  * vma_next() - Get the next VMA.
566  * @mm: The mm_struct.
567  * @vma: The current vma.
568  *
569  * If @vma is NULL, return the first vma in the mm.
570  *
571  * Returns: The next VMA after @vma.
572  */
573 static inline struct vm_area_struct *vma_next(struct mm_struct *mm,
574                                          struct vm_area_struct *vma)
575 {
576         if (!vma)
577                 return mm->mmap;
578
579         return vma->vm_next;
580 }
581
582 /*
583  * munmap_vma_range() - munmap VMAs that overlap a range.
584  * @mm: The mm struct
585  * @start: The start of the range.
586  * @len: The length of the range.
587  * @pprev: pointer to the pointer that will be set to previous vm_area_struct
588  * @rb_link: the rb_node
589  * @rb_parent: the parent rb_node
590  *
591  * Find all the vm_area_struct that overlap from @start to
592  * @end and munmap them.  Set @pprev to the previous vm_area_struct.
593  *
594  * Returns: -ENOMEM on munmap failure or 0 on success.
595  */
596 static inline int
597 munmap_vma_range(struct mm_struct *mm, unsigned long start, unsigned long len,
598                  struct vm_area_struct **pprev, struct rb_node ***link,
599                  struct rb_node **parent, struct list_head *uf)
600 {
601
602         while (find_vma_links(mm, start, start + len, pprev, link, parent))
603                 if (do_munmap(mm, start, len, uf))
604                         return -ENOMEM;
605
606         return 0;
607 }
608 static unsigned long count_vma_pages_range(struct mm_struct *mm,
609                 unsigned long addr, unsigned long end)
610 {
611         unsigned long nr_pages = 0;
612         struct vm_area_struct *vma;
613
614         /* Find first overlapping mapping */
615         vma = find_vma_intersection(mm, addr, end);
616         if (!vma)
617                 return 0;
618
619         nr_pages = (min(end, vma->vm_end) -
620                 max(addr, vma->vm_start)) >> PAGE_SHIFT;
621
622         /* Iterate over the rest of the overlaps */
623         for (vma = vma->vm_next; vma; vma = vma->vm_next) {
624                 unsigned long overlap_len;
625
626                 if (vma->vm_start > end)
627                         break;
628
629                 overlap_len = min(end, vma->vm_end) - vma->vm_start;
630                 nr_pages += overlap_len >> PAGE_SHIFT;
631         }
632
633         return nr_pages;
634 }
635
636 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
637                 struct rb_node **rb_link, struct rb_node *rb_parent)
638 {
639         /* Update tracking information for the gap following the new vma. */
640         if (vma->vm_next)
641                 vma_gap_update(vma->vm_next);
642         else
643                 mm->highest_vm_end = vm_end_gap(vma);
644
645         /*
646          * vma->vm_prev wasn't known when we followed the rbtree to find the
647          * correct insertion point for that vma. As a result, we could not
648          * update the vma vm_rb parents rb_subtree_gap values on the way down.
649          * So, we first insert the vma with a zero rb_subtree_gap value
650          * (to be consistent with what we did on the way down), and then
651          * immediately update the gap to the correct value. Finally we
652          * rebalance the rbtree after all augmented values have been set.
653          */
654         rb_link_node(&vma->vm_rb, rb_parent, rb_link);
655         vma->rb_subtree_gap = 0;
656         vma_gap_update(vma);
657         vma_rb_insert(vma, &mm->mm_rb);
658 }
659
660 static void __vma_link_file(struct vm_area_struct *vma)
661 {
662         struct file *file;
663
664         file = vma->vm_file;
665         if (file) {
666                 struct address_space *mapping = file->f_mapping;
667
668                 if (vma->vm_flags & VM_SHARED)
669                         mapping_allow_writable(mapping);
670
671                 flush_dcache_mmap_lock(mapping);
672                 vma_interval_tree_insert(vma, &mapping->i_mmap);
673                 flush_dcache_mmap_unlock(mapping);
674         }
675 }
676
677 static void
678 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
679         struct vm_area_struct *prev, struct rb_node **rb_link,
680         struct rb_node *rb_parent)
681 {
682         __vma_link_list(mm, vma, prev);
683         __vma_link_rb(mm, vma, rb_link, rb_parent);
684 }
685
686 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
687                         struct vm_area_struct *prev, struct rb_node **rb_link,
688                         struct rb_node *rb_parent)
689 {
690         struct address_space *mapping = NULL;
691
692         if (vma->vm_file) {
693                 mapping = vma->vm_file->f_mapping;
694                 i_mmap_lock_write(mapping);
695         }
696
697         __vma_link(mm, vma, prev, rb_link, rb_parent);
698         __vma_link_file(vma);
699
700         if (mapping)
701                 i_mmap_unlock_write(mapping);
702
703         mm->map_count++;
704         validate_mm(mm);
705 }
706
707 /*
708  * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
709  * mm's list and rbtree.  It has already been inserted into the interval tree.
710  */
711 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
712 {
713         struct vm_area_struct *prev;
714         struct rb_node **rb_link, *rb_parent;
715
716         if (find_vma_links(mm, vma->vm_start, vma->vm_end,
717                            &prev, &rb_link, &rb_parent))
718                 BUG();
719         __vma_link(mm, vma, prev, rb_link, rb_parent);
720         mm->map_count++;
721 }
722
723 static __always_inline void __vma_unlink(struct mm_struct *mm,
724                                                 struct vm_area_struct *vma,
725                                                 struct vm_area_struct *ignore)
726 {
727         vma_rb_erase_ignore(vma, &mm->mm_rb, ignore);
728         __vma_unlink_list(mm, vma);
729         /* Kill the cache */
730         vmacache_invalidate(mm);
731 }
732
733 /*
734  * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
735  * is already present in an i_mmap tree without adjusting the tree.
736  * The following helper function should be used when such adjustments
737  * are necessary.  The "insert" vma (if any) is to be inserted
738  * before we drop the necessary locks.
739  */
740 int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
741         unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
742         struct vm_area_struct *expand)
743 {
744         struct mm_struct *mm = vma->vm_mm;
745         struct vm_area_struct *next = vma->vm_next, *orig_vma = vma;
746         struct address_space *mapping = NULL;
747         struct rb_root_cached *root = NULL;
748         struct anon_vma *anon_vma = NULL;
749         struct file *file = vma->vm_file;
750         bool start_changed = false, end_changed = false;
751         long adjust_next = 0;
752         int remove_next = 0;
753
754         if (next && !insert) {
755                 struct vm_area_struct *exporter = NULL, *importer = NULL;
756
757                 if (end >= next->vm_end) {
758                         /*
759                          * vma expands, overlapping all the next, and
760                          * perhaps the one after too (mprotect case 6).
761                          * The only other cases that gets here are
762                          * case 1, case 7 and case 8.
763                          */
764                         if (next == expand) {
765                                 /*
766                                  * The only case where we don't expand "vma"
767                                  * and we expand "next" instead is case 8.
768                                  */
769                                 VM_WARN_ON(end != next->vm_end);
770                                 /*
771                                  * remove_next == 3 means we're
772                                  * removing "vma" and that to do so we
773                                  * swapped "vma" and "next".
774                                  */
775                                 remove_next = 3;
776                                 VM_WARN_ON(file != next->vm_file);
777                                 swap(vma, next);
778                         } else {
779                                 VM_WARN_ON(expand != vma);
780                                 /*
781                                  * case 1, 6, 7, remove_next == 2 is case 6,
782                                  * remove_next == 1 is case 1 or 7.
783                                  */
784                                 remove_next = 1 + (end > next->vm_end);
785                                 VM_WARN_ON(remove_next == 2 &&
786                                            end != next->vm_next->vm_end);
787                                 /* trim end to next, for case 6 first pass */
788                                 end = next->vm_end;
789                         }
790
791                         exporter = next;
792                         importer = vma;
793
794                         /*
795                          * If next doesn't have anon_vma, import from vma after
796                          * next, if the vma overlaps with it.
797                          */
798                         if (remove_next == 2 && !next->anon_vma)
799                                 exporter = next->vm_next;
800
801                 } else if (end > next->vm_start) {
802                         /*
803                          * vma expands, overlapping part of the next:
804                          * mprotect case 5 shifting the boundary up.
805                          */
806                         adjust_next = (end - next->vm_start);
807                         exporter = next;
808                         importer = vma;
809                         VM_WARN_ON(expand != importer);
810                 } else if (end < vma->vm_end) {
811                         /*
812                          * vma shrinks, and !insert tells it's not
813                          * split_vma inserting another: so it must be
814                          * mprotect case 4 shifting the boundary down.
815                          */
816                         adjust_next = -(vma->vm_end - end);
817                         exporter = vma;
818                         importer = next;
819                         VM_WARN_ON(expand != importer);
820                 }
821
822                 /*
823                  * Easily overlooked: when mprotect shifts the boundary,
824                  * make sure the expanding vma has anon_vma set if the
825                  * shrinking vma had, to cover any anon pages imported.
826                  */
827                 if (exporter && exporter->anon_vma && !importer->anon_vma) {
828                         int error;
829
830                         importer->anon_vma = exporter->anon_vma;
831                         error = anon_vma_clone(importer, exporter);
832                         if (error)
833                                 return error;
834                 }
835         }
836 again:
837         vma_adjust_trans_huge(orig_vma, start, end, adjust_next);
838
839         if (file) {
840                 mapping = file->f_mapping;
841                 root = &mapping->i_mmap;
842                 uprobe_munmap(vma, vma->vm_start, vma->vm_end);
843
844                 if (adjust_next)
845                         uprobe_munmap(next, next->vm_start, next->vm_end);
846
847                 i_mmap_lock_write(mapping);
848                 if (insert) {
849                         /*
850                          * Put into interval tree now, so instantiated pages
851                          * are visible to arm/parisc __flush_dcache_page
852                          * throughout; but we cannot insert into address
853                          * space until vma start or end is updated.
854                          */
855                         __vma_link_file(insert);
856                 }
857         }
858
859         anon_vma = vma->anon_vma;
860         if (!anon_vma && adjust_next)
861                 anon_vma = next->anon_vma;
862         if (anon_vma) {
863                 VM_WARN_ON(adjust_next && next->anon_vma &&
864                            anon_vma != next->anon_vma);
865                 anon_vma_lock_write(anon_vma);
866                 anon_vma_interval_tree_pre_update_vma(vma);
867                 if (adjust_next)
868                         anon_vma_interval_tree_pre_update_vma(next);
869         }
870
871         if (file) {
872                 flush_dcache_mmap_lock(mapping);
873                 vma_interval_tree_remove(vma, root);
874                 if (adjust_next)
875                         vma_interval_tree_remove(next, root);
876         }
877
878         if (start != vma->vm_start) {
879                 vma->vm_start = start;
880                 start_changed = true;
881         }
882         if (end != vma->vm_end) {
883                 vma->vm_end = end;
884                 end_changed = true;
885         }
886         vma->vm_pgoff = pgoff;
887         if (adjust_next) {
888                 next->vm_start += adjust_next;
889                 next->vm_pgoff += adjust_next >> PAGE_SHIFT;
890         }
891
892         if (file) {
893                 if (adjust_next)
894                         vma_interval_tree_insert(next, root);
895                 vma_interval_tree_insert(vma, root);
896                 flush_dcache_mmap_unlock(mapping);
897         }
898
899         if (remove_next) {
900                 /*
901                  * vma_merge has merged next into vma, and needs
902                  * us to remove next before dropping the locks.
903                  */
904                 if (remove_next != 3)
905                         __vma_unlink(mm, next, next);
906                 else
907                         /*
908                          * vma is not before next if they've been
909                          * swapped.
910                          *
911                          * pre-swap() next->vm_start was reduced so
912                          * tell validate_mm_rb to ignore pre-swap()
913                          * "next" (which is stored in post-swap()
914                          * "vma").
915                          */
916                         __vma_unlink(mm, next, vma);
917                 if (file)
918                         __remove_shared_vm_struct(next, file, mapping);
919         } else if (insert) {
920                 /*
921                  * split_vma has split insert from vma, and needs
922                  * us to insert it before dropping the locks
923                  * (it may either follow vma or precede it).
924                  */
925                 __insert_vm_struct(mm, insert);
926         } else {
927                 if (start_changed)
928                         vma_gap_update(vma);
929                 if (end_changed) {
930                         if (!next)
931                                 mm->highest_vm_end = vm_end_gap(vma);
932                         else if (!adjust_next)
933                                 vma_gap_update(next);
934                 }
935         }
936
937         if (anon_vma) {
938                 anon_vma_interval_tree_post_update_vma(vma);
939                 if (adjust_next)
940                         anon_vma_interval_tree_post_update_vma(next);
941                 anon_vma_unlock_write(anon_vma);
942         }
943
944         if (file) {
945                 i_mmap_unlock_write(mapping);
946                 uprobe_mmap(vma);
947
948                 if (adjust_next)
949                         uprobe_mmap(next);
950         }
951
952         if (remove_next) {
953                 if (file) {
954                         uprobe_munmap(next, next->vm_start, next->vm_end);
955                         fput(file);
956                 }
957                 if (next->anon_vma)
958                         anon_vma_merge(vma, next);
959                 mm->map_count--;
960                 mpol_put(vma_policy(next));
961                 vm_area_free(next);
962                 /*
963                  * In mprotect's case 6 (see comments on vma_merge),
964                  * we must remove another next too. It would clutter
965                  * up the code too much to do both in one go.
966                  */
967                 if (remove_next != 3) {
968                         /*
969                          * If "next" was removed and vma->vm_end was
970                          * expanded (up) over it, in turn
971                          * "next->vm_prev->vm_end" changed and the
972                          * "vma->vm_next" gap must be updated.
973                          */
974                         next = vma->vm_next;
975                 } else {
976                         /*
977                          * For the scope of the comment "next" and
978                          * "vma" considered pre-swap(): if "vma" was
979                          * removed, next->vm_start was expanded (down)
980                          * over it and the "next" gap must be updated.
