1 // SPDX-License-Identifier: GPL-2.0-only
7 * Address space accounting code <alan@lxorguk.ukuu.org.uk>
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12 #include <linux/kernel.h>
13 #include <linux/slab.h>
14 #include <linux/backing-dev.h>
16 #include <linux/mm_inline.h>
17 #include <linux/shm.h>
18 #include <linux/mman.h>
19 #include <linux/pagemap.h>
20 #include <linux/swap.h>
21 #include <linux/syscalls.h>
22 #include <linux/capability.h>
23 #include <linux/init.h>
24 #include <linux/file.h>
26 #include <linux/personality.h>
27 #include <linux/security.h>
28 #include <linux/hugetlb.h>
29 #include <linux/shmem_fs.h>
30 #include <linux/profile.h>
31 #include <linux/export.h>
32 #include <linux/mount.h>
33 #include <linux/mempolicy.h>
34 #include <linux/rmap.h>
35 #include <linux/mmu_notifier.h>
36 #include <linux/mmdebug.h>
37 #include <linux/perf_event.h>
38 #include <linux/audit.h>
39 #include <linux/khugepaged.h>
40 #include <linux/uprobes.h>
41 #include <linux/notifier.h>
42 #include <linux/memory.h>
43 #include <linux/printk.h>
44 #include <linux/userfaultfd_k.h>
45 #include <linux/moduleparam.h>
46 #include <linux/pkeys.h>
47 #include <linux/oom.h>
48 #include <linux/sched/mm.h>
49 #include <linux/ksm.h>
51 #include <linux/uaccess.h>
52 #include <asm/cacheflush.h>
54 #include <asm/mmu_context.h>
56 #define CREATE_TRACE_POINTS
57 #include <trace/events/mmap.h>
61 #ifndef arch_mmap_check
62 #define arch_mmap_check(addr, len, flags) (0)
65 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
66 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
67 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX;
68 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
70 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
71 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
72 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
73 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
76 static bool ignore_rlimit_data;
77 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
79 static void unmap_region(struct mm_struct *mm, struct maple_tree *mt,
80 struct vm_area_struct *vma, struct vm_area_struct *prev,
81 struct vm_area_struct *next, unsigned long start,
82 unsigned long end, bool mm_wr_locked);
84 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
86 return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
89 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
90 void vma_set_page_prot(struct vm_area_struct *vma)
92 unsigned long vm_flags = vma->vm_flags;
93 pgprot_t vm_page_prot;
95 vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
96 if (vma_wants_writenotify(vma, vm_page_prot)) {
97 vm_flags &= ~VM_SHARED;
98 vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags);
100 /* remove_protection_ptes reads vma->vm_page_prot without mmap_lock */
101 WRITE_ONCE(vma->vm_page_prot, vm_page_prot);
105 * Requires inode->i_mapping->i_mmap_rwsem
107 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
108 struct file *file, struct address_space *mapping)
110 if (vma->vm_flags & VM_SHARED)
111 mapping_unmap_writable(mapping);
113 flush_dcache_mmap_lock(mapping);
114 vma_interval_tree_remove(vma, &mapping->i_mmap);
115 flush_dcache_mmap_unlock(mapping);
119 * Unlink a file-based vm structure from its interval tree, to hide
120 * vma from rmap and vmtruncate before freeing its page tables.
122 void unlink_file_vma(struct vm_area_struct *vma)
124 struct file *file = vma->vm_file;
127 struct address_space *mapping = file->f_mapping;
128 i_mmap_lock_write(mapping);
129 __remove_shared_vm_struct(vma, file, mapping);
130 i_mmap_unlock_write(mapping);
135 * Close a vm structure and free it.
137 static void remove_vma(struct vm_area_struct *vma, bool unreachable)
140 if (vma->vm_ops && vma->vm_ops->close)
141 vma->vm_ops->close(vma);
144 mpol_put(vma_policy(vma));
151 static inline struct vm_area_struct *vma_prev_limit(struct vma_iterator *vmi,
154 return mas_prev(&vmi->mas, min);
157 static inline int vma_iter_clear_gfp(struct vma_iterator *vmi,
158 unsigned long start, unsigned long end, gfp_t gfp)
160 vmi->mas.index = start;
161 vmi->mas.last = end - 1;
162 mas_store_gfp(&vmi->mas, NULL, gfp);
163 if (unlikely(mas_is_err(&vmi->mas)))
170 * check_brk_limits() - Use platform specific check of range & verify mlock
172 * @addr: The address to check
173 * @len: The size of increase.
175 * Return: 0 on success.
177 static int check_brk_limits(unsigned long addr, unsigned long len)
179 unsigned long mapped_addr;
181 mapped_addr = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
182 if (IS_ERR_VALUE(mapped_addr))
185 return mlock_future_ok(current->mm, current->mm->def_flags, len)
188 static int do_brk_flags(struct vma_iterator *vmi, struct vm_area_struct *brkvma,
189 unsigned long addr, unsigned long request, unsigned long flags);
190 SYSCALL_DEFINE1(brk, unsigned long, brk)
192 unsigned long newbrk, oldbrk, origbrk;
193 struct mm_struct *mm = current->mm;
194 struct vm_area_struct *brkvma, *next = NULL;
195 unsigned long min_brk;
196 bool populate = false;
198 struct vma_iterator vmi;
200 if (mmap_write_lock_killable(mm))
205 #ifdef CONFIG_COMPAT_BRK
207 * CONFIG_COMPAT_BRK can still be overridden by setting
208 * randomize_va_space to 2, which will still cause mm->start_brk
209 * to be arbitrarily shifted
211 if (current->brk_randomized)
212 min_brk = mm->start_brk;
214 min_brk = mm->end_data;
216 min_brk = mm->start_brk;
222 * Check against rlimit here. If this check is done later after the test
223 * of oldbrk with newbrk then it can escape the test and let the data
224 * segment grow beyond its set limit the in case where the limit is
225 * not page aligned -Ram Gupta
227 if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
228 mm->end_data, mm->start_data))
231 newbrk = PAGE_ALIGN(brk);
232 oldbrk = PAGE_ALIGN(mm->brk);
233 if (oldbrk == newbrk) {
238 /* Always allow shrinking brk. */
239 if (brk <= mm->brk) {
240 /* Search one past newbrk */
241 vma_iter_init(&vmi, mm, newbrk);
242 brkvma = vma_find(&vmi, oldbrk);
243 if (!brkvma || brkvma->vm_start >= oldbrk)
244 goto out; /* mapping intersects with an existing non-brk vma. */
246 * mm->brk must be protected by write mmap_lock.
247 * do_vma_munmap() will drop the lock on success, so update it
248 * before calling do_vma_munmap().
251 if (do_vma_munmap(&vmi, brkvma, newbrk, oldbrk, &uf, true))
254 goto success_unlocked;
257 if (check_brk_limits(oldbrk, newbrk - oldbrk))
261 * Only check if the next VMA is within the stack_guard_gap of the
264 vma_iter_init(&vmi, mm, oldbrk);
265 next = vma_find(&vmi, newbrk + PAGE_SIZE + stack_guard_gap);
266 if (next && newbrk + PAGE_SIZE > vm_start_gap(next))
269 brkvma = vma_prev_limit(&vmi, mm->start_brk);
270 /* Ok, looks good - let it rip. */
271 if (do_brk_flags(&vmi, brkvma, oldbrk, newbrk - oldbrk, 0) < 0)
275 if (mm->def_flags & VM_LOCKED)
279 mmap_write_unlock(mm);
281 userfaultfd_unmap_complete(mm, &uf);
283 mm_populate(oldbrk, newbrk - oldbrk);
288 mmap_write_unlock(mm);
292 #if defined(CONFIG_DEBUG_VM_MAPLE_TREE)
293 static void validate_mm(struct mm_struct *mm)
297 struct vm_area_struct *vma;
298 VMA_ITERATOR(vmi, mm, 0);
300 mt_validate(&mm->mm_mt);
301 for_each_vma(vmi, vma) {
302 #ifdef CONFIG_DEBUG_VM_RB
303 struct anon_vma *anon_vma = vma->anon_vma;
304 struct anon_vma_chain *avc;
306 unsigned long vmi_start, vmi_end;
309 vmi_start = vma_iter_addr(&vmi);
310 vmi_end = vma_iter_end(&vmi);
311 if (VM_WARN_ON_ONCE_MM(vma->vm_end != vmi_end, mm))
314 if (VM_WARN_ON_ONCE_MM(vma->vm_start != vmi_start, mm))
318 pr_emerg("issue in %s\n", current->comm);
321 pr_emerg("tree range: %px start %lx end %lx\n", vma,
322 vmi_start, vmi_end - 1);
323 vma_iter_dump_tree(&vmi);
326 #ifdef CONFIG_DEBUG_VM_RB
328 anon_vma_lock_read(anon_vma);
329 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
330 anon_vma_interval_tree_verify(avc);
331 anon_vma_unlock_read(anon_vma);
336 if (i != mm->map_count) {
337 pr_emerg("map_count %d vma iterator %d\n", mm->map_count, i);
340 VM_BUG_ON_MM(bug, mm);
343 #else /* !CONFIG_DEBUG_VM_MAPLE_TREE */
344 #define validate_mm(mm) do { } while (0)
345 #endif /* CONFIG_DEBUG_VM_MAPLE_TREE */
348 * vma has some anon_vma assigned, and is already inserted on that
349 * anon_vma's interval trees.
351 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
352 * vma must be removed from the anon_vma's interval trees using
353 * anon_vma_interval_tree_pre_update_vma().
355 * After the update, the vma will be reinserted using
356 * anon_vma_interval_tree_post_update_vma().
358 * The entire update must be protected by exclusive mmap_lock and by
359 * the root anon_vma's mutex.
362 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
364 struct anon_vma_chain *avc;
366 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
367 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
371 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
373 struct anon_vma_chain *avc;
375 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
376 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
379 static unsigned long count_vma_pages_range(struct mm_struct *mm,
380 unsigned long addr, unsigned long end)
382 VMA_ITERATOR(vmi, mm, addr);
383 struct vm_area_struct *vma;
384 unsigned long nr_pages = 0;
386 for_each_vma_range(vmi, vma, end) {
387 unsigned long vm_start = max(addr, vma->vm_start);
388 unsigned long vm_end = min(end, vma->vm_end);
390 nr_pages += PHYS_PFN(vm_end - vm_start);
396 static void __vma_link_file(struct vm_area_struct *vma,
397 struct address_space *mapping)
399 if (vma->vm_flags & VM_SHARED)
400 mapping_allow_writable(mapping);
402 flush_dcache_mmap_lock(mapping);
403 vma_interval_tree_insert(vma, &mapping->i_mmap);
404 flush_dcache_mmap_unlock(mapping);
407 static int vma_link(struct mm_struct *mm, struct vm_area_struct *vma)
409 VMA_ITERATOR(vmi, mm, 0);
410 struct address_space *mapping = NULL;
412 if (vma_iter_prealloc(&vmi))
416 mapping = vma->vm_file->f_mapping;
417 i_mmap_lock_write(mapping);
420 vma_iter_store(&vmi, vma);
423 __vma_link_file(vma, mapping);
424 i_mmap_unlock_write(mapping);
433 * init_multi_vma_prep() - Initializer for struct vma_prepare
434 * @vp: The vma_prepare struct
435 * @vma: The vma that will be altered once locked
436 * @next: The next vma if it is to be adjusted
437 * @remove: The first vma to be removed
438 * @remove2: The second vma to be removed
440 static inline void init_multi_vma_prep(struct vma_prepare *vp,
441 struct vm_area_struct *vma, struct vm_area_struct *next,
442 struct vm_area_struct *remove, struct vm_area_struct *remove2)
444 memset(vp, 0, sizeof(struct vma_prepare));
446 vp->anon_vma = vma->anon_vma;
448 vp->remove2 = remove2;
450 if (!vp->anon_vma && next)
451 vp->anon_vma = next->anon_vma;
453 vp->file = vma->vm_file;
455 vp->mapping = vma->vm_file->f_mapping;
460 * init_vma_prep() - Initializer wrapper for vma_prepare struct
461 * @vp: The vma_prepare struct
462 * @vma: The vma that will be altered once locked
464 static inline void init_vma_prep(struct vma_prepare *vp,
465 struct vm_area_struct *vma)
467 init_multi_vma_prep(vp, vma, NULL, NULL, NULL);
472 * vma_prepare() - Helper function for handling locking VMAs prior to altering
473 * @vp: The initialized vma_prepare struct
475 static inline void vma_prepare(struct vma_prepare *vp)
477 vma_start_write(vp->vma);
479 vma_start_write(vp->adj_next);
480 /* vp->insert is always a newly created VMA, no need for locking */
482 vma_start_write(vp->remove);
484 vma_start_write(vp->remove2);
487 uprobe_munmap(vp->vma, vp->vma->vm_start, vp->vma->vm_end);
490 uprobe_munmap(vp->adj_next, vp->adj_next->vm_start,
491 vp->adj_next->vm_end);
493 i_mmap_lock_write(vp->mapping);
494 if (vp->insert && vp->insert->vm_file) {
496 * Put into interval tree now, so instantiated pages
497 * are visible to arm/parisc __flush_dcache_page
498 * throughout; but we cannot insert into address
499 * space until vma start or end is updated.
