Merge tag 'for-linus-20120712' of git://git.infradead.org/linux-mtd
[platform/adaptation/renesas_rcar/renesas_kernel.git] / mm / mmap.c
1 /*
2  * mm/mmap.c
3  *
4  * Written by obz.
5  *
6  * Address space accounting code        <alan@lxorguk.ukuu.org.uk>
7  */
8
9 #include <linux/slab.h>
10 #include <linux/backing-dev.h>
11 #include <linux/mm.h>
12 #include <linux/shm.h>
13 #include <linux/mman.h>
14 #include <linux/pagemap.h>
15 #include <linux/swap.h>
16 #include <linux/syscalls.h>
17 #include <linux/capability.h>
18 #include <linux/init.h>
19 #include <linux/file.h>
20 #include <linux/fs.h>
21 #include <linux/personality.h>
22 #include <linux/security.h>
23 #include <linux/hugetlb.h>
24 #include <linux/profile.h>
25 #include <linux/export.h>
26 #include <linux/mount.h>
27 #include <linux/mempolicy.h>
28 #include <linux/rmap.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/perf_event.h>
31 #include <linux/audit.h>
32 #include <linux/khugepaged.h>
33 #include <linux/uprobes.h>
34
35 #include <asm/uaccess.h>
36 #include <asm/cacheflush.h>
37 #include <asm/tlb.h>
38 #include <asm/mmu_context.h>
39
40 #include "internal.h"
41
42 #ifndef arch_mmap_check
43 #define arch_mmap_check(addr, len, flags)       (0)
44 #endif
45
46 #ifndef arch_rebalance_pgtables
47 #define arch_rebalance_pgtables(addr, len)              (addr)
48 #endif
49
50 static void unmap_region(struct mm_struct *mm,
51                 struct vm_area_struct *vma, struct vm_area_struct *prev,
52                 unsigned long start, unsigned long end);
53
54 /*
55  * WARNING: the debugging will use recursive algorithms so never enable this
56  * unless you know what you are doing.
57  */
58 #undef DEBUG_MM_RB
59
60 /* description of effects of mapping type and prot in current implementation.
61  * this is due to the limited x86 page protection hardware.  The expected
62  * behavior is in parens:
63  *
64  * map_type     prot
65  *              PROT_NONE       PROT_READ       PROT_WRITE      PROT_EXEC
66  * MAP_SHARED   r: (no) no      r: (yes) yes    r: (no) yes     r: (no) yes
67  *              w: (no) no      w: (no) no      w: (yes) yes    w: (no) no
68  *              x: (no) no      x: (no) yes     x: (no) yes     x: (yes) yes
69  *              
70  * MAP_PRIVATE  r: (no) no      r: (yes) yes    r: (no) yes     r: (no) yes
71  *              w: (no) no      w: (no) no      w: (copy) copy  w: (no) no
72  *              x: (no) no      x: (no) yes     x: (no) yes     x: (yes) yes
73  *
74  */
75 pgprot_t protection_map[16] = {
76         __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
77         __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
78 };
79
80 pgprot_t vm_get_page_prot(unsigned long vm_flags)
81 {
82         return __pgprot(pgprot_val(protection_map[vm_flags &
83                                 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
84                         pgprot_val(arch_vm_get_page_prot(vm_flags)));
85 }
86 EXPORT_SYMBOL(vm_get_page_prot);
87
88 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS;  /* heuristic overcommit */
89 int sysctl_overcommit_ratio __read_mostly = 50; /* default is 50% */
90 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
91 /*
92  * Make sure vm_committed_as in one cacheline and not cacheline shared with
93  * other variables. It can be updated by several CPUs frequently.
94  */
95 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
96
97 /*
98  * Check that a process has enough memory to allocate a new virtual
99  * mapping. 0 means there is enough memory for the allocation to
100  * succeed and -ENOMEM implies there is not.
101  *
102  * We currently support three overcommit policies, which are set via the
103  * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting
104  *
105  * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
106  * Additional code 2002 Jul 20 by Robert Love.
107  *
108  * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
109  *
110  * Note this is a helper function intended to be used by LSMs which
111  * wish to use this logic.
112  */
113 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
114 {
115         unsigned long free, allowed;
116
117         vm_acct_memory(pages);
118
119         /*
120          * Sometimes we want to use more memory than we have
121          */
122         if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
123                 return 0;
124
125         if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
126                 free = global_page_state(NR_FREE_PAGES);
127                 free += global_page_state(NR_FILE_PAGES);
128
129                 /*
130                  * shmem pages shouldn't be counted as free in this
131                  * case, they can't be purged, only swapped out, and
132                  * that won't affect the overall amount of available
133                  * memory in the system.
134                  */
135                 free -= global_page_state(NR_SHMEM);
136
137                 free += nr_swap_pages;
138
139                 /*
140                  * Any slabs which are created with the
141                  * SLAB_RECLAIM_ACCOUNT flag claim to have contents
142                  * which are reclaimable, under pressure.  The dentry
143                  * cache and most inode caches should fall into this
144                  */
145                 free += global_page_state(NR_SLAB_RECLAIMABLE);
146
147                 /*
148                  * Leave reserved pages. The pages are not for anonymous pages.
149                  */
150                 if (free <= totalreserve_pages)
151                         goto error;
152                 else
153                         free -= totalreserve_pages;
154
155                 /*
156                  * Leave the last 3% for root
157                  */
158                 if (!cap_sys_admin)
159                         free -= free / 32;
160
161                 if (free > pages)
162                         return 0;
163
164                 goto error;
165         }
166
167         allowed = (totalram_pages - hugetlb_total_pages())
168                 * sysctl_overcommit_ratio / 100;
169         /*
170          * Leave the last 3% for root
171          */
172         if (!cap_sys_admin)
173                 allowed -= allowed / 32;
174         allowed += total_swap_pages;
175
176         /* Don't let a single process grow too big:
177            leave 3% of the size of this process for other processes */
178         if (mm)
179                 allowed -= mm->total_vm / 32;
180
181         if (percpu_counter_read_positive(&vm_committed_as) < allowed)
182                 return 0;
183 error:
184         vm_unacct_memory(pages);
185
186         return -ENOMEM;
187 }
188
189 /*
190  * Requires inode->i_mapping->i_mmap_mutex
191  */
192 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
193                 struct file *file, struct address_space *mapping)
194 {
195         if (vma->vm_flags & VM_DENYWRITE)
196                 atomic_inc(&file->f_path.dentry->d_inode->i_writecount);
197         if (vma->vm_flags & VM_SHARED)
198                 mapping->i_mmap_writable--;
199
200         flush_dcache_mmap_lock(mapping);
201         if (unlikely(vma->vm_flags & VM_NONLINEAR))
202                 list_del_init(&vma->shared.vm_set.list);
203         else
204                 vma_prio_tree_remove(vma, &mapping->i_mmap);
205         flush_dcache_mmap_unlock(mapping);
206 }
207
208 /*
209  * Unlink a file-based vm structure from its prio_tree, to hide
210  * vma from rmap and vmtruncate before freeing its page tables.
211  */
212 void unlink_file_vma(struct vm_area_struct *vma)
213 {
214         struct file *file = vma->vm_file;
215
216         if (file) {
217                 struct address_space *mapping = file->f_mapping;
218                 mutex_lock(&mapping->i_mmap_mutex);
219                 __remove_shared_vm_struct(vma, file, mapping);
220                 mutex_unlock(&mapping->i_mmap_mutex);
221         }
222 }
223
224 /*
225  * Close a vm structure and free it, returning the next.
226  */
227 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
228 {
229         struct vm_area_struct *next = vma->vm_next;
230
231         might_sleep();
232         if (vma->vm_ops && vma->vm_ops->close)
233                 vma->vm_ops->close(vma);
234         if (vma->vm_file) {
235                 fput(vma->vm_file);
236                 if (vma->vm_flags & VM_EXECUTABLE)
237                         removed_exe_file_vma(vma->vm_mm);
238         }
239         mpol_put(vma_policy(vma));
240         kmem_cache_free(vm_area_cachep, vma);
241         return next;
242 }
243
244 static unsigned long do_brk(unsigned long addr, unsigned long len);
245
246 SYSCALL_DEFINE1(brk, unsigned long, brk)
247 {
248         unsigned long rlim, retval;
249         unsigned long newbrk, oldbrk;
250         struct mm_struct *mm = current->mm;
251         unsigned long min_brk;
252
253         down_write(&mm->mmap_sem);
254
255 #ifdef CONFIG_COMPAT_BRK
256         /*
257          * CONFIG_COMPAT_BRK can still be overridden by setting
258          * randomize_va_space to 2, which will still cause mm->start_brk
259          * to be arbitrarily shifted
260          */
261         if (current->brk_randomized)
262                 min_brk = mm->start_brk;
263         else
264                 min_brk = mm->end_data;
265 #else
266         min_brk = mm->start_brk;
267 #endif
268         if (brk < min_brk)
269                 goto out;
270
271         /*
272          * Check against rlimit here. If this check is done later after the test
273          * of oldbrk with newbrk then it can escape the test and let the data
274          * segment grow beyond its set limit the in case where the limit is
275          * not page aligned -Ram Gupta
276          */
277         rlim = rlimit(RLIMIT_DATA);
278         if (rlim < RLIM_INFINITY && (brk - mm->start_brk) +
279                         (mm->end_data - mm->start_data) > rlim)
280                 goto out;
281
282         newbrk = PAGE_ALIGN(brk);
283         oldbrk = PAGE_ALIGN(mm->brk);
284         if (oldbrk == newbrk)
285                 goto set_brk;
286
287         /* Always allow shrinking brk. */
288         if (brk <= mm->brk) {
289                 if (!do_munmap(mm, newbrk, oldbrk-newbrk))
290                         goto set_brk;
291                 goto out;
292         }
293
294         /* Check against existing mmap mappings. */
295         if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
296                 goto out;
297
298         /* Ok, looks good - let it rip. */
299         if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
300                 goto out;
301 set_brk:
302         mm->brk = brk;
303 out:
304         retval = mm->brk;
305         up_write(&mm->mmap_sem);
306         return retval;
307 }
308
309 #ifdef DEBUG_MM_RB
310 static int browse_rb(struct rb_root *root)
311 {
312         int i = 0, j;
313         struct rb_node *nd, *pn = NULL;
314         unsigned long prev = 0, pend = 0;
315
316         for (nd = rb_first(root); nd; nd = rb_next(nd)) {
317                 struct vm_area_struct *vma;
318                 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
319                 if (vma->vm_start < prev)
320                         printk("vm_start %lx prev %lx\n", vma->vm_start, prev), i = -1;
321                 if (vma->vm_start < pend)
322                         printk("vm_start %lx pend %lx\n", vma->vm_start, pend);
323                 if (vma->vm_start > vma->vm_end)
324                         printk("vm_end %lx < vm_start %lx\n", vma->vm_end, vma->vm_start);
325                 i++;
326                 pn = nd;
327                 prev = vma->vm_start;
328                 pend = vma->vm_end;
329         }
330         j = 0;
331         for (nd = pn; nd; nd = rb_prev(nd)) {
332                 j++;
333         }
334         if (i != j)
335                 printk("backwards %d, forwards %d\n", j, i), i = 0;
336         return i;
337 }
338
339 void validate_mm(struct mm_struct *mm)
340 {
341         int bug = 0;
342         int i = 0;
343         struct vm_area_struct *tmp = mm->mmap;
344         while (tmp) {
345                 tmp = tmp->vm_next;
346                 i++;
347         }
348         if (i != mm->map_count)
349                 printk("map_count %d vm_next %d\n", mm->map_count, i), bug = 1;
350         i = browse_rb(&mm->mm_rb);
351         if (i != mm->map_count)
352                 printk("map_count %d rb %d\n", mm->map_count, i), bug = 1;
353         BUG_ON(bug);
354 }
355 #else
356 #define validate_mm(mm) do { } while (0)
357 #endif
358
359 static struct vm_area_struct *
360 find_vma_prepare(struct mm_struct *mm, unsigned long addr,
361                 struct vm_area_struct **pprev, struct rb_node ***rb_link,
362                 struct rb_node ** rb_parent)
363 {
364         struct vm_area_struct * vma;
365         struct rb_node ** __rb_link, * __rb_parent, * rb_prev;
