mm/memcontrol.c: remove unnecessary 'break' in mem_cgroup_read()
[platform/adaptation/renesas_rcar/renesas_kernel.git] / mm / mmap.c
1 /*
2  * mm/mmap.c
3  *
4  * Written by obz.
5  *
6  * Address space accounting code        <alan@lxorguk.ukuu.org.uk>
7  */
8
9 #include <linux/slab.h>
10 #include <linux/backing-dev.h>
11 #include <linux/mm.h>
12 #include <linux/shm.h>
13 #include <linux/mman.h>
14 #include <linux/pagemap.h>
15 #include <linux/swap.h>
16 #include <linux/syscalls.h>
17 #include <linux/capability.h>
18 #include <linux/init.h>
19 #include <linux/file.h>
20 #include <linux/fs.h>
21 #include <linux/personality.h>
22 #include <linux/security.h>
23 #include <linux/hugetlb.h>
24 #include <linux/profile.h>
25 #include <linux/export.h>
26 #include <linux/mount.h>
27 #include <linux/mempolicy.h>
28 #include <linux/rmap.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/perf_event.h>
31 #include <linux/audit.h>
32 #include <linux/khugepaged.h>
33
34 #include <asm/uaccess.h>
35 #include <asm/cacheflush.h>
36 #include <asm/tlb.h>
37 #include <asm/mmu_context.h>
38
39 #include "internal.h"
40
41 #ifndef arch_mmap_check
42 #define arch_mmap_check(addr, len, flags)       (0)
43 #endif
44
45 #ifndef arch_rebalance_pgtables
46 #define arch_rebalance_pgtables(addr, len)              (addr)
47 #endif
48
49 static void unmap_region(struct mm_struct *mm,
50                 struct vm_area_struct *vma, struct vm_area_struct *prev,
51                 unsigned long start, unsigned long end);
52
53 /*
54  * WARNING: the debugging will use recursive algorithms so never enable this
55  * unless you know what you are doing.
56  */
57 #undef DEBUG_MM_RB
58
59 /* description of effects of mapping type and prot in current implementation.
60  * this is due to the limited x86 page protection hardware.  The expected
61  * behavior is in parens:
62  *
63  * map_type     prot
64  *              PROT_NONE       PROT_READ       PROT_WRITE      PROT_EXEC
65  * MAP_SHARED   r: (no) no      r: (yes) yes    r: (no) yes     r: (no) yes
66  *              w: (no) no      w: (no) no      w: (yes) yes    w: (no) no
67  *              x: (no) no      x: (no) yes     x: (no) yes     x: (yes) yes
68  *              
69  * MAP_PRIVATE  r: (no) no      r: (yes) yes    r: (no) yes     r: (no) yes
70  *              w: (no) no      w: (no) no      w: (copy) copy  w: (no) no
71  *              x: (no) no      x: (no) yes     x: (no) yes     x: (yes) yes
72  *
73  */
74 pgprot_t protection_map[16] = {
75         __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
76         __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
77 };
78
79 pgprot_t vm_get_page_prot(unsigned long vm_flags)
80 {
81         return __pgprot(pgprot_val(protection_map[vm_flags &
82                                 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
83                         pgprot_val(arch_vm_get_page_prot(vm_flags)));
84 }
85 EXPORT_SYMBOL(vm_get_page_prot);
86
87 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS;  /* heuristic overcommit */
88 int sysctl_overcommit_ratio __read_mostly = 50; /* default is 50% */
89 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
90 /*
91  * Make sure vm_committed_as in one cacheline and not cacheline shared with
92  * other variables. It can be updated by several CPUs frequently.
93  */
94 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
95
96 /*
97  * Check that a process has enough memory to allocate a new virtual
98  * mapping. 0 means there is enough memory for the allocation to
99  * succeed and -ENOMEM implies there is not.
100  *
101  * We currently support three overcommit policies, which are set via the
102  * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting
103  *
104  * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
105  * Additional code 2002 Jul 20 by Robert Love.
106  *
107  * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
108  *
109  * Note this is a helper function intended to be used by LSMs which
110  * wish to use this logic.
111  */
112 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
113 {
114         unsigned long free, allowed;
115
116         vm_acct_memory(pages);
117
118         /*
119          * Sometimes we want to use more memory than we have
120          */
121         if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
122                 return 0;
123
124         if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
125                 free = global_page_state(NR_FREE_PAGES);
126                 free += global_page_state(NR_FILE_PAGES);
127
128                 /*
129                  * shmem pages shouldn't be counted as free in this
130                  * case, they can't be purged, only swapped out, and
131                  * that won't affect the overall amount of available
132                  * memory in the system.
133                  */
134                 free -= global_page_state(NR_SHMEM);
135
136                 free += nr_swap_pages;
137
138                 /*
139                  * Any slabs which are created with the
140                  * SLAB_RECLAIM_ACCOUNT flag claim to have contents
141                  * which are reclaimable, under pressure.  The dentry
142                  * cache and most inode caches should fall into this
143                  */
144                 free += global_page_state(NR_SLAB_RECLAIMABLE);
145
146                 /*
147                  * Leave reserved pages. The pages are not for anonymous pages.
148                  */
149                 if (free <= totalreserve_pages)
150                         goto error;
151                 else
152                         free -= totalreserve_pages;
153
154                 /*
155                  * Leave the last 3% for root
156                  */
157                 if (!cap_sys_admin)
158                         free -= free / 32;
159
160                 if (free > pages)
161                         return 0;
162
163                 goto error;
164         }
165
166         allowed = (totalram_pages - hugetlb_total_pages())
167                 * sysctl_overcommit_ratio / 100;
168         /*
169          * Leave the last 3% for root
170          */
171         if (!cap_sys_admin)
172                 allowed -= allowed / 32;
173         allowed += total_swap_pages;
174
175         /* Don't let a single process grow too big:
176            leave 3% of the size of this process for other processes */
177         if (mm)
178                 allowed -= mm->total_vm / 32;
179
180         if (percpu_counter_read_positive(&vm_committed_as) < allowed)
181                 return 0;
182 error:
183         vm_unacct_memory(pages);
184
185         return -ENOMEM;
186 }
187
188 /*
189  * Requires inode->i_mapping->i_mmap_mutex
190  */
191 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
192                 struct file *file, struct address_space *mapping)
193 {
194         if (vma->vm_flags & VM_DENYWRITE)
195                 atomic_inc(&file->f_path.dentry->d_inode->i_writecount);
196         if (vma->vm_flags & VM_SHARED)
197                 mapping->i_mmap_writable--;
198
199         flush_dcache_mmap_lock(mapping);
200         if (unlikely(vma->vm_flags & VM_NONLINEAR))
201                 list_del_init(&vma->shared.vm_set.list);
202         else
203                 vma_prio_tree_remove(vma, &mapping->i_mmap);
204         flush_dcache_mmap_unlock(mapping);
205 }
206
207 /*
208  * Unlink a file-based vm structure from its prio_tree, to hide
209  * vma from rmap and vmtruncate before freeing its page tables.
210  */
211 void unlink_file_vma(struct vm_area_struct *vma)
212 {
213         struct file *file = vma->vm_file;
214
215         if (file) {
216                 struct address_space *mapping = file->f_mapping;
217                 mutex_lock(&mapping->i_mmap_mutex);
218                 __remove_shared_vm_struct(vma, file, mapping);
219                 mutex_unlock(&mapping->i_mmap_mutex);
220         }
221 }
222
223 /*
224  * Close a vm structure and free it, returning the next.
225  */
226 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
227 {
228         struct vm_area_struct *next = vma->vm_next;
229
230         might_sleep();
231         if (vma->vm_ops && vma->vm_ops->close)
232                 vma->vm_ops->close(vma);
233         if (vma->vm_file) {
234                 fput(vma->vm_file);
235                 if (vma->vm_flags & VM_EXECUTABLE)
236                         removed_exe_file_vma(vma->vm_mm);
237         }
238         mpol_put(vma_policy(vma));
239         kmem_cache_free(vm_area_cachep, vma);
240         return next;
241 }
242
243 SYSCALL_DEFINE1(brk, unsigned long, brk)
244 {
245         unsigned long rlim, retval;
246         unsigned long newbrk, oldbrk;
247         struct mm_struct *mm = current->mm;
248         unsigned long min_brk;
249
250         down_write(&mm->mmap_sem);
251
252 #ifdef CONFIG_COMPAT_BRK
253         /*
254          * CONFIG_COMPAT_BRK can still be overridden by setting
255          * randomize_va_space to 2, which will still cause mm->start_brk
256          * to be arbitrarily shifted
257          */
258         if (current->brk_randomized)
259                 min_brk = mm->start_brk;
260         else
261                 min_brk = mm->end_data;
262 #else
263         min_brk = mm->start_brk;
264 #endif
265         if (brk < min_brk)
266                 goto out;
267
268         /*
269          * Check against rlimit here. If this check is done later after the test
270          * of oldbrk with newbrk then it can escape the test and let the data
271          * segment grow beyond its set limit the in case where the limit is
272          * not page aligned -Ram Gupta
273          */
274         rlim = rlimit(RLIMIT_DATA);
275         if (rlim < RLIM_INFINITY && (brk - mm->start_brk) +
276                         (mm->end_data - mm->start_data) > rlim)
277                 goto out;
278
279         newbrk = PAGE_ALIGN(brk);
280         oldbrk = PAGE_ALIGN(mm->brk);
281         if (oldbrk == newbrk)
282                 goto set_brk;
283
284         /* Always allow shrinking brk. */
285         if (brk <= mm->brk) {
286                 if (!do_munmap(mm, newbrk, oldbrk-newbrk))
287                         goto set_brk;
288                 goto out;
289         }
290
291         /* Check against existing mmap mappings. */
292         if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
293                 goto out;
294
295         /* Ok, looks good - let it rip. */
296         if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
297                 goto out;
298 set_brk:
299         mm->brk = brk;
300 out:
301         retval = mm->brk;
302         up_write(&mm->mmap_sem);
303         return retval;
304 }
305
306 #ifdef DEBUG_MM_RB
307 static int browse_rb(struct rb_root *root)
308 {
309         int i = 0, j;
310         struct rb_node *nd, *pn = NULL;
311         unsigned long prev = 0, pend = 0;
312
313         for (nd = rb_first(root); nd; nd = rb_next(nd)) {
314                 struct vm_area_struct *vma;
315                 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
316                 if (vma->vm_start < prev)
317                         printk("vm_start %lx prev %lx\n", vma->vm_start, prev), i = -1;
318                 if (vma->vm_start < pend)
319                         printk("vm_start %lx pend %lx\n", vma->vm_start, pend);
320                 if (vma->vm_start > vma->vm_end)
321                         printk("vm_end %lx < vm_start %lx\n", vma->vm_end, vma->vm_start);
322                 i++;
323                 pn = nd;
324                 prev = vma->vm_start;
325                 pend = vma->vm_end;
326         }
327         j = 0;
328         for (nd = pn; nd; nd = rb_prev(nd)) {
329                 j++;
330         }
331         if (i != j)
332                 printk("backwards %d, forwards %d\n", j, i), i = 0;
333         return i;
334 }
335
336 void validate_mm(struct mm_struct *mm)
337 {
338         int bug = 0;
339         int i = 0;
340         struct vm_area_struct *tmp = mm->mmap;
341         while (tmp) {
342                 tmp = tmp->vm_next;
343                 i++;
344         }
345         if (i != mm->map_count)
346                 printk("map_count %d vm_next %d\n", mm->map_count, i), bug = 1;
347         i = browse_rb(&mm->mm_rb);
348         if (i != mm->map_count)
349                 printk("map_count %d rb %d\n", mm->map_count, i), bug = 1;
350         BUG_ON(bug);
351 }
352 #else
353 #define validate_mm(mm) do { } while (0)
354 #endif
355
356 static struct vm_area_struct *
357 find_vma_prepare(struct mm_struct *mm, unsigned long addr,