501 __vma_link_file(vp->insert,
502 vp->insert->vm_file->f_mapping);
507 anon_vma_lock_write(vp->anon_vma);
508 anon_vma_interval_tree_pre_update_vma(vp->vma);
510 anon_vma_interval_tree_pre_update_vma(vp->adj_next);
514 flush_dcache_mmap_lock(vp->mapping);
515 vma_interval_tree_remove(vp->vma, &vp->mapping->i_mmap);
517 vma_interval_tree_remove(vp->adj_next,
518 &vp->mapping->i_mmap);
524 * vma_complete- Helper function for handling the unlocking after altering VMAs,
525 * or for inserting a VMA.
527 * @vp: The vma_prepare struct
528 * @vmi: The vma iterator
531 static inline void vma_complete(struct vma_prepare *vp,
532 struct vma_iterator *vmi, struct mm_struct *mm)
536 vma_interval_tree_insert(vp->adj_next,
537 &vp->mapping->i_mmap);
538 vma_interval_tree_insert(vp->vma, &vp->mapping->i_mmap);
539 flush_dcache_mmap_unlock(vp->mapping);
542 if (vp->remove && vp->file) {
543 __remove_shared_vm_struct(vp->remove, vp->file, vp->mapping);
545 __remove_shared_vm_struct(vp->remove2, vp->file,
547 } else if (vp->insert) {
549 * split_vma has split insert from vma, and needs
550 * us to insert it before dropping the locks
551 * (it may either follow vma or precede it).
553 vma_iter_store(vmi, vp->insert);
558 anon_vma_interval_tree_post_update_vma(vp->vma);
560 anon_vma_interval_tree_post_update_vma(vp->adj_next);
561 anon_vma_unlock_write(vp->anon_vma);
565 i_mmap_unlock_write(vp->mapping);
566 uprobe_mmap(vp->vma);
569 uprobe_mmap(vp->adj_next);
574 vma_mark_detached(vp->remove, true);
576 uprobe_munmap(vp->remove, vp->remove->vm_start,
580 if (vp->remove->anon_vma)
581 anon_vma_merge(vp->vma, vp->remove);
583 mpol_put(vma_policy(vp->remove));
585 WARN_ON_ONCE(vp->vma->vm_end < vp->remove->vm_end);
586 vm_area_free(vp->remove);
589 * In mprotect's case 6 (see comments on vma_merge),
590 * we are removing both mid and next vmas
593 vp->remove = vp->remove2;
598 if (vp->insert && vp->file)
599 uprobe_mmap(vp->insert);
603 * dup_anon_vma() - Helper function to duplicate anon_vma
604 * @dst: The destination VMA
605 * @src: The source VMA
607 * Returns: 0 on success.
609 static inline int dup_anon_vma(struct vm_area_struct *dst,
610 struct vm_area_struct *src)
613 * Easily overlooked: when mprotect shifts the boundary, make sure the
614 * expanding vma has anon_vma set if the shrinking vma had, to cover any
615 * anon pages imported.
617 if (src->anon_vma && !dst->anon_vma) {
618 dst->anon_vma = src->anon_vma;
619 return anon_vma_clone(dst, src);
626 * vma_expand - Expand an existing VMA
628 * @vmi: The vma iterator
629 * @vma: The vma to expand
630 * @start: The start of the vma
631 * @end: The exclusive end of the vma
632 * @pgoff: The page offset of vma
633 * @next: The current of next vma.
635 * Expand @vma to @start and @end. Can expand off the start and end. Will
636 * expand over @next if it's different from @vma and @end == @next->vm_end.
637 * Checking if the @vma can expand and merge with @next needs to be handled by
640 * Returns: 0 on success
642 int vma_expand(struct vma_iterator *vmi, struct vm_area_struct *vma,
643 unsigned long start, unsigned long end, pgoff_t pgoff,
644 struct vm_area_struct *next)
646 bool remove_next = false;
647 struct vma_prepare vp;
649 if (next && (vma != next) && (end == next->vm_end)) {
653 ret = dup_anon_vma(vma, next);
658 init_multi_vma_prep(&vp, vma, NULL, remove_next ? next : NULL, NULL);
659 /* Not merging but overwriting any part of next is not handled. */
660 VM_WARN_ON(next && !vp.remove &&
661 next != vma && end > next->vm_start);
662 /* Only handles expanding */
663 VM_WARN_ON(vma->vm_start < start || vma->vm_end > end);
665 if (vma_iter_prealloc(vmi))
669 vma_adjust_trans_huge(vma, start, end, 0);
670 /* VMA iterator points to previous, so set to start if necessary */
671 if (vma_iter_addr(vmi) != start)
672 vma_iter_set(vmi, start);
674 vma->vm_start = start;
676 vma->vm_pgoff = pgoff;
677 /* Note: mas must be pointing to the expanding VMA */
678 vma_iter_store(vmi, vma);
680 vma_complete(&vp, vmi, vma->vm_mm);
681 validate_mm(vma->vm_mm);
689 * vma_shrink() - Reduce an existing VMAs memory area
690 * @vmi: The vma iterator
691 * @vma: The VMA to modify
692 * @start: The new start
695 * Returns: 0 on success, -ENOMEM otherwise
697 int vma_shrink(struct vma_iterator *vmi, struct vm_area_struct *vma,
698 unsigned long start, unsigned long end, pgoff_t pgoff)
700 struct vma_prepare vp;
702 WARN_ON((vma->vm_start != start) && (vma->vm_end != end));
704 if (vma_iter_prealloc(vmi))
707 init_vma_prep(&vp, vma);
709 vma_adjust_trans_huge(vma, start, end, 0);
711 if (vma->vm_start < start)
712 vma_iter_clear(vmi, vma->vm_start, start);
714 if (vma->vm_end > end)
715 vma_iter_clear(vmi, end, vma->vm_end);
717 vma->vm_start = start;
719 vma->vm_pgoff = pgoff;
720 vma_complete(&vp, vmi, vma->vm_mm);
721 validate_mm(vma->vm_mm);
726 * If the vma has a ->close operation then the driver probably needs to release
727 * per-vma resources, so we don't attempt to merge those if the caller indicates
728 * the current vma may be removed as part of the merge.
730 static inline bool is_mergeable_vma(struct vm_area_struct *vma,
731 struct file *file, unsigned long vm_flags,
732 struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
733 struct anon_vma_name *anon_name, bool may_remove_vma)
736 * VM_SOFTDIRTY should not prevent from VMA merging, if we
737 * match the flags but dirty bit -- the caller should mark
738 * merged VMA as dirty. If dirty bit won't be excluded from
739 * comparison, we increase pressure on the memory system forcing
740 * the kernel to generate new VMAs when old one could be
743 if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
745 if (vma->vm_file != file)
747 if (may_remove_vma && vma->vm_ops && vma->vm_ops->close)
749 if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
751 if (!anon_vma_name_eq(anon_vma_name(vma), anon_name))
756 static inline bool is_mergeable_anon_vma(struct anon_vma *anon_vma1,
757 struct anon_vma *anon_vma2, struct vm_area_struct *vma)
760 * The list_is_singular() test is to avoid merging VMA cloned from
761 * parents. This can improve scalability caused by anon_vma lock.
763 if ((!anon_vma1 || !anon_vma2) && (!vma ||
764 list_is_singular(&vma->anon_vma_chain)))
766 return anon_vma1 == anon_vma2;
770 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
771 * in front of (at a lower virtual address and file offset than) the vma.
773 * We cannot merge two vmas if they have differently assigned (non-NULL)
774 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
776 * We don't check here for the merged mmap wrapping around the end of pagecache
777 * indices (16TB on ia32) because do_mmap() does not permit mmap's which
778 * wrap, nor mmaps which cover the final page at index -1UL.
780 * We assume the vma may be removed as part of the merge.
783 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
784 struct anon_vma *anon_vma, struct file *file,
785 pgoff_t vm_pgoff, struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
786 struct anon_vma_name *anon_name)
788 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name, true) &&
789 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
790 if (vma->vm_pgoff == vm_pgoff)
797 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
798 * beyond (at a higher virtual address and file offset than) the vma.
800 * We cannot merge two vmas if they have differently assigned (non-NULL)
801 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
803 * We assume that vma is not removed as part of the merge.
806 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
807 struct anon_vma *anon_vma, struct file *file,
808 pgoff_t vm_pgoff, struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
809 struct anon_vma_name *anon_name)
811 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name, false) &&
812 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
814 vm_pglen = vma_pages(vma);
815 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
822 * Given a mapping request (addr,end,vm_flags,file,pgoff,anon_name),
823 * figure out whether that can be merged with its predecessor or its
824 * successor. Or both (it neatly fills a hole).
826 * In most cases - when called for mmap, brk or mremap - [addr,end) is
827 * certain not to be mapped by the time vma_merge is called; but when
828 * called for mprotect, it is certain to be already mapped (either at
829 * an offset within prev, or at the start of next), and the flags of
830 * this area are about to be changed to vm_flags - and the no-change
831 * case has already been eliminated.
833 * The following mprotect cases have to be considered, where **** is
834 * the area passed down from mprotect_fixup, never extending beyond one
835 * vma, PPPP is the previous vma, CCCC is a concurrent vma that starts
836 * at the same address as **** and is of the same or larger span, and
837 * NNNN the next vma after ****:
840 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPCCCCCC
841 * cannot merge might become might become
842 * PPNNNNNNNNNN PPPPPPPPPPCC
843 * mmap, brk or case 4 below case 5 below
846 * PPPP NNNN PPPPCCCCNNNN
847 * might become might become
848 * PPPPPPPPPPPP 1 or PPPPPPPPPPPP 6 or
849 * PPPPPPPPNNNN 2 or PPPPPPPPNNNN 7 or
850 * PPPPNNNNNNNN 3 PPPPNNNNNNNN 8
852 * It is important for case 8 that the vma CCCC overlapping the
853 * region **** is never going to extended over NNNN. Instead NNNN must
854 * be extended in region **** and CCCC must be removed. This way in
855 * all cases where vma_merge succeeds, the moment vma_merge drops the
856 * rmap_locks, the properties of the merged vma will be already
857 * correct for the whole merged range. Some of those properties like
858 * vm_page_prot/vm_flags may be accessed by rmap_walks and they must
859 * be correct for the whole merged range immediately after the
860 * rmap_locks are released. Otherwise if NNNN would be removed and
861 * CCCC would be extended over the NNNN range, remove_migration_ptes
862 * or other rmap walkers (if working on addresses beyond the "end"
863 * parameter) may establish ptes with the wrong permissions of CCCC
864 * instead of the right permissions of NNNN.
867 * PPPP is represented by *prev
868 * CCCC is represented by *curr or not represented at all (NULL)
869 * NNNN is represented by *next or not represented at all (NULL)
870 * **** is not represented - it will be merged and the vma containing the
871 * area is returned, or the function will return NULL
873 struct vm_area_struct *vma_merge(struct vma_iterator *vmi, struct mm_struct *mm,
874 struct vm_area_struct *prev, unsigned long addr,
875 unsigned long end, unsigned long vm_flags,
876 struct anon_vma *anon_vma, struct file *file,
877 pgoff_t pgoff, struct mempolicy *policy,
878 struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
879 struct anon_vma_name *anon_name)
881 struct vm_area_struct *curr, *next, *res;
882 struct vm_area_struct *vma, *adjust, *remove, *remove2;
883 struct vma_prepare vp;
886 bool merge_prev = false;
887 bool merge_next = false;
888 bool vma_expanded = false;
889 unsigned long vma_start = addr;
890 unsigned long vma_end = end;
891 pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
896 * We later require that vma->vm_flags == vm_flags,
897 * so this tests vma->vm_flags & VM_SPECIAL, too.
899 if (vm_flags & VM_SPECIAL)
902 /* Does the input range span an existing VMA? (cases 5 - 8) */
903 curr = find_vma_intersection(mm, prev ? prev->vm_end : 0, end);
905 if (!curr || /* cases 1 - 4 */
906 end == curr->vm_end) /* cases 6 - 8, adjacent VMA */
907 next = vma_lookup(mm, end);
909 next = NULL; /* case 5 */
912 vma_start = prev->vm_start;
913 vma_pgoff = prev->vm_pgoff;
915 /* Can we merge the predecessor? */
916 if (addr == prev->vm_end && mpol_equal(vma_policy(prev), policy)
917 && can_vma_merge_after(prev, vm_flags, anon_vma, file,
918 pgoff, vm_userfaultfd_ctx, anon_name)) {
924 /* Can we merge the successor? */
925 if (next && mpol_equal(policy, vma_policy(next)) &&
926 can_vma_merge_before(next, vm_flags, anon_vma, file, pgoff+pglen,
927 vm_userfaultfd_ctx, anon_name)) {
931 /* Verify some invariant that must be enforced by the caller. */
932 VM_WARN_ON(prev && addr <= prev->vm_start);
933 VM_WARN_ON(curr && (addr != curr->vm_start || end > curr->vm_end));
934 VM_WARN_ON(addr >= end);
936 if (!merge_prev && !merge_next)
937 return NULL; /* Not mergeable. */
940 remove = remove2 = adjust = NULL;
942 /* Can we merge both the predecessor and the successor? */
943 if (merge_prev && merge_next &&
944 is_mergeable_anon_vma(prev->anon_vma, next->anon_vma, NULL)) {
945 remove = next; /* case 1 */
946 vma_end = next->vm_end;
947 err = dup_anon_vma(prev, next);
948 if (curr) { /* case 6 */
952 err = dup_anon_vma(prev, curr);
954 } else if (merge_prev) { /* case 2 */
956 err = dup_anon_vma(prev, curr);
957 if (end == curr->vm_end) { /* case 7 */
959 } else { /* case 5 */
961 adj_start = (end - curr->vm_start);
964 } else { /* merge_next */
966 if (prev && addr < prev->vm_end) { /* case 4 */
969 adj_start = -(prev->vm_end - addr);
970 err = dup_anon_vma(next, prev);
973 * Note that cases 3 and 8 are the ONLY ones where prev
974 * is permitted to be (but is not necessarily) NULL.
