1 // SPDX-License-Identifier: GPL-2.0-only
7 * Address space accounting code <alan@lxorguk.ukuu.org.uk>
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12 #include <linux/kernel.h>
13 #include <linux/slab.h>
14 #include <linux/backing-dev.h>
16 #include <linux/mm_inline.h>
17 #include <linux/shm.h>
18 #include <linux/mman.h>
19 #include <linux/pagemap.h>
20 #include <linux/swap.h>
21 #include <linux/syscalls.h>
22 #include <linux/capability.h>
23 #include <linux/init.h>
24 #include <linux/file.h>
26 #include <linux/personality.h>
27 #include <linux/security.h>
28 #include <linux/hugetlb.h>
29 #include <linux/shmem_fs.h>
30 #include <linux/profile.h>
31 #include <linux/export.h>
32 #include <linux/mount.h>
33 #include <linux/mempolicy.h>
34 #include <linux/rmap.h>
35 #include <linux/mmu_notifier.h>
36 #include <linux/mmdebug.h>
37 #include <linux/perf_event.h>
38 #include <linux/audit.h>
39 #include <linux/khugepaged.h>
40 #include <linux/uprobes.h>
41 #include <linux/notifier.h>
42 #include <linux/memory.h>
43 #include <linux/printk.h>
44 #include <linux/userfaultfd_k.h>
45 #include <linux/moduleparam.h>
46 #include <linux/pkeys.h>
47 #include <linux/oom.h>
48 #include <linux/sched/mm.h>
49 #include <linux/ksm.h>
51 #include <linux/uaccess.h>
52 #include <asm/cacheflush.h>
54 #include <asm/mmu_context.h>
56 #define CREATE_TRACE_POINTS
57 #include <trace/events/mmap.h>
61 #ifndef arch_mmap_check
62 #define arch_mmap_check(addr, len, flags) (0)
65 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
66 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
67 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX;
68 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
70 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
71 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
72 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
73 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
76 static bool ignore_rlimit_data;
77 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
79 static void unmap_region(struct mm_struct *mm, struct maple_tree *mt,
80 struct vm_area_struct *vma, struct vm_area_struct *prev,
81 struct vm_area_struct *next, unsigned long start,
82 unsigned long end, bool mm_wr_locked);
84 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
86 return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
89 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
90 void vma_set_page_prot(struct vm_area_struct *vma)
92 unsigned long vm_flags = vma->vm_flags;
93 pgprot_t vm_page_prot;
95 vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
96 if (vma_wants_writenotify(vma, vm_page_prot)) {
97 vm_flags &= ~VM_SHARED;
98 vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags);
100 /* remove_protection_ptes reads vma->vm_page_prot without mmap_lock */
101 WRITE_ONCE(vma->vm_page_prot, vm_page_prot);
105 * Requires inode->i_mapping->i_mmap_rwsem
107 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
108 struct file *file, struct address_space *mapping)
110 if (vma->vm_flags & VM_SHARED)
111 mapping_unmap_writable(mapping);
113 flush_dcache_mmap_lock(mapping);
114 vma_interval_tree_remove(vma, &mapping->i_mmap);
115 flush_dcache_mmap_unlock(mapping);
119 * Unlink a file-based vm structure from its interval tree, to hide
120 * vma from rmap and vmtruncate before freeing its page tables.
122 void unlink_file_vma(struct vm_area_struct *vma)
124 struct file *file = vma->vm_file;
127 struct address_space *mapping = file->f_mapping;
128 i_mmap_lock_write(mapping);
129 __remove_shared_vm_struct(vma, file, mapping);
130 i_mmap_unlock_write(mapping);
135 * Close a vm structure and free it.
137 static void remove_vma(struct vm_area_struct *vma, bool unreachable)
140 if (vma->vm_ops && vma->vm_ops->close)
141 vma->vm_ops->close(vma);
144 mpol_put(vma_policy(vma));
151 static inline struct vm_area_struct *vma_prev_limit(struct vma_iterator *vmi,
154 return mas_prev(&vmi->mas, min);
157 static inline int vma_iter_clear_gfp(struct vma_iterator *vmi,
158 unsigned long start, unsigned long end, gfp_t gfp)
160 vmi->mas.index = start;
161 vmi->mas.last = end - 1;
162 mas_store_gfp(&vmi->mas, NULL, gfp);
163 if (unlikely(mas_is_err(&vmi->mas)))
170 * check_brk_limits() - Use platform specific check of range & verify mlock
172 * @addr: The address to check
173 * @len: The size of increase.
175 * Return: 0 on success.
177 static int check_brk_limits(unsigned long addr, unsigned long len)
179 unsigned long mapped_addr;
181 mapped_addr = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
182 if (IS_ERR_VALUE(mapped_addr))
185 return mlock_future_ok(current->mm, current->mm->def_flags, len)
188 static int do_brk_flags(struct vma_iterator *vmi, struct vm_area_struct *brkvma,
189 unsigned long addr, unsigned long request, unsigned long flags);
190 SYSCALL_DEFINE1(brk, unsigned long, brk)
192 unsigned long newbrk, oldbrk, origbrk;
193 struct mm_struct *mm = current->mm;
194 struct vm_area_struct *brkvma, *next = NULL;
195 unsigned long min_brk;
196 bool populate = false;
198 struct vma_iterator vmi;
200 if (mmap_write_lock_killable(mm))
205 #ifdef CONFIG_COMPAT_BRK
207 * CONFIG_COMPAT_BRK can still be overridden by setting
208 * randomize_va_space to 2, which will still cause mm->start_brk
209 * to be arbitrarily shifted
211 if (current->brk_randomized)
212 min_brk = mm->start_brk;
214 min_brk = mm->end_data;
216 min_brk = mm->start_brk;
222 * Check against rlimit here. If this check is done later after the test
223 * of oldbrk with newbrk then it can escape the test and let the data
224 * segment grow beyond its set limit the in case where the limit is
225 * not page aligned -Ram Gupta
227 if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
228 mm->end_data, mm->start_data))
231 newbrk = PAGE_ALIGN(brk);
232 oldbrk = PAGE_ALIGN(mm->brk);
233 if (oldbrk == newbrk) {
238 /* Always allow shrinking brk. */
239 if (brk <= mm->brk) {
240 /* Search one past newbrk */
241 vma_iter_init(&vmi, mm, newbrk);
242 brkvma = vma_find(&vmi, oldbrk);
243 if (!brkvma || brkvma->vm_start >= oldbrk)
244 goto out; /* mapping intersects with an existing non-brk vma. */
246 * mm->brk must be protected by write mmap_lock.
247 * do_vma_munmap() will drop the lock on success, so update it
248 * before calling do_vma_munmap().
251 if (do_vma_munmap(&vmi, brkvma, newbrk, oldbrk, &uf, true))
254 goto success_unlocked;
257 if (check_brk_limits(oldbrk, newbrk - oldbrk))
261 * Only check if the next VMA is within the stack_guard_gap of the
264 vma_iter_init(&vmi, mm, oldbrk);
265 next = vma_find(&vmi, newbrk + PAGE_SIZE + stack_guard_gap);
266 if (next && newbrk + PAGE_SIZE > vm_start_gap(next))
269 brkvma = vma_prev_limit(&vmi, mm->start_brk);
270 /* Ok, looks good - let it rip. */
271 if (do_brk_flags(&vmi, brkvma, oldbrk, newbrk - oldbrk, 0) < 0)
275 if (mm->def_flags & VM_LOCKED)
279 mmap_write_unlock(mm);
281 userfaultfd_unmap_complete(mm, &uf);
283 mm_populate(oldbrk, newbrk - oldbrk);
288 mmap_write_unlock(mm);
292 #if defined(CONFIG_DEBUG_VM_MAPLE_TREE)
293 static void validate_mm(struct mm_struct *mm)
297 struct vm_area_struct *vma;
298 VMA_ITERATOR(vmi, mm, 0);
300 mt_validate(&mm->mm_mt);
301 for_each_vma(vmi, vma) {
302 #ifdef CONFIG_DEBUG_VM_RB
303 struct anon_vma *anon_vma = vma->anon_vma;
304 struct anon_vma_chain *avc;
306 unsigned long vmi_start, vmi_end;
309 vmi_start = vma_iter_addr(&vmi);
310 vmi_end = vma_iter_end(&vmi);
311 if (VM_WARN_ON_ONCE_MM(vma->vm_end != vmi_end, mm))
314 if (VM_WARN_ON_ONCE_MM(vma->vm_start != vmi_start, mm))
318 pr_emerg("issue in %s\n", current->comm);
321 pr_emerg("tree range: %px start %lx end %lx\n", vma,
322 vmi_start, vmi_end - 1);
323 vma_iter_dump_tree(&vmi);
326 #ifdef CONFIG_DEBUG_VM_RB
328 anon_vma_lock_read(anon_vma);
329 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
330 anon_vma_interval_tree_verify(avc);
331 anon_vma_unlock_read(anon_vma);
336 if (i != mm->map_count) {
337 pr_emerg("map_count %d vma iterator %d\n", mm->map_count, i);
340 VM_BUG_ON_MM(bug, mm);
343 #else /* !CONFIG_DEBUG_VM_MAPLE_TREE */
344 #define validate_mm(mm) do { } while (0)
345 #endif /* CONFIG_DEBUG_VM_MAPLE_TREE */
348 * vma has some anon_vma assigned, and is already inserted on that
349 * anon_vma's interval trees.
351 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
352 * vma must be removed from the anon_vma's interval trees using
353 * anon_vma_interval_tree_pre_update_vma().
355 * After the update, the vma will be reinserted using
356 * anon_vma_interval_tree_post_update_vma().
358 * The entire update must be protected by exclusive mmap_lock and by
359 * the root anon_vma's mutex.
362 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
364 struct anon_vma_chain *avc;
366 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
367 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
371 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
373 struct anon_vma_chain *avc;
375 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
376 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
379 static unsigned long count_vma_pages_range(struct mm_struct *mm,
380 unsigned long addr, unsigned long end)
382 VMA_ITERATOR(vmi, mm, addr);
383 struct vm_area_struct *vma;
384 unsigned long nr_pages = 0;
386 for_each_vma_range(vmi, vma, end) {
387 unsigned long vm_start = max(addr, vma->vm_start);
388 unsigned long vm_end = min(end, vma->vm_end);
390 nr_pages += PHYS_PFN(vm_end - vm_start);
396 static void __vma_link_file(struct vm_area_struct *vma,
397 struct address_space *mapping)
399 if (vma->vm_flags & VM_SHARED)
400 mapping_allow_writable(mapping);
402 flush_dcache_mmap_lock(mapping);
403 vma_interval_tree_insert(vma, &mapping->i_mmap);
404 flush_dcache_mmap_unlock(mapping);
407 static int vma_link(struct mm_struct *mm, struct vm_area_struct *vma)
409 VMA_ITERATOR(vmi, mm, 0);
410 struct address_space *mapping = NULL;
412 if (vma_iter_prealloc(&vmi))
416 mapping = vma->vm_file->f_mapping;
417 i_mmap_lock_write(mapping);
420 vma_iter_store(&vmi, vma);
423 __vma_link_file(vma, mapping);
424 i_mmap_unlock_write(mapping);
433 * init_multi_vma_prep() - Initializer for struct vma_prepare
434 * @vp: The vma_prepare struct
435 * @vma: The vma that will be altered once locked
436 * @next: The next vma if it is to be adjusted
437 * @remove: The first vma to be removed
438 * @remove2: The second vma to be removed
440 static inline void init_multi_vma_prep(struct vma_prepare *vp,
441 struct vm_area_struct *vma, struct vm_area_struct *next,
442 struct vm_area_struct *remove, struct vm_area_struct *remove2)
444 memset(vp, 0, sizeof(struct vma_prepare));
446 vp->anon_vma = vma->anon_vma;
448 vp->remove2 = remove2;
450 if (!vp->anon_vma && next)
451 vp->anon_vma = next->anon_vma;
453 vp->file = vma->vm_file;
455 vp->mapping = vma->vm_file->f_mapping;
460 * init_vma_prep() - Initializer wrapper for vma_prepare struct
461 * @vp: The vma_prepare struct
462 * @vma: The vma that will be altered once locked
464 static inline void init_vma_prep(struct vma_prepare *vp,
465 struct vm_area_struct *vma)
467 init_multi_vma_prep(vp, vma, NULL, NULL, NULL);
472 * vma_prepare() - Helper function for handling locking VMAs prior to altering
473 * @vp: The initialized vma_prepare struct
475 static inline void vma_prepare(struct vma_prepare *vp)
477 vma_start_write(vp->vma);
479 vma_start_write(vp->adj_next);
480 /* vp->insert is always a newly created VMA, no need for locking */
482 vma_start_write(vp->remove);
484 vma_start_write(vp->remove2);
487 uprobe_munmap(vp->vma, vp->vma->vm_start, vp->vma->vm_end);
490 uprobe_munmap(vp->adj_next, vp->adj_next->vm_start,
491 vp->adj_next->vm_end);
493 i_mmap_lock_write(vp->mapping);
494 if (vp->insert && vp->insert->vm_file) {
496 * Put into interval tree now, so instantiated pages
497 * are visible to arm/parisc __flush_dcache_page
498 * throughout; but we cannot insert into address
499 * space until vma start or end is updated.
