Merge tag 'riscv-for-linus-6.5-rc6' of git://git.kernel.org/pub/scm/linux/kernel...
[platform/kernel/linux-starfive.git] / mm / mmap.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * mm/mmap.c
4  *
5  * Written by obz.
6  *
7  * Address space accounting code        <alan@lxorguk.ukuu.org.uk>
8  */
9
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11
12 #include <linux/kernel.h>
13 #include <linux/slab.h>
14 #include <linux/backing-dev.h>
15 #include <linux/mm.h>
16 #include <linux/mm_inline.h>
17 #include <linux/shm.h>
18 #include <linux/mman.h>
19 #include <linux/pagemap.h>
20 #include <linux/swap.h>
21 #include <linux/syscalls.h>
22 #include <linux/capability.h>
23 #include <linux/init.h>
24 #include <linux/file.h>
25 #include <linux/fs.h>
26 #include <linux/personality.h>
27 #include <linux/security.h>
28 #include <linux/hugetlb.h>
29 #include <linux/shmem_fs.h>
30 #include <linux/profile.h>
31 #include <linux/export.h>
32 #include <linux/mount.h>
33 #include <linux/mempolicy.h>
34 #include <linux/rmap.h>
35 #include <linux/mmu_notifier.h>
36 #include <linux/mmdebug.h>
37 #include <linux/perf_event.h>
38 #include <linux/audit.h>
39 #include <linux/khugepaged.h>
40 #include <linux/uprobes.h>
41 #include <linux/notifier.h>
42 #include <linux/memory.h>
43 #include <linux/printk.h>
44 #include <linux/userfaultfd_k.h>
45 #include <linux/moduleparam.h>
46 #include <linux/pkeys.h>
47 #include <linux/oom.h>
48 #include <linux/sched/mm.h>
49 #include <linux/ksm.h>
50
51 #include <linux/uaccess.h>
52 #include <asm/cacheflush.h>
53 #include <asm/tlb.h>
54 #include <asm/mmu_context.h>
55
56 #define CREATE_TRACE_POINTS
57 #include <trace/events/mmap.h>
58
59 #include "internal.h"
60
61 #ifndef arch_mmap_check
62 #define arch_mmap_check(addr, len, flags)       (0)
63 #endif
64
65 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
66 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
67 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX;
68 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
69 #endif
70 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
71 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
72 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
73 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
74 #endif
75
76 static bool ignore_rlimit_data;
77 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
78
79 static void unmap_region(struct mm_struct *mm, struct maple_tree *mt,
80                 struct vm_area_struct *vma, struct vm_area_struct *prev,
81                 struct vm_area_struct *next, unsigned long start,
82                 unsigned long end, bool mm_wr_locked);
83
84 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
85 {
86         return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
87 }
88
89 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
90 void vma_set_page_prot(struct vm_area_struct *vma)
91 {
92         unsigned long vm_flags = vma->vm_flags;
93         pgprot_t vm_page_prot;
94
95         vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
96         if (vma_wants_writenotify(vma, vm_page_prot)) {
97                 vm_flags &= ~VM_SHARED;
98                 vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags);
99         }
100         /* remove_protection_ptes reads vma->vm_page_prot without mmap_lock */
101         WRITE_ONCE(vma->vm_page_prot, vm_page_prot);
102 }
103
104 /*
105  * Requires inode->i_mapping->i_mmap_rwsem
106  */
107 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
108                 struct file *file, struct address_space *mapping)
109 {
110         if (vma->vm_flags & VM_SHARED)
111                 mapping_unmap_writable(mapping);
112
113         flush_dcache_mmap_lock(mapping);
114         vma_interval_tree_remove(vma, &mapping->i_mmap);
115         flush_dcache_mmap_unlock(mapping);
116 }
117
118 /*
119  * Unlink a file-based vm structure from its interval tree, to hide
120  * vma from rmap and vmtruncate before freeing its page tables.
121  */
122 void unlink_file_vma(struct vm_area_struct *vma)
123 {
124         struct file *file = vma->vm_file;
125
126         if (file) {
127                 struct address_space *mapping = file->f_mapping;
128                 i_mmap_lock_write(mapping);
129                 __remove_shared_vm_struct(vma, file, mapping);
130                 i_mmap_unlock_write(mapping);
131         }
132 }
133
134 /*
135  * Close a vm structure and free it.
136  */
137 static void remove_vma(struct vm_area_struct *vma, bool unreachable)
138 {
139         might_sleep();
140         if (vma->vm_ops && vma->vm_ops->close)
141                 vma->vm_ops->close(vma);
142         if (vma->vm_file)
143                 fput(vma->vm_file);
144         mpol_put(vma_policy(vma));
145         if (unreachable)
146                 __vm_area_free(vma);
147         else
148                 vm_area_free(vma);
149 }
150
151 static inline struct vm_area_struct *vma_prev_limit(struct vma_iterator *vmi,
152                                                     unsigned long min)
153 {
154         return mas_prev(&vmi->mas, min);
155 }
156
157 static inline int vma_iter_clear_gfp(struct vma_iterator *vmi,
158                         unsigned long start, unsigned long end, gfp_t gfp)
159 {
160         vmi->mas.index = start;
161         vmi->mas.last = end - 1;
162         mas_store_gfp(&vmi->mas, NULL, gfp);
163         if (unlikely(mas_is_err(&vmi->mas)))
164                 return -ENOMEM;
165
166         return 0;
167 }
168
169 /*
170  * check_brk_limits() - Use platform specific check of range & verify mlock
171  * limits.
172  * @addr: The address to check
173  * @len: The size of increase.
174  *
175  * Return: 0 on success.
176  */
177 static int check_brk_limits(unsigned long addr, unsigned long len)
178 {
179         unsigned long mapped_addr;
180
181         mapped_addr = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
182         if (IS_ERR_VALUE(mapped_addr))
183                 return mapped_addr;
184
185         return mlock_future_ok(current->mm, current->mm->def_flags, len)
186                 ? 0 : -EAGAIN;
187 }
188 static int do_brk_flags(struct vma_iterator *vmi, struct vm_area_struct *brkvma,
189                 unsigned long addr, unsigned long request, unsigned long flags);
190 SYSCALL_DEFINE1(brk, unsigned long, brk)
191 {
192         unsigned long newbrk, oldbrk, origbrk;
193         struct mm_struct *mm = current->mm;
194         struct vm_area_struct *brkvma, *next = NULL;
195         unsigned long min_brk;
196         bool populate = false;
197         LIST_HEAD(uf);
198         struct vma_iterator vmi;
199
200         if (mmap_write_lock_killable(mm))
201                 return -EINTR;
202
203         origbrk = mm->brk;
204
205 #ifdef CONFIG_COMPAT_BRK
206         /*
207          * CONFIG_COMPAT_BRK can still be overridden by setting
208          * randomize_va_space to 2, which will still cause mm->start_brk
209          * to be arbitrarily shifted
210          */
211         if (current->brk_randomized)
212                 min_brk = mm->start_brk;
213         else
214                 min_brk = mm->end_data;
215 #else
216         min_brk = mm->start_brk;
217 #endif
218         if (brk < min_brk)
219                 goto out;
220
221         /*
222          * Check against rlimit here. If this check is done later after the test
223          * of oldbrk with newbrk then it can escape the test and let the data
224          * segment grow beyond its set limit the in case where the limit is
225          * not page aligned -Ram Gupta
226          */
227         if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
228                               mm->end_data, mm->start_data))
229                 goto out;
230
231         newbrk = PAGE_ALIGN(brk);
232         oldbrk = PAGE_ALIGN(mm->brk);
233         if (oldbrk == newbrk) {
234                 mm->brk = brk;
235                 goto success;
236         }
237
238         /* Always allow shrinking brk. */
239         if (brk <= mm->brk) {
240                 /* Search one past newbrk */
241                 vma_iter_init(&vmi, mm, newbrk);
242                 brkvma = vma_find(&vmi, oldbrk);
243                 if (!brkvma || brkvma->vm_start >= oldbrk)
244                         goto out; /* mapping intersects with an existing non-brk vma. */
245                 /*
246                  * mm->brk must be protected by write mmap_lock.
247                  * do_vma_munmap() will drop the lock on success,  so update it
248                  * before calling do_vma_munmap().
249                  */
250                 mm->brk = brk;
251                 if (do_vma_munmap(&vmi, brkvma, newbrk, oldbrk, &uf, true))
252                         goto out;
253
254                 goto success_unlocked;
255         }
256
257         if (check_brk_limits(oldbrk, newbrk - oldbrk))
258                 goto out;
259
260         /*
261          * Only check if the next VMA is within the stack_guard_gap of the
262          * expansion area
263          */
264         vma_iter_init(&vmi, mm, oldbrk);
265         next = vma_find(&vmi, newbrk + PAGE_SIZE + stack_guard_gap);
266         if (next && newbrk + PAGE_SIZE > vm_start_gap(next))
267                 goto out;
268
269         brkvma = vma_prev_limit(&vmi, mm->start_brk);
270         /* Ok, looks good - let it rip. */
271         if (do_brk_flags(&vmi, brkvma, oldbrk, newbrk - oldbrk, 0) < 0)
272                 goto out;
273
274         mm->brk = brk;
275         if (mm->def_flags & VM_LOCKED)
276                 populate = true;
277
278 success:
279         mmap_write_unlock(mm);
280 success_unlocked:
281         userfaultfd_unmap_complete(mm, &uf);
282         if (populate)
283                 mm_populate(oldbrk, newbrk - oldbrk);
284         return brk;
285
286 out:
287         mm->brk = origbrk;
288         mmap_write_unlock(mm);
289         return origbrk;
290 }
291
292 #if defined(CONFIG_DEBUG_VM_MAPLE_TREE)
293 static void validate_mm(struct mm_struct *mm)
294 {
295         int bug = 0;
296         int i = 0;
297         struct vm_area_struct *vma;
298         VMA_ITERATOR(vmi, mm, 0);
299
300         mt_validate(&mm->mm_mt);
301         for_each_vma(vmi, vma) {
302 #ifdef CONFIG_DEBUG_VM_RB
303                 struct anon_vma *anon_vma = vma->anon_vma;
304                 struct anon_vma_chain *avc;
305 #endif
306                 unsigned long vmi_start, vmi_end;
307                 bool warn = 0;
308
309                 vmi_start = vma_iter_addr(&vmi);
310                 vmi_end = vma_iter_end(&vmi);
311                 if (VM_WARN_ON_ONCE_MM(vma->vm_end != vmi_end, mm))
312                         warn = 1;
313
314                 if (VM_WARN_ON_ONCE_MM(vma->vm_start != vmi_start, mm))
315                         warn = 1;
316
317                 if (warn) {
318                         pr_emerg("issue in %s\n", current->comm);
319                         dump_stack();
320                         dump_vma(vma);
321                         pr_emerg("tree range: %px start %lx end %lx\n", vma,
322                                  vmi_start, vmi_end - 1);
323                         vma_iter_dump_tree(&vmi);
324                 }
325
326 #ifdef CONFIG_DEBUG_VM_RB
327                 if (anon_vma) {
328                         anon_vma_lock_read(anon_vma);
329                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
330                                 anon_vma_interval_tree_verify(avc);
331                         anon_vma_unlock_read(anon_vma);
332                 }
333 #endif
334                 i++;
335         }
336         if (i != mm->map_count) {
337                 pr_emerg("map_count %d vma iterator %d\n", mm->map_count, i);
338                 bug = 1;
339         }
340         VM_BUG_ON_MM(bug, mm);
341 }
342
343 #else /* !CONFIG_DEBUG_VM_MAPLE_TREE */
344 #define validate_mm(mm) do { } while (0)
345 #endif /* CONFIG_DEBUG_VM_MAPLE_TREE */
346
347 /*
348  * vma has some anon_vma assigned, and is already inserted on that
349  * anon_vma's interval trees.
350  *
351  * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
352  * vma must be removed from the anon_vma's interval trees using
353  * anon_vma_interval_tree_pre_update_vma().
354  *
355  * After the update, the vma will be reinserted using
356  * anon_vma_interval_tree_post_update_vma().
357  *
358  * The entire update must be protected by exclusive mmap_lock and by
359  * the root anon_vma's mutex.
360  */
361 static inline void
362 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
363 {
364         struct anon_vma_chain *avc;
365
366         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
367                 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
368 }
369
370 static inline void
371 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
372 {
373         struct anon_vma_chain *avc;
374
375         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
376                 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
377 }
378
379 static unsigned long count_vma_pages_range(struct mm_struct *mm,
380                 unsigned long addr, unsigned long end)
381 {
382         VMA_ITERATOR(vmi, mm, addr);
383         struct vm_area_struct *vma;
384         unsigned long nr_pages = 0;
385
386         for_each_vma_range(vmi, vma, end) {
387                 unsigned long vm_start = max(addr, vma->vm_start);
388                 unsigned long vm_end = min(end, vma->vm_end);
389
390                 nr_pages += PHYS_PFN(vm_end - vm_start);
391         }
392
393         return nr_pages;
394 }
395
396 static void __vma_link_file(struct vm_area_struct *vma,
397                             struct address_space *mapping)
398 {
399         if (vma->vm_flags & VM_SHARED)
400                 mapping_allow_writable(mapping);
401
402         flush_dcache_mmap_lock(mapping);
403         vma_interval_tree_insert(vma, &mapping->i_mmap);
404         flush_dcache_mmap_unlock(mapping);
405 }
406
407 static int vma_link(struct mm_struct *mm, struct vm_area_struct *vma)
408 {
409         VMA_ITERATOR(vmi, mm, 0);
410         struct address_space *mapping = NULL;
411
412         if (vma_iter_prealloc(&vmi))
413                 return -ENOMEM;
414
415         if (vma->vm_file) {
416                 mapping = vma->vm_file->f_mapping;
417                 i_mmap_lock_write(mapping);
418         }
419
420         vma_iter_store(&vmi, vma);
421
422         if (mapping) {
423                 __vma_link_file(vma, mapping);
424                 i_mmap_unlock_write(mapping);
425         }
426
427         mm->map_count++;
428         validate_mm(mm);
429         return 0;
430 }
431
432 /*
433  * init_multi_vma_prep() - Initializer for struct vma_prepare
434  * @vp: The vma_prepare struct
435  * @vma: The vma that will be altered once locked
436  * @next: The next vma if it is to be adjusted
437  * @remove: The first vma to be removed
438  * @remove2: The second vma to be removed
439  */
440 static inline void init_multi_vma_prep(struct vma_prepare *vp,
441                 struct vm_area_struct *vma, struct vm_area_struct *next,
442                 struct vm_area_struct *remove, struct vm_area_struct *remove2)
443 {
444         memset(vp, 0, sizeof(struct vma_prepare));
445         vp->vma = vma;
446         vp->anon_vma = vma->anon_vma;
447         vp->remove = remove;
448         vp->remove2 = remove2;
449         vp->adj_next = next;
450         if (!vp->anon_vma && next)
451                 vp->anon_vma = next->anon_vma;
452
453         vp->file = vma->vm_file;
454         if (vp->file)
455                 vp->mapping = vma->vm_file->f_mapping;
456
457 }
458
459 /*
460  * init_vma_prep() - Initializer wrapper for vma_prepare struct
461  * @vp: The vma_prepare struct
462  * @vma: The vma that will be altered once locked
463  */
464 static inline void init_vma_prep(struct vma_prepare *vp,
465                                  struct vm_area_struct *vma)
466 {
467         init_multi_vma_prep(vp, vma, NULL, NULL, NULL);
468 }
469
470
471 /*
472  * vma_prepare() - Helper function for handling locking VMAs prior to altering
473  * @vp: The initialized vma_prepare struct
474  */
475 static inline void vma_prepare(struct vma_prepare *vp)
476 {
477         vma_start_write(vp->vma);
478         if (vp->adj_next)
479                 vma_start_write(vp->adj_next);
480         /* vp->insert is always a newly created VMA, no need for locking */
481         if (vp->remove)
482                 vma_start_write(vp->remove);
483         if (vp->remove2)
484                 vma_start_write(vp->remove2);
485
486         if (vp->file) {
487                 uprobe_munmap(vp->vma, vp->vma->vm_start, vp->vma->vm_end);
488
489                 if (vp->adj_next)
490                         uprobe_munmap(vp->adj_next, vp->adj_next->vm_start,
491                                       vp->adj_next->vm_end);
492
493                 i_mmap_lock_write(vp->mapping);
494                 if (vp->insert && vp->insert->vm_file) {
495                         /*
496                          * Put into interval tree now, so instantiated pages
497                          * are visible to arm/parisc __flush_dcache_page
498                          * throughout; but we cannot insert into address
499                          * space until vma start or end is updated.
500                          */
501                         __vma_link_file(vp->insert,
502                                         vp->insert->vm_file->f_mapping);
503                 }
504         }
505
506         if (vp->anon_vma) {
507                 anon_vma_lock_write(vp->anon_vma);
508                 anon_vma_interval_tree_pre_update_vma(vp->vma);
509                 if (vp->adj_next)
510                         anon_vma_interval_tree_pre_update_vma(vp->adj_next);
511         }
512
513         if (vp->file) {
514                 flush_dcache_mmap_lock(vp->mapping);
515                 vma_interval_tree_remove(vp->vma, &vp->mapping->i_mmap);
516                 if (vp->adj_next)
517                         vma_interval_tree_remove(vp->adj_next,
518                                                  &vp->mapping->i_mmap);
519         }
520
521 }
522
523 /*
524  * vma_complete- Helper function for handling the unlocking after altering VMAs,
525  * or for inserting a VMA.
