mm: move memcg hierarchy reclaim to generic reclaim code
[platform/adaptation/renesas_rcar/renesas_kernel.git] / mm / mmap.c
1 /*
2  * mm/mmap.c
3  *
4  * Written by obz.
5  *
6  * Address space accounting code        <alan@lxorguk.ukuu.org.uk>
7  */
8
9 #include <linux/slab.h>
10 #include <linux/backing-dev.h>
11 #include <linux/mm.h>
12 #include <linux/shm.h>
13 #include <linux/mman.h>
14 #include <linux/pagemap.h>
15 #include <linux/swap.h>
16 #include <linux/syscalls.h>
17 #include <linux/capability.h>
18 #include <linux/init.h>
19 #include <linux/file.h>
20 #include <linux/fs.h>
21 #include <linux/personality.h>
22 #include <linux/security.h>
23 #include <linux/hugetlb.h>
24 #include <linux/profile.h>
25 #include <linux/export.h>
26 #include <linux/mount.h>
27 #include <linux/mempolicy.h>
28 #include <linux/rmap.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/perf_event.h>
31 #include <linux/audit.h>
32 #include <linux/khugepaged.h>
33
34 #include <asm/uaccess.h>
35 #include <asm/cacheflush.h>
36 #include <asm/tlb.h>
37 #include <asm/mmu_context.h>
38
39 #include "internal.h"
40
41 #ifndef arch_mmap_check
42 #define arch_mmap_check(addr, len, flags)       (0)
43 #endif
44
45 #ifndef arch_rebalance_pgtables
46 #define arch_rebalance_pgtables(addr, len)              (addr)
47 #endif
48
49 static void unmap_region(struct mm_struct *mm,
50                 struct vm_area_struct *vma, struct vm_area_struct *prev,
51                 unsigned long start, unsigned long end);
52
53 /*
54  * WARNING: the debugging will use recursive algorithms so never enable this
55  * unless you know what you are doing.
56  */
57 #undef DEBUG_MM_RB
58
59 /* description of effects of mapping type and prot in current implementation.
60  * this is due to the limited x86 page protection hardware.  The expected
61  * behavior is in parens:
62  *
63  * map_type     prot
64  *              PROT_NONE       PROT_READ       PROT_WRITE      PROT_EXEC
65  * MAP_SHARED   r: (no) no      r: (yes) yes    r: (no) yes     r: (no) yes
66  *              w: (no) no      w: (no) no      w: (yes) yes    w: (no) no
67  *              x: (no) no      x: (no) yes     x: (no) yes     x: (yes) yes
68  *              
69  * MAP_PRIVATE  r: (no) no      r: (yes) yes    r: (no) yes     r: (no) yes
70  *              w: (no) no      w: (no) no      w: (copy) copy  w: (no) no
71  *              x: (no) no      x: (no) yes     x: (no) yes     x: (yes) yes
72  *
73  */
74 pgprot_t protection_map[16] = {
75         __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
76         __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
77 };
78
79 pgprot_t vm_get_page_prot(unsigned long vm_flags)
80 {
81         return __pgprot(pgprot_val(protection_map[vm_flags &
82                                 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
83                         pgprot_val(arch_vm_get_page_prot(vm_flags)));
84 }
85 EXPORT_SYMBOL(vm_get_page_prot);
86
87 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS;  /* heuristic overcommit */
88 int sysctl_overcommit_ratio __read_mostly = 50; /* default is 50% */
89 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
90 /*
91  * Make sure vm_committed_as in one cacheline and not cacheline shared with
92  * other variables. It can be updated by several CPUs frequently.
93  */
94 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
95
96 /*
97  * Check that a process has enough memory to allocate a new virtual
98  * mapping. 0 means there is enough memory for the allocation to
99  * succeed and -ENOMEM implies there is not.
100  *
101  * We currently support three overcommit policies, which are set via the
102  * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting
103  *
104  * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
105  * Additional code 2002 Jul 20 by Robert Love.
106  *
107  * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
108  *
109  * Note this is a helper function intended to be used by LSMs which
110  * wish to use this logic.
111  */
112 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
113 {
114         unsigned long free, allowed;
115
116         vm_acct_memory(pages);
117
118         /*
119          * Sometimes we want to use more memory than we have
120          */
121         if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
122                 return 0;
123
124         if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
125                 free = global_page_state(NR_FREE_PAGES);
126                 free += global_page_state(NR_FILE_PAGES);
127
128                 /*
129                  * shmem pages shouldn't be counted as free in this
130                  * case, they can't be purged, only swapped out, and
131                  * that won't affect the overall amount of available
132                  * memory in the system.
133                  */
134                 free -= global_page_state(NR_SHMEM);
135
136                 free += nr_swap_pages;
137
138                 /*
139                  * Any slabs which are created with the
140                  * SLAB_RECLAIM_ACCOUNT flag claim to have contents
141                  * which are reclaimable, under pressure.  The dentry
142                  * cache and most inode caches should fall into this
143                  */
144                 free += global_page_state(NR_SLAB_RECLAIMABLE);
145
146                 /*
147                  * Leave reserved pages. The pages are not for anonymous pages.
148                  */
149                 if (free <= totalreserve_pages)
150                         goto error;
151                 else
152                         free -= totalreserve_pages;
153
154                 /*
155                  * Leave the last 3% for root
156                  */
157                 if (!cap_sys_admin)
158                         free -= free / 32;
159
160                 if (free > pages)
161                         return 0;
162
163                 goto error;
164         }
165
166         allowed = (totalram_pages - hugetlb_total_pages())
167                 * sysctl_overcommit_ratio / 100;
168         /*
169          * Leave the last 3% for root
170          */
171         if (!cap_sys_admin)
172                 allowed -= allowed / 32;
173         allowed += total_swap_pages;
174
175         /* Don't let a single process grow too big:
176            leave 3% of the size of this process for other processes */
177         if (mm)
178                 allowed -= mm->total_vm / 32;
179
180         if (percpu_counter_read_positive(&vm_committed_as) < allowed)
181                 return 0;
182 error:
183         vm_unacct_memory(pages);
184
185         return -ENOMEM;
186 }
187
188 /*
189  * Requires inode->i_mapping->i_mmap_mutex
190  */
191 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
192                 struct file *file, struct address_space *mapping)
193 {
194         if (vma->vm_flags & VM_DENYWRITE)
195                 atomic_inc(&file->f_path.dentry->d_inode->i_writecount);
196         if (vma->vm_flags & VM_SHARED)
197                 mapping->i_mmap_writable--;
198
199         flush_dcache_mmap_lock(mapping);
200         if (unlikely(vma->vm_flags & VM_NONLINEAR))
201                 list_del_init(&vma->shared.vm_set.list);
202         else
203                 vma_prio_tree_remove(vma, &mapping->i_mmap);
204         flush_dcache_mmap_unlock(mapping);
205 }
206
207 /*
208  * Unlink a file-based vm structure from its prio_tree, to hide
209  * vma from rmap and vmtruncate before freeing its page tables.
210  */
211 void unlink_file_vma(struct vm_area_struct *vma)
212 {
213         struct file *file = vma->vm_file;
214
215         if (file) {
216                 struct address_space *mapping = file->f_mapping;
217                 mutex_lock(&mapping->i_mmap_mutex);
218                 __remove_shared_vm_struct(vma, file, mapping);
219                 mutex_unlock(&mapping->i_mmap_mutex);
220         }
221 }
222
223 /*
224  * Close a vm structure and free it, returning the next.
225  */
226 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
227 {
228         struct vm_area_struct *next = vma->vm_next;
229
230         might_sleep();
231         if (vma->vm_ops && vma->vm_ops->close)
232                 vma->vm_ops->close(vma);
233         if (vma->vm_file) {
234                 fput(vma->vm_file);
235                 if (vma->vm_flags & VM_EXECUTABLE)
236                         removed_exe_file_vma(vma->vm_mm);
237         }
238         mpol_put(vma_policy(vma));
239         kmem_cache_free(vm_area_cachep, vma);
240         return next;
241 }
242
243 SYSCALL_DEFINE1(brk, unsigned long, brk)
244 {
245         unsigned long rlim, retval;
246         unsigned long newbrk, oldbrk;
247         struct mm_struct *mm = current->mm;
248         unsigned long min_brk;
249
250         down_write(&mm->mmap_sem);
251
252 #ifdef CONFIG_COMPAT_BRK
253         /*
254          * CONFIG_COMPAT_BRK can still be overridden by setting
255          * randomize_va_space to 2, which will still cause mm->start_brk
256          * to be arbitrarily shifted
257          */
258         if (current->brk_randomized)
259                 min_brk = mm->start_brk;
260         else
261                 min_brk = mm->end_data;
262 #else
263         min_brk = mm->start_brk;
264 #endif
265         if (brk < min_brk)
266                 goto out;
267
268         /*
269          * Check against rlimit here. If this check is done later after the test
270          * of oldbrk with newbrk then it can escape the test and let the data
271          * segment grow beyond its set limit the in case where the limit is
272          * not page aligned -Ram Gupta
273          */
274         rlim = rlimit(RLIMIT_DATA);
275         if (rlim < RLIM_INFINITY && (brk - mm->start_brk) +
276                         (mm->end_data - mm->start_data) > rlim)
277                 goto out;
278
279         newbrk = PAGE_ALIGN(brk);
280         oldbrk = PAGE_ALIGN(mm->brk);
281         if (oldbrk == newbrk)
282                 goto set_brk;
283
284         /* Always allow shrinking brk. */
285         if (brk <= mm->brk) {
286                 if (!do_munmap(mm, newbrk, oldbrk-newbrk))
287                         goto set_brk;
288                 goto out;
289         }
290
291         /* Check against existing mmap mappings. */
292         if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
293                 goto out;
294
295         /* Ok, looks good - let it rip. */
296         if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
297                 goto out;
298 set_brk:
299         mm->brk = brk;
300 out:
301         retval = mm->brk;
302         up_write(&mm->mmap_sem);
303         return retval;
304 }
305
306 #ifdef DEBUG_MM_RB
307 static int browse_rb(struct rb_root *root)
308 {
309         int i = 0, j;
310         struct rb_node *nd, *pn = NULL;
311         unsigned long prev = 0, pend = 0;
312
313         for (nd = rb_first(root); nd; nd = rb_next(nd)) {
314                 struct vm_area_struct *vma;
315                 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
316                 if (vma->vm_start < prev)
317                         printk("vm_start %lx prev %lx\n", vma->vm_start, prev), i = -1;
318                 if (vma->vm_start < pend)
319                         printk("vm_start %lx pend %lx\n", vma->vm_start, pend);
320                 if (vma->vm_start > vma->vm_end)
321                         printk("vm_end %lx < vm_start %lx\n", vma->vm_end, vma->vm_start);
322                 i++;
323                 pn = nd;
324                 prev = vma->vm_start;
325                 pend = vma->vm_end;
326         }
327         j = 0;
328         for (nd = pn; nd; nd = rb_prev(nd)) {
329                 j++;
330         }
331         if (i != j)
332                 printk("backwards %d, forwards %d\n", j, i), i = 0;
333         return i;
334 }
335
336 void validate_mm(struct mm_struct *mm)
337 {
338         int bug = 0;
339         int i = 0;
340         struct vm_area_struct *tmp = mm->mmap;
341         while (tmp) {
342                 tmp = tmp->vm_next;
343                 i++;
344         }
345         if (i != mm->map_count)
346                 printk("map_count %d vm_next %d\n", mm->map_count, i), bug = 1;
347         i = browse_rb(&mm->mm_rb);
348         if (i != mm->map_count)
349                 printk("map_count %d rb %d\n", mm->map_count, i), bug = 1;
350         BUG_ON(bug);
351 }
352 #else
353 #define validate_mm(mm) do { } while (0)
354 #endif
355
356 static struct vm_area_struct *
357 find_vma_prepare(struct mm_struct *mm, unsigned long addr,
