1 // SPDX-License-Identifier: GPL-2.0-only
7 * Address space accounting code <alan@lxorguk.ukuu.org.uk>
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12 #include <linux/kernel.h>
13 #include <linux/slab.h>
14 #include <linux/backing-dev.h>
16 #include <linux/vmacache.h>
17 #include <linux/shm.h>
18 #include <linux/mman.h>
19 #include <linux/pagemap.h>
20 #include <linux/swap.h>
21 #include <linux/syscalls.h>
22 #include <linux/capability.h>
23 #include <linux/init.h>
24 #include <linux/file.h>
26 #include <linux/personality.h>
27 #include <linux/security.h>
28 #include <linux/hugetlb.h>
29 #include <linux/shmem_fs.h>
30 #include <linux/profile.h>
31 #include <linux/export.h>
32 #include <linux/mount.h>
33 #include <linux/mempolicy.h>
34 #include <linux/rmap.h>
35 #include <linux/mmu_notifier.h>
36 #include <linux/mmdebug.h>
37 #include <linux/perf_event.h>
38 #include <linux/audit.h>
39 #include <linux/khugepaged.h>
40 #include <linux/uprobes.h>
41 #include <linux/rbtree_augmented.h>
42 #include <linux/notifier.h>
43 #include <linux/memory.h>
44 #include <linux/printk.h>
45 #include <linux/userfaultfd_k.h>
46 #include <linux/moduleparam.h>
47 #include <linux/pkeys.h>
48 #include <linux/oom.h>
49 #include <linux/sched/mm.h>
51 #include <linux/uaccess.h>
52 #include <asm/cacheflush.h>
54 #include <asm/mmu_context.h>
56 #define CREATE_TRACE_POINTS
57 #include <trace/events/mmap.h>
61 #ifndef arch_mmap_check
62 #define arch_mmap_check(addr, len, flags) (0)
65 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
66 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
67 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX;
68 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
70 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
71 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
72 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
73 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
76 static bool ignore_rlimit_data;
77 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
79 static void unmap_region(struct mm_struct *mm,
80 struct vm_area_struct *vma, struct vm_area_struct *prev,
81 unsigned long start, unsigned long end);
83 /* description of effects of mapping type and prot in current implementation.
84 * this is due to the limited x86 page protection hardware. The expected
85 * behavior is in parens:
88 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC
89 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes
90 * w: (no) no w: (no) no w: (yes) yes w: (no) no
91 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
93 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes
94 * w: (no) no w: (no) no w: (copy) copy w: (no) no
95 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
97 pgprot_t protection_map[16] __ro_after_init = {
98 __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
99 __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
102 #ifndef CONFIG_ARCH_HAS_FILTER_PGPROT
103 static inline pgprot_t arch_filter_pgprot(pgprot_t prot)
109 pgprot_t vm_get_page_prot(unsigned long vm_flags)
111 pgprot_t ret = __pgprot(pgprot_val(protection_map[vm_flags &
112 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
113 pgprot_val(arch_vm_get_page_prot(vm_flags)));
115 return arch_filter_pgprot(ret);
117 EXPORT_SYMBOL(vm_get_page_prot);
119 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
121 return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
124 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
125 void vma_set_page_prot(struct vm_area_struct *vma)
127 unsigned long vm_flags = vma->vm_flags;
128 pgprot_t vm_page_prot;
130 vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
131 if (vma_wants_writenotify(vma, vm_page_prot)) {
132 vm_flags &= ~VM_SHARED;
133 vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags);
135 /* remove_protection_ptes reads vma->vm_page_prot without mmap_lock */
136 WRITE_ONCE(vma->vm_page_prot, vm_page_prot);
140 * Requires inode->i_mapping->i_mmap_rwsem
142 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
143 struct file *file, struct address_space *mapping)
145 if (vma->vm_flags & VM_DENYWRITE)
146 atomic_inc(&file_inode(file)->i_writecount);
147 if (vma->vm_flags & VM_SHARED)
148 mapping_unmap_writable(mapping);
150 flush_dcache_mmap_lock(mapping);
151 vma_interval_tree_remove(vma, &mapping->i_mmap);
152 flush_dcache_mmap_unlock(mapping);
156 * Unlink a file-based vm structure from its interval tree, to hide
157 * vma from rmap and vmtruncate before freeing its page tables.
159 void unlink_file_vma(struct vm_area_struct *vma)
161 struct file *file = vma->vm_file;
164 struct address_space *mapping = file->f_mapping;
165 i_mmap_lock_write(mapping);
166 __remove_shared_vm_struct(vma, file, mapping);
167 i_mmap_unlock_write(mapping);
172 * Close a vm structure and free it, returning the next.
174 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
176 struct vm_area_struct *next = vma->vm_next;
179 if (vma->vm_ops && vma->vm_ops->close)
180 vma->vm_ops->close(vma);
183 mpol_put(vma_policy(vma));
188 static int do_brk_flags(unsigned long addr, unsigned long request, unsigned long flags,
189 struct list_head *uf);
190 SYSCALL_DEFINE1(brk, unsigned long, brk)
192 unsigned long retval;
193 unsigned long newbrk, oldbrk, origbrk;
194 struct mm_struct *mm = current->mm;
195 struct vm_area_struct *next;
196 unsigned long min_brk;
198 bool downgraded = false;
201 if (mmap_write_lock_killable(mm))
206 #ifdef CONFIG_COMPAT_BRK
208 * CONFIG_COMPAT_BRK can still be overridden by setting
209 * randomize_va_space to 2, which will still cause mm->start_brk
210 * to be arbitrarily shifted
212 if (current->brk_randomized)
213 min_brk = mm->start_brk;
215 min_brk = mm->end_data;
217 min_brk = mm->start_brk;
223 * Check against rlimit here. If this check is done later after the test
224 * of oldbrk with newbrk then it can escape the test and let the data
225 * segment grow beyond its set limit the in case where the limit is
226 * not page aligned -Ram Gupta
228 if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
229 mm->end_data, mm->start_data))
232 newbrk = PAGE_ALIGN(brk);
233 oldbrk = PAGE_ALIGN(mm->brk);
234 if (oldbrk == newbrk) {
240 * Always allow shrinking brk.
241 * __do_munmap() may downgrade mmap_lock to read.
243 if (brk <= mm->brk) {
247 * mm->brk must to be protected by write mmap_lock so update it
248 * before downgrading mmap_lock. When __do_munmap() fails,
249 * mm->brk will be restored from origbrk.
252 ret = __do_munmap(mm, newbrk, oldbrk-newbrk, &uf, true);
256 } else if (ret == 1) {
262 /* Check against existing mmap mappings. */
263 next = find_vma(mm, oldbrk);
264 if (next && newbrk + PAGE_SIZE > vm_start_gap(next))
267 /* Ok, looks good - let it rip. */
268 if (do_brk_flags(oldbrk, newbrk-oldbrk, 0, &uf) < 0)
273 populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
275 mmap_read_unlock(mm);
277 mmap_write_unlock(mm);
278 userfaultfd_unmap_complete(mm, &uf);
280 mm_populate(oldbrk, newbrk - oldbrk);
285 mmap_write_unlock(mm);
289 static inline unsigned long vma_compute_gap(struct vm_area_struct *vma)
291 unsigned long gap, prev_end;
294 * Note: in the rare case of a VM_GROWSDOWN above a VM_GROWSUP, we
295 * allow two stack_guard_gaps between them here, and when choosing
296 * an unmapped area; whereas when expanding we only require one.
297 * That's a little inconsistent, but keeps the code here simpler.
299 gap = vm_start_gap(vma);
301 prev_end = vm_end_gap(vma->vm_prev);
310 #ifdef CONFIG_DEBUG_VM_RB
311 static unsigned long vma_compute_subtree_gap(struct vm_area_struct *vma)
313 unsigned long max = vma_compute_gap(vma), subtree_gap;
314 if (vma->vm_rb.rb_left) {
315 subtree_gap = rb_entry(vma->vm_rb.rb_left,
316 struct vm_area_struct, vm_rb)->rb_subtree_gap;
317 if (subtree_gap > max)
320 if (vma->vm_rb.rb_right) {
321 subtree_gap = rb_entry(vma->vm_rb.rb_right,
322 struct vm_area_struct, vm_rb)->rb_subtree_gap;
323 if (subtree_gap > max)
329 static int browse_rb(struct mm_struct *mm)
331 struct rb_root *root = &mm->mm_rb;
332 int i = 0, j, bug = 0;
333 struct rb_node *nd, *pn = NULL;
334 unsigned long prev = 0, pend = 0;
336 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
337 struct vm_area_struct *vma;
338 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
339 if (vma->vm_start < prev) {
340 pr_emerg("vm_start %lx < prev %lx\n",
341 vma->vm_start, prev);
344 if (vma->vm_start < pend) {
345 pr_emerg("vm_start %lx < pend %lx\n",
346 vma->vm_start, pend);
349 if (vma->vm_start > vma->vm_end) {
350 pr_emerg("vm_start %lx > vm_end %lx\n",
351 vma->vm_start, vma->vm_end);
354 spin_lock(&mm->page_table_lock);
355 if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
356 pr_emerg("free gap %lx, correct %lx\n",
358 vma_compute_subtree_gap(vma));
361 spin_unlock(&mm->page_table_lock);
364 prev = vma->vm_start;
368 for (nd = pn; nd; nd = rb_prev(nd))
371 pr_emerg("backwards %d, forwards %d\n", j, i);
377 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
381 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
382 struct vm_area_struct *vma;
383 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
384 VM_BUG_ON_VMA(vma != ignore &&
385 vma->rb_subtree_gap != vma_compute_subtree_gap(vma),
390 static void validate_mm(struct mm_struct *mm)
394 unsigned long highest_address = 0;
395 struct vm_area_struct *vma = mm->mmap;
398 struct anon_vma *anon_vma = vma->anon_vma;
399 struct anon_vma_chain *avc;
402 anon_vma_lock_read(anon_vma);
403 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
404 anon_vma_interval_tree_verify(avc);
405 anon_vma_unlock_read(anon_vma);
408 highest_address = vm_end_gap(vma);
412 if (i != mm->map_count) {
413 pr_emerg("map_count %d vm_next %d\n", mm->map_count, i);
416 if (highest_address != mm->highest_vm_end) {
417 pr_emerg("mm->highest_vm_end %lx, found %lx\n",
418 mm->highest_vm_end, highest_address);
422 if (i != mm->map_count) {
424 pr_emerg("map_count %d rb %d\n", mm->map_count, i);
427 VM_BUG_ON_MM(bug, mm);
430 #define validate_mm_rb(root, ignore) do { } while (0)
431 #define validate_mm(mm) do { } while (0)
434 RB_DECLARE_CALLBACKS_MAX(static, vma_gap_callbacks,
435 struct vm_area_struct, vm_rb,
436 unsigned long, rb_subtree_gap, vma_compute_gap)
439 * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
440 * vma->vm_prev->vm_end values changed, without modifying the vma's position
443 static void vma_gap_update(struct vm_area_struct *vma)
446 * As it turns out, RB_DECLARE_CALLBACKS_MAX() already created
447 * a callback function that does exactly what we want.
449 vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
452 static inline void vma_rb_insert(struct vm_area_struct *vma,
453 struct rb_root *root)
455 /* All rb_subtree_gap values must be consistent prior to insertion */
456 validate_mm_rb(root, NULL);
458 rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
461 static void __vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
464 * Note rb_erase_augmented is a fairly large inline function,
465 * so make sure we instantiate it only once with our desired
466 * augmented rbtree callbacks.
468 rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
471 static __always_inline void vma_rb_erase_ignore(struct vm_area_struct *vma,
472 struct rb_root *root,
473 struct vm_area_struct *ignore)
476 * All rb_subtree_gap values must be consistent prior to erase,
477 * with the possible exception of the "next" vma being erased if
478 * next->vm_start was reduced.