526  *
527  * @vp: The vma_prepare struct
528  * @vmi: The vma iterator
529  * @mm: The mm_struct
530  */
531 static inline void vma_complete(struct vma_prepare *vp,
532                                 struct vma_iterator *vmi, struct mm_struct *mm)
533 {
534         if (vp->file) {
535                 if (vp->adj_next)
536                         vma_interval_tree_insert(vp->adj_next,
537                                                  &vp->mapping->i_mmap);
538                 vma_interval_tree_insert(vp->vma, &vp->mapping->i_mmap);
539                 flush_dcache_mmap_unlock(vp->mapping);
540         }
541
542         if (vp->remove && vp->file) {
543                 __remove_shared_vm_struct(vp->remove, vp->file, vp->mapping);
544                 if (vp->remove2)
545                         __remove_shared_vm_struct(vp->remove2, vp->file,
546                                                   vp->mapping);
547         } else if (vp->insert) {
548                 /*
549                  * split_vma has split insert from vma, and needs
550                  * us to insert it before dropping the locks
551                  * (it may either follow vma or precede it).
552                  */
553                 vma_iter_store(vmi, vp->insert);
554                 mm->map_count++;
555         }
556
557         if (vp->anon_vma) {
558                 anon_vma_interval_tree_post_update_vma(vp->vma);
559                 if (vp->adj_next)
560                         anon_vma_interval_tree_post_update_vma(vp->adj_next);
561                 anon_vma_unlock_write(vp->anon_vma);
562         }
563
564         if (vp->file) {
565                 i_mmap_unlock_write(vp->mapping);
566                 uprobe_mmap(vp->vma);
567
568                 if (vp->adj_next)
569                         uprobe_mmap(vp->adj_next);
570         }
571
572         if (vp->remove) {
573 again:
574                 vma_mark_detached(vp->remove, true);
575                 if (vp->file) {
576                         uprobe_munmap(vp->remove, vp->remove->vm_start,
577                                       vp->remove->vm_end);
578                         fput(vp->file);
579                 }
580                 if (vp->remove->anon_vma)
581                         anon_vma_merge(vp->vma, vp->remove);
582                 mm->map_count--;
583                 mpol_put(vma_policy(vp->remove));
584                 if (!vp->remove2)
585                         WARN_ON_ONCE(vp->vma->vm_end < vp->remove->vm_end);
586                 vm_area_free(vp->remove);
587
588                 /*
589                  * In mprotect's case 6 (see comments on vma_merge),
590                  * we are removing both mid and next vmas
591                  */
592                 if (vp->remove2) {
593                         vp->remove = vp->remove2;
594                         vp->remove2 = NULL;
595                         goto again;
596                 }
597         }
598         if (vp->insert && vp->file)
599                 uprobe_mmap(vp->insert);
600 }
601
602 /*
603  * dup_anon_vma() - Helper function to duplicate anon_vma
604  * @dst: The destination VMA
605  * @src: The source VMA
606  *
607  * Returns: 0 on success.
608  */
609 static inline int dup_anon_vma(struct vm_area_struct *dst,
610                                struct vm_area_struct *src)
611 {
612         /*
613          * Easily overlooked: when mprotect shifts the boundary, make sure the
614          * expanding vma has anon_vma set if the shrinking vma had, to cover any
615          * anon pages imported.
616          */
617         if (src->anon_vma && !dst->anon_vma) {
618                 vma_start_write(dst);
619                 dst->anon_vma = src->anon_vma;
620                 return anon_vma_clone(dst, src);
621         }
622
623         return 0;
624 }
625
626 /*
627  * vma_expand - Expand an existing VMA
628  *
629  * @vmi: The vma iterator
630  * @vma: The vma to expand
631  * @start: The start of the vma
632  * @end: The exclusive end of the vma
633  * @pgoff: The page offset of vma
634  * @next: The current of next vma.
635  *
636  * Expand @vma to @start and @end.  Can expand off the start and end.  Will
637  * expand over @next if it's different from @vma and @end == @next->vm_end.
638  * Checking if the @vma can expand and merge with @next needs to be handled by
639  * the caller.
640  *
641  * Returns: 0 on success
642  */
643 int vma_expand(struct vma_iterator *vmi, struct vm_area_struct *vma,
644                unsigned long start, unsigned long end, pgoff_t pgoff,
645                struct vm_area_struct *next)
646 {
647         bool remove_next = false;
648         struct vma_prepare vp;
649
650         if (next && (vma != next) && (end == next->vm_end)) {
651                 int ret;
652
653                 remove_next = true;
654                 ret = dup_anon_vma(vma, next);
655                 if (ret)
656                         return ret;
657         }
658
659         init_multi_vma_prep(&vp, vma, NULL, remove_next ? next : NULL, NULL);
660         /* Not merging but overwriting any part of next is not handled. */
661         VM_WARN_ON(next && !vp.remove &&
662                   next != vma && end > next->vm_start);
663         /* Only handles expanding */
664         VM_WARN_ON(vma->vm_start < start || vma->vm_end > end);
665
666         if (vma_iter_prealloc(vmi))
667                 goto nomem;
668
669         vma_prepare(&vp);
670         vma_adjust_trans_huge(vma, start, end, 0);
671         /* VMA iterator points to previous, so set to start if necessary */
672         if (vma_iter_addr(vmi) != start)
673                 vma_iter_set(vmi, start);
674
675         vma->vm_start = start;
676         vma->vm_end = end;
677         vma->vm_pgoff = pgoff;
678         /* Note: mas must be pointing to the expanding VMA */
679         vma_iter_store(vmi, vma);
680
681         vma_complete(&vp, vmi, vma->vm_mm);
682         validate_mm(vma->vm_mm);
683         return 0;
684
685 nomem:
686         return -ENOMEM;
687 }
688
689 /*
690  * vma_shrink() - Reduce an existing VMAs memory area
691  * @vmi: The vma iterator
692  * @vma: The VMA to modify
693  * @start: The new start
694  * @end: The new end
695  *
696  * Returns: 0 on success, -ENOMEM otherwise
697  */
698 int vma_shrink(struct vma_iterator *vmi, struct vm_area_struct *vma,
699                unsigned long start, unsigned long end, pgoff_t pgoff)
700 {
701         struct vma_prepare vp;
702
703         WARN_ON((vma->vm_start != start) && (vma->vm_end != end));
704
705         if (vma_iter_prealloc(vmi))
706                 return -ENOMEM;
707
708         init_vma_prep(&vp, vma);
709         vma_prepare(&vp);
710         vma_adjust_trans_huge(vma, start, end, 0);
711
712         if (vma->vm_start < start)
713                 vma_iter_clear(vmi, vma->vm_start, start);
714
715         if (vma->vm_end > end)
716                 vma_iter_clear(vmi, end, vma->vm_end);
717
718         vma->vm_start = start;
719         vma->vm_end = end;
720         vma->vm_pgoff = pgoff;
721         vma_complete(&vp, vmi, vma->vm_mm);
722         validate_mm(vma->vm_mm);
723         return 0;
724 }
725
726 /*
727  * If the vma has a ->close operation then the driver probably needs to release
728  * per-vma resources, so we don't attempt to merge those if the caller indicates
729  * the current vma may be removed as part of the merge.
730  */
731 static inline bool is_mergeable_vma(struct vm_area_struct *vma,
732                 struct file *file, unsigned long vm_flags,
733                 struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
734                 struct anon_vma_name *anon_name, bool may_remove_vma)
735 {
736         /*
737          * VM_SOFTDIRTY should not prevent from VMA merging, if we
738          * match the flags but dirty bit -- the caller should mark
739          * merged VMA as dirty. If dirty bit won't be excluded from
740          * comparison, we increase pressure on the memory system forcing
741          * the kernel to generate new VMAs when old one could be
742          * extended instead.
743          */
744         if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
745                 return false;
746         if (vma->vm_file != file)
747                 return false;
748         if (may_remove_vma && vma->vm_ops && vma->vm_ops->close)
749                 return false;
750         if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
751                 return false;
752         if (!anon_vma_name_eq(anon_vma_name(vma), anon_name))
753                 return false;
754         return true;
755 }
756
757 static inline bool is_mergeable_anon_vma(struct anon_vma *anon_vma1,
758                  struct anon_vma *anon_vma2, struct vm_area_struct *vma)
759 {
760         /*
761          * The list_is_singular() test is to avoid merging VMA cloned from
762          * parents. This can improve scalability caused by anon_vma lock.
763          */
764         if ((!anon_vma1 || !anon_vma2) && (!vma ||
765                 list_is_singular(&vma->anon_vma_chain)))
766                 return true;
767         return anon_vma1 == anon_vma2;
768 }
769
770 /*
771  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
772  * in front of (at a lower virtual address and file offset than) the vma.
773  *
774  * We cannot merge two vmas if they have differently assigned (non-NULL)
775  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
776  *
777  * We don't check here for the merged mmap wrapping around the end of pagecache
778  * indices (16TB on ia32) because do_mmap() does not permit mmap's which
779  * wrap, nor mmaps which cover the final page at index -1UL.
780  *
781  * We assume the vma may be removed as part of the merge.
782  */
783 static bool
784 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
785                 struct anon_vma *anon_vma, struct file *file,
786                 pgoff_t vm_pgoff, struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
787                 struct anon_vma_name *anon_name)
788 {
789         if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name, true) &&
790             is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
791                 if (vma->vm_pgoff == vm_pgoff)
792                         return true;
793         }
794         return false;
795 }
796
797 /*
798  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
799  * beyond (at a higher virtual address and file offset than) the vma.
800  *
801  * We cannot merge two vmas if they have differently assigned (non-NULL)
802  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
803  *
804  * We assume that vma is not removed as part of the merge.
805  */
806 static bool
807 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
808                 struct anon_vma *anon_vma, struct file *file,
809                 pgoff_t vm_pgoff, struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
810                 struct anon_vma_name *anon_name)
811 {
812         if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name, false) &&
813             is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
814                 pgoff_t vm_pglen;
815                 vm_pglen = vma_pages(vma);
816                 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
817                         return true;
818         }
819         return false;
820 }
821
822 /*
823  * Given a mapping request (addr,end,vm_flags,file,pgoff,anon_name),
824  * figure out whether that can be merged with its predecessor or its
825  * successor.  Or both (it neatly fills a hole).
826  *
827  * In most cases - when called for mmap, brk or mremap - [addr,end) is
828  * certain not to be mapped by the time vma_merge is called; but when
829  * called for mprotect, it is certain to be already mapped (either at
830  * an offset within prev, or at the start of next), and the flags of
831  * this area are about to be changed to vm_flags - and the no-change
832  * case has already been eliminated.
833  *
834  * The following mprotect cases have to be considered, where **** is
835  * the area passed down from mprotect_fixup, never extending beyond one
836  * vma, PPPP is the previous vma, CCCC is a concurrent vma that starts
837  * at the same address as **** and is of the same or larger span, and
838  * NNNN the next vma after ****:
839  *
840  *     ****             ****                   ****
841  *    PPPPPPNNNNNN    PPPPPPNNNNNN       PPPPPPCCCCCC
842  *    cannot merge    might become       might become
843  *                    PPNNNNNNNNNN       PPPPPPPPPPCC
844  *    mmap, brk or    case 4 below       case 5 below
845  *    mremap move:
846  *                        ****               ****
847  *                    PPPP    NNNN       PPPPCCCCNNNN
848  *                    might become       might become
849  *                    PPPPPPPPPPPP 1 or  PPPPPPPPPPPP 6 or
850  *                    PPPPPPPPNNNN 2 or  PPPPPPPPNNNN 7 or
851  *                    PPPPNNNNNNNN 3     PPPPNNNNNNNN 8
852  *
853  * It is important for case 8 that the vma CCCC overlapping the
854  * region **** is never going to extended over NNNN. Instead NNNN must
855  * be extended in region **** and CCCC must be removed. This way in
856  * all cases where vma_merge succeeds, the moment vma_merge drops the
857  * rmap_locks, the properties of the merged vma will be already
858  * correct for the whole merged range. Some of those properties like
859  * vm_page_prot/vm_flags may be accessed by rmap_walks and they must
860  * be correct for the whole merged range immediately after the
861  * rmap_locks are released. Otherwise if NNNN would be removed and
862  * CCCC would be extended over the NNNN range, remove_migration_ptes
863  * or other rmap walkers (if working on addresses beyond the "end"
864  * parameter) may establish ptes with the wrong permissions of CCCC
865  * instead of the right permissions of NNNN.
866  *
867  * In the code below:
868  * PPPP is represented by *prev
869  * CCCC is represented by *curr or not represented at all (NULL)
870  * NNNN is represented by *next or not represented at all (NULL)
871  * **** is not represented - it will be merged and the vma containing the
872  *      area is returned, or the function will return NULL
873  */
874 struct vm_area_struct *vma_merge(struct vma_iterator *vmi, struct mm_struct *mm,
875                         struct vm_area_struct *prev, unsigned long addr,
876                         unsigned long end, unsigned long vm_flags,
877                         struct anon_vma *anon_vma, struct file *file,
878                         pgoff_t pgoff, struct mempolicy *policy,
879                         struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
880                         struct anon_vma_name *anon_name)
881 {
882         struct vm_area_struct *curr, *next, *res;
883         struct vm_area_struct *vma, *adjust, *remove, *remove2;
884         struct vma_prepare vp;
885         pgoff_t vma_pgoff;
886         int err = 0;
887         bool merge_prev = false;
888         bool merge_next = false;
889         bool vma_expanded = false;
890         unsigned long vma_start = addr;
891         unsigned long vma_end = end;
892         pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
893         long adj_start = 0;
894
895         validate_mm(mm);
896         /*
897          * We later require that vma->vm_flags == vm_flags,
898          * so this tests vma->vm_flags & VM_SPECIAL, too.
899          */
900         if (vm_flags & VM_SPECIAL)
901                 return NULL;
902
903         /* Does the input range span an existing VMA? (cases 5 - 8) */
904         curr = find_vma_intersection(mm, prev ? prev->vm_end : 0, end);
905
906         if (!curr ||                    /* cases 1 - 4 */
907             end == curr->vm_end)        /* cases 6 - 8, adjacent VMA */
908                 next = vma_lookup(mm, end);
909         else
910                 next = NULL;            /* case 5 */
911
912         if (prev) {
913                 vma_start = prev->vm_start;
914                 vma_pgoff = prev->vm_pgoff;
915
916                 /* Can we merge the predecessor? */
917                 if (addr == prev->vm_end && mpol_equal(vma_policy(prev), policy)
918                     && can_vma_merge_after(prev, vm_flags, anon_vma, file,
919                                            pgoff, vm_userfaultfd_ctx, anon_name)) {
920                         merge_prev = true;
921                         vma_prev(vmi);
922                 }
923         }
924
925         /* Can we merge the successor? */
926         if (next && mpol_equal(policy, vma_policy(next)) &&
927             can_vma_merge_before(next, vm_flags, anon_vma, file, pgoff+pglen,
928                                  vm_userfaultfd_ctx, anon_name)) {
929                 merge_next = true;
930         }
931
932         /* Verify some invariant that must be enforced by the caller. */
933         VM_WARN_ON(prev && addr <= prev->vm_start);
934         VM_WARN_ON(curr && (addr != curr->vm_start || end > curr->vm_end));
935         VM_WARN_ON(addr >= end);
936
937         if (!merge_prev && !merge_next)
938                 return NULL; /* Not mergeable. */
939
940         res = vma = prev;
941         remove = remove2 = adjust = NULL;
942
943         /* Can we merge both the predecessor and the successor? */
944         if (merge_prev && merge_next &&
945             is_mergeable_anon_vma(prev->anon_vma, next->anon_vma, NULL)) {
946                 remove = next;                          /* case 1 */
947                 vma_end = next->vm_end;
948                 err = dup_anon_vma(prev, next);
949                 if (curr) {                             /* case 6 */
950                         remove = curr;
951                         remove2 = next;
952                         if (!next->anon_vma)
953                                 err = dup_anon_vma(prev, curr);
954                 }
955         } else if (merge_prev) {                        /* case 2 */
956                 if (curr) {
957                         err = dup_anon_vma(prev, curr);
958                         if (end == curr->vm_end) {      /* case 7 */
959                                 remove = curr;
960                         } else {                        /* case 5 */
961                                 adjust = curr;
962                                 adj_start = (end - curr->vm_start);
963                         }
964                 }
965         } else { /* merge_next */
966                 res = next;
967                 if (prev && addr < prev->vm_end) {      /* case 4 */
968                         vma_end = addr;
969                         adjust = next;
970                         adj_start = -(prev->vm_end - addr);
971                         err = dup_anon_vma(next, prev);
972                 } else {
973                         /*
974                          * Note that cases 3 and 8 are the ONLY ones where prev
975                          * is permitted to be (but is not necessarily) NULL.