358                 struct vm_area_struct **pprev, struct rb_node ***rb_link,
359                 struct rb_node ** rb_parent)
360 {
361         struct vm_area_struct * vma;
362         struct rb_node ** __rb_link, * __rb_parent, * rb_prev;
363
364         __rb_link = &mm->mm_rb.rb_node;
365         rb_prev = __rb_parent = NULL;
366         vma = NULL;
367
368         while (*__rb_link) {
369                 struct vm_area_struct *vma_tmp;
370
371                 __rb_parent = *__rb_link;
372                 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
373
374                 if (vma_tmp->vm_end > addr) {
375                         vma = vma_tmp;
376                         if (vma_tmp->vm_start <= addr)
377                                 break;
378                         __rb_link = &__rb_parent->rb_left;
379                 } else {
380                         rb_prev = __rb_parent;
381                         __rb_link = &__rb_parent->rb_right;
382                 }
383         }
384
385         *pprev = NULL;
386         if (rb_prev)
387                 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
388         *rb_link = __rb_link;
389         *rb_parent = __rb_parent;
390         return vma;
391 }
392
393 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
394                 struct rb_node **rb_link, struct rb_node *rb_parent)
395 {
396         rb_link_node(&vma->vm_rb, rb_parent, rb_link);
397         rb_insert_color(&vma->vm_rb, &mm->mm_rb);
398 }
399
400 static void __vma_link_file(struct vm_area_struct *vma)
401 {
402         struct file *file;
403
404         file = vma->vm_file;
405         if (file) {
406                 struct address_space *mapping = file->f_mapping;
407
408                 if (vma->vm_flags & VM_DENYWRITE)
409                         atomic_dec(&file->f_path.dentry->d_inode->i_writecount);
410                 if (vma->vm_flags & VM_SHARED)
411                         mapping->i_mmap_writable++;
412
413                 flush_dcache_mmap_lock(mapping);
414                 if (unlikely(vma->vm_flags & VM_NONLINEAR))
415                         vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear);
416                 else
417                         vma_prio_tree_insert(vma, &mapping->i_mmap);
418                 flush_dcache_mmap_unlock(mapping);
419         }
420 }
421
422 static void
423 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
424         struct vm_area_struct *prev, struct rb_node **rb_link,
425         struct rb_node *rb_parent)
426 {
427         __vma_link_list(mm, vma, prev, rb_parent);
428         __vma_link_rb(mm, vma, rb_link, rb_parent);
429 }
430
431 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
432                         struct vm_area_struct *prev, struct rb_node **rb_link,
433                         struct rb_node *rb_parent)
434 {
435         struct address_space *mapping = NULL;
436
437         if (vma->vm_file)
438                 mapping = vma->vm_file->f_mapping;
439
440         if (mapping)
441                 mutex_lock(&mapping->i_mmap_mutex);
442
443         __vma_link(mm, vma, prev, rb_link, rb_parent);
444         __vma_link_file(vma);
445
446         if (mapping)
447                 mutex_unlock(&mapping->i_mmap_mutex);
448
449         mm->map_count++;
450         validate_mm(mm);
451 }
452
453 /*
454  * Helper for vma_adjust in the split_vma insert case:
455  * insert vm structure into list and rbtree and anon_vma,
456  * but it has already been inserted into prio_tree earlier.
457  */
458 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
459 {
460         struct vm_area_struct *__vma, *prev;
461         struct rb_node **rb_link, *rb_parent;
462
463         __vma = find_vma_prepare(mm, vma->vm_start,&prev, &rb_link, &rb_parent);
464         BUG_ON(__vma && __vma->vm_start < vma->vm_end);
465         __vma_link(mm, vma, prev, rb_link, rb_parent);
466         mm->map_count++;
467 }
468
469 static inline void
470 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
471                 struct vm_area_struct *prev)
472 {
473         struct vm_area_struct *next = vma->vm_next;
474
475         prev->vm_next = next;
476         if (next)
477                 next->vm_prev = prev;
478         rb_erase(&vma->vm_rb, &mm->mm_rb);
479         if (mm->mmap_cache == vma)
480                 mm->mmap_cache = prev;
481 }
482
483 /*
484  * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
485  * is already present in an i_mmap tree without adjusting the tree.
486  * The following helper function should be used when such adjustments
487  * are necessary.  The "insert" vma (if any) is to be inserted
488  * before we drop the necessary locks.
489  */
490 int vma_adjust(struct vm_area_struct *vma, unsigned long start,
491         unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
492 {
493         struct mm_struct *mm = vma->vm_mm;
494         struct vm_area_struct *next = vma->vm_next;
495         struct vm_area_struct *importer = NULL;
496         struct address_space *mapping = NULL;
497         struct prio_tree_root *root = NULL;
498         struct anon_vma *anon_vma = NULL;
499         struct file *file = vma->vm_file;
500         long adjust_next = 0;
501         int remove_next = 0;
502
503         if (next && !insert) {
504                 struct vm_area_struct *exporter = NULL;
505
506                 if (end >= next->vm_end) {
507                         /*
508                          * vma expands, overlapping all the next, and
509                          * perhaps the one after too (mprotect case 6).
510                          */
511 again:                  remove_next = 1 + (end > next->vm_end);
512                         end = next->vm_end;
513                         exporter = next;
514                         importer = vma;
515                 } else if (end > next->vm_start) {
516                         /*
517                          * vma expands, overlapping part of the next:
518                          * mprotect case 5 shifting the boundary up.
519                          */
520                         adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
521                         exporter = next;
522                         importer = vma;
523                 } else if (end < vma->vm_end) {
524                         /*
525                          * vma shrinks, and !insert tells it's not
526                          * split_vma inserting another: so it must be
527                          * mprotect case 4 shifting the boundary down.
528                          */
529                         adjust_next = - ((vma->vm_end - end) >> PAGE_SHIFT);
530                         exporter = vma;
531                         importer = next;
532                 }
533
534                 /*
535                  * Easily overlooked: when mprotect shifts the boundary,
536                  * make sure the expanding vma has anon_vma set if the
537                  * shrinking vma had, to cover any anon pages imported.
538                  */
539                 if (exporter && exporter->anon_vma && !importer->anon_vma) {
540                         if (anon_vma_clone(importer, exporter))
541                                 return -ENOMEM;
542                         importer->anon_vma = exporter->anon_vma;
543                 }
544         }
545
546         if (file) {
547                 mapping = file->f_mapping;
548                 if (!(vma->vm_flags & VM_NONLINEAR))
549                         root = &mapping->i_mmap;
550                 mutex_lock(&mapping->i_mmap_mutex);
551                 if (insert) {
552                         /*
553                          * Put into prio_tree now, so instantiated pages
554                          * are visible to arm/parisc __flush_dcache_page
555                          * throughout; but we cannot insert into address
556                          * space until vma start or end is updated.
557                          */
558                         __vma_link_file(insert);
559                 }
560         }
561
562         vma_adjust_trans_huge(vma, start, end, adjust_next);
563
564         /*
565          * When changing only vma->vm_end, we don't really need anon_vma
566          * lock. This is a fairly rare case by itself, but the anon_vma
567          * lock may be shared between many sibling processes.  Skipping
568          * the lock for brk adjustments makes a difference sometimes.
569          */
570         if (vma->anon_vma && (importer || start != vma->vm_start)) {
571                 anon_vma = vma->anon_vma;
572                 anon_vma_lock(anon_vma);
573         }
574
575         if (root) {
576                 flush_dcache_mmap_lock(mapping);
577                 vma_prio_tree_remove(vma, root);
578                 if (adjust_next)
579                         vma_prio_tree_remove(next, root);
580         }
581
582         vma->vm_start = start;
583         vma->vm_end = end;
584         vma->vm_pgoff = pgoff;
585         if (adjust_next) {
586                 next->vm_start += adjust_next << PAGE_SHIFT;
587                 next->vm_pgoff += adjust_next;
588         }
589
590         if (root) {
591                 if (adjust_next)
592                         vma_prio_tree_insert(next, root);
593                 vma_prio_tree_insert(vma, root);
594                 flush_dcache_mmap_unlock(mapping);
595         }
596
597         if (remove_next) {
598                 /*
599                  * vma_merge has merged next into vma, and needs
600                  * us to remove next before dropping the locks.
601                  */
602                 __vma_unlink(mm, next, vma);
603                 if (file)
604                         __remove_shared_vm_struct(next, file, mapping);
605         } else if (insert) {
606                 /*
607                  * split_vma has split insert from vma, and needs
608                  * us to insert it before dropping the locks
609                  * (it may either follow vma or precede it).
610                  */
611                 __insert_vm_struct(mm, insert);
612         }
613
614         if (anon_vma)
615                 anon_vma_unlock(anon_vma);
616         if (mapping)
617                 mutex_unlock(&mapping->i_mmap_mutex);
618
619         if (remove_next) {
620                 if (file) {
621                         fput(file);
622                         if (next->vm_flags & VM_EXECUTABLE)
623                                 removed_exe_file_vma(mm);
624                 }
625                 if (next->anon_vma)
626                         anon_vma_merge(vma, next);
627                 mm->map_count--;
628                 mpol_put(vma_policy(next));
629                 kmem_cache_free(vm_area_cachep, next);
630                 /*
631                  * In mprotect's case 6 (see comments on vma_merge),
632                  * we must remove another next too. It would clutter
633                  * up the code too much to do both in one go.
634                  */
635                 if (remove_next == 2) {
636                         next = vma->vm_next;
637                         goto again;
638                 }
639         }
640
641         validate_mm(mm);
642
643         return 0;
644 }
645
646 /*
647  * If the vma has a ->close operation then the driver probably needs to release
648  * per-vma resources, so we don't attempt to merge those.
649  */
650 static inline int is_mergeable_vma(struct vm_area_struct *vma,
651                         struct file *file, unsigned long vm_flags)
652 {
653         /* VM_CAN_NONLINEAR may get set later by f_op->mmap() */
654         if ((vma->vm_flags ^ vm_flags) & ~VM_CAN_NONLINEAR)
655                 return 0;
656         if (vma->vm_file != file)
657                 return 0;
658         if (vma->vm_ops && vma->vm_ops->close)
659                 return 0;
660         return 1;
661 }
662
663 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
664                                         struct anon_vma *anon_vma2,
665                                         struct vm_area_struct *vma)
666 {
667         /*
668          * The list_is_singular() test is to avoid merging VMA cloned from
669          * parents. This can improve scalability caused by anon_vma lock.
670          */
671         if ((!anon_vma1 || !anon_vma2) && (!vma ||
672                 list_is_singular(&vma->anon_vma_chain)))
673                 return 1;
674         return anon_vma1 == anon_vma2;
675 }
676
677 /*
678  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
679  * in front of (at a lower virtual address and file offset than) the vma.