358                 struct vm_area_struct **pprev, struct rb_node ***rb_link,
359                 struct rb_node ** rb_parent)
360 {
361         struct vm_area_struct * vma;
362         struct rb_node ** __rb_link, * __rb_parent, * rb_prev;
363
364         __rb_link = &mm->mm_rb.rb_node;
365         rb_prev = __rb_parent = NULL;
366         vma = NULL;
367
368         while (*__rb_link) {
369                 struct vm_area_struct *vma_tmp;
370
371                 __rb_parent = *__rb_link;
372                 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
373
374                 if (vma_tmp->vm_end > addr) {
375                         vma = vma_tmp;
376                         if (vma_tmp->vm_start <= addr)
377                                 break;
378                         __rb_link = &__rb_parent->rb_left;
379                 } else {
380                         rb_prev = __rb_parent;
381                         __rb_link = &__rb_parent->rb_right;
382                 }
383         }
384
385         *pprev = NULL;
386         if (rb_prev)
387                 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
388         *rb_link = __rb_link;
389         *rb_parent = __rb_parent;
390         return vma;
391 }
392
393 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
394                 struct rb_node **rb_link, struct rb_node *rb_parent)
395 {
396         rb_link_node(&vma->vm_rb, rb_parent, rb_link);
397         rb_insert_color(&vma->vm_rb, &mm->mm_rb);
398 }
399
400 static void __vma_link_file(struct vm_area_struct *vma)
401 {
402         struct file *file;
403
404         file = vma->vm_file;
405         if (file) {
406                 struct address_space *mapping = file->f_mapping;
407
408                 if (vma->vm_flags & VM_DENYWRITE)
409                         atomic_dec(&file->f_path.dentry->d_inode->i_writecount);
410                 if (vma->vm_flags & VM_SHARED)
411                         mapping->i_mmap_writable++;
412
413                 flush_dcache_mmap_lock(mapping);
414                 if (unlikely(vma->vm_flags & VM_NONLINEAR))
415                         vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear);
416                 else
417                         vma_prio_tree_insert(vma, &mapping->i_mmap);
418                 flush_dcache_mmap_unlock(mapping);
419         }
420 }
421
422 static void
423 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
424         struct vm_area_struct *prev, struct rb_node **rb_link,
425         struct rb_node *rb_parent)
426 {
427         __vma_link_list(mm, vma, prev, rb_parent);
428         __vma_link_rb(mm, vma, rb_link, rb_parent);
429 }
430
431 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
432                         struct vm_area_struct *prev, struct rb_node **rb_link,
433                         struct rb_node *rb_parent)
434 {
435         struct address_space *mapping = NULL;
436
437         if (vma->vm_file)
438                 mapping = vma->vm_file->f_mapping;
439
440         if (mapping)
441                 mutex_lock(&mapping->i_mmap_mutex);
442
443         __vma_link(mm, vma, prev, rb_link, rb_parent);
444         __vma_link_file(vma);
445
446         if (mapping)
447                 mutex_unlock(&mapping->i_mmap_mutex);
448
449         mm->map_count++;
450         validate_mm(mm);
451 }
452
453 /*
454  * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
455  * mm's list and rbtree.  It has already been inserted into the prio_tree.
456  */
457 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
458 {
459         struct vm_area_struct *__vma, *prev;
460         struct rb_node **rb_link, *rb_parent;
461
462         __vma = find_vma_prepare(mm, vma->vm_start,&prev, &rb_link, &rb_parent);
463         BUG_ON(__vma && __vma->vm_start < vma->vm_end);
464         __vma_link(mm, vma, prev, rb_link, rb_parent);
465         mm->map_count++;
466 }
467
468 static inline void
469 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
470                 struct vm_area_struct *prev)
471 {
472         struct vm_area_struct *next = vma->vm_next;
473
474         prev->vm_next = next;
475         if (next)
476                 next->vm_prev = prev;
477         rb_erase(&vma->vm_rb, &mm->mm_rb);
478         if (mm->mmap_cache == vma)
479                 mm->mmap_cache = prev;
480 }
481
482 /*
483  * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
484  * is already present in an i_mmap tree without adjusting the tree.
485  * The following helper function should be used when such adjustments
486  * are necessary.  The "insert" vma (if any) is to be inserted
487  * before we drop the necessary locks.
488  */
489 int vma_adjust(struct vm_area_struct *vma, unsigned long start,
490         unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
491 {
492         struct mm_struct *mm = vma->vm_mm;
493         struct vm_area_struct *next = vma->vm_next;
494         struct vm_area_struct *importer = NULL;
495         struct address_space *mapping = NULL;
496         struct prio_tree_root *root = NULL;
497         struct anon_vma *anon_vma = NULL;
498         struct file *file = vma->vm_file;
499         long adjust_next = 0;
500         int remove_next = 0;
501
502         if (next && !insert) {
503                 struct vm_area_struct *exporter = NULL;
504
505                 if (end >= next->vm_end) {
506                         /*
507                          * vma expands, overlapping all the next, and
508                          * perhaps the one after too (mprotect case 6).
509                          */
510 again:                  remove_next = 1 + (end > next->vm_end);
511                         end = next->vm_end;
512                         exporter = next;
513                         importer = vma;
514                 } else if (end > next->vm_start) {
515                         /*
516                          * vma expands, overlapping part of the next:
517                          * mprotect case 5 shifting the boundary up.
518                          */
519                         adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
520                         exporter = next;
521                         importer = vma;
522                 } else if (end < vma->vm_end) {
523                         /*
524                          * vma shrinks, and !insert tells it's not
525                          * split_vma inserting another: so it must be
526                          * mprotect case 4 shifting the boundary down.
527                          */
528                         adjust_next = - ((vma->vm_end - end) >> PAGE_SHIFT);
529                         exporter = vma;
530                         importer = next;
531                 }
532
533                 /*
534                  * Easily overlooked: when mprotect shifts the boundary,
535                  * make sure the expanding vma has anon_vma set if the
536                  * shrinking vma had, to cover any anon pages imported.
537                  */
538                 if (exporter && exporter->anon_vma && !importer->anon_vma) {
539                         if (anon_vma_clone(importer, exporter))
540                                 return -ENOMEM;
541                         importer->anon_vma = exporter->anon_vma;
542                 }
543         }
544
545         if (file) {
546                 mapping = file->f_mapping;
547                 if (!(vma->vm_flags & VM_NONLINEAR))
548                         root = &mapping->i_mmap;
549                 mutex_lock(&mapping->i_mmap_mutex);
550                 if (insert) {
551                         /*
552                          * Put into prio_tree now, so instantiated pages
553                          * are visible to arm/parisc __flush_dcache_page
554                          * throughout; but we cannot insert into address
555                          * space until vma start or end is updated.
556                          */
557                         __vma_link_file(insert);
558                 }
559         }
560
561         vma_adjust_trans_huge(vma, start, end, adjust_next);
562
563         /*
564          * When changing only vma->vm_end, we don't really need anon_vma
565          * lock. This is a fairly rare case by itself, but the anon_vma
566          * lock may be shared between many sibling processes.  Skipping
567          * the lock for brk adjustments makes a difference sometimes.
568          */
569         if (vma->anon_vma && (importer || start != vma->vm_start)) {
570                 anon_vma = vma->anon_vma;
571                 anon_vma_lock(anon_vma);
572         }
573
574         if (root) {
575                 flush_dcache_mmap_lock(mapping);
576                 vma_prio_tree_remove(vma, root);
577                 if (adjust_next)
578                         vma_prio_tree_remove(next, root);
579         }
580
581         vma->vm_start = start;
582         vma->vm_end = end;
583         vma->vm_pgoff = pgoff;
584         if (adjust_next) {
585                 next->vm_start += adjust_next << PAGE_SHIFT;
586                 next->vm_pgoff += adjust_next;
587         }
588
589         if (root) {
590                 if (adjust_next)
591                         vma_prio_tree_insert(next, root);
592                 vma_prio_tree_insert(vma, root);
593                 flush_dcache_mmap_unlock(mapping);
594         }
595
596         if (remove_next) {
597                 /*
598                  * vma_merge has merged next into vma, and needs
599                  * us to remove next before dropping the locks.
600                  */
601                 __vma_unlink(mm, next, vma);
602                 if (file)
603                         __remove_shared_vm_struct(next, file, mapping);
604         } else if (insert) {
605                 /*
606                  * split_vma has split insert from vma, and needs
607                  * us to insert it before dropping the locks
608                  * (it may either follow vma or precede it).
609                  */
610                 __insert_vm_struct(mm, insert);
611         }
612
613         if (anon_vma)
614                 anon_vma_unlock(anon_vma);
615         if (mapping)
616                 mutex_unlock(&mapping->i_mmap_mutex);
617
618         if (remove_next) {
619                 if (file) {
620                         fput(file);
621                         if (next->vm_flags & VM_EXECUTABLE)
622                                 removed_exe_file_vma(mm);
623                 }
624                 if (next->anon_vma)
625                         anon_vma_merge(vma, next);
626                 mm->map_count--;
627                 mpol_put(vma_policy(next));
628                 kmem_cache_free(vm_area_cachep, next);
629                 /*
630                  * In mprotect's case 6 (see comments on vma_merge),
631                  * we must remove another next too. It would clutter
632                  * up the code too much to do both in one go.
633                  */
634                 if (remove_next == 2) {
635                         next = vma->vm_next;
636                         goto again;
637                 }
638         }
639
640         validate_mm(mm);
641
642         return 0;
643 }
644
645 /*
646  * If the vma has a ->close operation then the driver probably needs to release
647  * per-vma resources, so we don't attempt to merge those.
648  */
649 static inline int is_mergeable_vma(struct vm_area_struct *vma,
650                         struct file *file, unsigned long vm_flags)
651 {
652         /* VM_CAN_NONLINEAR may get set later by f_op->mmap() */
653         if ((vma->vm_flags ^ vm_flags) & ~VM_CAN_NONLINEAR)
654                 return 0;
655         if (vma->vm_file != file)
656                 return 0;
657         if (vma->vm_ops && vma->vm_ops->close)
658                 return 0;
659         return 1;
660 }
661
662 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
663                                         struct anon_vma *anon_vma2,
664                                         struct vm_area_struct *vma)
665 {
666         /*
667          * The list_is_singular() test is to avoid merging VMA cloned from
668          * parents. This can improve scalability caused by anon_vma lock.
669          */
670         if ((!anon_vma1 || !anon_vma2) && (!vma ||
671                 list_is_singular(&vma->anon_vma_chain)))
672                 return 1;
673         return anon_vma1 == anon_vma2;
674 }
675
676 /*
677  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
678  * in front of (at a lower virtual address and file offset than) the vma.