976                          */
977                         vma = next;                     /* case 3 */
978                         vma_start = addr;
979                         vma_end = next->vm_end;
980                         vma_pgoff = next->vm_pgoff - pglen;
981                         if (curr) {                     /* case 8 */
982                                 vma_pgoff = curr->vm_pgoff;
983                                 remove = curr;
984                                 err = dup_anon_vma(next, curr);
985                         }
986                 }
987         }
988
989         /* Error in anon_vma clone. */
990         if (err)
991                 return NULL;
992
993         if (vma_iter_prealloc(vmi))
994                 return NULL;
995
996         init_multi_vma_prep(&vp, vma, adjust, remove, remove2);
997         VM_WARN_ON(vp.anon_vma && adjust && adjust->anon_vma &&
998                    vp.anon_vma != adjust->anon_vma);
999
1000         vma_prepare(&vp);
1001         vma_adjust_trans_huge(vma, vma_start, vma_end, adj_start);
1002         if (vma_start < vma->vm_start || vma_end > vma->vm_end)
1003                 vma_expanded = true;
1004
1005         vma->vm_start = vma_start;
1006         vma->vm_end = vma_end;
1007         vma->vm_pgoff = vma_pgoff;
1008
1009         if (vma_expanded)
1010                 vma_iter_store(vmi, vma);
1011
1012         if (adj_start) {
1013                 adjust->vm_start += adj_start;
1014                 adjust->vm_pgoff += adj_start >> PAGE_SHIFT;
1015                 if (adj_start < 0) {
1016                         WARN_ON(vma_expanded);
1017                         vma_iter_store(vmi, next);
1018                 }
1019         }
1020
1021         vma_complete(&vp, vmi, mm);
1022         vma_iter_free(vmi);
1023         validate_mm(mm);
1024         khugepaged_enter_vma(res, vm_flags);
1025
1026         return res;
1027 }
1028
1029 /*
1030  * Rough compatibility check to quickly see if it's even worth looking
1031  * at sharing an anon_vma.
1032  *
1033  * They need to have the same vm_file, and the flags can only differ
1034  * in things that mprotect may change.
1035  *
1036  * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1037  * we can merge the two vma's. For example, we refuse to merge a vma if
1038  * there is a vm_ops->close() function, because that indicates that the
1039  * driver is doing some kind of reference counting. But that doesn't
1040  * really matter for the anon_vma sharing case.
1041  */
1042 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1043 {
1044         return a->vm_end == b->vm_start &&
1045                 mpol_equal(vma_policy(a), vma_policy(b)) &&
1046                 a->vm_file == b->vm_file &&
1047                 !((a->vm_flags ^ b->vm_flags) & ~(VM_ACCESS_FLAGS | VM_SOFTDIRTY)) &&
1048                 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1049 }
1050
1051 /*
1052  * Do some basic sanity checking to see if we can re-use the anon_vma
1053  * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1054  * the same as 'old', the other will be the new one that is trying
1055  * to share the anon_vma.
1056  *
1057  * NOTE! This runs with mmap_lock held for reading, so it is possible that
1058  * the anon_vma of 'old' is concurrently in the process of being set up
1059  * by another page fault trying to merge _that_. But that's ok: if it
1060  * is being set up, that automatically means that it will be a singleton
1061  * acceptable for merging, so we can do all of this optimistically. But
1062  * we do that READ_ONCE() to make sure that we never re-load the pointer.
1063  *
1064  * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1065  * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1066  * is to return an anon_vma that is "complex" due to having gone through
1067  * a fork).
1068  *
1069  * We also make sure that the two vma's are compatible (adjacent,
1070  * and with the same memory policies). That's all stable, even with just
1071  * a read lock on the mmap_lock.
1072  */
1073 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1074 {
1075         if (anon_vma_compatible(a, b)) {
1076                 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1077
1078                 if (anon_vma && list_is_singular(&old->anon_vma_chain))
1079                         return anon_vma;
1080         }
1081         return NULL;
1082 }
1083
1084 /*
1085  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1086  * neighbouring vmas for a suitable anon_vma, before it goes off
1087  * to allocate a new anon_vma.  It checks because a repetitive
1088  * sequence of mprotects and faults may otherwise lead to distinct
1089  * anon_vmas being allocated, preventing vma merge in subsequent
1090  * mprotect.
1091  */
1092 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1093 {
1094         MA_STATE(mas, &vma->vm_mm->mm_mt, vma->vm_end, vma->vm_end);
1095         struct anon_vma *anon_vma = NULL;
1096         struct vm_area_struct *prev, *next;
1097
1098         /* Try next first. */
1099         next = mas_walk(&mas);
1100         if (next) {
1101                 anon_vma = reusable_anon_vma(next, vma, next);
1102                 if (anon_vma)
1103                         return anon_vma;
1104         }
1105
1106         prev = mas_prev(&mas, 0);
1107         VM_BUG_ON_VMA(prev != vma, vma);
1108         prev = mas_prev(&mas, 0);
1109         /* Try prev next. */
1110         if (prev)
1111                 anon_vma = reusable_anon_vma(prev, prev, vma);
1112
1113         /*
1114          * We might reach here with anon_vma == NULL if we can't find
1115          * any reusable anon_vma.
1116          * There's no absolute need to look only at touching neighbours:
1117          * we could search further afield for "compatible" anon_vmas.
1118          * But it would probably just be a waste of time searching,
1119          * or lead to too many vmas hanging off the same anon_vma.
1120          * We're trying to allow mprotect remerging later on,
1121          * not trying to minimize memory used for anon_vmas.
1122          */
1123         return anon_vma;
1124 }
1125
1126 /*
1127  * If a hint addr is less than mmap_min_addr change hint to be as
1128  * low as possible but still greater than mmap_min_addr
1129  */
1130 static inline unsigned long round_hint_to_min(unsigned long hint)
1131 {
1132         hint &= PAGE_MASK;
1133         if (((void *)hint != NULL) &&
1134             (hint < mmap_min_addr))
1135                 return PAGE_ALIGN(mmap_min_addr);
1136         return hint;
1137 }
1138
1139 bool mlock_future_ok(struct mm_struct *mm, unsigned long flags,
1140                         unsigned long bytes)
1141 {
1142         unsigned long locked_pages, limit_pages;
1143
1144         if (!(flags & VM_LOCKED) || capable(CAP_IPC_LOCK))
1145                 return true;
1146
1147         locked_pages = bytes >> PAGE_SHIFT;
1148         locked_pages += mm->locked_vm;
1149
1150         limit_pages = rlimit(RLIMIT_MEMLOCK);
1151         limit_pages >>= PAGE_SHIFT;
1152
1153         return locked_pages <= limit_pages;
1154 }
1155
1156 static inline u64 file_mmap_size_max(struct file *file, struct inode *inode)
1157 {
1158         if (S_ISREG(inode->i_mode))
1159                 return MAX_LFS_FILESIZE;
1160
1161         if (S_ISBLK(inode->i_mode))
1162                 return MAX_LFS_FILESIZE;
1163
1164         if (S_ISSOCK(inode->i_mode))
1165                 return MAX_LFS_FILESIZE;
1166
1167         /* Special "we do even unsigned file positions" case */
1168         if (file->f_mode & FMODE_UNSIGNED_OFFSET)
1169                 return 0;
1170
1171         /* Yes, random drivers might want more. But I'm tired of buggy drivers */
1172         return ULONG_MAX;
1173 }
1174
1175 static inline bool file_mmap_ok(struct file *file, struct inode *inode,
1176                                 unsigned long pgoff, unsigned long len)
1177 {
1178         u64 maxsize = file_mmap_size_max(file, inode);
1179
1180         if (maxsize && len > maxsize)
1181                 return false;
1182         maxsize -= len;
1183         if (pgoff > maxsize >> PAGE_SHIFT)
1184                 return false;
1185         return true;
1186 }
1187
1188 /*
1189  * The caller must write-lock current->mm->mmap_lock.
1190  */
1191 unsigned long do_mmap(struct file *file, unsigned long addr,
1192                         unsigned long len, unsigned long prot,
1193                         unsigned long flags, unsigned long pgoff,
1194                         unsigned long *populate, struct list_head *uf)
1195 {
1196         struct mm_struct *mm = current->mm;
1197         vm_flags_t vm_flags;
1198         int pkey = 0;
1199
1200         validate_mm(mm);
1201         *populate = 0;
1202
1203         if (!len)
1204                 return -EINVAL;
1205
1206         /*
1207          * Does the application expect PROT_READ to imply PROT_EXEC?
1208          *
1209          * (the exception is when the underlying filesystem is noexec
1210          *  mounted, in which case we dont add PROT_EXEC.)
1211          */
1212         if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1213                 if (!(file && path_noexec(&file->f_path)))
1214                         prot |= PROT_EXEC;
1215
1216         /* force arch specific MAP_FIXED handling in get_unmapped_area */
1217         if (flags & MAP_FIXED_NOREPLACE)
1218                 flags |= MAP_FIXED;
1219
1220         if (!(flags & MAP_FIXED))
1221                 addr = round_hint_to_min(addr);
1222
1223         /* Careful about overflows.. */
1224         len = PAGE_ALIGN(len);
1225         if (!len)
1226                 return -ENOMEM;
1227
1228         /* offset overflow? */
1229         if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1230                 return -EOVERFLOW;
1231
1232         /* Too many mappings? */
1233         if (mm->map_count > sysctl_max_map_count)
1234                 return -ENOMEM;
1235
1236         /* Obtain the address to map to. we verify (or select) it and ensure
1237          * that it represents a valid section of the address space.
1238          */
1239         addr = get_unmapped_area(file, addr, len, pgoff, flags);
1240         if (IS_ERR_VALUE(addr))
1241                 return addr;
1242
1243         if (flags & MAP_FIXED_NOREPLACE) {
1244                 if (find_vma_intersection(mm, addr, addr + len))
1245                         return -EEXIST;
1246         }
1247
1248         if (prot == PROT_EXEC) {
1249                 pkey = execute_only_pkey(mm);
1250                 if (pkey < 0)
1251                         pkey = 0;
1252         }
1253
1254         /* Do simple checking here so the lower-level routines won't have
1255          * to. we assume access permissions have been handled by the open
1256          * of the memory object, so we don't do any here.
1257          */
1258         vm_flags = calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
1259                         mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1260
1261         if (flags & MAP_LOCKED)
1262                 if (!can_do_mlock())
1263                         return -EPERM;
1264
1265         if (!mlock_future_ok(mm, vm_flags, len))
1266                 return -EAGAIN;
1267
1268         if (file) {
1269                 struct inode *inode = file_inode(file);
1270                 unsigned long flags_mask;
1271
1272                 if (!file_mmap_ok(file, inode, pgoff, len))
1273                         return -EOVERFLOW;
1274
1275                 flags_mask = LEGACY_MAP_MASK | file->f_op->mmap_supported_flags;
1276
1277                 switch (flags & MAP_TYPE) {
1278                 case MAP_SHARED:
1279                         /*
1280                          * Force use of MAP_SHARED_VALIDATE with non-legacy
1281                          * flags. E.g. MAP_SYNC is dangerous to use with
1282                          * MAP_SHARED as you don't know which consistency model
1283                          * you will get. We silently ignore unsupported flags
1284                          * with MAP_SHARED to preserve backward compatibility.
1285                          */
1286                         flags &= LEGACY_MAP_MASK;
1287                         fallthrough;
1288                 case MAP_SHARED_VALIDATE:
1289                         if (flags & ~flags_mask)
1290                                 return -EOPNOTSUPP;
1291                         if (prot & PROT_WRITE) {
1292                                 if (!(file->f_mode & FMODE_WRITE))
1293                                         return -EACCES;
1294                                 if (IS_SWAPFILE(file->f_mapping->host))
1295                                         return -ETXTBSY;
1296                         }
1297
1298                         /*
1299                          * Make sure we don't allow writing to an append-only
1300                          * file..
1301                          */
1302                         if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1303                                 return -EACCES;
1304
1305                         vm_flags |= VM_SHARED | VM_MAYSHARE;
1306                         if (!(file->f_mode & FMODE_WRITE))
1307                                 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1308                         fallthrough;
1309                 case MAP_PRIVATE:
1310                         if (!(file->f_mode & FMODE_READ))
1311                                 return -EACCES;
1312                         if (path_noexec(&file->f_path)) {
1313                                 if (vm_flags & VM_EXEC)
1314                                         return -EPERM;
1315                                 vm_flags &= ~VM_MAYEXEC;
1316                         }
1317
1318                         if (!file->f_op->mmap)
1319                                 return -ENODEV;
1320                         if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1321                                 return -EINVAL;
1322                         break;
1323
1324                 default:
1325                         return -EINVAL;
1326                 }
1327         } else {
1328                 switch (flags & MAP_TYPE) {
1329                 case MAP_SHARED:
1330                         if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1331                                 return -EINVAL;
1332                         /*
1333                          * Ignore pgoff.
1334                          */
1335                         pgoff = 0;
1336                         vm_flags |= VM_SHARED | VM_MAYSHARE;
1337                         break;
1338                 case MAP_PRIVATE:
1339                         /*
1340                          * Set pgoff according to addr for anon_vma.
1341                          */
1342                         pgoff = addr >> PAGE_SHIFT;
1343                         break;
1344                 default:
1345                         return -EINVAL;
1346                 }
1347         }
1348
1349         /*
1350          * Set 'VM_NORESERVE' if we should not account for the
1351          * memory use of this mapping.
1352          */
1353         if (flags & MAP_NORESERVE) {
1354                 /* We honor MAP_NORESERVE if allowed to overcommit */
1355                 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1356                         vm_flags |= VM_NORESERVE;
1357
1358                 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1359                 if (file && is_file_hugepages(file))
1360                         vm_flags |= VM_NORESERVE;
1361         }
1362
1363         addr = mmap_region(file, addr, len, vm_flags, pgoff, uf);
1364         if (!IS_ERR_VALUE(addr) &&
1365             ((vm_flags & VM_LOCKED) ||
1366              (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1367                 *populate = len;
1368         return addr;
1369 }
1370
1371 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1372                               unsigned long prot, unsigned long flags,
1373                               unsigned long fd, unsigned long pgoff)
1374 {
1375         struct file *file = NULL;
1376         unsigned long retval;
1377
1378         if (!(flags & MAP_ANONYMOUS)) {
1379                 audit_mmap_fd(fd, flags);
1380                 file = fget(fd);
1381                 if (!file)
1382                         return -EBADF;
1383                 if (is_file_hugepages(file)) {
1384                         len = ALIGN(len, huge_page_size(hstate_file(file)));
1385                 } else if (unlikely(flags & MAP_HUGETLB)) {
1386                         retval = -EINVAL;
1387                         goto out_fput;
1388                 }
1389         } else if (flags & MAP_HUGETLB) {
1390                 struct hstate *hs;
1391
1392                 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1393                 if (!hs)
1394                         return -EINVAL;
1395
1396                 len = ALIGN(len, huge_page_size(hs));
1397                 /*
1398                  * VM_NORESERVE is used because the reservations will be
1399                  * taken when vm_ops->mmap() is called
1400                  */
1401                 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1402                                 VM_NORESERVE,
1403                                 HUGETLB_ANONHUGE_INODE,
1404                                 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1405                 if (IS_ERR(file))
1406                         return PTR_ERR(file);
1407         }
1408
1409         retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1410 out_fput:
1411         if (file)
1412                 fput(file);
1413         return retval;
1414 }
1415
1416 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1417                 unsigned long, prot, unsigned long, flags,
1418                 unsigned long, fd, unsigned long, pgoff)
1419 {
1420         return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1421 }
1422
1423 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1424 struct mmap_arg_struct {
1425         unsigned long addr;
1426         unsigned long len;
1427         unsigned long prot;
1428         unsigned long flags;
1429         unsigned long fd;
1430         unsigned long offset;
1431 };
1432
1433 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1434 {
1435         struct mmap_arg_struct a;
1436
1437         if (copy_from_user(&a, arg, sizeof(a)))
1438                 return -EFAULT;
1439         if (offset_in_page(a.offset))
1440                 return -EINVAL;
1441
1442         return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1443                                a.offset >> PAGE_SHIFT);
1444 }
1445 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1446
1447 static bool vm_ops_needs_writenotify(const struct vm_operations_struct *vm_ops)
1448 {
1449         return vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite);
1450 }
1451
1452 static bool vma_is_shared_writable(struct vm_area_struct *vma)
1453 {
1454         return (vma->vm_flags & (VM_WRITE | VM_SHARED)) ==
1455                 (VM_WRITE | VM_SHARED);
1456 }
1457
1458 static bool vma_fs_can_writeback(struct vm_area_struct *vma)
1459 {
1460         /* No managed pages to writeback. */
1461         if (vma->vm_flags & VM_PFNMAP)
1462                 return false;
1463
1464         return vma->vm_file && vma->vm_file->f_mapping &&
1465                 mapping_can_writeback(vma->vm_file->f_mapping);
1466 }
1467
1468 /*
1469  * Does this VMA require the underlying folios to have their dirty state
1470  * tracked?