501 __vma_link_file(vp->insert,
502 vp->insert->vm_file->f_mapping);
507 anon_vma_lock_write(vp->anon_vma);
508 anon_vma_interval_tree_pre_update_vma(vp->vma);
510 anon_vma_interval_tree_pre_update_vma(vp->adj_next);
514 flush_dcache_mmap_lock(vp->mapping);
515 vma_interval_tree_remove(vp->vma, &vp->mapping->i_mmap);
517 vma_interval_tree_remove(vp->adj_next,
518 &vp->mapping->i_mmap);
524 * vma_complete- Helper function for handling the unlocking after altering VMAs,
525 * or for inserting a VMA.
527 * @vp: The vma_prepare struct
528 * @vmi: The vma iterator
531 static inline void vma_complete(struct vma_prepare *vp,
532 struct vma_iterator *vmi, struct mm_struct *mm)
536 vma_interval_tree_insert(vp->adj_next,
537 &vp->mapping->i_mmap);
538 vma_interval_tree_insert(vp->vma, &vp->mapping->i_mmap);
539 flush_dcache_mmap_unlock(vp->mapping);
542 if (vp->remove && vp->file) {
543 __remove_shared_vm_struct(vp->remove, vp->file, vp->mapping);
545 __remove_shared_vm_struct(vp->remove2, vp->file,
547 } else if (vp->insert) {
549 * split_vma has split insert from vma, and needs
550 * us to insert it before dropping the locks
551 * (it may either follow vma or precede it).
553 vma_iter_store(vmi, vp->insert);
558 anon_vma_interval_tree_post_update_vma(vp->vma);
560 anon_vma_interval_tree_post_update_vma(vp->adj_next);
561 anon_vma_unlock_write(vp->anon_vma);
565 i_mmap_unlock_write(vp->mapping);
566 uprobe_mmap(vp->vma);
569 uprobe_mmap(vp->adj_next);
574 vma_mark_detached(vp->remove, true);
576 uprobe_munmap(vp->remove, vp->remove->vm_start,
580 if (vp->remove->anon_vma)
581 anon_vma_merge(vp->vma, vp->remove);
583 mpol_put(vma_policy(vp->remove));
585 WARN_ON_ONCE(vp->vma->vm_end < vp->remove->vm_end);
586 vm_area_free(vp->remove);
589 * In mprotect's case 6 (see comments on vma_merge),
590 * we are removing both mid and next vmas
593 vp->remove = vp->remove2;
598 if (vp->insert && vp->file)
599 uprobe_mmap(vp->insert);
603 * dup_anon_vma() - Helper function to duplicate anon_vma
604 * @dst: The destination VMA
605 * @src: The source VMA
607 * Returns: 0 on success.
609 static inline int dup_anon_vma(struct vm_area_struct *dst,
610 struct vm_area_struct *src)
613 * Easily overlooked: when mprotect shifts the boundary, make sure the
614 * expanding vma has anon_vma set if the shrinking vma had, to cover any
615 * anon pages imported.
617 if (src->anon_vma && !dst->anon_vma) {
618 vma_start_write(dst);
619 dst->anon_vma = src->anon_vma;
620 return anon_vma_clone(dst, src);
627 * vma_expand - Expand an existing VMA
629 * @vmi: The vma iterator
630 * @vma: The vma to expand
631 * @start: The start of the vma
632 * @end: The exclusive end of the vma
633 * @pgoff: The page offset of vma
634 * @next: The current of next vma.
636 * Expand @vma to @start and @end. Can expand off the start and end. Will
637 * expand over @next if it's different from @vma and @end == @next->vm_end.
638 * Checking if the @vma can expand and merge with @next needs to be handled by
641 * Returns: 0 on success
643 int vma_expand(struct vma_iterator *vmi, struct vm_area_struct *vma,
644 unsigned long start, unsigned long end, pgoff_t pgoff,
645 struct vm_area_struct *next)
647 bool remove_next = false;
648 struct vma_prepare vp;
650 if (next && (vma != next) && (end == next->vm_end)) {
654 ret = dup_anon_vma(vma, next);
659 init_multi_vma_prep(&vp, vma, NULL, remove_next ? next : NULL, NULL);
660 /* Not merging but overwriting any part of next is not handled. */
661 VM_WARN_ON(next && !vp.remove &&
662 next != vma && end > next->vm_start);
663 /* Only handles expanding */
664 VM_WARN_ON(vma->vm_start < start || vma->vm_end > end);
666 if (vma_iter_prealloc(vmi))
670 vma_adjust_trans_huge(vma, start, end, 0);
671 /* VMA iterator points to previous, so set to start if necessary */
672 if (vma_iter_addr(vmi) != start)
673 vma_iter_set(vmi, start);
675 vma->vm_start = start;
677 vma->vm_pgoff = pgoff;
678 /* Note: mas must be pointing to the expanding VMA */
679 vma_iter_store(vmi, vma);
681 vma_complete(&vp, vmi, vma->vm_mm);
682 validate_mm(vma->vm_mm);
690 * vma_shrink() - Reduce an existing VMAs memory area
691 * @vmi: The vma iterator
692 * @vma: The VMA to modify
693 * @start: The new start
696 * Returns: 0 on success, -ENOMEM otherwise
698 int vma_shrink(struct vma_iterator *vmi, struct vm_area_struct *vma,
699 unsigned long start, unsigned long end, pgoff_t pgoff)
701 struct vma_prepare vp;
703 WARN_ON((vma->vm_start != start) && (vma->vm_end != end));
705 if (vma_iter_prealloc(vmi))
708 init_vma_prep(&vp, vma);
710 vma_adjust_trans_huge(vma, start, end, 0);
712 if (vma->vm_start < start)
713 vma_iter_clear(vmi, vma->vm_start, start);
715 if (vma->vm_end > end)
716 vma_iter_clear(vmi, end, vma->vm_end);
718 vma->vm_start = start;
720 vma->vm_pgoff = pgoff;
721 vma_complete(&vp, vmi, vma->vm_mm);
722 validate_mm(vma->vm_mm);
727 * If the vma has a ->close operation then the driver probably needs to release
728 * per-vma resources, so we don't attempt to merge those if the caller indicates
729 * the current vma may be removed as part of the merge.
731 static inline bool is_mergeable_vma(struct vm_area_struct *vma,
732 struct file *file, unsigned long vm_flags,
733 struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
734 struct anon_vma_name *anon_name, bool may_remove_vma)
737 * VM_SOFTDIRTY should not prevent from VMA merging, if we
738 * match the flags but dirty bit -- the caller should mark
739 * merged VMA as dirty. If dirty bit won't be excluded from
740 * comparison, we increase pressure on the memory system forcing
741 * the kernel to generate new VMAs when old one could be
744 if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
746 if (vma->vm_file != file)
748 if (may_remove_vma && vma->vm_ops && vma->vm_ops->close)
750 if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
752 if (!anon_vma_name_eq(anon_vma_name(vma), anon_name))
757 static inline bool is_mergeable_anon_vma(struct anon_vma *anon_vma1,
758 struct anon_vma *anon_vma2, struct vm_area_struct *vma)
761 * The list_is_singular() test is to avoid merging VMA cloned from
762 * parents. This can improve scalability caused by anon_vma lock.
764 if ((!anon_vma1 || !anon_vma2) && (!vma ||
765 list_is_singular(&vma->anon_vma_chain)))
767 return anon_vma1 == anon_vma2;
771 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
772 * in front of (at a lower virtual address and file offset than) the vma.
774 * We cannot merge two vmas if they have differently assigned (non-NULL)
775 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
777 * We don't check here for the merged mmap wrapping around the end of pagecache
778 * indices (16TB on ia32) because do_mmap() does not permit mmap's which
779 * wrap, nor mmaps which cover the final page at index -1UL.
781 * We assume the vma may be removed as part of the merge.
784 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
785 struct anon_vma *anon_vma, struct file *file,
786 pgoff_t vm_pgoff, struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
787 struct anon_vma_name *anon_name)
789 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name, true) &&
790 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
791 if (vma->vm_pgoff == vm_pgoff)
798 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
799 * beyond (at a higher virtual address and file offset than) the vma.
801 * We cannot merge two vmas if they have differently assigned (non-NULL)
802 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
804 * We assume that vma is not removed as part of the merge.
807 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
808 struct anon_vma *anon_vma, struct file *file,
809 pgoff_t vm_pgoff, struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
810 struct anon_vma_name *anon_name)
812 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name, false) &&
813 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
815 vm_pglen = vma_pages(vma);
816 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
823 * Given a mapping request (addr,end,vm_flags,file,pgoff,anon_name),
824 * figure out whether that can be merged with its predecessor or its
825 * successor. Or both (it neatly fills a hole).
827 * In most cases - when called for mmap, brk or mremap - [addr,end) is
828 * certain not to be mapped by the time vma_merge is called; but when
829 * called for mprotect, it is certain to be already mapped (either at
830 * an offset within prev, or at the start of next), and the flags of
831 * this area are about to be changed to vm_flags - and the no-change
832 * case has already been eliminated.
834 * The following mprotect cases have to be considered, where **** is
835 * the area passed down from mprotect_fixup, never extending beyond one
836 * vma, PPPP is the previous vma, CCCC is a concurrent vma that starts
837 * at the same address as **** and is of the same or larger span, and
838 * NNNN the next vma after ****:
841 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPCCCCCC
842 * cannot merge might become might become
843 * PPNNNNNNNNNN PPPPPPPPPPCC
844 * mmap, brk or case 4 below case 5 below
847 * PPPP NNNN PPPPCCCCNNNN
848 * might become might become
849 * PPPPPPPPPPPP 1 or PPPPPPPPPPPP 6 or
850 * PPPPPPPPNNNN 2 or PPPPPPPPNNNN 7 or
851 * PPPPNNNNNNNN 3 PPPPNNNNNNNN 8
853 * It is important for case 8 that the vma CCCC overlapping the
854 * region **** is never going to extended over NNNN. Instead NNNN must
855 * be extended in region **** and CCCC must be removed. This way in
856 * all cases where vma_merge succeeds, the moment vma_merge drops the
857 * rmap_locks, the properties of the merged vma will be already
858 * correct for the whole merged range. Some of those properties like
859 * vm_page_prot/vm_flags may be accessed by rmap_walks and they must
860 * be correct for the whole merged range immediately after the
861 * rmap_locks are released. Otherwise if NNNN would be removed and
862 * CCCC would be extended over the NNNN range, remove_migration_ptes
863 * or other rmap walkers (if working on addresses beyond the "end"
864 * parameter) may establish ptes with the wrong permissions of CCCC
865 * instead of the right permissions of NNNN.
868 * PPPP is represented by *prev
869 * CCCC is represented by *curr or not represented at all (NULL)
870 * NNNN is represented by *next or not represented at all (NULL)
871 * **** is not represented - it will be merged and the vma containing the
872 * area is returned, or the function will return NULL
874 struct vm_area_struct *vma_merge(struct vma_iterator *vmi, struct mm_struct *mm,
875 struct vm_area_struct *prev, unsigned long addr,
876 unsigned long end, unsigned long vm_flags,
877 struct anon_vma *anon_vma, struct file *file,
878 pgoff_t pgoff, struct mempolicy *policy,
879 struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
880 struct anon_vma_name *anon_name)
882 struct vm_area_struct *curr, *next, *res;
883 struct vm_area_struct *vma, *adjust, *remove, *remove2;
884 struct vma_prepare vp;
887 bool merge_prev = false;
888 bool merge_next = false;
889 bool vma_expanded = false;
890 unsigned long vma_start = addr;
891 unsigned long vma_end = end;
892 pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
897 * We later require that vma->vm_flags == vm_flags,
898 * so this tests vma->vm_flags & VM_SPECIAL, too.
900 if (vm_flags & VM_SPECIAL)
903 /* Does the input range span an existing VMA? (cases 5 - 8) */
904 curr = find_vma_intersection(mm, prev ? prev->vm_end : 0, end);
906 if (!curr || /* cases 1 - 4 */
907 end == curr->vm_end) /* cases 6 - 8, adjacent VMA */
908 next = vma_lookup(mm, end);
910 next = NULL; /* case 5 */
913 vma_start = prev->vm_start;
914 vma_pgoff = prev->vm_pgoff;
916 /* Can we merge the predecessor? */
917 if (addr == prev->vm_end && mpol_equal(vma_policy(prev), policy)
918 && can_vma_merge_after(prev, vm_flags, anon_vma, file,
919 pgoff, vm_userfaultfd_ctx, anon_name)) {
925 /* Can we merge the successor? */
926 if (next && mpol_equal(policy, vma_policy(next)) &&
927 can_vma_merge_before(next, vm_flags, anon_vma, file, pgoff+pglen,
928 vm_userfaultfd_ctx, anon_name)) {
932 /* Verify some invariant that must be enforced by the caller. */
933 VM_WARN_ON(prev && addr <= prev->vm_start);
934 VM_WARN_ON(curr && (addr != curr->vm_start || end > curr->vm_end));
935 VM_WARN_ON(addr >= end);
937 if (!merge_prev && !merge_next)
938 return NULL; /* Not mergeable. */
941 remove = remove2 = adjust = NULL;
943 /* Can we merge both the predecessor and the successor? */
944 if (merge_prev && merge_next &&
945 is_mergeable_anon_vma(prev->anon_vma, next->anon_vma, NULL)) {
946 remove = next; /* case 1 */
947 vma_end = next->vm_end;
948 err = dup_anon_vma(prev, next);
949 if (curr) { /* case 6 */
953 err = dup_anon_vma(prev, curr);
955 } else if (merge_prev) { /* case 2 */
957 err = dup_anon_vma(prev, curr);
958 if (end == curr->vm_end) { /* case 7 */
960 } else { /* case 5 */
962 adj_start = (end - curr->vm_start);
965 } else { /* merge_next */
967 if (prev && addr < prev->vm_end) { /* case 4 */
970 adj_start = -(prev->vm_end - addr);
971 err = dup_anon_vma(next, prev);
974 * Note that cases 3 and 8 are the ONLY ones where prev
975 * is permitted to be (but is not necessarily) NULL.