679  *
680  * We cannot merge two vmas if they have differently assigned (non-NULL)
681  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
682  *
683  * We don't check here for the merged mmap wrapping around the end of pagecache
684  * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
685  * wrap, nor mmaps which cover the final page at index -1UL.
686  */
687 static int
688 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
689         struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
690 {
691         if (is_mergeable_vma(vma, file, vm_flags) &&
692             is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
693                 if (vma->vm_pgoff == vm_pgoff)
694                         return 1;
695         }
696         return 0;
697 }
698
699 /*
700  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
701  * beyond (at a higher virtual address and file offset than) the vma.
702  *
703  * We cannot merge two vmas if they have differently assigned (non-NULL)
704  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
705  */
706 static int
707 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
708         struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
709 {
710         if (is_mergeable_vma(vma, file, vm_flags) &&
711             is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
712                 pgoff_t vm_pglen;
713                 vm_pglen = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
714                 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
715                         return 1;
716         }
717         return 0;
718 }
719
720 /*
721  * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
722  * whether that can be merged with its predecessor or its successor.
723  * Or both (it neatly fills a hole).
724  *
725  * In most cases - when called for mmap, brk or mremap - [addr,end) is
726  * certain not to be mapped by the time vma_merge is called; but when
727  * called for mprotect, it is certain to be already mapped (either at
728  * an offset within prev, or at the start of next), and the flags of
729  * this area are about to be changed to vm_flags - and the no-change
730  * case has already been eliminated.
731  *
732  * The following mprotect cases have to be considered, where AAAA is
733  * the area passed down from mprotect_fixup, never extending beyond one
734  * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
735  *
736  *     AAAA             AAAA                AAAA          AAAA
737  *    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPNNNNXXXX
738  *    cannot merge    might become    might become    might become
739  *                    PPNNNNNNNNNN    PPPPPPPPPPNN    PPPPPPPPPPPP 6 or
740  *    mmap, brk or    case 4 below    case 5 below    PPPPPPPPXXXX 7 or
741  *    mremap move:                                    PPPPNNNNNNNN 8
742  *        AAAA
743  *    PPPP    NNNN    PPPPPPPPPPPP    PPPPPPPPNNNN    PPPPNNNNNNNN
744  *    might become    case 1 below    case 2 below    case 3 below
745  *
746  * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
747  * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
748  */
749 struct vm_area_struct *vma_merge(struct mm_struct *mm,
750                         struct vm_area_struct *prev, unsigned long addr,
751                         unsigned long end, unsigned long vm_flags,
752                         struct anon_vma *anon_vma, struct file *file,
753                         pgoff_t pgoff, struct mempolicy *policy)
754 {
755         pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
756         struct vm_area_struct *area, *next;
757         int err;
758
759         /*
760          * We later require that vma->vm_flags == vm_flags,
761          * so this tests vma->vm_flags & VM_SPECIAL, too.
762          */
763         if (vm_flags & VM_SPECIAL)
764                 return NULL;
765
766         if (prev)
767                 next = prev->vm_next;
768         else
769                 next = mm->mmap;
770         area = next;
771         if (next && next->vm_end == end)                /* cases 6, 7, 8 */
772                 next = next->vm_next;
773
774         /*
775          * Can it merge with the predecessor?
776          */
777         if (prev && prev->vm_end == addr &&
778                         mpol_equal(vma_policy(prev), policy) &&
779                         can_vma_merge_after(prev, vm_flags,
780                                                 anon_vma, file, pgoff)) {
781                 /*
782                  * OK, it can.  Can we now merge in the successor as well?
783                  */
784                 if (next && end == next->vm_start &&
785                                 mpol_equal(policy, vma_policy(next)) &&
786                                 can_vma_merge_before(next, vm_flags,
787                                         anon_vma, file, pgoff+pglen) &&
788                                 is_mergeable_anon_vma(prev->anon_vma,
789                                                       next->anon_vma, NULL)) {
790                                                         /* cases 1, 6 */
791                         err = vma_adjust(prev, prev->vm_start,
792                                 next->vm_end, prev->vm_pgoff, NULL);
793                 } else                                  /* cases 2, 5, 7 */
794                         err = vma_adjust(prev, prev->vm_start,
795                                 end, prev->vm_pgoff, NULL);
796                 if (err)
797                         return NULL;
798                 khugepaged_enter_vma_merge(prev);
799                 return prev;
800         }
801
802         /*
803          * Can this new request be merged in front of next?
804          */
805         if (next && end == next->vm_start &&
806                         mpol_equal(policy, vma_policy(next)) &&
807                         can_vma_merge_before(next, vm_flags,
808                                         anon_vma, file, pgoff+pglen)) {
809                 if (prev && addr < prev->vm_end)        /* case 4 */
810                         err = vma_adjust(prev, prev->vm_start,
811                                 addr, prev->vm_pgoff, NULL);
812                 else                                    /* cases 3, 8 */
813                         err = vma_adjust(area, addr, next->vm_end,
814                                 next->vm_pgoff - pglen, NULL);
815                 if (err)
816                         return NULL;
817                 khugepaged_enter_vma_merge(area);
818                 return area;
819         }
820
821         return NULL;
822 }
823
824 /*
825  * Rough compatbility check to quickly see if it's even worth looking
826  * at sharing an anon_vma.
827  *
828  * They need to have the same vm_file, and the flags can only differ
829  * in things that mprotect may change.
830  *
831  * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
832  * we can merge the two vma's. For example, we refuse to merge a vma if
833  * there is a vm_ops->close() function, because that indicates that the
834  * driver is doing some kind of reference counting. But that doesn't
835  * really matter for the anon_vma sharing case.
836  */
837 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
838 {
839         return a->vm_end == b->vm_start &&
840                 mpol_equal(vma_policy(a), vma_policy(b)) &&
841                 a->vm_file == b->vm_file &&
842                 !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC)) &&
843                 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
844 }
845
846 /*
847  * Do some basic sanity checking to see if we can re-use the anon_vma
848  * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
849  * the same as 'old', the other will be the new one that is trying
850  * to share the anon_vma.
851  *
852  * NOTE! This runs with mm_sem held for reading, so it is possible that
853  * the anon_vma of 'old' is concurrently in the process of being set up
854  * by another page fault trying to merge _that_. But that's ok: if it
855  * is being set up, that automatically means that it will be a singleton
856  * acceptable for merging, so we can do all of this optimistically. But
857  * we do that ACCESS_ONCE() to make sure that we never re-load the pointer.
858  *
859  * IOW: that the "list_is_singular()" test on the anon_vma_chain only
860  * matters for the 'stable anon_vma' case (ie the thing we want to avoid
861  * is to return an anon_vma that is "complex" due to having gone through
862  * a fork).
863  *
864  * We also make sure that the two vma's are compatible (adjacent,
865  * and with the same memory policies). That's all stable, even with just
866  * a read lock on the mm_sem.
867  */
868 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
869 {
870         if (anon_vma_compatible(a, b)) {
871                 struct anon_vma *anon_vma = ACCESS_ONCE(old->anon_vma);
872
873                 if (anon_vma && list_is_singular(&old->anon_vma_chain))
874                         return anon_vma;
875         }
876         return NULL;
877 }
878
879 /*
880  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
881  * neighbouring vmas for a suitable anon_vma, before it goes off
882  * to allocate a new anon_vma.  It checks because a repetitive
883  * sequence of mprotects and faults may otherwise lead to distinct
884  * anon_vmas being allocated, preventing vma merge in subsequent
885  * mprotect.
886  */
887 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
888 {
889         struct anon_vma *anon_vma;
890         struct vm_area_struct *near;
891
892         near = vma->vm_next;
893         if (!near)
894                 goto try_prev;
895
896         anon_vma = reusable_anon_vma(near, vma, near);
897         if (anon_vma)
898                 return anon_vma;
899 try_prev:
900         near = vma->vm_prev;
901         if (!near)
902                 goto none;
903
904         anon_vma = reusable_anon_vma(near, near, vma);
905         if (anon_vma)
906                 return anon_vma;
907 none:
908         /*
909          * There's no absolute need to look only at touching neighbours:
910          * we could search further afield for "compatible" anon_vmas.
911          * But it would probably just be a waste of time searching,
912          * or lead to too many vmas hanging off the same anon_vma.
913          * We're trying to allow mprotect remerging later on,
914          * not trying to minimize memory used for anon_vmas.
915          */
916         return NULL;
917 }
918
919 #ifdef CONFIG_PROC_FS
920 void vm_stat_account(struct mm_struct *mm, unsigned long flags,
921                                                 struct file *file, long pages)
922 {
923         const unsigned long stack_flags
924                 = VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN);
925
926         if (file) {
927                 mm->shared_vm += pages;
928                 if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC)
929                         mm->exec_vm += pages;
930         } else if (flags & stack_flags)
931                 mm->stack_vm += pages;
932         if (flags & (VM_RESERVED|VM_IO))
933                 mm->reserved_vm += pages;
934 }
935 #endif /* CONFIG_PROC_FS */
936
937 /*
938  * The caller must hold down_write(&current->mm->mmap_sem).
939  */
940
941 unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
942                         unsigned long len, unsigned long prot,
943                         unsigned long flags, unsigned long pgoff)
944 {
945         struct mm_struct * mm = current->mm;
946         struct inode *inode;
947         vm_flags_t vm_flags;
948         int error;
949         unsigned long reqprot = prot;
950
951         /*
952          * Does the application expect PROT_READ to imply PROT_EXEC?
953          *
954          * (the exception is when the underlying filesystem is noexec
955          *  mounted, in which case we dont add PROT_EXEC.)
956          */
957         if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
958                 if (!(file && (file->f_path.mnt->mnt_flags & MNT_NOEXEC)))
959                         prot |= PROT_EXEC;
960
961         if (!len)
962                 return -EINVAL;
963
964         if (!(flags & MAP_FIXED))
965                 addr = round_hint_to_min(addr);
966
967         /* Careful about overflows.. */
968         len = PAGE_ALIGN(len);
969         if (!len)
970                 return -ENOMEM;
971
972         /* offset overflow? */
973         if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
974                return -EOVERFLOW;
975
976         /* Too many mappings? */
977         if (mm->map_count > sysctl_max_map_count)
978                 return -ENOMEM;
979
980         /* Obtain the address to map to. we verify (or select) it and ensure
981          * that it represents a valid section of the address space.
982          */
983         addr = get_unmapped_area(file, addr, len, pgoff, flags);
984         if (addr & ~PAGE_MASK)
985                 return addr;
986
987         /* Do simple checking here so the lower-level routines won't have
988          * to. we assume access permissions have been handled by the open
989          * of the memory object, so we don't do any here.
990          */
991         vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
992                         mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
993
994         if (flags & MAP_LOCKED)
995                 if (!can_do_mlock())
996                         return -EPERM;
997
998         /* mlock MCL_FUTURE? */
999         if (vm_flags & VM_LOCKED) {
1000                 unsigned long locked, lock_limit;
1001                 locked = len >> PAGE_SHIFT;
1002                 locked += mm->locked_vm;
1003                 lock_limit = rlimit(RLIMIT_MEMLOCK);
1004                 lock_limit >>= PAGE_SHIFT;
1005                 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1006                         return -EAGAIN;
1007         }
1008
1009         inode = file ? file->f_path.dentry->d_inode : NULL;
1010
1011         if (file) {
1012                 switch (flags & MAP_TYPE) {
1013                 case MAP_SHARED:
1014                         if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1015                                 return -EACCES;
1016
1017                         /*
1018                          * Make sure we don't allow writing to an append-only
1019                          * file..