1471  */
1472 bool vma_needs_dirty_tracking(struct vm_area_struct *vma)
1473 {
1474         /* Only shared, writable VMAs require dirty tracking. */
1475         if (!vma_is_shared_writable(vma))
1476                 return false;
1477
1478         /* Does the filesystem need to be notified? */
1479         if (vm_ops_needs_writenotify(vma->vm_ops))
1480                 return true;
1481
1482         /*
1483          * Even if the filesystem doesn't indicate a need for writenotify, if it
1484          * can writeback, dirty tracking is still required.
1485          */
1486         return vma_fs_can_writeback(vma);
1487 }
1488
1489 /*
1490  * Some shared mappings will want the pages marked read-only
1491  * to track write events. If so, we'll downgrade vm_page_prot
1492  * to the private version (using protection_map[] without the
1493  * VM_SHARED bit).
1494  */
1495 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)
1496 {
1497         /* If it was private or non-writable, the write bit is already clear */
1498         if (!vma_is_shared_writable(vma))
1499                 return 0;
1500
1501         /* The backer wishes to know when pages are first written to? */
1502         if (vm_ops_needs_writenotify(vma->vm_ops))
1503                 return 1;
1504
1505         /* The open routine did something to the protections that pgprot_modify
1506          * won't preserve? */
1507         if (pgprot_val(vm_page_prot) !=
1508             pgprot_val(vm_pgprot_modify(vm_page_prot, vma->vm_flags)))
1509                 return 0;
1510
1511         /*
1512          * Do we need to track softdirty? hugetlb does not support softdirty
1513          * tracking yet.
1514          */
1515         if (vma_soft_dirty_enabled(vma) && !is_vm_hugetlb_page(vma))
1516                 return 1;
1517
1518         /* Do we need write faults for uffd-wp tracking? */
1519         if (userfaultfd_wp(vma))
1520                 return 1;
1521
1522         /* Can the mapping track the dirty pages? */
1523         return vma_fs_can_writeback(vma);
1524 }
1525
1526 /*
1527  * We account for memory if it's a private writeable mapping,
1528  * not hugepages and VM_NORESERVE wasn't set.
1529  */
1530 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1531 {
1532         /*
1533          * hugetlb has its own accounting separate from the core VM
1534          * VM_HUGETLB may not be set yet so we cannot check for that flag.
1535          */
1536         if (file && is_file_hugepages(file))
1537                 return 0;
1538
1539         return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1540 }
1541
1542 /**
1543  * unmapped_area() - Find an area between the low_limit and the high_limit with
1544  * the correct alignment and offset, all from @info. Note: current->mm is used
1545  * for the search.
1546  *
1547  * @info: The unmapped area information including the range [low_limit -
1548  * high_limit), the alignment offset and mask.
1549  *
1550  * Return: A memory address or -ENOMEM.
1551  */
1552 static unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1553 {
1554         unsigned long length, gap;
1555         unsigned long low_limit, high_limit;
1556         struct vm_area_struct *tmp;
1557
1558         MA_STATE(mas, &current->mm->mm_mt, 0, 0);
1559
1560         /* Adjust search length to account for worst case alignment overhead */
1561         length = info->length + info->align_mask;
1562         if (length < info->length)
1563                 return -ENOMEM;
1564
1565         low_limit = info->low_limit;
1566         if (low_limit < mmap_min_addr)
1567                 low_limit = mmap_min_addr;
1568         high_limit = info->high_limit;
1569 retry:
1570         if (mas_empty_area(&mas, low_limit, high_limit - 1, length))
1571                 return -ENOMEM;
1572
1573         gap = mas.index;
1574         gap += (info->align_offset - gap) & info->align_mask;
1575         tmp = mas_next(&mas, ULONG_MAX);
1576         if (tmp && (tmp->vm_flags & VM_GROWSDOWN)) { /* Avoid prev check if possible */
1577                 if (vm_start_gap(tmp) < gap + length - 1) {
1578                         low_limit = tmp->vm_end;
1579                         mas_reset(&mas);
1580                         goto retry;
1581                 }
1582         } else {
1583                 tmp = mas_prev(&mas, 0);
1584                 if (tmp && vm_end_gap(tmp) > gap) {
1585                         low_limit = vm_end_gap(tmp);
1586                         mas_reset(&mas);
1587                         goto retry;
1588                 }
1589         }
1590
1591         return gap;
1592 }
1593
1594 /**
1595  * unmapped_area_topdown() - Find an area between the low_limit and the
1596  * high_limit with the correct alignment and offset at the highest available
1597  * address, all from @info. Note: current->mm is used for the search.
1598  *
1599  * @info: The unmapped area information including the range [low_limit -
1600  * high_limit), the alignment offset and mask.
1601  *
1602  * Return: A memory address or -ENOMEM.
1603  */
1604 static unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1605 {
1606         unsigned long length, gap, gap_end;
1607         unsigned long low_limit, high_limit;
1608         struct vm_area_struct *tmp;
1609
1610         MA_STATE(mas, &current->mm->mm_mt, 0, 0);
1611         /* Adjust search length to account for worst case alignment overhead */
1612         length = info->length + info->align_mask;
1613         if (length < info->length)
1614                 return -ENOMEM;
1615
1616         low_limit = info->low_limit;
1617         if (low_limit < mmap_min_addr)
1618                 low_limit = mmap_min_addr;
1619         high_limit = info->high_limit;
1620 retry:
1621         if (mas_empty_area_rev(&mas, low_limit, high_limit - 1, length))
1622                 return -ENOMEM;
1623
1624         gap = mas.last + 1 - info->length;
1625         gap -= (gap - info->align_offset) & info->align_mask;
1626         gap_end = mas.last;
1627         tmp = mas_next(&mas, ULONG_MAX);
1628         if (tmp && (tmp->vm_flags & VM_GROWSDOWN)) { /* Avoid prev check if possible */
1629                 if (vm_start_gap(tmp) <= gap_end) {
1630                         high_limit = vm_start_gap(tmp);
1631                         mas_reset(&mas);
1632                         goto retry;
1633                 }
1634         } else {
1635                 tmp = mas_prev(&mas, 0);
1636                 if (tmp && vm_end_gap(tmp) > gap) {
1637                         high_limit = tmp->vm_start;
1638                         mas_reset(&mas);
1639                         goto retry;
1640                 }
1641         }
1642
1643         return gap;
1644 }
1645
1646 /*
1647  * Search for an unmapped address range.
1648  *
1649  * We are looking for a range that:
1650  * - does not intersect with any VMA;
1651  * - is contained within the [low_limit, high_limit) interval;
1652  * - is at least the desired size.
1653  * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
1654  */
1655 unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info)
1656 {
1657         unsigned long addr;
1658
1659         if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
1660                 addr = unmapped_area_topdown(info);
1661         else
1662                 addr = unmapped_area(info);
1663
1664         trace_vm_unmapped_area(addr, info);
1665         return addr;
1666 }
1667
1668 /* Get an address range which is currently unmapped.
1669  * For shmat() with addr=0.
1670  *
1671  * Ugly calling convention alert:
1672  * Return value with the low bits set means error value,
1673  * ie
1674  *      if (ret & ~PAGE_MASK)
1675  *              error = ret;
1676  *
1677  * This function "knows" that -ENOMEM has the bits set.
1678  */
1679 unsigned long
1680 generic_get_unmapped_area(struct file *filp, unsigned long addr,
1681                           unsigned long len, unsigned long pgoff,
1682                           unsigned long flags)
1683 {
1684         struct mm_struct *mm = current->mm;
1685         struct vm_area_struct *vma, *prev;
1686         struct vm_unmapped_area_info info;
1687         const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags);
1688
1689         if (len > mmap_end - mmap_min_addr)
1690                 return -ENOMEM;
1691
1692         if (flags & MAP_FIXED)
1693                 return addr;
1694
1695         if (addr) {
1696                 addr = PAGE_ALIGN(addr);
1697                 vma = find_vma_prev(mm, addr, &prev);
1698                 if (mmap_end - len >= addr && addr >= mmap_min_addr &&
1699                     (!vma || addr + len <= vm_start_gap(vma)) &&
1700                     (!prev || addr >= vm_end_gap(prev)))
1701                         return addr;
1702         }
1703
1704         info.flags = 0;
1705         info.length = len;
1706         info.low_limit = mm->mmap_base;
1707         info.high_limit = mmap_end;
1708         info.align_mask = 0;
1709         info.align_offset = 0;
1710         return vm_unmapped_area(&info);
1711 }
1712
1713 #ifndef HAVE_ARCH_UNMAPPED_AREA
1714 unsigned long
1715 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1716                        unsigned long len, unsigned long pgoff,
1717                        unsigned long flags)
1718 {
1719         return generic_get_unmapped_area(filp, addr, len, pgoff, flags);
1720 }
1721 #endif
1722
1723 /*
1724  * This mmap-allocator allocates new areas top-down from below the
1725  * stack's low limit (the base):
1726  */
1727 unsigned long
1728 generic_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
1729                                   unsigned long len, unsigned long pgoff,
1730                                   unsigned long flags)
1731 {
1732         struct vm_area_struct *vma, *prev;
1733         struct mm_struct *mm = current->mm;
1734         struct vm_unmapped_area_info info;
1735         const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags);
1736
1737         /* requested length too big for entire address space */
1738         if (len > mmap_end - mmap_min_addr)
1739                 return -ENOMEM;
1740
1741         if (flags & MAP_FIXED)
1742                 return addr;
1743
1744         /* requesting a specific address */
1745         if (addr) {
1746                 addr = PAGE_ALIGN(addr);
1747                 vma = find_vma_prev(mm, addr, &prev);
1748                 if (mmap_end - len >= addr && addr >= mmap_min_addr &&
1749                                 (!vma || addr + len <= vm_start_gap(vma)) &&
1750                                 (!prev || addr >= vm_end_gap(prev)))
1751                         return addr;
1752         }
1753
1754         info.flags = VM_UNMAPPED_AREA_TOPDOWN;
1755         info.length = len;
1756         info.low_limit = PAGE_SIZE;
1757         info.high_limit = arch_get_mmap_base(addr, mm->mmap_base);
1758         info.align_mask = 0;
1759         info.align_offset = 0;
1760         addr = vm_unmapped_area(&info);
1761
1762         /*
1763          * A failed mmap() very likely causes application failure,
1764          * so fall back to the bottom-up function here. This scenario
1765          * can happen with large stack limits and large mmap()
1766          * allocations.
1767          */
1768         if (offset_in_page(addr)) {
1769                 VM_BUG_ON(addr != -ENOMEM);
1770                 info.flags = 0;
1771                 info.low_limit = TASK_UNMAPPED_BASE;
1772                 info.high_limit = mmap_end;
1773                 addr = vm_unmapped_area(&info);
1774         }
1775
1776         return addr;
1777 }
1778
1779 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1780 unsigned long
1781 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
1782                                unsigned long len, unsigned long pgoff,
1783                                unsigned long flags)
1784 {
1785         return generic_get_unmapped_area_topdown(filp, addr, len, pgoff, flags);
1786 }
1787 #endif
1788
1789 unsigned long
1790 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1791                 unsigned long pgoff, unsigned long flags)
1792 {
1793         unsigned long (*get_area)(struct file *, unsigned long,
1794                                   unsigned long, unsigned long, unsigned long);
1795
1796         unsigned long error = arch_mmap_check(addr, len, flags);
1797         if (error)
1798                 return error;
1799
1800         /* Careful about overflows.. */
1801         if (len > TASK_SIZE)
1802                 return -ENOMEM;
1803
1804         get_area = current->mm->get_unmapped_area;
1805         if (file) {
1806                 if (file->f_op->get_unmapped_area)
1807                         get_area = file->f_op->get_unmapped_area;
1808         } else if (flags & MAP_SHARED) {
1809                 /*
1810                  * mmap_region() will call shmem_zero_setup() to create a file,
1811                  * so use shmem's get_unmapped_area in case it can be huge.
1812                  * do_mmap() will clear pgoff, so match alignment.
1813                  */
1814                 pgoff = 0;
1815                 get_area = shmem_get_unmapped_area;
1816         }
1817
1818         addr = get_area(file, addr, len, pgoff, flags);
1819         if (IS_ERR_VALUE(addr))
1820                 return addr;
1821
1822         if (addr > TASK_SIZE - len)
1823                 return -ENOMEM;
1824         if (offset_in_page(addr))
1825                 return -EINVAL;
1826
1827         error = security_mmap_addr(addr);
1828         return error ? error : addr;
1829 }
1830
1831 EXPORT_SYMBOL(get_unmapped_area);
1832
1833 /**
1834  * find_vma_intersection() - Look up the first VMA which intersects the interval
1835  * @mm: The process address space.
1836  * @start_addr: The inclusive start user address.
1837  * @end_addr: The exclusive end user address.
1838  *
1839  * Returns: The first VMA within the provided range, %NULL otherwise.  Assumes
1840  * start_addr < end_addr.
1841  */
1842 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
1843                                              unsigned long start_addr,
1844                                              unsigned long end_addr)
1845 {
1846         unsigned long index = start_addr;
1847
1848         mmap_assert_locked(mm);
1849         return mt_find(&mm->mm_mt, &index, end_addr - 1);
1850 }
1851 EXPORT_SYMBOL(find_vma_intersection);
1852
1853 /**
1854  * find_vma() - Find the VMA for a given address, or the next VMA.
1855  * @mm: The mm_struct to check
1856  * @addr: The address
1857  *
1858  * Returns: The VMA associated with addr, or the next VMA.
1859  * May return %NULL in the case of no VMA at addr or above.
1860  */
1861 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
1862 {
1863         unsigned long index = addr;
1864
1865         mmap_assert_locked(mm);
1866         return mt_find(&mm->mm_mt, &index, ULONG_MAX);
1867 }
1868 EXPORT_SYMBOL(find_vma);
1869
1870 /**
1871  * find_vma_prev() - Find the VMA for a given address, or the next vma and
1872  * set %pprev to the previous VMA, if any.
1873  * @mm: The mm_struct to check
1874  * @addr: The address
1875  * @pprev: The pointer to set to the previous VMA
1876  *
1877  * Note that RCU lock is missing here since the external mmap_lock() is used
1878  * instead.
1879  *
1880  * Returns: The VMA associated with @addr, or the next vma.
1881  * May return %NULL in the case of no vma at addr or above.
1882  */
1883 struct vm_area_struct *
1884 find_vma_prev(struct mm_struct *mm, unsigned long addr,
1885                         struct vm_area_struct **pprev)
1886 {
1887         struct vm_area_struct *vma;
1888         MA_STATE(mas, &mm->mm_mt, addr, addr);
1889
1890         vma = mas_walk(&mas);
1891         *pprev = mas_prev(&mas, 0);
1892         if (!vma)
1893                 vma = mas_next(&mas, ULONG_MAX);
1894         return vma;
1895 }
1896
1897 /*
1898  * Verify that the stack growth is acceptable and
1899  * update accounting. This is shared with both the
1900  * grow-up and grow-down cases.
1901  */
1902 static int acct_stack_growth(struct vm_area_struct *vma,
1903                              unsigned long size, unsigned long grow)
1904 {
1905         struct mm_struct *mm = vma->vm_mm;
1906         unsigned long new_start;
1907
1908         /* address space limit tests */
1909         if (!may_expand_vm(mm, vma->vm_flags, grow))
1910                 return -ENOMEM;
1911
1912         /* Stack limit test */
1913         if (size > rlimit(RLIMIT_STACK))
1914                 return -ENOMEM;
1915
1916         /* mlock limit tests */
1917         if (!mlock_future_ok(mm, vma->vm_flags, grow << PAGE_SHIFT))
1918                 return -ENOMEM;
1919
1920         /* Check to ensure the stack will not grow into a hugetlb-only region */
1921         new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
1922                         vma->vm_end - size;
1923         if (is_hugepage_only_range(vma->vm_mm, new_start, size))
1924                 return -EFAULT;
1925
1926         /*
1927          * Overcommit..  This must be the final test, as it will
1928          * update security statistics.
1929          */
1930         if (security_vm_enough_memory_mm(mm, grow))
1931                 return -ENOMEM;
1932
1933         return 0;
1934 }
1935
1936 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
1937 /*
1938  * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
1939  * vma is the last one with address > vma->vm_end.  Have to extend vma.