680  *
681  * We cannot merge two vmas if they have differently assigned (non-NULL)
682  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
683  *
684  * We don't check here for the merged mmap wrapping around the end of pagecache
685  * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
686  * wrap, nor mmaps which cover the final page at index -1UL.
687  */
688 static int
689 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
690         struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
691 {
692         if (is_mergeable_vma(vma, file, vm_flags) &&
693             is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
694                 if (vma->vm_pgoff == vm_pgoff)
695                         return 1;
696         }
697         return 0;
698 }
699
700 /*
701  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
702  * beyond (at a higher virtual address and file offset than) the vma.
703  *
704  * We cannot merge two vmas if they have differently assigned (non-NULL)
705  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
706  */
707 static int
708 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
709         struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
710 {
711         if (is_mergeable_vma(vma, file, vm_flags) &&
712             is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
713                 pgoff_t vm_pglen;
714                 vm_pglen = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
715                 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
716                         return 1;
717         }
718         return 0;
719 }
720
721 /*
722  * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
723  * whether that can be merged with its predecessor or its successor.
724  * Or both (it neatly fills a hole).
725  *
726  * In most cases - when called for mmap, brk or mremap - [addr,end) is
727  * certain not to be mapped by the time vma_merge is called; but when
728  * called for mprotect, it is certain to be already mapped (either at
729  * an offset within prev, or at the start of next), and the flags of
730  * this area are about to be changed to vm_flags - and the no-change
731  * case has already been eliminated.
732  *
733  * The following mprotect cases have to be considered, where AAAA is
734  * the area passed down from mprotect_fixup, never extending beyond one
735  * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
736  *
737  *     AAAA             AAAA                AAAA          AAAA
738  *    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPNNNNXXXX
739  *    cannot merge    might become    might become    might become
740  *                    PPNNNNNNNNNN    PPPPPPPPPPNN    PPPPPPPPPPPP 6 or
741  *    mmap, brk or    case 4 below    case 5 below    PPPPPPPPXXXX 7 or
742  *    mremap move:                                    PPPPNNNNNNNN 8
743  *        AAAA
744  *    PPPP    NNNN    PPPPPPPPPPPP    PPPPPPPPNNNN    PPPPNNNNNNNN
745  *    might become    case 1 below    case 2 below    case 3 below
746  *
747  * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
748  * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
749  */
750 struct vm_area_struct *vma_merge(struct mm_struct *mm,
751                         struct vm_area_struct *prev, unsigned long addr,
752                         unsigned long end, unsigned long vm_flags,
753                         struct anon_vma *anon_vma, struct file *file,
754                         pgoff_t pgoff, struct mempolicy *policy)
755 {
756         pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
757         struct vm_area_struct *area, *next;
758         int err;
759
760         /*
761          * We later require that vma->vm_flags == vm_flags,
762          * so this tests vma->vm_flags & VM_SPECIAL, too.
763          */
764         if (vm_flags & VM_SPECIAL)
765                 return NULL;
766
767         if (prev)
768                 next = prev->vm_next;
769         else
770                 next = mm->mmap;
771         area = next;
772         if (next && next->vm_end == end)                /* cases 6, 7, 8 */
773                 next = next->vm_next;
774
775         /*
776          * Can it merge with the predecessor?
777          */
778         if (prev && prev->vm_end == addr &&
779                         mpol_equal(vma_policy(prev), policy) &&
780                         can_vma_merge_after(prev, vm_flags,
781                                                 anon_vma, file, pgoff)) {
782                 /*
783                  * OK, it can.  Can we now merge in the successor as well?
784                  */
785                 if (next && end == next->vm_start &&
786                                 mpol_equal(policy, vma_policy(next)) &&
787                                 can_vma_merge_before(next, vm_flags,
788                                         anon_vma, file, pgoff+pglen) &&
789                                 is_mergeable_anon_vma(prev->anon_vma,
790                                                       next->anon_vma, NULL)) {
791                                                         /* cases 1, 6 */
792                         err = vma_adjust(prev, prev->vm_start,
793                                 next->vm_end, prev->vm_pgoff, NULL);
794                 } else                                  /* cases 2, 5, 7 */
795                         err = vma_adjust(prev, prev->vm_start,
796                                 end, prev->vm_pgoff, NULL);
797                 if (err)
798                         return NULL;
799                 khugepaged_enter_vma_merge(prev);
800                 return prev;
801         }
802
803         /*
804          * Can this new request be merged in front of next?
805          */
806         if (next && end == next->vm_start &&
807                         mpol_equal(policy, vma_policy(next)) &&
808                         can_vma_merge_before(next, vm_flags,
809                                         anon_vma, file, pgoff+pglen)) {
810                 if (prev && addr < prev->vm_end)        /* case 4 */
811                         err = vma_adjust(prev, prev->vm_start,
812                                 addr, prev->vm_pgoff, NULL);
813                 else                                    /* cases 3, 8 */
814                         err = vma_adjust(area, addr, next->vm_end,
815                                 next->vm_pgoff - pglen, NULL);
816                 if (err)
817                         return NULL;
818                 khugepaged_enter_vma_merge(area);
819                 return area;
820         }
821
822         return NULL;
823 }
824
825 /*
826  * Rough compatbility check to quickly see if it's even worth looking
827  * at sharing an anon_vma.
828  *
829  * They need to have the same vm_file, and the flags can only differ
830  * in things that mprotect may change.
831  *
832  * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
833  * we can merge the two vma's. For example, we refuse to merge a vma if
834  * there is a vm_ops->close() function, because that indicates that the
835  * driver is doing some kind of reference counting. But that doesn't
836  * really matter for the anon_vma sharing case.
837  */
838 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
839 {
840         return a->vm_end == b->vm_start &&
841                 mpol_equal(vma_policy(a), vma_policy(b)) &&
842                 a->vm_file == b->vm_file &&
843                 !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC)) &&
844                 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
845 }
846
847 /*
848  * Do some basic sanity checking to see if we can re-use the anon_vma
849  * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
850  * the same as 'old', the other will be the new one that is trying
851  * to share the anon_vma.
852  *
853  * NOTE! This runs with mm_sem held for reading, so it is possible that
854  * the anon_vma of 'old' is concurrently in the process of being set up
855  * by another page fault trying to merge _that_. But that's ok: if it
856  * is being set up, that automatically means that it will be a singleton
857  * acceptable for merging, so we can do all of this optimistically. But
858  * we do that ACCESS_ONCE() to make sure that we never re-load the pointer.
859  *
860  * IOW: that the "list_is_singular()" test on the anon_vma_chain only
861  * matters for the 'stable anon_vma' case (ie the thing we want to avoid
862  * is to return an anon_vma that is "complex" due to having gone through
863  * a fork).
864  *
865  * We also make sure that the two vma's are compatible (adjacent,
866  * and with the same memory policies). That's all stable, even with just
867  * a read lock on the mm_sem.
868  */
869 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
870 {
871         if (anon_vma_compatible(a, b)) {
872                 struct anon_vma *anon_vma = ACCESS_ONCE(old->anon_vma);
873
874                 if (anon_vma && list_is_singular(&old->anon_vma_chain))
875                         return anon_vma;
876         }
877         return NULL;
878 }
879
880 /*
881  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
882  * neighbouring vmas for a suitable anon_vma, before it goes off
883  * to allocate a new anon_vma.  It checks because a repetitive
884  * sequence of mprotects and faults may otherwise lead to distinct
885  * anon_vmas being allocated, preventing vma merge in subsequent
886  * mprotect.
887  */
888 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
889 {
890         struct anon_vma *anon_vma;
891         struct vm_area_struct *near;
892
893         near = vma->vm_next;
894         if (!near)
895                 goto try_prev;
896
897         anon_vma = reusable_anon_vma(near, vma, near);
898         if (anon_vma)
899                 return anon_vma;
900 try_prev:
901         near = vma->vm_prev;
902         if (!near)
903                 goto none;
904
905         anon_vma = reusable_anon_vma(near, near, vma);
906         if (anon_vma)
907                 return anon_vma;
908 none:
909         /*
910          * There's no absolute need to look only at touching neighbours:
911          * we could search further afield for "compatible" anon_vmas.
912          * But it would probably just be a waste of time searching,
913          * or lead to too many vmas hanging off the same anon_vma.
914          * We're trying to allow mprotect remerging later on,
915          * not trying to minimize memory used for anon_vmas.
916          */
917         return NULL;
918 }
919
920 #ifdef CONFIG_PROC_FS
921 void vm_stat_account(struct mm_struct *mm, unsigned long flags,
922                                                 struct file *file, long pages)
923 {
924         const unsigned long stack_flags
925                 = VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN);
926
927         if (file) {
928                 mm->shared_vm += pages;
929                 if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC)
930                         mm->exec_vm += pages;
931         } else if (flags & stack_flags)
932                 mm->stack_vm += pages;
933         if (flags & (VM_RESERVED|VM_IO))
934                 mm->reserved_vm += pages;
935 }
936 #endif /* CONFIG_PROC_FS */
937
938 /*
939  * The caller must hold down_write(&current->mm->mmap_sem).
940  */
941
942 unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
943                         unsigned long len, unsigned long prot,
944                         unsigned long flags, unsigned long pgoff)
945 {
946         struct mm_struct * mm = current->mm;
947         struct inode *inode;
948         vm_flags_t vm_flags;
949         int error;
950         unsigned long reqprot = prot;
951
952         /*
953          * Does the application expect PROT_READ to imply PROT_EXEC?
954          *
955          * (the exception is when the underlying filesystem is noexec
956          *  mounted, in which case we dont add PROT_EXEC.)
957          */
958         if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
959                 if (!(file && (file->f_path.mnt->mnt_flags & MNT_NOEXEC)))
960                         prot |= PROT_EXEC;
961
962         if (!len)
963                 return -EINVAL;
964
965         if (!(flags & MAP_FIXED))
966                 addr = round_hint_to_min(addr);
967
968         /* Careful about overflows.. */
969         len = PAGE_ALIGN(len);
970         if (!len)
971                 return -ENOMEM;
972
973         /* offset overflow? */
974         if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
975                return -EOVERFLOW;
976
977         /* Too many mappings? */
978         if (mm->map_count > sysctl_max_map_count)
979                 return -ENOMEM;
980
981         /* Obtain the address to map to. we verify (or select) it and ensure
982          * that it represents a valid section of the address space.
983          */
984         addr = get_unmapped_area(file, addr, len, pgoff, flags);
985         if (addr & ~PAGE_MASK)
986                 return addr;
987
988         /* Do simple checking here so the lower-level routines won't have
989          * to. we assume access permissions have been handled by the open
990          * of the memory object, so we don't do any here.
991          */
992         vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
993                         mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
994
995         if (flags & MAP_LOCKED)
996                 if (!can_do_mlock())
997                         return -EPERM;
998
999         /* mlock MCL_FUTURE? */
1000         if (vm_flags & VM_LOCKED) {
1001                 unsigned long locked, lock_limit;
1002                 locked = len >> PAGE_SHIFT;
1003                 locked += mm->locked_vm;
1004                 lock_limit = rlimit(RLIMIT_MEMLOCK);
1005                 lock_limit >>= PAGE_SHIFT;
1006                 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1007                         return -EAGAIN;
1008         }
1009
1010         inode = file ? file->f_path.dentry->d_inode : NULL;
1011
1012         if (file) {
1013                 switch (flags & MAP_TYPE) {
1014                 case MAP_SHARED:
1015                         if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1016                                 return -EACCES;
1017
1018                         /*
1019                          * Make sure we don't allow writing to an append-only
1020                          * file..