1020                          */
1021                         if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1022                                 return -EACCES;
1023
1024                         /*
1025                          * Make sure there are no mandatory locks on the file.
1026                          */
1027                         if (locks_verify_locked(inode))
1028                                 return -EAGAIN;
1029
1030                         vm_flags |= VM_SHARED | VM_MAYSHARE;
1031                         if (!(file->f_mode & FMODE_WRITE))
1032                                 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1033
1034                         /* fall through */
1035                 case MAP_PRIVATE:
1036                         if (!(file->f_mode & FMODE_READ))
1037                                 return -EACCES;
1038                         if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
1039                                 if (vm_flags & VM_EXEC)
1040                                         return -EPERM;
1041                                 vm_flags &= ~VM_MAYEXEC;
1042                         }
1043
1044                         if (!file->f_op || !file->f_op->mmap)
1045                                 return -ENODEV;
1046                         break;
1047
1048                 default:
1049                         return -EINVAL;
1050                 }
1051         } else {
1052                 switch (flags & MAP_TYPE) {
1053                 case MAP_SHARED:
1054                         /*
1055                          * Ignore pgoff.
1056                          */
1057                         pgoff = 0;
1058                         vm_flags |= VM_SHARED | VM_MAYSHARE;
1059                         break;
1060                 case MAP_PRIVATE:
1061                         /*
1062                          * Set pgoff according to addr for anon_vma.
1063                          */
1064                         pgoff = addr >> PAGE_SHIFT;
1065                         break;
1066                 default:
1067                         return -EINVAL;
1068                 }
1069         }
1070
1071         error = security_file_mmap(file, reqprot, prot, flags, addr, 0);
1072         if (error)
1073                 return error;
1074
1075         return mmap_region(file, addr, len, flags, vm_flags, pgoff);
1076 }
1077 EXPORT_SYMBOL(do_mmap_pgoff);
1078
1079 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1080                 unsigned long, prot, unsigned long, flags,
1081                 unsigned long, fd, unsigned long, pgoff)
1082 {
1083         struct file *file = NULL;
1084         unsigned long retval = -EBADF;
1085
1086         if (!(flags & MAP_ANONYMOUS)) {
1087                 audit_mmap_fd(fd, flags);
1088                 if (unlikely(flags & MAP_HUGETLB))
1089                         return -EINVAL;
1090                 file = fget(fd);
1091                 if (!file)
1092                         goto out;
1093         } else if (flags & MAP_HUGETLB) {
1094                 struct user_struct *user = NULL;
1095                 /*
1096                  * VM_NORESERVE is used because the reservations will be
1097                  * taken when vm_ops->mmap() is called
1098                  * A dummy user value is used because we are not locking
1099                  * memory so no accounting is necessary
1100                  */
1101                 file = hugetlb_file_setup(HUGETLB_ANON_FILE, addr, len,
1102                                                 VM_NORESERVE, &user,
1103                                                 HUGETLB_ANONHUGE_INODE);
1104                 if (IS_ERR(file))
1105                         return PTR_ERR(file);
1106         }
1107
1108         flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1109
1110         down_write(&current->mm->mmap_sem);
1111         retval = do_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1112         up_write(&current->mm->mmap_sem);
1113
1114         if (file)
1115                 fput(file);
1116 out:
1117         return retval;
1118 }
1119
1120 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1121 struct mmap_arg_struct {
1122         unsigned long addr;
1123         unsigned long len;
1124         unsigned long prot;
1125         unsigned long flags;
1126         unsigned long fd;
1127         unsigned long offset;
1128 };
1129
1130 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1131 {
1132         struct mmap_arg_struct a;
1133
1134         if (copy_from_user(&a, arg, sizeof(a)))
1135                 return -EFAULT;
1136         if (a.offset & ~PAGE_MASK)
1137                 return -EINVAL;
1138
1139         return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1140                               a.offset >> PAGE_SHIFT);
1141 }
1142 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1143
1144 /*
1145  * Some shared mappigns will want the pages marked read-only
1146  * to track write events. If so, we'll downgrade vm_page_prot
1147  * to the private version (using protection_map[] without the
1148  * VM_SHARED bit).
1149  */
1150 int vma_wants_writenotify(struct vm_area_struct *vma)
1151 {
1152         vm_flags_t vm_flags = vma->vm_flags;
1153
1154         /* If it was private or non-writable, the write bit is already clear */
1155         if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1156                 return 0;
1157
1158         /* The backer wishes to know when pages are first written to? */
1159         if (vma->vm_ops && vma->vm_ops->page_mkwrite)
1160                 return 1;
1161
1162         /* The open routine did something to the protections already? */
1163         if (pgprot_val(vma->vm_page_prot) !=
1164             pgprot_val(vm_get_page_prot(vm_flags)))
1165                 return 0;
1166
1167         /* Specialty mapping? */
1168         if (vm_flags & (VM_PFNMAP|VM_INSERTPAGE))
1169                 return 0;
1170
1171         /* Can the mapping track the dirty pages? */
1172         return vma->vm_file && vma->vm_file->f_mapping &&
1173                 mapping_cap_account_dirty(vma->vm_file->f_mapping);
1174 }
1175
1176 /*
1177  * We account for memory if it's a private writeable mapping,
1178  * not hugepages and VM_NORESERVE wasn't set.
1179  */
1180 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1181 {
1182         /*
1183          * hugetlb has its own accounting separate from the core VM
1184          * VM_HUGETLB may not be set yet so we cannot check for that flag.
1185          */
1186         if (file && is_file_hugepages(file))
1187                 return 0;
1188
1189         return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1190 }
1191
1192 unsigned long mmap_region(struct file *file, unsigned long addr,
1193                           unsigned long len, unsigned long flags,
1194                           vm_flags_t vm_flags, unsigned long pgoff)
1195 {
1196         struct mm_struct *mm = current->mm;
1197         struct vm_area_struct *vma, *prev;
1198         int correct_wcount = 0;
1199         int error;
1200         struct rb_node **rb_link, *rb_parent;
1201         unsigned long charged = 0;
1202         struct inode *inode =  file ? file->f_path.dentry->d_inode : NULL;
1203
1204         /* Clear old maps */
1205         error = -ENOMEM;
1206 munmap_back:
1207         vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
1208         if (vma && vma->vm_start < addr + len) {
1209                 if (do_munmap(mm, addr, len))
1210                         return -ENOMEM;
1211                 goto munmap_back;
1212         }
1213
1214         /* Check against address space limit. */
1215         if (!may_expand_vm(mm, len >> PAGE_SHIFT))
1216                 return -ENOMEM;
1217
1218         /*
1219          * Set 'VM_NORESERVE' if we should not account for the
1220          * memory use of this mapping.
1221          */
1222         if ((flags & MAP_NORESERVE)) {
1223                 /* We honor MAP_NORESERVE if allowed to overcommit */
1224                 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1225                         vm_flags |= VM_NORESERVE;
1226
1227                 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1228                 if (file && is_file_hugepages(file))
1229                         vm_flags |= VM_NORESERVE;
1230         }
1231
1232         /*
1233          * Private writable mapping: check memory availability
1234          */
1235         if (accountable_mapping(file, vm_flags)) {
1236                 charged = len >> PAGE_SHIFT;
1237                 if (security_vm_enough_memory(charged))
1238                         return -ENOMEM;
1239                 vm_flags |= VM_ACCOUNT;
1240         }
1241
1242         /*
1243          * Can we just expand an old mapping?
1244          */
1245         vma = vma_merge(mm, prev, addr, addr + len, vm_flags, NULL, file, pgoff, NULL);
1246         if (vma)
1247                 goto out;
1248
1249         /*
1250          * Determine the object being mapped and call the appropriate
1251          * specific mapper. the address has already been validated, but
1252          * not unmapped, but the maps are removed from the list.
1253          */
1254         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1255         if (!vma) {
1256                 error = -ENOMEM;
1257                 goto unacct_error;
1258         }
1259
1260         vma->vm_mm = mm;
1261         vma->vm_start = addr;
1262         vma->vm_end = addr + len;
1263         vma->vm_flags = vm_flags;
1264         vma->vm_page_prot = vm_get_page_prot(vm_flags);
1265         vma->vm_pgoff = pgoff;
1266         INIT_LIST_HEAD(&vma->anon_vma_chain);
1267
1268         error = -EINVAL;        /* when rejecting VM_GROWSDOWN|VM_GROWSUP */
1269
1270         if (file) {
1271                 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1272                         goto free_vma;
1273                 if (vm_flags & VM_DENYWRITE) {
1274                         error = deny_write_access(file);
1275                         if (error)
1276                                 goto free_vma;
1277                         correct_wcount = 1;
1278                 }
1279                 vma->vm_file = file;
1280                 get_file(file);
1281                 error = file->f_op->mmap(file, vma);
1282                 if (error)
1283                         goto unmap_and_free_vma;
1284                 if (vm_flags & VM_EXECUTABLE)
1285                         added_exe_file_vma(mm);
1286
1287                 /* Can addr have changed??
1288                  *
1289                  * Answer: Yes, several device drivers can do it in their
1290                  *         f_op->mmap method. -DaveM
1291                  */
1292                 addr = vma->vm_start;
1293                 pgoff = vma->vm_pgoff;
1294                 vm_flags = vma->vm_flags;
1295         } else if (vm_flags & VM_SHARED) {
1296                 if (unlikely(vm_flags & (VM_GROWSDOWN|VM_GROWSUP)))
1297                         goto free_vma;
1298                 error = shmem_zero_setup(vma);
1299                 if (error)
1300                         goto free_vma;
1301         }
1302
1303         if (vma_wants_writenotify(vma)) {
1304                 pgprot_t pprot = vma->vm_page_prot;
1305
1306                 /* Can vma->vm_page_prot have changed??
1307                  *
1308                  * Answer: Yes, drivers may have changed it in their
1309                  *         f_op->mmap method.
1310                  *
1311                  * Ensures that vmas marked as uncached stay that way.
1312                  */
1313                 vma->vm_page_prot = vm_get_page_prot(vm_flags & ~VM_SHARED);
1314                 if (pgprot_val(pprot) == pgprot_val(pgprot_noncached(pprot)))
1315                         vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1316         }
1317
1318         vma_link(mm, vma, prev, rb_link, rb_parent);
1319         file = vma->vm_file;
1320
1321         /* Once vma denies write, undo our temporary denial count */
1322         if (correct_wcount)
1323                 atomic_inc(&inode->i_writecount);
1324 out:
1325         perf_event_mmap(vma);
1326
1327         mm->total_vm += len >> PAGE_SHIFT;
1328         vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT);
1329         if (vm_flags & VM_LOCKED) {
1330                 if (!mlock_vma_pages_range(vma, addr, addr + len))
1331                         mm->locked_vm += (len >> PAGE_SHIFT);
1332         } else if ((flags & MAP_POPULATE) && !(flags & MAP_NONBLOCK))
1333                 make_pages_present(addr, addr + len);
1334         return addr;
1335
1336 unmap_and_free_vma:
1337         if (correct_wcount)
1338                 atomic_inc(&inode->i_writecount);
1339         vma->vm_file = NULL;
1340         fput(file);
1341
1342         /* Undo any partial mapping done by a device driver. */
1343         unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1344         charged = 0;
1345 free_vma:
1346         kmem_cache_free(vm_area_cachep, vma);
1347 unacct_error:
1348         if (charged)
1349                 vm_unacct_memory(charged);
1350         return error;
1351 }
1352
1353 /* Get an address range which is currently unmapped.