977 vma = next; /* case 3 */
979 vma_end = next->vm_end;
980 vma_pgoff = next->vm_pgoff - pglen;
981 if (curr) { /* case 8 */
982 vma_pgoff = curr->vm_pgoff;
984 err = dup_anon_vma(next, curr);
989 /* Error in anon_vma clone. */
993 if (vma_iter_prealloc(vmi))
996 init_multi_vma_prep(&vp, vma, adjust, remove, remove2);
997 VM_WARN_ON(vp.anon_vma && adjust && adjust->anon_vma &&
998 vp.anon_vma != adjust->anon_vma);
1001 vma_adjust_trans_huge(vma, vma_start, vma_end, adj_start);
1002 if (vma_start < vma->vm_start || vma_end > vma->vm_end)
1003 vma_expanded = true;
1005 vma->vm_start = vma_start;
1006 vma->vm_end = vma_end;
1007 vma->vm_pgoff = vma_pgoff;
1010 vma_iter_store(vmi, vma);
1013 adjust->vm_start += adj_start;
1014 adjust->vm_pgoff += adj_start >> PAGE_SHIFT;
1015 if (adj_start < 0) {
1016 WARN_ON(vma_expanded);
1017 vma_iter_store(vmi, next);
1021 vma_complete(&vp, vmi, mm);
1024 khugepaged_enter_vma(res, vm_flags);
1030 * Rough compatibility check to quickly see if it's even worth looking
1031 * at sharing an anon_vma.
1033 * They need to have the same vm_file, and the flags can only differ
1034 * in things that mprotect may change.
1036 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1037 * we can merge the two vma's. For example, we refuse to merge a vma if
1038 * there is a vm_ops->close() function, because that indicates that the
1039 * driver is doing some kind of reference counting. But that doesn't
1040 * really matter for the anon_vma sharing case.
1042 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1044 return a->vm_end == b->vm_start &&
1045 mpol_equal(vma_policy(a), vma_policy(b)) &&
1046 a->vm_file == b->vm_file &&
1047 !((a->vm_flags ^ b->vm_flags) & ~(VM_ACCESS_FLAGS | VM_SOFTDIRTY)) &&
1048 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1052 * Do some basic sanity checking to see if we can re-use the anon_vma
1053 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1054 * the same as 'old', the other will be the new one that is trying
1055 * to share the anon_vma.
1057 * NOTE! This runs with mmap_lock held for reading, so it is possible that
1058 * the anon_vma of 'old' is concurrently in the process of being set up
1059 * by another page fault trying to merge _that_. But that's ok: if it
1060 * is being set up, that automatically means that it will be a singleton
1061 * acceptable for merging, so we can do all of this optimistically. But
1062 * we do that READ_ONCE() to make sure that we never re-load the pointer.
1064 * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1065 * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1066 * is to return an anon_vma that is "complex" due to having gone through
1069 * We also make sure that the two vma's are compatible (adjacent,
1070 * and with the same memory policies). That's all stable, even with just
1071 * a read lock on the mmap_lock.
1073 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1075 if (anon_vma_compatible(a, b)) {
1076 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1078 if (anon_vma && list_is_singular(&old->anon_vma_chain))
1085 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1086 * neighbouring vmas for a suitable anon_vma, before it goes off
1087 * to allocate a new anon_vma. It checks because a repetitive
1088 * sequence of mprotects and faults may otherwise lead to distinct
1089 * anon_vmas being allocated, preventing vma merge in subsequent
1092 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1094 MA_STATE(mas, &vma->vm_mm->mm_mt, vma->vm_end, vma->vm_end);
1095 struct anon_vma *anon_vma = NULL;
1096 struct vm_area_struct *prev, *next;
1098 /* Try next first. */
1099 next = mas_walk(&mas);
1101 anon_vma = reusable_anon_vma(next, vma, next);
1106 prev = mas_prev(&mas, 0);
1107 VM_BUG_ON_VMA(prev != vma, vma);
1108 prev = mas_prev(&mas, 0);
1109 /* Try prev next. */
1111 anon_vma = reusable_anon_vma(prev, prev, vma);
1114 * We might reach here with anon_vma == NULL if we can't find
1115 * any reusable anon_vma.
1116 * There's no absolute need to look only at touching neighbours:
1117 * we could search further afield for "compatible" anon_vmas.
1118 * But it would probably just be a waste of time searching,
1119 * or lead to too many vmas hanging off the same anon_vma.
1120 * We're trying to allow mprotect remerging later on,
1121 * not trying to minimize memory used for anon_vmas.
1127 * If a hint addr is less than mmap_min_addr change hint to be as
1128 * low as possible but still greater than mmap_min_addr
1130 static inline unsigned long round_hint_to_min(unsigned long hint)
1133 if (((void *)hint != NULL) &&
1134 (hint < mmap_min_addr))
1135 return PAGE_ALIGN(mmap_min_addr);
1139 bool mlock_future_ok(struct mm_struct *mm, unsigned long flags,
1140 unsigned long bytes)
1142 unsigned long locked_pages, limit_pages;
1144 if (!(flags & VM_LOCKED) || capable(CAP_IPC_LOCK))
1147 locked_pages = bytes >> PAGE_SHIFT;
1148 locked_pages += mm->locked_vm;
1150 limit_pages = rlimit(RLIMIT_MEMLOCK);
1151 limit_pages >>= PAGE_SHIFT;
1153 return locked_pages <= limit_pages;
1156 static inline u64 file_mmap_size_max(struct file *file, struct inode *inode)
1158 if (S_ISREG(inode->i_mode))
1159 return MAX_LFS_FILESIZE;
1161 if (S_ISBLK(inode->i_mode))
1162 return MAX_LFS_FILESIZE;
1164 if (S_ISSOCK(inode->i_mode))
1165 return MAX_LFS_FILESIZE;
1167 /* Special "we do even unsigned file positions" case */
1168 if (file->f_mode & FMODE_UNSIGNED_OFFSET)
1171 /* Yes, random drivers might want more. But I'm tired of buggy drivers */
1175 static inline bool file_mmap_ok(struct file *file, struct inode *inode,
1176 unsigned long pgoff, unsigned long len)
1178 u64 maxsize = file_mmap_size_max(file, inode);
1180 if (maxsize && len > maxsize)
1183 if (pgoff > maxsize >> PAGE_SHIFT)
1189 * The caller must write-lock current->mm->mmap_lock.
1191 unsigned long do_mmap(struct file *file, unsigned long addr,
1192 unsigned long len, unsigned long prot,
1193 unsigned long flags, unsigned long pgoff,
1194 unsigned long *populate, struct list_head *uf)
1196 struct mm_struct *mm = current->mm;
1197 vm_flags_t vm_flags;
1207 * Does the application expect PROT_READ to imply PROT_EXEC?
1209 * (the exception is when the underlying filesystem is noexec
1210 * mounted, in which case we dont add PROT_EXEC.)
1212 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1213 if (!(file && path_noexec(&file->f_path)))
1216 /* force arch specific MAP_FIXED handling in get_unmapped_area */
1217 if (flags & MAP_FIXED_NOREPLACE)
1220 if (!(flags & MAP_FIXED))
1221 addr = round_hint_to_min(addr);
1223 /* Careful about overflows.. */
1224 len = PAGE_ALIGN(len);
1228 /* offset overflow? */
1229 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1232 /* Too many mappings? */
1233 if (mm->map_count > sysctl_max_map_count)
1236 /* Obtain the address to map to. we verify (or select) it and ensure
1237 * that it represents a valid section of the address space.
1239 addr = get_unmapped_area(file, addr, len, pgoff, flags);
1240 if (IS_ERR_VALUE(addr))
1243 if (flags & MAP_FIXED_NOREPLACE) {
1244 if (find_vma_intersection(mm, addr, addr + len))
1248 if (prot == PROT_EXEC) {
1249 pkey = execute_only_pkey(mm);
1254 /* Do simple checking here so the lower-level routines won't have
1255 * to. we assume access permissions have been handled by the open
1256 * of the memory object, so we don't do any here.
1258 vm_flags = calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
1259 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1261 if (flags & MAP_LOCKED)
1262 if (!can_do_mlock())
1265 if (!mlock_future_ok(mm, vm_flags, len))
1269 struct inode *inode = file_inode(file);
1270 unsigned long flags_mask;
1272 if (!file_mmap_ok(file, inode, pgoff, len))
1275 flags_mask = LEGACY_MAP_MASK | file->f_op->mmap_supported_flags;
1277 switch (flags & MAP_TYPE) {
1280 * Force use of MAP_SHARED_VALIDATE with non-legacy
1281 * flags. E.g. MAP_SYNC is dangerous to use with
1282 * MAP_SHARED as you don't know which consistency model
1283 * you will get. We silently ignore unsupported flags
1284 * with MAP_SHARED to preserve backward compatibility.
1286 flags &= LEGACY_MAP_MASK;
1288 case MAP_SHARED_VALIDATE:
1289 if (flags & ~flags_mask)
1291 if (prot & PROT_WRITE) {
1292 if (!(file->f_mode & FMODE_WRITE))
1294 if (IS_SWAPFILE(file->f_mapping->host))
1299 * Make sure we don't allow writing to an append-only
1302 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1305 vm_flags |= VM_SHARED | VM_MAYSHARE;
1306 if (!(file->f_mode & FMODE_WRITE))
1307 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1310 if (!(file->f_mode & FMODE_READ))
1312 if (path_noexec(&file->f_path)) {
1313 if (vm_flags & VM_EXEC)
1315 vm_flags &= ~VM_MAYEXEC;
1318 if (!file->f_op->mmap)
1320 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1328 switch (flags & MAP_TYPE) {
1330 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1336 vm_flags |= VM_SHARED | VM_MAYSHARE;
1340 * Set pgoff according to addr for anon_vma.
1342 pgoff = addr >> PAGE_SHIFT;
1350 * Set 'VM_NORESERVE' if we should not account for the
1351 * memory use of this mapping.
1353 if (flags & MAP_NORESERVE) {
1354 /* We honor MAP_NORESERVE if allowed to overcommit */
1355 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1356 vm_flags |= VM_NORESERVE;
1358 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1359 if (file && is_file_hugepages(file))
1360 vm_flags |= VM_NORESERVE;
1363 addr = mmap_region(file, addr, len, vm_flags, pgoff, uf);
1364 if (!IS_ERR_VALUE(addr) &&
1365 ((vm_flags & VM_LOCKED) ||
1366 (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1371 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1372 unsigned long prot, unsigned long flags,
1373 unsigned long fd, unsigned long pgoff)
1375 struct file *file = NULL;
1376 unsigned long retval;
1378 if (!(flags & MAP_ANONYMOUS)) {
1379 audit_mmap_fd(fd, flags);
1383 if (is_file_hugepages(file)) {
1384 len = ALIGN(len, huge_page_size(hstate_file(file)));
1385 } else if (unlikely(flags & MAP_HUGETLB)) {
1389 } else if (flags & MAP_HUGETLB) {
1392 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1396 len = ALIGN(len, huge_page_size(hs));
1398 * VM_NORESERVE is used because the reservations will be
1399 * taken when vm_ops->mmap() is called
1401 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1403 HUGETLB_ANONHUGE_INODE,
1404 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1406 return PTR_ERR(file);
1409 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1416 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1417 unsigned long, prot, unsigned long, flags,
1418 unsigned long, fd, unsigned long, pgoff)
1420 return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1423 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1424 struct mmap_arg_struct {
1428 unsigned long flags;
1430 unsigned long offset;
1433 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1435 struct mmap_arg_struct a;
1437 if (copy_from_user(&a, arg, sizeof(a)))
1439 if (offset_in_page(a.offset))
1442 return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1443 a.offset >> PAGE_SHIFT);
1445 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1447 static bool vm_ops_needs_writenotify(const struct vm_operations_struct *vm_ops)
1449 return vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite);
1452 static bool vma_is_shared_writable(struct vm_area_struct *vma)
1454 return (vma->vm_flags & (VM_WRITE | VM_SHARED)) ==
1455 (VM_WRITE | VM_SHARED);
1458 static bool vma_fs_can_writeback(struct vm_area_struct *vma)
1460 /* No managed pages to writeback. */
1461 if (vma->vm_flags & VM_PFNMAP)
1464 return vma->vm_file && vma->vm_file->f_mapping &&
1465 mapping_can_writeback(vma->vm_file->f_mapping);
1469 * Does this VMA require the underlying folios to have their dirty state
1472 bool vma_needs_dirty_tracking(struct vm_area_struct *vma)
1474 /* Only shared, writable VMAs require dirty tracking. */
1475 if (!vma_is_shared_writable(vma))
1478 /* Does the filesystem need to be notified? */
1479 if (vm_ops_needs_writenotify(vma->vm_ops))
1483 * Even if the filesystem doesn't indicate a need for writenotify, if it
1484 * can writeback, dirty tracking is still required.