1021                          */
1022                         if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1023                                 return -EACCES;
1024
1025                         /*
1026                          * Make sure there are no mandatory locks on the file.
1027                          */
1028                         if (locks_verify_locked(inode))
1029                                 return -EAGAIN;
1030
1031                         vm_flags |= VM_SHARED | VM_MAYSHARE;
1032                         if (!(file->f_mode & FMODE_WRITE))
1033                                 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1034
1035                         /* fall through */
1036                 case MAP_PRIVATE:
1037                         if (!(file->f_mode & FMODE_READ))
1038                                 return -EACCES;
1039                         if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
1040                                 if (vm_flags & VM_EXEC)
1041                                         return -EPERM;
1042                                 vm_flags &= ~VM_MAYEXEC;
1043                         }
1044
1045                         if (!file->f_op || !file->f_op->mmap)
1046                                 return -ENODEV;
1047                         break;
1048
1049                 default:
1050                         return -EINVAL;
1051                 }
1052         } else {
1053                 switch (flags & MAP_TYPE) {
1054                 case MAP_SHARED:
1055                         /*
1056                          * Ignore pgoff.
1057                          */
1058                         pgoff = 0;
1059                         vm_flags |= VM_SHARED | VM_MAYSHARE;
1060                         break;
1061                 case MAP_PRIVATE:
1062                         /*
1063                          * Set pgoff according to addr for anon_vma.
1064                          */
1065                         pgoff = addr >> PAGE_SHIFT;
1066                         break;
1067                 default:
1068                         return -EINVAL;
1069                 }
1070         }
1071
1072         error = security_file_mmap(file, reqprot, prot, flags, addr, 0);
1073         if (error)
1074                 return error;
1075
1076         return mmap_region(file, addr, len, flags, vm_flags, pgoff);
1077 }
1078 EXPORT_SYMBOL(do_mmap_pgoff);
1079
1080 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1081                 unsigned long, prot, unsigned long, flags,
1082                 unsigned long, fd, unsigned long, pgoff)
1083 {
1084         struct file *file = NULL;
1085         unsigned long retval = -EBADF;
1086
1087         if (!(flags & MAP_ANONYMOUS)) {
1088                 audit_mmap_fd(fd, flags);
1089                 if (unlikely(flags & MAP_HUGETLB))
1090                         return -EINVAL;
1091                 file = fget(fd);
1092                 if (!file)
1093                         goto out;
1094         } else if (flags & MAP_HUGETLB) {
1095                 struct user_struct *user = NULL;
1096                 /*
1097                  * VM_NORESERVE is used because the reservations will be
1098                  * taken when vm_ops->mmap() is called
1099                  * A dummy user value is used because we are not locking
1100                  * memory so no accounting is necessary
1101                  */
1102                 len = ALIGN(len, huge_page_size(&default_hstate));
1103                 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len, VM_NORESERVE,
1104                                                 &user, HUGETLB_ANONHUGE_INODE);
1105                 if (IS_ERR(file))
1106                         return PTR_ERR(file);
1107         }
1108
1109         flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1110
1111         down_write(&current->mm->mmap_sem);
1112         retval = do_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1113         up_write(&current->mm->mmap_sem);
1114
1115         if (file)
1116                 fput(file);
1117 out:
1118         return retval;
1119 }
1120
1121 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1122 struct mmap_arg_struct {
1123         unsigned long addr;
1124         unsigned long len;
1125         unsigned long prot;
1126         unsigned long flags;
1127         unsigned long fd;
1128         unsigned long offset;
1129 };
1130
1131 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1132 {
1133         struct mmap_arg_struct a;
1134
1135         if (copy_from_user(&a, arg, sizeof(a)))
1136                 return -EFAULT;
1137         if (a.offset & ~PAGE_MASK)
1138                 return -EINVAL;
1139
1140         return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1141                               a.offset >> PAGE_SHIFT);
1142 }
1143 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1144
1145 /*
1146  * Some shared mappigns will want the pages marked read-only
1147  * to track write events. If so, we'll downgrade vm_page_prot
1148  * to the private version (using protection_map[] without the
1149  * VM_SHARED bit).
1150  */
1151 int vma_wants_writenotify(struct vm_area_struct *vma)
1152 {
1153         vm_flags_t vm_flags = vma->vm_flags;
1154
1155         /* If it was private or non-writable, the write bit is already clear */
1156         if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1157                 return 0;
1158
1159         /* The backer wishes to know when pages are first written to? */
1160         if (vma->vm_ops && vma->vm_ops->page_mkwrite)
1161                 return 1;
1162
1163         /* The open routine did something to the protections already? */
1164         if (pgprot_val(vma->vm_page_prot) !=
1165             pgprot_val(vm_get_page_prot(vm_flags)))
1166                 return 0;
1167
1168         /* Specialty mapping? */
1169         if (vm_flags & (VM_PFNMAP|VM_INSERTPAGE))
1170                 return 0;
1171
1172         /* Can the mapping track the dirty pages? */
1173         return vma->vm_file && vma->vm_file->f_mapping &&
1174                 mapping_cap_account_dirty(vma->vm_file->f_mapping);
1175 }
1176
1177 /*
1178  * We account for memory if it's a private writeable mapping,
1179  * not hugepages and VM_NORESERVE wasn't set.
1180  */
1181 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1182 {
1183         /*
1184          * hugetlb has its own accounting separate from the core VM
1185          * VM_HUGETLB may not be set yet so we cannot check for that flag.
1186          */
1187         if (file && is_file_hugepages(file))
1188                 return 0;
1189
1190         return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1191 }
1192
1193 unsigned long mmap_region(struct file *file, unsigned long addr,
1194                           unsigned long len, unsigned long flags,
1195                           vm_flags_t vm_flags, unsigned long pgoff)
1196 {
1197         struct mm_struct *mm = current->mm;
1198         struct vm_area_struct *vma, *prev;
1199         int correct_wcount = 0;
1200         int error;
1201         struct rb_node **rb_link, *rb_parent;
1202         unsigned long charged = 0;
1203         struct inode *inode =  file ? file->f_path.dentry->d_inode : NULL;
1204
1205         /* Clear old maps */
1206         error = -ENOMEM;
1207 munmap_back:
1208         vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
1209         if (vma && vma->vm_start < addr + len) {
1210                 if (do_munmap(mm, addr, len))
1211                         return -ENOMEM;
1212                 goto munmap_back;
1213         }
1214
1215         /* Check against address space limit. */
1216         if (!may_expand_vm(mm, len >> PAGE_SHIFT))
1217                 return -ENOMEM;
1218
1219         /*
1220          * Set 'VM_NORESERVE' if we should not account for the
1221          * memory use of this mapping.
1222          */
1223         if ((flags & MAP_NORESERVE)) {
1224                 /* We honor MAP_NORESERVE if allowed to overcommit */
1225                 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1226                         vm_flags |= VM_NORESERVE;
1227
1228                 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1229                 if (file && is_file_hugepages(file))
1230                         vm_flags |= VM_NORESERVE;
1231         }
1232
1233         /*
1234          * Private writable mapping: check memory availability
1235          */
1236         if (accountable_mapping(file, vm_flags)) {
1237                 charged = len >> PAGE_SHIFT;
1238                 if (security_vm_enough_memory(charged))
1239                         return -ENOMEM;
1240                 vm_flags |= VM_ACCOUNT;
1241         }
1242
1243         /*
1244          * Can we just expand an old mapping?
1245          */
1246         vma = vma_merge(mm, prev, addr, addr + len, vm_flags, NULL, file, pgoff, NULL);
1247         if (vma)
1248                 goto out;
1249
1250         /*
1251          * Determine the object being mapped and call the appropriate
1252          * specific mapper. the address has already been validated, but
1253          * not unmapped, but the maps are removed from the list.
1254          */
1255         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1256         if (!vma) {
1257                 error = -ENOMEM;
1258                 goto unacct_error;
1259         }
1260
1261         vma->vm_mm = mm;
1262         vma->vm_start = addr;
1263         vma->vm_end = addr + len;
1264         vma->vm_flags = vm_flags;
1265         vma->vm_page_prot = vm_get_page_prot(vm_flags);
1266         vma->vm_pgoff = pgoff;
1267         INIT_LIST_HEAD(&vma->anon_vma_chain);
1268
1269         if (file) {
1270                 error = -EINVAL;
1271                 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1272                         goto free_vma;
1273                 if (vm_flags & VM_DENYWRITE) {
1274                         error = deny_write_access(file);
1275                         if (error)
1276                                 goto free_vma;
1277                         correct_wcount = 1;
1278                 }
1279                 vma->vm_file = file;
1280                 get_file(file);
1281                 error = file->f_op->mmap(file, vma);
1282                 if (error)
1283                         goto unmap_and_free_vma;
1284                 if (vm_flags & VM_EXECUTABLE)
1285                         added_exe_file_vma(mm);
1286
1287                 /* Can addr have changed??
1288                  *
1289                  * Answer: Yes, several device drivers can do it in their
1290                  *         f_op->mmap method. -DaveM
1291                  */
1292                 addr = vma->vm_start;
1293                 pgoff = vma->vm_pgoff;
1294                 vm_flags = vma->vm_flags;
1295         } else if (vm_flags & VM_SHARED) {
1296                 error = shmem_zero_setup(vma);
1297                 if (error)
1298                         goto free_vma;
1299         }
1300
1301         if (vma_wants_writenotify(vma)) {
1302                 pgprot_t pprot = vma->vm_page_prot;
1303
1304                 /* Can vma->vm_page_prot have changed??
1305                  *
1306                  * Answer: Yes, drivers may have changed it in their
1307                  *         f_op->mmap method.
1308                  *
1309                  * Ensures that vmas marked as uncached stay that way.
1310                  */
1311                 vma->vm_page_prot = vm_get_page_prot(vm_flags & ~VM_SHARED);
1312                 if (pgprot_val(pprot) == pgprot_val(pgprot_noncached(pprot)))
1313                         vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1314         }
1315
1316         vma_link(mm, vma, prev, rb_link, rb_parent);
1317         file = vma->vm_file;
1318
1319         /* Once vma denies write, undo our temporary denial count */
1320         if (correct_wcount)
1321                 atomic_inc(&inode->i_writecount);
1322 out:
1323         perf_event_mmap(vma);
1324
1325         mm->total_vm += len >> PAGE_SHIFT;
1326         vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT);
1327         if (vm_flags & VM_LOCKED) {
1328                 if (!mlock_vma_pages_range(vma, addr, addr + len))
1329                         mm->locked_vm += (len >> PAGE_SHIFT);
1330         } else if ((flags & MAP_POPULATE) && !(flags & MAP_NONBLOCK))
1331                 make_pages_present(addr, addr + len);
1332         return addr;
1333
1334 unmap_and_free_vma:
1335         if (correct_wcount)
1336                 atomic_inc(&inode->i_writecount);
1337         vma->vm_file = NULL;
1338         fput(file);
1339
1340         /* Undo any partial mapping done by a device driver. */
1341         unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1342         charged = 0;
1343 free_vma:
1344         kmem_cache_free(vm_area_cachep, vma);
1345 unacct_error:
1346         if (charged)
1347                 vm_unacct_memory(charged);
1348         return error;
1349 }
1350
1351 /* Get an address range which is currently unmapped.