1354  * For shmat() with addr=0.
1355  *
1356  * Ugly calling convention alert:
1357  * Return value with the low bits set means error value,
1358  * ie
1359  *      if (ret & ~PAGE_MASK)
1360  *              error = ret;
1361  *
1362  * This function "knows" that -ENOMEM has the bits set.
1363  */
1364 #ifndef HAVE_ARCH_UNMAPPED_AREA
1365 unsigned long
1366 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1367                 unsigned long len, unsigned long pgoff, unsigned long flags)
1368 {
1369         struct mm_struct *mm = current->mm;
1370         struct vm_area_struct *vma;
1371         unsigned long start_addr;
1372
1373         if (len > TASK_SIZE)
1374                 return -ENOMEM;
1375
1376         if (flags & MAP_FIXED)
1377                 return addr;
1378
1379         if (addr) {
1380                 addr = PAGE_ALIGN(addr);
1381                 vma = find_vma(mm, addr);
1382                 if (TASK_SIZE - len >= addr &&
1383                     (!vma || addr + len <= vma->vm_start))
1384                         return addr;
1385         }
1386         if (len > mm->cached_hole_size) {
1387                 start_addr = addr = mm->free_area_cache;
1388         } else {
1389                 start_addr = addr = TASK_UNMAPPED_BASE;
1390                 mm->cached_hole_size = 0;
1391         }
1392
1393 full_search:
1394         for (vma = find_vma(mm, addr); ; vma = vma->vm_next) {
1395                 /* At this point:  (!vma || addr < vma->vm_end). */
1396                 if (TASK_SIZE - len < addr) {
1397                         /*
1398                          * Start a new search - just in case we missed
1399                          * some holes.
1400                          */
1401                         if (start_addr != TASK_UNMAPPED_BASE) {
1402                                 addr = TASK_UNMAPPED_BASE;
1403                                 start_addr = addr;
1404                                 mm->cached_hole_size = 0;
1405                                 goto full_search;
1406                         }
1407                         return -ENOMEM;
1408                 }
1409                 if (!vma || addr + len <= vma->vm_start) {
1410                         /*
1411                          * Remember the place where we stopped the search:
1412                          */
1413                         mm->free_area_cache = addr + len;
1414                         return addr;
1415                 }
1416                 if (addr + mm->cached_hole_size < vma->vm_start)
1417                         mm->cached_hole_size = vma->vm_start - addr;
1418                 addr = vma->vm_end;
1419         }
1420 }
1421 #endif  
1422
1423 void arch_unmap_area(struct mm_struct *mm, unsigned long addr)
1424 {
1425         /*
1426          * Is this a new hole at the lowest possible address?
1427          */
1428         if (addr >= TASK_UNMAPPED_BASE && addr < mm->free_area_cache)
1429                 mm->free_area_cache = addr;
1430 }
1431
1432 /*
1433  * This mmap-allocator allocates new areas top-down from below the
1434  * stack's low limit (the base):
1435  */
1436 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1437 unsigned long
1438 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1439                           const unsigned long len, const unsigned long pgoff,
1440                           const unsigned long flags)
1441 {
1442         struct vm_area_struct *vma;
1443         struct mm_struct *mm = current->mm;
1444         unsigned long addr = addr0, start_addr;
1445
1446         /* requested length too big for entire address space */
1447         if (len > TASK_SIZE)
1448                 return -ENOMEM;
1449
1450         if (flags & MAP_FIXED)
1451                 return addr;
1452
1453         /* requesting a specific address */
1454         if (addr) {
1455                 addr = PAGE_ALIGN(addr);
1456                 vma = find_vma(mm, addr);
1457                 if (TASK_SIZE - len >= addr &&
1458                                 (!vma || addr + len <= vma->vm_start))
1459                         return addr;
1460         }
1461
1462         /* check if free_area_cache is useful for us */
1463         if (len <= mm->cached_hole_size) {
1464                 mm->cached_hole_size = 0;
1465                 mm->free_area_cache = mm->mmap_base;
1466         }
1467
1468 try_again:
1469         /* either no address requested or can't fit in requested address hole */
1470         start_addr = addr = mm->free_area_cache;
1471
1472         if (addr < len)
1473                 goto fail;
1474
1475         addr -= len;
1476         do {
1477                 /*
1478                  * Lookup failure means no vma is above this address,
1479                  * else if new region fits below vma->vm_start,
1480                  * return with success:
1481                  */
1482                 vma = find_vma(mm, addr);
1483                 if (!vma || addr+len <= vma->vm_start)
1484                         /* remember the address as a hint for next time */
1485                         return (mm->free_area_cache = addr);
1486
1487                 /* remember the largest hole we saw so far */
1488                 if (addr + mm->cached_hole_size < vma->vm_start)
1489                         mm->cached_hole_size = vma->vm_start - addr;
1490
1491                 /* try just below the current vma->vm_start */
1492                 addr = vma->vm_start-len;
1493         } while (len < vma->vm_start);
1494
1495 fail:
1496         /*
1497          * if hint left us with no space for the requested
1498          * mapping then try again:
1499          *
1500          * Note: this is different with the case of bottomup
1501          * which does the fully line-search, but we use find_vma
1502          * here that causes some holes skipped.
1503          */
1504         if (start_addr != mm->mmap_base) {
1505                 mm->free_area_cache = mm->mmap_base;
1506                 mm->cached_hole_size = 0;
1507                 goto try_again;
1508         }
1509
1510         /*
1511          * A failed mmap() very likely causes application failure,
1512          * so fall back to the bottom-up function here. This scenario
1513          * can happen with large stack limits and large mmap()
1514          * allocations.
1515          */
1516         mm->cached_hole_size = ~0UL;
1517         mm->free_area_cache = TASK_UNMAPPED_BASE;
1518         addr = arch_get_unmapped_area(filp, addr0, len, pgoff, flags);
1519         /*
1520          * Restore the topdown base:
1521          */
1522         mm->free_area_cache = mm->mmap_base;
1523         mm->cached_hole_size = ~0UL;
1524
1525         return addr;
1526 }
1527 #endif
1528
1529 void arch_unmap_area_topdown(struct mm_struct *mm, unsigned long addr)
1530 {
1531         /*
1532          * Is this a new hole at the highest possible address?
1533          */
1534         if (addr > mm->free_area_cache)
1535                 mm->free_area_cache = addr;
1536
1537         /* dont allow allocations above current base */
1538         if (mm->free_area_cache > mm->mmap_base)
1539                 mm->free_area_cache = mm->mmap_base;
1540 }
1541
1542 unsigned long
1543 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1544                 unsigned long pgoff, unsigned long flags)
1545 {
1546         unsigned long (*get_area)(struct file *, unsigned long,
1547                                   unsigned long, unsigned long, unsigned long);
1548
1549         unsigned long error = arch_mmap_check(addr, len, flags);
1550         if (error)
1551                 return error;
1552
1553         /* Careful about overflows.. */
1554         if (len > TASK_SIZE)
1555                 return -ENOMEM;
1556
1557         get_area = current->mm->get_unmapped_area;
1558         if (file && file->f_op && file->f_op->get_unmapped_area)
1559                 get_area = file->f_op->get_unmapped_area;
1560         addr = get_area(file, addr, len, pgoff, flags);
1561         if (IS_ERR_VALUE(addr))
1562                 return addr;
1563
1564         if (addr > TASK_SIZE - len)
1565                 return -ENOMEM;
1566         if (addr & ~PAGE_MASK)
1567                 return -EINVAL;
1568
1569         return arch_rebalance_pgtables(addr, len);
1570 }
1571
1572 EXPORT_SYMBOL(get_unmapped_area);
1573
1574 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
1575 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
1576 {
1577         struct vm_area_struct *vma = NULL;
1578
1579         if (mm) {
1580                 /* Check the cache first. */
1581                 /* (Cache hit rate is typically around 35%.) */
1582                 vma = mm->mmap_cache;
1583                 if (!(vma && vma->vm_end > addr && vma->vm_start <= addr)) {
1584                         struct rb_node * rb_node;
1585
1586                         rb_node = mm->mm_rb.rb_node;
1587                         vma = NULL;
1588
1589                         while (rb_node) {
1590                                 struct vm_area_struct * vma_tmp;
1591
1592                                 vma_tmp = rb_entry(rb_node,
1593                                                 struct vm_area_struct, vm_rb);
1594
1595                                 if (vma_tmp->vm_end > addr) {
1596                                         vma = vma_tmp;
1597                                         if (vma_tmp->vm_start <= addr)
1598                                                 break;
1599                                         rb_node = rb_node->rb_left;
1600                                 } else
1601                                         rb_node = rb_node->rb_right;
1602                         }
1603                         if (vma)
1604                                 mm->mmap_cache = vma;
1605                 }
1606         }
1607         return vma;
1608 }
1609
1610 EXPORT_SYMBOL(find_vma);
1611
1612 /*
1613  * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
1614  */
1615 struct vm_area_struct *
1616 find_vma_prev(struct mm_struct *mm, unsigned long addr,
1617                         struct vm_area_struct **pprev)
1618 {
1619         struct vm_area_struct *vma;
1620
1621         vma = find_vma(mm, addr);
1622         if (vma) {
1623                 *pprev = vma->vm_prev;
1624         } else {
1625                 struct rb_node *rb_node = mm->mm_rb.rb_node;
1626                 *pprev = NULL;
1627                 while (rb_node) {
1628                         *pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb);
1629                         rb_node = rb_node->rb_right;
1630                 }
1631         }
1632         return vma;
1633 }
1634
1635 /*
1636  * Verify that the stack growth is acceptable and
1637  * update accounting. This is shared with both the
1638  * grow-up and grow-down cases.
1639  */
1640 static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow)
1641 {
1642         struct mm_struct *mm = vma->vm_mm;
1643         struct rlimit *rlim = current->signal->rlim;
1644         unsigned long new_start;
1645
1646         /* address space limit tests */
1647         if (!may_expand_vm(mm, grow))
1648                 return -ENOMEM;
1649
1650         /* Stack limit test */
1651         if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur))
1652                 return -ENOMEM;
1653
1654         /* mlock limit tests */
1655         if (vma->vm_flags & VM_LOCKED) {
1656                 unsigned long locked;
1657                 unsigned long limit;
1658                 locked = mm->locked_vm + grow;
1659                 limit = ACCESS_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur);
1660                 limit >>= PAGE_SHIFT;
1661                 if (locked > limit && !capable(CAP_IPC_LOCK))
1662                         return -ENOMEM;
1663         }
1664
1665         /* Check to ensure the stack will not grow into a hugetlb-only region */
1666         new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
1667                         vma->vm_end - size;
1668         if (is_hugepage_only_range(vma->vm_mm, new_start, size))
1669                 return -EFAULT;
1670
1671         /*
1672          * Overcommit..  This must be the final test, as it will
1673          * update security statistics.