976 vma = next; /* case 3 */
978 vma_end = next->vm_end;
979 vma_pgoff = next->vm_pgoff - pglen;
980 if (curr) { /* case 8 */
981 vma_pgoff = curr->vm_pgoff;
983 err = dup_anon_vma(next, curr);
988 /* Error in anon_vma clone. */
992 if (vma_iter_prealloc(vmi))
995 init_multi_vma_prep(&vp, vma, adjust, remove, remove2);
996 VM_WARN_ON(vp.anon_vma && adjust && adjust->anon_vma &&
997 vp.anon_vma != adjust->anon_vma);
1000 vma_adjust_trans_huge(vma, vma_start, vma_end, adj_start);
1001 if (vma_start < vma->vm_start || vma_end > vma->vm_end)
1002 vma_expanded = true;
1004 vma->vm_start = vma_start;
1005 vma->vm_end = vma_end;
1006 vma->vm_pgoff = vma_pgoff;
1009 vma_iter_store(vmi, vma);
1012 adjust->vm_start += adj_start;
1013 adjust->vm_pgoff += adj_start >> PAGE_SHIFT;
1014 if (adj_start < 0) {
1015 WARN_ON(vma_expanded);
1016 vma_iter_store(vmi, next);
1020 vma_complete(&vp, vmi, mm);
1023 khugepaged_enter_vma(res, vm_flags);
1029 * Rough compatibility check to quickly see if it's even worth looking
1030 * at sharing an anon_vma.
1032 * They need to have the same vm_file, and the flags can only differ
1033 * in things that mprotect may change.
1035 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1036 * we can merge the two vma's. For example, we refuse to merge a vma if
1037 * there is a vm_ops->close() function, because that indicates that the
1038 * driver is doing some kind of reference counting. But that doesn't
1039 * really matter for the anon_vma sharing case.
1041 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1043 return a->vm_end == b->vm_start &&
1044 mpol_equal(vma_policy(a), vma_policy(b)) &&
1045 a->vm_file == b->vm_file &&
1046 !((a->vm_flags ^ b->vm_flags) & ~(VM_ACCESS_FLAGS | VM_SOFTDIRTY)) &&
1047 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1051 * Do some basic sanity checking to see if we can re-use the anon_vma
1052 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1053 * the same as 'old', the other will be the new one that is trying
1054 * to share the anon_vma.
1056 * NOTE! This runs with mmap_lock held for reading, so it is possible that
1057 * the anon_vma of 'old' is concurrently in the process of being set up
1058 * by another page fault trying to merge _that_. But that's ok: if it
1059 * is being set up, that automatically means that it will be a singleton
1060 * acceptable for merging, so we can do all of this optimistically. But
1061 * we do that READ_ONCE() to make sure that we never re-load the pointer.
1063 * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1064 * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1065 * is to return an anon_vma that is "complex" due to having gone through
1068 * We also make sure that the two vma's are compatible (adjacent,
1069 * and with the same memory policies). That's all stable, even with just
1070 * a read lock on the mmap_lock.
1072 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1074 if (anon_vma_compatible(a, b)) {
1075 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1077 if (anon_vma && list_is_singular(&old->anon_vma_chain))
1084 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1085 * neighbouring vmas for a suitable anon_vma, before it goes off
1086 * to allocate a new anon_vma. It checks because a repetitive
1087 * sequence of mprotects and faults may otherwise lead to distinct
1088 * anon_vmas being allocated, preventing vma merge in subsequent
1091 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1093 MA_STATE(mas, &vma->vm_mm->mm_mt, vma->vm_end, vma->vm_end);
1094 struct anon_vma *anon_vma = NULL;
1095 struct vm_area_struct *prev, *next;
1097 /* Try next first. */
1098 next = mas_walk(&mas);
1100 anon_vma = reusable_anon_vma(next, vma, next);
1105 prev = mas_prev(&mas, 0);
1106 VM_BUG_ON_VMA(prev != vma, vma);
1107 prev = mas_prev(&mas, 0);
1108 /* Try prev next. */
1110 anon_vma = reusable_anon_vma(prev, prev, vma);
1113 * We might reach here with anon_vma == NULL if we can't find
1114 * any reusable anon_vma.
1115 * There's no absolute need to look only at touching neighbours:
1116 * we could search further afield for "compatible" anon_vmas.
1117 * But it would probably just be a waste of time searching,
1118 * or lead to too many vmas hanging off the same anon_vma.
1119 * We're trying to allow mprotect remerging later on,
1120 * not trying to minimize memory used for anon_vmas.
1126 * If a hint addr is less than mmap_min_addr change hint to be as
1127 * low as possible but still greater than mmap_min_addr
1129 static inline unsigned long round_hint_to_min(unsigned long hint)
1132 if (((void *)hint != NULL) &&
1133 (hint < mmap_min_addr))
1134 return PAGE_ALIGN(mmap_min_addr);
1138 bool mlock_future_ok(struct mm_struct *mm, unsigned long flags,
1139 unsigned long bytes)
1141 unsigned long locked_pages, limit_pages;
1143 if (!(flags & VM_LOCKED) || capable(CAP_IPC_LOCK))
1146 locked_pages = bytes >> PAGE_SHIFT;
1147 locked_pages += mm->locked_vm;
1149 limit_pages = rlimit(RLIMIT_MEMLOCK);
1150 limit_pages >>= PAGE_SHIFT;
1152 return locked_pages <= limit_pages;
1155 static inline u64 file_mmap_size_max(struct file *file, struct inode *inode)
1157 if (S_ISREG(inode->i_mode))
1158 return MAX_LFS_FILESIZE;
1160 if (S_ISBLK(inode->i_mode))
1161 return MAX_LFS_FILESIZE;
1163 if (S_ISSOCK(inode->i_mode))
1164 return MAX_LFS_FILESIZE;
1166 /* Special "we do even unsigned file positions" case */
1167 if (file->f_mode & FMODE_UNSIGNED_OFFSET)
1170 /* Yes, random drivers might want more. But I'm tired of buggy drivers */
1174 static inline bool file_mmap_ok(struct file *file, struct inode *inode,
1175 unsigned long pgoff, unsigned long len)
1177 u64 maxsize = file_mmap_size_max(file, inode);
1179 if (maxsize && len > maxsize)
1182 if (pgoff > maxsize >> PAGE_SHIFT)
1188 * The caller must write-lock current->mm->mmap_lock.
1190 unsigned long do_mmap(struct file *file, unsigned long addr,
1191 unsigned long len, unsigned long prot,
1192 unsigned long flags, unsigned long pgoff,
1193 unsigned long *populate, struct list_head *uf)
1195 struct mm_struct *mm = current->mm;
1196 vm_flags_t vm_flags;
1206 * Does the application expect PROT_READ to imply PROT_EXEC?
1208 * (the exception is when the underlying filesystem is noexec
1209 * mounted, in which case we dont add PROT_EXEC.)
1211 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1212 if (!(file && path_noexec(&file->f_path)))
1215 /* force arch specific MAP_FIXED handling in get_unmapped_area */
1216 if (flags & MAP_FIXED_NOREPLACE)
1219 if (!(flags & MAP_FIXED))
1220 addr = round_hint_to_min(addr);
1222 /* Careful about overflows.. */
1223 len = PAGE_ALIGN(len);
1227 /* offset overflow? */
1228 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1231 /* Too many mappings? */
1232 if (mm->map_count > sysctl_max_map_count)
1235 /* Obtain the address to map to. we verify (or select) it and ensure
1236 * that it represents a valid section of the address space.
1238 addr = get_unmapped_area(file, addr, len, pgoff, flags);
1239 if (IS_ERR_VALUE(addr))
1242 if (flags & MAP_FIXED_NOREPLACE) {
1243 if (find_vma_intersection(mm, addr, addr + len))
1247 if (prot == PROT_EXEC) {
1248 pkey = execute_only_pkey(mm);
1253 /* Do simple checking here so the lower-level routines won't have
1254 * to. we assume access permissions have been handled by the open
1255 * of the memory object, so we don't do any here.
1257 vm_flags = calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
1258 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1260 if (flags & MAP_LOCKED)
1261 if (!can_do_mlock())
1264 if (!mlock_future_ok(mm, vm_flags, len))
1268 struct inode *inode = file_inode(file);
1269 unsigned long flags_mask;
1271 if (!file_mmap_ok(file, inode, pgoff, len))
1274 flags_mask = LEGACY_MAP_MASK | file->f_op->mmap_supported_flags;
1276 switch (flags & MAP_TYPE) {
1279 * Force use of MAP_SHARED_VALIDATE with non-legacy
1280 * flags. E.g. MAP_SYNC is dangerous to use with
1281 * MAP_SHARED as you don't know which consistency model
1282 * you will get. We silently ignore unsupported flags
1283 * with MAP_SHARED to preserve backward compatibility.
1285 flags &= LEGACY_MAP_MASK;
1287 case MAP_SHARED_VALIDATE:
1288 if (flags & ~flags_mask)
1290 if (prot & PROT_WRITE) {
1291 if (!(file->f_mode & FMODE_WRITE))
1293 if (IS_SWAPFILE(file->f_mapping->host))
1298 * Make sure we don't allow writing to an append-only
1301 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1304 vm_flags |= VM_SHARED | VM_MAYSHARE;
1305 if (!(file->f_mode & FMODE_WRITE))
1306 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1309 if (!(file->f_mode & FMODE_READ))
1311 if (path_noexec(&file->f_path)) {
1312 if (vm_flags & VM_EXEC)
1314 vm_flags &= ~VM_MAYEXEC;
1317 if (!file->f_op->mmap)
1319 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1327 switch (flags & MAP_TYPE) {
1329 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1335 vm_flags |= VM_SHARED | VM_MAYSHARE;
1339 * Set pgoff according to addr for anon_vma.
1341 pgoff = addr >> PAGE_SHIFT;
1349 * Set 'VM_NORESERVE' if we should not account for the
1350 * memory use of this mapping.
1352 if (flags & MAP_NORESERVE) {
1353 /* We honor MAP_NORESERVE if allowed to overcommit */
1354 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1355 vm_flags |= VM_NORESERVE;
1357 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1358 if (file && is_file_hugepages(file))
1359 vm_flags |= VM_NORESERVE;
1362 addr = mmap_region(file, addr, len, vm_flags, pgoff, uf);
1363 if (!IS_ERR_VALUE(addr) &&
1364 ((vm_flags & VM_LOCKED) ||
1365 (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1370 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1371 unsigned long prot, unsigned long flags,
1372 unsigned long fd, unsigned long pgoff)
1374 struct file *file = NULL;
1375 unsigned long retval;
1377 if (!(flags & MAP_ANONYMOUS)) {
1378 audit_mmap_fd(fd, flags);
1382 if (is_file_hugepages(file)) {
1383 len = ALIGN(len, huge_page_size(hstate_file(file)));
1384 } else if (unlikely(flags & MAP_HUGETLB)) {
1388 } else if (flags & MAP_HUGETLB) {
1391 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1395 len = ALIGN(len, huge_page_size(hs));
1397 * VM_NORESERVE is used because the reservations will be
1398 * taken when vm_ops->mmap() is called
1400 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1402 HUGETLB_ANONHUGE_INODE,
1403 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1405 return PTR_ERR(file);
1408 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1415 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1416 unsigned long, prot, unsigned long, flags,
1417 unsigned long, fd, unsigned long, pgoff)
1419 return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1422 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1423 struct mmap_arg_struct {
1427 unsigned long flags;
1429 unsigned long offset;
1432 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1434 struct mmap_arg_struct a;
1436 if (copy_from_user(&a, arg, sizeof(a)))
1438 if (offset_in_page(a.offset))
1441 return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1442 a.offset >> PAGE_SHIFT);
1444 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1446 static bool vm_ops_needs_writenotify(const struct vm_operations_struct *vm_ops)
1448 return vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite);
1451 static bool vma_is_shared_writable(struct vm_area_struct *vma)
1453 return (vma->vm_flags & (VM_WRITE | VM_SHARED)) ==
1454 (VM_WRITE | VM_SHARED);
1457 static bool vma_fs_can_writeback(struct vm_area_struct *vma)
1459 /* No managed pages to writeback. */
1460 if (vma->vm_flags & VM_PFNMAP)
1463 return vma->vm_file && vma->vm_file->f_mapping &&
1464 mapping_can_writeback(vma->vm_file->f_mapping);
1468 * Does this VMA require the underlying folios to have their dirty state
1471 bool vma_needs_dirty_tracking(struct vm_area_struct *vma)
1473 /* Only shared, writable VMAs require dirty tracking. */
1474 if (!vma_is_shared_writable(vma))
1477 /* Does the filesystem need to be notified? */
1478 if (vm_ops_needs_writenotify(vma->vm_ops))
1482 * Even if the filesystem doesn't indicate a need for writenotify, if it
1483 * can writeback, dirty tracking is still required.