981                          * Because of the swap() the post-swap() "vma"
982                          * actually points to pre-swap() "next"
983                          * (post-swap() "next" as opposed is now a
984                          * dangling pointer).
985                          */
986                         next = vma;
987                 }
988                 if (remove_next == 2) {
989                         remove_next = 1;
990                         end = next->vm_end;
991                         goto again;
992                 }
993                 else if (next)
994                         vma_gap_update(next);
995                 else {
996                         /*
997                          * If remove_next == 2 we obviously can't
998                          * reach this path.
999                          *
1000                          * If remove_next == 3 we can't reach this
1001                          * path because pre-swap() next is always not
1002                          * NULL. pre-swap() "next" is not being
1003                          * removed and its next->vm_end is not altered
1004                          * (and furthermore "end" already matches
1005                          * next->vm_end in remove_next == 3).
1006                          *
1007                          * We reach this only in the remove_next == 1
1008                          * case if the "next" vma that was removed was
1009                          * the highest vma of the mm. However in such
1010                          * case next->vm_end == "end" and the extended
1011                          * "vma" has vma->vm_end == next->vm_end so
1012                          * mm->highest_vm_end doesn't need any update
1013                          * in remove_next == 1 case.
1014                          */
1015                         VM_WARN_ON(mm->highest_vm_end != vm_end_gap(vma));
1016                 }
1017         }
1018         if (insert && file)
1019                 uprobe_mmap(insert);
1020
1021         validate_mm(mm);
1022
1023         return 0;
1024 }
1025
1026 /*
1027  * If the vma has a ->close operation then the driver probably needs to release
1028  * per-vma resources, so we don't attempt to merge those.
1029  */
1030 static inline int is_mergeable_vma(struct vm_area_struct *vma,
1031                                 struct file *file, unsigned long vm_flags,
1032                                 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1033 {
1034         /*
1035          * VM_SOFTDIRTY should not prevent from VMA merging, if we
1036          * match the flags but dirty bit -- the caller should mark
1037          * merged VMA as dirty. If dirty bit won't be excluded from
1038          * comparison, we increase pressure on the memory system forcing
1039          * the kernel to generate new VMAs when old one could be
1040          * extended instead.
1041          */
1042         if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
1043                 return 0;
1044         if (vma->vm_file != file)
1045                 return 0;
1046         if (vma->vm_ops && vma->vm_ops->close)
1047                 return 0;
1048         if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
1049                 return 0;
1050         return 1;
1051 }
1052
1053 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
1054                                         struct anon_vma *anon_vma2,
1055                                         struct vm_area_struct *vma)
1056 {
1057         /*
1058          * The list_is_singular() test is to avoid merging VMA cloned from
1059          * parents. This can improve scalability caused by anon_vma lock.
1060          */
1061         if ((!anon_vma1 || !anon_vma2) && (!vma ||
1062                 list_is_singular(&vma->anon_vma_chain)))
1063                 return 1;
1064         return anon_vma1 == anon_vma2;
1065 }
1066
1067 /*
1068  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1069  * in front of (at a lower virtual address and file offset than) the vma.
1070  *
1071  * We cannot merge two vmas if they have differently assigned (non-NULL)
1072  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1073  *
1074  * We don't check here for the merged mmap wrapping around the end of pagecache
1075  * indices (16TB on ia32) because do_mmap() does not permit mmap's which
1076  * wrap, nor mmaps which cover the final page at index -1UL.
1077  */
1078 static int
1079 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
1080                      struct anon_vma *anon_vma, struct file *file,
1081                      pgoff_t vm_pgoff,
1082                      struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1083 {
1084         if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1085             is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1086                 if (vma->vm_pgoff == vm_pgoff)
1087                         return 1;
1088         }
1089         return 0;
1090 }
1091
1092 /*
1093  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1094  * beyond (at a higher virtual address and file offset than) the vma.
1095  *
1096  * We cannot merge two vmas if they have differently assigned (non-NULL)
1097  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1098  */
1099 static int
1100 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
1101                     struct anon_vma *anon_vma, struct file *file,
1102                     pgoff_t vm_pgoff,
1103                     struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1104 {
1105         if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1106             is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1107                 pgoff_t vm_pglen;
1108                 vm_pglen = vma_pages(vma);
1109                 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
1110                         return 1;
1111         }
1112         return 0;
1113 }
1114
1115 /*
1116  * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
1117  * whether that can be merged with its predecessor or its successor.
1118  * Or both (it neatly fills a hole).
1119  *
1120  * In most cases - when called for mmap, brk or mremap - [addr,end) is
1121  * certain not to be mapped by the time vma_merge is called; but when
1122  * called for mprotect, it is certain to be already mapped (either at
1123  * an offset within prev, or at the start of next), and the flags of
1124  * this area are about to be changed to vm_flags - and the no-change
1125  * case has already been eliminated.
1126  *
1127  * The following mprotect cases have to be considered, where AAAA is
1128  * the area passed down from mprotect_fixup, never extending beyond one
1129  * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
1130  *
1131  *     AAAA             AAAA                   AAAA
1132  *    PPPPPPNNNNNN    PPPPPPNNNNNN       PPPPPPNNNNNN
1133  *    cannot merge    might become       might become
1134  *                    PPNNNNNNNNNN       PPPPPPPPPPNN
1135  *    mmap, brk or    case 4 below       case 5 below
1136  *    mremap move:
1137  *                        AAAA               AAAA
1138  *                    PPPP    NNNN       PPPPNNNNXXXX
1139  *                    might become       might become
1140  *                    PPPPPPPPPPPP 1 or  PPPPPPPPPPPP 6 or
1141  *                    PPPPPPPPNNNN 2 or  PPPPPPPPXXXX 7 or
1142  *                    PPPPNNNNNNNN 3     PPPPXXXXXXXX 8
1143  *
1144  * It is important for case 8 that the vma NNNN overlapping the
1145  * region AAAA is never going to extended over XXXX. Instead XXXX must
1146  * be extended in region AAAA and NNNN must be removed. This way in
1147  * all cases where vma_merge succeeds, the moment vma_adjust drops the
1148  * rmap_locks, the properties of the merged vma will be already
1149  * correct for the whole merged range. Some of those properties like
1150  * vm_page_prot/vm_flags may be accessed by rmap_walks and they must
1151  * be correct for the whole merged range immediately after the
1152  * rmap_locks are released. Otherwise if XXXX would be removed and
1153  * NNNN would be extended over the XXXX range, remove_migration_ptes
1154  * or other rmap walkers (if working on addresses beyond the "end"
1155  * parameter) may establish ptes with the wrong permissions of NNNN
1156  * instead of the right permissions of XXXX.
1157  */
1158 struct vm_area_struct *vma_merge(struct mm_struct *mm,
1159                         struct vm_area_struct *prev, unsigned long addr,
1160                         unsigned long end, unsigned long vm_flags,
1161                         struct anon_vma *anon_vma, struct file *file,
1162                         pgoff_t pgoff, struct mempolicy *policy,
1163                         struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1164 {
1165         pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1166         struct vm_area_struct *area, *next;
1167         int err;
1168
1169         /*
1170          * We later require that vma->vm_flags == vm_flags,
1171          * so this tests vma->vm_flags & VM_SPECIAL, too.
1172          */
1173         if (vm_flags & VM_SPECIAL)
1174                 return NULL;
1175
1176         next = vma_next(mm, prev);
1177         area = next;
1178         if (area && area->vm_end == end)                /* cases 6, 7, 8 */
1179                 next = next->vm_next;
1180
1181         /* verify some invariant that must be enforced by the caller */
1182         VM_WARN_ON(prev && addr <= prev->vm_start);
1183         VM_WARN_ON(area && end > area->vm_end);
1184         VM_WARN_ON(addr >= end);
1185
1186         /*
1187          * Can it merge with the predecessor?
1188          */
1189         if (prev && prev->vm_end == addr &&
1190                         mpol_equal(vma_policy(prev), policy) &&
1191                         can_vma_merge_after(prev, vm_flags,
1192                                             anon_vma, file, pgoff,
1193                                             vm_userfaultfd_ctx)) {
1194                 /*
1195                  * OK, it can.  Can we now merge in the successor as well?
1196                  */
1197                 if (next && end == next->vm_start &&
1198                                 mpol_equal(policy, vma_policy(next)) &&
1199                                 can_vma_merge_before(next, vm_flags,
1200                                                      anon_vma, file,
1201                                                      pgoff+pglen,
1202                                                      vm_userfaultfd_ctx) &&
1203                                 is_mergeable_anon_vma(prev->anon_vma,
1204                                                       next->anon_vma, NULL)) {
1205                                                         /* cases 1, 6 */
1206                         err = __vma_adjust(prev, prev->vm_start,
1207                                          next->vm_end, prev->vm_pgoff, NULL,
1208                                          prev);
1209                 } else                                  /* cases 2, 5, 7 */
1210                         err = __vma_adjust(prev, prev->vm_start,
1211                                          end, prev->vm_pgoff, NULL, prev);
1212                 if (err)
1213                         return NULL;
1214                 khugepaged_enter_vma_merge(prev, vm_flags);
1215                 return prev;
1216         }
1217
1218         /*
1219          * Can this new request be merged in front of next?
1220          */
1221         if (next && end == next->vm_start &&
1222                         mpol_equal(policy, vma_policy(next)) &&
1223                         can_vma_merge_before(next, vm_flags,
1224                                              anon_vma, file, pgoff+pglen,
1225                                              vm_userfaultfd_ctx)) {
1226                 if (prev && addr < prev->vm_end)        /* case 4 */
1227                         err = __vma_adjust(prev, prev->vm_start,
1228                                          addr, prev->vm_pgoff, NULL, next);
1229                 else {                                  /* cases 3, 8 */
1230                         err = __vma_adjust(area, addr, next->vm_end,
1231                                          next->vm_pgoff - pglen, NULL, next);
1232                         /*
1233                          * In case 3 area is already equal to next and
1234                          * this is a noop, but in case 8 "area" has
1235                          * been removed and next was expanded over it.
1236                          */
1237                         area = next;
1238                 }
1239                 if (err)
1240                         return NULL;
1241                 khugepaged_enter_vma_merge(area, vm_flags);
1242                 return area;
1243         }
1244
1245         return NULL;
1246 }
1247
1248 /*
1249  * Rough compatibility check to quickly see if it's even worth looking
1250  * at sharing an anon_vma.
1251  *
1252  * They need to have the same vm_file, and the flags can only differ
1253  * in things that mprotect may change.
1254  *
1255  * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1256  * we can merge the two vma's. For example, we refuse to merge a vma if
1257  * there is a vm_ops->close() function, because that indicates that the
1258  * driver is doing some kind of reference counting. But that doesn't
1259  * really matter for the anon_vma sharing case.
1260  */
1261 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1262 {
1263         return a->vm_end == b->vm_start &&
1264                 mpol_equal(vma_policy(a), vma_policy(b)) &&
1265                 a->vm_file == b->vm_file &&
1266                 !((a->vm_flags ^ b->vm_flags) & ~(VM_ACCESS_FLAGS | VM_SOFTDIRTY)) &&
1267                 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1268 }
1269
1270 /*
1271  * Do some basic sanity checking to see if we can re-use the anon_vma
1272  * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1273  * the same as 'old', the other will be the new one that is trying
1274  * to share the anon_vma.
1275  *
1276  * NOTE! This runs with mm_sem held for reading, so it is possible that
1277  * the anon_vma of 'old' is concurrently in the process of being set up
1278  * by another page fault trying to merge _that_. But that's ok: if it
1279  * is being set up, that automatically means that it will be a singleton
1280  * acceptable for merging, so we can do all of this optimistically. But
1281  * we do that READ_ONCE() to make sure that we never re-load the pointer.
1282  *
1283  * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1284  * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1285  * is to return an anon_vma that is "complex" due to having gone through
1286  * a fork).
1287  *
1288  * We also make sure that the two vma's are compatible (adjacent,
1289  * and with the same memory policies). That's all stable, even with just
1290  * a read lock on the mm_sem.
1291  */
1292 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1293 {
1294         if (anon_vma_compatible(a, b)) {
1295                 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1296
1297                 if (anon_vma && list_is_singular(&old->anon_vma_chain))
1298                         return anon_vma;
1299         }
1300         return NULL;
1301 }
1302
1303 /*
1304  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1305  * neighbouring vmas for a suitable anon_vma, before it goes off
1306  * to allocate a new anon_vma.  It checks because a repetitive
1307  * sequence of mprotects and faults may otherwise lead to distinct
1308  * anon_vmas being allocated, preventing vma merge in subsequent
1309  * mprotect.
1310  */
1311 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1312 {
1313         struct anon_vma *anon_vma = NULL;
1314
1315         /* Try next first. */
1316         if (vma->vm_next) {
1317                 anon_vma = reusable_anon_vma(vma->vm_next, vma, vma->vm_next);
1318                 if (anon_vma)
1319                         return anon_vma;
1320         }
1321
1322         /* Try prev next. */
1323         if (vma->vm_prev)
1324                 anon_vma = reusable_anon_vma(vma->vm_prev, vma->vm_prev, vma);
1325
1326         /*
1327          * We might reach here with anon_vma == NULL if we can't find
1328          * any reusable anon_vma.
1329          * There's no absolute need to look only at touching neighbours:
1330          * we could search further afield for "compatible" anon_vmas.
1331          * But it would probably just be a waste of time searching,
1332          * or lead to too many vmas hanging off the same anon_vma.
1333          * We're trying to allow mprotect remerging later on,
1334          * not trying to minimize memory used for anon_vmas.