1486 return vma_fs_can_writeback(vma);
1490 * Some shared mappings will want the pages marked read-only
1491 * to track write events. If so, we'll downgrade vm_page_prot
1492 * to the private version (using protection_map[] without the
1495 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)
1497 /* If it was private or non-writable, the write bit is already clear */
1498 if (!vma_is_shared_writable(vma))
1501 /* The backer wishes to know when pages are first written to? */
1502 if (vm_ops_needs_writenotify(vma->vm_ops))
1505 /* The open routine did something to the protections that pgprot_modify
1506 * won't preserve? */
1507 if (pgprot_val(vm_page_prot) !=
1508 pgprot_val(vm_pgprot_modify(vm_page_prot, vma->vm_flags)))
1512 * Do we need to track softdirty? hugetlb does not support softdirty
1515 if (vma_soft_dirty_enabled(vma) && !is_vm_hugetlb_page(vma))
1518 /* Do we need write faults for uffd-wp tracking? */
1519 if (userfaultfd_wp(vma))
1522 /* Can the mapping track the dirty pages? */
1523 return vma_fs_can_writeback(vma);
1527 * We account for memory if it's a private writeable mapping,
1528 * not hugepages and VM_NORESERVE wasn't set.
1530 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1533 * hugetlb has its own accounting separate from the core VM
1534 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1536 if (file && is_file_hugepages(file))
1539 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1543 * unmapped_area() - Find an area between the low_limit and the high_limit with
1544 * the correct alignment and offset, all from @info. Note: current->mm is used
1547 * @info: The unmapped area information including the range [low_limit -
1548 * high_limit), the alignment offset and mask.
1550 * Return: A memory address or -ENOMEM.
1552 static unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1554 unsigned long length, gap;
1555 unsigned long low_limit, high_limit;
1556 struct vm_area_struct *tmp;
1558 MA_STATE(mas, ¤t->mm->mm_mt, 0, 0);
1560 /* Adjust search length to account for worst case alignment overhead */
1561 length = info->length + info->align_mask;
1562 if (length < info->length)
1565 low_limit = info->low_limit;
1566 if (low_limit < mmap_min_addr)
1567 low_limit = mmap_min_addr;
1568 high_limit = info->high_limit;
1570 if (mas_empty_area(&mas, low_limit, high_limit - 1, length))
1574 gap += (info->align_offset - gap) & info->align_mask;
1575 tmp = mas_next(&mas, ULONG_MAX);
1576 if (tmp && (tmp->vm_flags & VM_GROWSDOWN)) { /* Avoid prev check if possible */
1577 if (vm_start_gap(tmp) < gap + length - 1) {
1578 low_limit = tmp->vm_end;
1583 tmp = mas_prev(&mas, 0);
1584 if (tmp && vm_end_gap(tmp) > gap) {
1585 low_limit = vm_end_gap(tmp);
1595 * unmapped_area_topdown() - Find an area between the low_limit and the
1596 * high_limit with the correct alignment and offset at the highest available
1597 * address, all from @info. Note: current->mm is used for the search.
1599 * @info: The unmapped area information including the range [low_limit -
1600 * high_limit), the alignment offset and mask.
1602 * Return: A memory address or -ENOMEM.
1604 static unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1606 unsigned long length, gap, gap_end;
1607 unsigned long low_limit, high_limit;
1608 struct vm_area_struct *tmp;
1610 MA_STATE(mas, ¤t->mm->mm_mt, 0, 0);
1611 /* Adjust search length to account for worst case alignment overhead */
1612 length = info->length + info->align_mask;
1613 if (length < info->length)
1616 low_limit = info->low_limit;
1617 if (low_limit < mmap_min_addr)
1618 low_limit = mmap_min_addr;
1619 high_limit = info->high_limit;
1621 if (mas_empty_area_rev(&mas, low_limit, high_limit - 1, length))
1624 gap = mas.last + 1 - info->length;
1625 gap -= (gap - info->align_offset) & info->align_mask;
1627 tmp = mas_next(&mas, ULONG_MAX);
1628 if (tmp && (tmp->vm_flags & VM_GROWSDOWN)) { /* Avoid prev check if possible */
1629 if (vm_start_gap(tmp) <= gap_end) {
1630 high_limit = vm_start_gap(tmp);
1635 tmp = mas_prev(&mas, 0);
1636 if (tmp && vm_end_gap(tmp) > gap) {
1637 high_limit = tmp->vm_start;
1647 * Search for an unmapped address range.
1649 * We are looking for a range that:
1650 * - does not intersect with any VMA;
1651 * - is contained within the [low_limit, high_limit) interval;
1652 * - is at least the desired size.
1653 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
1655 unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info)
1659 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
1660 addr = unmapped_area_topdown(info);
1662 addr = unmapped_area(info);
1664 trace_vm_unmapped_area(addr, info);
1668 /* Get an address range which is currently unmapped.
1669 * For shmat() with addr=0.
1671 * Ugly calling convention alert:
1672 * Return value with the low bits set means error value,
1674 * if (ret & ~PAGE_MASK)
1677 * This function "knows" that -ENOMEM has the bits set.
1680 generic_get_unmapped_area(struct file *filp, unsigned long addr,
1681 unsigned long len, unsigned long pgoff,
1682 unsigned long flags)
1684 struct mm_struct *mm = current->mm;
1685 struct vm_area_struct *vma, *prev;
1686 struct vm_unmapped_area_info info;
1687 const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags);
1689 if (len > mmap_end - mmap_min_addr)
1692 if (flags & MAP_FIXED)
1696 addr = PAGE_ALIGN(addr);
1697 vma = find_vma_prev(mm, addr, &prev);
1698 if (mmap_end - len >= addr && addr >= mmap_min_addr &&
1699 (!vma || addr + len <= vm_start_gap(vma)) &&
1700 (!prev || addr >= vm_end_gap(prev)))
1706 info.low_limit = mm->mmap_base;
1707 info.high_limit = mmap_end;
1708 info.align_mask = 0;
1709 info.align_offset = 0;
1710 return vm_unmapped_area(&info);
1713 #ifndef HAVE_ARCH_UNMAPPED_AREA
1715 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1716 unsigned long len, unsigned long pgoff,
1717 unsigned long flags)
1719 return generic_get_unmapped_area(filp, addr, len, pgoff, flags);
1724 * This mmap-allocator allocates new areas top-down from below the
1725 * stack's low limit (the base):
1728 generic_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
1729 unsigned long len, unsigned long pgoff,
1730 unsigned long flags)
1732 struct vm_area_struct *vma, *prev;
1733 struct mm_struct *mm = current->mm;
1734 struct vm_unmapped_area_info info;
1735 const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags);
1737 /* requested length too big for entire address space */
1738 if (len > mmap_end - mmap_min_addr)
1741 if (flags & MAP_FIXED)
1744 /* requesting a specific address */
1746 addr = PAGE_ALIGN(addr);
1747 vma = find_vma_prev(mm, addr, &prev);
1748 if (mmap_end - len >= addr && addr >= mmap_min_addr &&
1749 (!vma || addr + len <= vm_start_gap(vma)) &&
1750 (!prev || addr >= vm_end_gap(prev)))
1754 info.flags = VM_UNMAPPED_AREA_TOPDOWN;
1756 info.low_limit = PAGE_SIZE;
1757 info.high_limit = arch_get_mmap_base(addr, mm->mmap_base);
1758 info.align_mask = 0;
1759 info.align_offset = 0;
1760 addr = vm_unmapped_area(&info);
1763 * A failed mmap() very likely causes application failure,
1764 * so fall back to the bottom-up function here. This scenario
1765 * can happen with large stack limits and large mmap()
1768 if (offset_in_page(addr)) {
1769 VM_BUG_ON(addr != -ENOMEM);
1771 info.low_limit = TASK_UNMAPPED_BASE;
1772 info.high_limit = mmap_end;
1773 addr = vm_unmapped_area(&info);
1779 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1781 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
1782 unsigned long len, unsigned long pgoff,
1783 unsigned long flags)
1785 return generic_get_unmapped_area_topdown(filp, addr, len, pgoff, flags);
1790 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1791 unsigned long pgoff, unsigned long flags)
1793 unsigned long (*get_area)(struct file *, unsigned long,
1794 unsigned long, unsigned long, unsigned long);
1796 unsigned long error = arch_mmap_check(addr, len, flags);
1800 /* Careful about overflows.. */
1801 if (len > TASK_SIZE)
1804 get_area = current->mm->get_unmapped_area;
1806 if (file->f_op->get_unmapped_area)
1807 get_area = file->f_op->get_unmapped_area;
1808 } else if (flags & MAP_SHARED) {
1810 * mmap_region() will call shmem_zero_setup() to create a file,
1811 * so use shmem's get_unmapped_area in case it can be huge.
1812 * do_mmap() will clear pgoff, so match alignment.
1815 get_area = shmem_get_unmapped_area;
1818 addr = get_area(file, addr, len, pgoff, flags);
1819 if (IS_ERR_VALUE(addr))
1822 if (addr > TASK_SIZE - len)
1824 if (offset_in_page(addr))
1827 error = security_mmap_addr(addr);
1828 return error ? error : addr;
1831 EXPORT_SYMBOL(get_unmapped_area);
1834 * find_vma_intersection() - Look up the first VMA which intersects the interval
1835 * @mm: The process address space.
1836 * @start_addr: The inclusive start user address.
1837 * @end_addr: The exclusive end user address.
1839 * Returns: The first VMA within the provided range, %NULL otherwise. Assumes
1840 * start_addr < end_addr.
1842 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
1843 unsigned long start_addr,
1844 unsigned long end_addr)
1846 unsigned long index = start_addr;
1848 mmap_assert_locked(mm);
1849 return mt_find(&mm->mm_mt, &index, end_addr - 1);
1851 EXPORT_SYMBOL(find_vma_intersection);
1854 * find_vma() - Find the VMA for a given address, or the next VMA.
1855 * @mm: The mm_struct to check
1856 * @addr: The address
1858 * Returns: The VMA associated with addr, or the next VMA.
1859 * May return %NULL in the case of no VMA at addr or above.
1861 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
1863 unsigned long index = addr;
1865 mmap_assert_locked(mm);
1866 return mt_find(&mm->mm_mt, &index, ULONG_MAX);
1868 EXPORT_SYMBOL(find_vma);
1871 * find_vma_prev() - Find the VMA for a given address, or the next vma and
1872 * set %pprev to the previous VMA, if any.
1873 * @mm: The mm_struct to check
1874 * @addr: The address
1875 * @pprev: The pointer to set to the previous VMA
1877 * Note that RCU lock is missing here since the external mmap_lock() is used
1880 * Returns: The VMA associated with @addr, or the next vma.
1881 * May return %NULL in the case of no vma at addr or above.
1883 struct vm_area_struct *
1884 find_vma_prev(struct mm_struct *mm, unsigned long addr,
1885 struct vm_area_struct **pprev)
1887 struct vm_area_struct *vma;
1888 MA_STATE(mas, &mm->mm_mt, addr, addr);
1890 vma = mas_walk(&mas);
1891 *pprev = mas_prev(&mas, 0);
1893 vma = mas_next(&mas, ULONG_MAX);
1898 * Verify that the stack growth is acceptable and
1899 * update accounting. This is shared with both the
1900 * grow-up and grow-down cases.
1902 static int acct_stack_growth(struct vm_area_struct *vma,
1903 unsigned long size, unsigned long grow)
1905 struct mm_struct *mm = vma->vm_mm;
1906 unsigned long new_start;
1908 /* address space limit tests */
1909 if (!may_expand_vm(mm, vma->vm_flags, grow))
1912 /* Stack limit test */
1913 if (size > rlimit(RLIMIT_STACK))
1916 /* mlock limit tests */
1917 if (!mlock_future_ok(mm, vma->vm_flags, grow << PAGE_SHIFT))
1920 /* Check to ensure the stack will not grow into a hugetlb-only region */
1921 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
1923 if (is_hugepage_only_range(vma->vm_mm, new_start, size))
1927 * Overcommit.. This must be the final test, as it will
1928 * update security statistics.
1930 if (security_vm_enough_memory_mm(mm, grow))
1936 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
1938 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
1939 * vma is the last one with address > vma->vm_end. Have to extend vma.