1485 return vma_fs_can_writeback(vma);
1489 * Some shared mappings will want the pages marked read-only
1490 * to track write events. If so, we'll downgrade vm_page_prot
1491 * to the private version (using protection_map[] without the
1494 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)
1496 /* If it was private or non-writable, the write bit is already clear */
1497 if (!vma_is_shared_writable(vma))
1500 /* The backer wishes to know when pages are first written to? */
1501 if (vm_ops_needs_writenotify(vma->vm_ops))
1504 /* The open routine did something to the protections that pgprot_modify
1505 * won't preserve? */
1506 if (pgprot_val(vm_page_prot) !=
1507 pgprot_val(vm_pgprot_modify(vm_page_prot, vma->vm_flags)))
1511 * Do we need to track softdirty? hugetlb does not support softdirty
1514 if (vma_soft_dirty_enabled(vma) && !is_vm_hugetlb_page(vma))
1517 /* Do we need write faults for uffd-wp tracking? */
1518 if (userfaultfd_wp(vma))
1521 /* Can the mapping track the dirty pages? */
1522 return vma_fs_can_writeback(vma);
1526 * We account for memory if it's a private writeable mapping,
1527 * not hugepages and VM_NORESERVE wasn't set.
1529 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1532 * hugetlb has its own accounting separate from the core VM
1533 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1535 if (file && is_file_hugepages(file))
1538 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1542 * unmapped_area() - Find an area between the low_limit and the high_limit with
1543 * the correct alignment and offset, all from @info. Note: current->mm is used
1546 * @info: The unmapped area information including the range [low_limit -
1547 * high_limit), the alignment offset and mask.
1549 * Return: A memory address or -ENOMEM.
1551 static unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1553 unsigned long length, gap;
1554 unsigned long low_limit, high_limit;
1555 struct vm_area_struct *tmp;
1557 MA_STATE(mas, ¤t->mm->mm_mt, 0, 0);
1559 /* Adjust search length to account for worst case alignment overhead */
1560 length = info->length + info->align_mask;
1561 if (length < info->length)
1564 low_limit = info->low_limit;
1565 if (low_limit < mmap_min_addr)
1566 low_limit = mmap_min_addr;
1567 high_limit = info->high_limit;
1569 if (mas_empty_area(&mas, low_limit, high_limit - 1, length))
1573 gap += (info->align_offset - gap) & info->align_mask;
1574 tmp = mas_next(&mas, ULONG_MAX);
1575 if (tmp && (tmp->vm_flags & VM_GROWSDOWN)) { /* Avoid prev check if possible */
1576 if (vm_start_gap(tmp) < gap + length - 1) {
1577 low_limit = tmp->vm_end;
1582 tmp = mas_prev(&mas, 0);
1583 if (tmp && vm_end_gap(tmp) > gap) {
1584 low_limit = vm_end_gap(tmp);
1594 * unmapped_area_topdown() - Find an area between the low_limit and the
1595 * high_limit with the correct alignment and offset at the highest available
1596 * address, all from @info. Note: current->mm is used for the search.
1598 * @info: The unmapped area information including the range [low_limit -
1599 * high_limit), the alignment offset and mask.
1601 * Return: A memory address or -ENOMEM.
1603 static unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1605 unsigned long length, gap, gap_end;
1606 unsigned long low_limit, high_limit;
1607 struct vm_area_struct *tmp;
1609 MA_STATE(mas, ¤t->mm->mm_mt, 0, 0);
1610 /* Adjust search length to account for worst case alignment overhead */
1611 length = info->length + info->align_mask;
1612 if (length < info->length)
1615 low_limit = info->low_limit;
1616 if (low_limit < mmap_min_addr)
1617 low_limit = mmap_min_addr;
1618 high_limit = info->high_limit;
1620 if (mas_empty_area_rev(&mas, low_limit, high_limit - 1, length))
1623 gap = mas.last + 1 - info->length;
1624 gap -= (gap - info->align_offset) & info->align_mask;
1626 tmp = mas_next(&mas, ULONG_MAX);
1627 if (tmp && (tmp->vm_flags & VM_GROWSDOWN)) { /* Avoid prev check if possible */
1628 if (vm_start_gap(tmp) <= gap_end) {
1629 high_limit = vm_start_gap(tmp);
1634 tmp = mas_prev(&mas, 0);
1635 if (tmp && vm_end_gap(tmp) > gap) {
1636 high_limit = tmp->vm_start;
1646 * Search for an unmapped address range.
1648 * We are looking for a range that:
1649 * - does not intersect with any VMA;
1650 * - is contained within the [low_limit, high_limit) interval;
1651 * - is at least the desired size.
1652 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
1654 unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info)
1658 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
1659 addr = unmapped_area_topdown(info);
1661 addr = unmapped_area(info);
1663 trace_vm_unmapped_area(addr, info);
1667 /* Get an address range which is currently unmapped.
1668 * For shmat() with addr=0.
1670 * Ugly calling convention alert:
1671 * Return value with the low bits set means error value,
1673 * if (ret & ~PAGE_MASK)
1676 * This function "knows" that -ENOMEM has the bits set.
1679 generic_get_unmapped_area(struct file *filp, unsigned long addr,
1680 unsigned long len, unsigned long pgoff,
1681 unsigned long flags)
1683 struct mm_struct *mm = current->mm;
1684 struct vm_area_struct *vma, *prev;
1685 struct vm_unmapped_area_info info;
1686 const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags);
1688 if (len > mmap_end - mmap_min_addr)
1691 if (flags & MAP_FIXED)
1695 addr = PAGE_ALIGN(addr);
1696 vma = find_vma_prev(mm, addr, &prev);
1697 if (mmap_end - len >= addr && addr >= mmap_min_addr &&
1698 (!vma || addr + len <= vm_start_gap(vma)) &&
1699 (!prev || addr >= vm_end_gap(prev)))
1705 info.low_limit = mm->mmap_base;
1706 info.high_limit = mmap_end;
1707 info.align_mask = 0;
1708 info.align_offset = 0;
1709 return vm_unmapped_area(&info);
1712 #ifndef HAVE_ARCH_UNMAPPED_AREA
1714 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1715 unsigned long len, unsigned long pgoff,
1716 unsigned long flags)
1718 return generic_get_unmapped_area(filp, addr, len, pgoff, flags);
1723 * This mmap-allocator allocates new areas top-down from below the
1724 * stack's low limit (the base):
1727 generic_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
1728 unsigned long len, unsigned long pgoff,
1729 unsigned long flags)
1731 struct vm_area_struct *vma, *prev;
1732 struct mm_struct *mm = current->mm;
1733 struct vm_unmapped_area_info info;
1734 const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags);
1736 /* requested length too big for entire address space */
1737 if (len > mmap_end - mmap_min_addr)
1740 if (flags & MAP_FIXED)
1743 /* requesting a specific address */
1745 addr = PAGE_ALIGN(addr);
1746 vma = find_vma_prev(mm, addr, &prev);
1747 if (mmap_end - len >= addr && addr >= mmap_min_addr &&
1748 (!vma || addr + len <= vm_start_gap(vma)) &&
1749 (!prev || addr >= vm_end_gap(prev)))
1753 info.flags = VM_UNMAPPED_AREA_TOPDOWN;
1755 info.low_limit = PAGE_SIZE;
1756 info.high_limit = arch_get_mmap_base(addr, mm->mmap_base);
1757 info.align_mask = 0;
1758 info.align_offset = 0;
1759 addr = vm_unmapped_area(&info);
1762 * A failed mmap() very likely causes application failure,
1763 * so fall back to the bottom-up function here. This scenario
1764 * can happen with large stack limits and large mmap()
1767 if (offset_in_page(addr)) {
1768 VM_BUG_ON(addr != -ENOMEM);
1770 info.low_limit = TASK_UNMAPPED_BASE;
1771 info.high_limit = mmap_end;
1772 addr = vm_unmapped_area(&info);
1778 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1780 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
1781 unsigned long len, unsigned long pgoff,
1782 unsigned long flags)
1784 return generic_get_unmapped_area_topdown(filp, addr, len, pgoff, flags);
1789 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1790 unsigned long pgoff, unsigned long flags)
1792 unsigned long (*get_area)(struct file *, unsigned long,
1793 unsigned long, unsigned long, unsigned long);
1795 unsigned long error = arch_mmap_check(addr, len, flags);
1799 /* Careful about overflows.. */
1800 if (len > TASK_SIZE)
1803 get_area = current->mm->get_unmapped_area;
1805 if (file->f_op->get_unmapped_area)
1806 get_area = file->f_op->get_unmapped_area;
1807 } else if (flags & MAP_SHARED) {
1809 * mmap_region() will call shmem_zero_setup() to create a file,
1810 * so use shmem's get_unmapped_area in case it can be huge.
1811 * do_mmap() will clear pgoff, so match alignment.
1814 get_area = shmem_get_unmapped_area;
1817 addr = get_area(file, addr, len, pgoff, flags);
1818 if (IS_ERR_VALUE(addr))
1821 if (addr > TASK_SIZE - len)
1823 if (offset_in_page(addr))
1826 error = security_mmap_addr(addr);
1827 return error ? error : addr;
1830 EXPORT_SYMBOL(get_unmapped_area);
1833 * find_vma_intersection() - Look up the first VMA which intersects the interval
1834 * @mm: The process address space.
1835 * @start_addr: The inclusive start user address.
1836 * @end_addr: The exclusive end user address.
1838 * Returns: The first VMA within the provided range, %NULL otherwise. Assumes
1839 * start_addr < end_addr.
1841 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
1842 unsigned long start_addr,
1843 unsigned long end_addr)
1845 unsigned long index = start_addr;
1847 mmap_assert_locked(mm);
1848 return mt_find(&mm->mm_mt, &index, end_addr - 1);
1850 EXPORT_SYMBOL(find_vma_intersection);
1853 * find_vma() - Find the VMA for a given address, or the next VMA.
1854 * @mm: The mm_struct to check
1855 * @addr: The address
1857 * Returns: The VMA associated with addr, or the next VMA.
1858 * May return %NULL in the case of no VMA at addr or above.
1860 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
1862 unsigned long index = addr;
1864 mmap_assert_locked(mm);
1865 return mt_find(&mm->mm_mt, &index, ULONG_MAX);
1867 EXPORT_SYMBOL(find_vma);
1870 * find_vma_prev() - Find the VMA for a given address, or the next vma and
1871 * set %pprev to the previous VMA, if any.
1872 * @mm: The mm_struct to check
1873 * @addr: The address
1874 * @pprev: The pointer to set to the previous VMA
1876 * Note that RCU lock is missing here since the external mmap_lock() is used
1879 * Returns: The VMA associated with @addr, or the next vma.
1880 * May return %NULL in the case of no vma at addr or above.
1882 struct vm_area_struct *
1883 find_vma_prev(struct mm_struct *mm, unsigned long addr,
1884 struct vm_area_struct **pprev)
1886 struct vm_area_struct *vma;
1887 MA_STATE(mas, &mm->mm_mt, addr, addr);
1889 vma = mas_walk(&mas);
1890 *pprev = mas_prev(&mas, 0);
1892 vma = mas_next(&mas, ULONG_MAX);
1897 * Verify that the stack growth is acceptable and
1898 * update accounting. This is shared with both the
1899 * grow-up and grow-down cases.
1901 static int acct_stack_growth(struct vm_area_struct *vma,
1902 unsigned long size, unsigned long grow)
1904 struct mm_struct *mm = vma->vm_mm;
1905 unsigned long new_start;
1907 /* address space limit tests */
1908 if (!may_expand_vm(mm, vma->vm_flags, grow))
1911 /* Stack limit test */
1912 if (size > rlimit(RLIMIT_STACK))
1915 /* mlock limit tests */
1916 if (!mlock_future_ok(mm, vma->vm_flags, grow << PAGE_SHIFT))
1919 /* Check to ensure the stack will not grow into a hugetlb-only region */
1920 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
1922 if (is_hugepage_only_range(vma->vm_mm, new_start, size))
1926 * Overcommit.. This must be the final test, as it will
1927 * update security statistics.
1929 if (security_vm_enough_memory_mm(mm, grow))
1935 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
1937 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
1938 * vma is the last one with address > vma->vm_end. Have to extend vma.