1674          */
1675         if (security_vm_enough_memory_mm(mm, grow))
1676                 return -ENOMEM;
1677
1678         /* Ok, everything looks good - let it rip */
1679         mm->total_vm += grow;
1680         if (vma->vm_flags & VM_LOCKED)
1681                 mm->locked_vm += grow;
1682         vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow);
1683         return 0;
1684 }
1685
1686 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
1687 /*
1688  * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
1689  * vma is the last one with address > vma->vm_end.  Have to extend vma.
1690  */
1691 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
1692 {
1693         int error;
1694
1695         if (!(vma->vm_flags & VM_GROWSUP))
1696                 return -EFAULT;
1697
1698         /*
1699          * We must make sure the anon_vma is allocated
1700          * so that the anon_vma locking is not a noop.
1701          */
1702         if (unlikely(anon_vma_prepare(vma)))
1703                 return -ENOMEM;
1704         vma_lock_anon_vma(vma);
1705
1706         /*
1707          * vma->vm_start/vm_end cannot change under us because the caller
1708          * is required to hold the mmap_sem in read mode.  We need the
1709          * anon_vma lock to serialize against concurrent expand_stacks.
1710          * Also guard against wrapping around to address 0.
1711          */
1712         if (address < PAGE_ALIGN(address+4))
1713                 address = PAGE_ALIGN(address+4);
1714         else {
1715                 vma_unlock_anon_vma(vma);
1716                 return -ENOMEM;
1717         }
1718         error = 0;
1719
1720         /* Somebody else might have raced and expanded it already */
1721         if (address > vma->vm_end) {
1722                 unsigned long size, grow;
1723
1724                 size = address - vma->vm_start;
1725                 grow = (address - vma->vm_end) >> PAGE_SHIFT;
1726
1727                 error = -ENOMEM;
1728                 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
1729                         error = acct_stack_growth(vma, size, grow);
1730                         if (!error) {
1731                                 vma->vm_end = address;
1732                                 perf_event_mmap(vma);
1733                         }
1734                 }
1735         }
1736         vma_unlock_anon_vma(vma);
1737         khugepaged_enter_vma_merge(vma);
1738         return error;
1739 }
1740 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
1741
1742 /*
1743  * vma is the first one with address < vma->vm_start.  Have to extend vma.
1744  */
1745 int expand_downwards(struct vm_area_struct *vma,
1746                                    unsigned long address)
1747 {
1748         int error;
1749
1750         /*
1751          * We must make sure the anon_vma is allocated
1752          * so that the anon_vma locking is not a noop.
1753          */
1754         if (unlikely(anon_vma_prepare(vma)))
1755                 return -ENOMEM;
1756
1757         address &= PAGE_MASK;
1758         error = security_file_mmap(NULL, 0, 0, 0, address, 1);
1759         if (error)
1760                 return error;
1761
1762         vma_lock_anon_vma(vma);
1763
1764         /*
1765          * vma->vm_start/vm_end cannot change under us because the caller
1766          * is required to hold the mmap_sem in read mode.  We need the
1767          * anon_vma lock to serialize against concurrent expand_stacks.
1768          */
1769
1770         /* Somebody else might have raced and expanded it already */
1771         if (address < vma->vm_start) {
1772                 unsigned long size, grow;
1773
1774                 size = vma->vm_end - address;
1775                 grow = (vma->vm_start - address) >> PAGE_SHIFT;
1776
1777                 error = -ENOMEM;
1778                 if (grow <= vma->vm_pgoff) {
1779                         error = acct_stack_growth(vma, size, grow);
1780                         if (!error) {
1781                                 vma->vm_start = address;
1782                                 vma->vm_pgoff -= grow;
1783                                 perf_event_mmap(vma);
1784                         }
1785                 }
1786         }
1787         vma_unlock_anon_vma(vma);
1788         khugepaged_enter_vma_merge(vma);
1789         return error;
1790 }
1791
1792 #ifdef CONFIG_STACK_GROWSUP
1793 int expand_stack(struct vm_area_struct *vma, unsigned long address)
1794 {
1795         return expand_upwards(vma, address);
1796 }
1797
1798 struct vm_area_struct *
1799 find_extend_vma(struct mm_struct *mm, unsigned long addr)
1800 {
1801         struct vm_area_struct *vma, *prev;
1802
1803         addr &= PAGE_MASK;
1804         vma = find_vma_prev(mm, addr, &prev);
1805         if (vma && (vma->vm_start <= addr))
1806                 return vma;
1807         if (!prev || expand_stack(prev, addr))
1808                 return NULL;
1809         if (prev->vm_flags & VM_LOCKED) {
1810                 mlock_vma_pages_range(prev, addr, prev->vm_end);
1811         }
1812         return prev;
1813 }
1814 #else
1815 int expand_stack(struct vm_area_struct *vma, unsigned long address)
1816 {
1817         return expand_downwards(vma, address);
1818 }
1819
1820 struct vm_area_struct *
1821 find_extend_vma(struct mm_struct * mm, unsigned long addr)
1822 {
1823         struct vm_area_struct * vma;
1824         unsigned long start;
1825
1826         addr &= PAGE_MASK;
1827         vma = find_vma(mm,addr);
1828         if (!vma)
1829                 return NULL;
1830         if (vma->vm_start <= addr)
1831                 return vma;
1832         if (!(vma->vm_flags & VM_GROWSDOWN))
1833                 return NULL;
1834         start = vma->vm_start;
1835         if (expand_stack(vma, addr))
1836                 return NULL;
1837         if (vma->vm_flags & VM_LOCKED) {
1838                 mlock_vma_pages_range(vma, addr, start);
1839         }
1840         return vma;
1841 }
1842 #endif
1843
1844 /*
1845  * Ok - we have the memory areas we should free on the vma list,
1846  * so release them, and do the vma updates.
1847  *
1848  * Called with the mm semaphore held.
1849  */
1850 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
1851 {
1852         /* Update high watermark before we lower total_vm */
1853         update_hiwater_vm(mm);
1854         do {
1855                 long nrpages = vma_pages(vma);
1856
1857                 mm->total_vm -= nrpages;
1858                 vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages);
1859                 vma = remove_vma(vma);
1860         } while (vma);
1861         validate_mm(mm);
1862 }
1863
1864 /*
1865  * Get rid of page table information in the indicated region.
1866  *
1867  * Called with the mm semaphore held.
1868  */
1869 static void unmap_region(struct mm_struct *mm,
1870                 struct vm_area_struct *vma, struct vm_area_struct *prev,
1871                 unsigned long start, unsigned long end)
1872 {
1873         struct vm_area_struct *next = prev? prev->vm_next: mm->mmap;
1874         struct mmu_gather tlb;
1875         unsigned long nr_accounted = 0;
1876
1877         lru_add_drain();
1878         tlb_gather_mmu(&tlb, mm, 0);
1879         update_hiwater_rss(mm);
1880         unmap_vmas(&tlb, vma, start, end, &nr_accounted, NULL);
1881         vm_unacct_memory(nr_accounted);
1882         free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
1883                                  next ? next->vm_start : 0);
1884         tlb_finish_mmu(&tlb, start, end);
1885 }
1886
1887 /*
1888  * Create a list of vma's touched by the unmap, removing them from the mm's
1889  * vma list as we go..
1890  */
1891 static void
1892 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
1893         struct vm_area_struct *prev, unsigned long end)
1894 {
1895         struct vm_area_struct **insertion_point;
1896         struct vm_area_struct *tail_vma = NULL;
1897         unsigned long addr;
1898
1899         insertion_point = (prev ? &prev->vm_next : &mm->mmap);
1900         vma->vm_prev = NULL;
1901         do {
1902                 rb_erase(&vma->vm_rb, &mm->mm_rb);
1903                 mm->map_count--;
1904                 tail_vma = vma;
1905                 vma = vma->vm_next;
1906         } while (vma && vma->vm_start < end);
1907         *insertion_point = vma;
1908         if (vma)
1909                 vma->vm_prev = prev;
1910         tail_vma->vm_next = NULL;
1911         if (mm->unmap_area == arch_unmap_area)
1912                 addr = prev ? prev->vm_end : mm->mmap_base;
1913         else
1914                 addr = vma ?  vma->vm_start : mm->mmap_base;
1915         mm->unmap_area(mm, addr);
1916         mm->mmap_cache = NULL;          /* Kill the cache. */
1917 }
1918
1919 /*
1920  * __split_vma() bypasses sysctl_max_map_count checking.  We use this on the
1921  * munmap path where it doesn't make sense to fail.
1922  */
1923 static int __split_vma(struct mm_struct * mm, struct vm_area_struct * vma,
1924               unsigned long addr, int new_below)
1925 {
1926         struct mempolicy *pol;
1927         struct vm_area_struct *new;
1928         int err = -ENOMEM;
1929
1930         if (is_vm_hugetlb_page(vma) && (addr &
1931                                         ~(huge_page_mask(hstate_vma(vma)))))
1932                 return -EINVAL;
1933
1934         new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
1935         if (!new)
1936                 goto out_err;
1937
1938         /* most fields are the same, copy all, and then fixup */
1939         *new = *vma;
1940
1941         INIT_LIST_HEAD(&new->anon_vma_chain);
1942
1943         if (new_below)
1944                 new->vm_end = addr;
1945         else {
1946                 new->vm_start = addr;
1947                 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
1948         }
1949
1950         pol = mpol_dup(vma_policy(vma));
1951         if (IS_ERR(pol)) {
1952                 err = PTR_ERR(pol);
1953                 goto out_free_vma;
1954         }
1955         vma_set_policy(new, pol);
1956
1957         if (anon_vma_clone(new, vma))
1958                 goto out_free_mpol;
1959
1960         if (new->vm_file) {
1961                 get_file(new->vm_file);
1962                 if (vma->vm_flags & VM_EXECUTABLE)
1963                         added_exe_file_vma(mm);
1964         }
1965
1966         if (new->vm_ops && new->vm_ops->open)
1967                 new->vm_ops->open(new);
1968
1969         if (new_below)
1970                 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
1971                         ((addr - new->vm_start) >> PAGE_SHIFT), new);
1972         else
1973                 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
1974
1975         /* Success. */
1976         if (!err)
1977                 return 0;
1978
1979         /* Clean everything up if vma_adjust failed. */
1980         if (new->vm_ops && new->vm_ops->close)
1981                 new->vm_ops->close(new);
1982         if (new->vm_file) {
1983                 if (vma->vm_flags & VM_EXECUTABLE)
1984                         removed_exe_file_vma(mm);
1985                 fput(new->vm_file);
1986         }
1987         unlink_anon_vmas(new);
1988  out_free_mpol:
1989         mpol_put(pol);
1990  out_free_vma:
1991         kmem_cache_free(vm_area_cachep, new);
1992  out_err:
1993         return err;
1994 }
1995
1996 /*
1997  * Split a vma into two pieces at address 'addr', a new vma is allocated
1998  * either for the first part or the tail.