1941 static int expand_upwards(struct vm_area_struct *vma, unsigned long address)
1943 struct mm_struct *mm = vma->vm_mm;
1944 struct vm_area_struct *next;
1945 unsigned long gap_addr;
1947 MA_STATE(mas, &mm->mm_mt, 0, 0);
1949 if (!(vma->vm_flags & VM_GROWSUP))
1952 /* Guard against exceeding limits of the address space. */
1953 address &= PAGE_MASK;
1954 if (address >= (TASK_SIZE & PAGE_MASK))
1956 address += PAGE_SIZE;
1958 /* Enforce stack_guard_gap */
1959 gap_addr = address + stack_guard_gap;
1961 /* Guard against overflow */
1962 if (gap_addr < address || gap_addr > TASK_SIZE)
1963 gap_addr = TASK_SIZE;
1965 next = find_vma_intersection(mm, vma->vm_end, gap_addr);
1966 if (next && vma_is_accessible(next)) {
1967 if (!(next->vm_flags & VM_GROWSUP))
1969 /* Check that both stack segments have the same anon_vma? */
1972 if (mas_preallocate(&mas, GFP_KERNEL))
1975 /* We must make sure the anon_vma is allocated. */
1976 if (unlikely(anon_vma_prepare(vma))) {
1981 /* Lock the VMA before expanding to prevent concurrent page faults */
1982 vma_start_write(vma);
1984 * vma->vm_start/vm_end cannot change under us because the caller
1985 * is required to hold the mmap_lock in read mode. We need the
1986 * anon_vma lock to serialize against concurrent expand_stacks.
1988 anon_vma_lock_write(vma->anon_vma);
1990 /* Somebody else might have raced and expanded it already */
1991 if (address > vma->vm_end) {
1992 unsigned long size, grow;
1994 size = address - vma->vm_start;
1995 grow = (address - vma->vm_end) >> PAGE_SHIFT;
1998 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
1999 error = acct_stack_growth(vma, size, grow);
2002 * We only hold a shared mmap_lock lock here, so
2003 * we need to protect against concurrent vma
2004 * expansions. anon_vma_lock_write() doesn't
2005 * help here, as we don't guarantee that all
2006 * growable vmas in a mm share the same root
2007 * anon vma. So, we reuse mm->page_table_lock
2008 * to guard against concurrent vma expansions.
2010 spin_lock(&mm->page_table_lock);
2011 if (vma->vm_flags & VM_LOCKED)
2012 mm->locked_vm += grow;
2013 vm_stat_account(mm, vma->vm_flags, grow);
2014 anon_vma_interval_tree_pre_update_vma(vma);
2015 vma->vm_end = address;
2016 /* Overwrite old entry in mtree. */
2017 mas_set_range(&mas, vma->vm_start, address - 1);
2018 mas_store_prealloc(&mas, vma);
2019 anon_vma_interval_tree_post_update_vma(vma);
2020 spin_unlock(&mm->page_table_lock);
2022 perf_event_mmap(vma);
2026 anon_vma_unlock_write(vma->anon_vma);
2027 khugepaged_enter_vma(vma, vma->vm_flags);
2031 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2034 * vma is the first one with address < vma->vm_start. Have to extend vma.
2035 * mmap_lock held for writing.
2037 int expand_downwards(struct vm_area_struct *vma, unsigned long address)
2039 struct mm_struct *mm = vma->vm_mm;
2040 MA_STATE(mas, &mm->mm_mt, vma->vm_start, vma->vm_start);
2041 struct vm_area_struct *prev;
2044 if (!(vma->vm_flags & VM_GROWSDOWN))
2047 address &= PAGE_MASK;
2048 if (address < mmap_min_addr || address < FIRST_USER_ADDRESS)
2051 /* Enforce stack_guard_gap */
2052 prev = mas_prev(&mas, 0);
2053 /* Check that both stack segments have the same anon_vma? */
2055 if (!(prev->vm_flags & VM_GROWSDOWN) &&
2056 vma_is_accessible(prev) &&
2057 (address - prev->vm_end < stack_guard_gap))
2061 if (mas_preallocate(&mas, GFP_KERNEL))
2064 /* We must make sure the anon_vma is allocated. */
2065 if (unlikely(anon_vma_prepare(vma))) {
2070 /* Lock the VMA before expanding to prevent concurrent page faults */
2071 vma_start_write(vma);
2073 * vma->vm_start/vm_end cannot change under us because the caller
2074 * is required to hold the mmap_lock in read mode. We need the
2075 * anon_vma lock to serialize against concurrent expand_stacks.
2077 anon_vma_lock_write(vma->anon_vma);
2079 /* Somebody else might have raced and expanded it already */
2080 if (address < vma->vm_start) {
2081 unsigned long size, grow;
2083 size = vma->vm_end - address;
2084 grow = (vma->vm_start - address) >> PAGE_SHIFT;
2087 if (grow <= vma->vm_pgoff) {
2088 error = acct_stack_growth(vma, size, grow);
2091 * We only hold a shared mmap_lock lock here, so
2092 * we need to protect against concurrent vma
2093 * expansions. anon_vma_lock_write() doesn't
2094 * help here, as we don't guarantee that all
2095 * growable vmas in a mm share the same root
2096 * anon vma. So, we reuse mm->page_table_lock
2097 * to guard against concurrent vma expansions.
2099 spin_lock(&mm->page_table_lock);
2100 if (vma->vm_flags & VM_LOCKED)
2101 mm->locked_vm += grow;
2102 vm_stat_account(mm, vma->vm_flags, grow);
2103 anon_vma_interval_tree_pre_update_vma(vma);
2104 vma->vm_start = address;
2105 vma->vm_pgoff -= grow;
2106 /* Overwrite old entry in mtree. */
2107 mas_set_range(&mas, address, vma->vm_end - 1);
2108 mas_store_prealloc(&mas, vma);
2109 anon_vma_interval_tree_post_update_vma(vma);
2110 spin_unlock(&mm->page_table_lock);
2112 perf_event_mmap(vma);
2116 anon_vma_unlock_write(vma->anon_vma);
2117 khugepaged_enter_vma(vma, vma->vm_flags);
2122 /* enforced gap between the expanding stack and other mappings. */
2123 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT;
2125 static int __init cmdline_parse_stack_guard_gap(char *p)
2130 val = simple_strtoul(p, &endptr, 10);
2132 stack_guard_gap = val << PAGE_SHIFT;
2136 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap);
2138 #ifdef CONFIG_STACK_GROWSUP
2139 int expand_stack_locked(struct vm_area_struct *vma, unsigned long address)
2141 return expand_upwards(vma, address);
2144 struct vm_area_struct *find_extend_vma_locked(struct mm_struct *mm, unsigned long addr)
2146 struct vm_area_struct *vma, *prev;
2149 vma = find_vma_prev(mm, addr, &prev);
2150 if (vma && (vma->vm_start <= addr))
2154 if (expand_stack_locked(prev, addr))
2156 if (prev->vm_flags & VM_LOCKED)
2157 populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2161 int expand_stack_locked(struct vm_area_struct *vma, unsigned long address)
2163 if (unlikely(!(vma->vm_flags & VM_GROWSDOWN)))
2165 return expand_downwards(vma, address);
2168 struct vm_area_struct *find_extend_vma_locked(struct mm_struct *mm, unsigned long addr)
2170 struct vm_area_struct *vma;
2171 unsigned long start;
2174 vma = find_vma(mm, addr);
2177 if (vma->vm_start <= addr)
2179 start = vma->vm_start;
2180 if (expand_stack_locked(vma, addr))
2182 if (vma->vm_flags & VM_LOCKED)
2183 populate_vma_page_range(vma, addr, start, NULL);
2189 * IA64 has some horrid mapping rules: it can expand both up and down,
2190 * but with various special rules.
2192 * We'll get rid of this architecture eventually, so the ugliness is
2196 static inline bool vma_expand_ok(struct vm_area_struct *vma, unsigned long addr)
2198 return REGION_NUMBER(addr) == REGION_NUMBER(vma->vm_start) &&
2199 REGION_OFFSET(addr) < RGN_MAP_LIMIT;
2203 * IA64 stacks grow down, but there's a special register backing store
2204 * that can grow up. Only sequentially, though, so the new address must
2207 static inline int vma_expand_up(struct vm_area_struct *vma, unsigned long addr)
2209 if (!vma_expand_ok(vma, addr))
2211 if (vma->vm_end != (addr & PAGE_MASK))
2213 return expand_upwards(vma, addr);
2216 static inline bool vma_expand_down(struct vm_area_struct *vma, unsigned long addr)
2218 if (!vma_expand_ok(vma, addr))
2220 return expand_downwards(vma, addr);
2223 #elif defined(CONFIG_STACK_GROWSUP)
2225 #define vma_expand_up(vma,addr) expand_upwards(vma, addr)
2226 #define vma_expand_down(vma, addr) (-EFAULT)
2230 #define vma_expand_up(vma,addr) (-EFAULT)
2231 #define vma_expand_down(vma, addr) expand_downwards(vma, addr)
2236 * expand_stack(): legacy interface for page faulting. Don't use unless
2239 * This is called with the mm locked for reading, drops the lock, takes
2240 * the lock for writing, tries to look up a vma again, expands it if
2241 * necessary, and downgrades the lock to reading again.
2243 * If no vma is found or it can't be expanded, it returns NULL and has
2246 struct vm_area_struct *expand_stack(struct mm_struct *mm, unsigned long addr)
2248 struct vm_area_struct *vma, *prev;
2250 mmap_read_unlock(mm);
2251 if (mmap_write_lock_killable(mm))
2254 vma = find_vma_prev(mm, addr, &prev);
2255 if (vma && vma->vm_start <= addr)
2258 if (prev && !vma_expand_up(prev, addr)) {
2263 if (vma && !vma_expand_down(vma, addr))
2266 mmap_write_unlock(mm);
2270 mmap_write_downgrade(mm);
2275 * Ok - we have the memory areas we should free on a maple tree so release them,
2276 * and do the vma updates.
2278 * Called with the mm semaphore held.
2280 static inline void remove_mt(struct mm_struct *mm, struct ma_state *mas)
2282 unsigned long nr_accounted = 0;
2283 struct vm_area_struct *vma;
2285 /* Update high watermark before we lower total_vm */
2286 update_hiwater_vm(mm);
2287 mas_for_each(mas, vma, ULONG_MAX) {
2288 long nrpages = vma_pages(vma);
2290 if (vma->vm_flags & VM_ACCOUNT)
2291 nr_accounted += nrpages;
2292 vm_stat_account(mm, vma->vm_flags, -nrpages);
2293 remove_vma(vma, false);
2295 vm_unacct_memory(nr_accounted);
2300 * Get rid of page table information in the indicated region.
2302 * Called with the mm semaphore held.
2304 static void unmap_region(struct mm_struct *mm, struct maple_tree *mt,
2305 struct vm_area_struct *vma, struct vm_area_struct *prev,
2306 struct vm_area_struct *next,
2307 unsigned long start, unsigned long end, bool mm_wr_locked)
2309 struct mmu_gather tlb;
2312 tlb_gather_mmu(&tlb, mm);
2313 update_hiwater_rss(mm);
2314 unmap_vmas(&tlb, mt, vma, start, end, mm_wr_locked);
2315 free_pgtables(&tlb, mt, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2316 next ? next->vm_start : USER_PGTABLES_CEILING,
2318 tlb_finish_mmu(&tlb);
2322 * __split_vma() bypasses sysctl_max_map_count checking. We use this where it
2323 * has already been checked or doesn't make sense to fail.
2324 * VMA Iterator will point to the end VMA.
2326 int __split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma,
2327 unsigned long addr, int new_below)
2329 struct vma_prepare vp;
2330 struct vm_area_struct *new;
2333 validate_mm(vma->vm_mm);
2335 WARN_ON(vma->vm_start >= addr);
2336 WARN_ON(vma->vm_end <= addr);
2338 if (vma->vm_ops && vma->vm_ops->may_split) {
2339 err = vma->vm_ops->may_split(vma, addr);
2344 new = vm_area_dup(vma);
2349 if (vma_iter_prealloc(vmi))
2355 new->vm_start = addr;
2356 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2359 err = vma_dup_policy(vma, new);
2363 err = anon_vma_clone(new, vma);
2368 get_file(new->vm_file);
2370 if (new->vm_ops && new->vm_ops->open)
2371 new->vm_ops->open(new);
2373 init_vma_prep(&vp, vma);
2376 vma_adjust_trans_huge(vma, vma->vm_start, addr, 0);
2379 vma->vm_start = addr;
2380 vma->vm_pgoff += (addr - new->vm_start) >> PAGE_SHIFT;
2385 /* vma_complete stores the new vma */
2386 vma_complete(&vp, vmi, vma->vm_mm);
2391 validate_mm(vma->vm_mm);
2395 mpol_put(vma_policy(new));
2400 validate_mm(vma->vm_mm);
2405 * Split a vma into two pieces at address 'addr', a new vma is allocated
2406 * either for the first part or the tail.
2408 int split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma,
2409 unsigned long addr, int new_below)
2411 if (vma->vm_mm->map_count >= sysctl_max_map_count)
2414 return __split_vma(vmi, vma, addr, new_below);
2418 * do_vmi_align_munmap() - munmap the aligned region from @start to @end.
2419 * @vmi: The vma iterator
2420 * @vma: The starting vm_area_struct
2421 * @mm: The mm_struct
2422 * @start: The aligned start address to munmap.
2423 * @end: The aligned end address to munmap.