1940 static int expand_upwards(struct vm_area_struct *vma, unsigned long address)
1942 struct mm_struct *mm = vma->vm_mm;
1943 struct vm_area_struct *next;
1944 unsigned long gap_addr;
1946 MA_STATE(mas, &mm->mm_mt, 0, 0);
1948 if (!(vma->vm_flags & VM_GROWSUP))
1951 /* Guard against exceeding limits of the address space. */
1952 address &= PAGE_MASK;
1953 if (address >= (TASK_SIZE & PAGE_MASK))
1955 address += PAGE_SIZE;
1957 /* Enforce stack_guard_gap */
1958 gap_addr = address + stack_guard_gap;
1960 /* Guard against overflow */
1961 if (gap_addr < address || gap_addr > TASK_SIZE)
1962 gap_addr = TASK_SIZE;
1964 next = find_vma_intersection(mm, vma->vm_end, gap_addr);
1965 if (next && vma_is_accessible(next)) {
1966 if (!(next->vm_flags & VM_GROWSUP))
1968 /* Check that both stack segments have the same anon_vma? */
1971 if (mas_preallocate(&mas, GFP_KERNEL))
1974 /* We must make sure the anon_vma is allocated. */
1975 if (unlikely(anon_vma_prepare(vma))) {
1980 /* Lock the VMA before expanding to prevent concurrent page faults */
1981 vma_start_write(vma);
1983 * vma->vm_start/vm_end cannot change under us because the caller
1984 * is required to hold the mmap_lock in read mode. We need the
1985 * anon_vma lock to serialize against concurrent expand_stacks.
1987 anon_vma_lock_write(vma->anon_vma);
1989 /* Somebody else might have raced and expanded it already */
1990 if (address > vma->vm_end) {
1991 unsigned long size, grow;
1993 size = address - vma->vm_start;
1994 grow = (address - vma->vm_end) >> PAGE_SHIFT;
1997 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
1998 error = acct_stack_growth(vma, size, grow);
2001 * We only hold a shared mmap_lock lock here, so
2002 * we need to protect against concurrent vma
2003 * expansions. anon_vma_lock_write() doesn't
2004 * help here, as we don't guarantee that all
2005 * growable vmas in a mm share the same root
2006 * anon vma. So, we reuse mm->page_table_lock
2007 * to guard against concurrent vma expansions.
2009 spin_lock(&mm->page_table_lock);
2010 if (vma->vm_flags & VM_LOCKED)
2011 mm->locked_vm += grow;
2012 vm_stat_account(mm, vma->vm_flags, grow);
2013 anon_vma_interval_tree_pre_update_vma(vma);
2014 vma->vm_end = address;
2015 /* Overwrite old entry in mtree. */
2016 mas_set_range(&mas, vma->vm_start, address - 1);
2017 mas_store_prealloc(&mas, vma);
2018 anon_vma_interval_tree_post_update_vma(vma);
2019 spin_unlock(&mm->page_table_lock);
2021 perf_event_mmap(vma);
2025 anon_vma_unlock_write(vma->anon_vma);
2026 khugepaged_enter_vma(vma, vma->vm_flags);
2030 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2033 * vma is the first one with address < vma->vm_start. Have to extend vma.
2034 * mmap_lock held for writing.
2036 int expand_downwards(struct vm_area_struct *vma, unsigned long address)
2038 struct mm_struct *mm = vma->vm_mm;
2039 MA_STATE(mas, &mm->mm_mt, vma->vm_start, vma->vm_start);
2040 struct vm_area_struct *prev;
2043 if (!(vma->vm_flags & VM_GROWSDOWN))
2046 address &= PAGE_MASK;
2047 if (address < mmap_min_addr || address < FIRST_USER_ADDRESS)
2050 /* Enforce stack_guard_gap */
2051 prev = mas_prev(&mas, 0);
2052 /* Check that both stack segments have the same anon_vma? */
2054 if (!(prev->vm_flags & VM_GROWSDOWN) &&
2055 vma_is_accessible(prev) &&
2056 (address - prev->vm_end < stack_guard_gap))
2060 if (mas_preallocate(&mas, GFP_KERNEL))
2063 /* We must make sure the anon_vma is allocated. */
2064 if (unlikely(anon_vma_prepare(vma))) {
2069 /* Lock the VMA before expanding to prevent concurrent page faults */
2070 vma_start_write(vma);
2072 * vma->vm_start/vm_end cannot change under us because the caller
2073 * is required to hold the mmap_lock in read mode. We need the
2074 * anon_vma lock to serialize against concurrent expand_stacks.
2076 anon_vma_lock_write(vma->anon_vma);
2078 /* Somebody else might have raced and expanded it already */
2079 if (address < vma->vm_start) {
2080 unsigned long size, grow;
2082 size = vma->vm_end - address;
2083 grow = (vma->vm_start - address) >> PAGE_SHIFT;
2086 if (grow <= vma->vm_pgoff) {
2087 error = acct_stack_growth(vma, size, grow);
2090 * We only hold a shared mmap_lock lock here, so
2091 * we need to protect against concurrent vma
2092 * expansions. anon_vma_lock_write() doesn't
2093 * help here, as we don't guarantee that all
2094 * growable vmas in a mm share the same root
2095 * anon vma. So, we reuse mm->page_table_lock
2096 * to guard against concurrent vma expansions.
2098 spin_lock(&mm->page_table_lock);
2099 if (vma->vm_flags & VM_LOCKED)
2100 mm->locked_vm += grow;
2101 vm_stat_account(mm, vma->vm_flags, grow);
2102 anon_vma_interval_tree_pre_update_vma(vma);
2103 vma->vm_start = address;
2104 vma->vm_pgoff -= grow;
2105 /* Overwrite old entry in mtree. */
2106 mas_set_range(&mas, address, vma->vm_end - 1);
2107 mas_store_prealloc(&mas, vma);
2108 anon_vma_interval_tree_post_update_vma(vma);
2109 spin_unlock(&mm->page_table_lock);
2111 perf_event_mmap(vma);
2115 anon_vma_unlock_write(vma->anon_vma);
2116 khugepaged_enter_vma(vma, vma->vm_flags);
2121 /* enforced gap between the expanding stack and other mappings. */
2122 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT;
2124 static int __init cmdline_parse_stack_guard_gap(char *p)
2129 val = simple_strtoul(p, &endptr, 10);
2131 stack_guard_gap = val << PAGE_SHIFT;
2135 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap);
2137 #ifdef CONFIG_STACK_GROWSUP
2138 int expand_stack_locked(struct vm_area_struct *vma, unsigned long address)
2140 return expand_upwards(vma, address);
2143 struct vm_area_struct *find_extend_vma_locked(struct mm_struct *mm, unsigned long addr)
2145 struct vm_area_struct *vma, *prev;
2148 vma = find_vma_prev(mm, addr, &prev);
2149 if (vma && (vma->vm_start <= addr))
2153 if (expand_stack_locked(prev, addr))
2155 if (prev->vm_flags & VM_LOCKED)
2156 populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2160 int expand_stack_locked(struct vm_area_struct *vma, unsigned long address)
2162 if (unlikely(!(vma->vm_flags & VM_GROWSDOWN)))
2164 return expand_downwards(vma, address);
2167 struct vm_area_struct *find_extend_vma_locked(struct mm_struct *mm, unsigned long addr)
2169 struct vm_area_struct *vma;
2170 unsigned long start;
2173 vma = find_vma(mm, addr);
2176 if (vma->vm_start <= addr)
2178 start = vma->vm_start;
2179 if (expand_stack_locked(vma, addr))
2181 if (vma->vm_flags & VM_LOCKED)
2182 populate_vma_page_range(vma, addr, start, NULL);
2188 * IA64 has some horrid mapping rules: it can expand both up and down,
2189 * but with various special rules.
2191 * We'll get rid of this architecture eventually, so the ugliness is
2195 static inline bool vma_expand_ok(struct vm_area_struct *vma, unsigned long addr)
2197 return REGION_NUMBER(addr) == REGION_NUMBER(vma->vm_start) &&
2198 REGION_OFFSET(addr) < RGN_MAP_LIMIT;
2202 * IA64 stacks grow down, but there's a special register backing store
2203 * that can grow up. Only sequentially, though, so the new address must
2206 static inline int vma_expand_up(struct vm_area_struct *vma, unsigned long addr)
2208 if (!vma_expand_ok(vma, addr))
2210 if (vma->vm_end != (addr & PAGE_MASK))
2212 return expand_upwards(vma, addr);
2215 static inline bool vma_expand_down(struct vm_area_struct *vma, unsigned long addr)
2217 if (!vma_expand_ok(vma, addr))
2219 return expand_downwards(vma, addr);
2222 #elif defined(CONFIG_STACK_GROWSUP)
2224 #define vma_expand_up(vma,addr) expand_upwards(vma, addr)
2225 #define vma_expand_down(vma, addr) (-EFAULT)
2229 #define vma_expand_up(vma,addr) (-EFAULT)
2230 #define vma_expand_down(vma, addr) expand_downwards(vma, addr)
2235 * expand_stack(): legacy interface for page faulting. Don't use unless
2238 * This is called with the mm locked for reading, drops the lock, takes
2239 * the lock for writing, tries to look up a vma again, expands it if
2240 * necessary, and downgrades the lock to reading again.
2242 * If no vma is found or it can't be expanded, it returns NULL and has
2245 struct vm_area_struct *expand_stack(struct mm_struct *mm, unsigned long addr)
2247 struct vm_area_struct *vma, *prev;
2249 mmap_read_unlock(mm);
2250 if (mmap_write_lock_killable(mm))
2253 vma = find_vma_prev(mm, addr, &prev);
2254 if (vma && vma->vm_start <= addr)
2257 if (prev && !vma_expand_up(prev, addr)) {
2262 if (vma && !vma_expand_down(vma, addr))
2265 mmap_write_unlock(mm);
2269 mmap_write_downgrade(mm);
2274 * Ok - we have the memory areas we should free on a maple tree so release them,
2275 * and do the vma updates.
2277 * Called with the mm semaphore held.
2279 static inline void remove_mt(struct mm_struct *mm, struct ma_state *mas)
2281 unsigned long nr_accounted = 0;
2282 struct vm_area_struct *vma;
2284 /* Update high watermark before we lower total_vm */
2285 update_hiwater_vm(mm);
2286 mas_for_each(mas, vma, ULONG_MAX) {
2287 long nrpages = vma_pages(vma);
2289 if (vma->vm_flags & VM_ACCOUNT)
2290 nr_accounted += nrpages;
2291 vm_stat_account(mm, vma->vm_flags, -nrpages);
2292 remove_vma(vma, false);
2294 vm_unacct_memory(nr_accounted);
2299 * Get rid of page table information in the indicated region.
2301 * Called with the mm semaphore held.
2303 static void unmap_region(struct mm_struct *mm, struct maple_tree *mt,
2304 struct vm_area_struct *vma, struct vm_area_struct *prev,
2305 struct vm_area_struct *next,
2306 unsigned long start, unsigned long end, bool mm_wr_locked)
2308 struct mmu_gather tlb;
2311 tlb_gather_mmu(&tlb, mm);
2312 update_hiwater_rss(mm);
2313 unmap_vmas(&tlb, mt, vma, start, end, mm_wr_locked);
2314 free_pgtables(&tlb, mt, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2315 next ? next->vm_start : USER_PGTABLES_CEILING,
2317 tlb_finish_mmu(&tlb);
2321 * __split_vma() bypasses sysctl_max_map_count checking. We use this where it
2322 * has already been checked or doesn't make sense to fail.
2323 * VMA Iterator will point to the end VMA.
2325 int __split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma,
2326 unsigned long addr, int new_below)
2328 struct vma_prepare vp;
2329 struct vm_area_struct *new;
2332 validate_mm(vma->vm_mm);
2334 WARN_ON(vma->vm_start >= addr);
2335 WARN_ON(vma->vm_end <= addr);
2337 if (vma->vm_ops && vma->vm_ops->may_split) {
2338 err = vma->vm_ops->may_split(vma, addr);
2343 new = vm_area_dup(vma);
2348 if (vma_iter_prealloc(vmi))
2354 new->vm_start = addr;
2355 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2358 err = vma_dup_policy(vma, new);
2362 err = anon_vma_clone(new, vma);
2367 get_file(new->vm_file);
2369 if (new->vm_ops && new->vm_ops->open)
2370 new->vm_ops->open(new);
2372 init_vma_prep(&vp, vma);
2375 vma_adjust_trans_huge(vma, vma->vm_start, addr, 0);
2378 vma->vm_start = addr;
2379 vma->vm_pgoff += (addr - new->vm_start) >> PAGE_SHIFT;
2384 /* vma_complete stores the new vma */
2385 vma_complete(&vp, vmi, vma->vm_mm);
2390 validate_mm(vma->vm_mm);
2394 mpol_put(vma_policy(new));
2399 validate_mm(vma->vm_mm);
2404 * Split a vma into two pieces at address 'addr', a new vma is allocated
2405 * either for the first part or the tail.
2407 int split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma,
2408 unsigned long addr, int new_below)
2410 if (vma->vm_mm->map_count >= sysctl_max_map_count)
2413 return __split_vma(vmi, vma, addr, new_below);
2417 * do_vmi_align_munmap() - munmap the aligned region from @start to @end.
2418 * @vmi: The vma iterator
2419 * @vma: The starting vm_area_struct
2420 * @mm: The mm_struct
2421 * @start: The aligned start address to munmap.
2422 * @end: The aligned end address to munmap.