1999  */
2000 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2001               unsigned long addr, int new_below)
2002 {
2003         if (mm->map_count >= sysctl_max_map_count)
2004                 return -ENOMEM;
2005
2006         return __split_vma(mm, vma, addr, new_below);
2007 }
2008
2009 /* Munmap is split into 2 main parts -- this part which finds
2010  * what needs doing, and the areas themselves, which do the
2011  * work.  This now handles partial unmappings.
2012  * Jeremy Fitzhardinge <jeremy@goop.org>
2013  */
2014 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
2015 {
2016         unsigned long end;
2017         struct vm_area_struct *vma, *prev, *last;
2018
2019         if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start)
2020                 return -EINVAL;
2021
2022         if ((len = PAGE_ALIGN(len)) == 0)
2023                 return -EINVAL;
2024
2025         /* Find the first overlapping VMA */
2026         vma = find_vma(mm, start);
2027         if (!vma)
2028                 return 0;
2029         prev = vma->vm_prev;
2030         /* we have  start < vma->vm_end  */
2031
2032         /* if it doesn't overlap, we have nothing.. */
2033         end = start + len;
2034         if (vma->vm_start >= end)
2035                 return 0;
2036
2037         /*
2038          * If we need to split any vma, do it now to save pain later.
2039          *
2040          * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2041          * unmapped vm_area_struct will remain in use: so lower split_vma
2042          * places tmp vma above, and higher split_vma places tmp vma below.
2043          */
2044         if (start > vma->vm_start) {
2045                 int error;
2046
2047                 /*
2048                  * Make sure that map_count on return from munmap() will
2049                  * not exceed its limit; but let map_count go just above
2050                  * its limit temporarily, to help free resources as expected.
2051                  */
2052                 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2053                         return -ENOMEM;
2054
2055                 error = __split_vma(mm, vma, start, 0);
2056                 if (error)
2057                         return error;
2058                 prev = vma;
2059         }
2060
2061         /* Does it split the last one? */
2062         last = find_vma(mm, end);
2063         if (last && end > last->vm_start) {
2064                 int error = __split_vma(mm, last, end, 1);
2065                 if (error)
2066                         return error;
2067         }
2068         vma = prev? prev->vm_next: mm->mmap;
2069
2070         /*
2071          * unlock any mlock()ed ranges before detaching vmas
2072          */
2073         if (mm->locked_vm) {
2074                 struct vm_area_struct *tmp = vma;
2075                 while (tmp && tmp->vm_start < end) {
2076                         if (tmp->vm_flags & VM_LOCKED) {
2077                                 mm->locked_vm -= vma_pages(tmp);
2078                                 munlock_vma_pages_all(tmp);
2079                         }
2080                         tmp = tmp->vm_next;
2081                 }
2082         }
2083
2084         /*
2085          * Remove the vma's, and unmap the actual pages
2086          */
2087         detach_vmas_to_be_unmapped(mm, vma, prev, end);
2088         unmap_region(mm, vma, prev, start, end);
2089
2090         /* Fix up all other VM information */
2091         remove_vma_list(mm, vma);
2092
2093         return 0;
2094 }
2095
2096 EXPORT_SYMBOL(do_munmap);
2097
2098 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2099 {
2100         int ret;
2101         struct mm_struct *mm = current->mm;
2102
2103         profile_munmap(addr);
2104
2105         down_write(&mm->mmap_sem);
2106         ret = do_munmap(mm, addr, len);
2107         up_write(&mm->mmap_sem);
2108         return ret;
2109 }
2110
2111 static inline void verify_mm_writelocked(struct mm_struct *mm)
2112 {
2113 #ifdef CONFIG_DEBUG_VM
2114         if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2115                 WARN_ON(1);
2116                 up_read(&mm->mmap_sem);
2117         }
2118 #endif
2119 }
2120
2121 /*
2122  *  this is really a simplified "do_mmap".  it only handles
2123  *  anonymous maps.  eventually we may be able to do some
2124  *  brk-specific accounting here.
2125  */
2126 unsigned long do_brk(unsigned long addr, unsigned long len)
2127 {
2128         struct mm_struct * mm = current->mm;
2129         struct vm_area_struct * vma, * prev;
2130         unsigned long flags;
2131         struct rb_node ** rb_link, * rb_parent;
2132         pgoff_t pgoff = addr >> PAGE_SHIFT;
2133         int error;
2134
2135         len = PAGE_ALIGN(len);
2136         if (!len)
2137                 return addr;
2138
2139         error = security_file_mmap(NULL, 0, 0, 0, addr, 1);
2140         if (error)
2141                 return error;
2142
2143         flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2144
2145         error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2146         if (error & ~PAGE_MASK)
2147                 return error;
2148
2149         /*
2150          * mlock MCL_FUTURE?
2151          */
2152         if (mm->def_flags & VM_LOCKED) {
2153                 unsigned long locked, lock_limit;
2154                 locked = len >> PAGE_SHIFT;
2155                 locked += mm->locked_vm;
2156                 lock_limit = rlimit(RLIMIT_MEMLOCK);
2157                 lock_limit >>= PAGE_SHIFT;
2158                 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
2159                         return -EAGAIN;
2160         }
2161
2162         /*
2163          * mm->mmap_sem is required to protect against another thread
2164          * changing the mappings in case we sleep.
2165          */
2166         verify_mm_writelocked(mm);
2167
2168         /*
2169          * Clear old maps.  this also does some error checking for us
2170          */
2171  munmap_back:
2172         vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
2173         if (vma && vma->vm_start < addr + len) {
2174                 if (do_munmap(mm, addr, len))
2175                         return -ENOMEM;
2176                 goto munmap_back;
2177         }
2178
2179         /* Check against address space limits *after* clearing old maps... */
2180         if (!may_expand_vm(mm, len >> PAGE_SHIFT))
2181                 return -ENOMEM;
2182
2183         if (mm->map_count > sysctl_max_map_count)
2184                 return -ENOMEM;
2185
2186         if (security_vm_enough_memory(len >> PAGE_SHIFT))
2187                 return -ENOMEM;
2188
2189         /* Can we just expand an old private anonymous mapping? */
2190         vma = vma_merge(mm, prev, addr, addr + len, flags,
2191                                         NULL, NULL, pgoff, NULL);
2192         if (vma)
2193                 goto out;
2194
2195         /*
2196          * create a vma struct for an anonymous mapping
2197          */
2198         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2199         if (!vma) {
2200                 vm_unacct_memory(len >> PAGE_SHIFT);
2201                 return -ENOMEM;
2202         }
2203
2204         INIT_LIST_HEAD(&vma->anon_vma_chain);
2205         vma->vm_mm = mm;
2206         vma->vm_start = addr;
2207         vma->vm_end = addr + len;
2208         vma->vm_pgoff = pgoff;
2209         vma->vm_flags = flags;
2210         vma->vm_page_prot = vm_get_page_prot(flags);
2211         vma_link(mm, vma, prev, rb_link, rb_parent);
2212 out:
2213         perf_event_mmap(vma);
2214         mm->total_vm += len >> PAGE_SHIFT;
2215         if (flags & VM_LOCKED) {
2216                 if (!mlock_vma_pages_range(vma, addr, addr + len))
2217                         mm->locked_vm += (len >> PAGE_SHIFT);
2218         }
2219         return addr;
2220 }
2221
2222 EXPORT_SYMBOL(do_brk);
2223
2224 /* Release all mmaps. */
2225 void exit_mmap(struct mm_struct *mm)
2226 {
2227         struct mmu_gather tlb;
2228         struct vm_area_struct *vma;
2229         unsigned long nr_accounted = 0;
2230         unsigned long end;
2231
2232         /* mm's last user has gone, and its about to be pulled down */
2233         mmu_notifier_release(mm);
2234
2235         if (mm->locked_vm) {
2236                 vma = mm->mmap;
2237                 while (vma) {
2238                         if (vma->vm_flags & VM_LOCKED)
2239                                 munlock_vma_pages_all(vma);
2240                         vma = vma->vm_next;
2241                 }
2242         }
2243
2244         arch_exit_mmap(mm);
2245
2246         vma = mm->mmap;
2247         if (!vma)       /* Can happen if dup_mmap() received an OOM */
2248                 return;
2249
2250         lru_add_drain();
2251         flush_cache_mm(mm);
2252         tlb_gather_mmu(&tlb, mm, 1);
2253         /* update_hiwater_rss(mm) here? but nobody should be looking */
2254         /* Use -1 here to ensure all VMAs in the mm are unmapped */
2255         end = unmap_vmas(&tlb, vma, 0, -1, &nr_accounted, NULL);
2256         vm_unacct_memory(nr_accounted);
2257
2258         free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, 0);
2259         tlb_finish_mmu(&tlb, 0, end);
2260
2261         /*
2262          * Walk the list again, actually closing and freeing it,
2263          * with preemption enabled, without holding any MM locks.
2264          */
2265         while (vma)
2266                 vma = remove_vma(vma);
2267
2268         BUG_ON(mm->nr_ptes > (FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT);
2269 }
2270
2271 /* Insert vm structure into process list sorted by address
2272  * and into the inode's i_mmap tree.  If vm_file is non-NULL
2273  * then i_mmap_mutex is taken here.
2274  */
2275 int insert_vm_struct(struct mm_struct * mm, struct vm_area_struct * vma)
2276 {
2277         struct vm_area_struct * __vma, * prev;
2278         struct rb_node ** rb_link, * rb_parent;
2279
2280         /*
2281          * The vm_pgoff of a purely anonymous vma should be irrelevant
2282          * until its first write fault, when page's anon_vma and index
2283          * are set.  But now set the vm_pgoff it will almost certainly
2284          * end up with (unless mremap moves it elsewhere before that
2285          * first wfault), so /proc/pid/maps tells a consistent story.
2286          *
2287          * By setting it to reflect the virtual start address of the
2288          * vma, merges and splits can happen in a seamless way, just
2289          * using the existing file pgoff checks and manipulations.
2290          * Similarly in do_mmap_pgoff and in do_brk.
2291          */
2292         if (!vma->vm_file) {
2293                 BUG_ON(vma->anon_vma);
2294                 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2295         }
2296         __vma = find_vma_prepare(mm,vma->vm_start,&prev,&rb_link,&rb_parent);
2297         if (__vma && __vma->vm_start < vma->vm_end)
2298                 return -ENOMEM;
2299         if ((vma->vm_flags & VM_ACCOUNT) &&
2300              security_vm_enough_memory_mm(mm, vma_pages(vma)))
2301                 return -ENOMEM;
2302         vma_link(mm, vma, prev, rb_link, rb_parent);
2303         return 0;
2304 }
2305
2306 /*
2307  * Copy the vma structure to a new location in the same mm,
2308  * prior to moving page table entries, to effect an mremap move.
2309  */
2310 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2311         unsigned long addr, unsigned long len, pgoff_t pgoff)
2312 {
2313         struct vm_area_struct *vma = *vmap;
2314         unsigned long vma_start = vma->vm_start;
2315         struct mm_struct *mm = vma->vm_mm;
2316         struct vm_area_struct *new_vma, *prev;
2317         struct rb_node **rb_link, *rb_parent;
2318         struct mempolicy *pol;
2319         bool faulted_in_anon_vma = true;
2320
2321         /*
2322          * If anonymous vma has not yet been faulted, update new pgoff
2323          * to match new location, to increase its chance of merging.