1335          */
1336         return anon_vma;
1337 }
1338
1339 /*
1340  * If a hint addr is less than mmap_min_addr change hint to be as
1341  * low as possible but still greater than mmap_min_addr
1342  */
1343 static inline unsigned long round_hint_to_min(unsigned long hint)
1344 {
1345         hint &= PAGE_MASK;
1346         if (((void *)hint != NULL) &&
1347             (hint < mmap_min_addr))
1348                 return PAGE_ALIGN(mmap_min_addr);
1349         return hint;
1350 }
1351
1352 int mlock_future_check(struct mm_struct *mm, unsigned long flags,
1353                        unsigned long len)
1354 {
1355         unsigned long locked, lock_limit;
1356
1357         /*  mlock MCL_FUTURE? */
1358         if (flags & VM_LOCKED) {
1359                 locked = len >> PAGE_SHIFT;
1360                 locked += mm->locked_vm;
1361                 lock_limit = rlimit(RLIMIT_MEMLOCK);
1362                 lock_limit >>= PAGE_SHIFT;
1363                 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1364                         return -EAGAIN;
1365         }
1366         return 0;
1367 }
1368
1369 static inline u64 file_mmap_size_max(struct file *file, struct inode *inode)
1370 {
1371         if (S_ISREG(inode->i_mode))
1372                 return MAX_LFS_FILESIZE;
1373
1374         if (S_ISBLK(inode->i_mode))
1375                 return MAX_LFS_FILESIZE;
1376
1377         if (S_ISSOCK(inode->i_mode))
1378                 return MAX_LFS_FILESIZE;
1379
1380         /* Special "we do even unsigned file positions" case */
1381         if (file->f_mode & FMODE_UNSIGNED_OFFSET)
1382                 return 0;
1383
1384         /* Yes, random drivers might want more. But I'm tired of buggy drivers */
1385         return ULONG_MAX;
1386 }
1387
1388 static inline bool file_mmap_ok(struct file *file, struct inode *inode,
1389                                 unsigned long pgoff, unsigned long len)
1390 {
1391         u64 maxsize = file_mmap_size_max(file, inode);
1392
1393         if (maxsize && len > maxsize)
1394                 return false;
1395         maxsize -= len;
1396         if (pgoff > maxsize >> PAGE_SHIFT)
1397                 return false;
1398         return true;
1399 }
1400
1401 /*
1402  * The caller must write-lock current->mm->mmap_lock.
1403  */
1404 unsigned long do_mmap(struct file *file, unsigned long addr,
1405                         unsigned long len, unsigned long prot,
1406                         unsigned long flags, unsigned long pgoff,
1407                         unsigned long *populate, struct list_head *uf)
1408 {
1409         struct mm_struct *mm = current->mm;
1410         vm_flags_t vm_flags;
1411         int pkey = 0;
1412
1413         *populate = 0;
1414
1415         if (!len)
1416                 return -EINVAL;
1417
1418         /*
1419          * Does the application expect PROT_READ to imply PROT_EXEC?
1420          *
1421          * (the exception is when the underlying filesystem is noexec
1422          *  mounted, in which case we dont add PROT_EXEC.)
1423          */
1424         if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1425                 if (!(file && path_noexec(&file->f_path)))
1426                         prot |= PROT_EXEC;
1427
1428         /* force arch specific MAP_FIXED handling in get_unmapped_area */
1429         if (flags & MAP_FIXED_NOREPLACE)
1430                 flags |= MAP_FIXED;
1431
1432         if (!(flags & MAP_FIXED))
1433                 addr = round_hint_to_min(addr);
1434
1435         /* Careful about overflows.. */
1436         len = PAGE_ALIGN(len);
1437         if (!len)
1438                 return -ENOMEM;
1439
1440         /* offset overflow? */
1441         if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1442                 return -EOVERFLOW;
1443
1444         /* Too many mappings? */
1445         if (mm->map_count > sysctl_max_map_count)
1446                 return -ENOMEM;
1447
1448         /* Obtain the address to map to. we verify (or select) it and ensure
1449          * that it represents a valid section of the address space.
1450          */
1451         addr = get_unmapped_area(file, addr, len, pgoff, flags);
1452         if (IS_ERR_VALUE(addr))
1453                 return addr;
1454
1455         if (flags & MAP_FIXED_NOREPLACE) {
1456                 if (find_vma_intersection(mm, addr, addr + len))
1457                         return -EEXIST;
1458         }
1459
1460         if (prot == PROT_EXEC) {
1461                 pkey = execute_only_pkey(mm);
1462                 if (pkey < 0)
1463                         pkey = 0;
1464         }
1465
1466         /* Do simple checking here so the lower-level routines won't have
1467          * to. we assume access permissions have been handled by the open
1468          * of the memory object, so we don't do any here.
1469          */
1470         vm_flags = calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
1471                         mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1472
1473         if (flags & MAP_LOCKED)
1474                 if (!can_do_mlock())
1475                         return -EPERM;
1476
1477         if (mlock_future_check(mm, vm_flags, len))
1478                 return -EAGAIN;
1479
1480         if (file) {
1481                 struct inode *inode = file_inode(file);
1482                 unsigned long flags_mask;
1483
1484                 if (!file_mmap_ok(file, inode, pgoff, len))
1485                         return -EOVERFLOW;
1486
1487                 flags_mask = LEGACY_MAP_MASK | file->f_op->mmap_supported_flags;
1488
1489                 switch (flags & MAP_TYPE) {
1490                 case MAP_SHARED:
1491                         /*
1492                          * Force use of MAP_SHARED_VALIDATE with non-legacy
1493                          * flags. E.g. MAP_SYNC is dangerous to use with
1494                          * MAP_SHARED as you don't know which consistency model
1495                          * you will get. We silently ignore unsupported flags
1496                          * with MAP_SHARED to preserve backward compatibility.
1497                          */
1498                         flags &= LEGACY_MAP_MASK;
1499                         fallthrough;
1500                 case MAP_SHARED_VALIDATE:
1501                         if (flags & ~flags_mask)
1502                                 return -EOPNOTSUPP;
1503                         if (prot & PROT_WRITE) {
1504                                 if (!(file->f_mode & FMODE_WRITE))
1505                                         return -EACCES;
1506                                 if (IS_SWAPFILE(file->f_mapping->host))
1507                                         return -ETXTBSY;
1508                         }
1509
1510                         /*
1511                          * Make sure we don't allow writing to an append-only
1512                          * file..
1513                          */
1514                         if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1515                                 return -EACCES;
1516
1517                         vm_flags |= VM_SHARED | VM_MAYSHARE;
1518                         if (!(file->f_mode & FMODE_WRITE))
1519                                 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1520                         fallthrough;
1521                 case MAP_PRIVATE:
1522                         if (!(file->f_mode & FMODE_READ))
1523                                 return -EACCES;
1524                         if (path_noexec(&file->f_path)) {
1525                                 if (vm_flags & VM_EXEC)
1526                                         return -EPERM;
1527                                 vm_flags &= ~VM_MAYEXEC;
1528                         }
1529
1530                         if (!file->f_op->mmap)
1531                                 return -ENODEV;
1532                         if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1533                                 return -EINVAL;
1534                         break;
1535
1536                 default:
1537                         return -EINVAL;
1538                 }
1539         } else {
1540                 switch (flags & MAP_TYPE) {
1541                 case MAP_SHARED:
1542                         if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1543                                 return -EINVAL;
1544                         /*
1545                          * Ignore pgoff.
1546                          */
1547                         pgoff = 0;
1548                         vm_flags |= VM_SHARED | VM_MAYSHARE;
1549                         break;
1550                 case MAP_PRIVATE:
1551                         /*
1552                          * Set pgoff according to addr for anon_vma.
1553                          */
1554                         pgoff = addr >> PAGE_SHIFT;
1555                         break;
1556                 default:
1557                         return -EINVAL;
1558                 }
1559         }
1560
1561         /*
1562          * Set 'VM_NORESERVE' if we should not account for the
1563          * memory use of this mapping.
1564          */
1565         if (flags & MAP_NORESERVE) {
1566                 /* We honor MAP_NORESERVE if allowed to overcommit */
1567                 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1568                         vm_flags |= VM_NORESERVE;
1569
1570                 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1571                 if (file && is_file_hugepages(file))
1572                         vm_flags |= VM_NORESERVE;
1573         }
1574
1575         addr = mmap_region(file, addr, len, vm_flags, pgoff, uf);
1576         if (!IS_ERR_VALUE(addr) &&
1577             ((vm_flags & VM_LOCKED) ||
1578              (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1579                 *populate = len;
1580         return addr;
1581 }
1582
1583 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1584                               unsigned long prot, unsigned long flags,
1585                               unsigned long fd, unsigned long pgoff)
1586 {
1587         struct file *file = NULL;
1588         unsigned long retval;
1589
1590         if (!(flags & MAP_ANONYMOUS)) {
1591                 audit_mmap_fd(fd, flags);
1592                 file = fget(fd);
1593                 if (!file)
1594                         return -EBADF;
1595                 if (is_file_hugepages(file)) {
1596                         len = ALIGN(len, huge_page_size(hstate_file(file)));
1597                 } else if (unlikely(flags & MAP_HUGETLB)) {
1598                         retval = -EINVAL;
1599                         goto out_fput;
1600                 }
1601         } else if (flags & MAP_HUGETLB) {
1602                 struct ucounts *ucounts = NULL;
1603                 struct hstate *hs;
1604
1605                 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1606                 if (!hs)
1607                         return -EINVAL;
1608
1609                 len = ALIGN(len, huge_page_size(hs));
1610                 /*
1611                  * VM_NORESERVE is used because the reservations will be
1612                  * taken when vm_ops->mmap() is called
1613                  * A dummy user value is used because we are not locking
1614                  * memory so no accounting is necessary
1615                  */
1616                 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1617                                 VM_NORESERVE,
1618                                 &ucounts, HUGETLB_ANONHUGE_INODE,
1619                                 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1620                 if (IS_ERR(file))
1621                         return PTR_ERR(file);
1622         }
1623
1624         retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1625 out_fput:
1626         if (file)
1627                 fput(file);
1628         return retval;
1629 }
1630
1631 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1632                 unsigned long, prot, unsigned long, flags,
1633                 unsigned long, fd, unsigned long, pgoff)
1634 {
1635         return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1636 }
1637
1638 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1639 struct mmap_arg_struct {
1640         unsigned long addr;
1641         unsigned long len;
1642         unsigned long prot;
1643         unsigned long flags;
1644         unsigned long fd;
1645         unsigned long offset;
1646 };
1647
1648 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1649 {
1650         struct mmap_arg_struct a;
1651
1652         if (copy_from_user(&a, arg, sizeof(a)))
1653                 return -EFAULT;
1654         if (offset_in_page(a.offset))
1655                 return -EINVAL;
1656
1657         return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1658                                a.offset >> PAGE_SHIFT);
1659 }
1660 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1661
1662 /*
1663  * Some shared mappings will want the pages marked read-only
1664  * to track write events. If so, we'll downgrade vm_page_prot
1665  * to the private version (using protection_map[] without the
1666  * VM_SHARED bit).
1667  */
1668 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)
1669 {
1670         vm_flags_t vm_flags = vma->vm_flags;
1671         const struct vm_operations_struct *vm_ops = vma->vm_ops;
1672
1673         /* If it was private or non-writable, the write bit is already clear */
1674         if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1675                 return 0;
1676
1677         /* The backer wishes to know when pages are first written to? */
1678         if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite))
1679                 return 1;
1680
1681         /* The open routine did something to the protections that pgprot_modify
1682          * won't preserve? */
1683         if (pgprot_val(vm_page_prot) !=
1684             pgprot_val(vm_pgprot_modify(vm_page_prot, vm_flags)))
1685                 return 0;
1686
1687         /*
1688          * Do we need to track softdirty? hugetlb does not support softdirty
1689          * tracking yet.
1690          */
1691         if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY) &&
1692             !is_vm_hugetlb_page(vma))
1693                 return 1;
1694
1695         /* Specialty mapping? */
1696         if (vm_flags & VM_PFNMAP)
1697                 return 0;
1698
1699         /* Can the mapping track the dirty pages? */
1700         return vma->vm_file && vma->vm_file->f_mapping &&
1701                 mapping_can_writeback(vma->vm_file->f_mapping);
1702 }
1703
1704 /*
1705  * We account for memory if it's a private writeable mapping,
1706  * not hugepages and VM_NORESERVE wasn't set.
1707  */
1708 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1709 {
1710         /*
1711          * hugetlb has its own accounting separate from the core VM
1712          * VM_HUGETLB may not be set yet so we cannot check for that flag.
1713          */
1714         if (file && is_file_hugepages(file))
1715                 return 0;
1716
1717         return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1718 }
1719
1720 unsigned long mmap_region(struct file *file, unsigned long addr,
1721                 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
1722                 struct list_head *uf)
1723 {
1724         struct mm_struct *mm = current->mm;
1725         struct vm_area_struct *vma, *prev, *merge;
1726         int error;
1727         struct rb_node **rb_link, *rb_parent;
1728         unsigned long charged = 0;
1729
1730         /* Check against address space limit. */
1731         if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
1732                 unsigned long nr_pages;
1733
1734                 /*
1735                  * MAP_FIXED may remove pages of mappings that intersects with
1736                  * requested mapping. Account for the pages it would unmap.
1737                  */
1738                 nr_pages = count_vma_pages_range(mm, addr, addr + len);
1739
1740                 if (!may_expand_vm(mm, vm_flags,
1741                                         (len >> PAGE_SHIFT) - nr_pages))
1742                         return -ENOMEM;
1743         }
1744
1745         /* Clear old maps, set up prev, rb_link, rb_parent, and uf */
1746         if (munmap_vma_range(mm, addr, len, &prev, &rb_link, &rb_parent, uf))
1747                 return -ENOMEM;
1748         /*
1749          * Private writable mapping: check memory availability
1750          */
1751         if (accountable_mapping(file, vm_flags)) {
1752                 charged = len >> PAGE_SHIFT;
1753                 if (security_vm_enough_memory_mm(mm, charged))
1754                         return -ENOMEM;
1755                 vm_flags |= VM_ACCOUNT;
1756         }
1757
1758         /*
1759          * Can we just expand an old mapping?