480 validate_mm_rb(root, ignore);
482 __vma_rb_erase(vma, root);
485 static __always_inline void vma_rb_erase(struct vm_area_struct *vma,
486 struct rb_root *root)
489 * All rb_subtree_gap values must be consistent prior to erase,
490 * with the possible exception of the vma being erased.
492 validate_mm_rb(root, vma);
494 __vma_rb_erase(vma, root);
498 * vma has some anon_vma assigned, and is already inserted on that
499 * anon_vma's interval trees.
501 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
502 * vma must be removed from the anon_vma's interval trees using
503 * anon_vma_interval_tree_pre_update_vma().
505 * After the update, the vma will be reinserted using
506 * anon_vma_interval_tree_post_update_vma().
508 * The entire update must be protected by exclusive mmap_lock and by
509 * the root anon_vma's mutex.
512 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
514 struct anon_vma_chain *avc;
516 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
517 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
521 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
523 struct anon_vma_chain *avc;
525 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
526 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
529 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
530 unsigned long end, struct vm_area_struct **pprev,
531 struct rb_node ***rb_link, struct rb_node **rb_parent)
533 struct rb_node **__rb_link, *__rb_parent, *rb_prev;
535 __rb_link = &mm->mm_rb.rb_node;
536 rb_prev = __rb_parent = NULL;
539 struct vm_area_struct *vma_tmp;
541 __rb_parent = *__rb_link;
542 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
544 if (vma_tmp->vm_end > addr) {
545 /* Fail if an existing vma overlaps the area */
546 if (vma_tmp->vm_start < end)
548 __rb_link = &__rb_parent->rb_left;
550 rb_prev = __rb_parent;
551 __rb_link = &__rb_parent->rb_right;
557 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
558 *rb_link = __rb_link;
559 *rb_parent = __rb_parent;
563 static unsigned long count_vma_pages_range(struct mm_struct *mm,
564 unsigned long addr, unsigned long end)
566 unsigned long nr_pages = 0;
567 struct vm_area_struct *vma;
569 /* Find first overlaping mapping */
570 vma = find_vma_intersection(mm, addr, end);
574 nr_pages = (min(end, vma->vm_end) -
575 max(addr, vma->vm_start)) >> PAGE_SHIFT;
577 /* Iterate over the rest of the overlaps */
578 for (vma = vma->vm_next; vma; vma = vma->vm_next) {
579 unsigned long overlap_len;
581 if (vma->vm_start > end)
584 overlap_len = min(end, vma->vm_end) - vma->vm_start;
585 nr_pages += overlap_len >> PAGE_SHIFT;
591 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
592 struct rb_node **rb_link, struct rb_node *rb_parent)
594 /* Update tracking information for the gap following the new vma. */
596 vma_gap_update(vma->vm_next);
598 mm->highest_vm_end = vm_end_gap(vma);
601 * vma->vm_prev wasn't known when we followed the rbtree to find the
602 * correct insertion point for that vma. As a result, we could not
603 * update the vma vm_rb parents rb_subtree_gap values on the way down.
604 * So, we first insert the vma with a zero rb_subtree_gap value
605 * (to be consistent with what we did on the way down), and then
606 * immediately update the gap to the correct value. Finally we
607 * rebalance the rbtree after all augmented values have been set.
609 rb_link_node(&vma->vm_rb, rb_parent, rb_link);
610 vma->rb_subtree_gap = 0;
612 vma_rb_insert(vma, &mm->mm_rb);
615 static void __vma_link_file(struct vm_area_struct *vma)
621 struct address_space *mapping = file->f_mapping;
623 if (vma->vm_flags & VM_DENYWRITE)
624 atomic_dec(&file_inode(file)->i_writecount);
625 if (vma->vm_flags & VM_SHARED)
626 atomic_inc(&mapping->i_mmap_writable);
628 flush_dcache_mmap_lock(mapping);
629 vma_interval_tree_insert(vma, &mapping->i_mmap);
630 flush_dcache_mmap_unlock(mapping);
635 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
636 struct vm_area_struct *prev, struct rb_node **rb_link,
637 struct rb_node *rb_parent)
639 __vma_link_list(mm, vma, prev);
640 __vma_link_rb(mm, vma, rb_link, rb_parent);
643 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
644 struct vm_area_struct *prev, struct rb_node **rb_link,
645 struct rb_node *rb_parent)
647 struct address_space *mapping = NULL;
650 mapping = vma->vm_file->f_mapping;
651 i_mmap_lock_write(mapping);
654 __vma_link(mm, vma, prev, rb_link, rb_parent);
655 __vma_link_file(vma);
658 i_mmap_unlock_write(mapping);
665 * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
666 * mm's list and rbtree. It has already been inserted into the interval tree.
668 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
670 struct vm_area_struct *prev;
671 struct rb_node **rb_link, *rb_parent;
673 if (find_vma_links(mm, vma->vm_start, vma->vm_end,
674 &prev, &rb_link, &rb_parent))
676 __vma_link(mm, vma, prev, rb_link, rb_parent);
680 static __always_inline void __vma_unlink_common(struct mm_struct *mm,
681 struct vm_area_struct *vma,
682 struct vm_area_struct *ignore)
684 vma_rb_erase_ignore(vma, &mm->mm_rb, ignore);
685 __vma_unlink_list(mm, vma);
687 vmacache_invalidate(mm);
691 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
692 * is already present in an i_mmap tree without adjusting the tree.
693 * The following helper function should be used when such adjustments
694 * are necessary. The "insert" vma (if any) is to be inserted
695 * before we drop the necessary locks.
697 int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
698 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
699 struct vm_area_struct *expand)
701 struct mm_struct *mm = vma->vm_mm;
702 struct vm_area_struct *next = vma->vm_next, *orig_vma = vma;
703 struct address_space *mapping = NULL;
704 struct rb_root_cached *root = NULL;
705 struct anon_vma *anon_vma = NULL;
706 struct file *file = vma->vm_file;
707 bool start_changed = false, end_changed = false;
708 long adjust_next = 0;
711 if (next && !insert) {
712 struct vm_area_struct *exporter = NULL, *importer = NULL;
714 if (end >= next->vm_end) {
716 * vma expands, overlapping all the next, and
717 * perhaps the one after too (mprotect case 6).
718 * The only other cases that gets here are
719 * case 1, case 7 and case 8.
721 if (next == expand) {
723 * The only case where we don't expand "vma"
724 * and we expand "next" instead is case 8.
726 VM_WARN_ON(end != next->vm_end);
728 * remove_next == 3 means we're
729 * removing "vma" and that to do so we
730 * swapped "vma" and "next".
733 VM_WARN_ON(file != next->vm_file);
736 VM_WARN_ON(expand != vma);
738 * case 1, 6, 7, remove_next == 2 is case 6,
739 * remove_next == 1 is case 1 or 7.
741 remove_next = 1 + (end > next->vm_end);
742 VM_WARN_ON(remove_next == 2 &&
743 end != next->vm_next->vm_end);
744 /* trim end to next, for case 6 first pass */
752 * If next doesn't have anon_vma, import from vma after
753 * next, if the vma overlaps with it.
755 if (remove_next == 2 && !next->anon_vma)
756 exporter = next->vm_next;
758 } else if (end > next->vm_start) {
760 * vma expands, overlapping part of the next:
761 * mprotect case 5 shifting the boundary up.
763 adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
766 VM_WARN_ON(expand != importer);
767 } else if (end < vma->vm_end) {
769 * vma shrinks, and !insert tells it's not
770 * split_vma inserting another: so it must be
771 * mprotect case 4 shifting the boundary down.
773 adjust_next = -((vma->vm_end - end) >> PAGE_SHIFT);
776 VM_WARN_ON(expand != importer);
780 * Easily overlooked: when mprotect shifts the boundary,
781 * make sure the expanding vma has anon_vma set if the
782 * shrinking vma had, to cover any anon pages imported.
784 if (exporter && exporter->anon_vma && !importer->anon_vma) {
787 importer->anon_vma = exporter->anon_vma;
788 error = anon_vma_clone(importer, exporter);
794 vma_adjust_trans_huge(orig_vma, start, end, adjust_next);
797 mapping = file->f_mapping;
798 root = &mapping->i_mmap;
799 uprobe_munmap(vma, vma->vm_start, vma->vm_end);
802 uprobe_munmap(next, next->vm_start, next->vm_end);
804 i_mmap_lock_write(mapping);
807 * Put into interval tree now, so instantiated pages
808 * are visible to arm/parisc __flush_dcache_page
809 * throughout; but we cannot insert into address
810 * space until vma start or end is updated.
812 __vma_link_file(insert);
816 anon_vma = vma->anon_vma;
817 if (!anon_vma && adjust_next)
818 anon_vma = next->anon_vma;
820 VM_WARN_ON(adjust_next && next->anon_vma &&
821 anon_vma != next->anon_vma);
822 anon_vma_lock_write(anon_vma);
823 anon_vma_interval_tree_pre_update_vma(vma);
825 anon_vma_interval_tree_pre_update_vma(next);
829 flush_dcache_mmap_lock(mapping);
830 vma_interval_tree_remove(vma, root);
832 vma_interval_tree_remove(next, root);
835 if (start != vma->vm_start) {
836 vma->vm_start = start;
837 start_changed = true;
839 if (end != vma->vm_end) {
843 vma->vm_pgoff = pgoff;
845 next->vm_start += adjust_next << PAGE_SHIFT;
846 next->vm_pgoff += adjust_next;
851 vma_interval_tree_insert(next, root);
852 vma_interval_tree_insert(vma, root);
853 flush_dcache_mmap_unlock(mapping);
858 * vma_merge has merged next into vma, and needs
859 * us to remove next before dropping the locks.
861 if (remove_next != 3)
862 __vma_unlink_common(mm, next, next);
865 * vma is not before next if they've been
868 * pre-swap() next->vm_start was reduced so
869 * tell validate_mm_rb to ignore pre-swap()
870 * "next" (which is stored in post-swap()
873 __vma_unlink_common(mm, next, vma);
875 __remove_shared_vm_struct(next, file, mapping);
878 * split_vma has split insert from vma, and needs
879 * us to insert it before dropping the locks
880 * (it may either follow vma or precede it).
882 __insert_vm_struct(mm, insert);
888 mm->highest_vm_end = vm_end_gap(vma);
889 else if (!adjust_next)
890 vma_gap_update(next);
895 anon_vma_interval_tree_post_update_vma(vma);
897 anon_vma_interval_tree_post_update_vma(next);
898 anon_vma_unlock_write(anon_vma);
901 i_mmap_unlock_write(mapping);
912 uprobe_munmap(next, next->vm_start, next->vm_end);
916 anon_vma_merge(vma, next);
918 mpol_put(vma_policy(next));
921 * In mprotect's case 6 (see comments on vma_merge),
922 * we must remove another next too. It would clutter
923 * up the code too much to do both in one go.
925 if (remove_next != 3) {
927 * If "next" was removed and vma->vm_end was
928 * expanded (up) over it, in turn
929 * "next->vm_prev->vm_end" changed and the
930 * "vma->vm_next" gap must be updated.
935 * For the scope of the comment "next" and
936 * "vma" considered pre-swap(): if "vma" was
937 * removed, next->vm_start was expanded (down)
938 * over it and the "next" gap must be updated.
939 * Because of the swap() the post-swap() "vma"
940 * actually points to pre-swap() "next"
941 * (post-swap() "next" as opposed is now a
946 if (remove_next == 2) {
952 vma_gap_update(next);
955 * If remove_next == 2 we obviously can't
958 * If remove_next == 3 we can't reach this
959 * path because pre-swap() next is always not
960 * NULL. pre-swap() "next" is not being
961 * removed and its next->vm_end is not altered
962 * (and furthermore "end" already matches
963 * next->vm_end in remove_next == 3).
965 * We reach this only in the remove_next == 1
966 * case if the "next" vma that was removed was
967 * the highest vma of the mm. However in such
968 * case next->vm_end == "end" and the extended
969 * "vma" has vma->vm_end == next->vm_end so
970 * mm->highest_vm_end doesn't need any update
971 * in remove_next == 1 case.