2423 * @uf: The userfaultfd list_head
2424 * @unlock: Set to true to drop the mmap_lock. unlocking only happens on
2427 * Return: 0 on success and drops the lock if so directed, error and leaves the
2428 * lock held otherwise.
2431 do_vmi_align_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
2432 struct mm_struct *mm, unsigned long start,
2433 unsigned long end, struct list_head *uf, bool unlock)
2435 struct vm_area_struct *prev, *next = NULL;
2436 struct maple_tree mt_detach;
2438 int error = -ENOMEM;
2439 unsigned long locked_vm = 0;
2440 MA_STATE(mas_detach, &mt_detach, 0, 0);
2441 mt_init_flags(&mt_detach, vmi->mas.tree->ma_flags & MT_FLAGS_LOCK_MASK);
2442 mt_set_external_lock(&mt_detach, &mm->mmap_lock);
2445 * If we need to split any vma, do it now to save pain later.
2447 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2448 * unmapped vm_area_struct will remain in use: so lower split_vma
2449 * places tmp vma above, and higher split_vma places tmp vma below.
2452 /* Does it split the first one? */
2453 if (start > vma->vm_start) {
2456 * Make sure that map_count on return from munmap() will
2457 * not exceed its limit; but let map_count go just above
2458 * its limit temporarily, to help free resources as expected.
2460 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2461 goto map_count_exceeded;
2463 error = __split_vma(vmi, vma, start, 0);
2465 goto start_split_failed;
2467 vma = vma_iter_load(vmi);
2470 prev = vma_prev(vmi);
2471 if (unlikely((!prev)))
2472 vma_iter_set(vmi, start);
2475 * Detach a range of VMAs from the mm. Using next as a temp variable as
2476 * it is always overwritten.
2478 for_each_vma_range(*vmi, next, end) {
2479 /* Does it split the end? */
2480 if (next->vm_end > end) {
2481 error = __split_vma(vmi, next, end, 0);
2483 goto end_split_failed;
2485 vma_start_write(next);
2486 mas_set_range(&mas_detach, next->vm_start, next->vm_end - 1);
2487 error = mas_store_gfp(&mas_detach, next, GFP_KERNEL);
2489 goto munmap_gather_failed;
2490 vma_mark_detached(next, true);
2491 if (next->vm_flags & VM_LOCKED)
2492 locked_vm += vma_pages(next);
2497 * If userfaultfd_unmap_prep returns an error the vmas
2498 * will remain split, but userland will get a
2499 * highly unexpected error anyway. This is no
2500 * different than the case where the first of the two
2501 * __split_vma fails, but we don't undo the first
2502 * split, despite we could. This is unlikely enough
2503 * failure that it's not worth optimizing it for.
2505 error = userfaultfd_unmap_prep(next, start, end, uf);
2508 goto userfaultfd_error;
2510 #ifdef CONFIG_DEBUG_VM_MAPLE_TREE
2511 BUG_ON(next->vm_start < start);
2512 BUG_ON(next->vm_start > end);
2516 if (vma_iter_end(vmi) > end)
2517 next = vma_iter_load(vmi);
2520 next = vma_next(vmi);
2522 #if defined(CONFIG_DEBUG_VM_MAPLE_TREE)
2523 /* Make sure no VMAs are about to be lost. */
2525 MA_STATE(test, &mt_detach, start, end - 1);
2526 struct vm_area_struct *vma_mas, *vma_test;
2529 vma_iter_set(vmi, start);
2531 vma_test = mas_find(&test, end - 1);
2532 for_each_vma_range(*vmi, vma_mas, end) {
2533 BUG_ON(vma_mas != vma_test);
2535 vma_test = mas_next(&test, end - 1);
2538 BUG_ON(count != test_count);
2541 vma_iter_set(vmi, start);
2542 error = vma_iter_clear_gfp(vmi, start, end, GFP_KERNEL);
2544 goto clear_tree_failed;
2546 /* Point of no return */
2547 mm->locked_vm -= locked_vm;
2548 mm->map_count -= count;
2550 mmap_write_downgrade(mm);
2553 * We can free page tables without write-locking mmap_lock because VMAs
2554 * were isolated before we downgraded mmap_lock.
2556 unmap_region(mm, &mt_detach, vma, prev, next, start, end, !unlock);
2557 /* Statistics and freeing VMAs */
2558 mas_set(&mas_detach, start);
2559 remove_mt(mm, &mas_detach);
2560 __mt_destroy(&mt_detach);
2563 mmap_read_unlock(mm);
2569 munmap_gather_failed:
2571 mas_set(&mas_detach, 0);
2572 mas_for_each(&mas_detach, next, end)
2573 vma_mark_detached(next, false);
2575 __mt_destroy(&mt_detach);
2583 * do_vmi_munmap() - munmap a given range.
2584 * @vmi: The vma iterator
2585 * @mm: The mm_struct
2586 * @start: The start address to munmap
2587 * @len: The length of the range to munmap
2588 * @uf: The userfaultfd list_head
2589 * @unlock: set to true if the user wants to drop the mmap_lock on success
2591 * This function takes a @mas that is either pointing to the previous VMA or set
2592 * to MA_START and sets it up to remove the mapping(s). The @len will be
2593 * aligned and any arch_unmap work will be preformed.
2595 * Return: 0 on success and drops the lock if so directed, error and leaves the
2596 * lock held otherwise.
2598 int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm,
2599 unsigned long start, size_t len, struct list_head *uf,
2603 struct vm_area_struct *vma;
2605 if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2608 end = start + PAGE_ALIGN(len);
2612 /* arch_unmap() might do unmaps itself. */
2613 arch_unmap(mm, start, end);
2615 /* Find the first overlapping VMA */
2616 vma = vma_find(vmi, end);
2619 mmap_write_unlock(mm);
2623 return do_vmi_align_munmap(vmi, vma, mm, start, end, uf, unlock);
2626 /* do_munmap() - Wrapper function for non-maple tree aware do_munmap() calls.
2627 * @mm: The mm_struct
2628 * @start: The start address to munmap
2629 * @len: The length to be munmapped.
2630 * @uf: The userfaultfd list_head
2632 * Return: 0 on success, error otherwise.
2634 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2635 struct list_head *uf)
2637 VMA_ITERATOR(vmi, mm, start);
2639 return do_vmi_munmap(&vmi, mm, start, len, uf, false);
2642 unsigned long mmap_region(struct file *file, unsigned long addr,
2643 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2644 struct list_head *uf)
2646 struct mm_struct *mm = current->mm;
2647 struct vm_area_struct *vma = NULL;
2648 struct vm_area_struct *next, *prev, *merge;
2649 pgoff_t pglen = len >> PAGE_SHIFT;
2650 unsigned long charged = 0;
2651 unsigned long end = addr + len;
2652 unsigned long merge_start = addr, merge_end = end;
2655 VMA_ITERATOR(vmi, mm, addr);
2657 /* Check against address space limit. */
2658 if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
2659 unsigned long nr_pages;
2662 * MAP_FIXED may remove pages of mappings that intersects with
2663 * requested mapping. Account for the pages it would unmap.
2665 nr_pages = count_vma_pages_range(mm, addr, end);
2667 if (!may_expand_vm(mm, vm_flags,
2668 (len >> PAGE_SHIFT) - nr_pages))
2672 /* Unmap any existing mapping in the area */
2673 if (do_vmi_munmap(&vmi, mm, addr, len, uf, false))
2677 * Private writable mapping: check memory availability
2679 if (accountable_mapping(file, vm_flags)) {
2680 charged = len >> PAGE_SHIFT;
2681 if (security_vm_enough_memory_mm(mm, charged))
2683 vm_flags |= VM_ACCOUNT;
2686 next = vma_next(&vmi);
2687 prev = vma_prev(&vmi);
2688 if (vm_flags & VM_SPECIAL)
2691 /* Attempt to expand an old mapping */
2693 if (next && next->vm_start == end && !vma_policy(next) &&
2694 can_vma_merge_before(next, vm_flags, NULL, file, pgoff+pglen,
2695 NULL_VM_UFFD_CTX, NULL)) {
2696 merge_end = next->vm_end;
2698 vm_pgoff = next->vm_pgoff - pglen;
2702 if (prev && prev->vm_end == addr && !vma_policy(prev) &&
2703 (vma ? can_vma_merge_after(prev, vm_flags, vma->anon_vma, file,
2704 pgoff, vma->vm_userfaultfd_ctx, NULL) :
2705 can_vma_merge_after(prev, vm_flags, NULL, file, pgoff,
2706 NULL_VM_UFFD_CTX, NULL))) {
2707 merge_start = prev->vm_start;
2709 vm_pgoff = prev->vm_pgoff;
2713 /* Actually expand, if possible */
2715 !vma_expand(&vmi, vma, merge_start, merge_end, vm_pgoff, next)) {
2716 khugepaged_enter_vma(vma, vm_flags);
2722 vma_iter_next_range(&vmi);
2725 * Determine the object being mapped and call the appropriate
2726 * specific mapper. the address has already been validated, but
2727 * not unmapped, but the maps are removed from the list.
2729 vma = vm_area_alloc(mm);
2735 vma_iter_set(&vmi, addr);
2736 vma->vm_start = addr;
2738 vm_flags_init(vma, vm_flags);
2739 vma->vm_page_prot = vm_get_page_prot(vm_flags);
2740 vma->vm_pgoff = pgoff;
2743 if (vm_flags & VM_SHARED) {
2744 error = mapping_map_writable(file->f_mapping);
2749 vma->vm_file = get_file(file);
2750 error = call_mmap(file, vma);
2752 goto unmap_and_free_vma;
2755 * Expansion is handled above, merging is handled below.
2756 * Drivers should not alter the address of the VMA.
2759 if (WARN_ON((addr != vma->vm_start)))
2760 goto close_and_free_vma;
2762 vma_iter_set(&vmi, addr);
2764 * If vm_flags changed after call_mmap(), we should try merge
2765 * vma again as we may succeed this time.
2767 if (unlikely(vm_flags != vma->vm_flags && prev)) {
2768 merge = vma_merge(&vmi, mm, prev, vma->vm_start,
2769 vma->vm_end, vma->vm_flags, NULL,
2770 vma->vm_file, vma->vm_pgoff, NULL,
2771 NULL_VM_UFFD_CTX, NULL);
2774 * ->mmap() can change vma->vm_file and fput
2775 * the original file. So fput the vma->vm_file
2776 * here or we would add an extra fput for file
2777 * and cause general protection fault
2783 /* Update vm_flags to pick up the change. */
2784 vm_flags = vma->vm_flags;
2785 goto unmap_writable;
2789 vm_flags = vma->vm_flags;
2790 } else if (vm_flags & VM_SHARED) {
2791 error = shmem_zero_setup(vma);
2795 vma_set_anonymous(vma);
2798 if (map_deny_write_exec(vma, vma->vm_flags)) {
2800 goto close_and_free_vma;
2803 /* Allow architectures to sanity-check the vm_flags */
2805 if (!arch_validate_flags(vma->vm_flags))
2806 goto close_and_free_vma;
2809 if (vma_iter_prealloc(&vmi))
2810 goto close_and_free_vma;
2812 /* Lock the VMA since it is modified after insertion into VMA tree */
2813 vma_start_write(vma);
2815 i_mmap_lock_write(vma->vm_file->f_mapping);
2817 vma_iter_store(&vmi, vma);
2820 if (vma->vm_flags & VM_SHARED)
2821 mapping_allow_writable(vma->vm_file->f_mapping);
2823 flush_dcache_mmap_lock(vma->vm_file->f_mapping);
2824 vma_interval_tree_insert(vma, &vma->vm_file->f_mapping->i_mmap);
2825 flush_dcache_mmap_unlock(vma->vm_file->f_mapping);
2826 i_mmap_unlock_write(vma->vm_file->f_mapping);
2830 * vma_merge() calls khugepaged_enter_vma() either, the below
2831 * call covers the non-merge case.
2833 khugepaged_enter_vma(vma, vma->vm_flags);
2835 /* Once vma denies write, undo our temporary denial count */
2837 if (file && vm_flags & VM_SHARED)
2838 mapping_unmap_writable(file->f_mapping);
2839 file = vma->vm_file;
2842 perf_event_mmap(vma);
2844 vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
2845 if (vm_flags & VM_LOCKED) {
2846 if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) ||
2847 is_vm_hugetlb_page(vma) ||
2848 vma == get_gate_vma(current->mm))
2849 vm_flags_clear(vma, VM_LOCKED_MASK);
2851 mm->locked_vm += (len >> PAGE_SHIFT);
2858 * New (or expanded) vma always get soft dirty status.
2859 * Otherwise user-space soft-dirty page tracker won't
2860 * be able to distinguish situation when vma area unmapped,
2861 * then new mapped in-place (which must be aimed as
2862 * a completely new data area).