1760          */
1761         vma = vma_merge(mm, prev, addr, addr + len, vm_flags,
1762                         NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX);
1763         if (vma)
1764                 goto out;
1765
1766         /*
1767          * Determine the object being mapped and call the appropriate
1768          * specific mapper. the address has already been validated, but
1769          * not unmapped, but the maps are removed from the list.
1770          */
1771         vma = vm_area_alloc(mm);
1772         if (!vma) {
1773                 error = -ENOMEM;
1774                 goto unacct_error;
1775         }
1776
1777         vma->vm_start = addr;
1778         vma->vm_end = addr + len;
1779         vma->vm_flags = vm_flags;
1780         vma->vm_page_prot = vm_get_page_prot(vm_flags);
1781         vma->vm_pgoff = pgoff;
1782
1783         if (file) {
1784                 if (vm_flags & VM_SHARED) {
1785                         error = mapping_map_writable(file->f_mapping);
1786                         if (error)
1787                                 goto free_vma;
1788                 }
1789
1790                 vma->vm_file = get_file(file);
1791                 error = call_mmap(file, vma);
1792                 if (error)
1793                         goto unmap_and_free_vma;
1794
1795                 /* Can addr have changed??
1796                  *
1797                  * Answer: Yes, several device drivers can do it in their
1798                  *         f_op->mmap method. -DaveM
1799                  * Bug: If addr is changed, prev, rb_link, rb_parent should
1800                  *      be updated for vma_link()
1801                  */
1802                 WARN_ON_ONCE(addr != vma->vm_start);
1803
1804                 addr = vma->vm_start;
1805
1806                 /* If vm_flags changed after call_mmap(), we should try merge vma again
1807                  * as we may succeed this time.
1808                  */
1809                 if (unlikely(vm_flags != vma->vm_flags && prev)) {
1810                         merge = vma_merge(mm, prev, vma->vm_start, vma->vm_end, vma->vm_flags,
1811                                 NULL, vma->vm_file, vma->vm_pgoff, NULL, NULL_VM_UFFD_CTX);
1812                         if (merge) {
1813                                 /* ->mmap() can change vma->vm_file and fput the original file. So
1814                                  * fput the vma->vm_file here or we would add an extra fput for file
1815                                  * and cause general protection fault ultimately.
1816                                  */
1817                                 fput(vma->vm_file);
1818                                 vm_area_free(vma);
1819                                 vma = merge;
1820                                 /* Update vm_flags to pick up the change. */
1821                                 vm_flags = vma->vm_flags;
1822                                 goto unmap_writable;
1823                         }
1824                 }
1825
1826                 vm_flags = vma->vm_flags;
1827         } else if (vm_flags & VM_SHARED) {
1828                 error = shmem_zero_setup(vma);
1829                 if (error)
1830                         goto free_vma;
1831         } else {
1832                 vma_set_anonymous(vma);
1833         }
1834
1835         /* Allow architectures to sanity-check the vm_flags */
1836         if (!arch_validate_flags(vma->vm_flags)) {
1837                 error = -EINVAL;
1838                 if (file)
1839                         goto unmap_and_free_vma;
1840                 else
1841                         goto free_vma;
1842         }
1843
1844         vma_link(mm, vma, prev, rb_link, rb_parent);
1845         /* Once vma denies write, undo our temporary denial count */
1846 unmap_writable:
1847         if (file && vm_flags & VM_SHARED)
1848                 mapping_unmap_writable(file->f_mapping);
1849         file = vma->vm_file;
1850 out:
1851         perf_event_mmap(vma);
1852
1853         vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
1854         if (vm_flags & VM_LOCKED) {
1855                 if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) ||
1856                                         is_vm_hugetlb_page(vma) ||
1857                                         vma == get_gate_vma(current->mm))
1858                         vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
1859                 else
1860                         mm->locked_vm += (len >> PAGE_SHIFT);
1861         }
1862
1863         if (file)
1864                 uprobe_mmap(vma);
1865
1866         /*
1867          * New (or expanded) vma always get soft dirty status.
1868          * Otherwise user-space soft-dirty page tracker won't
1869          * be able to distinguish situation when vma area unmapped,
1870          * then new mapped in-place (which must be aimed as
1871          * a completely new data area).
1872          */
1873         vma->vm_flags |= VM_SOFTDIRTY;
1874
1875         vma_set_page_prot(vma);
1876
1877         return addr;
1878
1879 unmap_and_free_vma:
1880         fput(vma->vm_file);
1881         vma->vm_file = NULL;
1882
1883         /* Undo any partial mapping done by a device driver. */
1884         unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1885         if (vm_flags & VM_SHARED)
1886                 mapping_unmap_writable(file->f_mapping);
1887 free_vma:
1888         vm_area_free(vma);
1889 unacct_error:
1890         if (charged)
1891                 vm_unacct_memory(charged);
1892         return error;
1893 }
1894
1895 static unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1896 {
1897         /*
1898          * We implement the search by looking for an rbtree node that
1899          * immediately follows a suitable gap. That is,
1900          * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1901          * - gap_end   = vma->vm_start        >= info->low_limit  + length;
1902          * - gap_end - gap_start >= length
1903          */
1904
1905         struct mm_struct *mm = current->mm;
1906         struct vm_area_struct *vma;
1907         unsigned long length, low_limit, high_limit, gap_start, gap_end;
1908
1909         /* Adjust search length to account for worst case alignment overhead */
1910         length = info->length + info->align_mask;
1911         if (length < info->length)
1912                 return -ENOMEM;
1913
1914         /* Adjust search limits by the desired length */
1915         if (info->high_limit < length)
1916                 return -ENOMEM;
1917         high_limit = info->high_limit - length;
1918
1919         if (info->low_limit > high_limit)
1920                 return -ENOMEM;
1921         low_limit = info->low_limit + length;
1922
1923         /* Check if rbtree root looks promising */
1924         if (RB_EMPTY_ROOT(&mm->mm_rb))
1925                 goto check_highest;
1926         vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1927         if (vma->rb_subtree_gap < length)
1928                 goto check_highest;
1929
1930         while (true) {
1931                 /* Visit left subtree if it looks promising */
1932                 gap_end = vm_start_gap(vma);
1933                 if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1934                         struct vm_area_struct *left =
1935                                 rb_entry(vma->vm_rb.rb_left,
1936                                          struct vm_area_struct, vm_rb);
1937                         if (left->rb_subtree_gap >= length) {
1938                                 vma = left;
1939                                 continue;
1940                         }
1941                 }
1942
1943                 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
1944 check_current:
1945                 /* Check if current node has a suitable gap */
1946                 if (gap_start > high_limit)
1947                         return -ENOMEM;
1948                 if (gap_end >= low_limit &&
1949                     gap_end > gap_start && gap_end - gap_start >= length)
1950                         goto found;
1951
1952                 /* Visit right subtree if it looks promising */
1953                 if (vma->vm_rb.rb_right) {
1954                         struct vm_area_struct *right =
1955                                 rb_entry(vma->vm_rb.rb_right,
1956                                          struct vm_area_struct, vm_rb);
1957                         if (right->rb_subtree_gap >= length) {
1958                                 vma = right;
1959                                 continue;
1960                         }
1961                 }
1962
1963                 /* Go back up the rbtree to find next candidate node */
1964                 while (true) {
1965                         struct rb_node *prev = &vma->vm_rb;
1966                         if (!rb_parent(prev))
1967                                 goto check_highest;
1968                         vma = rb_entry(rb_parent(prev),
1969                                        struct vm_area_struct, vm_rb);
1970                         if (prev == vma->vm_rb.rb_left) {
1971                                 gap_start = vm_end_gap(vma->vm_prev);
1972                                 gap_end = vm_start_gap(vma);
1973                                 goto check_current;
1974                         }
1975                 }
1976         }
1977
1978 check_highest:
1979         /* Check highest gap, which does not precede any rbtree node */
1980         gap_start = mm->highest_vm_end;
1981         gap_end = ULONG_MAX;  /* Only for VM_BUG_ON below */
1982         if (gap_start > high_limit)
1983                 return -ENOMEM;
1984
1985 found:
1986         /* We found a suitable gap. Clip it with the original low_limit. */
1987         if (gap_start < info->low_limit)
1988                 gap_start = info->low_limit;
1989
1990         /* Adjust gap address to the desired alignment */
1991         gap_start += (info->align_offset - gap_start) & info->align_mask;
1992
1993         VM_BUG_ON(gap_start + info->length > info->high_limit);
1994         VM_BUG_ON(gap_start + info->length > gap_end);
1995         return gap_start;
1996 }
1997
1998 static unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1999 {
2000         struct mm_struct *mm = current->mm;
2001         struct vm_area_struct *vma;
2002         unsigned long length, low_limit, high_limit, gap_start, gap_end;
2003
2004         /* Adjust search length to account for worst case alignment overhead */
2005         length = info->length + info->align_mask;
2006         if (length < info->length)
2007                 return -ENOMEM;
2008
2009         /*
2010          * Adjust search limits by the desired length.
2011          * See implementation comment at top of unmapped_area().
2012          */
2013         gap_end = info->high_limit;
2014         if (gap_end < length)
2015                 return -ENOMEM;
2016         high_limit = gap_end - length;
2017
2018         if (info->low_limit > high_limit)
2019                 return -ENOMEM;
2020         low_limit = info->low_limit + length;
2021
2022         /* Check highest gap, which does not precede any rbtree node */
2023         gap_start = mm->highest_vm_end;
2024         if (gap_start <= high_limit)
2025                 goto found_highest;
2026
2027         /* Check if rbtree root looks promising */
2028         if (RB_EMPTY_ROOT(&mm->mm_rb))
2029                 return -ENOMEM;
2030         vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
2031         if (vma->rb_subtree_gap < length)
2032                 return -ENOMEM;
2033
2034         while (true) {
2035                 /* Visit right subtree if it looks promising */
2036                 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
2037                 if (gap_start <= high_limit && vma->vm_rb.rb_right) {
2038                         struct vm_area_struct *right =
2039                                 rb_entry(vma->vm_rb.rb_right,
2040                                          struct vm_area_struct, vm_rb);
2041                         if (right->rb_subtree_gap >= length) {
2042                                 vma = right;
2043                                 continue;
2044                         }
2045                 }
2046
2047 check_current:
2048                 /* Check if current node has a suitable gap */
2049                 gap_end = vm_start_gap(vma);
2050                 if (gap_end < low_limit)
2051                         return -ENOMEM;
2052                 if (gap_start <= high_limit &&
2053                     gap_end > gap_start && gap_end - gap_start >= length)
2054                         goto found;
2055
2056                 /* Visit left subtree if it looks promising */
2057                 if (vma->vm_rb.rb_left) {
2058                         struct vm_area_struct *left =
2059                                 rb_entry(vma->vm_rb.rb_left,
2060                                          struct vm_area_struct, vm_rb);
2061                         if (left->rb_subtree_gap >= length) {
2062                                 vma = left;
2063                                 continue;
2064                         }
2065                 }
2066
2067                 /* Go back up the rbtree to find next candidate node */
2068                 while (true) {
2069                         struct rb_node *prev = &vma->vm_rb;
2070                         if (!rb_parent(prev))
2071                                 return -ENOMEM;
2072                         vma = rb_entry(rb_parent(prev),
2073                                        struct vm_area_struct, vm_rb);
2074                         if (prev == vma->vm_rb.rb_right) {
2075                                 gap_start = vma->vm_prev ?
2076                                         vm_end_gap(vma->vm_prev) : 0;
2077                                 goto check_current;
2078                         }
2079                 }
2080         }
2081
2082 found:
2083         /* We found a suitable gap. Clip it with the original high_limit. */
2084         if (gap_end > info->high_limit)
2085                 gap_end = info->high_limit;
2086
2087 found_highest:
2088         /* Compute highest gap address at the desired alignment */
2089         gap_end -= info->length;
2090         gap_end -= (gap_end - info->align_offset) & info->align_mask;
2091
2092         VM_BUG_ON(gap_end < info->low_limit);
2093         VM_BUG_ON(gap_end < gap_start);
2094         return gap_end;
2095 }
2096
2097 /*
2098  * Search for an unmapped address range.
2099  *
2100  * We are looking for a range that:
2101  * - does not intersect with any VMA;
2102  * - is contained within the [low_limit, high_limit) interval;
2103  * - is at least the desired size.
2104  * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
2105  */
2106 unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info)
2107 {
2108         unsigned long addr;
2109
2110         if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
2111                 addr = unmapped_area_topdown(info);
2112         else
2113                 addr = unmapped_area(info);
2114
2115         trace_vm_unmapped_area(addr, info);
2116         return addr;
2117 }
2118
2119 /* Get an address range which is currently unmapped.
2120  * For shmat() with addr=0.
2121  *
2122  * Ugly calling convention alert:
2123  * Return value with the low bits set means error value,
2124  * ie
2125  *      if (ret & ~PAGE_MASK)
2126  *              error = ret;
2127  *
2128  * This function "knows" that -ENOMEM has the bits set.