1940  */
1941 static int expand_upwards(struct vm_area_struct *vma, unsigned long address)
1942 {
1943         struct mm_struct *mm = vma->vm_mm;
1944         struct vm_area_struct *next;
1945         unsigned long gap_addr;
1946         int error = 0;
1947         MA_STATE(mas, &mm->mm_mt, 0, 0);
1948
1949         if (!(vma->vm_flags & VM_GROWSUP))
1950                 return -EFAULT;
1951
1952         /* Guard against exceeding limits of the address space. */
1953         address &= PAGE_MASK;
1954         if (address >= (TASK_SIZE & PAGE_MASK))
1955                 return -ENOMEM;
1956         address += PAGE_SIZE;
1957
1958         /* Enforce stack_guard_gap */
1959         gap_addr = address + stack_guard_gap;
1960
1961         /* Guard against overflow */
1962         if (gap_addr < address || gap_addr > TASK_SIZE)
1963                 gap_addr = TASK_SIZE;
1964
1965         next = find_vma_intersection(mm, vma->vm_end, gap_addr);
1966         if (next && vma_is_accessible(next)) {
1967                 if (!(next->vm_flags & VM_GROWSUP))
1968                         return -ENOMEM;
1969                 /* Check that both stack segments have the same anon_vma? */
1970         }
1971
1972         if (mas_preallocate(&mas, GFP_KERNEL))
1973                 return -ENOMEM;
1974
1975         /* We must make sure the anon_vma is allocated. */
1976         if (unlikely(anon_vma_prepare(vma))) {
1977                 mas_destroy(&mas);
1978                 return -ENOMEM;
1979         }
1980
1981         /* Lock the VMA before expanding to prevent concurrent page faults */
1982         vma_start_write(vma);
1983         /*
1984          * vma->vm_start/vm_end cannot change under us because the caller
1985          * is required to hold the mmap_lock in read mode.  We need the
1986          * anon_vma lock to serialize against concurrent expand_stacks.
1987          */
1988         anon_vma_lock_write(vma->anon_vma);
1989
1990         /* Somebody else might have raced and expanded it already */
1991         if (address > vma->vm_end) {
1992                 unsigned long size, grow;
1993
1994                 size = address - vma->vm_start;
1995                 grow = (address - vma->vm_end) >> PAGE_SHIFT;
1996
1997                 error = -ENOMEM;
1998                 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
1999                         error = acct_stack_growth(vma, size, grow);
2000                         if (!error) {
2001                                 /*
2002                                  * We only hold a shared mmap_lock lock here, so
2003                                  * we need to protect against concurrent vma
2004                                  * expansions.  anon_vma_lock_write() doesn't
2005                                  * help here, as we don't guarantee that all
2006                                  * growable vmas in a mm share the same root
2007                                  * anon vma.  So, we reuse mm->page_table_lock
2008                                  * to guard against concurrent vma expansions.
2009                                  */
2010                                 spin_lock(&mm->page_table_lock);
2011                                 if (vma->vm_flags & VM_LOCKED)
2012                                         mm->locked_vm += grow;
2013                                 vm_stat_account(mm, vma->vm_flags, grow);
2014                                 anon_vma_interval_tree_pre_update_vma(vma);
2015                                 vma->vm_end = address;
2016                                 /* Overwrite old entry in mtree. */
2017                                 mas_set_range(&mas, vma->vm_start, address - 1);
2018                                 mas_store_prealloc(&mas, vma);
2019                                 anon_vma_interval_tree_post_update_vma(vma);
2020                                 spin_unlock(&mm->page_table_lock);
2021
2022                                 perf_event_mmap(vma);
2023                         }
2024                 }
2025         }
2026         anon_vma_unlock_write(vma->anon_vma);
2027         khugepaged_enter_vma(vma, vma->vm_flags);
2028         mas_destroy(&mas);
2029         return error;
2030 }
2031 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2032
2033 /*
2034  * vma is the first one with address < vma->vm_start.  Have to extend vma.
2035  * mmap_lock held for writing.
2036  */
2037 int expand_downwards(struct vm_area_struct *vma, unsigned long address)
2038 {
2039         struct mm_struct *mm = vma->vm_mm;
2040         MA_STATE(mas, &mm->mm_mt, vma->vm_start, vma->vm_start);
2041         struct vm_area_struct *prev;
2042         int error = 0;
2043
2044         if (!(vma->vm_flags & VM_GROWSDOWN))
2045                 return -EFAULT;
2046
2047         address &= PAGE_MASK;
2048         if (address < mmap_min_addr || address < FIRST_USER_ADDRESS)
2049                 return -EPERM;
2050
2051         /* Enforce stack_guard_gap */
2052         prev = mas_prev(&mas, 0);
2053         /* Check that both stack segments have the same anon_vma? */
2054         if (prev) {
2055                 if (!(prev->vm_flags & VM_GROWSDOWN) &&
2056                     vma_is_accessible(prev) &&
2057                     (address - prev->vm_end < stack_guard_gap))
2058                         return -ENOMEM;
2059         }
2060
2061         if (mas_preallocate(&mas, GFP_KERNEL))
2062                 return -ENOMEM;
2063
2064         /* We must make sure the anon_vma is allocated. */
2065         if (unlikely(anon_vma_prepare(vma))) {
2066                 mas_destroy(&mas);
2067                 return -ENOMEM;
2068         }
2069
2070         /* Lock the VMA before expanding to prevent concurrent page faults */
2071         vma_start_write(vma);
2072         /*
2073          * vma->vm_start/vm_end cannot change under us because the caller
2074          * is required to hold the mmap_lock in read mode.  We need the
2075          * anon_vma lock to serialize against concurrent expand_stacks.
2076          */
2077         anon_vma_lock_write(vma->anon_vma);
2078
2079         /* Somebody else might have raced and expanded it already */
2080         if (address < vma->vm_start) {
2081                 unsigned long size, grow;
2082
2083                 size = vma->vm_end - address;
2084                 grow = (vma->vm_start - address) >> PAGE_SHIFT;
2085
2086                 error = -ENOMEM;
2087                 if (grow <= vma->vm_pgoff) {
2088                         error = acct_stack_growth(vma, size, grow);
2089                         if (!error) {
2090                                 /*
2091                                  * We only hold a shared mmap_lock lock here, so
2092                                  * we need to protect against concurrent vma
2093                                  * expansions.  anon_vma_lock_write() doesn't
2094                                  * help here, as we don't guarantee that all
2095                                  * growable vmas in a mm share the same root
2096                                  * anon vma.  So, we reuse mm->page_table_lock
2097                                  * to guard against concurrent vma expansions.
2098                                  */
2099                                 spin_lock(&mm->page_table_lock);
2100                                 if (vma->vm_flags & VM_LOCKED)
2101                                         mm->locked_vm += grow;
2102                                 vm_stat_account(mm, vma->vm_flags, grow);
2103                                 anon_vma_interval_tree_pre_update_vma(vma);
2104                                 vma->vm_start = address;
2105                                 vma->vm_pgoff -= grow;
2106                                 /* Overwrite old entry in mtree. */
2107                                 mas_set_range(&mas, address, vma->vm_end - 1);
2108                                 mas_store_prealloc(&mas, vma);
2109                                 anon_vma_interval_tree_post_update_vma(vma);
2110                                 spin_unlock(&mm->page_table_lock);
2111
2112                                 perf_event_mmap(vma);
2113                         }
2114                 }
2115         }
2116         anon_vma_unlock_write(vma->anon_vma);
2117         khugepaged_enter_vma(vma, vma->vm_flags);
2118         mas_destroy(&mas);
2119         return error;
2120 }
2121
2122 /* enforced gap between the expanding stack and other mappings. */
2123 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT;
2124
2125 static int __init cmdline_parse_stack_guard_gap(char *p)
2126 {
2127         unsigned long val;
2128         char *endptr;
2129
2130         val = simple_strtoul(p, &endptr, 10);
2131         if (!*endptr)
2132                 stack_guard_gap = val << PAGE_SHIFT;
2133
2134         return 1;
2135 }
2136 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap);
2137
2138 #ifdef CONFIG_STACK_GROWSUP
2139 int expand_stack_locked(struct vm_area_struct *vma, unsigned long address)
2140 {
2141         return expand_upwards(vma, address);
2142 }
2143
2144 struct vm_area_struct *find_extend_vma_locked(struct mm_struct *mm, unsigned long addr)
2145 {
2146         struct vm_area_struct *vma, *prev;
2147
2148         addr &= PAGE_MASK;
2149         vma = find_vma_prev(mm, addr, &prev);
2150         if (vma && (vma->vm_start <= addr))
2151                 return vma;
2152         if (!prev)
2153                 return NULL;
2154         if (expand_stack_locked(prev, addr))
2155                 return NULL;
2156         if (prev->vm_flags & VM_LOCKED)
2157                 populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2158         return prev;
2159 }
2160 #else
2161 int expand_stack_locked(struct vm_area_struct *vma, unsigned long address)
2162 {
2163         if (unlikely(!(vma->vm_flags & VM_GROWSDOWN)))
2164                 return -EINVAL;
2165         return expand_downwards(vma, address);
2166 }
2167
2168 struct vm_area_struct *find_extend_vma_locked(struct mm_struct *mm, unsigned long addr)
2169 {
2170         struct vm_area_struct *vma;
2171         unsigned long start;
2172
2173         addr &= PAGE_MASK;
2174         vma = find_vma(mm, addr);
2175         if (!vma)
2176                 return NULL;
2177         if (vma->vm_start <= addr)
2178                 return vma;
2179         start = vma->vm_start;
2180         if (expand_stack_locked(vma, addr))
2181                 return NULL;
2182         if (vma->vm_flags & VM_LOCKED)
2183                 populate_vma_page_range(vma, addr, start, NULL);
2184         return vma;
2185 }
2186 #endif
2187
2188 /*
2189  * IA64 has some horrid mapping rules: it can expand both up and down,
2190  * but with various special rules.
2191  *
2192  * We'll get rid of this architecture eventually, so the ugliness is
2193  * temporary.
2194  */
2195 #ifdef CONFIG_IA64
2196 static inline bool vma_expand_ok(struct vm_area_struct *vma, unsigned long addr)
2197 {
2198         return REGION_NUMBER(addr) == REGION_NUMBER(vma->vm_start) &&
2199                 REGION_OFFSET(addr) < RGN_MAP_LIMIT;
2200 }
2201
2202 /*
2203  * IA64 stacks grow down, but there's a special register backing store
2204  * that can grow up. Only sequentially, though, so the new address must
2205  * match vm_end.
2206  */
2207 static inline int vma_expand_up(struct vm_area_struct *vma, unsigned long addr)
2208 {
2209         if (!vma_expand_ok(vma, addr))
2210                 return -EFAULT;
2211         if (vma->vm_end != (addr & PAGE_MASK))
2212                 return -EFAULT;
2213         return expand_upwards(vma, addr);
2214 }
2215
2216 static inline bool vma_expand_down(struct vm_area_struct *vma, unsigned long addr)
2217 {
2218         if (!vma_expand_ok(vma, addr))
2219                 return -EFAULT;
2220         return expand_downwards(vma, addr);
2221 }
2222
2223 #elif defined(CONFIG_STACK_GROWSUP)
2224
2225 #define vma_expand_up(vma,addr) expand_upwards(vma, addr)
2226 #define vma_expand_down(vma, addr) (-EFAULT)
2227
2228 #else
2229
2230 #define vma_expand_up(vma,addr) (-EFAULT)
2231 #define vma_expand_down(vma, addr) expand_downwards(vma, addr)
2232
2233 #endif
2234
2235 /*
2236  * expand_stack(): legacy interface for page faulting. Don't use unless
2237  * you have to.
2238  *
2239  * This is called with the mm locked for reading, drops the lock, takes
2240  * the lock for writing, tries to look up a vma again, expands it if
2241  * necessary, and downgrades the lock to reading again.
2242  *
2243  * If no vma is found or it can't be expanded, it returns NULL and has
2244  * dropped the lock.
2245  */
2246 struct vm_area_struct *expand_stack(struct mm_struct *mm, unsigned long addr)
2247 {
2248         struct vm_area_struct *vma, *prev;
2249
2250         mmap_read_unlock(mm);
2251         if (mmap_write_lock_killable(mm))
2252                 return NULL;
2253
2254         vma = find_vma_prev(mm, addr, &prev);
2255         if (vma && vma->vm_start <= addr)
2256                 goto success;
2257
2258         if (prev && !vma_expand_up(prev, addr)) {
2259                 vma = prev;
2260                 goto success;
2261         }
2262
2263         if (vma && !vma_expand_down(vma, addr))
2264                 goto success;
2265
2266         mmap_write_unlock(mm);
2267         return NULL;
2268
2269 success:
2270         mmap_write_downgrade(mm);
2271         return vma;
2272 }
2273
2274 /*
2275  * Ok - we have the memory areas we should free on a maple tree so release them,
2276  * and do the vma updates.
2277  *
2278  * Called with the mm semaphore held.
2279  */
2280 static inline void remove_mt(struct mm_struct *mm, struct ma_state *mas)
2281 {
2282         unsigned long nr_accounted = 0;
2283         struct vm_area_struct *vma;
2284
2285         /* Update high watermark before we lower total_vm */
2286         update_hiwater_vm(mm);
2287         mas_for_each(mas, vma, ULONG_MAX) {
2288                 long nrpages = vma_pages(vma);
2289
2290                 if (vma->vm_flags & VM_ACCOUNT)
2291                         nr_accounted += nrpages;
2292                 vm_stat_account(mm, vma->vm_flags, -nrpages);
2293                 remove_vma(vma, false);
2294         }
2295         vm_unacct_memory(nr_accounted);
2296         validate_mm(mm);
2297 }
2298
2299 /*
2300  * Get rid of page table information in the indicated region.
2301  *
2302  * Called with the mm semaphore held.
2303  */
2304 static void unmap_region(struct mm_struct *mm, struct maple_tree *mt,
2305                 struct vm_area_struct *vma, struct vm_area_struct *prev,
2306                 struct vm_area_struct *next,
2307                 unsigned long start, unsigned long end, bool mm_wr_locked)
2308 {
2309         struct mmu_gather tlb;
2310
2311         lru_add_drain();
2312         tlb_gather_mmu(&tlb, mm);
2313         update_hiwater_rss(mm);
2314         unmap_vmas(&tlb, mt, vma, start, end, mm_wr_locked);
2315         free_pgtables(&tlb, mt, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2316                                  next ? next->vm_start : USER_PGTABLES_CEILING,
2317                                  mm_wr_locked);
2318         tlb_finish_mmu(&tlb);
2319 }
2320
2321 /*
2322  * __split_vma() bypasses sysctl_max_map_count checking.  We use this where it
2323  * has already been checked or doesn't make sense to fail.
2324  * VMA Iterator will point to the end VMA.
2325  */
2326 int __split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma,
2327                 unsigned long addr, int new_below)
2328 {
2329         struct vma_prepare vp;
2330         struct vm_area_struct *new;
2331         int err;
2332
2333         validate_mm(vma->vm_mm);
2334
2335         WARN_ON(vma->vm_start >= addr);
2336         WARN_ON(vma->vm_end <= addr);
2337
2338         if (vma->vm_ops && vma->vm_ops->may_split) {
2339                 err = vma->vm_ops->may_split(vma, addr);
2340                 if (err)
2341                         return err;
2342         }
2343
2344         new = vm_area_dup(vma);
2345         if (!new)
2346                 return -ENOMEM;
2347
2348         err = -ENOMEM;
2349         if (vma_iter_prealloc(vmi))
2350                 goto out_free_vma;
2351
2352         if (new_below) {
2353                 new->vm_end = addr;
2354         } else {
2355                 new->vm_start = addr;
2356                 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2357         }
2358
2359         err = vma_dup_policy(vma, new);
2360         if (err)
2361                 goto out_free_vmi;
2362
2363         err = anon_vma_clone(new, vma);
2364         if (err)
2365                 goto out_free_mpol;
2366
2367         if (new->vm_file)
2368                 get_file(new->vm_file);
2369
2370         if (new->vm_ops && new->vm_ops->open)
2371                 new->vm_ops->open(new);
2372
2373         init_vma_prep(&vp, vma);
2374         vp.insert = new;
2375         vma_prepare(&vp);
2376         vma_adjust_trans_huge(vma, vma->vm_start, addr, 0);
2377
2378         if (new_below) {
2379                 vma->vm_start = addr;
2380                 vma->vm_pgoff += (addr - new->vm_start) >> PAGE_SHIFT;
2381         } else {
2382                 vma->vm_end = addr;
2383         }
2384
2385         /* vma_complete stores the new vma */
2386         vma_complete(&vp, vmi, vma->vm_mm);
2387
2388         /* Success. */
2389         if (new_below)
2390                 vma_next(vmi);
2391         validate_mm(vma->vm_mm);
2392         return 0;
2393
2394 out_free_mpol:
2395         mpol_put(vma_policy(new));
2396 out_free_vmi:
2397         vma_iter_free(vmi);
2398 out_free_vma:
2399         vm_area_free(new);
2400         validate_mm(vma->vm_mm);
2401         return err;
2402 }
2403
2404 /*
2405  * Split a vma into two pieces at address 'addr', a new vma is allocated
2406  * either for the first part or the tail.
2407  */
2408 int split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma,
2409               unsigned long addr, int new_below)
2410 {
2411         if (vma->vm_mm->map_count >= sysctl_max_map_count)
2412                 return -ENOMEM;
2413
2414         return __split_vma(vmi, vma, addr, new_below);
2415 }
2416
2417 /*
2418  * do_vmi_align_munmap() - munmap the aligned region from @start to @end.
2419  * @vmi: The vma iterator
2420  * @vma: The starting vm_area_struct
2421  * @mm: The mm_struct
2422  * @start: The aligned start address to munmap.
2423  * @end: The aligned end address to munmap.
2424  * @uf: The userfaultfd list_head
2425  * @unlock: Set to true to drop the mmap_lock.  unlocking only happens on
2426  * success.