2424 * @uf: The userfaultfd list_head
2425 * @unlock: Set to true to drop the mmap_lock. unlocking only happens on
2428 * Return: 0 on success and drops the lock if so directed, error and leaves the
2429 * lock held otherwise.
2432 do_vmi_align_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
2433 struct mm_struct *mm, unsigned long start,
2434 unsigned long end, struct list_head *uf, bool unlock)
2436 struct vm_area_struct *prev, *next = NULL;
2437 struct maple_tree mt_detach;
2439 int error = -ENOMEM;
2440 unsigned long locked_vm = 0;
2441 MA_STATE(mas_detach, &mt_detach, 0, 0);
2442 mt_init_flags(&mt_detach, vmi->mas.tree->ma_flags & MT_FLAGS_LOCK_MASK);
2443 mt_set_external_lock(&mt_detach, &mm->mmap_lock);
2446 * If we need to split any vma, do it now to save pain later.
2448 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2449 * unmapped vm_area_struct will remain in use: so lower split_vma
2450 * places tmp vma above, and higher split_vma places tmp vma below.
2453 /* Does it split the first one? */
2454 if (start > vma->vm_start) {
2457 * Make sure that map_count on return from munmap() will
2458 * not exceed its limit; but let map_count go just above
2459 * its limit temporarily, to help free resources as expected.
2461 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2462 goto map_count_exceeded;
2464 error = __split_vma(vmi, vma, start, 0);
2466 goto start_split_failed;
2468 vma = vma_iter_load(vmi);
2471 prev = vma_prev(vmi);
2472 if (unlikely((!prev)))
2473 vma_iter_set(vmi, start);
2476 * Detach a range of VMAs from the mm. Using next as a temp variable as
2477 * it is always overwritten.
2479 for_each_vma_range(*vmi, next, end) {
2480 /* Does it split the end? */
2481 if (next->vm_end > end) {
2482 error = __split_vma(vmi, next, end, 0);
2484 goto end_split_failed;
2486 vma_start_write(next);
2487 mas_set_range(&mas_detach, next->vm_start, next->vm_end - 1);
2488 error = mas_store_gfp(&mas_detach, next, GFP_KERNEL);
2490 goto munmap_gather_failed;
2491 vma_mark_detached(next, true);
2492 if (next->vm_flags & VM_LOCKED)
2493 locked_vm += vma_pages(next);
2498 * If userfaultfd_unmap_prep returns an error the vmas
2499 * will remain split, but userland will get a
2500 * highly unexpected error anyway. This is no
2501 * different than the case where the first of the two
2502 * __split_vma fails, but we don't undo the first
2503 * split, despite we could. This is unlikely enough
2504 * failure that it's not worth optimizing it for.
2506 error = userfaultfd_unmap_prep(next, start, end, uf);
2509 goto userfaultfd_error;
2511 #ifdef CONFIG_DEBUG_VM_MAPLE_TREE
2512 BUG_ON(next->vm_start < start);
2513 BUG_ON(next->vm_start > end);
2517 if (vma_iter_end(vmi) > end)
2518 next = vma_iter_load(vmi);
2521 next = vma_next(vmi);
2523 #if defined(CONFIG_DEBUG_VM_MAPLE_TREE)
2524 /* Make sure no VMAs are about to be lost. */
2526 MA_STATE(test, &mt_detach, start, end - 1);
2527 struct vm_area_struct *vma_mas, *vma_test;
2530 vma_iter_set(vmi, start);
2532 vma_test = mas_find(&test, end - 1);
2533 for_each_vma_range(*vmi, vma_mas, end) {
2534 BUG_ON(vma_mas != vma_test);
2536 vma_test = mas_next(&test, end - 1);
2539 BUG_ON(count != test_count);
2542 vma_iter_set(vmi, start);
2543 error = vma_iter_clear_gfp(vmi, start, end, GFP_KERNEL);
2545 goto clear_tree_failed;
2547 /* Point of no return */
2548 mm->locked_vm -= locked_vm;
2549 mm->map_count -= count;
2551 mmap_write_downgrade(mm);
2554 * We can free page tables without write-locking mmap_lock because VMAs
2555 * were isolated before we downgraded mmap_lock.
2557 unmap_region(mm, &mt_detach, vma, prev, next, start, end, !unlock);
2558 /* Statistics and freeing VMAs */
2559 mas_set(&mas_detach, start);
2560 remove_mt(mm, &mas_detach);
2561 __mt_destroy(&mt_detach);
2564 mmap_read_unlock(mm);
2570 munmap_gather_failed:
2572 mas_set(&mas_detach, 0);
2573 mas_for_each(&mas_detach, next, end)
2574 vma_mark_detached(next, false);
2576 __mt_destroy(&mt_detach);
2584 * do_vmi_munmap() - munmap a given range.
2585 * @vmi: The vma iterator
2586 * @mm: The mm_struct
2587 * @start: The start address to munmap
2588 * @len: The length of the range to munmap
2589 * @uf: The userfaultfd list_head
2590 * @unlock: set to true if the user wants to drop the mmap_lock on success
2592 * This function takes a @mas that is either pointing to the previous VMA or set
2593 * to MA_START and sets it up to remove the mapping(s). The @len will be
2594 * aligned and any arch_unmap work will be preformed.
2596 * Return: 0 on success and drops the lock if so directed, error and leaves the
2597 * lock held otherwise.
2599 int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm,
2600 unsigned long start, size_t len, struct list_head *uf,
2604 struct vm_area_struct *vma;
2606 if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2609 end = start + PAGE_ALIGN(len);
2613 /* arch_unmap() might do unmaps itself. */
2614 arch_unmap(mm, start, end);
2616 /* Find the first overlapping VMA */
2617 vma = vma_find(vmi, end);
2620 mmap_write_unlock(mm);
2624 return do_vmi_align_munmap(vmi, vma, mm, start, end, uf, unlock);
2627 /* do_munmap() - Wrapper function for non-maple tree aware do_munmap() calls.
2628 * @mm: The mm_struct
2629 * @start: The start address to munmap
2630 * @len: The length to be munmapped.
2631 * @uf: The userfaultfd list_head
2633 * Return: 0 on success, error otherwise.
2635 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2636 struct list_head *uf)
2638 VMA_ITERATOR(vmi, mm, start);
2640 return do_vmi_munmap(&vmi, mm, start, len, uf, false);
2643 unsigned long mmap_region(struct file *file, unsigned long addr,
2644 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2645 struct list_head *uf)
2647 struct mm_struct *mm = current->mm;
2648 struct vm_area_struct *vma = NULL;
2649 struct vm_area_struct *next, *prev, *merge;
2650 pgoff_t pglen = len >> PAGE_SHIFT;
2651 unsigned long charged = 0;
2652 unsigned long end = addr + len;
2653 unsigned long merge_start = addr, merge_end = end;
2656 VMA_ITERATOR(vmi, mm, addr);
2658 /* Check against address space limit. */
2659 if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
2660 unsigned long nr_pages;
2663 * MAP_FIXED may remove pages of mappings that intersects with
2664 * requested mapping. Account for the pages it would unmap.
2666 nr_pages = count_vma_pages_range(mm, addr, end);
2668 if (!may_expand_vm(mm, vm_flags,
2669 (len >> PAGE_SHIFT) - nr_pages))
2673 /* Unmap any existing mapping in the area */
2674 if (do_vmi_munmap(&vmi, mm, addr, len, uf, false))
2678 * Private writable mapping: check memory availability
2680 if (accountable_mapping(file, vm_flags)) {
2681 charged = len >> PAGE_SHIFT;
2682 if (security_vm_enough_memory_mm(mm, charged))
2684 vm_flags |= VM_ACCOUNT;
2687 next = vma_next(&vmi);
2688 prev = vma_prev(&vmi);
2689 if (vm_flags & VM_SPECIAL)
2692 /* Attempt to expand an old mapping */
2694 if (next && next->vm_start == end && !vma_policy(next) &&
2695 can_vma_merge_before(next, vm_flags, NULL, file, pgoff+pglen,
2696 NULL_VM_UFFD_CTX, NULL)) {
2697 merge_end = next->vm_end;
2699 vm_pgoff = next->vm_pgoff - pglen;
2703 if (prev && prev->vm_end == addr && !vma_policy(prev) &&
2704 (vma ? can_vma_merge_after(prev, vm_flags, vma->anon_vma, file,
2705 pgoff, vma->vm_userfaultfd_ctx, NULL) :
2706 can_vma_merge_after(prev, vm_flags, NULL, file, pgoff,
2707 NULL_VM_UFFD_CTX, NULL))) {
2708 merge_start = prev->vm_start;
2710 vm_pgoff = prev->vm_pgoff;
2714 /* Actually expand, if possible */
2716 !vma_expand(&vmi, vma, merge_start, merge_end, vm_pgoff, next)) {
2717 khugepaged_enter_vma(vma, vm_flags);
2723 vma_iter_next_range(&vmi);
2726 * Determine the object being mapped and call the appropriate
2727 * specific mapper. the address has already been validated, but
2728 * not unmapped, but the maps are removed from the list.
2730 vma = vm_area_alloc(mm);
2736 vma_iter_set(&vmi, addr);
2737 vma->vm_start = addr;
2739 vm_flags_init(vma, vm_flags);
2740 vma->vm_page_prot = vm_get_page_prot(vm_flags);
2741 vma->vm_pgoff = pgoff;
2744 if (vm_flags & VM_SHARED) {
2745 error = mapping_map_writable(file->f_mapping);
2750 vma->vm_file = get_file(file);
2751 error = call_mmap(file, vma);
2753 goto unmap_and_free_vma;
2756 * Expansion is handled above, merging is handled below.
2757 * Drivers should not alter the address of the VMA.
2760 if (WARN_ON((addr != vma->vm_start)))
2761 goto close_and_free_vma;
2763 vma_iter_set(&vmi, addr);
2765 * If vm_flags changed after call_mmap(), we should try merge
2766 * vma again as we may succeed this time.
2768 if (unlikely(vm_flags != vma->vm_flags && prev)) {
2769 merge = vma_merge(&vmi, mm, prev, vma->vm_start,
2770 vma->vm_end, vma->vm_flags, NULL,
2771 vma->vm_file, vma->vm_pgoff, NULL,
2772 NULL_VM_UFFD_CTX, NULL);
2775 * ->mmap() can change vma->vm_file and fput
2776 * the original file. So fput the vma->vm_file
2777 * here or we would add an extra fput for file
2778 * and cause general protection fault
2784 /* Update vm_flags to pick up the change. */
2785 vm_flags = vma->vm_flags;
2786 goto unmap_writable;
2790 vm_flags = vma->vm_flags;
2791 } else if (vm_flags & VM_SHARED) {
2792 error = shmem_zero_setup(vma);
2796 vma_set_anonymous(vma);
2799 if (map_deny_write_exec(vma, vma->vm_flags)) {
2801 goto close_and_free_vma;
2804 /* Allow architectures to sanity-check the vm_flags */
2806 if (!arch_validate_flags(vma->vm_flags))
2807 goto close_and_free_vma;
2810 if (vma_iter_prealloc(&vmi))
2811 goto close_and_free_vma;
2813 /* Lock the VMA since it is modified after insertion into VMA tree */
2814 vma_start_write(vma);
2816 i_mmap_lock_write(vma->vm_file->f_mapping);
2818 vma_iter_store(&vmi, vma);
2821 if (vma->vm_flags & VM_SHARED)
2822 mapping_allow_writable(vma->vm_file->f_mapping);
2824 flush_dcache_mmap_lock(vma->vm_file->f_mapping);
2825 vma_interval_tree_insert(vma, &vma->vm_file->f_mapping->i_mmap);
2826 flush_dcache_mmap_unlock(vma->vm_file->f_mapping);
2827 i_mmap_unlock_write(vma->vm_file->f_mapping);
2831 * vma_merge() calls khugepaged_enter_vma() either, the below
2832 * call covers the non-merge case.
2834 khugepaged_enter_vma(vma, vma->vm_flags);
2836 /* Once vma denies write, undo our temporary denial count */
2838 if (file && vm_flags & VM_SHARED)
2839 mapping_unmap_writable(file->f_mapping);
2840 file = vma->vm_file;
2843 perf_event_mmap(vma);
2845 vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
2846 if (vm_flags & VM_LOCKED) {
2847 if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) ||
2848 is_vm_hugetlb_page(vma) ||
2849 vma == get_gate_vma(current->mm))
2850 vm_flags_clear(vma, VM_LOCKED_MASK);
2852 mm->locked_vm += (len >> PAGE_SHIFT);
2859 * New (or expanded) vma always get soft dirty status.
2860 * Otherwise user-space soft-dirty page tracker won't
2861 * be able to distinguish situation when vma area unmapped,
2862 * then new mapped in-place (which must be aimed as
2863 * a completely new data area).