2129  */
2130 #ifndef HAVE_ARCH_UNMAPPED_AREA
2131 unsigned long
2132 arch_get_unmapped_area(struct file *filp, unsigned long addr,
2133                 unsigned long len, unsigned long pgoff, unsigned long flags)
2134 {
2135         struct mm_struct *mm = current->mm;
2136         struct vm_area_struct *vma, *prev;
2137         struct vm_unmapped_area_info info;
2138         const unsigned long mmap_end = arch_get_mmap_end(addr);
2139
2140         if (len > mmap_end - mmap_min_addr)
2141                 return -ENOMEM;
2142
2143         if (flags & MAP_FIXED)
2144                 return addr;
2145
2146         if (addr) {
2147                 addr = PAGE_ALIGN(addr);
2148                 vma = find_vma_prev(mm, addr, &prev);
2149                 if (mmap_end - len >= addr && addr >= mmap_min_addr &&
2150                     (!vma || addr + len <= vm_start_gap(vma)) &&
2151                     (!prev || addr >= vm_end_gap(prev)))
2152                         return addr;
2153         }
2154
2155         info.flags = 0;
2156         info.length = len;
2157         info.low_limit = mm->mmap_base;
2158         info.high_limit = mmap_end;
2159         info.align_mask = 0;
2160         info.align_offset = 0;
2161         return vm_unmapped_area(&info);
2162 }
2163 #endif
2164
2165 /*
2166  * This mmap-allocator allocates new areas top-down from below the
2167  * stack's low limit (the base):
2168  */
2169 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
2170 unsigned long
2171 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
2172                           unsigned long len, unsigned long pgoff,
2173                           unsigned long flags)
2174 {
2175         struct vm_area_struct *vma, *prev;
2176         struct mm_struct *mm = current->mm;
2177         struct vm_unmapped_area_info info;
2178         const unsigned long mmap_end = arch_get_mmap_end(addr);
2179
2180         /* requested length too big for entire address space */
2181         if (len > mmap_end - mmap_min_addr)
2182                 return -ENOMEM;
2183
2184         if (flags & MAP_FIXED)
2185                 return addr;
2186
2187         /* requesting a specific address */
2188         if (addr) {
2189                 addr = PAGE_ALIGN(addr);
2190                 vma = find_vma_prev(mm, addr, &prev);
2191                 if (mmap_end - len >= addr && addr >= mmap_min_addr &&
2192                                 (!vma || addr + len <= vm_start_gap(vma)) &&
2193                                 (!prev || addr >= vm_end_gap(prev)))
2194                         return addr;
2195         }
2196
2197         info.flags = VM_UNMAPPED_AREA_TOPDOWN;
2198         info.length = len;
2199         info.low_limit = max(PAGE_SIZE, mmap_min_addr);
2200         info.high_limit = arch_get_mmap_base(addr, mm->mmap_base);
2201         info.align_mask = 0;
2202         info.align_offset = 0;
2203         addr = vm_unmapped_area(&info);
2204
2205         /*
2206          * A failed mmap() very likely causes application failure,
2207          * so fall back to the bottom-up function here. This scenario
2208          * can happen with large stack limits and large mmap()
2209          * allocations.
2210          */
2211         if (offset_in_page(addr)) {
2212                 VM_BUG_ON(addr != -ENOMEM);
2213                 info.flags = 0;
2214                 info.low_limit = TASK_UNMAPPED_BASE;
2215                 info.high_limit = mmap_end;
2216                 addr = vm_unmapped_area(&info);
2217         }
2218
2219         return addr;
2220 }
2221 #endif
2222
2223 unsigned long
2224 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
2225                 unsigned long pgoff, unsigned long flags)
2226 {
2227         unsigned long (*get_area)(struct file *, unsigned long,
2228                                   unsigned long, unsigned long, unsigned long);
2229
2230         unsigned long error = arch_mmap_check(addr, len, flags);
2231         if (error)
2232                 return error;
2233
2234         /* Careful about overflows.. */
2235         if (len > TASK_SIZE)
2236                 return -ENOMEM;
2237
2238         get_area = current->mm->get_unmapped_area;
2239         if (file) {
2240                 if (file->f_op->get_unmapped_area)
2241                         get_area = file->f_op->get_unmapped_area;
2242         } else if (flags & MAP_SHARED) {
2243                 /*
2244                  * mmap_region() will call shmem_zero_setup() to create a file,
2245                  * so use shmem's get_unmapped_area in case it can be huge.
2246                  * do_mmap() will clear pgoff, so match alignment.
2247                  */
2248                 pgoff = 0;
2249                 get_area = shmem_get_unmapped_area;
2250         }
2251
2252         addr = get_area(file, addr, len, pgoff, flags);
2253         if (IS_ERR_VALUE(addr))
2254                 return addr;
2255
2256         if (addr > TASK_SIZE - len)
2257                 return -ENOMEM;
2258         if (offset_in_page(addr))
2259                 return -EINVAL;
2260
2261         error = security_mmap_addr(addr);
2262         return error ? error : addr;
2263 }
2264
2265 EXPORT_SYMBOL(get_unmapped_area);
2266
2267 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
2268 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
2269 {
2270         struct rb_node *rb_node;
2271         struct vm_area_struct *vma;
2272
2273         mmap_assert_locked(mm);
2274         /* Check the cache first. */
2275         vma = vmacache_find(mm, addr);
2276         if (likely(vma))
2277                 return vma;
2278
2279         rb_node = mm->mm_rb.rb_node;
2280
2281         while (rb_node) {
2282                 struct vm_area_struct *tmp;
2283
2284                 tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2285
2286                 if (tmp->vm_end > addr) {
2287                         vma = tmp;
2288                         if (tmp->vm_start <= addr)
2289                                 break;
2290                         rb_node = rb_node->rb_left;
2291                 } else
2292                         rb_node = rb_node->rb_right;
2293         }
2294
2295         if (vma)
2296                 vmacache_update(addr, vma);
2297         return vma;
2298 }
2299
2300 EXPORT_SYMBOL(find_vma);
2301
2302 /*
2303  * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2304  */
2305 struct vm_area_struct *
2306 find_vma_prev(struct mm_struct *mm, unsigned long addr,
2307                         struct vm_area_struct **pprev)
2308 {
2309         struct vm_area_struct *vma;
2310
2311         vma = find_vma(mm, addr);
2312         if (vma) {
2313                 *pprev = vma->vm_prev;
2314         } else {
2315                 struct rb_node *rb_node = rb_last(&mm->mm_rb);
2316
2317                 *pprev = rb_node ? rb_entry(rb_node, struct vm_area_struct, vm_rb) : NULL;
2318         }
2319         return vma;
2320 }
2321
2322 /*
2323  * Verify that the stack growth is acceptable and
2324  * update accounting. This is shared with both the
2325  * grow-up and grow-down cases.
2326  */
2327 static int acct_stack_growth(struct vm_area_struct *vma,
2328                              unsigned long size, unsigned long grow)
2329 {
2330         struct mm_struct *mm = vma->vm_mm;
2331         unsigned long new_start;
2332
2333         /* address space limit tests */
2334         if (!may_expand_vm(mm, vma->vm_flags, grow))
2335                 return -ENOMEM;
2336
2337         /* Stack limit test */
2338         if (size > rlimit(RLIMIT_STACK))
2339                 return -ENOMEM;
2340
2341         /* mlock limit tests */
2342         if (vma->vm_flags & VM_LOCKED) {
2343                 unsigned long locked;
2344                 unsigned long limit;
2345                 locked = mm->locked_vm + grow;
2346                 limit = rlimit(RLIMIT_MEMLOCK);
2347                 limit >>= PAGE_SHIFT;
2348                 if (locked > limit && !capable(CAP_IPC_LOCK))
2349                         return -ENOMEM;
2350         }
2351
2352         /* Check to ensure the stack will not grow into a hugetlb-only region */
2353         new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2354                         vma->vm_end - size;
2355         if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2356                 return -EFAULT;
2357
2358         /*
2359          * Overcommit..  This must be the final test, as it will
2360          * update security statistics.
2361          */
2362         if (security_vm_enough_memory_mm(mm, grow))
2363                 return -ENOMEM;
2364
2365         return 0;
2366 }
2367
2368 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2369 /*
2370  * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2371  * vma is the last one with address > vma->vm_end.  Have to extend vma.
2372  */
2373 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2374 {
2375         struct mm_struct *mm = vma->vm_mm;
2376         struct vm_area_struct *next;
2377         unsigned long gap_addr;
2378         int error = 0;
2379
2380         if (!(vma->vm_flags & VM_GROWSUP))
2381                 return -EFAULT;
2382
2383         /* Guard against exceeding limits of the address space. */
2384         address &= PAGE_MASK;
2385         if (address >= (TASK_SIZE & PAGE_MASK))
2386                 return -ENOMEM;
2387         address += PAGE_SIZE;
2388
2389         /* Enforce stack_guard_gap */
2390         gap_addr = address + stack_guard_gap;
2391
2392         /* Guard against overflow */
2393         if (gap_addr < address || gap_addr > TASK_SIZE)
2394                 gap_addr = TASK_SIZE;
2395
2396         next = vma->vm_next;
2397         if (next && next->vm_start < gap_addr && vma_is_accessible(next)) {
2398                 if (!(next->vm_flags & VM_GROWSUP))
2399                         return -ENOMEM;
2400                 /* Check that both stack segments have the same anon_vma? */
2401         }
2402
2403         /* We must make sure the anon_vma is allocated. */
2404         if (unlikely(anon_vma_prepare(vma)))
2405                 return -ENOMEM;
2406
2407         /*
2408          * vma->vm_start/vm_end cannot change under us because the caller
2409          * is required to hold the mmap_lock in read mode.  We need the
2410          * anon_vma lock to serialize against concurrent expand_stacks.
2411          */
2412         anon_vma_lock_write(vma->anon_vma);
2413
2414         /* Somebody else might have raced and expanded it already */
2415         if (address > vma->vm_end) {
2416                 unsigned long size, grow;
2417
2418                 size = address - vma->vm_start;
2419                 grow = (address - vma->vm_end) >> PAGE_SHIFT;
2420
2421                 error = -ENOMEM;
2422                 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2423                         error = acct_stack_growth(vma, size, grow);
2424                         if (!error) {
2425                                 /*
2426                                  * vma_gap_update() doesn't support concurrent
2427                                  * updates, but we only hold a shared mmap_lock
2428                                  * lock here, so we need to protect against
2429                                  * concurrent vma expansions.
2430                                  * anon_vma_lock_write() doesn't help here, as
2431                                  * we don't guarantee that all growable vmas
2432                                  * in a mm share the same root anon vma.
2433                                  * So, we reuse mm->page_table_lock to guard
2434                                  * against concurrent vma expansions.
2435                                  */
2436                                 spin_lock(&mm->page_table_lock);
2437                                 if (vma->vm_flags & VM_LOCKED)
2438                                         mm->locked_vm += grow;
2439                                 vm_stat_account(mm, vma->vm_flags, grow);
2440                                 anon_vma_interval_tree_pre_update_vma(vma);
2441                                 vma->vm_end = address;
2442                                 anon_vma_interval_tree_post_update_vma(vma);
2443                                 if (vma->vm_next)
2444                                         vma_gap_update(vma->vm_next);
2445                                 else
2446                                         mm->highest_vm_end = vm_end_gap(vma);
2447                                 spin_unlock(&mm->page_table_lock);
2448
2449                                 perf_event_mmap(vma);
2450                         }
2451                 }
2452         }
2453         anon_vma_unlock_write(vma->anon_vma);
2454         khugepaged_enter_vma_merge(vma, vma->vm_flags);
2455         validate_mm(mm);
2456         return error;
2457 }
2458 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2459
2460 /*
2461  * vma is the first one with address < vma->vm_start.  Have to extend vma.
2462  */
2463 int expand_downwards(struct vm_area_struct *vma,
2464                                    unsigned long address)
2465 {
2466         struct mm_struct *mm = vma->vm_mm;
2467         struct vm_area_struct *prev;
2468         int error = 0;
2469
2470         address &= PAGE_MASK;
2471         if (address < mmap_min_addr)
2472                 return -EPERM;
2473
2474         /* Enforce stack_guard_gap */
2475         prev = vma->vm_prev;
2476         /* Check that both stack segments have the same anon_vma? */
2477         if (prev && !(prev->vm_flags & VM_GROWSDOWN) &&
2478                         vma_is_accessible(prev)) {
2479                 if (address - prev->vm_end < stack_guard_gap)
2480                         return -ENOMEM;
2481         }
2482
2483         /* We must make sure the anon_vma is allocated. */
2484         if (unlikely(anon_vma_prepare(vma)))
2485                 return -ENOMEM;
2486
2487         /*
2488          * vma->vm_start/vm_end cannot change under us because the caller
2489          * is required to hold the mmap_lock in read mode.  We need the
2490          * anon_vma lock to serialize against concurrent expand_stacks.
2491          */
2492         anon_vma_lock_write(vma->anon_vma);
2493
2494         /* Somebody else might have raced and expanded it already */
2495         if (address < vma->vm_start) {
2496                 unsigned long size, grow;
2497
2498                 size = vma->vm_end - address;
2499                 grow = (vma->vm_start - address) >> PAGE_SHIFT;
2500
2501                 error = -ENOMEM;
2502                 if (grow <= vma->vm_pgoff) {
2503                         error = acct_stack_growth(vma, size, grow);
2504                         if (!error) {
2505                                 /*
2506                                  * vma_gap_update() doesn't support concurrent
2507                                  * updates, but we only hold a shared mmap_lock
2508                                  * lock here, so we need to protect against
2509                                  * concurrent vma expansions.
2510                                  * anon_vma_lock_write() doesn't help here, as
2511                                  * we don't guarantee that all growable vmas
2512                                  * in a mm share the same root anon vma.
2513                                  * So, we reuse mm->page_table_lock to guard
2514                                  * against concurrent vma expansions.