2427  *
2428  * Return: 0 on success and drops the lock if so directed, error and leaves the
2429  * lock held otherwise.
2430  */
2431 static int
2432 do_vmi_align_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
2433                     struct mm_struct *mm, unsigned long start,
2434                     unsigned long end, struct list_head *uf, bool unlock)
2435 {
2436         struct vm_area_struct *prev, *next = NULL;
2437         struct maple_tree mt_detach;
2438         int count = 0;
2439         int error = -ENOMEM;
2440         unsigned long locked_vm = 0;
2441         MA_STATE(mas_detach, &mt_detach, 0, 0);
2442         mt_init_flags(&mt_detach, vmi->mas.tree->ma_flags & MT_FLAGS_LOCK_MASK);
2443         mt_set_external_lock(&mt_detach, &mm->mmap_lock);
2444
2445         /*
2446          * If we need to split any vma, do it now to save pain later.
2447          *
2448          * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2449          * unmapped vm_area_struct will remain in use: so lower split_vma
2450          * places tmp vma above, and higher split_vma places tmp vma below.
2451          */
2452
2453         /* Does it split the first one? */
2454         if (start > vma->vm_start) {
2455
2456                 /*
2457                  * Make sure that map_count on return from munmap() will
2458                  * not exceed its limit; but let map_count go just above
2459                  * its limit temporarily, to help free resources as expected.
2460                  */
2461                 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2462                         goto map_count_exceeded;
2463
2464                 error = __split_vma(vmi, vma, start, 0);
2465                 if (error)
2466                         goto start_split_failed;
2467
2468                 vma = vma_iter_load(vmi);
2469         }
2470
2471         prev = vma_prev(vmi);
2472         if (unlikely((!prev)))
2473                 vma_iter_set(vmi, start);
2474
2475         /*
2476          * Detach a range of VMAs from the mm. Using next as a temp variable as
2477          * it is always overwritten.
2478          */
2479         for_each_vma_range(*vmi, next, end) {
2480                 /* Does it split the end? */
2481                 if (next->vm_end > end) {
2482                         error = __split_vma(vmi, next, end, 0);
2483                         if (error)
2484                                 goto end_split_failed;
2485                 }
2486                 vma_start_write(next);
2487                 mas_set_range(&mas_detach, next->vm_start, next->vm_end - 1);
2488                 error = mas_store_gfp(&mas_detach, next, GFP_KERNEL);
2489                 if (error)
2490                         goto munmap_gather_failed;
2491                 vma_mark_detached(next, true);
2492                 if (next->vm_flags & VM_LOCKED)
2493                         locked_vm += vma_pages(next);
2494
2495                 count++;
2496                 if (unlikely(uf)) {
2497                         /*
2498                          * If userfaultfd_unmap_prep returns an error the vmas
2499                          * will remain split, but userland will get a
2500                          * highly unexpected error anyway. This is no
2501                          * different than the case where the first of the two
2502                          * __split_vma fails, but we don't undo the first
2503                          * split, despite we could. This is unlikely enough
2504                          * failure that it's not worth optimizing it for.
2505                          */
2506                         error = userfaultfd_unmap_prep(next, start, end, uf);
2507
2508                         if (error)
2509                                 goto userfaultfd_error;
2510                 }
2511 #ifdef CONFIG_DEBUG_VM_MAPLE_TREE
2512                 BUG_ON(next->vm_start < start);
2513                 BUG_ON(next->vm_start > end);
2514 #endif
2515         }
2516
2517         if (vma_iter_end(vmi) > end)
2518                 next = vma_iter_load(vmi);
2519
2520         if (!next)
2521                 next = vma_next(vmi);
2522
2523 #if defined(CONFIG_DEBUG_VM_MAPLE_TREE)
2524         /* Make sure no VMAs are about to be lost. */
2525         {
2526                 MA_STATE(test, &mt_detach, start, end - 1);
2527                 struct vm_area_struct *vma_mas, *vma_test;
2528                 int test_count = 0;
2529
2530                 vma_iter_set(vmi, start);
2531                 rcu_read_lock();
2532                 vma_test = mas_find(&test, end - 1);
2533                 for_each_vma_range(*vmi, vma_mas, end) {
2534                         BUG_ON(vma_mas != vma_test);
2535                         test_count++;
2536                         vma_test = mas_next(&test, end - 1);
2537                 }
2538                 rcu_read_unlock();
2539                 BUG_ON(count != test_count);
2540         }
2541 #endif
2542         vma_iter_set(vmi, start);
2543         error = vma_iter_clear_gfp(vmi, start, end, GFP_KERNEL);
2544         if (error)
2545                 goto clear_tree_failed;
2546
2547         /* Point of no return */
2548         mm->locked_vm -= locked_vm;
2549         mm->map_count -= count;
2550         if (unlock)
2551                 mmap_write_downgrade(mm);
2552
2553         /*
2554          * We can free page tables without write-locking mmap_lock because VMAs
2555          * were isolated before we downgraded mmap_lock.
2556          */
2557         unmap_region(mm, &mt_detach, vma, prev, next, start, end, !unlock);
2558         /* Statistics and freeing VMAs */
2559         mas_set(&mas_detach, start);
2560         remove_mt(mm, &mas_detach);
2561         __mt_destroy(&mt_detach);
2562         validate_mm(mm);
2563         if (unlock)
2564                 mmap_read_unlock(mm);
2565
2566         return 0;
2567
2568 clear_tree_failed:
2569 userfaultfd_error:
2570 munmap_gather_failed:
2571 end_split_failed:
2572         mas_set(&mas_detach, 0);
2573         mas_for_each(&mas_detach, next, end)
2574                 vma_mark_detached(next, false);
2575
2576         __mt_destroy(&mt_detach);
2577 start_split_failed:
2578 map_count_exceeded:
2579         validate_mm(mm);
2580         return error;
2581 }
2582
2583 /*
2584  * do_vmi_munmap() - munmap a given range.
2585  * @vmi: The vma iterator
2586  * @mm: The mm_struct
2587  * @start: The start address to munmap
2588  * @len: The length of the range to munmap
2589  * @uf: The userfaultfd list_head
2590  * @unlock: set to true if the user wants to drop the mmap_lock on success
2591  *
2592  * This function takes a @mas that is either pointing to the previous VMA or set
2593  * to MA_START and sets it up to remove the mapping(s).  The @len will be
2594  * aligned and any arch_unmap work will be preformed.
2595  *
2596  * Return: 0 on success and drops the lock if so directed, error and leaves the
2597  * lock held otherwise.
2598  */
2599 int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm,
2600                   unsigned long start, size_t len, struct list_head *uf,
2601                   bool unlock)
2602 {
2603         unsigned long end;
2604         struct vm_area_struct *vma;
2605
2606         if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2607                 return -EINVAL;
2608
2609         end = start + PAGE_ALIGN(len);
2610         if (end == start)
2611                 return -EINVAL;
2612
2613          /* arch_unmap() might do unmaps itself.  */
2614         arch_unmap(mm, start, end);
2615
2616         /* Find the first overlapping VMA */
2617         vma = vma_find(vmi, end);
2618         if (!vma) {
2619                 if (unlock)
2620                         mmap_write_unlock(mm);
2621                 return 0;
2622         }
2623
2624         return do_vmi_align_munmap(vmi, vma, mm, start, end, uf, unlock);
2625 }
2626
2627 /* do_munmap() - Wrapper function for non-maple tree aware do_munmap() calls.
2628  * @mm: The mm_struct
2629  * @start: The start address to munmap
2630  * @len: The length to be munmapped.
2631  * @uf: The userfaultfd list_head
2632  *
2633  * Return: 0 on success, error otherwise.
2634  */
2635 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2636               struct list_head *uf)
2637 {
2638         VMA_ITERATOR(vmi, mm, start);
2639
2640         return do_vmi_munmap(&vmi, mm, start, len, uf, false);
2641 }
2642
2643 unsigned long mmap_region(struct file *file, unsigned long addr,
2644                 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2645                 struct list_head *uf)
2646 {
2647         struct mm_struct *mm = current->mm;
2648         struct vm_area_struct *vma = NULL;
2649         struct vm_area_struct *next, *prev, *merge;
2650         pgoff_t pglen = len >> PAGE_SHIFT;
2651         unsigned long charged = 0;
2652         unsigned long end = addr + len;
2653         unsigned long merge_start = addr, merge_end = end;
2654         pgoff_t vm_pgoff;
2655         int error;
2656         VMA_ITERATOR(vmi, mm, addr);
2657
2658         /* Check against address space limit. */
2659         if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
2660                 unsigned long nr_pages;
2661
2662                 /*
2663                  * MAP_FIXED may remove pages of mappings that intersects with
2664                  * requested mapping. Account for the pages it would unmap.
2665                  */
2666                 nr_pages = count_vma_pages_range(mm, addr, end);
2667
2668                 if (!may_expand_vm(mm, vm_flags,
2669                                         (len >> PAGE_SHIFT) - nr_pages))
2670                         return -ENOMEM;
2671         }
2672
2673         /* Unmap any existing mapping in the area */
2674         if (do_vmi_munmap(&vmi, mm, addr, len, uf, false))
2675                 return -ENOMEM;
2676
2677         /*
2678          * Private writable mapping: check memory availability
2679          */
2680         if (accountable_mapping(file, vm_flags)) {
2681                 charged = len >> PAGE_SHIFT;
2682                 if (security_vm_enough_memory_mm(mm, charged))
2683                         return -ENOMEM;
2684                 vm_flags |= VM_ACCOUNT;
2685         }
2686
2687         next = vma_next(&vmi);
2688         prev = vma_prev(&vmi);
2689         if (vm_flags & VM_SPECIAL)
2690                 goto cannot_expand;
2691
2692         /* Attempt to expand an old mapping */
2693         /* Check next */
2694         if (next && next->vm_start == end && !vma_policy(next) &&
2695             can_vma_merge_before(next, vm_flags, NULL, file, pgoff+pglen,
2696                                  NULL_VM_UFFD_CTX, NULL)) {
2697                 merge_end = next->vm_end;
2698                 vma = next;
2699                 vm_pgoff = next->vm_pgoff - pglen;
2700         }
2701
2702         /* Check prev */
2703         if (prev && prev->vm_end == addr && !vma_policy(prev) &&
2704             (vma ? can_vma_merge_after(prev, vm_flags, vma->anon_vma, file,
2705                                        pgoff, vma->vm_userfaultfd_ctx, NULL) :
2706                    can_vma_merge_after(prev, vm_flags, NULL, file, pgoff,
2707                                        NULL_VM_UFFD_CTX, NULL))) {
2708                 merge_start = prev->vm_start;
2709                 vma = prev;
2710                 vm_pgoff = prev->vm_pgoff;
2711         }
2712
2713
2714         /* Actually expand, if possible */
2715         if (vma &&
2716             !vma_expand(&vmi, vma, merge_start, merge_end, vm_pgoff, next)) {
2717                 khugepaged_enter_vma(vma, vm_flags);
2718                 goto expanded;
2719         }
2720
2721 cannot_expand:
2722         if (prev)
2723                 vma_iter_next_range(&vmi);
2724
2725         /*
2726          * Determine the object being mapped and call the appropriate
2727          * specific mapper. the address has already been validated, but
2728          * not unmapped, but the maps are removed from the list.
2729          */
2730         vma = vm_area_alloc(mm);
2731         if (!vma) {
2732                 error = -ENOMEM;
2733                 goto unacct_error;
2734         }
2735
2736         vma_iter_set(&vmi, addr);
2737         vma->vm_start = addr;
2738         vma->vm_end = end;
2739         vm_flags_init(vma, vm_flags);
2740         vma->vm_page_prot = vm_get_page_prot(vm_flags);
2741         vma->vm_pgoff = pgoff;
2742
2743         if (file) {
2744                 if (vm_flags & VM_SHARED) {
2745                         error = mapping_map_writable(file->f_mapping);
2746                         if (error)
2747                                 goto free_vma;
2748                 }
2749
2750                 vma->vm_file = get_file(file);
2751                 error = call_mmap(file, vma);
2752                 if (error)
2753                         goto unmap_and_free_vma;
2754
2755                 /*
2756                  * Expansion is handled above, merging is handled below.
2757                  * Drivers should not alter the address of the VMA.
2758                  */
2759                 error = -EINVAL;
2760                 if (WARN_ON((addr != vma->vm_start)))
2761                         goto close_and_free_vma;
2762
2763                 vma_iter_set(&vmi, addr);
2764                 /*
2765                  * If vm_flags changed after call_mmap(), we should try merge
2766                  * vma again as we may succeed this time.
2767                  */
2768                 if (unlikely(vm_flags != vma->vm_flags && prev)) {
2769                         merge = vma_merge(&vmi, mm, prev, vma->vm_start,
2770                                     vma->vm_end, vma->vm_flags, NULL,
2771                                     vma->vm_file, vma->vm_pgoff, NULL,
2772                                     NULL_VM_UFFD_CTX, NULL);
2773                         if (merge) {
2774                                 /*
2775                                  * ->mmap() can change vma->vm_file and fput
2776                                  * the original file. So fput the vma->vm_file
2777                                  * here or we would add an extra fput for file
2778                                  * and cause general protection fault
2779                                  * ultimately.
2780                                  */
2781                                 fput(vma->vm_file);
2782                                 vm_area_free(vma);
2783                                 vma = merge;
2784                                 /* Update vm_flags to pick up the change. */
2785                                 vm_flags = vma->vm_flags;
2786                                 goto unmap_writable;
2787                         }
2788                 }
2789
2790                 vm_flags = vma->vm_flags;
2791         } else if (vm_flags & VM_SHARED) {
2792                 error = shmem_zero_setup(vma);
2793                 if (error)
2794                         goto free_vma;
2795         } else {
2796                 vma_set_anonymous(vma);
2797         }
2798
2799         if (map_deny_write_exec(vma, vma->vm_flags)) {
2800                 error = -EACCES;
2801                 goto close_and_free_vma;
2802         }
2803
2804         /* Allow architectures to sanity-check the vm_flags */
2805         error = -EINVAL;
2806         if (!arch_validate_flags(vma->vm_flags))
2807                 goto close_and_free_vma;
2808
2809         error = -ENOMEM;
2810         if (vma_iter_prealloc(&vmi))
2811                 goto close_and_free_vma;
2812
2813         /* Lock the VMA since it is modified after insertion into VMA tree */
2814         vma_start_write(vma);
2815         if (vma->vm_file)
2816                 i_mmap_lock_write(vma->vm_file->f_mapping);
2817
2818         vma_iter_store(&vmi, vma);
2819         mm->map_count++;
2820         if (vma->vm_file) {
2821                 if (vma->vm_flags & VM_SHARED)
2822                         mapping_allow_writable(vma->vm_file->f_mapping);
2823
2824                 flush_dcache_mmap_lock(vma->vm_file->f_mapping);
2825                 vma_interval_tree_insert(vma, &vma->vm_file->f_mapping->i_mmap);
2826                 flush_dcache_mmap_unlock(vma->vm_file->f_mapping);
2827                 i_mmap_unlock_write(vma->vm_file->f_mapping);
2828         }
2829
2830         /*
2831          * vma_merge() calls khugepaged_enter_vma() either, the below
2832          * call covers the non-merge case.
2833          */
2834         khugepaged_enter_vma(vma, vma->vm_flags);
2835
2836         /* Once vma denies write, undo our temporary denial count */
2837 unmap_writable:
2838         if (file && vm_flags & VM_SHARED)
2839                 mapping_unmap_writable(file->f_mapping);
2840         file = vma->vm_file;
2841         ksm_add_vma(vma);
2842 expanded:
2843         perf_event_mmap(vma);
2844
2845         vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
2846         if (vm_flags & VM_LOCKED) {
2847                 if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) ||
2848                                         is_vm_hugetlb_page(vma) ||
2849                                         vma == get_gate_vma(current->mm))
2850                         vm_flags_clear(vma, VM_LOCKED_MASK);
2851                 else
2852                         mm->locked_vm += (len >> PAGE_SHIFT);
2853         }
2854
2855         if (file)
2856                 uprobe_mmap(vma);
2857
2858         /*
2859          * New (or expanded) vma always get soft dirty status.
2860          * Otherwise user-space soft-dirty page tracker won't
2861          * be able to distinguish situation when vma area unmapped,
2862          * then new mapped in-place (which must be aimed as
2863          * a completely new data area).