1352  * For shmat() with addr=0.
1353  *
1354  * Ugly calling convention alert:
1355  * Return value with the low bits set means error value,
1356  * ie
1357  *      if (ret & ~PAGE_MASK)
1358  *              error = ret;
1359  *
1360  * This function "knows" that -ENOMEM has the bits set.
1361  */
1362 #ifndef HAVE_ARCH_UNMAPPED_AREA
1363 unsigned long
1364 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1365                 unsigned long len, unsigned long pgoff, unsigned long flags)
1366 {
1367         struct mm_struct *mm = current->mm;
1368         struct vm_area_struct *vma;
1369         unsigned long start_addr;
1370
1371         if (len > TASK_SIZE)
1372                 return -ENOMEM;
1373
1374         if (flags & MAP_FIXED)
1375                 return addr;
1376
1377         if (addr) {
1378                 addr = PAGE_ALIGN(addr);
1379                 vma = find_vma(mm, addr);
1380                 if (TASK_SIZE - len >= addr &&
1381                     (!vma || addr + len <= vma->vm_start))
1382                         return addr;
1383         }
1384         if (len > mm->cached_hole_size) {
1385                 start_addr = addr = mm->free_area_cache;
1386         } else {
1387                 start_addr = addr = TASK_UNMAPPED_BASE;
1388                 mm->cached_hole_size = 0;
1389         }
1390
1391 full_search:
1392         for (vma = find_vma(mm, addr); ; vma = vma->vm_next) {
1393                 /* At this point:  (!vma || addr < vma->vm_end). */
1394                 if (TASK_SIZE - len < addr) {
1395                         /*
1396                          * Start a new search - just in case we missed
1397                          * some holes.
1398                          */
1399                         if (start_addr != TASK_UNMAPPED_BASE) {
1400                                 addr = TASK_UNMAPPED_BASE;
1401                                 start_addr = addr;
1402                                 mm->cached_hole_size = 0;
1403                                 goto full_search;
1404                         }
1405                         return -ENOMEM;
1406                 }
1407                 if (!vma || addr + len <= vma->vm_start) {
1408                         /*
1409                          * Remember the place where we stopped the search:
1410                          */
1411                         mm->free_area_cache = addr + len;
1412                         return addr;
1413                 }
1414                 if (addr + mm->cached_hole_size < vma->vm_start)
1415                         mm->cached_hole_size = vma->vm_start - addr;
1416                 addr = vma->vm_end;
1417         }
1418 }
1419 #endif  
1420
1421 void arch_unmap_area(struct mm_struct *mm, unsigned long addr)
1422 {
1423         /*
1424          * Is this a new hole at the lowest possible address?
1425          */
1426         if (addr >= TASK_UNMAPPED_BASE && addr < mm->free_area_cache) {
1427                 mm->free_area_cache = addr;
1428                 mm->cached_hole_size = ~0UL;
1429         }
1430 }
1431
1432 /*
1433  * This mmap-allocator allocates new areas top-down from below the
1434  * stack's low limit (the base):
1435  */
1436 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1437 unsigned long
1438 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1439                           const unsigned long len, const unsigned long pgoff,
1440                           const unsigned long flags)
1441 {
1442         struct vm_area_struct *vma;
1443         struct mm_struct *mm = current->mm;
1444         unsigned long addr = addr0;
1445
1446         /* requested length too big for entire address space */
1447         if (len > TASK_SIZE)
1448                 return -ENOMEM;
1449
1450         if (flags & MAP_FIXED)
1451                 return addr;
1452
1453         /* requesting a specific address */
1454         if (addr) {
1455                 addr = PAGE_ALIGN(addr);
1456                 vma = find_vma(mm, addr);
1457                 if (TASK_SIZE - len >= addr &&
1458                                 (!vma || addr + len <= vma->vm_start))
1459                         return addr;
1460         }
1461
1462         /* check if free_area_cache is useful for us */
1463         if (len <= mm->cached_hole_size) {
1464                 mm->cached_hole_size = 0;
1465                 mm->free_area_cache = mm->mmap_base;
1466         }
1467
1468         /* either no address requested or can't fit in requested address hole */
1469         addr = mm->free_area_cache;
1470
1471         /* make sure it can fit in the remaining address space */
1472         if (addr > len) {
1473                 vma = find_vma(mm, addr-len);
1474                 if (!vma || addr <= vma->vm_start)
1475                         /* remember the address as a hint for next time */
1476                         return (mm->free_area_cache = addr-len);
1477         }
1478
1479         if (mm->mmap_base < len)
1480                 goto bottomup;
1481
1482         addr = mm->mmap_base-len;
1483
1484         do {
1485                 /*
1486                  * Lookup failure means no vma is above this address,
1487                  * else if new region fits below vma->vm_start,
1488                  * return with success:
1489                  */
1490                 vma = find_vma(mm, addr);
1491                 if (!vma || addr+len <= vma->vm_start)
1492                         /* remember the address as a hint for next time */
1493                         return (mm->free_area_cache = addr);
1494
1495                 /* remember the largest hole we saw so far */
1496                 if (addr + mm->cached_hole_size < vma->vm_start)
1497                         mm->cached_hole_size = vma->vm_start - addr;
1498
1499                 /* try just below the current vma->vm_start */
1500                 addr = vma->vm_start-len;
1501         } while (len < vma->vm_start);
1502
1503 bottomup:
1504         /*
1505          * A failed mmap() very likely causes application failure,
1506          * so fall back to the bottom-up function here. This scenario
1507          * can happen with large stack limits and large mmap()
1508          * allocations.
1509          */
1510         mm->cached_hole_size = ~0UL;
1511         mm->free_area_cache = TASK_UNMAPPED_BASE;
1512         addr = arch_get_unmapped_area(filp, addr0, len, pgoff, flags);
1513         /*
1514          * Restore the topdown base:
1515          */
1516         mm->free_area_cache = mm->mmap_base;
1517         mm->cached_hole_size = ~0UL;
1518
1519         return addr;
1520 }
1521 #endif
1522
1523 void arch_unmap_area_topdown(struct mm_struct *mm, unsigned long addr)
1524 {
1525         /*
1526          * Is this a new hole at the highest possible address?
1527          */
1528         if (addr > mm->free_area_cache)
1529                 mm->free_area_cache = addr;
1530
1531         /* dont allow allocations above current base */
1532         if (mm->free_area_cache > mm->mmap_base)
1533                 mm->free_area_cache = mm->mmap_base;
1534 }
1535
1536 unsigned long
1537 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1538                 unsigned long pgoff, unsigned long flags)
1539 {
1540         unsigned long (*get_area)(struct file *, unsigned long,
1541                                   unsigned long, unsigned long, unsigned long);
1542
1543         unsigned long error = arch_mmap_check(addr, len, flags);
1544         if (error)
1545                 return error;
1546
1547         /* Careful about overflows.. */
1548         if (len > TASK_SIZE)
1549                 return -ENOMEM;
1550
1551         get_area = current->mm->get_unmapped_area;
1552         if (file && file->f_op && file->f_op->get_unmapped_area)
1553                 get_area = file->f_op->get_unmapped_area;
1554         addr = get_area(file, addr, len, pgoff, flags);
1555         if (IS_ERR_VALUE(addr))
1556                 return addr;
1557
1558         if (addr > TASK_SIZE - len)
1559                 return -ENOMEM;
1560         if (addr & ~PAGE_MASK)
1561                 return -EINVAL;
1562
1563         return arch_rebalance_pgtables(addr, len);
1564 }
1565
1566 EXPORT_SYMBOL(get_unmapped_area);
1567
1568 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
1569 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
1570 {
1571         struct vm_area_struct *vma = NULL;
1572
1573         if (mm) {
1574                 /* Check the cache first. */
1575                 /* (Cache hit rate is typically around 35%.) */
1576                 vma = mm->mmap_cache;
1577                 if (!(vma && vma->vm_end > addr && vma->vm_start <= addr)) {
1578                         struct rb_node * rb_node;
1579
1580                         rb_node = mm->mm_rb.rb_node;
1581                         vma = NULL;
1582
1583                         while (rb_node) {
1584                                 struct vm_area_struct * vma_tmp;
1585
1586                                 vma_tmp = rb_entry(rb_node,
1587                                                 struct vm_area_struct, vm_rb);
1588
1589                                 if (vma_tmp->vm_end > addr) {
1590                                         vma = vma_tmp;
1591                                         if (vma_tmp->vm_start <= addr)
1592                                                 break;
1593                                         rb_node = rb_node->rb_left;
1594                                 } else
1595                                         rb_node = rb_node->rb_right;
1596                         }
1597                         if (vma)
1598                                 mm->mmap_cache = vma;
1599                 }
1600         }
1601         return vma;
1602 }
1603
1604 EXPORT_SYMBOL(find_vma);
1605
1606 /*
1607  * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
1608  * Note: pprev is set to NULL when return value is NULL.
1609  */
1610 struct vm_area_struct *
1611 find_vma_prev(struct mm_struct *mm, unsigned long addr,
1612                         struct vm_area_struct **pprev)
1613 {
1614         struct vm_area_struct *vma;
1615
1616         vma = find_vma(mm, addr);
1617         *pprev = vma ? vma->vm_prev : NULL;
1618         return vma;
1619 }
1620
1621 /*
1622  * Verify that the stack growth is acceptable and
1623  * update accounting. This is shared with both the
1624  * grow-up and grow-down cases.
1625  */
1626 static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow)
1627 {
1628         struct mm_struct *mm = vma->vm_mm;
1629         struct rlimit *rlim = current->signal->rlim;
1630         unsigned long new_start;
1631
1632         /* address space limit tests */
1633         if (!may_expand_vm(mm, grow))
1634                 return -ENOMEM;
1635
1636         /* Stack limit test */
1637         if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur))
1638                 return -ENOMEM;
1639
1640         /* mlock limit tests */
1641         if (vma->vm_flags & VM_LOCKED) {
1642                 unsigned long locked;
1643                 unsigned long limit;
1644                 locked = mm->locked_vm + grow;
1645                 limit = ACCESS_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur);
1646                 limit >>= PAGE_SHIFT;
1647                 if (locked > limit && !capable(CAP_IPC_LOCK))
1648                         return -ENOMEM;
1649         }
1650
1651         /* Check to ensure the stack will not grow into a hugetlb-only region */
1652         new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
1653                         vma->vm_end - size;
1654         if (is_hugepage_only_range(vma->vm_mm, new_start, size))
1655                 return -EFAULT;
1656
1657         /*
1658          * Overcommit..  This must be the final test, as it will
1659          * update security statistics.
1660          */
1661         if (security_vm_enough_memory_mm(mm, grow))
1662                 return -ENOMEM;
1663
1664         /* Ok, everything looks good - let it rip */
1665         mm->total_vm += grow;
1666         if (vma->vm_flags & VM_LOCKED)
1667                 mm->locked_vm += grow;
1668         vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow);
1669         return 0;
1670 }
1671
1672 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
1673 /*
1674  * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
1675  * vma is the last one with address > vma->vm_end.  Have to extend vma.