973 VM_WARN_ON(mm->highest_vm_end != vm_end_gap(vma));
985 * If the vma has a ->close operation then the driver probably needs to release
986 * per-vma resources, so we don't attempt to merge those.
988 static inline int is_mergeable_vma(struct vm_area_struct *vma,
989 struct file *file, unsigned long vm_flags,
990 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
993 * VM_SOFTDIRTY should not prevent from VMA merging, if we
994 * match the flags but dirty bit -- the caller should mark
995 * merged VMA as dirty. If dirty bit won't be excluded from
996 * comparison, we increase pressure on the memory system forcing
997 * the kernel to generate new VMAs when old one could be
1000 if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
1002 if (vma->vm_file != file)
1004 if (vma->vm_ops && vma->vm_ops->close)
1006 if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
1011 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
1012 struct anon_vma *anon_vma2,
1013 struct vm_area_struct *vma)
1016 * The list_is_singular() test is to avoid merging VMA cloned from
1017 * parents. This can improve scalability caused by anon_vma lock.
1019 if ((!anon_vma1 || !anon_vma2) && (!vma ||
1020 list_is_singular(&vma->anon_vma_chain)))
1022 return anon_vma1 == anon_vma2;
1026 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1027 * in front of (at a lower virtual address and file offset than) the vma.
1029 * We cannot merge two vmas if they have differently assigned (non-NULL)
1030 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1032 * We don't check here for the merged mmap wrapping around the end of pagecache
1033 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
1034 * wrap, nor mmaps which cover the final page at index -1UL.
1037 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
1038 struct anon_vma *anon_vma, struct file *file,
1040 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1042 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1043 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1044 if (vma->vm_pgoff == vm_pgoff)
1051 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1052 * beyond (at a higher virtual address and file offset than) the vma.
1054 * We cannot merge two vmas if they have differently assigned (non-NULL)
1055 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1058 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
1059 struct anon_vma *anon_vma, struct file *file,
1061 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1063 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1064 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1066 vm_pglen = vma_pages(vma);
1067 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
1074 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
1075 * whether that can be merged with its predecessor or its successor.
1076 * Or both (it neatly fills a hole).
1078 * In most cases - when called for mmap, brk or mremap - [addr,end) is
1079 * certain not to be mapped by the time vma_merge is called; but when
1080 * called for mprotect, it is certain to be already mapped (either at
1081 * an offset within prev, or at the start of next), and the flags of
1082 * this area are about to be changed to vm_flags - and the no-change
1083 * case has already been eliminated.
1085 * The following mprotect cases have to be considered, where AAAA is
1086 * the area passed down from mprotect_fixup, never extending beyond one
1087 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
1090 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN
1091 * cannot merge might become might become
1092 * PPNNNNNNNNNN PPPPPPPPPPNN
1093 * mmap, brk or case 4 below case 5 below
1096 * PPPP NNNN PPPPNNNNXXXX
1097 * might become might become
1098 * PPPPPPPPPPPP 1 or PPPPPPPPPPPP 6 or
1099 * PPPPPPPPNNNN 2 or PPPPPPPPXXXX 7 or
1100 * PPPPNNNNNNNN 3 PPPPXXXXXXXX 8
1102 * It is important for case 8 that the vma NNNN overlapping the
1103 * region AAAA is never going to extended over XXXX. Instead XXXX must
1104 * be extended in region AAAA and NNNN must be removed. This way in
1105 * all cases where vma_merge succeeds, the moment vma_adjust drops the
1106 * rmap_locks, the properties of the merged vma will be already
1107 * correct for the whole merged range. Some of those properties like
1108 * vm_page_prot/vm_flags may be accessed by rmap_walks and they must
1109 * be correct for the whole merged range immediately after the
1110 * rmap_locks are released. Otherwise if XXXX would be removed and
1111 * NNNN would be extended over the XXXX range, remove_migration_ptes
1112 * or other rmap walkers (if working on addresses beyond the "end"
1113 * parameter) may establish ptes with the wrong permissions of NNNN
1114 * instead of the right permissions of XXXX.
1116 struct vm_area_struct *vma_merge(struct mm_struct *mm,
1117 struct vm_area_struct *prev, unsigned long addr,
1118 unsigned long end, unsigned long vm_flags,
1119 struct anon_vma *anon_vma, struct file *file,
1120 pgoff_t pgoff, struct mempolicy *policy,
1121 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1123 pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1124 struct vm_area_struct *area, *next;
1128 * We later require that vma->vm_flags == vm_flags,
1129 * so this tests vma->vm_flags & VM_SPECIAL, too.
1131 if (vm_flags & VM_SPECIAL)
1135 next = prev->vm_next;
1139 if (area && area->vm_end == end) /* cases 6, 7, 8 */
1140 next = next->vm_next;
1142 /* verify some invariant that must be enforced by the caller */
1143 VM_WARN_ON(prev && addr <= prev->vm_start);
1144 VM_WARN_ON(area && end > area->vm_end);
1145 VM_WARN_ON(addr >= end);
1148 * Can it merge with the predecessor?
1150 if (prev && prev->vm_end == addr &&
1151 mpol_equal(vma_policy(prev), policy) &&
1152 can_vma_merge_after(prev, vm_flags,
1153 anon_vma, file, pgoff,
1154 vm_userfaultfd_ctx)) {
1156 * OK, it can. Can we now merge in the successor as well?
1158 if (next && end == next->vm_start &&
1159 mpol_equal(policy, vma_policy(next)) &&
1160 can_vma_merge_before(next, vm_flags,
1163 vm_userfaultfd_ctx) &&
1164 is_mergeable_anon_vma(prev->anon_vma,
1165 next->anon_vma, NULL)) {
1167 err = __vma_adjust(prev, prev->vm_start,
1168 next->vm_end, prev->vm_pgoff, NULL,
1170 } else /* cases 2, 5, 7 */
1171 err = __vma_adjust(prev, prev->vm_start,
1172 end, prev->vm_pgoff, NULL, prev);
1175 khugepaged_enter_vma_merge(prev, vm_flags);
1180 * Can this new request be merged in front of next?
1182 if (next && end == next->vm_start &&
1183 mpol_equal(policy, vma_policy(next)) &&
1184 can_vma_merge_before(next, vm_flags,
1185 anon_vma, file, pgoff+pglen,
1186 vm_userfaultfd_ctx)) {
1187 if (prev && addr < prev->vm_end) /* case 4 */
1188 err = __vma_adjust(prev, prev->vm_start,
1189 addr, prev->vm_pgoff, NULL, next);
1190 else { /* cases 3, 8 */
1191 err = __vma_adjust(area, addr, next->vm_end,
1192 next->vm_pgoff - pglen, NULL, next);
1194 * In case 3 area is already equal to next and
1195 * this is a noop, but in case 8 "area" has
1196 * been removed and next was expanded over it.
1202 khugepaged_enter_vma_merge(area, vm_flags);
1210 * Rough compatibility check to quickly see if it's even worth looking
1211 * at sharing an anon_vma.
1213 * They need to have the same vm_file, and the flags can only differ
1214 * in things that mprotect may change.
1216 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1217 * we can merge the two vma's. For example, we refuse to merge a vma if
1218 * there is a vm_ops->close() function, because that indicates that the
1219 * driver is doing some kind of reference counting. But that doesn't
1220 * really matter for the anon_vma sharing case.
1222 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1224 return a->vm_end == b->vm_start &&
1225 mpol_equal(vma_policy(a), vma_policy(b)) &&
1226 a->vm_file == b->vm_file &&
1227 !((a->vm_flags ^ b->vm_flags) & ~(VM_ACCESS_FLAGS | VM_SOFTDIRTY)) &&
1228 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1232 * Do some basic sanity checking to see if we can re-use the anon_vma
1233 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1234 * the same as 'old', the other will be the new one that is trying
1235 * to share the anon_vma.
1237 * NOTE! This runs with mm_sem held for reading, so it is possible that
1238 * the anon_vma of 'old' is concurrently in the process of being set up
1239 * by another page fault trying to merge _that_. But that's ok: if it
1240 * is being set up, that automatically means that it will be a singleton
1241 * acceptable for merging, so we can do all of this optimistically. But
1242 * we do that READ_ONCE() to make sure that we never re-load the pointer.
1244 * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1245 * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1246 * is to return an anon_vma that is "complex" due to having gone through
1249 * We also make sure that the two vma's are compatible (adjacent,
1250 * and with the same memory policies). That's all stable, even with just
1251 * a read lock on the mm_sem.
1253 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1255 if (anon_vma_compatible(a, b)) {
1256 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1258 if (anon_vma && list_is_singular(&old->anon_vma_chain))
1265 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1266 * neighbouring vmas for a suitable anon_vma, before it goes off
1267 * to allocate a new anon_vma. It checks because a repetitive
1268 * sequence of mprotects and faults may otherwise lead to distinct
1269 * anon_vmas being allocated, preventing vma merge in subsequent
1272 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1274 struct anon_vma *anon_vma = NULL;
1276 /* Try next first. */
1278 anon_vma = reusable_anon_vma(vma->vm_next, vma, vma->vm_next);
1283 /* Try prev next. */
1285 anon_vma = reusable_anon_vma(vma->vm_prev, vma->vm_prev, vma);
1288 * We might reach here with anon_vma == NULL if we can't find
1289 * any reusable anon_vma.
1290 * There's no absolute need to look only at touching neighbours:
1291 * we could search further afield for "compatible" anon_vmas.
1292 * But it would probably just be a waste of time searching,
1293 * or lead to too many vmas hanging off the same anon_vma.
1294 * We're trying to allow mprotect remerging later on,
1295 * not trying to minimize memory used for anon_vmas.
1301 * If a hint addr is less than mmap_min_addr change hint to be as
1302 * low as possible but still greater than mmap_min_addr
1304 static inline unsigned long round_hint_to_min(unsigned long hint)
1307 if (((void *)hint != NULL) &&
1308 (hint < mmap_min_addr))
1309 return PAGE_ALIGN(mmap_min_addr);
1313 static inline int mlock_future_check(struct mm_struct *mm,
1314 unsigned long flags,
1317 unsigned long locked, lock_limit;
1319 /* mlock MCL_FUTURE? */
1320 if (flags & VM_LOCKED) {
1321 locked = len >> PAGE_SHIFT;
1322 locked += mm->locked_vm;
1323 lock_limit = rlimit(RLIMIT_MEMLOCK);
1324 lock_limit >>= PAGE_SHIFT;
1325 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1331 static inline u64 file_mmap_size_max(struct file *file, struct inode *inode)
1333 if (S_ISREG(inode->i_mode))
1334 return MAX_LFS_FILESIZE;
1336 if (S_ISBLK(inode->i_mode))
1337 return MAX_LFS_FILESIZE;
1339 if (S_ISSOCK(inode->i_mode))
1340 return MAX_LFS_FILESIZE;
1342 /* Special "we do even unsigned file positions" case */
1343 if (file->f_mode & FMODE_UNSIGNED_OFFSET)
1346 /* Yes, random drivers might want more. But I'm tired of buggy drivers */
1350 static inline bool file_mmap_ok(struct file *file, struct inode *inode,
1351 unsigned long pgoff, unsigned long len)
1353 u64 maxsize = file_mmap_size_max(file, inode);
1355 if (maxsize && len > maxsize)
1358 if (pgoff > maxsize >> PAGE_SHIFT)
1364 * The caller must write-lock current->mm->mmap_lock.
1366 unsigned long do_mmap(struct file *file, unsigned long addr,
1367 unsigned long len, unsigned long prot,
1368 unsigned long flags, vm_flags_t vm_flags,
1369 unsigned long pgoff, unsigned long *populate,
1370 struct list_head *uf)
1372 struct mm_struct *mm = current->mm;
1381 * Does the application expect PROT_READ to imply PROT_EXEC?
1383 * (the exception is when the underlying filesystem is noexec
1384 * mounted, in which case we dont add PROT_EXEC.)