2864          */
2865         vm_flags_set(vma, VM_SOFTDIRTY);
2866
2867         vma_set_page_prot(vma);
2868
2869         validate_mm(mm);
2870         return addr;
2871
2872 close_and_free_vma:
2873         if (file && vma->vm_ops && vma->vm_ops->close)
2874                 vma->vm_ops->close(vma);
2875
2876         if (file || vma->vm_file) {
2877 unmap_and_free_vma:
2878                 fput(vma->vm_file);
2879                 vma->vm_file = NULL;
2880
2881                 /* Undo any partial mapping done by a device driver. */
2882                 unmap_region(mm, &mm->mm_mt, vma, prev, next, vma->vm_start,
2883                              vma->vm_end, true);
2884         }
2885         if (file && (vm_flags & VM_SHARED))
2886                 mapping_unmap_writable(file->f_mapping);
2887 free_vma:
2888         vm_area_free(vma);
2889 unacct_error:
2890         if (charged)
2891                 vm_unacct_memory(charged);
2892         validate_mm(mm);
2893         return error;
2894 }
2895
2896 static int __vm_munmap(unsigned long start, size_t len, bool unlock)
2897 {
2898         int ret;
2899         struct mm_struct *mm = current->mm;
2900         LIST_HEAD(uf);
2901         VMA_ITERATOR(vmi, mm, start);
2902
2903         if (mmap_write_lock_killable(mm))
2904                 return -EINTR;
2905
2906         ret = do_vmi_munmap(&vmi, mm, start, len, &uf, unlock);
2907         if (ret || !unlock)
2908                 mmap_write_unlock(mm);
2909
2910         userfaultfd_unmap_complete(mm, &uf);
2911         return ret;
2912 }
2913
2914 int vm_munmap(unsigned long start, size_t len)
2915 {
2916         return __vm_munmap(start, len, false);
2917 }
2918 EXPORT_SYMBOL(vm_munmap);
2919
2920 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2921 {
2922         addr = untagged_addr(addr);
2923         return __vm_munmap(addr, len, true);
2924 }
2925
2926
2927 /*
2928  * Emulation of deprecated remap_file_pages() syscall.
2929  */
2930 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
2931                 unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
2932 {
2933
2934         struct mm_struct *mm = current->mm;
2935         struct vm_area_struct *vma;
2936         unsigned long populate = 0;
2937         unsigned long ret = -EINVAL;
2938         struct file *file;
2939
2940         pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/mm/remap_file_pages.rst.\n",
2941                      current->comm, current->pid);
2942
2943         if (prot)
2944                 return ret;
2945         start = start & PAGE_MASK;
2946         size = size & PAGE_MASK;
2947
2948         if (start + size <= start)
2949                 return ret;
2950
2951         /* Does pgoff wrap? */
2952         if (pgoff + (size >> PAGE_SHIFT) < pgoff)
2953                 return ret;
2954
2955         if (mmap_write_lock_killable(mm))
2956                 return -EINTR;
2957
2958         vma = vma_lookup(mm, start);
2959
2960         if (!vma || !(vma->vm_flags & VM_SHARED))
2961                 goto out;
2962
2963         if (start + size > vma->vm_end) {
2964                 VMA_ITERATOR(vmi, mm, vma->vm_end);
2965                 struct vm_area_struct *next, *prev = vma;
2966
2967                 for_each_vma_range(vmi, next, start + size) {
2968                         /* hole between vmas ? */
2969                         if (next->vm_start != prev->vm_end)
2970                                 goto out;
2971
2972                         if (next->vm_file != vma->vm_file)
2973                                 goto out;
2974
2975                         if (next->vm_flags != vma->vm_flags)
2976                                 goto out;
2977
2978                         if (start + size <= next->vm_end)
2979                                 break;
2980
2981                         prev = next;
2982                 }
2983
2984                 if (!next)
2985                         goto out;
2986         }
2987
2988         prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
2989         prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
2990         prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
2991
2992         flags &= MAP_NONBLOCK;
2993         flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
2994         if (vma->vm_flags & VM_LOCKED)
2995                 flags |= MAP_LOCKED;
2996
2997         file = get_file(vma->vm_file);
2998         ret = do_mmap(vma->vm_file, start, size,
2999                         prot, flags, pgoff, &populate, NULL);
3000         fput(file);
3001 out:
3002         mmap_write_unlock(mm);
3003         if (populate)
3004                 mm_populate(ret, populate);
3005         if (!IS_ERR_VALUE(ret))
3006                 ret = 0;
3007         return ret;
3008 }
3009
3010 /*
3011  * do_vma_munmap() - Unmap a full or partial vma.
3012  * @vmi: The vma iterator pointing at the vma
3013  * @vma: The first vma to be munmapped
3014  * @start: the start of the address to unmap
3015  * @end: The end of the address to unmap
3016  * @uf: The userfaultfd list_head
3017  * @unlock: Drop the lock on success
3018  *
3019  * unmaps a VMA mapping when the vma iterator is already in position.
3020  * Does not handle alignment.
3021  *
3022  * Return: 0 on success drops the lock of so directed, error on failure and will
3023  * still hold the lock.
3024  */
3025 int do_vma_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
3026                 unsigned long start, unsigned long end, struct list_head *uf,
3027                 bool unlock)
3028 {
3029         struct mm_struct *mm = vma->vm_mm;
3030
3031         arch_unmap(mm, start, end);
3032         return do_vmi_align_munmap(vmi, vma, mm, start, end, uf, unlock);
3033 }
3034
3035 /*
3036  * do_brk_flags() - Increase the brk vma if the flags match.
3037  * @vmi: The vma iterator
3038  * @addr: The start address
3039  * @len: The length of the increase
3040  * @vma: The vma,
3041  * @flags: The VMA Flags
3042  *
3043  * Extend the brk VMA from addr to addr + len.  If the VMA is NULL or the flags
3044  * do not match then create a new anonymous VMA.  Eventually we may be able to
3045  * do some brk-specific accounting here.
3046  */
3047 static int do_brk_flags(struct vma_iterator *vmi, struct vm_area_struct *vma,
3048                 unsigned long addr, unsigned long len, unsigned long flags)
3049 {
3050         struct mm_struct *mm = current->mm;
3051         struct vma_prepare vp;
3052
3053         validate_mm(mm);
3054         /*
3055          * Check against address space limits by the changed size
3056          * Note: This happens *after* clearing old mappings in some code paths.
3057          */
3058         flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
3059         if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
3060                 return -ENOMEM;
3061
3062         if (mm->map_count > sysctl_max_map_count)
3063                 return -ENOMEM;
3064
3065         if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
3066                 return -ENOMEM;
3067
3068         /*
3069          * Expand the existing vma if possible; Note that singular lists do not
3070          * occur after forking, so the expand will only happen on new VMAs.
3071          */
3072         if (vma && vma->vm_end == addr && !vma_policy(vma) &&
3073             can_vma_merge_after(vma, flags, NULL, NULL,
3074                                 addr >> PAGE_SHIFT, NULL_VM_UFFD_CTX, NULL)) {
3075                 if (vma_iter_prealloc(vmi))
3076                         goto unacct_fail;
3077
3078                 init_vma_prep(&vp, vma);
3079                 vma_prepare(&vp);
3080                 vma_adjust_trans_huge(vma, vma->vm_start, addr + len, 0);
3081                 vma->vm_end = addr + len;
3082                 vm_flags_set(vma, VM_SOFTDIRTY);
3083                 vma_iter_store(vmi, vma);
3084
3085                 vma_complete(&vp, vmi, mm);
3086                 khugepaged_enter_vma(vma, flags);
3087                 goto out;
3088         }
3089
3090         /* create a vma struct for an anonymous mapping */
3091         vma = vm_area_alloc(mm);
3092         if (!vma)
3093                 goto unacct_fail;
3094
3095         vma_set_anonymous(vma);
3096         vma->vm_start = addr;
3097         vma->vm_end = addr + len;
3098         vma->vm_pgoff = addr >> PAGE_SHIFT;
3099         vm_flags_init(vma, flags);
3100         vma->vm_page_prot = vm_get_page_prot(flags);
3101         if (vma_iter_store_gfp(vmi, vma, GFP_KERNEL))
3102                 goto mas_store_fail;
3103
3104         mm->map_count++;
3105         ksm_add_vma(vma);
3106 out:
3107         perf_event_mmap(vma);
3108         mm->total_vm += len >> PAGE_SHIFT;
3109         mm->data_vm += len >> PAGE_SHIFT;
3110         if (flags & VM_LOCKED)
3111                 mm->locked_vm += (len >> PAGE_SHIFT);
3112         vm_flags_set(vma, VM_SOFTDIRTY);
3113         validate_mm(mm);
3114         return 0;
3115
3116 mas_store_fail:
3117         vm_area_free(vma);
3118 unacct_fail:
3119         vm_unacct_memory(len >> PAGE_SHIFT);
3120         return -ENOMEM;
3121 }
3122
3123 int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags)
3124 {
3125         struct mm_struct *mm = current->mm;
3126         struct vm_area_struct *vma = NULL;
3127         unsigned long len;
3128         int ret;
3129         bool populate;
3130         LIST_HEAD(uf);
3131         VMA_ITERATOR(vmi, mm, addr);
3132
3133         len = PAGE_ALIGN(request);
3134         if (len < request)
3135                 return -ENOMEM;
3136         if (!len)
3137                 return 0;
3138
3139         if (mmap_write_lock_killable(mm))
3140                 return -EINTR;
3141
3142         /* Until we need other flags, refuse anything except VM_EXEC. */
3143         if ((flags & (~VM_EXEC)) != 0)
3144                 return -EINVAL;
3145
3146         ret = check_brk_limits(addr, len);
3147         if (ret)
3148                 goto limits_failed;
3149
3150         ret = do_vmi_munmap(&vmi, mm, addr, len, &uf, 0);
3151         if (ret)
3152                 goto munmap_failed;
3153
3154         vma = vma_prev(&vmi);
3155         ret = do_brk_flags(&vmi, vma, addr, len, flags);
3156         populate = ((mm->def_flags & VM_LOCKED) != 0);
3157         mmap_write_unlock(mm);
3158         userfaultfd_unmap_complete(mm, &uf);
3159         if (populate && !ret)
3160                 mm_populate(addr, len);
3161         return ret;
3162
3163 munmap_failed:
3164 limits_failed:
3165         mmap_write_unlock(mm);
3166         return ret;
3167 }
3168 EXPORT_SYMBOL(vm_brk_flags);
3169
3170 int vm_brk(unsigned long addr, unsigned long len)
3171 {
3172         return vm_brk_flags(addr, len, 0);
3173 }
3174 EXPORT_SYMBOL(vm_brk);
3175
3176 /* Release all mmaps. */
3177 void exit_mmap(struct mm_struct *mm)
3178 {
3179         struct mmu_gather tlb;
3180         struct vm_area_struct *vma;
3181         unsigned long nr_accounted = 0;
3182         MA_STATE(mas, &mm->mm_mt, 0, 0);
3183         int count = 0;
3184
3185         /* mm's last user has gone, and its about to be pulled down */
3186         mmu_notifier_release(mm);
3187
3188         mmap_read_lock(mm);
3189         arch_exit_mmap(mm);
3190
3191         vma = mas_find(&mas, ULONG_MAX);
3192         if (!vma) {
3193                 /* Can happen if dup_mmap() received an OOM */
3194                 mmap_read_unlock(mm);
3195                 return;
3196         }
3197
3198         lru_add_drain();
3199         flush_cache_mm(mm);
3200         tlb_gather_mmu_fullmm(&tlb, mm);
3201         /* update_hiwater_rss(mm) here? but nobody should be looking */
3202         /* Use ULONG_MAX here to ensure all VMAs in the mm are unmapped */
3203         unmap_vmas(&tlb, &mm->mm_mt, vma, 0, ULONG_MAX, false);
3204         mmap_read_unlock(mm);
3205
3206         /*
3207          * Set MMF_OOM_SKIP to hide this task from the oom killer/reaper
3208          * because the memory has been already freed.
3209          */
3210         set_bit(MMF_OOM_SKIP, &mm->flags);
3211         mmap_write_lock(mm);
3212         mt_clear_in_rcu(&mm->mm_mt);
3213         free_pgtables(&tlb, &mm->mm_mt, vma, FIRST_USER_ADDRESS,
3214                       USER_PGTABLES_CEILING, true);
3215         tlb_finish_mmu(&tlb);
3216
3217         /*
3218          * Walk the list again, actually closing and freeing it, with preemption
3219          * enabled, without holding any MM locks besides the unreachable
3220          * mmap_write_lock.
3221          */
3222         do {
3223                 if (vma->vm_flags & VM_ACCOUNT)
3224                         nr_accounted += vma_pages(vma);
3225                 remove_vma(vma, true);
3226                 count++;
3227                 cond_resched();
3228         } while ((vma = mas_find(&mas, ULONG_MAX)) != NULL);
3229
3230         BUG_ON(count != mm->map_count);
3231
3232         trace_exit_mmap(mm);
3233         __mt_destroy(&mm->mm_mt);
3234         mmap_write_unlock(mm);
3235         vm_unacct_memory(nr_accounted);
3236 }
3237
3238 /* Insert vm structure into process list sorted by address
3239  * and into the inode's i_mmap tree.  If vm_file is non-NULL
3240  * then i_mmap_rwsem is taken here.
3241  */
3242 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
3243 {
3244         unsigned long charged = vma_pages(vma);
3245
3246
3247         if (find_vma_intersection(mm, vma->vm_start, vma->vm_end))
3248                 return -ENOMEM;
3249
3250         if ((vma->vm_flags & VM_ACCOUNT) &&
3251              security_vm_enough_memory_mm(mm, charged))
3252                 return -ENOMEM;
3253
3254         /*
3255          * The vm_pgoff of a purely anonymous vma should be irrelevant
3256          * until its first write fault, when page's anon_vma and index
3257          * are set.  But now set the vm_pgoff it will almost certainly
3258          * end up with (unless mremap moves it elsewhere before that
3259          * first wfault), so /proc/pid/maps tells a consistent story.
3260          *
3261          * By setting it to reflect the virtual start address of the
3262          * vma, merges and splits can happen in a seamless way, just
3263          * using the existing file pgoff checks and manipulations.
3264          * Similarly in do_mmap and in do_brk_flags.
3265          */
3266         if (vma_is_anonymous(vma)) {
3267                 BUG_ON(vma->anon_vma);
3268                 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
3269         }
3270
3271         if (vma_link(mm, vma)) {
3272                 vm_unacct_memory(charged);
3273                 return -ENOMEM;
3274         }
3275
3276         return 0;
3277 }
3278
3279 /*
3280  * Copy the vma structure to a new location in the same mm,
3281  * prior to moving page table entries, to effect an mremap move.
3282  */
3283 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
3284         unsigned long addr, unsigned long len, pgoff_t pgoff,
3285         bool *need_rmap_locks)
3286 {
3287         struct vm_area_struct *vma = *vmap;
3288         unsigned long vma_start = vma->vm_start;
3289         struct mm_struct *mm = vma->vm_mm;
3290         struct vm_area_struct *new_vma, *prev;
3291         bool faulted_in_anon_vma = true;
3292         VMA_ITERATOR(vmi, mm, addr);
3293
3294         validate_mm(mm);
3295         /*
3296          * If anonymous vma has not yet been faulted, update new pgoff
3297          * to match new location, to increase its chance of merging.
3298          */
3299         if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
3300                 pgoff = addr >> PAGE_SHIFT;
3301                 faulted_in_anon_vma = false;
3302         }
3303
3304         new_vma = find_vma_prev(mm, addr, &prev);
3305         if (new_vma && new_vma->vm_start < addr + len)
3306                 return NULL;    /* should never get here */
3307
3308         new_vma = vma_merge(&vmi, mm, prev, addr, addr + len, vma->vm_flags,
3309                             vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
3310                             vma->vm_userfaultfd_ctx, anon_vma_name(vma));
3311         if (new_vma) {
3312                 /*
3313                  * Source vma may have been merged into new_vma
3314                  */
3315                 if (unlikely(vma_start >= new_vma->vm_start &&
3316                              vma_start < new_vma->vm_end)) {
3317                         /*
3318                          * The only way we can get a vma_merge with
3319                          * self during an mremap is if the vma hasn't
3320                          * been faulted in yet and we were allowed to
3321                          * reset the dst vma->vm_pgoff to the
3322                          * destination address of the mremap to allow
3323                          * the merge to happen. mremap must change the
3324                          * vm_pgoff linearity between src and dst vmas
3325                          * (in turn preventing a vma_merge) to be
3326                          * safe. It is only safe to keep the vm_pgoff
3327                          * linear if there are no pages mapped yet.