366
367         __rb_link = &mm->mm_rb.rb_node;
368         rb_prev = __rb_parent = NULL;
369         vma = NULL;
370
371         while (*__rb_link) {
372                 struct vm_area_struct *vma_tmp;
373
374                 __rb_parent = *__rb_link;
375                 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
376
377                 if (vma_tmp->vm_end > addr) {
378                         vma = vma_tmp;
379                         if (vma_tmp->vm_start <= addr)
380                                 break;
381                         __rb_link = &__rb_parent->rb_left;
382                 } else {
383                         rb_prev = __rb_parent;
384                         __rb_link = &__rb_parent->rb_right;
385                 }
386         }
387
388         *pprev = NULL;
389         if (rb_prev)
390                 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
391         *rb_link = __rb_link;
392         *rb_parent = __rb_parent;
393         return vma;
394 }
395
396 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
397                 struct rb_node **rb_link, struct rb_node *rb_parent)
398 {
399         rb_link_node(&vma->vm_rb, rb_parent, rb_link);
400         rb_insert_color(&vma->vm_rb, &mm->mm_rb);
401 }
402
403 static void __vma_link_file(struct vm_area_struct *vma)
404 {
405         struct file *file;
406
407         file = vma->vm_file;
408         if (file) {
409                 struct address_space *mapping = file->f_mapping;
410
411                 if (vma->vm_flags & VM_DENYWRITE)
412                         atomic_dec(&file->f_path.dentry->d_inode->i_writecount);
413                 if (vma->vm_flags & VM_SHARED)
414                         mapping->i_mmap_writable++;
415
416                 flush_dcache_mmap_lock(mapping);
417                 if (unlikely(vma->vm_flags & VM_NONLINEAR))
418                         vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear);
419                 else
420                         vma_prio_tree_insert(vma, &mapping->i_mmap);
421                 flush_dcache_mmap_unlock(mapping);
422         }
423 }
424
425 static void
426 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
427         struct vm_area_struct *prev, struct rb_node **rb_link,
428         struct rb_node *rb_parent)
429 {
430         __vma_link_list(mm, vma, prev, rb_parent);
431         __vma_link_rb(mm, vma, rb_link, rb_parent);
432 }
433
434 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
435                         struct vm_area_struct *prev, struct rb_node **rb_link,
436                         struct rb_node *rb_parent)
437 {
438         struct address_space *mapping = NULL;
439
440         if (vma->vm_file)
441                 mapping = vma->vm_file->f_mapping;
442
443         if (mapping)
444                 mutex_lock(&mapping->i_mmap_mutex);
445
446         __vma_link(mm, vma, prev, rb_link, rb_parent);
447         __vma_link_file(vma);
448
449         if (mapping)
450                 mutex_unlock(&mapping->i_mmap_mutex);
451
452         mm->map_count++;
453         validate_mm(mm);
454 }
455
456 /*
457  * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
458  * mm's list and rbtree.  It has already been inserted into the prio_tree.
459  */
460 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
461 {
462         struct vm_area_struct *__vma, *prev;
463         struct rb_node **rb_link, *rb_parent;
464
465         __vma = find_vma_prepare(mm, vma->vm_start,&prev, &rb_link, &rb_parent);
466         BUG_ON(__vma && __vma->vm_start < vma->vm_end);
467         __vma_link(mm, vma, prev, rb_link, rb_parent);
468         mm->map_count++;
469 }
470
471 static inline void
472 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
473                 struct vm_area_struct *prev)
474 {
475         struct vm_area_struct *next = vma->vm_next;
476
477         prev->vm_next = next;
478         if (next)
479                 next->vm_prev = prev;
480         rb_erase(&vma->vm_rb, &mm->mm_rb);
481         if (mm->mmap_cache == vma)
482                 mm->mmap_cache = prev;
483 }
484
485 /*
486  * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
487  * is already present in an i_mmap tree without adjusting the tree.
488  * The following helper function should be used when such adjustments
489  * are necessary.  The "insert" vma (if any) is to be inserted
490  * before we drop the necessary locks.
491  */
492 int vma_adjust(struct vm_area_struct *vma, unsigned long start,
493         unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
494 {
495         struct mm_struct *mm = vma->vm_mm;
496         struct vm_area_struct *next = vma->vm_next;
497         struct vm_area_struct *importer = NULL;
498         struct address_space *mapping = NULL;
499         struct prio_tree_root *root = NULL;
500         struct anon_vma *anon_vma = NULL;
501         struct file *file = vma->vm_file;
502         long adjust_next = 0;
503         int remove_next = 0;
504
505         if (next && !insert) {
506                 struct vm_area_struct *exporter = NULL;
507
508                 if (end >= next->vm_end) {
509                         /*
510                          * vma expands, overlapping all the next, and
511                          * perhaps the one after too (mprotect case 6).
512                          */
513 again:                  remove_next = 1 + (end > next->vm_end);
514                         end = next->vm_end;
515                         exporter = next;
516                         importer = vma;
517                 } else if (end > next->vm_start) {
518                         /*
519                          * vma expands, overlapping part of the next:
520                          * mprotect case 5 shifting the boundary up.
521                          */
522                         adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
523                         exporter = next;
524                         importer = vma;
525                 } else if (end < vma->vm_end) {
526                         /*
527                          * vma shrinks, and !insert tells it's not
528                          * split_vma inserting another: so it must be
529                          * mprotect case 4 shifting the boundary down.
530                          */
531                         adjust_next = - ((vma->vm_end - end) >> PAGE_SHIFT);
532                         exporter = vma;
533                         importer = next;
534                 }
535
536                 /*
537                  * Easily overlooked: when mprotect shifts the boundary,
538                  * make sure the expanding vma has anon_vma set if the
539                  * shrinking vma had, to cover any anon pages imported.
540                  */
541                 if (exporter && exporter->anon_vma && !importer->anon_vma) {
542                         if (anon_vma_clone(importer, exporter))
543                                 return -ENOMEM;
544                         importer->anon_vma = exporter->anon_vma;
545                 }
546         }
547
548         if (file) {
549                 mapping = file->f_mapping;
550                 if (!(vma->vm_flags & VM_NONLINEAR)) {
551                         root = &mapping->i_mmap;
552                         uprobe_munmap(vma, vma->vm_start, vma->vm_end);
553
554                         if (adjust_next)
555                                 uprobe_munmap(next, next->vm_start,
556                                                         next->vm_end);
557                 }
558
559                 mutex_lock(&mapping->i_mmap_mutex);
560                 if (insert) {
561                         /*
562                          * Put into prio_tree now, so instantiated pages
563                          * are visible to arm/parisc __flush_dcache_page
564                          * throughout; but we cannot insert into address
565                          * space until vma start or end is updated.
566                          */
567                         __vma_link_file(insert);
568                 }
569         }
570
571         vma_adjust_trans_huge(vma, start, end, adjust_next);
572
573         /*
574          * When changing only vma->vm_end, we don't really need anon_vma
575          * lock. This is a fairly rare case by itself, but the anon_vma
576          * lock may be shared between many sibling processes.  Skipping
577          * the lock for brk adjustments makes a difference sometimes.
578          */
579         if (vma->anon_vma && (importer || start != vma->vm_start)) {
580                 anon_vma = vma->anon_vma;
581                 anon_vma_lock(anon_vma);
582         }
583
584         if (root) {
585                 flush_dcache_mmap_lock(mapping);
586                 vma_prio_tree_remove(vma, root);
587                 if (adjust_next)
588                         vma_prio_tree_remove(next, root);
589         }
590
591         vma->vm_start = start;
592         vma->vm_end = end;
593         vma->vm_pgoff = pgoff;
594         if (adjust_next) {
595                 next->vm_start += adjust_next << PAGE_SHIFT;
596                 next->vm_pgoff += adjust_next;
597         }
598
599         if (root) {
600                 if (adjust_next)
601                         vma_prio_tree_insert(next, root);
602                 vma_prio_tree_insert(vma, root);
603                 flush_dcache_mmap_unlock(mapping);
604         }
605
606         if (remove_next) {
607                 /*
608                  * vma_merge has merged next into vma, and needs
609                  * us to remove next before dropping the locks.
610                  */
611                 __vma_unlink(mm, next, vma);
612                 if (file)
613                         __remove_shared_vm_struct(next, file, mapping);
614         } else if (insert) {
615                 /*
616                  * split_vma has split insert from vma, and needs
617                  * us to insert it before dropping the locks
618                  * (it may either follow vma or precede it).
619                  */
620                 __insert_vm_struct(mm, insert);
621         }
622
623         if (anon_vma)
624                 anon_vma_unlock(anon_vma);
625         if (mapping)
626                 mutex_unlock(&mapping->i_mmap_mutex);
627
628         if (root) {
629                 uprobe_mmap(vma);
630
631                 if (adjust_next)
632                         uprobe_mmap(next);
633         }
634
635         if (remove_next) {
636                 if (file) {
637                         uprobe_munmap(next, next->vm_start, next->vm_end);
638                         fput(file);
639                         if (next->vm_flags & VM_EXECUTABLE)
640                                 removed_exe_file_vma(mm);
641                 }
642                 if (next->anon_vma)
643                         anon_vma_merge(vma, next);
644                 mm->map_count--;
645                 mpol_put(vma_policy(next));
646                 kmem_cache_free(vm_area_cachep, next);
647                 /*
648                  * In mprotect's case 6 (see comments on vma_merge),
649                  * we must remove another next too. It would clutter
650                  * up the code too much to do both in one go.
651                  */
652                 if (remove_next == 2) {
653                         next = vma->vm_next;
654                         goto again;
655                 }
656         }
657         if (insert && file)
658                 uprobe_mmap(insert);
659
660         validate_mm(mm);
661
662         return 0;
663 }
664
665 /*
666  * If the vma has a ->close operation then the driver probably needs to release
667  * per-vma resources, so we don't attempt to merge those.
668  */
669 static inline int is_mergeable_vma(struct vm_area_struct *vma,
670                         struct file *file, unsigned long vm_flags)
671 {
672         /* VM_CAN_NONLINEAR may get set later by f_op->mmap() */
673         if ((vma->vm_flags ^ vm_flags) & ~VM_CAN_NONLINEAR)
674                 return 0;
675         if (vma->vm_file != file)
676                 return 0;
677         if (vma->vm_ops && vma->vm_ops->close)
678                 return 0;
679         return 1;
680 }
681
682 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
683                                         struct anon_vma *anon_vma2,
684                                         struct vm_area_struct *vma)
685 {
686         /*
687          * The list_is_singular() test is to avoid merging VMA cloned from
688          * parents. This can improve scalability caused by anon_vma lock.
689          */
690         if ((!anon_vma1 || !anon_vma2) && (!vma ||
691                 list_is_singular(&vma->anon_vma_chain)))
692                 return 1;
693         return anon_vma1 == anon_vma2;
694 }
695
696 /*
697  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
698  * in front of (at a lower virtual address and file offset than) the vma.