2515                                  */
2516                                 spin_lock(&mm->page_table_lock);
2517                                 if (vma->vm_flags & VM_LOCKED)
2518                                         mm->locked_vm += grow;
2519                                 vm_stat_account(mm, vma->vm_flags, grow);
2520                                 anon_vma_interval_tree_pre_update_vma(vma);
2521                                 vma->vm_start = address;
2522                                 vma->vm_pgoff -= grow;
2523                                 anon_vma_interval_tree_post_update_vma(vma);
2524                                 vma_gap_update(vma);
2525                                 spin_unlock(&mm->page_table_lock);
2526
2527                                 perf_event_mmap(vma);
2528                         }
2529                 }
2530         }
2531         anon_vma_unlock_write(vma->anon_vma);
2532         khugepaged_enter_vma_merge(vma, vma->vm_flags);
2533         validate_mm(mm);
2534         return error;
2535 }
2536
2537 /* enforced gap between the expanding stack and other mappings. */
2538 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT;
2539
2540 static int __init cmdline_parse_stack_guard_gap(char *p)
2541 {
2542         unsigned long val;
2543         char *endptr;
2544
2545         val = simple_strtoul(p, &endptr, 10);
2546         if (!*endptr)
2547                 stack_guard_gap = val << PAGE_SHIFT;
2548
2549         return 1;
2550 }
2551 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap);
2552
2553 #ifdef CONFIG_STACK_GROWSUP
2554 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2555 {
2556         return expand_upwards(vma, address);
2557 }
2558
2559 struct vm_area_struct *
2560 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2561 {
2562         struct vm_area_struct *vma, *prev;
2563
2564         addr &= PAGE_MASK;
2565         vma = find_vma_prev(mm, addr, &prev);
2566         if (vma && (vma->vm_start <= addr))
2567                 return vma;
2568         /* don't alter vm_end if the coredump is running */
2569         if (!prev || expand_stack(prev, addr))
2570                 return NULL;
2571         if (prev->vm_flags & VM_LOCKED)
2572                 populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2573         return prev;
2574 }
2575 #else
2576 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2577 {
2578         return expand_downwards(vma, address);
2579 }
2580
2581 struct vm_area_struct *
2582 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2583 {
2584         struct vm_area_struct *vma;
2585         unsigned long start;
2586
2587         addr &= PAGE_MASK;
2588         vma = find_vma(mm, addr);
2589         if (!vma)
2590                 return NULL;
2591         if (vma->vm_start <= addr)
2592                 return vma;
2593         if (!(vma->vm_flags & VM_GROWSDOWN))
2594                 return NULL;
2595         start = vma->vm_start;
2596         if (expand_stack(vma, addr))
2597                 return NULL;
2598         if (vma->vm_flags & VM_LOCKED)
2599                 populate_vma_page_range(vma, addr, start, NULL);
2600         return vma;
2601 }
2602 #endif
2603
2604 EXPORT_SYMBOL_GPL(find_extend_vma);
2605
2606 /*
2607  * Ok - we have the memory areas we should free on the vma list,
2608  * so release them, and do the vma updates.
2609  *
2610  * Called with the mm semaphore held.
2611  */
2612 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2613 {
2614         unsigned long nr_accounted = 0;
2615
2616         /* Update high watermark before we lower total_vm */
2617         update_hiwater_vm(mm);
2618         do {
2619                 long nrpages = vma_pages(vma);
2620
2621                 if (vma->vm_flags & VM_ACCOUNT)
2622                         nr_accounted += nrpages;
2623                 vm_stat_account(mm, vma->vm_flags, -nrpages);
2624                 vma = remove_vma(vma);
2625         } while (vma);
2626         vm_unacct_memory(nr_accounted);
2627         validate_mm(mm);
2628 }
2629
2630 /*
2631  * Get rid of page table information in the indicated region.
2632  *
2633  * Called with the mm semaphore held.
2634  */
2635 static void unmap_region(struct mm_struct *mm,
2636                 struct vm_area_struct *vma, struct vm_area_struct *prev,
2637                 unsigned long start, unsigned long end)
2638 {
2639         struct vm_area_struct *next = vma_next(mm, prev);
2640         struct mmu_gather tlb;
2641         struct vm_area_struct *cur_vma;
2642
2643         lru_add_drain();
2644         tlb_gather_mmu(&tlb, mm);
2645         update_hiwater_rss(mm);
2646         unmap_vmas(&tlb, vma, start, end);
2647
2648         /*
2649          * Ensure we have no stale TLB entries by the time this mapping is
2650          * removed from the rmap.
2651          * Note that we don't have to worry about nested flushes here because
2652          * we're holding the mm semaphore for removing the mapping - so any
2653          * concurrent flush in this region has to be coming through the rmap,
2654          * and we synchronize against that using the rmap lock.
2655          */
2656         for (cur_vma = vma; cur_vma; cur_vma = cur_vma->vm_next) {
2657                 if ((cur_vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) != 0) {
2658                         tlb_flush_mmu(&tlb);
2659                         break;
2660                 }
2661         }
2662
2663         free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2664                                  next ? next->vm_start : USER_PGTABLES_CEILING);
2665         tlb_finish_mmu(&tlb);
2666 }
2667
2668 /*
2669  * Create a list of vma's touched by the unmap, removing them from the mm's
2670  * vma list as we go..
2671  */
2672 static bool
2673 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2674         struct vm_area_struct *prev, unsigned long end)
2675 {
2676         struct vm_area_struct **insertion_point;
2677         struct vm_area_struct *tail_vma = NULL;
2678
2679         insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2680         vma->vm_prev = NULL;
2681         do {
2682                 vma_rb_erase(vma, &mm->mm_rb);
2683                 mm->map_count--;
2684                 tail_vma = vma;
2685                 vma = vma->vm_next;
2686         } while (vma && vma->vm_start < end);
2687         *insertion_point = vma;
2688         if (vma) {
2689                 vma->vm_prev = prev;
2690                 vma_gap_update(vma);
2691         } else
2692                 mm->highest_vm_end = prev ? vm_end_gap(prev) : 0;
2693         tail_vma->vm_next = NULL;
2694
2695         /* Kill the cache */
2696         vmacache_invalidate(mm);
2697
2698         /*
2699          * Do not downgrade mmap_lock if we are next to VM_GROWSDOWN or
2700          * VM_GROWSUP VMA. Such VMAs can change their size under
2701          * down_read(mmap_lock) and collide with the VMA we are about to unmap.
2702          */
2703         if (vma && (vma->vm_flags & VM_GROWSDOWN))
2704                 return false;
2705         if (prev && (prev->vm_flags & VM_GROWSUP))
2706                 return false;
2707         return true;
2708 }
2709
2710 /*
2711  * __split_vma() bypasses sysctl_max_map_count checking.  We use this where it
2712  * has already been checked or doesn't make sense to fail.
2713  */
2714 int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2715                 unsigned long addr, int new_below)
2716 {
2717         struct vm_area_struct *new;
2718         int err;
2719
2720         if (vma->vm_ops && vma->vm_ops->may_split) {
2721                 err = vma->vm_ops->may_split(vma, addr);
2722                 if (err)
2723                         return err;
2724         }
2725
2726         new = vm_area_dup(vma);
2727         if (!new)
2728                 return -ENOMEM;
2729
2730         if (new_below)
2731                 new->vm_end = addr;
2732         else {
2733                 new->vm_start = addr;
2734                 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2735         }
2736
2737         err = vma_dup_policy(vma, new);
2738         if (err)
2739                 goto out_free_vma;
2740
2741         err = anon_vma_clone(new, vma);
2742         if (err)
2743                 goto out_free_mpol;
2744
2745         if (new->vm_file)
2746                 get_file(new->vm_file);
2747
2748         if (new->vm_ops && new->vm_ops->open)
2749                 new->vm_ops->open(new);
2750
2751         if (new_below)
2752                 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2753                         ((addr - new->vm_start) >> PAGE_SHIFT), new);
2754         else
2755                 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2756
2757         /* Success. */
2758         if (!err)
2759                 return 0;
2760
2761         /* Clean everything up if vma_adjust failed. */
2762         if (new->vm_ops && new->vm_ops->close)
2763                 new->vm_ops->close(new);
2764         if (new->vm_file)
2765                 fput(new->vm_file);
2766         unlink_anon_vmas(new);
2767  out_free_mpol:
2768         mpol_put(vma_policy(new));
2769  out_free_vma:
2770         vm_area_free(new);
2771         return err;
2772 }
2773
2774 /*
2775  * Split a vma into two pieces at address 'addr', a new vma is allocated
2776  * either for the first part or the tail.
2777  */
2778 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2779               unsigned long addr, int new_below)
2780 {
2781         if (mm->map_count >= sysctl_max_map_count)
2782                 return -ENOMEM;
2783
2784         return __split_vma(mm, vma, addr, new_below);
2785 }
2786
2787 static inline void
2788 unlock_range(struct vm_area_struct *start, unsigned long limit)
2789 {
2790         struct mm_struct *mm = start->vm_mm;
2791         struct vm_area_struct *tmp = start;
2792
2793         while (tmp && tmp->vm_start < limit) {
2794                 if (tmp->vm_flags & VM_LOCKED) {
2795                         mm->locked_vm -= vma_pages(tmp);
2796                         munlock_vma_pages_all(tmp);
2797                 }
2798
2799                 tmp = tmp->vm_next;
2800         }
2801 }
2802
2803 /* Munmap is split into 2 main parts -- this part which finds
2804  * what needs doing, and the areas themselves, which do the
2805  * work.  This now handles partial unmappings.
2806  * Jeremy Fitzhardinge <jeremy@goop.org>
2807  */
2808 int __do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2809                 struct list_head *uf, bool downgrade)
2810 {
2811         unsigned long end;
2812         struct vm_area_struct *vma, *prev, *last;
2813
2814         if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2815                 return -EINVAL;
2816
2817         len = PAGE_ALIGN(len);
2818         end = start + len;
2819         if (len == 0)
2820                 return -EINVAL;
2821
2822         /*
2823          * arch_unmap() might do unmaps itself.  It must be called
2824          * and finish any rbtree manipulation before this code
2825          * runs and also starts to manipulate the rbtree.
2826          */
2827         arch_unmap(mm, start, end);
2828
2829         /* Find the first overlapping VMA where start < vma->vm_end */
2830         vma = find_vma_intersection(mm, start, end);
2831         if (!vma)
2832                 return 0;
2833         prev = vma->vm_prev;
2834
2835         /*
2836          * If we need to split any vma, do it now to save pain later.
2837          *
2838          * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2839          * unmapped vm_area_struct will remain in use: so lower split_vma
2840          * places tmp vma above, and higher split_vma places tmp vma below.
2841          */
2842         if (start > vma->vm_start) {
2843                 int error;
2844
2845                 /*
2846                  * Make sure that map_count on return from munmap() will
2847                  * not exceed its limit; but let map_count go just above
2848                  * its limit temporarily, to help free resources as expected.
2849                  */
2850                 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2851                         return -ENOMEM;
2852
2853                 error = __split_vma(mm, vma, start, 0);
2854                 if (error)
2855                         return error;
2856                 prev = vma;
2857         }
2858
2859         /* Does it split the last one? */
2860         last = find_vma(mm, end);
2861         if (last && end > last->vm_start) {
2862                 int error = __split_vma(mm, last, end, 1);
2863                 if (error)
2864                         return error;
2865         }
2866         vma = vma_next(mm, prev);
2867
2868         if (unlikely(uf)) {
2869                 /*
2870                  * If userfaultfd_unmap_prep returns an error the vmas
2871                  * will remain split, but userland will get a
2872                  * highly unexpected error anyway. This is no
2873                  * different than the case where the first of the two
2874                  * __split_vma fails, but we don't undo the first
2875                  * split, despite we could. This is unlikely enough
2876                  * failure that it's not worth optimizing it for.
2877                  */
2878                 int error = userfaultfd_unmap_prep(vma, start, end, uf);
2879                 if (error)
2880                         return error;
2881         }
2882
2883         /*
2884          * unlock any mlock()ed ranges before detaching vmas
2885          */
2886         if (mm->locked_vm)
2887                 unlock_range(vma, end);
2888
2889         /* Detach vmas from rbtree */
2890         if (!detach_vmas_to_be_unmapped(mm, vma, prev, end))
2891                 downgrade = false;
2892
2893         if (downgrade)
2894                 mmap_write_downgrade(mm);
2895
2896         unmap_region(mm, vma, prev, start, end);
2897
2898         /* Fix up all other VM information */
2899         remove_vma_list(mm, vma);
2900
2901         return downgrade ? 1 : 0;
2902 }
2903
2904 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2905               struct list_head *uf)
2906 {
2907         return __do_munmap(mm, start, len, uf, false);
2908 }
2909
2910 static int __vm_munmap(unsigned long start, size_t len, bool downgrade)
2911 {
2912         int ret;
2913         struct mm_struct *mm = current->mm;
2914         LIST_HEAD(uf);
2915
2916         if (mmap_write_lock_killable(mm))
2917                 return -EINTR;
2918
2919         ret = __do_munmap(mm, start, len, &uf, downgrade);
2920         /*
2921          * Returning 1 indicates mmap_lock is downgraded.
2922          * But 1 is not legal return value of vm_munmap() and munmap(), reset
2923          * it to 0 before return.
2924          */
2925         if (ret == 1) {
2926                 mmap_read_unlock(mm);
2927                 ret = 0;
2928         } else
2929                 mmap_write_unlock(mm);
2930
2931         userfaultfd_unmap_complete(mm, &uf);
2932         return ret;
2933 }
2934
2935 int vm_munmap(unsigned long start, size_t len)
2936 {
2937         return __vm_munmap(start, len, false);
2938 }
2939 EXPORT_SYMBOL(vm_munmap);
2940
2941 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2942 {
2943         addr = untagged_addr(addr);
2944         profile_munmap(addr);
2945         return __vm_munmap(addr, len, true);
2946 }
2947
2948
2949 /*
2950  * Emulation of deprecated remap_file_pages() syscall.