1676  */
1677 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
1678 {
1679         int error;
1680
1681         if (!(vma->vm_flags & VM_GROWSUP))
1682                 return -EFAULT;
1683
1684         /*
1685          * We must make sure the anon_vma is allocated
1686          * so that the anon_vma locking is not a noop.
1687          */
1688         if (unlikely(anon_vma_prepare(vma)))
1689                 return -ENOMEM;
1690         vma_lock_anon_vma(vma);
1691
1692         /*
1693          * vma->vm_start/vm_end cannot change under us because the caller
1694          * is required to hold the mmap_sem in read mode.  We need the
1695          * anon_vma lock to serialize against concurrent expand_stacks.
1696          * Also guard against wrapping around to address 0.
1697          */
1698         if (address < PAGE_ALIGN(address+4))
1699                 address = PAGE_ALIGN(address+4);
1700         else {
1701                 vma_unlock_anon_vma(vma);
1702                 return -ENOMEM;
1703         }
1704         error = 0;
1705
1706         /* Somebody else might have raced and expanded it already */
1707         if (address > vma->vm_end) {
1708                 unsigned long size, grow;
1709
1710                 size = address - vma->vm_start;
1711                 grow = (address - vma->vm_end) >> PAGE_SHIFT;
1712
1713                 error = -ENOMEM;
1714                 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
1715                         error = acct_stack_growth(vma, size, grow);
1716                         if (!error) {
1717                                 vma->vm_end = address;
1718                                 perf_event_mmap(vma);
1719                         }
1720                 }
1721         }
1722         vma_unlock_anon_vma(vma);
1723         khugepaged_enter_vma_merge(vma);
1724         return error;
1725 }
1726 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
1727
1728 /*
1729  * vma is the first one with address < vma->vm_start.  Have to extend vma.
1730  */
1731 int expand_downwards(struct vm_area_struct *vma,
1732                                    unsigned long address)
1733 {
1734         int error;
1735
1736         /*
1737          * We must make sure the anon_vma is allocated
1738          * so that the anon_vma locking is not a noop.
1739          */
1740         if (unlikely(anon_vma_prepare(vma)))
1741                 return -ENOMEM;
1742
1743         address &= PAGE_MASK;
1744         error = security_file_mmap(NULL, 0, 0, 0, address, 1);
1745         if (error)
1746                 return error;
1747
1748         vma_lock_anon_vma(vma);
1749
1750         /*
1751          * vma->vm_start/vm_end cannot change under us because the caller
1752          * is required to hold the mmap_sem in read mode.  We need the
1753          * anon_vma lock to serialize against concurrent expand_stacks.
1754          */
1755
1756         /* Somebody else might have raced and expanded it already */
1757         if (address < vma->vm_start) {
1758                 unsigned long size, grow;
1759
1760                 size = vma->vm_end - address;
1761                 grow = (vma->vm_start - address) >> PAGE_SHIFT;
1762
1763                 error = -ENOMEM;
1764                 if (grow <= vma->vm_pgoff) {
1765                         error = acct_stack_growth(vma, size, grow);
1766                         if (!error) {
1767                                 vma->vm_start = address;
1768                                 vma->vm_pgoff -= grow;
1769                                 perf_event_mmap(vma);
1770                         }
1771                 }
1772         }
1773         vma_unlock_anon_vma(vma);
1774         khugepaged_enter_vma_merge(vma);
1775         return error;
1776 }
1777
1778 #ifdef CONFIG_STACK_GROWSUP
1779 int expand_stack(struct vm_area_struct *vma, unsigned long address)
1780 {
1781         return expand_upwards(vma, address);
1782 }
1783
1784 struct vm_area_struct *
1785 find_extend_vma(struct mm_struct *mm, unsigned long addr)
1786 {
1787         struct vm_area_struct *vma, *prev;
1788
1789         addr &= PAGE_MASK;
1790         vma = find_vma_prev(mm, addr, &prev);
1791         if (vma && (vma->vm_start <= addr))
1792                 return vma;
1793         if (!prev || expand_stack(prev, addr))
1794                 return NULL;
1795         if (prev->vm_flags & VM_LOCKED) {
1796                 mlock_vma_pages_range(prev, addr, prev->vm_end);
1797         }
1798         return prev;
1799 }
1800 #else
1801 int expand_stack(struct vm_area_struct *vma, unsigned long address)
1802 {
1803         return expand_downwards(vma, address);
1804 }
1805
1806 struct vm_area_struct *
1807 find_extend_vma(struct mm_struct * mm, unsigned long addr)
1808 {
1809         struct vm_area_struct * vma;
1810         unsigned long start;
1811
1812         addr &= PAGE_MASK;
1813         vma = find_vma(mm,addr);
1814         if (!vma)
1815                 return NULL;
1816         if (vma->vm_start <= addr)
1817                 return vma;
1818         if (!(vma->vm_flags & VM_GROWSDOWN))
1819                 return NULL;
1820         start = vma->vm_start;
1821         if (expand_stack(vma, addr))
1822                 return NULL;
1823         if (vma->vm_flags & VM_LOCKED) {
1824                 mlock_vma_pages_range(vma, addr, start);
1825         }
1826         return vma;
1827 }
1828 #endif
1829
1830 /*
1831  * Ok - we have the memory areas we should free on the vma list,
1832  * so release them, and do the vma updates.
1833  *
1834  * Called with the mm semaphore held.
1835  */
1836 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
1837 {
1838         /* Update high watermark before we lower total_vm */
1839         update_hiwater_vm(mm);
1840         do {
1841                 long nrpages = vma_pages(vma);
1842
1843                 mm->total_vm -= nrpages;
1844                 vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages);
1845                 vma = remove_vma(vma);
1846         } while (vma);
1847         validate_mm(mm);
1848 }
1849
1850 /*
1851  * Get rid of page table information in the indicated region.
1852  *
1853  * Called with the mm semaphore held.
1854  */
1855 static void unmap_region(struct mm_struct *mm,
1856                 struct vm_area_struct *vma, struct vm_area_struct *prev,
1857                 unsigned long start, unsigned long end)
1858 {
1859         struct vm_area_struct *next = prev? prev->vm_next: mm->mmap;
1860         struct mmu_gather tlb;
1861         unsigned long nr_accounted = 0;
1862
1863         lru_add_drain();
1864         tlb_gather_mmu(&tlb, mm, 0);
1865         update_hiwater_rss(mm);
1866         unmap_vmas(&tlb, vma, start, end, &nr_accounted, NULL);
1867         vm_unacct_memory(nr_accounted);
1868         free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
1869                                  next ? next->vm_start : 0);
1870         tlb_finish_mmu(&tlb, start, end);
1871 }
1872
1873 /*
1874  * Create a list of vma's touched by the unmap, removing them from the mm's
1875  * vma list as we go..
1876  */
1877 static void
1878 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
1879         struct vm_area_struct *prev, unsigned long end)
1880 {
1881         struct vm_area_struct **insertion_point;
1882         struct vm_area_struct *tail_vma = NULL;
1883         unsigned long addr;
1884
1885         insertion_point = (prev ? &prev->vm_next : &mm->mmap);
1886         vma->vm_prev = NULL;
1887         do {
1888                 rb_erase(&vma->vm_rb, &mm->mm_rb);
1889                 mm->map_count--;
1890                 tail_vma = vma;
1891                 vma = vma->vm_next;
1892         } while (vma && vma->vm_start < end);
1893         *insertion_point = vma;
1894         if (vma)
1895                 vma->vm_prev = prev;
1896         tail_vma->vm_next = NULL;
1897         if (mm->unmap_area == arch_unmap_area)
1898                 addr = prev ? prev->vm_end : mm->mmap_base;
1899         else
1900                 addr = vma ?  vma->vm_start : mm->mmap_base;
1901         mm->unmap_area(mm, addr);
1902         mm->mmap_cache = NULL;          /* Kill the cache. */
1903 }
1904
1905 /*
1906  * __split_vma() bypasses sysctl_max_map_count checking.  We use this on the
1907  * munmap path where it doesn't make sense to fail.
1908  */
1909 static int __split_vma(struct mm_struct * mm, struct vm_area_struct * vma,
1910               unsigned long addr, int new_below)
1911 {
1912         struct mempolicy *pol;
1913         struct vm_area_struct *new;
1914         int err = -ENOMEM;
1915
1916         if (is_vm_hugetlb_page(vma) && (addr &
1917                                         ~(huge_page_mask(hstate_vma(vma)))))
1918                 return -EINVAL;
1919
1920         new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
1921         if (!new)
1922                 goto out_err;
1923
1924         /* most fields are the same, copy all, and then fixup */
1925         *new = *vma;
1926
1927         INIT_LIST_HEAD(&new->anon_vma_chain);
1928
1929         if (new_below)
1930                 new->vm_end = addr;
1931         else {
1932                 new->vm_start = addr;
1933                 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
1934         }
1935
1936         pol = mpol_dup(vma_policy(vma));
1937         if (IS_ERR(pol)) {
1938                 err = PTR_ERR(pol);
1939                 goto out_free_vma;
1940         }
1941         vma_set_policy(new, pol);
1942
1943         if (anon_vma_clone(new, vma))
1944                 goto out_free_mpol;
1945
1946         if (new->vm_file) {
1947                 get_file(new->vm_file);
1948                 if (vma->vm_flags & VM_EXECUTABLE)
1949                         added_exe_file_vma(mm);
1950         }
1951
1952         if (new->vm_ops && new->vm_ops->open)
1953                 new->vm_ops->open(new);
1954
1955         if (new_below)
1956                 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
1957                         ((addr - new->vm_start) >> PAGE_SHIFT), new);
1958         else
1959                 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
1960
1961         /* Success. */
1962         if (!err)
1963                 return 0;
1964
1965         /* Clean everything up if vma_adjust failed. */
1966         if (new->vm_ops && new->vm_ops->close)
1967                 new->vm_ops->close(new);
1968         if (new->vm_file) {
1969                 if (vma->vm_flags & VM_EXECUTABLE)
1970                         removed_exe_file_vma(mm);
1971                 fput(new->vm_file);
1972         }
1973         unlink_anon_vmas(new);
1974  out_free_mpol:
1975         mpol_put(pol);
1976  out_free_vma:
1977         kmem_cache_free(vm_area_cachep, new);
1978  out_err:
1979         return err;
1980 }
1981
1982 /*
1983  * Split a vma into two pieces at address 'addr', a new vma is allocated
1984  * either for the first part or the tail.
1985  */
1986 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
1987               unsigned long addr, int new_below)
1988 {
1989         if (mm->map_count >= sysctl_max_map_count)
1990                 return -ENOMEM;
1991
1992         return __split_vma(mm, vma, addr, new_below);
1993 }
1994
1995 /* Munmap is split into 2 main parts -- this part which finds
1996  * what needs doing, and the areas themselves, which do the
1997  * work.  This now handles partial unmappings.
1998  * Jeremy Fitzhardinge <jeremy@goop.org>
1999  */
2000 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
2001 {
2002         unsigned long end;
2003         struct vm_area_struct *vma, *prev, *last;
2004
2005         if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start)
2006                 return -EINVAL;
2007
2008         if ((len = PAGE_ALIGN(len)) == 0)
2009                 return -EINVAL;
2010
2011         /* Find the first overlapping VMA */
2012         vma = find_vma(mm, start);
2013         if (!vma)
2014                 return 0;
2015         prev = vma->vm_prev;
2016         /* we have  start < vma->vm_end  */
2017
2018         /* if it doesn't overlap, we have nothing.. */
2019         end = start + len;
2020         if (vma->vm_start >= end)
2021                 return 0;
2022
2023         /*
2024          * If we need to split any vma, do it now to save pain later.