699  *
700  * We cannot merge two vmas if they have differently assigned (non-NULL)
701  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
702  *
703  * We don't check here for the merged mmap wrapping around the end of pagecache
704  * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
705  * wrap, nor mmaps which cover the final page at index -1UL.
706  */
707 static int
708 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
709         struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
710 {
711         if (is_mergeable_vma(vma, file, vm_flags) &&
712             is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
713                 if (vma->vm_pgoff == vm_pgoff)
714                         return 1;
715         }
716         return 0;
717 }
718
719 /*
720  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
721  * beyond (at a higher virtual address and file offset than) the vma.
722  *
723  * We cannot merge two vmas if they have differently assigned (non-NULL)
724  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
725  */
726 static int
727 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
728         struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
729 {
730         if (is_mergeable_vma(vma, file, vm_flags) &&
731             is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
732                 pgoff_t vm_pglen;
733                 vm_pglen = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
734                 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
735                         return 1;
736         }
737         return 0;
738 }
739
740 /*
741  * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
742  * whether that can be merged with its predecessor or its successor.
743  * Or both (it neatly fills a hole).
744  *
745  * In most cases - when called for mmap, brk or mremap - [addr,end) is
746  * certain not to be mapped by the time vma_merge is called; but when
747  * called for mprotect, it is certain to be already mapped (either at
748  * an offset within prev, or at the start of next), and the flags of
749  * this area are about to be changed to vm_flags - and the no-change
750  * case has already been eliminated.
751  *
752  * The following mprotect cases have to be considered, where AAAA is
753  * the area passed down from mprotect_fixup, never extending beyond one
754  * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
755  *
756  *     AAAA             AAAA                AAAA          AAAA
757  *    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPNNNNXXXX
758  *    cannot merge    might become    might become    might become
759  *                    PPNNNNNNNNNN    PPPPPPPPPPNN    PPPPPPPPPPPP 6 or
760  *    mmap, brk or    case 4 below    case 5 below    PPPPPPPPXXXX 7 or
761  *    mremap move:                                    PPPPNNNNNNNN 8
762  *        AAAA
763  *    PPPP    NNNN    PPPPPPPPPPPP    PPPPPPPPNNNN    PPPPNNNNNNNN
764  *    might become    case 1 below    case 2 below    case 3 below
765  *
766  * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
767  * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
768  */
769 struct vm_area_struct *vma_merge(struct mm_struct *mm,
770                         struct vm_area_struct *prev, unsigned long addr,
771                         unsigned long end, unsigned long vm_flags,
772                         struct anon_vma *anon_vma, struct file *file,
773                         pgoff_t pgoff, struct mempolicy *policy)
774 {
775         pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
776         struct vm_area_struct *area, *next;
777         int err;
778
779         /*
780          * We later require that vma->vm_flags == vm_flags,
781          * so this tests vma->vm_flags & VM_SPECIAL, too.
782          */
783         if (vm_flags & VM_SPECIAL)
784                 return NULL;
785
786         if (prev)
787                 next = prev->vm_next;
788         else
789                 next = mm->mmap;
790         area = next;
791         if (next && next->vm_end == end)                /* cases 6, 7, 8 */
792                 next = next->vm_next;
793
794         /*
795          * Can it merge with the predecessor?
796          */
797         if (prev && prev->vm_end == addr &&
798                         mpol_equal(vma_policy(prev), policy) &&
799                         can_vma_merge_after(prev, vm_flags,
800                                                 anon_vma, file, pgoff)) {
801                 /*
802                  * OK, it can.  Can we now merge in the successor as well?
803                  */
804                 if (next && end == next->vm_start &&
805                                 mpol_equal(policy, vma_policy(next)) &&
806                                 can_vma_merge_before(next, vm_flags,
807                                         anon_vma, file, pgoff+pglen) &&
808                                 is_mergeable_anon_vma(prev->anon_vma,
809                                                       next->anon_vma, NULL)) {
810                                                         /* cases 1, 6 */
811                         err = vma_adjust(prev, prev->vm_start,
812                                 next->vm_end, prev->vm_pgoff, NULL);
813                 } else                                  /* cases 2, 5, 7 */
814                         err = vma_adjust(prev, prev->vm_start,
815                                 end, prev->vm_pgoff, NULL);
816                 if (err)
817                         return NULL;
818                 khugepaged_enter_vma_merge(prev);
819                 return prev;
820         }
821
822         /*
823          * Can this new request be merged in front of next?
824          */
825         if (next && end == next->vm_start &&
826                         mpol_equal(policy, vma_policy(next)) &&
827                         can_vma_merge_before(next, vm_flags,
828                                         anon_vma, file, pgoff+pglen)) {
829                 if (prev && addr < prev->vm_end)        /* case 4 */
830                         err = vma_adjust(prev, prev->vm_start,
831                                 addr, prev->vm_pgoff, NULL);
832                 else                                    /* cases 3, 8 */
833                         err = vma_adjust(area, addr, next->vm_end,
834                                 next->vm_pgoff - pglen, NULL);
835                 if (err)
836                         return NULL;
837                 khugepaged_enter_vma_merge(area);
838                 return area;
839         }
840
841         return NULL;
842 }
843
844 /*
845  * Rough compatbility check to quickly see if it's even worth looking
846  * at sharing an anon_vma.
847  *
848  * They need to have the same vm_file, and the flags can only differ
849  * in things that mprotect may change.
850  *
851  * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
852  * we can merge the two vma's. For example, we refuse to merge a vma if
853  * there is a vm_ops->close() function, because that indicates that the
854  * driver is doing some kind of reference counting. But that doesn't
855  * really matter for the anon_vma sharing case.
856  */
857 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
858 {
859         return a->vm_end == b->vm_start &&
860                 mpol_equal(vma_policy(a), vma_policy(b)) &&
861                 a->vm_file == b->vm_file &&
862                 !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC)) &&
863                 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
864 }
865
866 /*
867  * Do some basic sanity checking to see if we can re-use the anon_vma
868  * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
869  * the same as 'old', the other will be the new one that is trying
870  * to share the anon_vma.
871  *
872  * NOTE! This runs with mm_sem held for reading, so it is possible that
873  * the anon_vma of 'old' is concurrently in the process of being set up
874  * by another page fault trying to merge _that_. But that's ok: if it
875  * is being set up, that automatically means that it will be a singleton
876  * acceptable for merging, so we can do all of this optimistically. But
877  * we do that ACCESS_ONCE() to make sure that we never re-load the pointer.
878  *
879  * IOW: that the "list_is_singular()" test on the anon_vma_chain only
880  * matters for the 'stable anon_vma' case (ie the thing we want to avoid
881  * is to return an anon_vma that is "complex" due to having gone through
882  * a fork).
883  *
884  * We also make sure that the two vma's are compatible (adjacent,
885  * and with the same memory policies). That's all stable, even with just
886  * a read lock on the mm_sem.
887  */
888 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
889 {
890         if (anon_vma_compatible(a, b)) {
891                 struct anon_vma *anon_vma = ACCESS_ONCE(old->anon_vma);
892
893                 if (anon_vma && list_is_singular(&old->anon_vma_chain))
894                         return anon_vma;
895         }
896         return NULL;
897 }
898
899 /*
900  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
901  * neighbouring vmas for a suitable anon_vma, before it goes off
902  * to allocate a new anon_vma.  It checks because a repetitive
903  * sequence of mprotects and faults may otherwise lead to distinct
904  * anon_vmas being allocated, preventing vma merge in subsequent
905  * mprotect.
906  */
907 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
908 {
909         struct anon_vma *anon_vma;
910         struct vm_area_struct *near;
911
912         near = vma->vm_next;
913         if (!near)
914                 goto try_prev;
915
916         anon_vma = reusable_anon_vma(near, vma, near);
917         if (anon_vma)
918                 return anon_vma;
919 try_prev:
920         near = vma->vm_prev;
921         if (!near)
922                 goto none;
923
924         anon_vma = reusable_anon_vma(near, near, vma);
925         if (anon_vma)
926                 return anon_vma;
927 none:
928         /*
929          * There's no absolute need to look only at touching neighbours:
930          * we could search further afield for "compatible" anon_vmas.
931          * But it would probably just be a waste of time searching,
932          * or lead to too many vmas hanging off the same anon_vma.
933          * We're trying to allow mprotect remerging later on,
934          * not trying to minimize memory used for anon_vmas.
935          */
936         return NULL;
937 }
938
939 #ifdef CONFIG_PROC_FS
940 void vm_stat_account(struct mm_struct *mm, unsigned long flags,
941                                                 struct file *file, long pages)
942 {
943         const unsigned long stack_flags
944                 = VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN);
945
946         if (file) {
947                 mm->shared_vm += pages;
948                 if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC)
949                         mm->exec_vm += pages;
950         } else if (flags & stack_flags)
951                 mm->stack_vm += pages;
952         if (flags & (VM_RESERVED|VM_IO))
953                 mm->reserved_vm += pages;
954 }
955 #endif /* CONFIG_PROC_FS */
956
957 /*
958  * If a hint addr is less than mmap_min_addr change hint to be as
959  * low as possible but still greater than mmap_min_addr
960  */
961 static inline unsigned long round_hint_to_min(unsigned long hint)
962 {
963         hint &= PAGE_MASK;
964         if (((void *)hint != NULL) &&
965             (hint < mmap_min_addr))
966                 return PAGE_ALIGN(mmap_min_addr);
967         return hint;
968 }
969
970 /*
971  * The caller must hold down_write(&current->mm->mmap_sem).
972  */
973
974 unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
975                         unsigned long len, unsigned long prot,
976                         unsigned long flags, unsigned long pgoff)
977 {
978         struct mm_struct * mm = current->mm;
979         struct inode *inode;
980         vm_flags_t vm_flags;
981
982         /*
983          * Does the application expect PROT_READ to imply PROT_EXEC?
984          *
985          * (the exception is when the underlying filesystem is noexec
986          *  mounted, in which case we dont add PROT_EXEC.)
987          */
988         if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
989                 if (!(file && (file->f_path.mnt->mnt_flags & MNT_NOEXEC)))
990                         prot |= PROT_EXEC;
991
992         if (!len)
993                 return -EINVAL;
994
995         if (!(flags & MAP_FIXED))
996                 addr = round_hint_to_min(addr);
997
998         /* Careful about overflows.. */
999         len = PAGE_ALIGN(len);
1000         if (!len)
1001                 return -ENOMEM;
1002
1003         /* offset overflow? */
1004         if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1005                return -EOVERFLOW;
1006
1007         /* Too many mappings? */
1008         if (mm->map_count > sysctl_max_map_count)
1009                 return -ENOMEM;
1010
1011         /* Obtain the address to map to. we verify (or select) it and ensure
1012          * that it represents a valid section of the address space.
1013          */
1014         addr = get_unmapped_area(file, addr, len, pgoff, flags);
1015         if (addr & ~PAGE_MASK)
1016                 return addr;
1017
1018         /* Do simple checking here so the lower-level routines won't have
1019          * to. we assume access permissions have been handled by the open
1020          * of the memory object, so we don't do any here.