1386 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1387 if (!(file && path_noexec(&file->f_path)))
1390 /* force arch specific MAP_FIXED handling in get_unmapped_area */
1391 if (flags & MAP_FIXED_NOREPLACE)
1394 if (!(flags & MAP_FIXED))
1395 addr = round_hint_to_min(addr);
1397 /* Careful about overflows.. */
1398 len = PAGE_ALIGN(len);
1402 /* offset overflow? */
1403 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1406 /* Too many mappings? */
1407 if (mm->map_count > sysctl_max_map_count)
1410 /* Obtain the address to map to. we verify (or select) it and ensure
1411 * that it represents a valid section of the address space.
1413 addr = get_unmapped_area(file, addr, len, pgoff, flags);
1414 if (IS_ERR_VALUE(addr))
1417 if (flags & MAP_FIXED_NOREPLACE) {
1418 struct vm_area_struct *vma = find_vma(mm, addr);
1420 if (vma && vma->vm_start < addr + len)
1424 if (prot == PROT_EXEC) {
1425 pkey = execute_only_pkey(mm);
1430 /* Do simple checking here so the lower-level routines won't have
1431 * to. we assume access permissions have been handled by the open
1432 * of the memory object, so we don't do any here.
1434 vm_flags |= calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
1435 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1437 if (flags & MAP_LOCKED)
1438 if (!can_do_mlock())
1441 if (mlock_future_check(mm, vm_flags, len))
1445 struct inode *inode = file_inode(file);
1446 unsigned long flags_mask;
1448 if (!file_mmap_ok(file, inode, pgoff, len))
1451 flags_mask = LEGACY_MAP_MASK | file->f_op->mmap_supported_flags;
1453 switch (flags & MAP_TYPE) {
1456 * Force use of MAP_SHARED_VALIDATE with non-legacy
1457 * flags. E.g. MAP_SYNC is dangerous to use with
1458 * MAP_SHARED as you don't know which consistency model
1459 * you will get. We silently ignore unsupported flags
1460 * with MAP_SHARED to preserve backward compatibility.
1462 flags &= LEGACY_MAP_MASK;
1464 case MAP_SHARED_VALIDATE:
1465 if (flags & ~flags_mask)
1467 if (prot & PROT_WRITE) {
1468 if (!(file->f_mode & FMODE_WRITE))
1470 if (IS_SWAPFILE(file->f_mapping->host))
1475 * Make sure we don't allow writing to an append-only
1478 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1482 * Make sure there are no mandatory locks on the file.
1484 if (locks_verify_locked(file))
1487 vm_flags |= VM_SHARED | VM_MAYSHARE;
1488 if (!(file->f_mode & FMODE_WRITE))
1489 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1492 if (!(file->f_mode & FMODE_READ))
1494 if (path_noexec(&file->f_path)) {
1495 if (vm_flags & VM_EXEC)
1497 vm_flags &= ~VM_MAYEXEC;
1500 if (!file->f_op->mmap)
1502 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1510 switch (flags & MAP_TYPE) {
1512 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1518 vm_flags |= VM_SHARED | VM_MAYSHARE;
1522 * Set pgoff according to addr for anon_vma.
1524 pgoff = addr >> PAGE_SHIFT;
1532 * Set 'VM_NORESERVE' if we should not account for the
1533 * memory use of this mapping.
1535 if (flags & MAP_NORESERVE) {
1536 /* We honor MAP_NORESERVE if allowed to overcommit */
1537 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1538 vm_flags |= VM_NORESERVE;
1540 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1541 if (file && is_file_hugepages(file))
1542 vm_flags |= VM_NORESERVE;
1545 addr = mmap_region(file, addr, len, vm_flags, pgoff, uf);
1546 if (!IS_ERR_VALUE(addr) &&
1547 ((vm_flags & VM_LOCKED) ||
1548 (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1553 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1554 unsigned long prot, unsigned long flags,
1555 unsigned long fd, unsigned long pgoff)
1557 struct file *file = NULL;
1558 unsigned long retval;
1560 if (!(flags & MAP_ANONYMOUS)) {
1561 audit_mmap_fd(fd, flags);
1565 if (is_file_hugepages(file))
1566 len = ALIGN(len, huge_page_size(hstate_file(file)));
1568 if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file)))
1570 } else if (flags & MAP_HUGETLB) {
1571 struct user_struct *user = NULL;
1574 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1578 len = ALIGN(len, huge_page_size(hs));
1580 * VM_NORESERVE is used because the reservations will be
1581 * taken when vm_ops->mmap() is called
1582 * A dummy user value is used because we are not locking
1583 * memory so no accounting is necessary
1585 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1587 &user, HUGETLB_ANONHUGE_INODE,
1588 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1590 return PTR_ERR(file);
1593 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1595 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1602 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1603 unsigned long, prot, unsigned long, flags,
1604 unsigned long, fd, unsigned long, pgoff)
1606 return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1609 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1610 struct mmap_arg_struct {
1614 unsigned long flags;
1616 unsigned long offset;
1619 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1621 struct mmap_arg_struct a;
1623 if (copy_from_user(&a, arg, sizeof(a)))
1625 if (offset_in_page(a.offset))
1628 return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1629 a.offset >> PAGE_SHIFT);
1631 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1634 * Some shared mappings will want the pages marked read-only
1635 * to track write events. If so, we'll downgrade vm_page_prot
1636 * to the private version (using protection_map[] without the
1639 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)
1641 vm_flags_t vm_flags = vma->vm_flags;
1642 const struct vm_operations_struct *vm_ops = vma->vm_ops;
1644 /* If it was private or non-writable, the write bit is already clear */
1645 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1648 /* The backer wishes to know when pages are first written to? */
1649 if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite))
1652 /* The open routine did something to the protections that pgprot_modify
1653 * won't preserve? */
1654 if (pgprot_val(vm_page_prot) !=
1655 pgprot_val(vm_pgprot_modify(vm_page_prot, vm_flags)))
1658 /* Do we need to track softdirty? */
1659 if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY))
1662 /* Specialty mapping? */
1663 if (vm_flags & VM_PFNMAP)
1666 /* Can the mapping track the dirty pages? */
1667 return vma->vm_file && vma->vm_file->f_mapping &&
1668 mapping_cap_account_dirty(vma->vm_file->f_mapping);
1672 * We account for memory if it's a private writeable mapping,
1673 * not hugepages and VM_NORESERVE wasn't set.
1675 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1678 * hugetlb has its own accounting separate from the core VM
1679 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1681 if (file && is_file_hugepages(file))
1684 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1687 unsigned long mmap_region(struct file *file, unsigned long addr,
1688 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
1689 struct list_head *uf)
1691 struct mm_struct *mm = current->mm;
1692 struct vm_area_struct *vma, *prev;
1694 struct rb_node **rb_link, *rb_parent;
1695 unsigned long charged = 0;
1697 /* Check against address space limit. */
1698 if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
1699 unsigned long nr_pages;
1702 * MAP_FIXED may remove pages of mappings that intersects with
1703 * requested mapping. Account for the pages it would unmap.
1705 nr_pages = count_vma_pages_range(mm, addr, addr + len);
1707 if (!may_expand_vm(mm, vm_flags,
1708 (len >> PAGE_SHIFT) - nr_pages))
1712 /* Clear old maps */
1713 while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
1715 if (do_munmap(mm, addr, len, uf))
1720 * Private writable mapping: check memory availability
1722 if (accountable_mapping(file, vm_flags)) {
1723 charged = len >> PAGE_SHIFT;
1724 if (security_vm_enough_memory_mm(mm, charged))
1726 vm_flags |= VM_ACCOUNT;
1730 * Can we just expand an old mapping?
1732 vma = vma_merge(mm, prev, addr, addr + len, vm_flags,
1733 NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX);
1738 * Determine the object being mapped and call the appropriate
1739 * specific mapper. the address has already been validated, but
1740 * not unmapped, but the maps are removed from the list.
1742 vma = vm_area_alloc(mm);
1748 vma->vm_start = addr;
1749 vma->vm_end = addr + len;
1750 vma->vm_flags = vm_flags;
1751 vma->vm_page_prot = vm_get_page_prot(vm_flags);
1752 vma->vm_pgoff = pgoff;
1755 if (vm_flags & VM_DENYWRITE) {
1756 error = deny_write_access(file);
1760 if (vm_flags & VM_SHARED) {
1761 error = mapping_map_writable(file->f_mapping);
1763 goto allow_write_and_free_vma;
1766 /* ->mmap() can change vma->vm_file, but must guarantee that
1767 * vma_link() below can deny write-access if VM_DENYWRITE is set
1768 * and map writably if VM_SHARED is set. This usually means the
1769 * new file must not have been exposed to user-space, yet.
1771 vma->vm_file = get_file(file);
1772 error = call_mmap(file, vma);
1774 goto unmap_and_free_vma;
1776 /* Can addr have changed??
1778 * Answer: Yes, several device drivers can do it in their
1779 * f_op->mmap method. -DaveM
1780 * Bug: If addr is changed, prev, rb_link, rb_parent should
1781 * be updated for vma_link()
1783 WARN_ON_ONCE(addr != vma->vm_start);
1785 addr = vma->vm_start;
1786 vm_flags = vma->vm_flags;
1787 } else if (vm_flags & VM_SHARED) {
1788 error = shmem_zero_setup(vma);
1792 vma_set_anonymous(vma);
1795 vma_link(mm, vma, prev, rb_link, rb_parent);
1796 /* Once vma denies write, undo our temporary denial count */
1798 if (vm_flags & VM_SHARED)
1799 mapping_unmap_writable(file->f_mapping);
1800 if (vm_flags & VM_DENYWRITE)
1801 allow_write_access(file);
1803 file = vma->vm_file;
1805 perf_event_mmap(vma);
1807 vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
1808 if (vm_flags & VM_LOCKED) {
1809 if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) ||
1810 is_vm_hugetlb_page(vma) ||
1811 vma == get_gate_vma(current->mm))
1812 vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
1814 mm->locked_vm += (len >> PAGE_SHIFT);
1821 * New (or expanded) vma always get soft dirty status.
1822 * Otherwise user-space soft-dirty page tracker won't
1823 * be able to distinguish situation when vma area unmapped,
1824 * then new mapped in-place (which must be aimed as
1825 * a completely new data area).
1827 vma->vm_flags |= VM_SOFTDIRTY;
1829 vma_set_page_prot(vma);
1834 vma->vm_file = NULL;
1837 /* Undo any partial mapping done by a device driver. */
1838 unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1840 if (vm_flags & VM_SHARED)
1841 mapping_unmap_writable(file->f_mapping);
1842 allow_write_and_free_vma:
1843 if (vm_flags & VM_DENYWRITE)
1844 allow_write_access(file);
1849 vm_unacct_memory(charged);
1853 static unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1856 * We implement the search by looking for an rbtree node that
1857 * immediately follows a suitable gap. That is,
1858 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1859 * - gap_end = vma->vm_start >= info->low_limit + length;
1860 * - gap_end - gap_start >= length
1863 struct mm_struct *mm = current->mm;
1864 struct vm_area_struct *vma;
1865 unsigned long length, low_limit, high_limit, gap_start, gap_end;
1867 /* Adjust search length to account for worst case alignment overhead */
1868 length = info->length + info->align_mask;
1869 if (length < info->length)
1872 /* Adjust search limits by the desired length */
1873 if (info->high_limit < length)
1875 high_limit = info->high_limit - length;
1877 if (info->low_limit > high_limit)
1879 low_limit = info->low_limit + length;
1881 /* Check if rbtree root looks promising */
1882 if (RB_EMPTY_ROOT(&mm->mm_rb))
1884 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1885 if (vma->rb_subtree_gap < length)
1889 /* Visit left subtree if it looks promising */
1890 gap_end = vm_start_gap(vma);
1891 if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1892 struct vm_area_struct *left =
1893 rb_entry(vma->vm_rb.rb_left,
1894 struct vm_area_struct, vm_rb);
1895 if (left->rb_subtree_gap >= length) {
1901 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
1903 /* Check if current node has a suitable gap */
1904 if (gap_start > high_limit)
1906 if (gap_end >= low_limit &&
1907 gap_end > gap_start && gap_end - gap_start >= length)
1910 /* Visit right subtree if it looks promising */
1911 if (vma->vm_rb.rb_right) {
1912 struct vm_area_struct *right =
1913 rb_entry(vma->vm_rb.rb_right,
1914 struct vm_area_struct, vm_rb);
1915 if (right->rb_subtree_gap >= length) {
1921 /* Go back up the rbtree to find next candidate node */
1923 struct rb_node *prev = &vma->vm_rb;
1924 if (!rb_parent(prev))
1926 vma = rb_entry(rb_parent(prev),
1927 struct vm_area_struct, vm_rb);
1928 if (prev == vma->vm_rb.rb_left) {
1929 gap_start = vm_end_gap(vma->vm_prev);
1930 gap_end = vm_start_gap(vma);
1937 /* Check highest gap, which does not precede any rbtree node */
1938 gap_start = mm->highest_vm_end;
1939 gap_end = ULONG_MAX; /* Only for VM_BUG_ON below */
1940 if (gap_start > high_limit)
1944 /* We found a suitable gap. Clip it with the original low_limit. */
1945 if (gap_start < info->low_limit)
1946 gap_start = info->low_limit;
1948 /* Adjust gap address to the desired alignment */
1949 gap_start += (info->align_offset - gap_start) & info->align_mask;
1951 VM_BUG_ON(gap_start + info->length > info->high_limit);
1952 VM_BUG_ON(gap_start + info->length > gap_end);
1956 static unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1958 struct mm_struct *mm = current->mm;
1959 struct vm_area_struct *vma;
1960 unsigned long length, low_limit, high_limit, gap_start, gap_end;
1962 /* Adjust search length to account for worst case alignment overhead */
1963 length = info->length + info->align_mask;
1964 if (length < info->length)
1968 * Adjust search limits by the desired length.