2864 vm_flags_set(vma, VM_SOFTDIRTY);
2866 vma_set_page_prot(vma);
2872 if (file && vma->vm_ops && vma->vm_ops->close)
2873 vma->vm_ops->close(vma);
2875 if (file || vma->vm_file) {
2878 vma->vm_file = NULL;
2880 /* Undo any partial mapping done by a device driver. */
2881 unmap_region(mm, &mm->mm_mt, vma, prev, next, vma->vm_start,
2884 if (file && (vm_flags & VM_SHARED))
2885 mapping_unmap_writable(file->f_mapping);
2890 vm_unacct_memory(charged);
2895 static int __vm_munmap(unsigned long start, size_t len, bool unlock)
2898 struct mm_struct *mm = current->mm;
2900 VMA_ITERATOR(vmi, mm, start);
2902 if (mmap_write_lock_killable(mm))
2905 ret = do_vmi_munmap(&vmi, mm, start, len, &uf, unlock);
2907 mmap_write_unlock(mm);
2909 userfaultfd_unmap_complete(mm, &uf);
2913 int vm_munmap(unsigned long start, size_t len)
2915 return __vm_munmap(start, len, false);
2917 EXPORT_SYMBOL(vm_munmap);
2919 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2921 addr = untagged_addr(addr);
2922 return __vm_munmap(addr, len, true);
2927 * Emulation of deprecated remap_file_pages() syscall.
2929 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
2930 unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
2933 struct mm_struct *mm = current->mm;
2934 struct vm_area_struct *vma;
2935 unsigned long populate = 0;
2936 unsigned long ret = -EINVAL;
2939 pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/mm/remap_file_pages.rst.\n",
2940 current->comm, current->pid);
2944 start = start & PAGE_MASK;
2945 size = size & PAGE_MASK;
2947 if (start + size <= start)
2950 /* Does pgoff wrap? */
2951 if (pgoff + (size >> PAGE_SHIFT) < pgoff)
2954 if (mmap_write_lock_killable(mm))
2957 vma = vma_lookup(mm, start);
2959 if (!vma || !(vma->vm_flags & VM_SHARED))
2962 if (start + size > vma->vm_end) {
2963 VMA_ITERATOR(vmi, mm, vma->vm_end);
2964 struct vm_area_struct *next, *prev = vma;
2966 for_each_vma_range(vmi, next, start + size) {
2967 /* hole between vmas ? */
2968 if (next->vm_start != prev->vm_end)
2971 if (next->vm_file != vma->vm_file)
2974 if (next->vm_flags != vma->vm_flags)
2977 if (start + size <= next->vm_end)
2987 prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
2988 prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
2989 prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
2991 flags &= MAP_NONBLOCK;
2992 flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
2993 if (vma->vm_flags & VM_LOCKED)
2994 flags |= MAP_LOCKED;
2996 file = get_file(vma->vm_file);
2997 ret = do_mmap(vma->vm_file, start, size,
2998 prot, flags, pgoff, &populate, NULL);
3001 mmap_write_unlock(mm);
3003 mm_populate(ret, populate);
3004 if (!IS_ERR_VALUE(ret))
3010 * do_vma_munmap() - Unmap a full or partial vma.
3011 * @vmi: The vma iterator pointing at the vma
3012 * @vma: The first vma to be munmapped
3013 * @start: the start of the address to unmap
3014 * @end: The end of the address to unmap
3015 * @uf: The userfaultfd list_head
3016 * @unlock: Drop the lock on success
3018 * unmaps a VMA mapping when the vma iterator is already in position.
3019 * Does not handle alignment.
3021 * Return: 0 on success drops the lock of so directed, error on failure and will
3022 * still hold the lock.
3024 int do_vma_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
3025 unsigned long start, unsigned long end, struct list_head *uf,
3028 struct mm_struct *mm = vma->vm_mm;
3030 arch_unmap(mm, start, end);
3031 return do_vmi_align_munmap(vmi, vma, mm, start, end, uf, unlock);
3035 * do_brk_flags() - Increase the brk vma if the flags match.
3036 * @vmi: The vma iterator
3037 * @addr: The start address
3038 * @len: The length of the increase
3040 * @flags: The VMA Flags
3042 * Extend the brk VMA from addr to addr + len. If the VMA is NULL or the flags
3043 * do not match then create a new anonymous VMA. Eventually we may be able to
3044 * do some brk-specific accounting here.
3046 static int do_brk_flags(struct vma_iterator *vmi, struct vm_area_struct *vma,
3047 unsigned long addr, unsigned long len, unsigned long flags)
3049 struct mm_struct *mm = current->mm;
3050 struct vma_prepare vp;
3054 * Check against address space limits by the changed size
3055 * Note: This happens *after* clearing old mappings in some code paths.
3057 flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
3058 if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
3061 if (mm->map_count > sysctl_max_map_count)
3064 if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
3068 * Expand the existing vma if possible; Note that singular lists do not
3069 * occur after forking, so the expand will only happen on new VMAs.
3071 if (vma && vma->vm_end == addr && !vma_policy(vma) &&
3072 can_vma_merge_after(vma, flags, NULL, NULL,
3073 addr >> PAGE_SHIFT, NULL_VM_UFFD_CTX, NULL)) {
3074 if (vma_iter_prealloc(vmi))
3077 init_vma_prep(&vp, vma);
3079 vma_adjust_trans_huge(vma, vma->vm_start, addr + len, 0);
3080 vma->vm_end = addr + len;
3081 vm_flags_set(vma, VM_SOFTDIRTY);
3082 vma_iter_store(vmi, vma);
3084 vma_complete(&vp, vmi, mm);
3085 khugepaged_enter_vma(vma, flags);
3089 /* create a vma struct for an anonymous mapping */
3090 vma = vm_area_alloc(mm);
3094 vma_set_anonymous(vma);
3095 vma->vm_start = addr;
3096 vma->vm_end = addr + len;
3097 vma->vm_pgoff = addr >> PAGE_SHIFT;
3098 vm_flags_init(vma, flags);
3099 vma->vm_page_prot = vm_get_page_prot(flags);
3100 if (vma_iter_store_gfp(vmi, vma, GFP_KERNEL))
3101 goto mas_store_fail;
3106 perf_event_mmap(vma);
3107 mm->total_vm += len >> PAGE_SHIFT;
3108 mm->data_vm += len >> PAGE_SHIFT;
3109 if (flags & VM_LOCKED)
3110 mm->locked_vm += (len >> PAGE_SHIFT);
3111 vm_flags_set(vma, VM_SOFTDIRTY);
3118 vm_unacct_memory(len >> PAGE_SHIFT);
3122 int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags)
3124 struct mm_struct *mm = current->mm;
3125 struct vm_area_struct *vma = NULL;
3130 VMA_ITERATOR(vmi, mm, addr);
3132 len = PAGE_ALIGN(request);
3138 if (mmap_write_lock_killable(mm))
3141 /* Until we need other flags, refuse anything except VM_EXEC. */
3142 if ((flags & (~VM_EXEC)) != 0)
3145 ret = check_brk_limits(addr, len);
3149 ret = do_vmi_munmap(&vmi, mm, addr, len, &uf, 0);
3153 vma = vma_prev(&vmi);
3154 ret = do_brk_flags(&vmi, vma, addr, len, flags);
3155 populate = ((mm->def_flags & VM_LOCKED) != 0);
3156 mmap_write_unlock(mm);
3157 userfaultfd_unmap_complete(mm, &uf);
3158 if (populate && !ret)
3159 mm_populate(addr, len);
3164 mmap_write_unlock(mm);
3167 EXPORT_SYMBOL(vm_brk_flags);
3169 int vm_brk(unsigned long addr, unsigned long len)
3171 return vm_brk_flags(addr, len, 0);
3173 EXPORT_SYMBOL(vm_brk);
3175 /* Release all mmaps. */
3176 void exit_mmap(struct mm_struct *mm)
3178 struct mmu_gather tlb;
3179 struct vm_area_struct *vma;
3180 unsigned long nr_accounted = 0;
3181 MA_STATE(mas, &mm->mm_mt, 0, 0);
3184 /* mm's last user has gone, and its about to be pulled down */
3185 mmu_notifier_release(mm);
3190 vma = mas_find(&mas, ULONG_MAX);
3192 /* Can happen if dup_mmap() received an OOM */
3193 mmap_read_unlock(mm);
3199 tlb_gather_mmu_fullmm(&tlb, mm);
3200 /* update_hiwater_rss(mm) here? but nobody should be looking */
3201 /* Use ULONG_MAX here to ensure all VMAs in the mm are unmapped */
3202 unmap_vmas(&tlb, &mm->mm_mt, vma, 0, ULONG_MAX, false);
3203 mmap_read_unlock(mm);
3206 * Set MMF_OOM_SKIP to hide this task from the oom killer/reaper
3207 * because the memory has been already freed.
3209 set_bit(MMF_OOM_SKIP, &mm->flags);
3210 mmap_write_lock(mm);
3211 mt_clear_in_rcu(&mm->mm_mt);
3212 free_pgtables(&tlb, &mm->mm_mt, vma, FIRST_USER_ADDRESS,
3213 USER_PGTABLES_CEILING, true);
3214 tlb_finish_mmu(&tlb);
3217 * Walk the list again, actually closing and freeing it, with preemption
3218 * enabled, without holding any MM locks besides the unreachable
3222 if (vma->vm_flags & VM_ACCOUNT)
3223 nr_accounted += vma_pages(vma);
3224 remove_vma(vma, true);
3227 } while ((vma = mas_find(&mas, ULONG_MAX)) != NULL);
3229 BUG_ON(count != mm->map_count);
3231 trace_exit_mmap(mm);
3232 __mt_destroy(&mm->mm_mt);
3233 mmap_write_unlock(mm);
3234 vm_unacct_memory(nr_accounted);
3237 /* Insert vm structure into process list sorted by address
3238 * and into the inode's i_mmap tree. If vm_file is non-NULL
3239 * then i_mmap_rwsem is taken here.
3241 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
3243 unsigned long charged = vma_pages(vma);
3246 if (find_vma_intersection(mm, vma->vm_start, vma->vm_end))
3249 if ((vma->vm_flags & VM_ACCOUNT) &&
3250 security_vm_enough_memory_mm(mm, charged))
3254 * The vm_pgoff of a purely anonymous vma should be irrelevant
3255 * until its first write fault, when page's anon_vma and index
3256 * are set. But now set the vm_pgoff it will almost certainly
3257 * end up with (unless mremap moves it elsewhere before that
3258 * first wfault), so /proc/pid/maps tells a consistent story.
3260 * By setting it to reflect the virtual start address of the
3261 * vma, merges and splits can happen in a seamless way, just
3262 * using the existing file pgoff checks and manipulations.
3263 * Similarly in do_mmap and in do_brk_flags.
3265 if (vma_is_anonymous(vma)) {
3266 BUG_ON(vma->anon_vma);
3267 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
3270 if (vma_link(mm, vma)) {
3271 vm_unacct_memory(charged);
3279 * Copy the vma structure to a new location in the same mm,
3280 * prior to moving page table entries, to effect an mremap move.
3282 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
3283 unsigned long addr, unsigned long len, pgoff_t pgoff,
3284 bool *need_rmap_locks)
3286 struct vm_area_struct *vma = *vmap;
3287 unsigned long vma_start = vma->vm_start;
3288 struct mm_struct *mm = vma->vm_mm;
3289 struct vm_area_struct *new_vma, *prev;
3290 bool faulted_in_anon_vma = true;
3291 VMA_ITERATOR(vmi, mm, addr);
3295 * If anonymous vma has not yet been faulted, update new pgoff
3296 * to match new location, to increase its chance of merging.
3298 if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
3299 pgoff = addr >> PAGE_SHIFT;
3300 faulted_in_anon_vma = false;
3303 new_vma = find_vma_prev(mm, addr, &prev);
3304 if (new_vma && new_vma->vm_start < addr + len)
3305 return NULL; /* should never get here */
3307 new_vma = vma_merge(&vmi, mm, prev, addr, addr + len, vma->vm_flags,
3308 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
3309 vma->vm_userfaultfd_ctx, anon_vma_name(vma));
3312 * Source vma may have been merged into new_vma
3314 if (unlikely(vma_start >= new_vma->vm_start &&
3315 vma_start < new_vma->vm_end)) {
3317 * The only way we can get a vma_merge with
3318 * self during an mremap is if the vma hasn't
3319 * been faulted in yet and we were allowed to
3320 * reset the dst vma->vm_pgoff to the
3321 * destination address of the mremap to allow
3322 * the merge to happen. mremap must change the
3323 * vm_pgoff linearity between src and dst vmas
3324 * (in turn preventing a vma_merge) to be
3325 * safe. It is only safe to keep the vm_pgoff
3326 * linear if there are no pages mapped yet.