1021          */
1022         vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
1023                         mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1024
1025         if (flags & MAP_LOCKED)
1026                 if (!can_do_mlock())
1027                         return -EPERM;
1028
1029         /* mlock MCL_FUTURE? */
1030         if (vm_flags & VM_LOCKED) {
1031                 unsigned long locked, lock_limit;
1032                 locked = len >> PAGE_SHIFT;
1033                 locked += mm->locked_vm;
1034                 lock_limit = rlimit(RLIMIT_MEMLOCK);
1035                 lock_limit >>= PAGE_SHIFT;
1036                 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1037                         return -EAGAIN;
1038         }
1039
1040         inode = file ? file->f_path.dentry->d_inode : NULL;
1041
1042         if (file) {
1043                 switch (flags & MAP_TYPE) {
1044                 case MAP_SHARED:
1045                         if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1046                                 return -EACCES;
1047
1048                         /*
1049                          * Make sure we don't allow writing to an append-only
1050                          * file..
1051                          */
1052                         if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1053                                 return -EACCES;
1054
1055                         /*
1056                          * Make sure there are no mandatory locks on the file.
1057                          */
1058                         if (locks_verify_locked(inode))
1059                                 return -EAGAIN;
1060
1061                         vm_flags |= VM_SHARED | VM_MAYSHARE;
1062                         if (!(file->f_mode & FMODE_WRITE))
1063                                 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1064
1065                         /* fall through */
1066                 case MAP_PRIVATE:
1067                         if (!(file->f_mode & FMODE_READ))
1068                                 return -EACCES;
1069                         if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
1070                                 if (vm_flags & VM_EXEC)
1071                                         return -EPERM;
1072                                 vm_flags &= ~VM_MAYEXEC;
1073                         }
1074
1075                         if (!file->f_op || !file->f_op->mmap)
1076                                 return -ENODEV;
1077                         break;
1078
1079                 default:
1080                         return -EINVAL;
1081                 }
1082         } else {
1083                 switch (flags & MAP_TYPE) {
1084                 case MAP_SHARED:
1085                         /*
1086                          * Ignore pgoff.
1087                          */
1088                         pgoff = 0;
1089                         vm_flags |= VM_SHARED | VM_MAYSHARE;
1090                         break;
1091                 case MAP_PRIVATE:
1092                         /*
1093                          * Set pgoff according to addr for anon_vma.
1094                          */
1095                         pgoff = addr >> PAGE_SHIFT;
1096                         break;
1097                 default:
1098                         return -EINVAL;
1099                 }
1100         }
1101
1102         return mmap_region(file, addr, len, flags, vm_flags, pgoff);
1103 }
1104
1105 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1106                 unsigned long, prot, unsigned long, flags,
1107                 unsigned long, fd, unsigned long, pgoff)
1108 {
1109         struct file *file = NULL;
1110         unsigned long retval = -EBADF;
1111
1112         if (!(flags & MAP_ANONYMOUS)) {
1113                 audit_mmap_fd(fd, flags);
1114                 if (unlikely(flags & MAP_HUGETLB))
1115                         return -EINVAL;
1116                 file = fget(fd);
1117                 if (!file)
1118                         goto out;
1119         } else if (flags & MAP_HUGETLB) {
1120                 struct user_struct *user = NULL;
1121                 /*
1122                  * VM_NORESERVE is used because the reservations will be
1123                  * taken when vm_ops->mmap() is called
1124                  * A dummy user value is used because we are not locking
1125                  * memory so no accounting is necessary
1126                  */
1127                 file = hugetlb_file_setup(HUGETLB_ANON_FILE, addr, len,
1128                                                 VM_NORESERVE, &user,
1129                                                 HUGETLB_ANONHUGE_INODE);
1130                 if (IS_ERR(file))
1131                         return PTR_ERR(file);
1132         }
1133
1134         flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1135
1136         retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1137         if (file)
1138                 fput(file);
1139 out:
1140         return retval;
1141 }
1142
1143 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1144 struct mmap_arg_struct {
1145         unsigned long addr;
1146         unsigned long len;
1147         unsigned long prot;
1148         unsigned long flags;
1149         unsigned long fd;
1150         unsigned long offset;
1151 };
1152
1153 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1154 {
1155         struct mmap_arg_struct a;
1156
1157         if (copy_from_user(&a, arg, sizeof(a)))
1158                 return -EFAULT;
1159         if (a.offset & ~PAGE_MASK)
1160                 return -EINVAL;
1161
1162         return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1163                               a.offset >> PAGE_SHIFT);
1164 }
1165 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1166
1167 /*
1168  * Some shared mappigns will want the pages marked read-only
1169  * to track write events. If so, we'll downgrade vm_page_prot
1170  * to the private version (using protection_map[] without the
1171  * VM_SHARED bit).
1172  */
1173 int vma_wants_writenotify(struct vm_area_struct *vma)
1174 {
1175         vm_flags_t vm_flags = vma->vm_flags;
1176
1177         /* If it was private or non-writable, the write bit is already clear */
1178         if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1179                 return 0;
1180
1181         /* The backer wishes to know when pages are first written to? */
1182         if (vma->vm_ops && vma->vm_ops->page_mkwrite)
1183                 return 1;
1184
1185         /* The open routine did something to the protections already? */
1186         if (pgprot_val(vma->vm_page_prot) !=
1187             pgprot_val(vm_get_page_prot(vm_flags)))
1188                 return 0;
1189
1190         /* Specialty mapping? */
1191         if (vm_flags & (VM_PFNMAP|VM_INSERTPAGE))
1192                 return 0;
1193
1194         /* Can the mapping track the dirty pages? */
1195         return vma->vm_file && vma->vm_file->f_mapping &&
1196                 mapping_cap_account_dirty(vma->vm_file->f_mapping);
1197 }
1198
1199 /*
1200  * We account for memory if it's a private writeable mapping,
1201  * not hugepages and VM_NORESERVE wasn't set.
1202  */
1203 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1204 {
1205         /*
1206          * hugetlb has its own accounting separate from the core VM
1207          * VM_HUGETLB may not be set yet so we cannot check for that flag.
1208          */
1209         if (file && is_file_hugepages(file))
1210                 return 0;
1211
1212         return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1213 }
1214
1215 unsigned long mmap_region(struct file *file, unsigned long addr,
1216                           unsigned long len, unsigned long flags,
1217                           vm_flags_t vm_flags, unsigned long pgoff)
1218 {
1219         struct mm_struct *mm = current->mm;
1220         struct vm_area_struct *vma, *prev;
1221         int correct_wcount = 0;
1222         int error;
1223         struct rb_node **rb_link, *rb_parent;
1224         unsigned long charged = 0;
1225         struct inode *inode =  file ? file->f_path.dentry->d_inode : NULL;
1226
1227         /* Clear old maps */
1228         error = -ENOMEM;
1229 munmap_back:
1230         vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
1231         if (vma && vma->vm_start < addr + len) {
1232                 if (do_munmap(mm, addr, len))
1233                         return -ENOMEM;
1234                 goto munmap_back;
1235         }
1236
1237         /* Check against address space limit. */
1238         if (!may_expand_vm(mm, len >> PAGE_SHIFT))
1239                 return -ENOMEM;
1240
1241         /*
1242          * Set 'VM_NORESERVE' if we should not account for the
1243          * memory use of this mapping.
1244          */
1245         if ((flags & MAP_NORESERVE)) {
1246                 /* We honor MAP_NORESERVE if allowed to overcommit */
1247                 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1248                         vm_flags |= VM_NORESERVE;
1249
1250                 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1251                 if (file && is_file_hugepages(file))
1252                         vm_flags |= VM_NORESERVE;
1253         }
1254
1255         /*
1256          * Private writable mapping: check memory availability
1257          */
1258         if (accountable_mapping(file, vm_flags)) {
1259                 charged = len >> PAGE_SHIFT;
1260                 if (security_vm_enough_memory_mm(mm, charged))
1261                         return -ENOMEM;
1262                 vm_flags |= VM_ACCOUNT;
1263         }
1264
1265         /*
1266          * Can we just expand an old mapping?
1267          */
1268         vma = vma_merge(mm, prev, addr, addr + len, vm_flags, NULL, file, pgoff, NULL);
1269         if (vma)
1270                 goto out;
1271
1272         /*
1273          * Determine the object being mapped and call the appropriate
1274          * specific mapper. the address has already been validated, but
1275          * not unmapped, but the maps are removed from the list.
1276          */
1277         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1278         if (!vma) {
1279                 error = -ENOMEM;
1280                 goto unacct_error;
1281         }
1282
1283         vma->vm_mm = mm;
1284         vma->vm_start = addr;
1285         vma->vm_end = addr + len;
1286         vma->vm_flags = vm_flags;
1287         vma->vm_page_prot = vm_get_page_prot(vm_flags);
1288         vma->vm_pgoff = pgoff;
1289         INIT_LIST_HEAD(&vma->anon_vma_chain);
1290
1291         error = -EINVAL;        /* when rejecting VM_GROWSDOWN|VM_GROWSUP */
1292
1293         if (file) {
1294                 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1295                         goto free_vma;
1296                 if (vm_flags & VM_DENYWRITE) {
1297                         error = deny_write_access(file);
1298                         if (error)
1299                                 goto free_vma;
1300                         correct_wcount = 1;
1301                 }
1302                 vma->vm_file = file;
1303                 get_file(file);
1304                 error = file->f_op->mmap(file, vma);
1305                 if (error)
1306                         goto unmap_and_free_vma;
1307                 if (vm_flags & VM_EXECUTABLE)
1308                         added_exe_file_vma(mm);
1309
1310                 /* Can addr have changed??
1311                  *
1312                  * Answer: Yes, several device drivers can do it in their
1313                  *         f_op->mmap method. -DaveM
1314                  */
1315                 addr = vma->vm_start;
1316                 pgoff = vma->vm_pgoff;
1317                 vm_flags = vma->vm_flags;
1318         } else if (vm_flags & VM_SHARED) {
1319                 if (unlikely(vm_flags & (VM_GROWSDOWN|VM_GROWSUP)))
1320                         goto free_vma;
1321                 error = shmem_zero_setup(vma);
1322                 if (error)
1323                         goto free_vma;
1324         }
1325
1326         if (vma_wants_writenotify(vma)) {
1327                 pgprot_t pprot = vma->vm_page_prot;
1328
1329                 /* Can vma->vm_page_prot have changed??
1330                  *
1331                  * Answer: Yes, drivers may have changed it in their
1332                  *         f_op->mmap method.
1333                  *
1334                  * Ensures that vmas marked as uncached stay that way.
1335                  */
1336                 vma->vm_page_prot = vm_get_page_prot(vm_flags & ~VM_SHARED);
1337                 if (pgprot_val(pprot) == pgprot_val(pgprot_noncached(pprot)))
1338                         vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1339         }
1340
1341         vma_link(mm, vma, prev, rb_link, rb_parent);
1342         file = vma->vm_file;
1343
1344         /* Once vma denies write, undo our temporary denial count */
1345         if (correct_wcount)
1346                 atomic_inc(&inode->i_writecount);
1347 out:
1348         perf_event_mmap(vma);
1349
1350         mm->total_vm += len >> PAGE_SHIFT;
1351         vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT);
1352         if (vm_flags & VM_LOCKED) {
1353                 if (!mlock_vma_pages_range(vma, addr, addr + len))
1354                         mm->locked_vm += (len >> PAGE_SHIFT);
1355         } else if ((flags & MAP_POPULATE) && !(flags & MAP_NONBLOCK))
1356                 make_pages_present(addr, addr + len);
1357
1358         if (file && uprobe_mmap(vma))
1359                 /* matching probes but cannot insert */
1360                 goto unmap_and_free_vma;
1361
1362         return addr;
1363
1364 unmap_and_free_vma:
1365         if (correct_wcount)
1366                 atomic_inc(&inode->i_writecount);
1367         vma->vm_file = NULL;
1368         fput(file);
1369
1370         /* Undo any partial mapping done by a device driver. */
1371         unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1372         charged = 0;
1373 free_vma:
1374         kmem_cache_free(vm_area_cachep, vma);
1375 unacct_error:
1376         if (charged)
1377                 vm_unacct_memory(charged);
1378         return error;
1379 }
1380
1381 /* Get an address range which is currently unmapped.