1969 * See implementation comment at top of unmapped_area().
1971 gap_end = info->high_limit;
1972 if (gap_end < length)
1974 high_limit = gap_end - length;
1976 if (info->low_limit > high_limit)
1978 low_limit = info->low_limit + length;
1980 /* Check highest gap, which does not precede any rbtree node */
1981 gap_start = mm->highest_vm_end;
1982 if (gap_start <= high_limit)
1985 /* Check if rbtree root looks promising */
1986 if (RB_EMPTY_ROOT(&mm->mm_rb))
1988 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1989 if (vma->rb_subtree_gap < length)
1993 /* Visit right subtree if it looks promising */
1994 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
1995 if (gap_start <= high_limit && vma->vm_rb.rb_right) {
1996 struct vm_area_struct *right =
1997 rb_entry(vma->vm_rb.rb_right,
1998 struct vm_area_struct, vm_rb);
1999 if (right->rb_subtree_gap >= length) {
2006 /* Check if current node has a suitable gap */
2007 gap_end = vm_start_gap(vma);
2008 if (gap_end < low_limit)
2010 if (gap_start <= high_limit &&
2011 gap_end > gap_start && gap_end - gap_start >= length)
2014 /* Visit left subtree if it looks promising */
2015 if (vma->vm_rb.rb_left) {
2016 struct vm_area_struct *left =
2017 rb_entry(vma->vm_rb.rb_left,
2018 struct vm_area_struct, vm_rb);
2019 if (left->rb_subtree_gap >= length) {
2025 /* Go back up the rbtree to find next candidate node */
2027 struct rb_node *prev = &vma->vm_rb;
2028 if (!rb_parent(prev))
2030 vma = rb_entry(rb_parent(prev),
2031 struct vm_area_struct, vm_rb);
2032 if (prev == vma->vm_rb.rb_right) {
2033 gap_start = vma->vm_prev ?
2034 vm_end_gap(vma->vm_prev) : 0;
2041 /* We found a suitable gap. Clip it with the original high_limit. */
2042 if (gap_end > info->high_limit)
2043 gap_end = info->high_limit;
2046 /* Compute highest gap address at the desired alignment */
2047 gap_end -= info->length;
2048 gap_end -= (gap_end - info->align_offset) & info->align_mask;
2050 VM_BUG_ON(gap_end < info->low_limit);
2051 VM_BUG_ON(gap_end < gap_start);
2056 * Search for an unmapped address range.
2058 * We are looking for a range that:
2059 * - does not intersect with any VMA;
2060 * - is contained within the [low_limit, high_limit) interval;
2061 * - is at least the desired size.
2062 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
2064 unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info)
2068 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
2069 addr = unmapped_area_topdown(info);
2071 addr = unmapped_area(info);
2073 trace_vm_unmapped_area(addr, info);
2077 #ifndef arch_get_mmap_end
2078 #define arch_get_mmap_end(addr) (TASK_SIZE)
2081 #ifndef arch_get_mmap_base
2082 #define arch_get_mmap_base(addr, base) (base)
2085 /* Get an address range which is currently unmapped.
2086 * For shmat() with addr=0.
2088 * Ugly calling convention alert:
2089 * Return value with the low bits set means error value,
2091 * if (ret & ~PAGE_MASK)
2094 * This function "knows" that -ENOMEM has the bits set.
2096 #ifndef HAVE_ARCH_UNMAPPED_AREA
2098 arch_get_unmapped_area(struct file *filp, unsigned long addr,
2099 unsigned long len, unsigned long pgoff, unsigned long flags)
2101 struct mm_struct *mm = current->mm;
2102 struct vm_area_struct *vma, *prev;
2103 struct vm_unmapped_area_info info;
2104 const unsigned long mmap_end = arch_get_mmap_end(addr);
2106 if (len > mmap_end - mmap_min_addr)
2109 if (flags & MAP_FIXED)
2113 addr = PAGE_ALIGN(addr);
2114 vma = find_vma_prev(mm, addr, &prev);
2115 if (mmap_end - len >= addr && addr >= mmap_min_addr &&
2116 (!vma || addr + len <= vm_start_gap(vma)) &&
2117 (!prev || addr >= vm_end_gap(prev)))
2123 info.low_limit = mm->mmap_base;
2124 info.high_limit = mmap_end;
2125 info.align_mask = 0;
2126 info.align_offset = 0;
2127 return vm_unmapped_area(&info);
2132 * This mmap-allocator allocates new areas top-down from below the
2133 * stack's low limit (the base):
2135 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
2137 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
2138 unsigned long len, unsigned long pgoff,
2139 unsigned long flags)
2141 struct vm_area_struct *vma, *prev;
2142 struct mm_struct *mm = current->mm;
2143 struct vm_unmapped_area_info info;
2144 const unsigned long mmap_end = arch_get_mmap_end(addr);
2146 /* requested length too big for entire address space */
2147 if (len > mmap_end - mmap_min_addr)
2150 if (flags & MAP_FIXED)
2153 /* requesting a specific address */
2155 addr = PAGE_ALIGN(addr);
2156 vma = find_vma_prev(mm, addr, &prev);
2157 if (mmap_end - len >= addr && addr >= mmap_min_addr &&
2158 (!vma || addr + len <= vm_start_gap(vma)) &&
2159 (!prev || addr >= vm_end_gap(prev)))
2163 info.flags = VM_UNMAPPED_AREA_TOPDOWN;
2165 info.low_limit = max(PAGE_SIZE, mmap_min_addr);
2166 info.high_limit = arch_get_mmap_base(addr, mm->mmap_base);
2167 info.align_mask = 0;
2168 info.align_offset = 0;
2169 addr = vm_unmapped_area(&info);
2172 * A failed mmap() very likely causes application failure,
2173 * so fall back to the bottom-up function here. This scenario
2174 * can happen with large stack limits and large mmap()
2177 if (offset_in_page(addr)) {
2178 VM_BUG_ON(addr != -ENOMEM);
2180 info.low_limit = TASK_UNMAPPED_BASE;
2181 info.high_limit = mmap_end;
2182 addr = vm_unmapped_area(&info);
2190 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
2191 unsigned long pgoff, unsigned long flags)
2193 unsigned long (*get_area)(struct file *, unsigned long,
2194 unsigned long, unsigned long, unsigned long);
2196 unsigned long error = arch_mmap_check(addr, len, flags);
2200 /* Careful about overflows.. */
2201 if (len > TASK_SIZE)
2204 get_area = current->mm->get_unmapped_area;
2206 if (file->f_op->get_unmapped_area)
2207 get_area = file->f_op->get_unmapped_area;
2208 } else if (flags & MAP_SHARED) {
2210 * mmap_region() will call shmem_zero_setup() to create a file,
2211 * so use shmem's get_unmapped_area in case it can be huge.
2212 * do_mmap_pgoff() will clear pgoff, so match alignment.
2215 get_area = shmem_get_unmapped_area;
2218 addr = get_area(file, addr, len, pgoff, flags);
2219 if (IS_ERR_VALUE(addr))
2222 if (addr > TASK_SIZE - len)
2224 if (offset_in_page(addr))
2227 error = security_mmap_addr(addr);
2228 return error ? error : addr;
2231 EXPORT_SYMBOL(get_unmapped_area);
2233 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2234 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
2236 struct rb_node *rb_node;
2237 struct vm_area_struct *vma;
2239 /* Check the cache first. */
2240 vma = vmacache_find(mm, addr);
2244 rb_node = mm->mm_rb.rb_node;
2247 struct vm_area_struct *tmp;
2249 tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2251 if (tmp->vm_end > addr) {
2253 if (tmp->vm_start <= addr)
2255 rb_node = rb_node->rb_left;
2257 rb_node = rb_node->rb_right;
2261 vmacache_update(addr, vma);
2265 EXPORT_SYMBOL(find_vma);
2268 * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2270 struct vm_area_struct *
2271 find_vma_prev(struct mm_struct *mm, unsigned long addr,
2272 struct vm_area_struct **pprev)
2274 struct vm_area_struct *vma;
2276 vma = find_vma(mm, addr);
2278 *pprev = vma->vm_prev;
2280 struct rb_node *rb_node = rb_last(&mm->mm_rb);
2282 *pprev = rb_node ? rb_entry(rb_node, struct vm_area_struct, vm_rb) : NULL;
2288 * Verify that the stack growth is acceptable and
2289 * update accounting. This is shared with both the
2290 * grow-up and grow-down cases.
2292 static int acct_stack_growth(struct vm_area_struct *vma,
2293 unsigned long size, unsigned long grow)
2295 struct mm_struct *mm = vma->vm_mm;
2296 unsigned long new_start;
2298 /* address space limit tests */
2299 if (!may_expand_vm(mm, vma->vm_flags, grow))
2302 /* Stack limit test */
2303 if (size > rlimit(RLIMIT_STACK))
2306 /* mlock limit tests */
2307 if (vma->vm_flags & VM_LOCKED) {
2308 unsigned long locked;
2309 unsigned long limit;
2310 locked = mm->locked_vm + grow;
2311 limit = rlimit(RLIMIT_MEMLOCK);
2312 limit >>= PAGE_SHIFT;
2313 if (locked > limit && !capable(CAP_IPC_LOCK))
2317 /* Check to ensure the stack will not grow into a hugetlb-only region */
2318 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2320 if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2324 * Overcommit.. This must be the final test, as it will
2325 * update security statistics.
2327 if (security_vm_enough_memory_mm(mm, grow))
2333 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2335 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2336 * vma is the last one with address > vma->vm_end. Have to extend vma.
2338 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2340 struct mm_struct *mm = vma->vm_mm;
2341 struct vm_area_struct *next;
2342 unsigned long gap_addr;
2345 if (!(vma->vm_flags & VM_GROWSUP))
2348 /* Guard against exceeding limits of the address space. */
2349 address &= PAGE_MASK;
2350 if (address >= (TASK_SIZE & PAGE_MASK))
2352 address += PAGE_SIZE;
2354 /* Enforce stack_guard_gap */
2355 gap_addr = address + stack_guard_gap;
2357 /* Guard against overflow */
2358 if (gap_addr < address || gap_addr > TASK_SIZE)
2359 gap_addr = TASK_SIZE;
2361 next = vma->vm_next;
2362 if (next && next->vm_start < gap_addr && vma_is_accessible(next)) {
2363 if (!(next->vm_flags & VM_GROWSUP))
2365 /* Check that both stack segments have the same anon_vma? */
2368 /* We must make sure the anon_vma is allocated. */
2369 if (unlikely(anon_vma_prepare(vma)))
2373 * vma->vm_start/vm_end cannot change under us because the caller
2374 * is required to hold the mmap_lock in read mode. We need the
2375 * anon_vma lock to serialize against concurrent expand_stacks.