3328 VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
3329 *vmap = vma = new_vma;
3331 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
3333 new_vma = vm_area_dup(vma);
3336 new_vma->vm_start = addr;
3337 new_vma->vm_end = addr + len;
3338 new_vma->vm_pgoff = pgoff;
3339 if (vma_dup_policy(vma, new_vma))
3341 if (anon_vma_clone(new_vma, vma))
3342 goto out_free_mempol;
3343 if (new_vma->vm_file)
3344 get_file(new_vma->vm_file);
3345 if (new_vma->vm_ops && new_vma->vm_ops->open)
3346 new_vma->vm_ops->open(new_vma);
3347 vma_start_write(new_vma);
3348 if (vma_link(mm, new_vma))
3350 *need_rmap_locks = false;
3356 if (new_vma->vm_ops && new_vma->vm_ops->close)
3357 new_vma->vm_ops->close(new_vma);
3359 if (new_vma->vm_file)
3360 fput(new_vma->vm_file);
3362 unlink_anon_vmas(new_vma);
3364 mpol_put(vma_policy(new_vma));
3366 vm_area_free(new_vma);
3373 * Return true if the calling process may expand its vm space by the passed
3376 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
3378 if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
3381 if (is_data_mapping(flags) &&
3382 mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
3383 /* Workaround for Valgrind */
3384 if (rlimit(RLIMIT_DATA) == 0 &&
3385 mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
3388 pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n",
3389 current->comm, current->pid,
3390 (mm->data_vm + npages) << PAGE_SHIFT,
3391 rlimit(RLIMIT_DATA),
3392 ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data");
3394 if (!ignore_rlimit_data)
3401 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
3403 WRITE_ONCE(mm->total_vm, READ_ONCE(mm->total_vm)+npages);
3405 if (is_exec_mapping(flags))
3406 mm->exec_vm += npages;
3407 else if (is_stack_mapping(flags))
3408 mm->stack_vm += npages;
3409 else if (is_data_mapping(flags))
3410 mm->data_vm += npages;
3413 static vm_fault_t special_mapping_fault(struct vm_fault *vmf);
3416 * Having a close hook prevents vma merging regardless of flags.
3418 static void special_mapping_close(struct vm_area_struct *vma)
3422 static const char *special_mapping_name(struct vm_area_struct *vma)
3424 return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3427 static int special_mapping_mremap(struct vm_area_struct *new_vma)
3429 struct vm_special_mapping *sm = new_vma->vm_private_data;
3431 if (WARN_ON_ONCE(current->mm != new_vma->vm_mm))
3435 return sm->mremap(sm, new_vma);
3440 static int special_mapping_split(struct vm_area_struct *vma, unsigned long addr)
3443 * Forbid splitting special mappings - kernel has expectations over
3444 * the number of pages in mapping. Together with VM_DONTEXPAND
3445 * the size of vma should stay the same over the special mapping's
3451 static const struct vm_operations_struct special_mapping_vmops = {
3452 .close = special_mapping_close,
3453 .fault = special_mapping_fault,
3454 .mremap = special_mapping_mremap,
3455 .name = special_mapping_name,
3456 /* vDSO code relies that VVAR can't be accessed remotely */
3458 .may_split = special_mapping_split,
3461 static const struct vm_operations_struct legacy_special_mapping_vmops = {
3462 .close = special_mapping_close,
3463 .fault = special_mapping_fault,
3466 static vm_fault_t special_mapping_fault(struct vm_fault *vmf)
3468 struct vm_area_struct *vma = vmf->vma;
3470 struct page **pages;
3472 if (vma->vm_ops == &legacy_special_mapping_vmops) {
3473 pages = vma->vm_private_data;
3475 struct vm_special_mapping *sm = vma->vm_private_data;
3478 return sm->fault(sm, vmf->vma, vmf);
3483 for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3487 struct page *page = *pages;
3493 return VM_FAULT_SIGBUS;
3496 static struct vm_area_struct *__install_special_mapping(
3497 struct mm_struct *mm,
3498 unsigned long addr, unsigned long len,
3499 unsigned long vm_flags, void *priv,
3500 const struct vm_operations_struct *ops)
3503 struct vm_area_struct *vma;
3506 vma = vm_area_alloc(mm);
3507 if (unlikely(vma == NULL))
3508 return ERR_PTR(-ENOMEM);
3510 vma->vm_start = addr;
3511 vma->vm_end = addr + len;
3513 vm_flags_init(vma, (vm_flags | mm->def_flags |
3514 VM_DONTEXPAND | VM_SOFTDIRTY) & ~VM_LOCKED_MASK);
3515 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3518 vma->vm_private_data = priv;
3520 ret = insert_vm_struct(mm, vma);
3524 vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3526 perf_event_mmap(vma);
3534 return ERR_PTR(ret);
3537 bool vma_is_special_mapping(const struct vm_area_struct *vma,
3538 const struct vm_special_mapping *sm)
3540 return vma->vm_private_data == sm &&
3541 (vma->vm_ops == &special_mapping_vmops ||
3542 vma->vm_ops == &legacy_special_mapping_vmops);
3546 * Called with mm->mmap_lock held for writing.
3547 * Insert a new vma covering the given region, with the given flags.
3548 * Its pages are supplied by the given array of struct page *.
3549 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3550 * The region past the last page supplied will always produce SIGBUS.
3551 * The array pointer and the pages it points to are assumed to stay alive
3552 * for as long as this mapping might exist.
3554 struct vm_area_struct *_install_special_mapping(
3555 struct mm_struct *mm,
3556 unsigned long addr, unsigned long len,
3557 unsigned long vm_flags, const struct vm_special_mapping *spec)
3559 return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3560 &special_mapping_vmops);
3563 int install_special_mapping(struct mm_struct *mm,
3564 unsigned long addr, unsigned long len,
3565 unsigned long vm_flags, struct page **pages)
3567 struct vm_area_struct *vma = __install_special_mapping(
3568 mm, addr, len, vm_flags, (void *)pages,
3569 &legacy_special_mapping_vmops);
3571 return PTR_ERR_OR_ZERO(vma);
3574 static DEFINE_MUTEX(mm_all_locks_mutex);
3576 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3578 if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3580 * The LSB of head.next can't change from under us
3581 * because we hold the mm_all_locks_mutex.
3583 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_lock);
3585 * We can safely modify head.next after taking the
3586 * anon_vma->root->rwsem. If some other vma in this mm shares
3587 * the same anon_vma we won't take it again.
3589 * No need of atomic instructions here, head.next
3590 * can't change from under us thanks to the
3591 * anon_vma->root->rwsem.
3593 if (__test_and_set_bit(0, (unsigned long *)
3594 &anon_vma->root->rb_root.rb_root.rb_node))
3599 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3601 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3603 * AS_MM_ALL_LOCKS can't change from under us because
3604 * we hold the mm_all_locks_mutex.
3606 * Operations on ->flags have to be atomic because
3607 * even if AS_MM_ALL_LOCKS is stable thanks to the
3608 * mm_all_locks_mutex, there may be other cpus
3609 * changing other bitflags in parallel to us.
3611 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3613 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_lock);
3618 * This operation locks against the VM for all pte/vma/mm related
3619 * operations that could ever happen on a certain mm. This includes
3620 * vmtruncate, try_to_unmap, and all page faults.
3622 * The caller must take the mmap_lock in write mode before calling
3623 * mm_take_all_locks(). The caller isn't allowed to release the
3624 * mmap_lock until mm_drop_all_locks() returns.
3626 * mmap_lock in write mode is required in order to block all operations
3627 * that could modify pagetables and free pages without need of
3628 * altering the vma layout. It's also needed in write mode to avoid new
3629 * anon_vmas to be associated with existing vmas.
3631 * A single task can't take more than one mm_take_all_locks() in a row
3632 * or it would deadlock.
3634 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3635 * mapping->flags avoid to take the same lock twice, if more than one
3636 * vma in this mm is backed by the same anon_vma or address_space.
3638 * We take locks in following order, accordingly to comment at beginning
3640 * - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3642 * - all vmas marked locked
3643 * - all i_mmap_rwsem locks;
3644 * - all anon_vma->rwseml
3646 * We can take all locks within these types randomly because the VM code
3647 * doesn't nest them and we protected from parallel mm_take_all_locks() by
3648 * mm_all_locks_mutex.
3650 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3651 * that may have to take thousand of locks.
3653 * mm_take_all_locks() can fail if it's interrupted by signals.
3655 int mm_take_all_locks(struct mm_struct *mm)
3657 struct vm_area_struct *vma;
3658 struct anon_vma_chain *avc;
3659 MA_STATE(mas, &mm->mm_mt, 0, 0);
3661 mmap_assert_write_locked(mm);
3663 mutex_lock(&mm_all_locks_mutex);
3665 mas_for_each(&mas, vma, ULONG_MAX) {
3666 if (signal_pending(current))
3668 vma_start_write(vma);
3672 mas_for_each(&mas, vma, ULONG_MAX) {
3673 if (signal_pending(current))
3675 if (vma->vm_file && vma->vm_file->f_mapping &&
3676 is_vm_hugetlb_page(vma))
3677 vm_lock_mapping(mm, vma->vm_file->f_mapping);
3681 mas_for_each(&mas, vma, ULONG_MAX) {
3682 if (signal_pending(current))
3684 if (vma->vm_file && vma->vm_file->f_mapping &&
3685 !is_vm_hugetlb_page(vma))
3686 vm_lock_mapping(mm, vma->vm_file->f_mapping);
3690 mas_for_each(&mas, vma, ULONG_MAX) {
3691 if (signal_pending(current))
3694 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3695 vm_lock_anon_vma(mm, avc->anon_vma);
3701 mm_drop_all_locks(mm);
3705 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3707 if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3709 * The LSB of head.next can't change to 0 from under
3710 * us because we hold the mm_all_locks_mutex.
3712 * We must however clear the bitflag before unlocking
3713 * the vma so the users using the anon_vma->rb_root will
3714 * never see our bitflag.
3716 * No need of atomic instructions here, head.next
3717 * can't change from under us until we release the
3718 * anon_vma->root->rwsem.
3720 if (!__test_and_clear_bit(0, (unsigned long *)
3721 &anon_vma->root->rb_root.rb_root.rb_node))
3723 anon_vma_unlock_write(anon_vma);
3727 static void vm_unlock_mapping(struct address_space *mapping)
3729 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3731 * AS_MM_ALL_LOCKS can't change to 0 from under us
3732 * because we hold the mm_all_locks_mutex.
3734 i_mmap_unlock_write(mapping);
3735 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3742 * The mmap_lock cannot be released by the caller until
3743 * mm_drop_all_locks() returns.
3745 void mm_drop_all_locks(struct mm_struct *mm)
3747 struct vm_area_struct *vma;
3748 struct anon_vma_chain *avc;
3749 MA_STATE(mas, &mm->mm_mt, 0, 0);
3751 mmap_assert_write_locked(mm);
3752 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3754 mas_for_each(&mas, vma, ULONG_MAX) {
3756 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3757 vm_unlock_anon_vma(avc->anon_vma);
3758 if (vma->vm_file && vma->vm_file->f_mapping)
3759 vm_unlock_mapping(vma->vm_file->f_mapping);
3761 vma_end_write_all(mm);
3763 mutex_unlock(&mm_all_locks_mutex);
3767 * initialise the percpu counter for VM
3769 void __init mmap_init(void)
3773 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3778 * Initialise sysctl_user_reserve_kbytes.
3780 * This is intended to prevent a user from starting a single memory hogging
3781 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3784 * The default value is min(3% of free memory, 128MB)
3785 * 128MB is enough to recover with sshd/login, bash, and top/kill.
3787 static int init_user_reserve(void)
3789 unsigned long free_kbytes;
3791 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3793 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3796 subsys_initcall(init_user_reserve);
3799 * Initialise sysctl_admin_reserve_kbytes.
3801 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3802 * to log in and kill a memory hogging process.
3804 * Systems with more than 256MB will reserve 8MB, enough to recover
3805 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3806 * only reserve 3% of free pages by default.
3808 static int init_admin_reserve(void)
3810 unsigned long free_kbytes;
3812 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3814 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3817 subsys_initcall(init_admin_reserve);
3820 * Reinititalise user and admin reserves if memory is added or removed.
3822 * The default user reserve max is 128MB, and the default max for the
3823 * admin reserve is 8MB. These are usually, but not always, enough to
3824 * enable recovery from a memory hogging process using login/sshd, a shell,
3825 * and tools like top. It may make sense to increase or even disable the
3826 * reserve depending on the existence of swap or variations in the recovery
3827 * tools. So, the admin may have changed them.
3829 * If memory is added and the reserves have been eliminated or increased above
3830 * the default max, then we'll trust the admin.
3832 * If memory is removed and there isn't enough free memory, then we
3833 * need to reset the reserves.
3835 * Otherwise keep the reserve set by the admin.
3837 static int reserve_mem_notifier(struct notifier_block *nb,
3838 unsigned long action, void *data)
3840 unsigned long tmp, free_kbytes;
3844 /* Default max is 128MB. Leave alone if modified by operator. */
3845 tmp = sysctl_user_reserve_kbytes;
3846 if (0 < tmp && tmp < (1UL << 17))
3847 init_user_reserve();
3849 /* Default max is 8MB. Leave alone if modified by operator. */
3850 tmp = sysctl_admin_reserve_kbytes;
3851 if (0 < tmp && tmp < (1UL << 13))
3852 init_admin_reserve();
3856 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3858 if (sysctl_user_reserve_kbytes > free_kbytes) {
3859 init_user_reserve();
3860 pr_info("vm.user_reserve_kbytes reset to %lu\n",
3861 sysctl_user_reserve_kbytes);
3864 if (sysctl_admin_reserve_kbytes > free_kbytes) {
3865 init_admin_reserve();
3866 pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3867 sysctl_admin_reserve_kbytes);
3876 static int __meminit init_reserve_notifier(void)
3878 if (hotplug_memory_notifier(reserve_mem_notifier, DEFAULT_CALLBACK_PRI))
3879 pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3883 subsys_initcall(init_reserve_notifier);