1382  * For shmat() with addr=0.
1383  *
1384  * Ugly calling convention alert:
1385  * Return value with the low bits set means error value,
1386  * ie
1387  *      if (ret & ~PAGE_MASK)
1388  *              error = ret;
1389  *
1390  * This function "knows" that -ENOMEM has the bits set.
1391  */
1392 #ifndef HAVE_ARCH_UNMAPPED_AREA
1393 unsigned long
1394 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1395                 unsigned long len, unsigned long pgoff, unsigned long flags)
1396 {
1397         struct mm_struct *mm = current->mm;
1398         struct vm_area_struct *vma;
1399         unsigned long start_addr;
1400
1401         if (len > TASK_SIZE)
1402                 return -ENOMEM;
1403
1404         if (flags & MAP_FIXED)
1405                 return addr;
1406
1407         if (addr) {
1408                 addr = PAGE_ALIGN(addr);
1409                 vma = find_vma(mm, addr);
1410                 if (TASK_SIZE - len >= addr &&
1411                     (!vma || addr + len <= vma->vm_start))
1412                         return addr;
1413         }
1414         if (len > mm->cached_hole_size) {
1415                 start_addr = addr = mm->free_area_cache;
1416         } else {
1417                 start_addr = addr = TASK_UNMAPPED_BASE;
1418                 mm->cached_hole_size = 0;
1419         }
1420
1421 full_search:
1422         for (vma = find_vma(mm, addr); ; vma = vma->vm_next) {
1423                 /* At this point:  (!vma || addr < vma->vm_end). */
1424                 if (TASK_SIZE - len < addr) {
1425                         /*
1426                          * Start a new search - just in case we missed
1427                          * some holes.
1428                          */
1429                         if (start_addr != TASK_UNMAPPED_BASE) {
1430                                 addr = TASK_UNMAPPED_BASE;
1431                                 start_addr = addr;
1432                                 mm->cached_hole_size = 0;
1433                                 goto full_search;
1434                         }
1435                         return -ENOMEM;
1436                 }
1437                 if (!vma || addr + len <= vma->vm_start) {
1438                         /*
1439                          * Remember the place where we stopped the search:
1440                          */
1441                         mm->free_area_cache = addr + len;
1442                         return addr;
1443                 }
1444                 if (addr + mm->cached_hole_size < vma->vm_start)
1445                         mm->cached_hole_size = vma->vm_start - addr;
1446                 addr = vma->vm_end;
1447         }
1448 }
1449 #endif  
1450
1451 void arch_unmap_area(struct mm_struct *mm, unsigned long addr)
1452 {
1453         /*
1454          * Is this a new hole at the lowest possible address?
1455          */
1456         if (addr >= TASK_UNMAPPED_BASE && addr < mm->free_area_cache)
1457                 mm->free_area_cache = addr;
1458 }
1459
1460 /*
1461  * This mmap-allocator allocates new areas top-down from below the
1462  * stack's low limit (the base):
1463  */
1464 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1465 unsigned long
1466 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1467                           const unsigned long len, const unsigned long pgoff,
1468                           const unsigned long flags)
1469 {
1470         struct vm_area_struct *vma;
1471         struct mm_struct *mm = current->mm;
1472         unsigned long addr = addr0, start_addr;
1473
1474         /* requested length too big for entire address space */
1475         if (len > TASK_SIZE)
1476                 return -ENOMEM;
1477
1478         if (flags & MAP_FIXED)
1479                 return addr;
1480
1481         /* requesting a specific address */
1482         if (addr) {
1483                 addr = PAGE_ALIGN(addr);
1484                 vma = find_vma(mm, addr);
1485                 if (TASK_SIZE - len >= addr &&
1486                                 (!vma || addr + len <= vma->vm_start))
1487                         return addr;
1488         }
1489
1490         /* check if free_area_cache is useful for us */
1491         if (len <= mm->cached_hole_size) {
1492                 mm->cached_hole_size = 0;
1493                 mm->free_area_cache = mm->mmap_base;
1494         }
1495
1496 try_again:
1497         /* either no address requested or can't fit in requested address hole */
1498         start_addr = addr = mm->free_area_cache;
1499
1500         if (addr < len)
1501                 goto fail;
1502
1503         addr -= len;
1504         do {
1505                 /*
1506                  * Lookup failure means no vma is above this address,
1507                  * else if new region fits below vma->vm_start,
1508                  * return with success:
1509                  */
1510                 vma = find_vma(mm, addr);
1511                 if (!vma || addr+len <= vma->vm_start)
1512                         /* remember the address as a hint for next time */
1513                         return (mm->free_area_cache = addr);
1514
1515                 /* remember the largest hole we saw so far */
1516                 if (addr + mm->cached_hole_size < vma->vm_start)
1517                         mm->cached_hole_size = vma->vm_start - addr;
1518
1519                 /* try just below the current vma->vm_start */
1520                 addr = vma->vm_start-len;
1521         } while (len < vma->vm_start);
1522
1523 fail:
1524         /*
1525          * if hint left us with no space for the requested
1526          * mapping then try again:
1527          *
1528          * Note: this is different with the case of bottomup
1529          * which does the fully line-search, but we use find_vma
1530          * here that causes some holes skipped.
1531          */
1532         if (start_addr != mm->mmap_base) {
1533                 mm->free_area_cache = mm->mmap_base;
1534                 mm->cached_hole_size = 0;
1535                 goto try_again;
1536         }
1537
1538         /*
1539          * A failed mmap() very likely causes application failure,
1540          * so fall back to the bottom-up function here. This scenario
1541          * can happen with large stack limits and large mmap()
1542          * allocations.
1543          */
1544         mm->cached_hole_size = ~0UL;
1545         mm->free_area_cache = TASK_UNMAPPED_BASE;
1546         addr = arch_get_unmapped_area(filp, addr0, len, pgoff, flags);
1547         /*
1548          * Restore the topdown base:
1549          */
1550         mm->free_area_cache = mm->mmap_base;
1551         mm->cached_hole_size = ~0UL;
1552
1553         return addr;
1554 }
1555 #endif
1556
1557 void arch_unmap_area_topdown(struct mm_struct *mm, unsigned long addr)
1558 {
1559         /*
1560          * Is this a new hole at the highest possible address?
1561          */
1562         if (addr > mm->free_area_cache)
1563                 mm->free_area_cache = addr;
1564
1565         /* dont allow allocations above current base */
1566         if (mm->free_area_cache > mm->mmap_base)
1567                 mm->free_area_cache = mm->mmap_base;
1568 }
1569
1570 unsigned long
1571 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1572                 unsigned long pgoff, unsigned long flags)
1573 {
1574         unsigned long (*get_area)(struct file *, unsigned long,
1575                                   unsigned long, unsigned long, unsigned long);
1576
1577         unsigned long error = arch_mmap_check(addr, len, flags);
1578         if (error)
1579                 return error;
1580
1581         /* Careful about overflows.. */
1582         if (len > TASK_SIZE)
1583                 return -ENOMEM;
1584
1585         get_area = current->mm->get_unmapped_area;
1586         if (file && file->f_op && file->f_op->get_unmapped_area)
1587                 get_area = file->f_op->get_unmapped_area;
1588         addr = get_area(file, addr, len, pgoff, flags);
1589         if (IS_ERR_VALUE(addr))
1590                 return addr;
1591
1592         if (addr > TASK_SIZE - len)
1593                 return -ENOMEM;
1594         if (addr & ~PAGE_MASK)
1595                 return -EINVAL;
1596
1597         addr = arch_rebalance_pgtables(addr, len);
1598         error = security_mmap_addr(addr);
1599         return error ? error : addr;
1600 }
1601
1602 EXPORT_SYMBOL(get_unmapped_area);
1603
1604 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
1605 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
1606 {
1607         struct vm_area_struct *vma = NULL;
1608
1609         if (WARN_ON_ONCE(!mm))          /* Remove this in linux-3.6 */
1610                 return NULL;
1611
1612         /* Check the cache first. */
1613         /* (Cache hit rate is typically around 35%.) */
1614         vma = mm->mmap_cache;
1615         if (!(vma && vma->vm_end > addr && vma->vm_start <= addr)) {
1616                 struct rb_node *rb_node;
1617
1618                 rb_node = mm->mm_rb.rb_node;
1619                 vma = NULL;
1620
1621                 while (rb_node) {
1622                         struct vm_area_struct *vma_tmp;
1623
1624                         vma_tmp = rb_entry(rb_node,
1625                                            struct vm_area_struct, vm_rb);
1626
1627                         if (vma_tmp->vm_end > addr) {
1628                                 vma = vma_tmp;
1629                                 if (vma_tmp->vm_start <= addr)
1630                                         break;
1631                                 rb_node = rb_node->rb_left;
1632                         } else
1633                                 rb_node = rb_node->rb_right;
1634                 }
1635                 if (vma)
1636                         mm->mmap_cache = vma;
1637         }
1638         return vma;
1639 }
1640
1641 EXPORT_SYMBOL(find_vma);
1642
1643 /*
1644  * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
1645  */
1646 struct vm_area_struct *
1647 find_vma_prev(struct mm_struct *mm, unsigned long addr,
1648                         struct vm_area_struct **pprev)
1649 {
1650         struct vm_area_struct *vma;
1651
1652         vma = find_vma(mm, addr);
1653         if (vma) {
1654                 *pprev = vma->vm_prev;
1655         } else {
1656                 struct rb_node *rb_node = mm->mm_rb.rb_node;
1657                 *pprev = NULL;
1658                 while (rb_node) {
1659                         *pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb);
1660                         rb_node = rb_node->rb_right;
1661                 }
1662         }
1663         return vma;
1664 }
1665
1666 /*
1667  * Verify that the stack growth is acceptable and
1668  * update accounting. This is shared with both the
1669  * grow-up and grow-down cases.
1670  */
1671 static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow)
1672 {
1673         struct mm_struct *mm = vma->vm_mm;
1674         struct rlimit *rlim = current->signal->rlim;
1675         unsigned long new_start;
1676
1677         /* address space limit tests */
1678         if (!may_expand_vm(mm, grow))
1679                 return -ENOMEM;
1680
1681         /* Stack limit test */
1682         if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur))
1683                 return -ENOMEM;
1684
1685         /* mlock limit tests */
1686         if (vma->vm_flags & VM_LOCKED) {
1687                 unsigned long locked;
1688                 unsigned long limit;
1689                 locked = mm->locked_vm + grow;
1690                 limit = ACCESS_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur);
1691                 limit >>= PAGE_SHIFT;
1692                 if (locked > limit && !capable(CAP_IPC_LOCK))
1693                         return -ENOMEM;
1694         }
1695
1696         /* Check to ensure the stack will not grow into a hugetlb-only region */
1697         new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
1698                         vma->vm_end - size;
1699         if (is_hugepage_only_range(vma->vm_mm, new_start, size))
1700                 return -EFAULT;
1701
1702         /*
1703          * Overcommit..  This must be the final test, as it will
1704          * update security statistics.
1705          */
1706         if (security_vm_enough_memory_mm(mm, grow))
1707                 return -ENOMEM;
1708
1709         /* Ok, everything looks good - let it rip */
1710         mm->total_vm += grow;
1711         if (vma->vm_flags & VM_LOCKED)
1712                 mm->locked_vm += grow;
1713         vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow);
1714         return 0;
1715 }
1716
1717 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
1718 /*
1719  * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
1720  * vma is the last one with address > vma->vm_end.  Have to extend vma.