2865 vm_flags_set(vma, VM_SOFTDIRTY);
2867 vma_set_page_prot(vma);
2873 if (file && vma->vm_ops && vma->vm_ops->close)
2874 vma->vm_ops->close(vma);
2876 if (file || vma->vm_file) {
2879 vma->vm_file = NULL;
2881 /* Undo any partial mapping done by a device driver. */
2882 unmap_region(mm, &mm->mm_mt, vma, prev, next, vma->vm_start,
2885 if (file && (vm_flags & VM_SHARED))
2886 mapping_unmap_writable(file->f_mapping);
2891 vm_unacct_memory(charged);
2896 static int __vm_munmap(unsigned long start, size_t len, bool unlock)
2899 struct mm_struct *mm = current->mm;
2901 VMA_ITERATOR(vmi, mm, start);
2903 if (mmap_write_lock_killable(mm))
2906 ret = do_vmi_munmap(&vmi, mm, start, len, &uf, unlock);
2908 mmap_write_unlock(mm);
2910 userfaultfd_unmap_complete(mm, &uf);
2914 int vm_munmap(unsigned long start, size_t len)
2916 return __vm_munmap(start, len, false);
2918 EXPORT_SYMBOL(vm_munmap);
2920 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2922 addr = untagged_addr(addr);
2923 return __vm_munmap(addr, len, true);
2928 * Emulation of deprecated remap_file_pages() syscall.
2930 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
2931 unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
2934 struct mm_struct *mm = current->mm;
2935 struct vm_area_struct *vma;
2936 unsigned long populate = 0;
2937 unsigned long ret = -EINVAL;
2940 pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/mm/remap_file_pages.rst.\n",
2941 current->comm, current->pid);
2945 start = start & PAGE_MASK;
2946 size = size & PAGE_MASK;
2948 if (start + size <= start)
2951 /* Does pgoff wrap? */
2952 if (pgoff + (size >> PAGE_SHIFT) < pgoff)
2955 if (mmap_write_lock_killable(mm))
2958 vma = vma_lookup(mm, start);
2960 if (!vma || !(vma->vm_flags & VM_SHARED))
2963 if (start + size > vma->vm_end) {
2964 VMA_ITERATOR(vmi, mm, vma->vm_end);
2965 struct vm_area_struct *next, *prev = vma;
2967 for_each_vma_range(vmi, next, start + size) {
2968 /* hole between vmas ? */
2969 if (next->vm_start != prev->vm_end)
2972 if (next->vm_file != vma->vm_file)
2975 if (next->vm_flags != vma->vm_flags)
2978 if (start + size <= next->vm_end)
2988 prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
2989 prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
2990 prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
2992 flags &= MAP_NONBLOCK;
2993 flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
2994 if (vma->vm_flags & VM_LOCKED)
2995 flags |= MAP_LOCKED;
2997 file = get_file(vma->vm_file);
2998 ret = do_mmap(vma->vm_file, start, size,
2999 prot, flags, pgoff, &populate, NULL);
3002 mmap_write_unlock(mm);
3004 mm_populate(ret, populate);
3005 if (!IS_ERR_VALUE(ret))
3011 * do_vma_munmap() - Unmap a full or partial vma.
3012 * @vmi: The vma iterator pointing at the vma
3013 * @vma: The first vma to be munmapped
3014 * @start: the start of the address to unmap
3015 * @end: The end of the address to unmap
3016 * @uf: The userfaultfd list_head
3017 * @unlock: Drop the lock on success
3019 * unmaps a VMA mapping when the vma iterator is already in position.
3020 * Does not handle alignment.
3022 * Return: 0 on success drops the lock of so directed, error on failure and will
3023 * still hold the lock.
3025 int do_vma_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
3026 unsigned long start, unsigned long end, struct list_head *uf,
3029 struct mm_struct *mm = vma->vm_mm;
3031 arch_unmap(mm, start, end);
3032 return do_vmi_align_munmap(vmi, vma, mm, start, end, uf, unlock);
3036 * do_brk_flags() - Increase the brk vma if the flags match.
3037 * @vmi: The vma iterator
3038 * @addr: The start address
3039 * @len: The length of the increase
3041 * @flags: The VMA Flags
3043 * Extend the brk VMA from addr to addr + len. If the VMA is NULL or the flags
3044 * do not match then create a new anonymous VMA. Eventually we may be able to
3045 * do some brk-specific accounting here.
3047 static int do_brk_flags(struct vma_iterator *vmi, struct vm_area_struct *vma,
3048 unsigned long addr, unsigned long len, unsigned long flags)
3050 struct mm_struct *mm = current->mm;
3051 struct vma_prepare vp;
3055 * Check against address space limits by the changed size
3056 * Note: This happens *after* clearing old mappings in some code paths.
3058 flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
3059 if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
3062 if (mm->map_count > sysctl_max_map_count)
3065 if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
3069 * Expand the existing vma if possible; Note that singular lists do not
3070 * occur after forking, so the expand will only happen on new VMAs.
3072 if (vma && vma->vm_end == addr && !vma_policy(vma) &&
3073 can_vma_merge_after(vma, flags, NULL, NULL,
3074 addr >> PAGE_SHIFT, NULL_VM_UFFD_CTX, NULL)) {
3075 if (vma_iter_prealloc(vmi))
3078 init_vma_prep(&vp, vma);
3080 vma_adjust_trans_huge(vma, vma->vm_start, addr + len, 0);
3081 vma->vm_end = addr + len;
3082 vm_flags_set(vma, VM_SOFTDIRTY);
3083 vma_iter_store(vmi, vma);
3085 vma_complete(&vp, vmi, mm);
3086 khugepaged_enter_vma(vma, flags);
3090 /* create a vma struct for an anonymous mapping */
3091 vma = vm_area_alloc(mm);
3095 vma_set_anonymous(vma);
3096 vma->vm_start = addr;
3097 vma->vm_end = addr + len;
3098 vma->vm_pgoff = addr >> PAGE_SHIFT;
3099 vm_flags_init(vma, flags);
3100 vma->vm_page_prot = vm_get_page_prot(flags);
3101 if (vma_iter_store_gfp(vmi, vma, GFP_KERNEL))
3102 goto mas_store_fail;
3107 perf_event_mmap(vma);
3108 mm->total_vm += len >> PAGE_SHIFT;
3109 mm->data_vm += len >> PAGE_SHIFT;
3110 if (flags & VM_LOCKED)
3111 mm->locked_vm += (len >> PAGE_SHIFT);
3112 vm_flags_set(vma, VM_SOFTDIRTY);
3119 vm_unacct_memory(len >> PAGE_SHIFT);
3123 int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags)
3125 struct mm_struct *mm = current->mm;
3126 struct vm_area_struct *vma = NULL;
3131 VMA_ITERATOR(vmi, mm, addr);
3133 len = PAGE_ALIGN(request);
3139 if (mmap_write_lock_killable(mm))
3142 /* Until we need other flags, refuse anything except VM_EXEC. */
3143 if ((flags & (~VM_EXEC)) != 0)
3146 ret = check_brk_limits(addr, len);
3150 ret = do_vmi_munmap(&vmi, mm, addr, len, &uf, 0);
3154 vma = vma_prev(&vmi);
3155 ret = do_brk_flags(&vmi, vma, addr, len, flags);
3156 populate = ((mm->def_flags & VM_LOCKED) != 0);
3157 mmap_write_unlock(mm);
3158 userfaultfd_unmap_complete(mm, &uf);
3159 if (populate && !ret)
3160 mm_populate(addr, len);
3165 mmap_write_unlock(mm);
3168 EXPORT_SYMBOL(vm_brk_flags);
3170 int vm_brk(unsigned long addr, unsigned long len)
3172 return vm_brk_flags(addr, len, 0);
3174 EXPORT_SYMBOL(vm_brk);
3176 /* Release all mmaps. */
3177 void exit_mmap(struct mm_struct *mm)
3179 struct mmu_gather tlb;
3180 struct vm_area_struct *vma;
3181 unsigned long nr_accounted = 0;
3182 MA_STATE(mas, &mm->mm_mt, 0, 0);
3185 /* mm's last user has gone, and its about to be pulled down */
3186 mmu_notifier_release(mm);
3191 vma = mas_find(&mas, ULONG_MAX);
3193 /* Can happen if dup_mmap() received an OOM */
3194 mmap_read_unlock(mm);
3200 tlb_gather_mmu_fullmm(&tlb, mm);
3201 /* update_hiwater_rss(mm) here? but nobody should be looking */
3202 /* Use ULONG_MAX here to ensure all VMAs in the mm are unmapped */
3203 unmap_vmas(&tlb, &mm->mm_mt, vma, 0, ULONG_MAX, false);
3204 mmap_read_unlock(mm);
3207 * Set MMF_OOM_SKIP to hide this task from the oom killer/reaper
3208 * because the memory has been already freed.
3210 set_bit(MMF_OOM_SKIP, &mm->flags);
3211 mmap_write_lock(mm);
3212 mt_clear_in_rcu(&mm->mm_mt);
3213 free_pgtables(&tlb, &mm->mm_mt, vma, FIRST_USER_ADDRESS,
3214 USER_PGTABLES_CEILING, true);
3215 tlb_finish_mmu(&tlb);
3218 * Walk the list again, actually closing and freeing it, with preemption
3219 * enabled, without holding any MM locks besides the unreachable
3223 if (vma->vm_flags & VM_ACCOUNT)
3224 nr_accounted += vma_pages(vma);
3225 remove_vma(vma, true);
3228 } while ((vma = mas_find(&mas, ULONG_MAX)) != NULL);
3230 BUG_ON(count != mm->map_count);
3232 trace_exit_mmap(mm);
3233 __mt_destroy(&mm->mm_mt);
3234 mmap_write_unlock(mm);
3235 vm_unacct_memory(nr_accounted);
3238 /* Insert vm structure into process list sorted by address
3239 * and into the inode's i_mmap tree. If vm_file is non-NULL
3240 * then i_mmap_rwsem is taken here.
3242 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
3244 unsigned long charged = vma_pages(vma);
3247 if (find_vma_intersection(mm, vma->vm_start, vma->vm_end))
3250 if ((vma->vm_flags & VM_ACCOUNT) &&
3251 security_vm_enough_memory_mm(mm, charged))
3255 * The vm_pgoff of a purely anonymous vma should be irrelevant
3256 * until its first write fault, when page's anon_vma and index
3257 * are set. But now set the vm_pgoff it will almost certainly
3258 * end up with (unless mremap moves it elsewhere before that
3259 * first wfault), so /proc/pid/maps tells a consistent story.
3261 * By setting it to reflect the virtual start address of the
3262 * vma, merges and splits can happen in a seamless way, just
3263 * using the existing file pgoff checks and manipulations.
3264 * Similarly in do_mmap and in do_brk_flags.
3266 if (vma_is_anonymous(vma)) {
3267 BUG_ON(vma->anon_vma);
3268 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
3271 if (vma_link(mm, vma)) {
3272 vm_unacct_memory(charged);
3280 * Copy the vma structure to a new location in the same mm,
3281 * prior to moving page table entries, to effect an mremap move.
3283 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
3284 unsigned long addr, unsigned long len, pgoff_t pgoff,
3285 bool *need_rmap_locks)
3287 struct vm_area_struct *vma = *vmap;
3288 unsigned long vma_start = vma->vm_start;
3289 struct mm_struct *mm = vma->vm_mm;
3290 struct vm_area_struct *new_vma, *prev;
3291 bool faulted_in_anon_vma = true;
3292 VMA_ITERATOR(vmi, mm, addr);
3296 * If anonymous vma has not yet been faulted, update new pgoff
3297 * to match new location, to increase its chance of merging.
3299 if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
3300 pgoff = addr >> PAGE_SHIFT;
3301 faulted_in_anon_vma = false;
3304 new_vma = find_vma_prev(mm, addr, &prev);
3305 if (new_vma && new_vma->vm_start < addr + len)
3306 return NULL; /* should never get here */
3308 new_vma = vma_merge(&vmi, mm, prev, addr, addr + len, vma->vm_flags,
3309 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
3310 vma->vm_userfaultfd_ctx, anon_vma_name(vma));
3313 * Source vma may have been merged into new_vma
3315 if (unlikely(vma_start >= new_vma->vm_start &&
3316 vma_start < new_vma->vm_end)) {
3318 * The only way we can get a vma_merge with
3319 * self during an mremap is if the vma hasn't
3320 * been faulted in yet and we were allowed to
3321 * reset the dst vma->vm_pgoff to the
3322 * destination address of the mremap to allow
3323 * the merge to happen. mremap must change the
3324 * vm_pgoff linearity between src and dst vmas
3325 * (in turn preventing a vma_merge) to be
3326 * safe. It is only safe to keep the vm_pgoff
3327 * linear if there are no pages mapped yet.