2025          *
2026          * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2027          * unmapped vm_area_struct will remain in use: so lower split_vma
2028          * places tmp vma above, and higher split_vma places tmp vma below.
2029          */
2030         if (start > vma->vm_start) {
2031                 int error;
2032
2033                 /*
2034                  * Make sure that map_count on return from munmap() will
2035                  * not exceed its limit; but let map_count go just above
2036                  * its limit temporarily, to help free resources as expected.
2037                  */
2038                 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2039                         return -ENOMEM;
2040
2041                 error = __split_vma(mm, vma, start, 0);
2042                 if (error)
2043                         return error;
2044                 prev = vma;
2045         }
2046
2047         /* Does it split the last one? */
2048         last = find_vma(mm, end);
2049         if (last && end > last->vm_start) {
2050                 int error = __split_vma(mm, last, end, 1);
2051                 if (error)
2052                         return error;
2053         }
2054         vma = prev? prev->vm_next: mm->mmap;
2055
2056         /*
2057          * unlock any mlock()ed ranges before detaching vmas
2058          */
2059         if (mm->locked_vm) {
2060                 struct vm_area_struct *tmp = vma;
2061                 while (tmp && tmp->vm_start < end) {
2062                         if (tmp->vm_flags & VM_LOCKED) {
2063                                 mm->locked_vm -= vma_pages(tmp);
2064                                 munlock_vma_pages_all(tmp);
2065                         }
2066                         tmp = tmp->vm_next;
2067                 }
2068         }
2069
2070         /*
2071          * Remove the vma's, and unmap the actual pages
2072          */
2073         detach_vmas_to_be_unmapped(mm, vma, prev, end);
2074         unmap_region(mm, vma, prev, start, end);
2075
2076         /* Fix up all other VM information */
2077         remove_vma_list(mm, vma);
2078
2079         return 0;
2080 }
2081
2082 EXPORT_SYMBOL(do_munmap);
2083
2084 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2085 {
2086         int ret;
2087         struct mm_struct *mm = current->mm;
2088
2089         profile_munmap(addr);
2090
2091         down_write(&mm->mmap_sem);
2092         ret = do_munmap(mm, addr, len);
2093         up_write(&mm->mmap_sem);
2094         return ret;
2095 }
2096
2097 static inline void verify_mm_writelocked(struct mm_struct *mm)
2098 {
2099 #ifdef CONFIG_DEBUG_VM
2100         if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2101                 WARN_ON(1);
2102                 up_read(&mm->mmap_sem);
2103         }
2104 #endif
2105 }
2106
2107 /*
2108  *  this is really a simplified "do_mmap".  it only handles
2109  *  anonymous maps.  eventually we may be able to do some
2110  *  brk-specific accounting here.
2111  */
2112 unsigned long do_brk(unsigned long addr, unsigned long len)
2113 {
2114         struct mm_struct * mm = current->mm;
2115         struct vm_area_struct * vma, * prev;
2116         unsigned long flags;
2117         struct rb_node ** rb_link, * rb_parent;
2118         pgoff_t pgoff = addr >> PAGE_SHIFT;
2119         int error;
2120
2121         len = PAGE_ALIGN(len);
2122         if (!len)
2123                 return addr;
2124
2125         error = security_file_mmap(NULL, 0, 0, 0, addr, 1);
2126         if (error)
2127                 return error;
2128
2129         flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2130
2131         error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2132         if (error & ~PAGE_MASK)
2133                 return error;
2134
2135         /*
2136          * mlock MCL_FUTURE?
2137          */
2138         if (mm->def_flags & VM_LOCKED) {
2139                 unsigned long locked, lock_limit;
2140                 locked = len >> PAGE_SHIFT;
2141                 locked += mm->locked_vm;
2142                 lock_limit = rlimit(RLIMIT_MEMLOCK);
2143                 lock_limit >>= PAGE_SHIFT;
2144                 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
2145                         return -EAGAIN;
2146         }
2147
2148         /*
2149          * mm->mmap_sem is required to protect against another thread
2150          * changing the mappings in case we sleep.
2151          */
2152         verify_mm_writelocked(mm);
2153
2154         /*
2155          * Clear old maps.  this also does some error checking for us
2156          */
2157  munmap_back:
2158         vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
2159         if (vma && vma->vm_start < addr + len) {
2160                 if (do_munmap(mm, addr, len))
2161                         return -ENOMEM;
2162                 goto munmap_back;
2163         }
2164
2165         /* Check against address space limits *after* clearing old maps... */
2166         if (!may_expand_vm(mm, len >> PAGE_SHIFT))
2167                 return -ENOMEM;
2168
2169         if (mm->map_count > sysctl_max_map_count)
2170                 return -ENOMEM;
2171
2172         if (security_vm_enough_memory(len >> PAGE_SHIFT))
2173                 return -ENOMEM;
2174
2175         /* Can we just expand an old private anonymous mapping? */
2176         vma = vma_merge(mm, prev, addr, addr + len, flags,
2177                                         NULL, NULL, pgoff, NULL);
2178         if (vma)
2179                 goto out;
2180
2181         /*
2182          * create a vma struct for an anonymous mapping
2183          */
2184         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2185         if (!vma) {
2186                 vm_unacct_memory(len >> PAGE_SHIFT);
2187                 return -ENOMEM;
2188         }
2189
2190         INIT_LIST_HEAD(&vma->anon_vma_chain);
2191         vma->vm_mm = mm;
2192         vma->vm_start = addr;
2193         vma->vm_end = addr + len;
2194         vma->vm_pgoff = pgoff;
2195         vma->vm_flags = flags;
2196         vma->vm_page_prot = vm_get_page_prot(flags);
2197         vma_link(mm, vma, prev, rb_link, rb_parent);
2198 out:
2199         perf_event_mmap(vma);
2200         mm->total_vm += len >> PAGE_SHIFT;
2201         if (flags & VM_LOCKED) {
2202                 if (!mlock_vma_pages_range(vma, addr, addr + len))
2203                         mm->locked_vm += (len >> PAGE_SHIFT);
2204         }
2205         return addr;
2206 }
2207
2208 EXPORT_SYMBOL(do_brk);
2209
2210 /* Release all mmaps. */
2211 void exit_mmap(struct mm_struct *mm)
2212 {
2213         struct mmu_gather tlb;
2214         struct vm_area_struct *vma;
2215         unsigned long nr_accounted = 0;
2216         unsigned long end;
2217
2218         /* mm's last user has gone, and its about to be pulled down */
2219         mmu_notifier_release(mm);
2220
2221         if (mm->locked_vm) {
2222                 vma = mm->mmap;
2223                 while (vma) {
2224                         if (vma->vm_flags & VM_LOCKED)
2225                                 munlock_vma_pages_all(vma);
2226                         vma = vma->vm_next;
2227                 }
2228         }
2229
2230         arch_exit_mmap(mm);
2231
2232         vma = mm->mmap;
2233         if (!vma)       /* Can happen if dup_mmap() received an OOM */
2234                 return;
2235
2236         lru_add_drain();
2237         flush_cache_mm(mm);
2238         tlb_gather_mmu(&tlb, mm, 1);
2239         /* update_hiwater_rss(mm) here? but nobody should be looking */
2240         /* Use -1 here to ensure all VMAs in the mm are unmapped */
2241         end = unmap_vmas(&tlb, vma, 0, -1, &nr_accounted, NULL);
2242         vm_unacct_memory(nr_accounted);
2243
2244         free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, 0);
2245         tlb_finish_mmu(&tlb, 0, end);
2246
2247         /*
2248          * Walk the list again, actually closing and freeing it,
2249          * with preemption enabled, without holding any MM locks.
2250          */
2251         while (vma)
2252                 vma = remove_vma(vma);
2253
2254         BUG_ON(mm->nr_ptes > (FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT);
2255 }
2256
2257 /* Insert vm structure into process list sorted by address
2258  * and into the inode's i_mmap tree.  If vm_file is non-NULL
2259  * then i_mmap_mutex is taken here.
2260  */
2261 int insert_vm_struct(struct mm_struct * mm, struct vm_area_struct * vma)
2262 {
2263         struct vm_area_struct * __vma, * prev;
2264         struct rb_node ** rb_link, * rb_parent;
2265
2266         /*
2267          * The vm_pgoff of a purely anonymous vma should be irrelevant
2268          * until its first write fault, when page's anon_vma and index
2269          * are set.  But now set the vm_pgoff it will almost certainly
2270          * end up with (unless mremap moves it elsewhere before that
2271          * first wfault), so /proc/pid/maps tells a consistent story.
2272          *
2273          * By setting it to reflect the virtual start address of the
2274          * vma, merges and splits can happen in a seamless way, just
2275          * using the existing file pgoff checks and manipulations.
2276          * Similarly in do_mmap_pgoff and in do_brk.
2277          */
2278         if (!vma->vm_file) {
2279                 BUG_ON(vma->anon_vma);
2280                 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2281         }
2282         __vma = find_vma_prepare(mm,vma->vm_start,&prev,&rb_link,&rb_parent);
2283         if (__vma && __vma->vm_start < vma->vm_end)
2284                 return -ENOMEM;
2285         if ((vma->vm_flags & VM_ACCOUNT) &&
2286              security_vm_enough_memory_mm(mm, vma_pages(vma)))
2287                 return -ENOMEM;
2288         vma_link(mm, vma, prev, rb_link, rb_parent);
2289         return 0;
2290 }
2291
2292 /*
2293  * Copy the vma structure to a new location in the same mm,
2294  * prior to moving page table entries, to effect an mremap move.
2295  */
2296 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2297         unsigned long addr, unsigned long len, pgoff_t pgoff)
2298 {
2299         struct vm_area_struct *vma = *vmap;
2300         unsigned long vma_start = vma->vm_start;
2301         struct mm_struct *mm = vma->vm_mm;
2302         struct vm_area_struct *new_vma, *prev;
2303         struct rb_node **rb_link, *rb_parent;
2304         struct mempolicy *pol;
2305         bool faulted_in_anon_vma = true;
2306
2307         /*
2308          * If anonymous vma has not yet been faulted, update new pgoff
2309          * to match new location, to increase its chance of merging.
2310          */
2311         if (unlikely(!vma->vm_file && !vma->anon_vma)) {
2312                 pgoff = addr >> PAGE_SHIFT;
2313                 faulted_in_anon_vma = false;
2314         }
2315
2316         find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
2317         new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2318                         vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma));
2319         if (new_vma) {
2320                 /*
2321                  * Source vma may have been merged into new_vma
2322                  */
2323                 if (unlikely(vma_start >= new_vma->vm_start &&
2324                              vma_start < new_vma->vm_end)) {
2325                         /*
2326                          * The only way we can get a vma_merge with
2327                          * self during an mremap is if the vma hasn't
2328                          * been faulted in yet and we were allowed to
2329                          * reset the dst vma->vm_pgoff to the
2330                          * destination address of the mremap to allow
2331                          * the merge to happen. mremap must change the
2332                          * vm_pgoff linearity between src and dst vmas
2333                          * (in turn preventing a vma_merge) to be
2334                          * safe. It is only safe to keep the vm_pgoff
2335                          * linear if there are no pages mapped yet.