1721  */
1722 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
1723 {
1724         int error;
1725
1726         if (!(vma->vm_flags & VM_GROWSUP))
1727                 return -EFAULT;
1728
1729         /*
1730          * We must make sure the anon_vma is allocated
1731          * so that the anon_vma locking is not a noop.
1732          */
1733         if (unlikely(anon_vma_prepare(vma)))
1734                 return -ENOMEM;
1735         vma_lock_anon_vma(vma);
1736
1737         /*
1738          * vma->vm_start/vm_end cannot change under us because the caller
1739          * is required to hold the mmap_sem in read mode.  We need the
1740          * anon_vma lock to serialize against concurrent expand_stacks.
1741          * Also guard against wrapping around to address 0.
1742          */
1743         if (address < PAGE_ALIGN(address+4))
1744                 address = PAGE_ALIGN(address+4);
1745         else {
1746                 vma_unlock_anon_vma(vma);
1747                 return -ENOMEM;
1748         }
1749         error = 0;
1750
1751         /* Somebody else might have raced and expanded it already */
1752         if (address > vma->vm_end) {
1753                 unsigned long size, grow;
1754
1755                 size = address - vma->vm_start;
1756                 grow = (address - vma->vm_end) >> PAGE_SHIFT;
1757
1758                 error = -ENOMEM;
1759                 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
1760                         error = acct_stack_growth(vma, size, grow);
1761                         if (!error) {
1762                                 vma->vm_end = address;
1763                                 perf_event_mmap(vma);
1764                         }
1765                 }
1766         }
1767         vma_unlock_anon_vma(vma);
1768         khugepaged_enter_vma_merge(vma);
1769         return error;
1770 }
1771 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
1772
1773 /*
1774  * vma is the first one with address < vma->vm_start.  Have to extend vma.
1775  */
1776 int expand_downwards(struct vm_area_struct *vma,
1777                                    unsigned long address)
1778 {
1779         int error;
1780
1781         /*
1782          * We must make sure the anon_vma is allocated
1783          * so that the anon_vma locking is not a noop.
1784          */
1785         if (unlikely(anon_vma_prepare(vma)))
1786                 return -ENOMEM;
1787
1788         address &= PAGE_MASK;
1789         error = security_mmap_addr(address);
1790         if (error)
1791                 return error;
1792
1793         vma_lock_anon_vma(vma);
1794
1795         /*
1796          * vma->vm_start/vm_end cannot change under us because the caller
1797          * is required to hold the mmap_sem in read mode.  We need the
1798          * anon_vma lock to serialize against concurrent expand_stacks.
1799          */
1800
1801         /* Somebody else might have raced and expanded it already */
1802         if (address < vma->vm_start) {
1803                 unsigned long size, grow;
1804
1805                 size = vma->vm_end - address;
1806                 grow = (vma->vm_start - address) >> PAGE_SHIFT;
1807
1808                 error = -ENOMEM;
1809                 if (grow <= vma->vm_pgoff) {
1810                         error = acct_stack_growth(vma, size, grow);
1811                         if (!error) {
1812                                 vma->vm_start = address;
1813                                 vma->vm_pgoff -= grow;
1814                                 perf_event_mmap(vma);
1815                         }
1816                 }
1817         }
1818         vma_unlock_anon_vma(vma);
1819         khugepaged_enter_vma_merge(vma);
1820         return error;
1821 }
1822
1823 #ifdef CONFIG_STACK_GROWSUP
1824 int expand_stack(struct vm_area_struct *vma, unsigned long address)
1825 {
1826         return expand_upwards(vma, address);
1827 }
1828
1829 struct vm_area_struct *
1830 find_extend_vma(struct mm_struct *mm, unsigned long addr)
1831 {
1832         struct vm_area_struct *vma, *prev;
1833
1834         addr &= PAGE_MASK;
1835         vma = find_vma_prev(mm, addr, &prev);
1836         if (vma && (vma->vm_start <= addr))
1837                 return vma;
1838         if (!prev || expand_stack(prev, addr))
1839                 return NULL;
1840         if (prev->vm_flags & VM_LOCKED) {
1841                 mlock_vma_pages_range(prev, addr, prev->vm_end);
1842         }
1843         return prev;
1844 }
1845 #else
1846 int expand_stack(struct vm_area_struct *vma, unsigned long address)
1847 {
1848         return expand_downwards(vma, address);
1849 }
1850
1851 struct vm_area_struct *
1852 find_extend_vma(struct mm_struct * mm, unsigned long addr)
1853 {
1854         struct vm_area_struct * vma;
1855         unsigned long start;
1856
1857         addr &= PAGE_MASK;
1858         vma = find_vma(mm,addr);
1859         if (!vma)
1860                 return NULL;
1861         if (vma->vm_start <= addr)
1862                 return vma;
1863         if (!(vma->vm_flags & VM_GROWSDOWN))
1864                 return NULL;
1865         start = vma->vm_start;
1866         if (expand_stack(vma, addr))
1867                 return NULL;
1868         if (vma->vm_flags & VM_LOCKED) {
1869                 mlock_vma_pages_range(vma, addr, start);
1870         }
1871         return vma;
1872 }
1873 #endif
1874
1875 /*
1876  * Ok - we have the memory areas we should free on the vma list,
1877  * so release them, and do the vma updates.
1878  *
1879  * Called with the mm semaphore held.
1880  */
1881 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
1882 {
1883         unsigned long nr_accounted = 0;
1884
1885         /* Update high watermark before we lower total_vm */
1886         update_hiwater_vm(mm);
1887         do {
1888                 long nrpages = vma_pages(vma);
1889
1890                 if (vma->vm_flags & VM_ACCOUNT)
1891                         nr_accounted += nrpages;
1892                 mm->total_vm -= nrpages;
1893                 vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages);
1894                 vma = remove_vma(vma);
1895         } while (vma);
1896         vm_unacct_memory(nr_accounted);
1897         validate_mm(mm);
1898 }
1899
1900 /*
1901  * Get rid of page table information in the indicated region.
1902  *
1903  * Called with the mm semaphore held.
1904  */
1905 static void unmap_region(struct mm_struct *mm,
1906                 struct vm_area_struct *vma, struct vm_area_struct *prev,
1907                 unsigned long start, unsigned long end)
1908 {
1909         struct vm_area_struct *next = prev? prev->vm_next: mm->mmap;
1910         struct mmu_gather tlb;
1911
1912         lru_add_drain();
1913         tlb_gather_mmu(&tlb, mm, 0);
1914         update_hiwater_rss(mm);
1915         unmap_vmas(&tlb, vma, start, end);
1916         free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
1917                                  next ? next->vm_start : 0);
1918         tlb_finish_mmu(&tlb, start, end);
1919 }
1920
1921 /*
1922  * Create a list of vma's touched by the unmap, removing them from the mm's
1923  * vma list as we go..
1924  */
1925 static void
1926 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
1927         struct vm_area_struct *prev, unsigned long end)
1928 {
1929         struct vm_area_struct **insertion_point;
1930         struct vm_area_struct *tail_vma = NULL;
1931         unsigned long addr;
1932
1933         insertion_point = (prev ? &prev->vm_next : &mm->mmap);
1934         vma->vm_prev = NULL;
1935         do {
1936                 rb_erase(&vma->vm_rb, &mm->mm_rb);
1937                 mm->map_count--;
1938                 tail_vma = vma;
1939                 vma = vma->vm_next;
1940         } while (vma && vma->vm_start < end);
1941         *insertion_point = vma;
1942         if (vma)
1943                 vma->vm_prev = prev;
1944         tail_vma->vm_next = NULL;
1945         if (mm->unmap_area == arch_unmap_area)
1946                 addr = prev ? prev->vm_end : mm->mmap_base;
1947         else
1948                 addr = vma ?  vma->vm_start : mm->mmap_base;
1949         mm->unmap_area(mm, addr);
1950         mm->mmap_cache = NULL;          /* Kill the cache. */
1951 }
1952
1953 /*
1954  * __split_vma() bypasses sysctl_max_map_count checking.  We use this on the
1955  * munmap path where it doesn't make sense to fail.
1956  */
1957 static int __split_vma(struct mm_struct * mm, struct vm_area_struct * vma,
1958               unsigned long addr, int new_below)
1959 {
1960         struct mempolicy *pol;
1961         struct vm_area_struct *new;
1962         int err = -ENOMEM;
1963
1964         if (is_vm_hugetlb_page(vma) && (addr &
1965                                         ~(huge_page_mask(hstate_vma(vma)))))
1966                 return -EINVAL;
1967
1968         new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
1969         if (!new)
1970                 goto out_err;
1971
1972         /* most fields are the same, copy all, and then fixup */
1973         *new = *vma;
1974
1975         INIT_LIST_HEAD(&new->anon_vma_chain);
1976
1977         if (new_below)
1978                 new->vm_end = addr;
1979         else {
1980                 new->vm_start = addr;
1981                 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
1982         }
1983
1984         pol = mpol_dup(vma_policy(vma));
1985         if (IS_ERR(pol)) {
1986                 err = PTR_ERR(pol);
1987                 goto out_free_vma;
1988         }
1989         vma_set_policy(new, pol);
1990
1991         if (anon_vma_clone(new, vma))
1992                 goto out_free_mpol;
1993
1994         if (new->vm_file) {
1995                 get_file(new->vm_file);
1996                 if (vma->vm_flags & VM_EXECUTABLE)
1997                         added_exe_file_vma(mm);
1998         }
1999
2000         if (new->vm_ops && new->vm_ops->open)
2001                 new->vm_ops->open(new);
2002
2003         if (new_below)
2004                 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2005                         ((addr - new->vm_start) >> PAGE_SHIFT), new);
2006         else
2007                 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2008
2009         /* Success. */
2010         if (!err)
2011                 return 0;
2012
2013         /* Clean everything up if vma_adjust failed. */
2014         if (new->vm_ops && new->vm_ops->close)
2015                 new->vm_ops->close(new);
2016         if (new->vm_file) {
2017                 if (vma->vm_flags & VM_EXECUTABLE)
2018                         removed_exe_file_vma(mm);
2019                 fput(new->vm_file);
2020         }
2021         unlink_anon_vmas(new);
2022  out_free_mpol:
2023         mpol_put(pol);
2024  out_free_vma:
2025         kmem_cache_free(vm_area_cachep, new);
2026  out_err:
2027         return err;
2028 }
2029
2030 /*
2031  * Split a vma into two pieces at address 'addr', a new vma is allocated
2032  * either for the first part or the tail.
2033  */
2034 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2035               unsigned long addr, int new_below)
2036 {
2037         if (mm->map_count >= sysctl_max_map_count)
2038                 return -ENOMEM;
2039
2040         return __split_vma(mm, vma, addr, new_below);
2041 }
2042
2043 /* Munmap is split into 2 main parts -- this part which finds
2044  * what needs doing, and the areas themselves, which do the
2045  * work.  This now handles partial unmappings.
2046  * Jeremy Fitzhardinge <jeremy@goop.org>
2047  */
2048 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
2049 {
2050         unsigned long end;
2051         struct vm_area_struct *vma, *prev, *last;
2052
2053         if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start)
2054                 return -EINVAL;
2055
2056         if ((len = PAGE_ALIGN(len)) == 0)
2057                 return -EINVAL;
2058
2059         /* Find the first overlapping VMA */
2060         vma = find_vma(mm, start);
2061         if (!vma)
2062                 return 0;
2063         prev = vma->vm_prev;
2064         /* we have  start < vma->vm_end  */
2065
2066         /* if it doesn't overlap, we have nothing.. */
2067         end = start + len;
2068         if (vma->vm_start >= end)
2069                 return 0;
2070
2071         /*
2072          * If we need to split any vma, do it now to save pain later.