2377 anon_vma_lock_write(vma->anon_vma);
2379 /* Somebody else might have raced and expanded it already */
2380 if (address > vma->vm_end) {
2381 unsigned long size, grow;
2383 size = address - vma->vm_start;
2384 grow = (address - vma->vm_end) >> PAGE_SHIFT;
2387 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2388 error = acct_stack_growth(vma, size, grow);
2391 * vma_gap_update() doesn't support concurrent
2392 * updates, but we only hold a shared mmap_lock
2393 * lock here, so we need to protect against
2394 * concurrent vma expansions.
2395 * anon_vma_lock_write() doesn't help here, as
2396 * we don't guarantee that all growable vmas
2397 * in a mm share the same root anon vma.
2398 * So, we reuse mm->page_table_lock to guard
2399 * against concurrent vma expansions.
2401 spin_lock(&mm->page_table_lock);
2402 if (vma->vm_flags & VM_LOCKED)
2403 mm->locked_vm += grow;
2404 vm_stat_account(mm, vma->vm_flags, grow);
2405 anon_vma_interval_tree_pre_update_vma(vma);
2406 vma->vm_end = address;
2407 anon_vma_interval_tree_post_update_vma(vma);
2409 vma_gap_update(vma->vm_next);
2411 mm->highest_vm_end = vm_end_gap(vma);
2412 spin_unlock(&mm->page_table_lock);
2414 perf_event_mmap(vma);
2418 anon_vma_unlock_write(vma->anon_vma);
2419 khugepaged_enter_vma_merge(vma, vma->vm_flags);
2423 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2426 * vma is the first one with address < vma->vm_start. Have to extend vma.
2428 int expand_downwards(struct vm_area_struct *vma,
2429 unsigned long address)
2431 struct mm_struct *mm = vma->vm_mm;
2432 struct vm_area_struct *prev;
2435 address &= PAGE_MASK;
2436 if (address < mmap_min_addr)
2439 /* Enforce stack_guard_gap */
2440 prev = vma->vm_prev;
2441 /* Check that both stack segments have the same anon_vma? */
2442 if (prev && !(prev->vm_flags & VM_GROWSDOWN) &&
2443 vma_is_accessible(prev)) {
2444 if (address - prev->vm_end < stack_guard_gap)
2448 /* We must make sure the anon_vma is allocated. */
2449 if (unlikely(anon_vma_prepare(vma)))
2453 * vma->vm_start/vm_end cannot change under us because the caller
2454 * is required to hold the mmap_lock in read mode. We need the
2455 * anon_vma lock to serialize against concurrent expand_stacks.
2457 anon_vma_lock_write(vma->anon_vma);
2459 /* Somebody else might have raced and expanded it already */
2460 if (address < vma->vm_start) {
2461 unsigned long size, grow;
2463 size = vma->vm_end - address;
2464 grow = (vma->vm_start - address) >> PAGE_SHIFT;
2467 if (grow <= vma->vm_pgoff) {
2468 error = acct_stack_growth(vma, size, grow);
2471 * vma_gap_update() doesn't support concurrent
2472 * updates, but we only hold a shared mmap_lock
2473 * lock here, so we need to protect against
2474 * concurrent vma expansions.
2475 * anon_vma_lock_write() doesn't help here, as
2476 * we don't guarantee that all growable vmas
2477 * in a mm share the same root anon vma.
2478 * So, we reuse mm->page_table_lock to guard
2479 * against concurrent vma expansions.
2481 spin_lock(&mm->page_table_lock);
2482 if (vma->vm_flags & VM_LOCKED)
2483 mm->locked_vm += grow;
2484 vm_stat_account(mm, vma->vm_flags, grow);
2485 anon_vma_interval_tree_pre_update_vma(vma);
2486 vma->vm_start = address;
2487 vma->vm_pgoff -= grow;
2488 anon_vma_interval_tree_post_update_vma(vma);
2489 vma_gap_update(vma);
2490 spin_unlock(&mm->page_table_lock);
2492 perf_event_mmap(vma);
2496 anon_vma_unlock_write(vma->anon_vma);
2497 khugepaged_enter_vma_merge(vma, vma->vm_flags);
2502 /* enforced gap between the expanding stack and other mappings. */
2503 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT;
2505 static int __init cmdline_parse_stack_guard_gap(char *p)
2510 val = simple_strtoul(p, &endptr, 10);
2512 stack_guard_gap = val << PAGE_SHIFT;
2516 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap);
2518 #ifdef CONFIG_STACK_GROWSUP
2519 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2521 return expand_upwards(vma, address);
2524 struct vm_area_struct *
2525 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2527 struct vm_area_struct *vma, *prev;
2530 vma = find_vma_prev(mm, addr, &prev);
2531 if (vma && (vma->vm_start <= addr))
2533 /* don't alter vm_end if the coredump is running */
2534 if (!prev || !mmget_still_valid(mm) || expand_stack(prev, addr))
2536 if (prev->vm_flags & VM_LOCKED)
2537 populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2541 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2543 return expand_downwards(vma, address);
2546 struct vm_area_struct *
2547 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2549 struct vm_area_struct *vma;
2550 unsigned long start;
2553 vma = find_vma(mm, addr);
2556 if (vma->vm_start <= addr)
2558 if (!(vma->vm_flags & VM_GROWSDOWN))
2560 /* don't alter vm_start if the coredump is running */
2561 if (!mmget_still_valid(mm))
2563 start = vma->vm_start;
2564 if (expand_stack(vma, addr))
2566 if (vma->vm_flags & VM_LOCKED)
2567 populate_vma_page_range(vma, addr, start, NULL);
2572 EXPORT_SYMBOL_GPL(find_extend_vma);
2575 * Ok - we have the memory areas we should free on the vma list,
2576 * so release them, and do the vma updates.
2578 * Called with the mm semaphore held.
2580 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2582 unsigned long nr_accounted = 0;
2584 /* Update high watermark before we lower total_vm */
2585 update_hiwater_vm(mm);
2587 long nrpages = vma_pages(vma);
2589 if (vma->vm_flags & VM_ACCOUNT)
2590 nr_accounted += nrpages;
2591 vm_stat_account(mm, vma->vm_flags, -nrpages);
2592 vma = remove_vma(vma);
2594 vm_unacct_memory(nr_accounted);
2599 * Get rid of page table information in the indicated region.
2601 * Called with the mm semaphore held.
2603 static void unmap_region(struct mm_struct *mm,
2604 struct vm_area_struct *vma, struct vm_area_struct *prev,
2605 unsigned long start, unsigned long end)
2607 struct vm_area_struct *next = prev ? prev->vm_next : mm->mmap;
2608 struct mmu_gather tlb;
2611 tlb_gather_mmu(&tlb, mm, start, end);
2612 update_hiwater_rss(mm);
2613 unmap_vmas(&tlb, vma, start, end);
2614 free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2615 next ? next->vm_start : USER_PGTABLES_CEILING);
2616 tlb_finish_mmu(&tlb, start, end);
2620 * Create a list of vma's touched by the unmap, removing them from the mm's
2621 * vma list as we go..
2624 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2625 struct vm_area_struct *prev, unsigned long end)
2627 struct vm_area_struct **insertion_point;
2628 struct vm_area_struct *tail_vma = NULL;
2630 insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2631 vma->vm_prev = NULL;
2633 vma_rb_erase(vma, &mm->mm_rb);
2637 } while (vma && vma->vm_start < end);
2638 *insertion_point = vma;
2640 vma->vm_prev = prev;
2641 vma_gap_update(vma);
2643 mm->highest_vm_end = prev ? vm_end_gap(prev) : 0;
2644 tail_vma->vm_next = NULL;
2646 /* Kill the cache */
2647 vmacache_invalidate(mm);
2651 * __split_vma() bypasses sysctl_max_map_count checking. We use this where it
2652 * has already been checked or doesn't make sense to fail.
2654 int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2655 unsigned long addr, int new_below)
2657 struct vm_area_struct *new;
2660 if (vma->vm_ops && vma->vm_ops->split) {
2661 err = vma->vm_ops->split(vma, addr);
2666 new = vm_area_dup(vma);
2673 new->vm_start = addr;
2674 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2677 err = vma_dup_policy(vma, new);
2681 err = anon_vma_clone(new, vma);
2686 get_file(new->vm_file);
2688 if (new->vm_ops && new->vm_ops->open)
2689 new->vm_ops->open(new);
2692 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2693 ((addr - new->vm_start) >> PAGE_SHIFT), new);
2695 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2701 /* Clean everything up if vma_adjust failed. */
2702 if (new->vm_ops && new->vm_ops->close)
2703 new->vm_ops->close(new);
2706 unlink_anon_vmas(new);
2708 mpol_put(vma_policy(new));
2715 * Split a vma into two pieces at address 'addr', a new vma is allocated
2716 * either for the first part or the tail.
2718 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2719 unsigned long addr, int new_below)
2721 if (mm->map_count >= sysctl_max_map_count)
2724 return __split_vma(mm, vma, addr, new_below);
2727 /* Munmap is split into 2 main parts -- this part which finds
2728 * what needs doing, and the areas themselves, which do the
2729 * work. This now handles partial unmappings.
2730 * Jeremy Fitzhardinge <jeremy@goop.org>
2732 int __do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2733 struct list_head *uf, bool downgrade)
2736 struct vm_area_struct *vma, *prev, *last;
2738 if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2741 len = PAGE_ALIGN(len);
2747 * arch_unmap() might do unmaps itself. It must be called
2748 * and finish any rbtree manipulation before this code
2749 * runs and also starts to manipulate the rbtree.
2751 arch_unmap(mm, start, end);
2753 /* Find the first overlapping VMA */
2754 vma = find_vma(mm, start);
2757 prev = vma->vm_prev;
2758 /* we have start < vma->vm_end */
2760 /* if it doesn't overlap, we have nothing.. */
2761 if (vma->vm_start >= end)
2765 * If we need to split any vma, do it now to save pain later.
2767 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2768 * unmapped vm_area_struct will remain in use: so lower split_vma
2769 * places tmp vma above, and higher split_vma places tmp vma below.
2771 if (start > vma->vm_start) {
2775 * Make sure that map_count on return from munmap() will
2776 * not exceed its limit; but let map_count go just above
2777 * its limit temporarily, to help free resources as expected.
2779 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2782 error = __split_vma(mm, vma, start, 0);
2788 /* Does it split the last one? */
2789 last = find_vma(mm, end);
2790 if (last && end > last->vm_start) {
2791 int error = __split_vma(mm, last, end, 1);
2795 vma = prev ? prev->vm_next : mm->mmap;
2799 * If userfaultfd_unmap_prep returns an error the vmas
2800 * will remain splitted, but userland will get a
2801 * highly unexpected error anyway. This is no
2802 * different than the case where the first of the two
2803 * __split_vma fails, but we don't undo the first
2804 * split, despite we could. This is unlikely enough
2805 * failure that it's not worth optimizing it for.
2807 int error = userfaultfd_unmap_prep(vma, start, end, uf);
2813 * unlock any mlock()ed ranges before detaching vmas
2815 if (mm->locked_vm) {
2816 struct vm_area_struct *tmp = vma;
2817 while (tmp && tmp->vm_start < end) {
2818 if (tmp->vm_flags & VM_LOCKED) {
2819 mm->locked_vm -= vma_pages(tmp);
2820 munlock_vma_pages_all(tmp);
2827 /* Detach vmas from rbtree */
2828 detach_vmas_to_be_unmapped(mm, vma, prev, end);
2831 mmap_write_downgrade(mm);
2833 unmap_region(mm, vma, prev, start, end);
2835 /* Fix up all other VM information */
2836 remove_vma_list(mm, vma);
2838 return downgrade ? 1 : 0;
2841 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2842 struct list_head *uf)
2844 return __do_munmap(mm, start, len, uf, false);
2847 static int __vm_munmap(unsigned long start, size_t len, bool downgrade)
2850 struct mm_struct *mm = current->mm;
2853 if (mmap_write_lock_killable(mm))
2856 ret = __do_munmap(mm, start, len, &uf, downgrade);
2858 * Returning 1 indicates mmap_lock is downgraded.