2951  */
2952 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
2953                 unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
2954 {
2955
2956         struct mm_struct *mm = current->mm;
2957         struct vm_area_struct *vma;
2958         unsigned long populate = 0;
2959         unsigned long ret = -EINVAL;
2960         struct file *file;
2961
2962         pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/vm/remap_file_pages.rst.\n",
2963                      current->comm, current->pid);
2964
2965         if (prot)
2966                 return ret;
2967         start = start & PAGE_MASK;
2968         size = size & PAGE_MASK;
2969
2970         if (start + size <= start)
2971                 return ret;
2972
2973         /* Does pgoff wrap? */
2974         if (pgoff + (size >> PAGE_SHIFT) < pgoff)
2975                 return ret;
2976
2977         if (mmap_write_lock_killable(mm))
2978                 return -EINTR;
2979
2980         vma = vma_lookup(mm, start);
2981
2982         if (!vma || !(vma->vm_flags & VM_SHARED))
2983                 goto out;
2984
2985         if (start + size > vma->vm_end) {
2986                 struct vm_area_struct *next;
2987
2988                 for (next = vma->vm_next; next; next = next->vm_next) {
2989                         /* hole between vmas ? */
2990                         if (next->vm_start != next->vm_prev->vm_end)
2991                                 goto out;
2992
2993                         if (next->vm_file != vma->vm_file)
2994                                 goto out;
2995
2996                         if (next->vm_flags != vma->vm_flags)
2997                                 goto out;
2998
2999                         if (start + size <= next->vm_end)
3000                                 break;
3001                 }
3002
3003                 if (!next)
3004                         goto out;
3005         }
3006
3007         prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
3008         prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
3009         prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
3010
3011         flags &= MAP_NONBLOCK;
3012         flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
3013         if (vma->vm_flags & VM_LOCKED)
3014                 flags |= MAP_LOCKED;
3015
3016         file = get_file(vma->vm_file);
3017         ret = do_mmap(vma->vm_file, start, size,
3018                         prot, flags, pgoff, &populate, NULL);
3019         fput(file);
3020 out:
3021         mmap_write_unlock(mm);
3022         if (populate)
3023                 mm_populate(ret, populate);
3024         if (!IS_ERR_VALUE(ret))
3025                 ret = 0;
3026         return ret;
3027 }
3028
3029 /*
3030  *  this is really a simplified "do_mmap".  it only handles
3031  *  anonymous maps.  eventually we may be able to do some
3032  *  brk-specific accounting here.
3033  */
3034 static int do_brk_flags(unsigned long addr, unsigned long len, unsigned long flags, struct list_head *uf)
3035 {
3036         struct mm_struct *mm = current->mm;
3037         struct vm_area_struct *vma, *prev;
3038         struct rb_node **rb_link, *rb_parent;
3039         pgoff_t pgoff = addr >> PAGE_SHIFT;
3040         int error;
3041         unsigned long mapped_addr;
3042
3043         /* Until we need other flags, refuse anything except VM_EXEC. */
3044         if ((flags & (~VM_EXEC)) != 0)
3045                 return -EINVAL;
3046         flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
3047
3048         mapped_addr = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
3049         if (IS_ERR_VALUE(mapped_addr))
3050                 return mapped_addr;
3051
3052         error = mlock_future_check(mm, mm->def_flags, len);
3053         if (error)
3054                 return error;
3055
3056         /* Clear old maps, set up prev, rb_link, rb_parent, and uf */
3057         if (munmap_vma_range(mm, addr, len, &prev, &rb_link, &rb_parent, uf))
3058                 return -ENOMEM;
3059
3060         /* Check against address space limits *after* clearing old maps... */
3061         if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
3062                 return -ENOMEM;
3063
3064         if (mm->map_count > sysctl_max_map_count)
3065                 return -ENOMEM;
3066
3067         if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
3068                 return -ENOMEM;
3069
3070         /* Can we just expand an old private anonymous mapping? */
3071         vma = vma_merge(mm, prev, addr, addr + len, flags,
3072                         NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX);
3073         if (vma)
3074                 goto out;
3075
3076         /*
3077          * create a vma struct for an anonymous mapping
3078          */
3079         vma = vm_area_alloc(mm);
3080         if (!vma) {
3081                 vm_unacct_memory(len >> PAGE_SHIFT);
3082                 return -ENOMEM;
3083         }
3084
3085         vma_set_anonymous(vma);
3086         vma->vm_start = addr;
3087         vma->vm_end = addr + len;
3088         vma->vm_pgoff = pgoff;
3089         vma->vm_flags = flags;
3090         vma->vm_page_prot = vm_get_page_prot(flags);
3091         vma_link(mm, vma, prev, rb_link, rb_parent);
3092 out:
3093         perf_event_mmap(vma);
3094         mm->total_vm += len >> PAGE_SHIFT;
3095         mm->data_vm += len >> PAGE_SHIFT;
3096         if (flags & VM_LOCKED)
3097                 mm->locked_vm += (len >> PAGE_SHIFT);
3098         vma->vm_flags |= VM_SOFTDIRTY;
3099         return 0;
3100 }
3101
3102 int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags)
3103 {
3104         struct mm_struct *mm = current->mm;
3105         unsigned long len;
3106         int ret;
3107         bool populate;
3108         LIST_HEAD(uf);
3109
3110         len = PAGE_ALIGN(request);
3111         if (len < request)
3112                 return -ENOMEM;
3113         if (!len)
3114                 return 0;
3115
3116         if (mmap_write_lock_killable(mm))
3117                 return -EINTR;
3118
3119         ret = do_brk_flags(addr, len, flags, &uf);
3120         populate = ((mm->def_flags & VM_LOCKED) != 0);
3121         mmap_write_unlock(mm);
3122         userfaultfd_unmap_complete(mm, &uf);
3123         if (populate && !ret)
3124                 mm_populate(addr, len);
3125         return ret;
3126 }
3127 EXPORT_SYMBOL(vm_brk_flags);
3128
3129 int vm_brk(unsigned long addr, unsigned long len)
3130 {
3131         return vm_brk_flags(addr, len, 0);
3132 }
3133 EXPORT_SYMBOL(vm_brk);
3134
3135 /* Release all mmaps. */
3136 void exit_mmap(struct mm_struct *mm)
3137 {
3138         struct mmu_gather tlb;
3139         struct vm_area_struct *vma;
3140         unsigned long nr_accounted = 0;
3141
3142         /* mm's last user has gone, and its about to be pulled down */
3143         mmu_notifier_release(mm);
3144
3145         if (unlikely(mm_is_oom_victim(mm))) {
3146                 /*
3147                  * Manually reap the mm to free as much memory as possible.
3148                  * Then, as the oom reaper does, set MMF_OOM_SKIP to disregard
3149                  * this mm from further consideration.  Taking mm->mmap_lock for
3150                  * write after setting MMF_OOM_SKIP will guarantee that the oom
3151                  * reaper will not run on this mm again after mmap_lock is
3152                  * dropped.
3153                  *
3154                  * Nothing can be holding mm->mmap_lock here and the above call
3155                  * to mmu_notifier_release(mm) ensures mmu notifier callbacks in
3156                  * __oom_reap_task_mm() will not block.
3157                  *
3158                  * This needs to be done before calling munlock_vma_pages_all(),
3159                  * which clears VM_LOCKED, otherwise the oom reaper cannot
3160                  * reliably test it.
3161                  */
3162                 (void)__oom_reap_task_mm(mm);
3163
3164                 set_bit(MMF_OOM_SKIP, &mm->flags);
3165                 mmap_write_lock(mm);
3166                 mmap_write_unlock(mm);
3167         }
3168
3169         if (mm->locked_vm)
3170                 unlock_range(mm->mmap, ULONG_MAX);
3171
3172         arch_exit_mmap(mm);
3173
3174         vma = mm->mmap;
3175         if (!vma)       /* Can happen if dup_mmap() received an OOM */
3176                 return;
3177
3178         lru_add_drain();
3179         flush_cache_mm(mm);
3180         tlb_gather_mmu_fullmm(&tlb, mm);
3181         /* update_hiwater_rss(mm) here? but nobody should be looking */
3182         /* Use -1 here to ensure all VMAs in the mm are unmapped */
3183         unmap_vmas(&tlb, vma, 0, -1);
3184         free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
3185         tlb_finish_mmu(&tlb);
3186
3187         /*
3188          * Walk the list again, actually closing and freeing it,
3189          * with preemption enabled, without holding any MM locks.
3190          */
3191         while (vma) {
3192                 if (vma->vm_flags & VM_ACCOUNT)
3193                         nr_accounted += vma_pages(vma);
3194                 vma = remove_vma(vma);
3195                 cond_resched();
3196         }
3197         vm_unacct_memory(nr_accounted);
3198 }
3199
3200 /* Insert vm structure into process list sorted by address
3201  * and into the inode's i_mmap tree.  If vm_file is non-NULL
3202  * then i_mmap_rwsem is taken here.
3203  */
3204 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
3205 {
3206         struct vm_area_struct *prev;
3207         struct rb_node **rb_link, *rb_parent;
3208
3209         if (find_vma_links(mm, vma->vm_start, vma->vm_end,
3210                            &prev, &rb_link, &rb_parent))
3211                 return -ENOMEM;
3212         if ((vma->vm_flags & VM_ACCOUNT) &&
3213              security_vm_enough_memory_mm(mm, vma_pages(vma)))
3214                 return -ENOMEM;
3215
3216         /*
3217          * The vm_pgoff of a purely anonymous vma should be irrelevant
3218          * until its first write fault, when page's anon_vma and index
3219          * are set.  But now set the vm_pgoff it will almost certainly
3220          * end up with (unless mremap moves it elsewhere before that
3221          * first wfault), so /proc/pid/maps tells a consistent story.
3222          *
3223          * By setting it to reflect the virtual start address of the
3224          * vma, merges and splits can happen in a seamless way, just
3225          * using the existing file pgoff checks and manipulations.
3226          * Similarly in do_mmap and in do_brk_flags.
3227          */
3228         if (vma_is_anonymous(vma)) {
3229                 BUG_ON(vma->anon_vma);
3230                 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
3231         }
3232
3233         vma_link(mm, vma, prev, rb_link, rb_parent);
3234         return 0;
3235 }
3236
3237 /*
3238  * Copy the vma structure to a new location in the same mm,
3239  * prior to moving page table entries, to effect an mremap move.
3240  */
3241 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
3242         unsigned long addr, unsigned long len, pgoff_t pgoff,
3243         bool *need_rmap_locks)
3244 {
3245         struct vm_area_struct *vma = *vmap;
3246         unsigned long vma_start = vma->vm_start;
3247         struct mm_struct *mm = vma->vm_mm;
3248         struct vm_area_struct *new_vma, *prev;
3249         struct rb_node **rb_link, *rb_parent;
3250         bool faulted_in_anon_vma = true;
3251
3252         /*
3253          * If anonymous vma has not yet been faulted, update new pgoff
3254          * to match new location, to increase its chance of merging.
3255          */
3256         if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
3257                 pgoff = addr >> PAGE_SHIFT;
3258                 faulted_in_anon_vma = false;
3259         }
3260
3261         if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
3262                 return NULL;    /* should never get here */
3263         new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
3264                             vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
3265                             vma->vm_userfaultfd_ctx);
3266         if (new_vma) {
3267                 /*
3268                  * Source vma may have been merged into new_vma
3269                  */
3270                 if (unlikely(vma_start >= new_vma->vm_start &&
3271                              vma_start < new_vma->vm_end)) {
3272                         /*
3273                          * The only way we can get a vma_merge with
3274                          * self during an mremap is if the vma hasn't
3275                          * been faulted in yet and we were allowed to
3276                          * reset the dst vma->vm_pgoff to the
3277                          * destination address of the mremap to allow
3278                          * the merge to happen. mremap must change the
3279                          * vm_pgoff linearity between src and dst vmas
3280                          * (in turn preventing a vma_merge) to be
3281                          * safe. It is only safe to keep the vm_pgoff
3282                          * linear if there are no pages mapped yet.
3283                          */
3284                         VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
3285                         *vmap = vma = new_vma;
3286                 }
3287                 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
3288         } else {
3289                 new_vma = vm_area_dup(vma);
3290                 if (!new_vma)
3291                         goto out;
3292                 new_vma->vm_start = addr;
3293                 new_vma->vm_end = addr + len;
3294                 new_vma->vm_pgoff = pgoff;
3295                 if (vma_dup_policy(vma, new_vma))
3296                         goto out_free_vma;
3297                 if (anon_vma_clone(new_vma, vma))
3298                         goto out_free_mempol;
3299                 if (new_vma->vm_file)
3300                         get_file(new_vma->vm_file);
3301                 if (new_vma->vm_ops && new_vma->vm_ops->open)
3302                         new_vma->vm_ops->open(new_vma);
3303                 vma_link(mm, new_vma, prev, rb_link, rb_parent);
3304                 *need_rmap_locks = false;
3305         }
3306         return new_vma;
3307
3308 out_free_mempol:
3309         mpol_put(vma_policy(new_vma));
3310 out_free_vma:
3311         vm_area_free(new_vma);
3312 out:
3313         return NULL;
3314 }
3315
3316 /*
3317  * Return true if the calling process may expand its vm space by the passed
3318  * number of pages
3319  */
3320 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
3321 {
3322         if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
3323                 return false;
3324
3325         if (is_data_mapping(flags) &&
3326             mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
3327                 /* Workaround for Valgrind */
3328                 if (rlimit(RLIMIT_DATA) == 0 &&
3329                     mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
3330                         return true;
3331
3332                 pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n",
3333                              current->comm, current->pid,
3334                              (mm->data_vm + npages) << PAGE_SHIFT,
3335                              rlimit(RLIMIT_DATA),
3336                              ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data");
3337
3338                 if (!ignore_rlimit_data)
3339                         return false;
3340         }
3341
3342         return true;
3343 }
3344
3345 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
3346 {
3347         mm->total_vm += npages;
3348
3349         if (is_exec_mapping(flags))
3350                 mm->exec_vm += npages;
3351         else if (is_stack_mapping(flags))
3352                 mm->stack_vm += npages;
3353         else if (is_data_mapping(flags))
3354                 mm->data_vm += npages;
3355 }
3356
3357 static vm_fault_t special_mapping_fault(struct vm_fault *vmf);
3358
3359 /*
3360  * Having a close hook prevents vma merging regardless of flags.
3361  */
3362 static void special_mapping_close(struct vm_area_struct *vma)
3363 {
3364 }
3365
3366 static const char *special_mapping_name(struct vm_area_struct *vma)
3367 {
3368         return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3369 }
3370
3371 static int special_mapping_mremap(struct vm_area_struct *new_vma)
3372 {
3373         struct vm_special_mapping *sm = new_vma->vm_private_data;
3374
3375         if (WARN_ON_ONCE(current->mm != new_vma->vm_mm))
3376                 return -EFAULT;
3377
3378         if (sm->mremap)
3379                 return sm->mremap(sm, new_vma);
3380
3381         return 0;
3382 }
3383
3384 static int special_mapping_split(struct vm_area_struct *vma, unsigned long addr)
3385 {
3386         /*
3387          * Forbid splitting special mappings - kernel has expectations over
3388          * the number of pages in mapping. Together with VM_DONTEXPAND
3389          * the size of vma should stay the same over the special mapping's
3390          * lifetime.