3329 VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
3330 *vmap = vma = new_vma;
3332 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
3334 new_vma = vm_area_dup(vma);
3337 new_vma->vm_start = addr;
3338 new_vma->vm_end = addr + len;
3339 new_vma->vm_pgoff = pgoff;
3340 if (vma_dup_policy(vma, new_vma))
3342 if (anon_vma_clone(new_vma, vma))
3343 goto out_free_mempol;
3344 if (new_vma->vm_file)
3345 get_file(new_vma->vm_file);
3346 if (new_vma->vm_ops && new_vma->vm_ops->open)
3347 new_vma->vm_ops->open(new_vma);
3348 vma_start_write(new_vma);
3349 if (vma_link(mm, new_vma))
3351 *need_rmap_locks = false;
3357 if (new_vma->vm_ops && new_vma->vm_ops->close)
3358 new_vma->vm_ops->close(new_vma);
3360 if (new_vma->vm_file)
3361 fput(new_vma->vm_file);
3363 unlink_anon_vmas(new_vma);
3365 mpol_put(vma_policy(new_vma));
3367 vm_area_free(new_vma);
3374 * Return true if the calling process may expand its vm space by the passed
3377 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
3379 if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
3382 if (is_data_mapping(flags) &&
3383 mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
3384 /* Workaround for Valgrind */
3385 if (rlimit(RLIMIT_DATA) == 0 &&
3386 mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
3389 pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n",
3390 current->comm, current->pid,
3391 (mm->data_vm + npages) << PAGE_SHIFT,
3392 rlimit(RLIMIT_DATA),
3393 ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data");
3395 if (!ignore_rlimit_data)
3402 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
3404 WRITE_ONCE(mm->total_vm, READ_ONCE(mm->total_vm)+npages);
3406 if (is_exec_mapping(flags))
3407 mm->exec_vm += npages;
3408 else if (is_stack_mapping(flags))
3409 mm->stack_vm += npages;
3410 else if (is_data_mapping(flags))
3411 mm->data_vm += npages;
3414 static vm_fault_t special_mapping_fault(struct vm_fault *vmf);
3417 * Having a close hook prevents vma merging regardless of flags.
3419 static void special_mapping_close(struct vm_area_struct *vma)
3423 static const char *special_mapping_name(struct vm_area_struct *vma)
3425 return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3428 static int special_mapping_mremap(struct vm_area_struct *new_vma)
3430 struct vm_special_mapping *sm = new_vma->vm_private_data;
3432 if (WARN_ON_ONCE(current->mm != new_vma->vm_mm))
3436 return sm->mremap(sm, new_vma);
3441 static int special_mapping_split(struct vm_area_struct *vma, unsigned long addr)
3444 * Forbid splitting special mappings - kernel has expectations over
3445 * the number of pages in mapping. Together with VM_DONTEXPAND
3446 * the size of vma should stay the same over the special mapping's
3452 static const struct vm_operations_struct special_mapping_vmops = {
3453 .close = special_mapping_close,
3454 .fault = special_mapping_fault,
3455 .mremap = special_mapping_mremap,
3456 .name = special_mapping_name,
3457 /* vDSO code relies that VVAR can't be accessed remotely */
3459 .may_split = special_mapping_split,
3462 static const struct vm_operations_struct legacy_special_mapping_vmops = {
3463 .close = special_mapping_close,
3464 .fault = special_mapping_fault,
3467 static vm_fault_t special_mapping_fault(struct vm_fault *vmf)
3469 struct vm_area_struct *vma = vmf->vma;
3471 struct page **pages;
3473 if (vma->vm_ops == &legacy_special_mapping_vmops) {
3474 pages = vma->vm_private_data;
3476 struct vm_special_mapping *sm = vma->vm_private_data;
3479 return sm->fault(sm, vmf->vma, vmf);
3484 for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3488 struct page *page = *pages;
3494 return VM_FAULT_SIGBUS;
3497 static struct vm_area_struct *__install_special_mapping(
3498 struct mm_struct *mm,
3499 unsigned long addr, unsigned long len,
3500 unsigned long vm_flags, void *priv,
3501 const struct vm_operations_struct *ops)
3504 struct vm_area_struct *vma;
3507 vma = vm_area_alloc(mm);
3508 if (unlikely(vma == NULL))
3509 return ERR_PTR(-ENOMEM);
3511 vma->vm_start = addr;
3512 vma->vm_end = addr + len;
3514 vm_flags_init(vma, (vm_flags | mm->def_flags |
3515 VM_DONTEXPAND | VM_SOFTDIRTY) & ~VM_LOCKED_MASK);
3516 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3519 vma->vm_private_data = priv;
3521 ret = insert_vm_struct(mm, vma);
3525 vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3527 perf_event_mmap(vma);
3535 return ERR_PTR(ret);
3538 bool vma_is_special_mapping(const struct vm_area_struct *vma,
3539 const struct vm_special_mapping *sm)
3541 return vma->vm_private_data == sm &&
3542 (vma->vm_ops == &special_mapping_vmops ||
3543 vma->vm_ops == &legacy_special_mapping_vmops);
3547 * Called with mm->mmap_lock held for writing.
3548 * Insert a new vma covering the given region, with the given flags.
3549 * Its pages are supplied by the given array of struct page *.
3550 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3551 * The region past the last page supplied will always produce SIGBUS.
3552 * The array pointer and the pages it points to are assumed to stay alive
3553 * for as long as this mapping might exist.
3555 struct vm_area_struct *_install_special_mapping(
3556 struct mm_struct *mm,
3557 unsigned long addr, unsigned long len,
3558 unsigned long vm_flags, const struct vm_special_mapping *spec)
3560 return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3561 &special_mapping_vmops);
3564 int install_special_mapping(struct mm_struct *mm,
3565 unsigned long addr, unsigned long len,
3566 unsigned long vm_flags, struct page **pages)
3568 struct vm_area_struct *vma = __install_special_mapping(
3569 mm, addr, len, vm_flags, (void *)pages,
3570 &legacy_special_mapping_vmops);
3572 return PTR_ERR_OR_ZERO(vma);
3575 static DEFINE_MUTEX(mm_all_locks_mutex);
3577 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3579 if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3581 * The LSB of head.next can't change from under us
3582 * because we hold the mm_all_locks_mutex.
3584 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_lock);
3586 * We can safely modify head.next after taking the
3587 * anon_vma->root->rwsem. If some other vma in this mm shares
3588 * the same anon_vma we won't take it again.
3590 * No need of atomic instructions here, head.next
3591 * can't change from under us thanks to the
3592 * anon_vma->root->rwsem.
3594 if (__test_and_set_bit(0, (unsigned long *)
3595 &anon_vma->root->rb_root.rb_root.rb_node))
3600 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3602 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3604 * AS_MM_ALL_LOCKS can't change from under us because
3605 * we hold the mm_all_locks_mutex.
3607 * Operations on ->flags have to be atomic because
3608 * even if AS_MM_ALL_LOCKS is stable thanks to the
3609 * mm_all_locks_mutex, there may be other cpus
3610 * changing other bitflags in parallel to us.
3612 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3614 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_lock);
3619 * This operation locks against the VM for all pte/vma/mm related
3620 * operations that could ever happen on a certain mm. This includes
3621 * vmtruncate, try_to_unmap, and all page faults.
3623 * The caller must take the mmap_lock in write mode before calling
3624 * mm_take_all_locks(). The caller isn't allowed to release the
3625 * mmap_lock until mm_drop_all_locks() returns.
3627 * mmap_lock in write mode is required in order to block all operations
3628 * that could modify pagetables and free pages without need of
3629 * altering the vma layout. It's also needed in write mode to avoid new
3630 * anon_vmas to be associated with existing vmas.
3632 * A single task can't take more than one mm_take_all_locks() in a row
3633 * or it would deadlock.
3635 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3636 * mapping->flags avoid to take the same lock twice, if more than one
3637 * vma in this mm is backed by the same anon_vma or address_space.
3639 * We take locks in following order, accordingly to comment at beginning
3641 * - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3643 * - all vmas marked locked
3644 * - all i_mmap_rwsem locks;
3645 * - all anon_vma->rwseml
3647 * We can take all locks within these types randomly because the VM code
3648 * doesn't nest them and we protected from parallel mm_take_all_locks() by
3649 * mm_all_locks_mutex.
3651 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3652 * that may have to take thousand of locks.
3654 * mm_take_all_locks() can fail if it's interrupted by signals.
3656 int mm_take_all_locks(struct mm_struct *mm)
3658 struct vm_area_struct *vma;
3659 struct anon_vma_chain *avc;
3660 MA_STATE(mas, &mm->mm_mt, 0, 0);
3662 mmap_assert_write_locked(mm);
3664 mutex_lock(&mm_all_locks_mutex);
3666 mas_for_each(&mas, vma, ULONG_MAX) {
3667 if (signal_pending(current))
3669 vma_start_write(vma);
3673 mas_for_each(&mas, vma, ULONG_MAX) {
3674 if (signal_pending(current))
3676 if (vma->vm_file && vma->vm_file->f_mapping &&
3677 is_vm_hugetlb_page(vma))
3678 vm_lock_mapping(mm, vma->vm_file->f_mapping);
3682 mas_for_each(&mas, vma, ULONG_MAX) {
3683 if (signal_pending(current))
3685 if (vma->vm_file && vma->vm_file->f_mapping &&
3686 !is_vm_hugetlb_page(vma))
3687 vm_lock_mapping(mm, vma->vm_file->f_mapping);
3691 mas_for_each(&mas, vma, ULONG_MAX) {
3692 if (signal_pending(current))
3695 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3696 vm_lock_anon_vma(mm, avc->anon_vma);
3702 mm_drop_all_locks(mm);
3706 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3708 if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3710 * The LSB of head.next can't change to 0 from under
3711 * us because we hold the mm_all_locks_mutex.
3713 * We must however clear the bitflag before unlocking
3714 * the vma so the users using the anon_vma->rb_root will
3715 * never see our bitflag.
3717 * No need of atomic instructions here, head.next
3718 * can't change from under us until we release the
3719 * anon_vma->root->rwsem.
3721 if (!__test_and_clear_bit(0, (unsigned long *)
3722 &anon_vma->root->rb_root.rb_root.rb_node))
3724 anon_vma_unlock_write(anon_vma);
3728 static void vm_unlock_mapping(struct address_space *mapping)
3730 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3732 * AS_MM_ALL_LOCKS can't change to 0 from under us
3733 * because we hold the mm_all_locks_mutex.
3735 i_mmap_unlock_write(mapping);
3736 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3743 * The mmap_lock cannot be released by the caller until
3744 * mm_drop_all_locks() returns.
3746 void mm_drop_all_locks(struct mm_struct *mm)
3748 struct vm_area_struct *vma;
3749 struct anon_vma_chain *avc;
3750 MA_STATE(mas, &mm->mm_mt, 0, 0);
3752 mmap_assert_write_locked(mm);
3753 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3755 mas_for_each(&mas, vma, ULONG_MAX) {
3757 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3758 vm_unlock_anon_vma(avc->anon_vma);
3759 if (vma->vm_file && vma->vm_file->f_mapping)
3760 vm_unlock_mapping(vma->vm_file->f_mapping);
3762 vma_end_write_all(mm);
3764 mutex_unlock(&mm_all_locks_mutex);
3768 * initialise the percpu counter for VM
3770 void __init mmap_init(void)
3774 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3779 * Initialise sysctl_user_reserve_kbytes.
3781 * This is intended to prevent a user from starting a single memory hogging
3782 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3785 * The default value is min(3% of free memory, 128MB)
3786 * 128MB is enough to recover with sshd/login, bash, and top/kill.
3788 static int init_user_reserve(void)
3790 unsigned long free_kbytes;
3792 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3794 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3797 subsys_initcall(init_user_reserve);
3800 * Initialise sysctl_admin_reserve_kbytes.
3802 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3803 * to log in and kill a memory hogging process.
3805 * Systems with more than 256MB will reserve 8MB, enough to recover
3806 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3807 * only reserve 3% of free pages by default.
3809 static int init_admin_reserve(void)
3811 unsigned long free_kbytes;
3813 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3815 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3818 subsys_initcall(init_admin_reserve);
3821 * Reinititalise user and admin reserves if memory is added or removed.
3823 * The default user reserve max is 128MB, and the default max for the
3824 * admin reserve is 8MB. These are usually, but not always, enough to
3825 * enable recovery from a memory hogging process using login/sshd, a shell,
3826 * and tools like top. It may make sense to increase or even disable the
3827 * reserve depending on the existence of swap or variations in the recovery
3828 * tools. So, the admin may have changed them.
3830 * If memory is added and the reserves have been eliminated or increased above
3831 * the default max, then we'll trust the admin.
3833 * If memory is removed and there isn't enough free memory, then we
3834 * need to reset the reserves.
3836 * Otherwise keep the reserve set by the admin.
3838 static int reserve_mem_notifier(struct notifier_block *nb,
3839 unsigned long action, void *data)
3841 unsigned long tmp, free_kbytes;
3845 /* Default max is 128MB. Leave alone if modified by operator. */
3846 tmp = sysctl_user_reserve_kbytes;
3847 if (0 < tmp && tmp < (1UL << 17))
3848 init_user_reserve();
3850 /* Default max is 8MB. Leave alone if modified by operator. */
3851 tmp = sysctl_admin_reserve_kbytes;
3852 if (0 < tmp && tmp < (1UL << 13))
3853 init_admin_reserve();
3857 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3859 if (sysctl_user_reserve_kbytes > free_kbytes) {
3860 init_user_reserve();
3861 pr_info("vm.user_reserve_kbytes reset to %lu\n",
3862 sysctl_user_reserve_kbytes);
3865 if (sysctl_admin_reserve_kbytes > free_kbytes) {
3866 init_admin_reserve();
3867 pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3868 sysctl_admin_reserve_kbytes);
3877 static int __meminit init_reserve_notifier(void)
3879 if (hotplug_memory_notifier(reserve_mem_notifier, DEFAULT_CALLBACK_PRI))
3880 pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3884 subsys_initcall(init_reserve_notifier);