2859 * But 1 is not legal return value of vm_munmap() and munmap(), reset
2860 * it to 0 before return.
2863 mmap_read_unlock(mm);
2866 mmap_write_unlock(mm);
2868 userfaultfd_unmap_complete(mm, &uf);
2872 int vm_munmap(unsigned long start, size_t len)
2874 return __vm_munmap(start, len, false);
2876 EXPORT_SYMBOL(vm_munmap);
2878 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2880 addr = untagged_addr(addr);
2881 profile_munmap(addr);
2882 return __vm_munmap(addr, len, true);
2887 * Emulation of deprecated remap_file_pages() syscall.
2889 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
2890 unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
2893 struct mm_struct *mm = current->mm;
2894 struct vm_area_struct *vma;
2895 unsigned long populate = 0;
2896 unsigned long ret = -EINVAL;
2899 pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/vm/remap_file_pages.rst.\n",
2900 current->comm, current->pid);
2904 start = start & PAGE_MASK;
2905 size = size & PAGE_MASK;
2907 if (start + size <= start)
2910 /* Does pgoff wrap? */
2911 if (pgoff + (size >> PAGE_SHIFT) < pgoff)
2914 if (mmap_write_lock_killable(mm))
2917 vma = find_vma(mm, start);
2919 if (!vma || !(vma->vm_flags & VM_SHARED))
2922 if (start < vma->vm_start)
2925 if (start + size > vma->vm_end) {
2926 struct vm_area_struct *next;
2928 for (next = vma->vm_next; next; next = next->vm_next) {
2929 /* hole between vmas ? */
2930 if (next->vm_start != next->vm_prev->vm_end)
2933 if (next->vm_file != vma->vm_file)
2936 if (next->vm_flags != vma->vm_flags)
2939 if (start + size <= next->vm_end)
2947 prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
2948 prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
2949 prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
2951 flags &= MAP_NONBLOCK;
2952 flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
2953 if (vma->vm_flags & VM_LOCKED) {
2954 struct vm_area_struct *tmp;
2955 flags |= MAP_LOCKED;
2957 /* drop PG_Mlocked flag for over-mapped range */
2958 for (tmp = vma; tmp->vm_start >= start + size;
2959 tmp = tmp->vm_next) {
2961 * Split pmd and munlock page on the border
2964 vma_adjust_trans_huge(tmp, start, start + size, 0);
2966 munlock_vma_pages_range(tmp,
2967 max(tmp->vm_start, start),
2968 min(tmp->vm_end, start + size));
2972 file = get_file(vma->vm_file);
2973 ret = do_mmap_pgoff(vma->vm_file, start, size,
2974 prot, flags, pgoff, &populate, NULL);
2977 mmap_write_unlock(mm);
2979 mm_populate(ret, populate);
2980 if (!IS_ERR_VALUE(ret))
2986 * this is really a simplified "do_mmap". it only handles
2987 * anonymous maps. eventually we may be able to do some
2988 * brk-specific accounting here.
2990 static int do_brk_flags(unsigned long addr, unsigned long len, unsigned long flags, struct list_head *uf)
2992 struct mm_struct *mm = current->mm;
2993 struct vm_area_struct *vma, *prev;
2994 struct rb_node **rb_link, *rb_parent;
2995 pgoff_t pgoff = addr >> PAGE_SHIFT;
2997 unsigned long mapped_addr;
2999 /* Until we need other flags, refuse anything except VM_EXEC. */
3000 if ((flags & (~VM_EXEC)) != 0)
3002 flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
3004 mapped_addr = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
3005 if (IS_ERR_VALUE(mapped_addr))
3008 error = mlock_future_check(mm, mm->def_flags, len);
3013 * Clear old maps. this also does some error checking for us
3015 while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
3017 if (do_munmap(mm, addr, len, uf))
3021 /* Check against address space limits *after* clearing old maps... */
3022 if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
3025 if (mm->map_count > sysctl_max_map_count)
3028 if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
3031 /* Can we just expand an old private anonymous mapping? */
3032 vma = vma_merge(mm, prev, addr, addr + len, flags,
3033 NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX);
3038 * create a vma struct for an anonymous mapping
3040 vma = vm_area_alloc(mm);
3042 vm_unacct_memory(len >> PAGE_SHIFT);
3046 vma_set_anonymous(vma);
3047 vma->vm_start = addr;
3048 vma->vm_end = addr + len;
3049 vma->vm_pgoff = pgoff;
3050 vma->vm_flags = flags;
3051 vma->vm_page_prot = vm_get_page_prot(flags);
3052 vma_link(mm, vma, prev, rb_link, rb_parent);
3054 perf_event_mmap(vma);
3055 mm->total_vm += len >> PAGE_SHIFT;
3056 mm->data_vm += len >> PAGE_SHIFT;
3057 if (flags & VM_LOCKED)
3058 mm->locked_vm += (len >> PAGE_SHIFT);
3059 vma->vm_flags |= VM_SOFTDIRTY;
3063 int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags)
3065 struct mm_struct *mm = current->mm;
3071 len = PAGE_ALIGN(request);
3077 if (mmap_write_lock_killable(mm))
3080 ret = do_brk_flags(addr, len, flags, &uf);
3081 populate = ((mm->def_flags & VM_LOCKED) != 0);
3082 mmap_write_unlock(mm);
3083 userfaultfd_unmap_complete(mm, &uf);
3084 if (populate && !ret)
3085 mm_populate(addr, len);
3088 EXPORT_SYMBOL(vm_brk_flags);
3090 int vm_brk(unsigned long addr, unsigned long len)
3092 return vm_brk_flags(addr, len, 0);
3094 EXPORT_SYMBOL(vm_brk);
3096 /* Release all mmaps. */
3097 void exit_mmap(struct mm_struct *mm)
3099 struct mmu_gather tlb;
3100 struct vm_area_struct *vma;
3101 unsigned long nr_accounted = 0;
3103 /* mm's last user has gone, and its about to be pulled down */
3104 mmu_notifier_release(mm);
3106 if (unlikely(mm_is_oom_victim(mm))) {
3108 * Manually reap the mm to free as much memory as possible.
3109 * Then, as the oom reaper does, set MMF_OOM_SKIP to disregard
3110 * this mm from further consideration. Taking mm->mmap_lock for
3111 * write after setting MMF_OOM_SKIP will guarantee that the oom
3112 * reaper will not run on this mm again after mmap_lock is
3115 * Nothing can be holding mm->mmap_lock here and the above call
3116 * to mmu_notifier_release(mm) ensures mmu notifier callbacks in
3117 * __oom_reap_task_mm() will not block.
3119 * This needs to be done before calling munlock_vma_pages_all(),
3120 * which clears VM_LOCKED, otherwise the oom reaper cannot
3123 (void)__oom_reap_task_mm(mm);
3125 set_bit(MMF_OOM_SKIP, &mm->flags);
3126 mmap_write_lock(mm);
3127 mmap_write_unlock(mm);
3130 if (mm->locked_vm) {
3133 if (vma->vm_flags & VM_LOCKED)
3134 munlock_vma_pages_all(vma);
3142 if (!vma) /* Can happen if dup_mmap() received an OOM */
3147 tlb_gather_mmu(&tlb, mm, 0, -1);
3148 /* update_hiwater_rss(mm) here? but nobody should be looking */
3149 /* Use -1 here to ensure all VMAs in the mm are unmapped */
3150 unmap_vmas(&tlb, vma, 0, -1);
3151 free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
3152 tlb_finish_mmu(&tlb, 0, -1);
3155 * Walk the list again, actually closing and freeing it,
3156 * with preemption enabled, without holding any MM locks.
3159 if (vma->vm_flags & VM_ACCOUNT)
3160 nr_accounted += vma_pages(vma);
3161 vma = remove_vma(vma);
3163 vm_unacct_memory(nr_accounted);
3166 /* Insert vm structure into process list sorted by address
3167 * and into the inode's i_mmap tree. If vm_file is non-NULL
3168 * then i_mmap_rwsem is taken here.
3170 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
3172 struct vm_area_struct *prev;
3173 struct rb_node **rb_link, *rb_parent;
3175 if (find_vma_links(mm, vma->vm_start, vma->vm_end,
3176 &prev, &rb_link, &rb_parent))
3178 if ((vma->vm_flags & VM_ACCOUNT) &&
3179 security_vm_enough_memory_mm(mm, vma_pages(vma)))
3183 * The vm_pgoff of a purely anonymous vma should be irrelevant
3184 * until its first write fault, when page's anon_vma and index
3185 * are set. But now set the vm_pgoff it will almost certainly
3186 * end up with (unless mremap moves it elsewhere before that
3187 * first wfault), so /proc/pid/maps tells a consistent story.
3189 * By setting it to reflect the virtual start address of the
3190 * vma, merges and splits can happen in a seamless way, just
3191 * using the existing file pgoff checks and manipulations.
3192 * Similarly in do_mmap_pgoff and in do_brk.
3194 if (vma_is_anonymous(vma)) {
3195 BUG_ON(vma->anon_vma);
3196 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
3199 vma_link(mm, vma, prev, rb_link, rb_parent);
3204 * Copy the vma structure to a new location in the same mm,
3205 * prior to moving page table entries, to effect an mremap move.
3207 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
3208 unsigned long addr, unsigned long len, pgoff_t pgoff,
3209 bool *need_rmap_locks)
3211 struct vm_area_struct *vma = *vmap;
3212 unsigned long vma_start = vma->vm_start;
3213 struct mm_struct *mm = vma->vm_mm;
3214 struct vm_area_struct *new_vma, *prev;
3215 struct rb_node **rb_link, *rb_parent;
3216 bool faulted_in_anon_vma = true;
3219 * If anonymous vma has not yet been faulted, update new pgoff
3220 * to match new location, to increase its chance of merging.
3222 if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
3223 pgoff = addr >> PAGE_SHIFT;
3224 faulted_in_anon_vma = false;
3227 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
3228 return NULL; /* should never get here */
3229 new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
3230 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
3231 vma->vm_userfaultfd_ctx);
3234 * Source vma may have been merged into new_vma
3236 if (unlikely(vma_start >= new_vma->vm_start &&
3237 vma_start < new_vma->vm_end)) {
3239 * The only way we can get a vma_merge with
3240 * self during an mremap is if the vma hasn't
3241 * been faulted in yet and we were allowed to
3242 * reset the dst vma->vm_pgoff to the
3243 * destination address of the mremap to allow
3244 * the merge to happen. mremap must change the
3245 * vm_pgoff linearity between src and dst vmas
3246 * (in turn preventing a vma_merge) to be
3247 * safe. It is only safe to keep the vm_pgoff
3248 * linear if there are no pages mapped yet.