2073          *
2074          * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2075          * unmapped vm_area_struct will remain in use: so lower split_vma
2076          * places tmp vma above, and higher split_vma places tmp vma below.
2077          */
2078         if (start > vma->vm_start) {
2079                 int error;
2080
2081                 /*
2082                  * Make sure that map_count on return from munmap() will
2083                  * not exceed its limit; but let map_count go just above
2084                  * its limit temporarily, to help free resources as expected.
2085                  */
2086                 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2087                         return -ENOMEM;
2088
2089                 error = __split_vma(mm, vma, start, 0);
2090                 if (error)
2091                         return error;
2092                 prev = vma;
2093         }
2094
2095         /* Does it split the last one? */
2096         last = find_vma(mm, end);
2097         if (last && end > last->vm_start) {
2098                 int error = __split_vma(mm, last, end, 1);
2099                 if (error)
2100                         return error;
2101         }
2102         vma = prev? prev->vm_next: mm->mmap;
2103
2104         /*
2105          * unlock any mlock()ed ranges before detaching vmas
2106          */
2107         if (mm->locked_vm) {
2108                 struct vm_area_struct *tmp = vma;
2109                 while (tmp && tmp->vm_start < end) {
2110                         if (tmp->vm_flags & VM_LOCKED) {
2111                                 mm->locked_vm -= vma_pages(tmp);
2112                                 munlock_vma_pages_all(tmp);
2113                         }
2114                         tmp = tmp->vm_next;
2115                 }
2116         }
2117
2118         /*
2119          * Remove the vma's, and unmap the actual pages
2120          */
2121         detach_vmas_to_be_unmapped(mm, vma, prev, end);
2122         unmap_region(mm, vma, prev, start, end);
2123
2124         /* Fix up all other VM information */
2125         remove_vma_list(mm, vma);
2126
2127         return 0;
2128 }
2129
2130 int vm_munmap(unsigned long start, size_t len)
2131 {
2132         int ret;
2133         struct mm_struct *mm = current->mm;
2134
2135         down_write(&mm->mmap_sem);
2136         ret = do_munmap(mm, start, len);
2137         up_write(&mm->mmap_sem);
2138         return ret;
2139 }
2140 EXPORT_SYMBOL(vm_munmap);
2141
2142 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2143 {
2144         profile_munmap(addr);
2145         return vm_munmap(addr, len);
2146 }
2147
2148 static inline void verify_mm_writelocked(struct mm_struct *mm)
2149 {
2150 #ifdef CONFIG_DEBUG_VM
2151         if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2152                 WARN_ON(1);
2153                 up_read(&mm->mmap_sem);
2154         }
2155 #endif
2156 }
2157
2158 /*
2159  *  this is really a simplified "do_mmap".  it only handles
2160  *  anonymous maps.  eventually we may be able to do some
2161  *  brk-specific accounting here.
2162  */
2163 static unsigned long do_brk(unsigned long addr, unsigned long len)
2164 {
2165         struct mm_struct * mm = current->mm;
2166         struct vm_area_struct * vma, * prev;
2167         unsigned long flags;
2168         struct rb_node ** rb_link, * rb_parent;
2169         pgoff_t pgoff = addr >> PAGE_SHIFT;
2170         int error;
2171
2172         len = PAGE_ALIGN(len);
2173         if (!len)
2174                 return addr;
2175
2176         flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2177
2178         error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2179         if (error & ~PAGE_MASK)
2180                 return error;
2181
2182         /*
2183          * mlock MCL_FUTURE?
2184          */
2185         if (mm->def_flags & VM_LOCKED) {
2186                 unsigned long locked, lock_limit;
2187                 locked = len >> PAGE_SHIFT;
2188                 locked += mm->locked_vm;
2189                 lock_limit = rlimit(RLIMIT_MEMLOCK);
2190                 lock_limit >>= PAGE_SHIFT;
2191                 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
2192                         return -EAGAIN;
2193         }
2194
2195         /*
2196          * mm->mmap_sem is required to protect against another thread
2197          * changing the mappings in case we sleep.
2198          */
2199         verify_mm_writelocked(mm);
2200
2201         /*
2202          * Clear old maps.  this also does some error checking for us
2203          */
2204  munmap_back:
2205         vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
2206         if (vma && vma->vm_start < addr + len) {
2207                 if (do_munmap(mm, addr, len))
2208                         return -ENOMEM;
2209                 goto munmap_back;
2210         }
2211
2212         /* Check against address space limits *after* clearing old maps... */
2213         if (!may_expand_vm(mm, len >> PAGE_SHIFT))
2214                 return -ENOMEM;
2215
2216         if (mm->map_count > sysctl_max_map_count)
2217                 return -ENOMEM;
2218
2219         if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
2220                 return -ENOMEM;
2221
2222         /* Can we just expand an old private anonymous mapping? */
2223         vma = vma_merge(mm, prev, addr, addr + len, flags,
2224                                         NULL, NULL, pgoff, NULL);
2225         if (vma)
2226                 goto out;
2227
2228         /*
2229          * create a vma struct for an anonymous mapping
2230          */
2231         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2232         if (!vma) {
2233                 vm_unacct_memory(len >> PAGE_SHIFT);
2234                 return -ENOMEM;
2235         }
2236
2237         INIT_LIST_HEAD(&vma->anon_vma_chain);
2238         vma->vm_mm = mm;
2239         vma->vm_start = addr;
2240         vma->vm_end = addr + len;
2241         vma->vm_pgoff = pgoff;
2242         vma->vm_flags = flags;
2243         vma->vm_page_prot = vm_get_page_prot(flags);
2244         vma_link(mm, vma, prev, rb_link, rb_parent);
2245 out:
2246         perf_event_mmap(vma);
2247         mm->total_vm += len >> PAGE_SHIFT;
2248         if (flags & VM_LOCKED) {
2249                 if (!mlock_vma_pages_range(vma, addr, addr + len))
2250                         mm->locked_vm += (len >> PAGE_SHIFT);
2251         }
2252         return addr;
2253 }
2254
2255 unsigned long vm_brk(unsigned long addr, unsigned long len)
2256 {
2257         struct mm_struct *mm = current->mm;
2258         unsigned long ret;
2259
2260         down_write(&mm->mmap_sem);
2261         ret = do_brk(addr, len);
2262         up_write(&mm->mmap_sem);
2263         return ret;
2264 }
2265 EXPORT_SYMBOL(vm_brk);
2266
2267 /* Release all mmaps. */
2268 void exit_mmap(struct mm_struct *mm)
2269 {
2270         struct mmu_gather tlb;
2271         struct vm_area_struct *vma;
2272         unsigned long nr_accounted = 0;
2273
2274         /* mm's last user has gone, and its about to be pulled down */
2275         mmu_notifier_release(mm);
2276
2277         if (mm->locked_vm) {
2278                 vma = mm->mmap;
2279                 while (vma) {
2280                         if (vma->vm_flags & VM_LOCKED)
2281                                 munlock_vma_pages_all(vma);
2282                         vma = vma->vm_next;
2283                 }
2284         }
2285
2286         arch_exit_mmap(mm);
2287
2288         vma = mm->mmap;
2289         if (!vma)       /* Can happen if dup_mmap() received an OOM */
2290                 return;
2291
2292         lru_add_drain();
2293         flush_cache_mm(mm);
2294         tlb_gather_mmu(&tlb, mm, 1);
2295         /* update_hiwater_rss(mm) here? but nobody should be looking */
2296         /* Use -1 here to ensure all VMAs in the mm are unmapped */
2297         unmap_vmas(&tlb, vma, 0, -1);
2298
2299         free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, 0);
2300         tlb_finish_mmu(&tlb, 0, -1);
2301
2302         /*
2303          * Walk the list again, actually closing and freeing it,
2304          * with preemption enabled, without holding any MM locks.
2305          */
2306         while (vma) {
2307                 if (vma->vm_flags & VM_ACCOUNT)
2308                         nr_accounted += vma_pages(vma);
2309                 vma = remove_vma(vma);
2310         }
2311         vm_unacct_memory(nr_accounted);
2312
2313         BUG_ON(mm->nr_ptes > (FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT);
2314 }
2315
2316 /* Insert vm structure into process list sorted by address
2317  * and into the inode's i_mmap tree.  If vm_file is non-NULL
2318  * then i_mmap_mutex is taken here.
2319  */
2320 int insert_vm_struct(struct mm_struct * mm, struct vm_area_struct * vma)
2321 {
2322         struct vm_area_struct * __vma, * prev;
2323         struct rb_node ** rb_link, * rb_parent;
2324
2325         /*
2326          * The vm_pgoff of a purely anonymous vma should be irrelevant
2327          * until its first write fault, when page's anon_vma and index
2328          * are set.  But now set the vm_pgoff it will almost certainly
2329          * end up with (unless mremap moves it elsewhere before that
2330          * first wfault), so /proc/pid/maps tells a consistent story.
2331          *
2332          * By setting it to reflect the virtual start address of the
2333          * vma, merges and splits can happen in a seamless way, just
2334          * using the existing file pgoff checks and manipulations.
2335          * Similarly in do_mmap_pgoff and in do_brk.
2336          */
2337         if (!vma->vm_file) {
2338                 BUG_ON(vma->anon_vma);
2339                 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2340         }
2341         __vma = find_vma_prepare(mm,vma->vm_start,&prev,&rb_link,&rb_parent);
2342         if (__vma && __vma->vm_start < vma->vm_end)
2343                 return -ENOMEM;
2344         if ((vma->vm_flags & VM_ACCOUNT) &&
2345              security_vm_enough_memory_mm(mm, vma_pages(vma)))
2346                 return -ENOMEM;
2347
2348         if (vma->vm_file && uprobe_mmap(vma))
2349                 return -EINVAL;
2350
2351         vma_link(mm, vma, prev, rb_link, rb_parent);
2352         return 0;
2353 }
2354
2355 /*
2356  * Copy the vma structure to a new location in the same mm,
2357  * prior to moving page table entries, to effect an mremap move.
2358  */
2359 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2360         unsigned long addr, unsigned long len, pgoff_t pgoff)
2361 {
2362         struct vm_area_struct *vma = *vmap;
2363         unsigned long vma_start = vma->vm_start;
2364         struct mm_struct *mm = vma->vm_mm;
2365         struct vm_area_struct *new_vma, *prev;
2366         struct rb_node **rb_link, *rb_parent;
2367         struct mempolicy *pol;
2368         bool faulted_in_anon_vma = true;
2369
2370         /*
2371          * If anonymous vma has not yet been faulted, update new pgoff
2372          * to match new location, to increase its chance of merging.
2373          */
2374         if (unlikely(!vma->vm_file && !vma->anon_vma)) {
2375                 pgoff = addr >> PAGE_SHIFT;
2376                 faulted_in_anon_vma = false;
2377         }
2378
2379         find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
2380         new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2381                         vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma));
2382         if (new_vma) {
2383                 /*
2384                  * Source vma may have been merged into new_vma
2385                  */
2386                 if (unlikely(vma_start >= new_vma->vm_start &&
2387                              vma_start < new_vma->vm_end)) {
2388                         /*
2389                          * The only way we can get a vma_merge with
2390                          * self during an mremap is if the vma hasn't
2391                          * been faulted in yet and we were allowed to
2392                          * reset the dst vma->vm_pgoff to the
2393                          * destination address of the mremap to allow
2394                          * the merge to happen. mremap must change the
2395                          * vm_pgoff linearity between src and dst vmas
2396                          * (in turn preventing a vma_merge) to be
2397                          * safe. It is only safe to keep the vm_pgoff
2398                          * linear if there are no pages mapped yet.