3391          */
3392         return -EINVAL;
3393 }
3394
3395 static const struct vm_operations_struct special_mapping_vmops = {
3396         .close = special_mapping_close,
3397         .fault = special_mapping_fault,
3398         .mremap = special_mapping_mremap,
3399         .name = special_mapping_name,
3400         /* vDSO code relies that VVAR can't be accessed remotely */
3401         .access = NULL,
3402         .may_split = special_mapping_split,
3403 };
3404
3405 static const struct vm_operations_struct legacy_special_mapping_vmops = {
3406         .close = special_mapping_close,
3407         .fault = special_mapping_fault,
3408 };
3409
3410 static vm_fault_t special_mapping_fault(struct vm_fault *vmf)
3411 {
3412         struct vm_area_struct *vma = vmf->vma;
3413         pgoff_t pgoff;
3414         struct page **pages;
3415
3416         if (vma->vm_ops == &legacy_special_mapping_vmops) {
3417                 pages = vma->vm_private_data;
3418         } else {
3419                 struct vm_special_mapping *sm = vma->vm_private_data;
3420
3421                 if (sm->fault)
3422                         return sm->fault(sm, vmf->vma, vmf);
3423
3424                 pages = sm->pages;
3425         }
3426
3427         for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3428                 pgoff--;
3429
3430         if (*pages) {
3431                 struct page *page = *pages;
3432                 get_page(page);
3433                 vmf->page = page;
3434                 return 0;
3435         }
3436
3437         return VM_FAULT_SIGBUS;
3438 }
3439
3440 static struct vm_area_struct *__install_special_mapping(
3441         struct mm_struct *mm,
3442         unsigned long addr, unsigned long len,
3443         unsigned long vm_flags, void *priv,
3444         const struct vm_operations_struct *ops)
3445 {
3446         int ret;
3447         struct vm_area_struct *vma;
3448
3449         vma = vm_area_alloc(mm);
3450         if (unlikely(vma == NULL))
3451                 return ERR_PTR(-ENOMEM);
3452
3453         vma->vm_start = addr;
3454         vma->vm_end = addr + len;
3455
3456         vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
3457         vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3458
3459         vma->vm_ops = ops;
3460         vma->vm_private_data = priv;
3461
3462         ret = insert_vm_struct(mm, vma);
3463         if (ret)
3464                 goto out;
3465
3466         vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3467
3468         perf_event_mmap(vma);
3469
3470         return vma;
3471
3472 out:
3473         vm_area_free(vma);
3474         return ERR_PTR(ret);
3475 }
3476
3477 bool vma_is_special_mapping(const struct vm_area_struct *vma,
3478         const struct vm_special_mapping *sm)
3479 {
3480         return vma->vm_private_data == sm &&
3481                 (vma->vm_ops == &special_mapping_vmops ||
3482                  vma->vm_ops == &legacy_special_mapping_vmops);
3483 }
3484
3485 /*
3486  * Called with mm->mmap_lock held for writing.
3487  * Insert a new vma covering the given region, with the given flags.
3488  * Its pages are supplied by the given array of struct page *.
3489  * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3490  * The region past the last page supplied will always produce SIGBUS.
3491  * The array pointer and the pages it points to are assumed to stay alive
3492  * for as long as this mapping might exist.
3493  */
3494 struct vm_area_struct *_install_special_mapping(
3495         struct mm_struct *mm,
3496         unsigned long addr, unsigned long len,
3497         unsigned long vm_flags, const struct vm_special_mapping *spec)
3498 {
3499         return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3500                                         &special_mapping_vmops);
3501 }
3502
3503 int install_special_mapping(struct mm_struct *mm,
3504                             unsigned long addr, unsigned long len,
3505                             unsigned long vm_flags, struct page **pages)
3506 {
3507         struct vm_area_struct *vma = __install_special_mapping(
3508                 mm, addr, len, vm_flags, (void *)pages,
3509                 &legacy_special_mapping_vmops);
3510
3511         return PTR_ERR_OR_ZERO(vma);
3512 }
3513
3514 static DEFINE_MUTEX(mm_all_locks_mutex);
3515
3516 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3517 {
3518         if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3519                 /*
3520                  * The LSB of head.next can't change from under us
3521                  * because we hold the mm_all_locks_mutex.
3522                  */
3523                 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_lock);
3524                 /*
3525                  * We can safely modify head.next after taking the
3526                  * anon_vma->root->rwsem. If some other vma in this mm shares
3527                  * the same anon_vma we won't take it again.
3528                  *
3529                  * No need of atomic instructions here, head.next
3530                  * can't change from under us thanks to the
3531                  * anon_vma->root->rwsem.
3532                  */
3533                 if (__test_and_set_bit(0, (unsigned long *)
3534                                        &anon_vma->root->rb_root.rb_root.rb_node))
3535                         BUG();
3536         }
3537 }
3538
3539 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3540 {
3541         if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3542                 /*
3543                  * AS_MM_ALL_LOCKS can't change from under us because
3544                  * we hold the mm_all_locks_mutex.
3545                  *
3546                  * Operations on ->flags have to be atomic because
3547                  * even if AS_MM_ALL_LOCKS is stable thanks to the
3548                  * mm_all_locks_mutex, there may be other cpus
3549                  * changing other bitflags in parallel to us.
3550                  */
3551                 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3552                         BUG();
3553                 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_lock);
3554         }
3555 }
3556
3557 /*
3558  * This operation locks against the VM for all pte/vma/mm related
3559  * operations that could ever happen on a certain mm. This includes
3560  * vmtruncate, try_to_unmap, and all page faults.
3561  *
3562  * The caller must take the mmap_lock in write mode before calling
3563  * mm_take_all_locks(). The caller isn't allowed to release the
3564  * mmap_lock until mm_drop_all_locks() returns.
3565  *
3566  * mmap_lock in write mode is required in order to block all operations
3567  * that could modify pagetables and free pages without need of
3568  * altering the vma layout. It's also needed in write mode to avoid new
3569  * anon_vmas to be associated with existing vmas.
3570  *
3571  * A single task can't take more than one mm_take_all_locks() in a row
3572  * or it would deadlock.
3573  *
3574  * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3575  * mapping->flags avoid to take the same lock twice, if more than one
3576  * vma in this mm is backed by the same anon_vma or address_space.
3577  *
3578  * We take locks in following order, accordingly to comment at beginning
3579  * of mm/rmap.c:
3580  *   - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3581  *     hugetlb mapping);
3582  *   - all i_mmap_rwsem locks;
3583  *   - all anon_vma->rwseml
3584  *
3585  * We can take all locks within these types randomly because the VM code
3586  * doesn't nest them and we protected from parallel mm_take_all_locks() by
3587  * mm_all_locks_mutex.
3588  *
3589  * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3590  * that may have to take thousand of locks.
3591  *
3592  * mm_take_all_locks() can fail if it's interrupted by signals.
3593  */
3594 int mm_take_all_locks(struct mm_struct *mm)
3595 {
3596         struct vm_area_struct *vma;
3597         struct anon_vma_chain *avc;
3598
3599         BUG_ON(mmap_read_trylock(mm));
3600
3601         mutex_lock(&mm_all_locks_mutex);
3602
3603         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3604                 if (signal_pending(current))
3605                         goto out_unlock;
3606                 if (vma->vm_file && vma->vm_file->f_mapping &&
3607                                 is_vm_hugetlb_page(vma))
3608                         vm_lock_mapping(mm, vma->vm_file->f_mapping);
3609         }
3610
3611         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3612                 if (signal_pending(current))
3613                         goto out_unlock;
3614                 if (vma->vm_file && vma->vm_file->f_mapping &&
3615                                 !is_vm_hugetlb_page(vma))
3616                         vm_lock_mapping(mm, vma->vm_file->f_mapping);
3617         }
3618
3619         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3620                 if (signal_pending(current))
3621                         goto out_unlock;
3622                 if (vma->anon_vma)
3623                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3624                                 vm_lock_anon_vma(mm, avc->anon_vma);
3625         }
3626
3627         return 0;
3628
3629 out_unlock:
3630         mm_drop_all_locks(mm);
3631         return -EINTR;
3632 }
3633
3634 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3635 {
3636         if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3637                 /*
3638                  * The LSB of head.next can't change to 0 from under
3639                  * us because we hold the mm_all_locks_mutex.
3640                  *
3641                  * We must however clear the bitflag before unlocking
3642                  * the vma so the users using the anon_vma->rb_root will
3643                  * never see our bitflag.
3644                  *
3645                  * No need of atomic instructions here, head.next
3646                  * can't change from under us until we release the
3647                  * anon_vma->root->rwsem.
3648                  */
3649                 if (!__test_and_clear_bit(0, (unsigned long *)
3650                                           &anon_vma->root->rb_root.rb_root.rb_node))
3651                         BUG();
3652                 anon_vma_unlock_write(anon_vma);
3653         }
3654 }
3655
3656 static void vm_unlock_mapping(struct address_space *mapping)
3657 {
3658         if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3659                 /*
3660                  * AS_MM_ALL_LOCKS can't change to 0 from under us
3661                  * because we hold the mm_all_locks_mutex.
3662                  */
3663                 i_mmap_unlock_write(mapping);
3664                 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3665                                         &mapping->flags))
3666                         BUG();
3667         }
3668 }
3669
3670 /*
3671  * The mmap_lock cannot be released by the caller until
3672  * mm_drop_all_locks() returns.
3673  */
3674 void mm_drop_all_locks(struct mm_struct *mm)
3675 {
3676         struct vm_area_struct *vma;
3677         struct anon_vma_chain *avc;
3678
3679         BUG_ON(mmap_read_trylock(mm));
3680         BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3681
3682         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3683                 if (vma->anon_vma)
3684                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3685                                 vm_unlock_anon_vma(avc->anon_vma);
3686                 if (vma->vm_file && vma->vm_file->f_mapping)
3687                         vm_unlock_mapping(vma->vm_file->f_mapping);
3688         }
3689
3690         mutex_unlock(&mm_all_locks_mutex);
3691 }
3692
3693 /*
3694  * initialise the percpu counter for VM
3695  */
3696 void __init mmap_init(void)
3697 {
3698         int ret;
3699
3700         ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3701         VM_BUG_ON(ret);
3702 }
3703
3704 /*
3705  * Initialise sysctl_user_reserve_kbytes.
3706  *
3707  * This is intended to prevent a user from starting a single memory hogging
3708  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3709  * mode.
3710  *
3711  * The default value is min(3% of free memory, 128MB)
3712  * 128MB is enough to recover with sshd/login, bash, and top/kill.
3713  */
3714 static int init_user_reserve(void)
3715 {
3716         unsigned long free_kbytes;
3717
3718         free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3719
3720         sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3721         return 0;
3722 }
3723 subsys_initcall(init_user_reserve);
3724
3725 /*
3726  * Initialise sysctl_admin_reserve_kbytes.
3727  *
3728  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3729  * to log in and kill a memory hogging process.
3730  *
3731  * Systems with more than 256MB will reserve 8MB, enough to recover
3732  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3733  * only reserve 3% of free pages by default.
3734  */
3735 static int init_admin_reserve(void)
3736 {
3737         unsigned long free_kbytes;
3738
3739         free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3740
3741         sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3742         return 0;
3743 }
3744 subsys_initcall(init_admin_reserve);
3745
3746 /*
3747  * Reinititalise user and admin reserves if memory is added or removed.
3748  *
3749  * The default user reserve max is 128MB, and the default max for the
3750  * admin reserve is 8MB. These are usually, but not always, enough to
3751  * enable recovery from a memory hogging process using login/sshd, a shell,
3752  * and tools like top. It may make sense to increase or even disable the
3753  * reserve depending on the existence of swap or variations in the recovery
3754  * tools. So, the admin may have changed them.
3755  *
3756  * If memory is added and the reserves have been eliminated or increased above
3757  * the default max, then we'll trust the admin.
3758  *
3759  * If memory is removed and there isn't enough free memory, then we
3760  * need to reset the reserves.
3761  *
3762  * Otherwise keep the reserve set by the admin.
3763  */
3764 static int reserve_mem_notifier(struct notifier_block *nb,
3765                              unsigned long action, void *data)
3766 {
3767         unsigned long tmp, free_kbytes;
3768
3769         switch (action) {
3770         case MEM_ONLINE:
3771                 /* Default max is 128MB. Leave alone if modified by operator. */
3772                 tmp = sysctl_user_reserve_kbytes;
3773                 if (0 < tmp && tmp < (1UL << 17))
3774                         init_user_reserve();
3775
3776                 /* Default max is 8MB.  Leave alone if modified by operator. */
3777                 tmp = sysctl_admin_reserve_kbytes;
3778                 if (0 < tmp && tmp < (1UL << 13))
3779                         init_admin_reserve();
3780
3781                 break;
3782         case MEM_OFFLINE:
3783                 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3784
3785                 if (sysctl_user_reserve_kbytes > free_kbytes) {
3786                         init_user_reserve();
3787                         pr_info("vm.user_reserve_kbytes reset to %lu\n",
3788                                 sysctl_user_reserve_kbytes);
3789                 }
3790
3791                 if (sysctl_admin_reserve_kbytes > free_kbytes) {
3792                         init_admin_reserve();
3793                         pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3794                                 sysctl_admin_reserve_kbytes);
3795                 }
3796                 break;
3797         default:
3798                 break;
3799         }
3800         return NOTIFY_OK;
3801 }
3802
3803 static struct notifier_block reserve_mem_nb = {
3804         .notifier_call = reserve_mem_notifier,
3805 };
3806
3807 static int __meminit init_reserve_notifier(void)
3808 {
3809         if (register_hotmemory_notifier(&reserve_mem_nb))
3810                 pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3811
3812         return 0;
3813 }
3814 subsys_initcall(init_reserve_notifier);