3250 VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
3251 *vmap = vma = new_vma;
3253 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
3255 new_vma = vm_area_dup(vma);
3258 new_vma->vm_start = addr;
3259 new_vma->vm_end = addr + len;
3260 new_vma->vm_pgoff = pgoff;
3261 if (vma_dup_policy(vma, new_vma))
3263 if (anon_vma_clone(new_vma, vma))
3264 goto out_free_mempol;
3265 if (new_vma->vm_file)
3266 get_file(new_vma->vm_file);
3267 if (new_vma->vm_ops && new_vma->vm_ops->open)
3268 new_vma->vm_ops->open(new_vma);
3269 vma_link(mm, new_vma, prev, rb_link, rb_parent);
3270 *need_rmap_locks = false;
3275 mpol_put(vma_policy(new_vma));
3277 vm_area_free(new_vma);
3283 * Return true if the calling process may expand its vm space by the passed
3286 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
3288 if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
3291 if (is_data_mapping(flags) &&
3292 mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
3293 /* Workaround for Valgrind */
3294 if (rlimit(RLIMIT_DATA) == 0 &&
3295 mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
3298 pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n",
3299 current->comm, current->pid,
3300 (mm->data_vm + npages) << PAGE_SHIFT,
3301 rlimit(RLIMIT_DATA),
3302 ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data");
3304 if (!ignore_rlimit_data)
3311 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
3313 mm->total_vm += npages;
3315 if (is_exec_mapping(flags))
3316 mm->exec_vm += npages;
3317 else if (is_stack_mapping(flags))
3318 mm->stack_vm += npages;
3319 else if (is_data_mapping(flags))
3320 mm->data_vm += npages;
3323 static vm_fault_t special_mapping_fault(struct vm_fault *vmf);
3326 * Having a close hook prevents vma merging regardless of flags.
3328 static void special_mapping_close(struct vm_area_struct *vma)
3332 static const char *special_mapping_name(struct vm_area_struct *vma)
3334 return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3337 static int special_mapping_mremap(struct vm_area_struct *new_vma)
3339 struct vm_special_mapping *sm = new_vma->vm_private_data;
3341 if (WARN_ON_ONCE(current->mm != new_vma->vm_mm))
3345 return sm->mremap(sm, new_vma);
3350 static const struct vm_operations_struct special_mapping_vmops = {
3351 .close = special_mapping_close,
3352 .fault = special_mapping_fault,
3353 .mremap = special_mapping_mremap,
3354 .name = special_mapping_name,
3355 /* vDSO code relies that VVAR can't be accessed remotely */
3359 static const struct vm_operations_struct legacy_special_mapping_vmops = {
3360 .close = special_mapping_close,
3361 .fault = special_mapping_fault,
3364 static vm_fault_t special_mapping_fault(struct vm_fault *vmf)
3366 struct vm_area_struct *vma = vmf->vma;
3368 struct page **pages;
3370 if (vma->vm_ops == &legacy_special_mapping_vmops) {
3371 pages = vma->vm_private_data;
3373 struct vm_special_mapping *sm = vma->vm_private_data;
3376 return sm->fault(sm, vmf->vma, vmf);
3381 for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3385 struct page *page = *pages;
3391 return VM_FAULT_SIGBUS;
3394 static struct vm_area_struct *__install_special_mapping(
3395 struct mm_struct *mm,
3396 unsigned long addr, unsigned long len,
3397 unsigned long vm_flags, void *priv,
3398 const struct vm_operations_struct *ops)
3401 struct vm_area_struct *vma;
3403 vma = vm_area_alloc(mm);
3404 if (unlikely(vma == NULL))
3405 return ERR_PTR(-ENOMEM);
3407 vma->vm_start = addr;
3408 vma->vm_end = addr + len;
3410 vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
3411 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3414 vma->vm_private_data = priv;
3416 ret = insert_vm_struct(mm, vma);
3420 vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3422 perf_event_mmap(vma);
3428 return ERR_PTR(ret);
3431 bool vma_is_special_mapping(const struct vm_area_struct *vma,
3432 const struct vm_special_mapping *sm)
3434 return vma->vm_private_data == sm &&
3435 (vma->vm_ops == &special_mapping_vmops ||
3436 vma->vm_ops == &legacy_special_mapping_vmops);
3440 * Called with mm->mmap_lock held for writing.
3441 * Insert a new vma covering the given region, with the given flags.
3442 * Its pages are supplied by the given array of struct page *.
3443 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3444 * The region past the last page supplied will always produce SIGBUS.
3445 * The array pointer and the pages it points to are assumed to stay alive
3446 * for as long as this mapping might exist.
3448 struct vm_area_struct *_install_special_mapping(
3449 struct mm_struct *mm,
3450 unsigned long addr, unsigned long len,
3451 unsigned long vm_flags, const struct vm_special_mapping *spec)
3453 return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3454 &special_mapping_vmops);
3457 int install_special_mapping(struct mm_struct *mm,
3458 unsigned long addr, unsigned long len,
3459 unsigned long vm_flags, struct page **pages)
3461 struct vm_area_struct *vma = __install_special_mapping(
3462 mm, addr, len, vm_flags, (void *)pages,
3463 &legacy_special_mapping_vmops);
3465 return PTR_ERR_OR_ZERO(vma);
3468 static DEFINE_MUTEX(mm_all_locks_mutex);
3470 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3472 if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3474 * The LSB of head.next can't change from under us
3475 * because we hold the mm_all_locks_mutex.
3477 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_lock);
3479 * We can safely modify head.next after taking the
3480 * anon_vma->root->rwsem. If some other vma in this mm shares
3481 * the same anon_vma we won't take it again.
3483 * No need of atomic instructions here, head.next
3484 * can't change from under us thanks to the
3485 * anon_vma->root->rwsem.
3487 if (__test_and_set_bit(0, (unsigned long *)
3488 &anon_vma->root->rb_root.rb_root.rb_node))
3493 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3495 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3497 * AS_MM_ALL_LOCKS can't change from under us because
3498 * we hold the mm_all_locks_mutex.
3500 * Operations on ->flags have to be atomic because
3501 * even if AS_MM_ALL_LOCKS is stable thanks to the
3502 * mm_all_locks_mutex, there may be other cpus
3503 * changing other bitflags in parallel to us.
3505 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3507 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_lock);
3512 * This operation locks against the VM for all pte/vma/mm related
3513 * operations that could ever happen on a certain mm. This includes
3514 * vmtruncate, try_to_unmap, and all page faults.
3516 * The caller must take the mmap_lock in write mode before calling
3517 * mm_take_all_locks(). The caller isn't allowed to release the
3518 * mmap_lock until mm_drop_all_locks() returns.
3520 * mmap_lock in write mode is required in order to block all operations
3521 * that could modify pagetables and free pages without need of
3522 * altering the vma layout. It's also needed in write mode to avoid new
3523 * anon_vmas to be associated with existing vmas.
3525 * A single task can't take more than one mm_take_all_locks() in a row
3526 * or it would deadlock.
3528 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3529 * mapping->flags avoid to take the same lock twice, if more than one
3530 * vma in this mm is backed by the same anon_vma or address_space.
3532 * We take locks in following order, accordingly to comment at beginning
3534 * - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3536 * - all i_mmap_rwsem locks;
3537 * - all anon_vma->rwseml
3539 * We can take all locks within these types randomly because the VM code
3540 * doesn't nest them and we protected from parallel mm_take_all_locks() by
3541 * mm_all_locks_mutex.
3543 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3544 * that may have to take thousand of locks.
3546 * mm_take_all_locks() can fail if it's interrupted by signals.
3548 int mm_take_all_locks(struct mm_struct *mm)
3550 struct vm_area_struct *vma;
3551 struct anon_vma_chain *avc;
3553 BUG_ON(mmap_read_trylock(mm));
3555 mutex_lock(&mm_all_locks_mutex);
3557 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3558 if (signal_pending(current))
3560 if (vma->vm_file && vma->vm_file->f_mapping &&
3561 is_vm_hugetlb_page(vma))
3562 vm_lock_mapping(mm, vma->vm_file->f_mapping);
3565 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3566 if (signal_pending(current))
3568 if (vma->vm_file && vma->vm_file->f_mapping &&
3569 !is_vm_hugetlb_page(vma))
3570 vm_lock_mapping(mm, vma->vm_file->f_mapping);
3573 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3574 if (signal_pending(current))
3577 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3578 vm_lock_anon_vma(mm, avc->anon_vma);
3584 mm_drop_all_locks(mm);
3588 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3590 if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3592 * The LSB of head.next can't change to 0 from under
3593 * us because we hold the mm_all_locks_mutex.
3595 * We must however clear the bitflag before unlocking
3596 * the vma so the users using the anon_vma->rb_root will
3597 * never see our bitflag.
3599 * No need of atomic instructions here, head.next
3600 * can't change from under us until we release the
3601 * anon_vma->root->rwsem.
3603 if (!__test_and_clear_bit(0, (unsigned long *)
3604 &anon_vma->root->rb_root.rb_root.rb_node))
3606 anon_vma_unlock_write(anon_vma);
3610 static void vm_unlock_mapping(struct address_space *mapping)
3612 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3614 * AS_MM_ALL_LOCKS can't change to 0 from under us
3615 * because we hold the mm_all_locks_mutex.
3617 i_mmap_unlock_write(mapping);
3618 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3625 * The mmap_lock cannot be released by the caller until
3626 * mm_drop_all_locks() returns.
3628 void mm_drop_all_locks(struct mm_struct *mm)
3630 struct vm_area_struct *vma;
3631 struct anon_vma_chain *avc;
3633 BUG_ON(mmap_read_trylock(mm));
3634 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3636 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3638 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3639 vm_unlock_anon_vma(avc->anon_vma);
3640 if (vma->vm_file && vma->vm_file->f_mapping)
3641 vm_unlock_mapping(vma->vm_file->f_mapping);
3644 mutex_unlock(&mm_all_locks_mutex);
3648 * initialise the percpu counter for VM
3650 void __init mmap_init(void)
3654 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3659 * Initialise sysctl_user_reserve_kbytes.
3661 * This is intended to prevent a user from starting a single memory hogging
3662 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3665 * The default value is min(3% of free memory, 128MB)
3666 * 128MB is enough to recover with sshd/login, bash, and top/kill.
3668 static int init_user_reserve(void)
3670 unsigned long free_kbytes;
3672 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3674 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3677 subsys_initcall(init_user_reserve);
3680 * Initialise sysctl_admin_reserve_kbytes.
3682 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3683 * to log in and kill a memory hogging process.
3685 * Systems with more than 256MB will reserve 8MB, enough to recover
3686 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3687 * only reserve 3% of free pages by default.
3689 static int init_admin_reserve(void)
3691 unsigned long free_kbytes;
3693 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3695 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3698 subsys_initcall(init_admin_reserve);
3701 * Reinititalise user and admin reserves if memory is added or removed.
3703 * The default user reserve max is 128MB, and the default max for the
3704 * admin reserve is 8MB. These are usually, but not always, enough to
3705 * enable recovery from a memory hogging process using login/sshd, a shell,
3706 * and tools like top. It may make sense to increase or even disable the
3707 * reserve depending on the existence of swap or variations in the recovery
3708 * tools. So, the admin may have changed them.
3710 * If memory is added and the reserves have been eliminated or increased above
3711 * the default max, then we'll trust the admin.
3713 * If memory is removed and there isn't enough free memory, then we
3714 * need to reset the reserves.
3716 * Otherwise keep the reserve set by the admin.
3718 static int reserve_mem_notifier(struct notifier_block *nb,
3719 unsigned long action, void *data)
3721 unsigned long tmp, free_kbytes;
3725 /* Default max is 128MB. Leave alone if modified by operator. */
3726 tmp = sysctl_user_reserve_kbytes;
3727 if (0 < tmp && tmp < (1UL << 17))
3728 init_user_reserve();
3730 /* Default max is 8MB. Leave alone if modified by operator. */
3731 tmp = sysctl_admin_reserve_kbytes;
3732 if (0 < tmp && tmp < (1UL << 13))
3733 init_admin_reserve();
3737 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3739 if (sysctl_user_reserve_kbytes > free_kbytes) {
3740 init_user_reserve();
3741 pr_info("vm.user_reserve_kbytes reset to %lu\n",
3742 sysctl_user_reserve_kbytes);
3745 if (sysctl_admin_reserve_kbytes > free_kbytes) {
3746 init_admin_reserve();
3747 pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3748 sysctl_admin_reserve_kbytes);
3757 static struct notifier_block reserve_mem_nb = {
3758 .notifier_call = reserve_mem_notifier,
3761 static int __meminit init_reserve_notifier(void)
3763 if (register_hotmemory_notifier(&reserve_mem_nb))
3764 pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3768 subsys_initcall(init_reserve_notifier);