3328                          */
3329                         VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
3330                         *vmap = vma = new_vma;
3331                 }
3332                 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
3333         } else {
3334                 new_vma = vm_area_dup(vma);
3335                 if (!new_vma)
3336                         goto out;
3337                 new_vma->vm_start = addr;
3338                 new_vma->vm_end = addr + len;
3339                 new_vma->vm_pgoff = pgoff;
3340                 if (vma_dup_policy(vma, new_vma))
3341                         goto out_free_vma;
3342                 if (anon_vma_clone(new_vma, vma))
3343                         goto out_free_mempol;
3344                 if (new_vma->vm_file)
3345                         get_file(new_vma->vm_file);
3346                 if (new_vma->vm_ops && new_vma->vm_ops->open)
3347                         new_vma->vm_ops->open(new_vma);
3348                 vma_start_write(new_vma);
3349                 if (vma_link(mm, new_vma))
3350                         goto out_vma_link;
3351                 *need_rmap_locks = false;
3352         }
3353         validate_mm(mm);
3354         return new_vma;
3355
3356 out_vma_link:
3357         if (new_vma->vm_ops && new_vma->vm_ops->close)
3358                 new_vma->vm_ops->close(new_vma);
3359
3360         if (new_vma->vm_file)
3361                 fput(new_vma->vm_file);
3362
3363         unlink_anon_vmas(new_vma);
3364 out_free_mempol:
3365         mpol_put(vma_policy(new_vma));
3366 out_free_vma:
3367         vm_area_free(new_vma);
3368 out:
3369         validate_mm(mm);
3370         return NULL;
3371 }
3372
3373 /*
3374  * Return true if the calling process may expand its vm space by the passed
3375  * number of pages
3376  */
3377 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
3378 {
3379         if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
3380                 return false;
3381
3382         if (is_data_mapping(flags) &&
3383             mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
3384                 /* Workaround for Valgrind */
3385                 if (rlimit(RLIMIT_DATA) == 0 &&
3386                     mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
3387                         return true;
3388
3389                 pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n",
3390                              current->comm, current->pid,
3391                              (mm->data_vm + npages) << PAGE_SHIFT,
3392                              rlimit(RLIMIT_DATA),
3393                              ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data");
3394
3395                 if (!ignore_rlimit_data)
3396                         return false;
3397         }
3398
3399         return true;
3400 }
3401
3402 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
3403 {
3404         WRITE_ONCE(mm->total_vm, READ_ONCE(mm->total_vm)+npages);
3405
3406         if (is_exec_mapping(flags))
3407                 mm->exec_vm += npages;
3408         else if (is_stack_mapping(flags))
3409                 mm->stack_vm += npages;
3410         else if (is_data_mapping(flags))
3411                 mm->data_vm += npages;
3412 }
3413
3414 static vm_fault_t special_mapping_fault(struct vm_fault *vmf);
3415
3416 /*
3417  * Having a close hook prevents vma merging regardless of flags.
3418  */
3419 static void special_mapping_close(struct vm_area_struct *vma)
3420 {
3421 }
3422
3423 static const char *special_mapping_name(struct vm_area_struct *vma)
3424 {
3425         return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3426 }
3427
3428 static int special_mapping_mremap(struct vm_area_struct *new_vma)
3429 {
3430         struct vm_special_mapping *sm = new_vma->vm_private_data;
3431
3432         if (WARN_ON_ONCE(current->mm != new_vma->vm_mm))
3433                 return -EFAULT;
3434
3435         if (sm->mremap)
3436                 return sm->mremap(sm, new_vma);
3437
3438         return 0;
3439 }
3440
3441 static int special_mapping_split(struct vm_area_struct *vma, unsigned long addr)
3442 {
3443         /*
3444          * Forbid splitting special mappings - kernel has expectations over
3445          * the number of pages in mapping. Together with VM_DONTEXPAND
3446          * the size of vma should stay the same over the special mapping's
3447          * lifetime.
3448          */
3449         return -EINVAL;
3450 }
3451
3452 static const struct vm_operations_struct special_mapping_vmops = {
3453         .close = special_mapping_close,
3454         .fault = special_mapping_fault,
3455         .mremap = special_mapping_mremap,
3456         .name = special_mapping_name,
3457         /* vDSO code relies that VVAR can't be accessed remotely */
3458         .access = NULL,
3459         .may_split = special_mapping_split,
3460 };
3461
3462 static const struct vm_operations_struct legacy_special_mapping_vmops = {
3463         .close = special_mapping_close,
3464         .fault = special_mapping_fault,
3465 };
3466
3467 static vm_fault_t special_mapping_fault(struct vm_fault *vmf)
3468 {
3469         struct vm_area_struct *vma = vmf->vma;
3470         pgoff_t pgoff;
3471         struct page **pages;
3472
3473         if (vma->vm_ops == &legacy_special_mapping_vmops) {
3474                 pages = vma->vm_private_data;
3475         } else {
3476                 struct vm_special_mapping *sm = vma->vm_private_data;
3477
3478                 if (sm->fault)
3479                         return sm->fault(sm, vmf->vma, vmf);
3480
3481                 pages = sm->pages;
3482         }
3483
3484         for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3485                 pgoff--;
3486
3487         if (*pages) {
3488                 struct page *page = *pages;
3489                 get_page(page);
3490                 vmf->page = page;
3491                 return 0;
3492         }
3493
3494         return VM_FAULT_SIGBUS;
3495 }
3496
3497 static struct vm_area_struct *__install_special_mapping(
3498         struct mm_struct *mm,
3499         unsigned long addr, unsigned long len,
3500         unsigned long vm_flags, void *priv,
3501         const struct vm_operations_struct *ops)
3502 {
3503         int ret;
3504         struct vm_area_struct *vma;
3505
3506         validate_mm(mm);
3507         vma = vm_area_alloc(mm);
3508         if (unlikely(vma == NULL))
3509                 return ERR_PTR(-ENOMEM);
3510
3511         vma->vm_start = addr;
3512         vma->vm_end = addr + len;
3513
3514         vm_flags_init(vma, (vm_flags | mm->def_flags |
3515                       VM_DONTEXPAND | VM_SOFTDIRTY) & ~VM_LOCKED_MASK);
3516         vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3517
3518         vma->vm_ops = ops;
3519         vma->vm_private_data = priv;
3520
3521         ret = insert_vm_struct(mm, vma);
3522         if (ret)
3523                 goto out;
3524
3525         vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3526
3527         perf_event_mmap(vma);
3528
3529         validate_mm(mm);
3530         return vma;
3531
3532 out:
3533         vm_area_free(vma);
3534         validate_mm(mm);
3535         return ERR_PTR(ret);
3536 }
3537
3538 bool vma_is_special_mapping(const struct vm_area_struct *vma,
3539         const struct vm_special_mapping *sm)
3540 {
3541         return vma->vm_private_data == sm &&
3542                 (vma->vm_ops == &special_mapping_vmops ||
3543                  vma->vm_ops == &legacy_special_mapping_vmops);
3544 }
3545
3546 /*
3547  * Called with mm->mmap_lock held for writing.
3548  * Insert a new vma covering the given region, with the given flags.
3549  * Its pages are supplied by the given array of struct page *.
3550  * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3551  * The region past the last page supplied will always produce SIGBUS.
3552  * The array pointer and the pages it points to are assumed to stay alive
3553  * for as long as this mapping might exist.
3554  */
3555 struct vm_area_struct *_install_special_mapping(
3556         struct mm_struct *mm,
3557         unsigned long addr, unsigned long len,
3558         unsigned long vm_flags, const struct vm_special_mapping *spec)
3559 {
3560         return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3561                                         &special_mapping_vmops);
3562 }
3563
3564 int install_special_mapping(struct mm_struct *mm,
3565                             unsigned long addr, unsigned long len,
3566                             unsigned long vm_flags, struct page **pages)
3567 {
3568         struct vm_area_struct *vma = __install_special_mapping(
3569                 mm, addr, len, vm_flags, (void *)pages,
3570                 &legacy_special_mapping_vmops);
3571
3572         return PTR_ERR_OR_ZERO(vma);
3573 }
3574
3575 static DEFINE_MUTEX(mm_all_locks_mutex);
3576
3577 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3578 {
3579         if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3580                 /*
3581                  * The LSB of head.next can't change from under us
3582                  * because we hold the mm_all_locks_mutex.
3583                  */
3584                 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_lock);
3585                 /*
3586                  * We can safely modify head.next after taking the
3587                  * anon_vma->root->rwsem. If some other vma in this mm shares
3588                  * the same anon_vma we won't take it again.
3589                  *
3590                  * No need of atomic instructions here, head.next
3591                  * can't change from under us thanks to the
3592                  * anon_vma->root->rwsem.
3593                  */
3594                 if (__test_and_set_bit(0, (unsigned long *)
3595                                        &anon_vma->root->rb_root.rb_root.rb_node))
3596                         BUG();
3597         }
3598 }
3599
3600 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3601 {
3602         if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3603                 /*
3604                  * AS_MM_ALL_LOCKS can't change from under us because
3605                  * we hold the mm_all_locks_mutex.
3606                  *
3607                  * Operations on ->flags have to be atomic because
3608                  * even if AS_MM_ALL_LOCKS is stable thanks to the
3609                  * mm_all_locks_mutex, there may be other cpus
3610                  * changing other bitflags in parallel to us.
3611                  */
3612                 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3613                         BUG();
3614                 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_lock);
3615         }
3616 }
3617
3618 /*
3619  * This operation locks against the VM for all pte/vma/mm related
3620  * operations that could ever happen on a certain mm. This includes
3621  * vmtruncate, try_to_unmap, and all page faults.
3622  *
3623  * The caller must take the mmap_lock in write mode before calling
3624  * mm_take_all_locks(). The caller isn't allowed to release the
3625  * mmap_lock until mm_drop_all_locks() returns.
3626  *
3627  * mmap_lock in write mode is required in order to block all operations
3628  * that could modify pagetables and free pages without need of
3629  * altering the vma layout. It's also needed in write mode to avoid new
3630  * anon_vmas to be associated with existing vmas.
3631  *
3632  * A single task can't take more than one mm_take_all_locks() in a row
3633  * or it would deadlock.
3634  *
3635  * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3636  * mapping->flags avoid to take the same lock twice, if more than one
3637  * vma in this mm is backed by the same anon_vma or address_space.
3638  *
3639  * We take locks in following order, accordingly to comment at beginning
3640  * of mm/rmap.c:
3641  *   - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3642  *     hugetlb mapping);
3643  *   - all vmas marked locked
3644  *   - all i_mmap_rwsem locks;
3645  *   - all anon_vma->rwseml
3646  *
3647  * We can take all locks within these types randomly because the VM code
3648  * doesn't nest them and we protected from parallel mm_take_all_locks() by
3649  * mm_all_locks_mutex.
3650  *
3651  * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3652  * that may have to take thousand of locks.
3653  *
3654  * mm_take_all_locks() can fail if it's interrupted by signals.
3655  */
3656 int mm_take_all_locks(struct mm_struct *mm)
3657 {
3658         struct vm_area_struct *vma;
3659         struct anon_vma_chain *avc;
3660         MA_STATE(mas, &mm->mm_mt, 0, 0);
3661
3662         mmap_assert_write_locked(mm);
3663
3664         mutex_lock(&mm_all_locks_mutex);
3665
3666         mas_for_each(&mas, vma, ULONG_MAX) {
3667                 if (signal_pending(current))
3668                         goto out_unlock;
3669                 vma_start_write(vma);
3670         }
3671
3672         mas_set(&mas, 0);
3673         mas_for_each(&mas, vma, ULONG_MAX) {
3674                 if (signal_pending(current))
3675                         goto out_unlock;
3676                 if (vma->vm_file && vma->vm_file->f_mapping &&
3677                                 is_vm_hugetlb_page(vma))
3678                         vm_lock_mapping(mm, vma->vm_file->f_mapping);
3679         }
3680
3681         mas_set(&mas, 0);
3682         mas_for_each(&mas, vma, ULONG_MAX) {
3683                 if (signal_pending(current))
3684                         goto out_unlock;
3685                 if (vma->vm_file && vma->vm_file->f_mapping &&
3686                                 !is_vm_hugetlb_page(vma))
3687                         vm_lock_mapping(mm, vma->vm_file->f_mapping);
3688         }
3689
3690         mas_set(&mas, 0);
3691         mas_for_each(&mas, vma, ULONG_MAX) {
3692                 if (signal_pending(current))
3693                         goto out_unlock;
3694                 if (vma->anon_vma)
3695                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3696                                 vm_lock_anon_vma(mm, avc->anon_vma);
3697         }
3698
3699         return 0;
3700
3701 out_unlock:
3702         mm_drop_all_locks(mm);
3703         return -EINTR;
3704 }
3705
3706 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3707 {
3708         if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3709                 /*
3710                  * The LSB of head.next can't change to 0 from under
3711                  * us because we hold the mm_all_locks_mutex.
3712                  *
3713                  * We must however clear the bitflag before unlocking
3714                  * the vma so the users using the anon_vma->rb_root will
3715                  * never see our bitflag.
3716                  *
3717                  * No need of atomic instructions here, head.next
3718                  * can't change from under us until we release the
3719                  * anon_vma->root->rwsem.
3720                  */
3721                 if (!__test_and_clear_bit(0, (unsigned long *)
3722                                           &anon_vma->root->rb_root.rb_root.rb_node))
3723                         BUG();
3724                 anon_vma_unlock_write(anon_vma);
3725         }
3726 }
3727
3728 static void vm_unlock_mapping(struct address_space *mapping)
3729 {
3730         if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3731                 /*
3732                  * AS_MM_ALL_LOCKS can't change to 0 from under us
3733                  * because we hold the mm_all_locks_mutex.
3734                  */
3735                 i_mmap_unlock_write(mapping);
3736                 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3737                                         &mapping->flags))
3738                         BUG();
3739         }
3740 }
3741
3742 /*
3743  * The mmap_lock cannot be released by the caller until
3744  * mm_drop_all_locks() returns.
3745  */
3746 void mm_drop_all_locks(struct mm_struct *mm)
3747 {
3748         struct vm_area_struct *vma;
3749         struct anon_vma_chain *avc;
3750         MA_STATE(mas, &mm->mm_mt, 0, 0);
3751
3752         mmap_assert_write_locked(mm);
3753         BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3754
3755         mas_for_each(&mas, vma, ULONG_MAX) {
3756                 if (vma->anon_vma)
3757                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3758                                 vm_unlock_anon_vma(avc->anon_vma);
3759                 if (vma->vm_file && vma->vm_file->f_mapping)
3760                         vm_unlock_mapping(vma->vm_file->f_mapping);
3761         }
3762         vma_end_write_all(mm);
3763
3764         mutex_unlock(&mm_all_locks_mutex);
3765 }
3766
3767 /*
3768  * initialise the percpu counter for VM
3769  */
3770 void __init mmap_init(void)
3771 {
3772         int ret;
3773
3774         ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3775         VM_BUG_ON(ret);
3776 }
3777
3778 /*
3779  * Initialise sysctl_user_reserve_kbytes.
3780  *
3781  * This is intended to prevent a user from starting a single memory hogging
3782  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3783  * mode.
3784  *
3785  * The default value is min(3% of free memory, 128MB)
3786  * 128MB is enough to recover with sshd/login, bash, and top/kill.
3787  */
3788 static int init_user_reserve(void)
3789 {
3790         unsigned long free_kbytes;
3791
3792         free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3793
3794         sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3795         return 0;
3796 }
3797 subsys_initcall(init_user_reserve);
3798
3799 /*
3800  * Initialise sysctl_admin_reserve_kbytes.
3801  *
3802  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3803  * to log in and kill a memory hogging process.
3804  *
3805  * Systems with more than 256MB will reserve 8MB, enough to recover
3806  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3807  * only reserve 3% of free pages by default.
3808  */
3809 static int init_admin_reserve(void)
3810 {
3811         unsigned long free_kbytes;
3812
3813         free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3814
3815         sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3816         return 0;
3817 }
3818 subsys_initcall(init_admin_reserve);
3819
3820 /*
3821  * Reinititalise user and admin reserves if memory is added or removed.
3822  *
3823  * The default user reserve max is 128MB, and the default max for the
3824  * admin reserve is 8MB. These are usually, but not always, enough to
3825  * enable recovery from a memory hogging process using login/sshd, a shell,
3826  * and tools like top. It may make sense to increase or even disable the
3827  * reserve depending on the existence of swap or variations in the recovery
3828  * tools. So, the admin may have changed them.
3829  *
3830  * If memory is added and the reserves have been eliminated or increased above
3831  * the default max, then we'll trust the admin.
3832  *
3833  * If memory is removed and there isn't enough free memory, then we
3834  * need to reset the reserves.
3835  *
3836  * Otherwise keep the reserve set by the admin.
3837  */
3838 static int reserve_mem_notifier(struct notifier_block *nb,
3839                              unsigned long action, void *data)
3840 {
3841         unsigned long tmp, free_kbytes;
3842
3843         switch (action) {
3844         case MEM_ONLINE:
3845                 /* Default max is 128MB. Leave alone if modified by operator. */
3846                 tmp = sysctl_user_reserve_kbytes;
3847                 if (0 < tmp && tmp < (1UL << 17))
3848                         init_user_reserve();
3849
3850                 /* Default max is 8MB.  Leave alone if modified by operator. */
3851                 tmp = sysctl_admin_reserve_kbytes;
3852                 if (0 < tmp && tmp < (1UL << 13))
3853                         init_admin_reserve();
3854
3855                 break;
3856         case MEM_OFFLINE:
3857                 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3858
3859                 if (sysctl_user_reserve_kbytes > free_kbytes) {
3860                         init_user_reserve();
3861                         pr_info("vm.user_reserve_kbytes reset to %lu\n",
3862                                 sysctl_user_reserve_kbytes);
3863                 }
3864
3865                 if (sysctl_admin_reserve_kbytes > free_kbytes) {
3866                         init_admin_reserve();
3867                         pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3868                                 sysctl_admin_reserve_kbytes);
3869                 }
3870                 break;
3871         default:
3872                 break;
3873         }
3874         return NOTIFY_OK;
3875 }
3876
3877 static int __meminit init_reserve_notifier(void)
3878 {
3879         if (hotplug_memory_notifier(reserve_mem_notifier, DEFAULT_CALLBACK_PRI))
3880                 pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3881
3882         return 0;
3883 }
3884 subsys_initcall(init_reserve_notifier);