2399                          */
2400                         VM_BUG_ON(faulted_in_anon_vma);
2401                         *vmap = new_vma;
2402                 } else
2403                         anon_vma_moveto_tail(new_vma);
2404         } else {
2405                 new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2406                 if (new_vma) {
2407                         *new_vma = *vma;
2408                         pol = mpol_dup(vma_policy(vma));
2409                         if (IS_ERR(pol))
2410                                 goto out_free_vma;
2411                         INIT_LIST_HEAD(&new_vma->anon_vma_chain);
2412                         if (anon_vma_clone(new_vma, vma))
2413                                 goto out_free_mempol;
2414                         vma_set_policy(new_vma, pol);
2415                         new_vma->vm_start = addr;
2416                         new_vma->vm_end = addr + len;
2417                         new_vma->vm_pgoff = pgoff;
2418                         if (new_vma->vm_file) {
2419                                 get_file(new_vma->vm_file);
2420
2421                                 if (uprobe_mmap(new_vma))
2422                                         goto out_free_mempol;
2423
2424                                 if (vma->vm_flags & VM_EXECUTABLE)
2425                                         added_exe_file_vma(mm);
2426                         }
2427                         if (new_vma->vm_ops && new_vma->vm_ops->open)
2428                                 new_vma->vm_ops->open(new_vma);
2429                         vma_link(mm, new_vma, prev, rb_link, rb_parent);
2430                 }
2431         }
2432         return new_vma;
2433
2434  out_free_mempol:
2435         mpol_put(pol);
2436  out_free_vma:
2437         kmem_cache_free(vm_area_cachep, new_vma);
2438         return NULL;
2439 }
2440
2441 /*
2442  * Return true if the calling process may expand its vm space by the passed
2443  * number of pages
2444  */
2445 int may_expand_vm(struct mm_struct *mm, unsigned long npages)
2446 {
2447         unsigned long cur = mm->total_vm;       /* pages */
2448         unsigned long lim;
2449
2450         lim = rlimit(RLIMIT_AS) >> PAGE_SHIFT;
2451
2452         if (cur + npages > lim)
2453                 return 0;
2454         return 1;
2455 }
2456
2457
2458 static int special_mapping_fault(struct vm_area_struct *vma,
2459                                 struct vm_fault *vmf)
2460 {
2461         pgoff_t pgoff;
2462         struct page **pages;
2463
2464         /*
2465          * special mappings have no vm_file, and in that case, the mm
2466          * uses vm_pgoff internally. So we have to subtract it from here.
2467          * We are allowed to do this because we are the mm; do not copy
2468          * this code into drivers!
2469          */
2470         pgoff = vmf->pgoff - vma->vm_pgoff;
2471
2472         for (pages = vma->vm_private_data; pgoff && *pages; ++pages)
2473                 pgoff--;
2474
2475         if (*pages) {
2476                 struct page *page = *pages;
2477                 get_page(page);
2478                 vmf->page = page;
2479                 return 0;
2480         }
2481
2482         return VM_FAULT_SIGBUS;
2483 }
2484
2485 /*
2486  * Having a close hook prevents vma merging regardless of flags.
2487  */
2488 static void special_mapping_close(struct vm_area_struct *vma)
2489 {
2490 }
2491
2492 static const struct vm_operations_struct special_mapping_vmops = {
2493         .close = special_mapping_close,
2494         .fault = special_mapping_fault,
2495 };
2496
2497 /*
2498  * Called with mm->mmap_sem held for writing.
2499  * Insert a new vma covering the given region, with the given flags.
2500  * Its pages are supplied by the given array of struct page *.
2501  * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
2502  * The region past the last page supplied will always produce SIGBUS.
2503  * The array pointer and the pages it points to are assumed to stay alive
2504  * for as long as this mapping might exist.
2505  */
2506 int install_special_mapping(struct mm_struct *mm,
2507                             unsigned long addr, unsigned long len,
2508                             unsigned long vm_flags, struct page **pages)
2509 {
2510         int ret;
2511         struct vm_area_struct *vma;
2512
2513         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2514         if (unlikely(vma == NULL))
2515                 return -ENOMEM;
2516
2517         INIT_LIST_HEAD(&vma->anon_vma_chain);
2518         vma->vm_mm = mm;
2519         vma->vm_start = addr;
2520         vma->vm_end = addr + len;
2521
2522         vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND;
2523         vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2524
2525         vma->vm_ops = &special_mapping_vmops;
2526         vma->vm_private_data = pages;
2527
2528         ret = insert_vm_struct(mm, vma);
2529         if (ret)
2530                 goto out;
2531
2532         mm->total_vm += len >> PAGE_SHIFT;
2533
2534         perf_event_mmap(vma);
2535
2536         return 0;
2537
2538 out:
2539         kmem_cache_free(vm_area_cachep, vma);
2540         return ret;
2541 }
2542
2543 static DEFINE_MUTEX(mm_all_locks_mutex);
2544
2545 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
2546 {
2547         if (!test_bit(0, (unsigned long *) &anon_vma->root->head.next)) {
2548                 /*
2549                  * The LSB of head.next can't change from under us
2550                  * because we hold the mm_all_locks_mutex.
2551                  */
2552                 mutex_lock_nest_lock(&anon_vma->root->mutex, &mm->mmap_sem);
2553                 /*
2554                  * We can safely modify head.next after taking the
2555                  * anon_vma->root->mutex. If some other vma in this mm shares
2556                  * the same anon_vma we won't take it again.
2557                  *
2558                  * No need of atomic instructions here, head.next
2559                  * can't change from under us thanks to the
2560                  * anon_vma->root->mutex.
2561                  */
2562                 if (__test_and_set_bit(0, (unsigned long *)
2563                                        &anon_vma->root->head.next))
2564                         BUG();
2565         }
2566 }
2567
2568 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
2569 {
2570         if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2571                 /*
2572                  * AS_MM_ALL_LOCKS can't change from under us because
2573                  * we hold the mm_all_locks_mutex.
2574                  *
2575                  * Operations on ->flags have to be atomic because
2576                  * even if AS_MM_ALL_LOCKS is stable thanks to the
2577                  * mm_all_locks_mutex, there may be other cpus
2578                  * changing other bitflags in parallel to us.
2579                  */
2580                 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
2581                         BUG();
2582                 mutex_lock_nest_lock(&mapping->i_mmap_mutex, &mm->mmap_sem);
2583         }
2584 }
2585
2586 /*
2587  * This operation locks against the VM for all pte/vma/mm related
2588  * operations that could ever happen on a certain mm. This includes
2589  * vmtruncate, try_to_unmap, and all page faults.
2590  *
2591  * The caller must take the mmap_sem in write mode before calling
2592  * mm_take_all_locks(). The caller isn't allowed to release the
2593  * mmap_sem until mm_drop_all_locks() returns.
2594  *
2595  * mmap_sem in write mode is required in order to block all operations
2596  * that could modify pagetables and free pages without need of
2597  * altering the vma layout (for example populate_range() with
2598  * nonlinear vmas). It's also needed in write mode to avoid new
2599  * anon_vmas to be associated with existing vmas.
2600  *
2601  * A single task can't take more than one mm_take_all_locks() in a row
2602  * or it would deadlock.
2603  *
2604  * The LSB in anon_vma->head.next and the AS_MM_ALL_LOCKS bitflag in
2605  * mapping->flags avoid to take the same lock twice, if more than one
2606  * vma in this mm is backed by the same anon_vma or address_space.
2607  *
2608  * We can take all the locks in random order because the VM code
2609  * taking i_mmap_mutex or anon_vma->mutex outside the mmap_sem never
2610  * takes more than one of them in a row. Secondly we're protected
2611  * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex.
2612  *
2613  * mm_take_all_locks() and mm_drop_all_locks are expensive operations
2614  * that may have to take thousand of locks.
2615  *
2616  * mm_take_all_locks() can fail if it's interrupted by signals.
2617  */
2618 int mm_take_all_locks(struct mm_struct *mm)
2619 {
2620         struct vm_area_struct *vma;
2621         struct anon_vma_chain *avc;
2622
2623         BUG_ON(down_read_trylock(&mm->mmap_sem));
2624
2625         mutex_lock(&mm_all_locks_mutex);
2626
2627         for (vma = mm->mmap; vma; vma = vma->vm_next) {
2628                 if (signal_pending(current))
2629                         goto out_unlock;
2630                 if (vma->vm_file && vma->vm_file->f_mapping)
2631                         vm_lock_mapping(mm, vma->vm_file->f_mapping);
2632         }
2633
2634         for (vma = mm->mmap; vma; vma = vma->vm_next) {
2635                 if (signal_pending(current))
2636                         goto out_unlock;
2637                 if (vma->anon_vma)
2638                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
2639                                 vm_lock_anon_vma(mm, avc->anon_vma);
2640         }
2641
2642         return 0;
2643
2644 out_unlock:
2645         mm_drop_all_locks(mm);
2646         return -EINTR;
2647 }
2648
2649 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
2650 {
2651         if (test_bit(0, (unsigned long *) &anon_vma->root->head.next)) {
2652                 /*
2653                  * The LSB of head.next can't change to 0 from under
2654                  * us because we hold the mm_all_locks_mutex.
2655                  *
2656                  * We must however clear the bitflag before unlocking
2657                  * the vma so the users using the anon_vma->head will
2658                  * never see our bitflag.
2659                  *
2660                  * No need of atomic instructions here, head.next
2661                  * can't change from under us until we release the
2662                  * anon_vma->root->mutex.
2663                  */
2664                 if (!__test_and_clear_bit(0, (unsigned long *)
2665                                           &anon_vma->root->head.next))
2666                         BUG();
2667                 anon_vma_unlock(anon_vma);
2668         }
2669 }
2670
2671 static void vm_unlock_mapping(struct address_space *mapping)
2672 {
2673         if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2674                 /*
2675                  * AS_MM_ALL_LOCKS can't change to 0 from under us
2676                  * because we hold the mm_all_locks_mutex.
2677                  */
2678                 mutex_unlock(&mapping->i_mmap_mutex);
2679                 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
2680                                         &mapping->flags))
2681                         BUG();
2682         }
2683 }
2684
2685 /*
2686  * The mmap_sem cannot be released by the caller until
2687  * mm_drop_all_locks() returns.
2688  */
2689 void mm_drop_all_locks(struct mm_struct *mm)
2690 {
2691         struct vm_area_struct *vma;
2692         struct anon_vma_chain *avc;
2693
2694         BUG_ON(down_read_trylock(&mm->mmap_sem));
2695         BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
2696
2697         for (vma = mm->mmap; vma; vma = vma->vm_next) {
2698                 if (vma->anon_vma)
2699                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
2700                                 vm_unlock_anon_vma(avc->anon_vma);
2701                 if (vma->vm_file && vma->vm_file->f_mapping)
2702                         vm_unlock_mapping(vma->vm_file->f_mapping);
2703         }
2704
2705         mutex_unlock(&mm_all_locks_mutex);
2706 }
2707
2708 /*
2709  * initialise the VMA slab
2710  */
2711 void __init mmap_init(void)
2712 {
2713         int ret;
2714
2715         ret = percpu_counter_init(&vm_committed_as, 0);
2716         VM_BUG_ON(ret);
2717 }