2336                          */
2337                         VM_BUG_ON(faulted_in_anon_vma);
2338                         *vmap = new_vma;
2339                 } else
2340                         anon_vma_moveto_tail(new_vma);
2341         } else {
2342                 new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2343                 if (new_vma) {
2344                         *new_vma = *vma;
2345                         pol = mpol_dup(vma_policy(vma));
2346                         if (IS_ERR(pol))
2347                                 goto out_free_vma;
2348                         INIT_LIST_HEAD(&new_vma->anon_vma_chain);
2349                         if (anon_vma_clone(new_vma, vma))
2350                                 goto out_free_mempol;
2351                         vma_set_policy(new_vma, pol);
2352                         new_vma->vm_start = addr;
2353                         new_vma->vm_end = addr + len;
2354                         new_vma->vm_pgoff = pgoff;
2355                         if (new_vma->vm_file) {
2356                                 get_file(new_vma->vm_file);
2357                                 if (vma->vm_flags & VM_EXECUTABLE)
2358                                         added_exe_file_vma(mm);
2359                         }
2360                         if (new_vma->vm_ops && new_vma->vm_ops->open)
2361                                 new_vma->vm_ops->open(new_vma);
2362                         vma_link(mm, new_vma, prev, rb_link, rb_parent);
2363                 }
2364         }
2365         return new_vma;
2366
2367  out_free_mempol:
2368         mpol_put(pol);
2369  out_free_vma:
2370         kmem_cache_free(vm_area_cachep, new_vma);
2371         return NULL;
2372 }
2373
2374 /*
2375  * Return true if the calling process may expand its vm space by the passed
2376  * number of pages
2377  */
2378 int may_expand_vm(struct mm_struct *mm, unsigned long npages)
2379 {
2380         unsigned long cur = mm->total_vm;       /* pages */
2381         unsigned long lim;
2382
2383         lim = rlimit(RLIMIT_AS) >> PAGE_SHIFT;
2384
2385         if (cur + npages > lim)
2386                 return 0;
2387         return 1;
2388 }
2389
2390
2391 static int special_mapping_fault(struct vm_area_struct *vma,
2392                                 struct vm_fault *vmf)
2393 {
2394         pgoff_t pgoff;
2395         struct page **pages;
2396
2397         /*
2398          * special mappings have no vm_file, and in that case, the mm
2399          * uses vm_pgoff internally. So we have to subtract it from here.
2400          * We are allowed to do this because we are the mm; do not copy
2401          * this code into drivers!
2402          */
2403         pgoff = vmf->pgoff - vma->vm_pgoff;
2404
2405         for (pages = vma->vm_private_data; pgoff && *pages; ++pages)
2406                 pgoff--;
2407
2408         if (*pages) {
2409                 struct page *page = *pages;
2410                 get_page(page);
2411                 vmf->page = page;
2412                 return 0;
2413         }
2414
2415         return VM_FAULT_SIGBUS;
2416 }
2417
2418 /*
2419  * Having a close hook prevents vma merging regardless of flags.
2420  */
2421 static void special_mapping_close(struct vm_area_struct *vma)
2422 {
2423 }
2424
2425 static const struct vm_operations_struct special_mapping_vmops = {
2426         .close = special_mapping_close,
2427         .fault = special_mapping_fault,
2428 };
2429
2430 /*
2431  * Called with mm->mmap_sem held for writing.
2432  * Insert a new vma covering the given region, with the given flags.
2433  * Its pages are supplied by the given array of struct page *.
2434  * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
2435  * The region past the last page supplied will always produce SIGBUS.
2436  * The array pointer and the pages it points to are assumed to stay alive
2437  * for as long as this mapping might exist.
2438  */
2439 int install_special_mapping(struct mm_struct *mm,
2440                             unsigned long addr, unsigned long len,
2441                             unsigned long vm_flags, struct page **pages)
2442 {
2443         int ret;
2444         struct vm_area_struct *vma;
2445
2446         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2447         if (unlikely(vma == NULL))
2448                 return -ENOMEM;
2449
2450         INIT_LIST_HEAD(&vma->anon_vma_chain);
2451         vma->vm_mm = mm;
2452         vma->vm_start = addr;
2453         vma->vm_end = addr + len;
2454
2455         vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND;
2456         vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2457
2458         vma->vm_ops = &special_mapping_vmops;
2459         vma->vm_private_data = pages;
2460
2461         ret = security_file_mmap(NULL, 0, 0, 0, vma->vm_start, 1);
2462         if (ret)
2463                 goto out;
2464
2465         ret = insert_vm_struct(mm, vma);
2466         if (ret)
2467                 goto out;
2468
2469         mm->total_vm += len >> PAGE_SHIFT;
2470
2471         perf_event_mmap(vma);
2472
2473         return 0;
2474
2475 out:
2476         kmem_cache_free(vm_area_cachep, vma);
2477         return ret;
2478 }
2479
2480 static DEFINE_MUTEX(mm_all_locks_mutex);
2481
2482 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
2483 {
2484         if (!test_bit(0, (unsigned long *) &anon_vma->root->head.next)) {
2485                 /*
2486                  * The LSB of head.next can't change from under us
2487                  * because we hold the mm_all_locks_mutex.
2488                  */
2489                 mutex_lock_nest_lock(&anon_vma->root->mutex, &mm->mmap_sem);
2490                 /*
2491                  * We can safely modify head.next after taking the
2492                  * anon_vma->root->mutex. If some other vma in this mm shares
2493                  * the same anon_vma we won't take it again.
2494                  *
2495                  * No need of atomic instructions here, head.next
2496                  * can't change from under us thanks to the
2497                  * anon_vma->root->mutex.
2498                  */
2499                 if (__test_and_set_bit(0, (unsigned long *)
2500                                        &anon_vma->root->head.next))
2501                         BUG();
2502         }
2503 }
2504
2505 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
2506 {
2507         if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2508                 /*
2509                  * AS_MM_ALL_LOCKS can't change from under us because
2510                  * we hold the mm_all_locks_mutex.
2511                  *
2512                  * Operations on ->flags have to be atomic because
2513                  * even if AS_MM_ALL_LOCKS is stable thanks to the
2514                  * mm_all_locks_mutex, there may be other cpus
2515                  * changing other bitflags in parallel to us.
2516                  */
2517                 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
2518                         BUG();
2519                 mutex_lock_nest_lock(&mapping->i_mmap_mutex, &mm->mmap_sem);
2520         }
2521 }
2522
2523 /*
2524  * This operation locks against the VM for all pte/vma/mm related
2525  * operations that could ever happen on a certain mm. This includes
2526  * vmtruncate, try_to_unmap, and all page faults.
2527  *
2528  * The caller must take the mmap_sem in write mode before calling
2529  * mm_take_all_locks(). The caller isn't allowed to release the
2530  * mmap_sem until mm_drop_all_locks() returns.
2531  *
2532  * mmap_sem in write mode is required in order to block all operations
2533  * that could modify pagetables and free pages without need of
2534  * altering the vma layout (for example populate_range() with
2535  * nonlinear vmas). It's also needed in write mode to avoid new
2536  * anon_vmas to be associated with existing vmas.
2537  *
2538  * A single task can't take more than one mm_take_all_locks() in a row
2539  * or it would deadlock.
2540  *
2541  * The LSB in anon_vma->head.next and the AS_MM_ALL_LOCKS bitflag in
2542  * mapping->flags avoid to take the same lock twice, if more than one
2543  * vma in this mm is backed by the same anon_vma or address_space.
2544  *
2545  * We can take all the locks in random order because the VM code
2546  * taking i_mmap_mutex or anon_vma->mutex outside the mmap_sem never
2547  * takes more than one of them in a row. Secondly we're protected
2548  * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex.
2549  *
2550  * mm_take_all_locks() and mm_drop_all_locks are expensive operations
2551  * that may have to take thousand of locks.
2552  *
2553  * mm_take_all_locks() can fail if it's interrupted by signals.
2554  */
2555 int mm_take_all_locks(struct mm_struct *mm)
2556 {
2557         struct vm_area_struct *vma;
2558         struct anon_vma_chain *avc;
2559
2560         BUG_ON(down_read_trylock(&mm->mmap_sem));
2561
2562         mutex_lock(&mm_all_locks_mutex);
2563
2564         for (vma = mm->mmap; vma; vma = vma->vm_next) {
2565                 if (signal_pending(current))
2566                         goto out_unlock;
2567                 if (vma->vm_file && vma->vm_file->f_mapping)
2568                         vm_lock_mapping(mm, vma->vm_file->f_mapping);
2569         }
2570
2571         for (vma = mm->mmap; vma; vma = vma->vm_next) {
2572                 if (signal_pending(current))
2573                         goto out_unlock;
2574                 if (vma->anon_vma)
2575                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
2576                                 vm_lock_anon_vma(mm, avc->anon_vma);
2577         }
2578
2579         return 0;
2580
2581 out_unlock:
2582         mm_drop_all_locks(mm);
2583         return -EINTR;
2584 }
2585
2586 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
2587 {
2588         if (test_bit(0, (unsigned long *) &anon_vma->root->head.next)) {
2589                 /*
2590                  * The LSB of head.next can't change to 0 from under
2591                  * us because we hold the mm_all_locks_mutex.
2592                  *
2593                  * We must however clear the bitflag before unlocking
2594                  * the vma so the users using the anon_vma->head will
2595                  * never see our bitflag.
2596                  *
2597                  * No need of atomic instructions here, head.next
2598                  * can't change from under us until we release the
2599                  * anon_vma->root->mutex.
2600                  */
2601                 if (!__test_and_clear_bit(0, (unsigned long *)
2602                                           &anon_vma->root->head.next))
2603                         BUG();
2604                 anon_vma_unlock(anon_vma);
2605         }
2606 }
2607
2608 static void vm_unlock_mapping(struct address_space *mapping)
2609 {
2610         if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2611                 /*
2612                  * AS_MM_ALL_LOCKS can't change to 0 from under us
2613                  * because we hold the mm_all_locks_mutex.
2614                  */
2615                 mutex_unlock(&mapping->i_mmap_mutex);
2616                 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
2617                                         &mapping->flags))
2618                         BUG();
2619         }
2620 }
2621
2622 /*
2623  * The mmap_sem cannot be released by the caller until
2624  * mm_drop_all_locks() returns.
2625  */
2626 void mm_drop_all_locks(struct mm_struct *mm)
2627 {
2628         struct vm_area_struct *vma;
2629         struct anon_vma_chain *avc;
2630
2631         BUG_ON(down_read_trylock(&mm->mmap_sem));
2632         BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
2633
2634         for (vma = mm->mmap; vma; vma = vma->vm_next) {
2635                 if (vma->anon_vma)
2636                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
2637                                 vm_unlock_anon_vma(avc->anon_vma);
2638                 if (vma->vm_file && vma->vm_file->f_mapping)
2639                         vm_unlock_mapping(vma->vm_file->f_mapping);
2640         }
2641
2642         mutex_unlock(&mm_all_locks_mutex);
2643 }
2644
2645 /*
2646  * initialise the VMA slab
2647  */
2648 void __init mmap_init(void)
2649 {
2650         int ret;
2651
2652         ret = percpu_counter_init(&vm_committed_as, 0);
2653         VM_BUG_ON(ret);
2654 }