2324          */
2325         if (unlikely(!vma->vm_file && !vma->anon_vma)) {
2326                 pgoff = addr >> PAGE_SHIFT;
2327                 faulted_in_anon_vma = false;
2328         }
2329
2330         find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
2331         new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2332                         vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma));
2333         if (new_vma) {
2334                 /*
2335                  * Source vma may have been merged into new_vma
2336                  */
2337                 if (unlikely(vma_start >= new_vma->vm_start &&
2338                              vma_start < new_vma->vm_end)) {
2339                         /*
2340                          * The only way we can get a vma_merge with
2341                          * self during an mremap is if the vma hasn't
2342                          * been faulted in yet and we were allowed to
2343                          * reset the dst vma->vm_pgoff to the
2344                          * destination address of the mremap to allow
2345                          * the merge to happen. mremap must change the
2346                          * vm_pgoff linearity between src and dst vmas
2347                          * (in turn preventing a vma_merge) to be
2348                          * safe. It is only safe to keep the vm_pgoff
2349                          * linear if there are no pages mapped yet.
2350                          */
2351                         VM_BUG_ON(faulted_in_anon_vma);
2352                         *vmap = new_vma;
2353                 } else
2354                         anon_vma_moveto_tail(new_vma);
2355         } else {
2356                 new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2357                 if (new_vma) {
2358                         *new_vma = *vma;
2359                         pol = mpol_dup(vma_policy(vma));
2360                         if (IS_ERR(pol))
2361                                 goto out_free_vma;
2362                         INIT_LIST_HEAD(&new_vma->anon_vma_chain);
2363                         if (anon_vma_clone(new_vma, vma))
2364                                 goto out_free_mempol;
2365                         vma_set_policy(new_vma, pol);
2366                         new_vma->vm_start = addr;
2367                         new_vma->vm_end = addr + len;
2368                         new_vma->vm_pgoff = pgoff;
2369                         if (new_vma->vm_file) {
2370                                 get_file(new_vma->vm_file);
2371                                 if (vma->vm_flags & VM_EXECUTABLE)
2372                                         added_exe_file_vma(mm);
2373                         }
2374                         if (new_vma->vm_ops && new_vma->vm_ops->open)
2375                                 new_vma->vm_ops->open(new_vma);
2376                         vma_link(mm, new_vma, prev, rb_link, rb_parent);
2377                 }
2378         }
2379         return new_vma;
2380
2381  out_free_mempol:
2382         mpol_put(pol);
2383  out_free_vma:
2384         kmem_cache_free(vm_area_cachep, new_vma);
2385         return NULL;
2386 }
2387
2388 /*
2389  * Return true if the calling process may expand its vm space by the passed
2390  * number of pages
2391  */
2392 int may_expand_vm(struct mm_struct *mm, unsigned long npages)
2393 {
2394         unsigned long cur = mm->total_vm;       /* pages */
2395         unsigned long lim;
2396
2397         lim = rlimit(RLIMIT_AS) >> PAGE_SHIFT;
2398
2399         if (cur + npages > lim)
2400                 return 0;
2401         return 1;
2402 }
2403
2404
2405 static int special_mapping_fault(struct vm_area_struct *vma,
2406                                 struct vm_fault *vmf)
2407 {
2408         pgoff_t pgoff;
2409         struct page **pages;
2410
2411         /*
2412          * special mappings have no vm_file, and in that case, the mm
2413          * uses vm_pgoff internally. So we have to subtract it from here.
2414          * We are allowed to do this because we are the mm; do not copy
2415          * this code into drivers!
2416          */
2417         pgoff = vmf->pgoff - vma->vm_pgoff;
2418
2419         for (pages = vma->vm_private_data; pgoff && *pages; ++pages)
2420                 pgoff--;
2421
2422         if (*pages) {
2423                 struct page *page = *pages;
2424                 get_page(page);
2425                 vmf->page = page;
2426                 return 0;
2427         }
2428
2429         return VM_FAULT_SIGBUS;
2430 }
2431
2432 /*
2433  * Having a close hook prevents vma merging regardless of flags.
2434  */
2435 static void special_mapping_close(struct vm_area_struct *vma)
2436 {
2437 }
2438
2439 static const struct vm_operations_struct special_mapping_vmops = {
2440         .close = special_mapping_close,
2441         .fault = special_mapping_fault,
2442 };
2443
2444 /*
2445  * Called with mm->mmap_sem held for writing.
2446  * Insert a new vma covering the given region, with the given flags.
2447  * Its pages are supplied by the given array of struct page *.
2448  * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
2449  * The region past the last page supplied will always produce SIGBUS.
2450  * The array pointer and the pages it points to are assumed to stay alive
2451  * for as long as this mapping might exist.
2452  */
2453 int install_special_mapping(struct mm_struct *mm,
2454                             unsigned long addr, unsigned long len,
2455                             unsigned long vm_flags, struct page **pages)
2456 {
2457         int ret;
2458         struct vm_area_struct *vma;
2459
2460         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2461         if (unlikely(vma == NULL))
2462                 return -ENOMEM;
2463
2464         INIT_LIST_HEAD(&vma->anon_vma_chain);
2465         vma->vm_mm = mm;
2466         vma->vm_start = addr;
2467         vma->vm_end = addr + len;
2468
2469         vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND;
2470         vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2471
2472         vma->vm_ops = &special_mapping_vmops;
2473         vma->vm_private_data = pages;
2474
2475         ret = security_file_mmap(NULL, 0, 0, 0, vma->vm_start, 1);
2476         if (ret)
2477                 goto out;
2478
2479         ret = insert_vm_struct(mm, vma);
2480         if (ret)
2481                 goto out;
2482
2483         mm->total_vm += len >> PAGE_SHIFT;
2484
2485         perf_event_mmap(vma);
2486
2487         return 0;
2488
2489 out:
2490         kmem_cache_free(vm_area_cachep, vma);
2491         return ret;
2492 }
2493
2494 static DEFINE_MUTEX(mm_all_locks_mutex);
2495
2496 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
2497 {
2498         if (!test_bit(0, (unsigned long *) &anon_vma->root->head.next)) {
2499                 /*
2500                  * The LSB of head.next can't change from under us
2501                  * because we hold the mm_all_locks_mutex.
2502                  */
2503                 mutex_lock_nest_lock(&anon_vma->root->mutex, &mm->mmap_sem);
2504                 /*
2505                  * We can safely modify head.next after taking the
2506                  * anon_vma->root->mutex. If some other vma in this mm shares
2507                  * the same anon_vma we won't take it again.
2508                  *
2509                  * No need of atomic instructions here, head.next
2510                  * can't change from under us thanks to the
2511                  * anon_vma->root->mutex.
2512                  */
2513                 if (__test_and_set_bit(0, (unsigned long *)
2514                                        &anon_vma->root->head.next))
2515                         BUG();
2516         }
2517 }
2518
2519 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
2520 {
2521         if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2522                 /*
2523                  * AS_MM_ALL_LOCKS can't change from under us because
2524                  * we hold the mm_all_locks_mutex.
2525                  *
2526                  * Operations on ->flags have to be atomic because
2527                  * even if AS_MM_ALL_LOCKS is stable thanks to the
2528                  * mm_all_locks_mutex, there may be other cpus
2529                  * changing other bitflags in parallel to us.
2530                  */
2531                 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
2532                         BUG();
2533                 mutex_lock_nest_lock(&mapping->i_mmap_mutex, &mm->mmap_sem);
2534         }
2535 }
2536
2537 /*
2538  * This operation locks against the VM for all pte/vma/mm related
2539  * operations that could ever happen on a certain mm. This includes
2540  * vmtruncate, try_to_unmap, and all page faults.
2541  *
2542  * The caller must take the mmap_sem in write mode before calling
2543  * mm_take_all_locks(). The caller isn't allowed to release the
2544  * mmap_sem until mm_drop_all_locks() returns.
2545  *
2546  * mmap_sem in write mode is required in order to block all operations
2547  * that could modify pagetables and free pages without need of
2548  * altering the vma layout (for example populate_range() with
2549  * nonlinear vmas). It's also needed in write mode to avoid new
2550  * anon_vmas to be associated with existing vmas.
2551  *
2552  * A single task can't take more than one mm_take_all_locks() in a row
2553  * or it would deadlock.
2554  *
2555  * The LSB in anon_vma->head.next and the AS_MM_ALL_LOCKS bitflag in
2556  * mapping->flags avoid to take the same lock twice, if more than one
2557  * vma in this mm is backed by the same anon_vma or address_space.
2558  *
2559  * We can take all the locks in random order because the VM code
2560  * taking i_mmap_mutex or anon_vma->mutex outside the mmap_sem never
2561  * takes more than one of them in a row. Secondly we're protected
2562  * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex.
2563  *
2564  * mm_take_all_locks() and mm_drop_all_locks are expensive operations
2565  * that may have to take thousand of locks.
2566  *
2567  * mm_take_all_locks() can fail if it's interrupted by signals.
2568  */
2569 int mm_take_all_locks(struct mm_struct *mm)
2570 {
2571         struct vm_area_struct *vma;
2572         struct anon_vma_chain *avc;
2573
2574         BUG_ON(down_read_trylock(&mm->mmap_sem));
2575
2576         mutex_lock(&mm_all_locks_mutex);
2577
2578         for (vma = mm->mmap; vma; vma = vma->vm_next) {
2579                 if (signal_pending(current))
2580                         goto out_unlock;
2581                 if (vma->vm_file && vma->vm_file->f_mapping)
2582                         vm_lock_mapping(mm, vma->vm_file->f_mapping);
2583         }
2584
2585         for (vma = mm->mmap; vma; vma = vma->vm_next) {
2586                 if (signal_pending(current))
2587                         goto out_unlock;
2588                 if (vma->anon_vma)
2589                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
2590                                 vm_lock_anon_vma(mm, avc->anon_vma);
2591         }
2592
2593         return 0;
2594
2595 out_unlock:
2596         mm_drop_all_locks(mm);
2597         return -EINTR;
2598 }
2599
2600 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
2601 {
2602         if (test_bit(0, (unsigned long *) &anon_vma->root->head.next)) {
2603                 /*
2604                  * The LSB of head.next can't change to 0 from under
2605                  * us because we hold the mm_all_locks_mutex.
2606                  *
2607                  * We must however clear the bitflag before unlocking
2608                  * the vma so the users using the anon_vma->head will
2609                  * never see our bitflag.
2610                  *
2611                  * No need of atomic instructions here, head.next
2612                  * can't change from under us until we release the
2613                  * anon_vma->root->mutex.
2614                  */
2615                 if (!__test_and_clear_bit(0, (unsigned long *)
2616                                           &anon_vma->root->head.next))
2617                         BUG();
2618                 anon_vma_unlock(anon_vma);
2619         }
2620 }
2621
2622 static void vm_unlock_mapping(struct address_space *mapping)
2623 {
2624         if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2625                 /*
2626                  * AS_MM_ALL_LOCKS can't change to 0 from under us
2627                  * because we hold the mm_all_locks_mutex.
2628                  */
2629                 mutex_unlock(&mapping->i_mmap_mutex);
2630                 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
2631                                         &mapping->flags))
2632                         BUG();
2633         }
2634 }
2635
2636 /*
2637  * The mmap_sem cannot be released by the caller until
2638  * mm_drop_all_locks() returns.
2639  */
2640 void mm_drop_all_locks(struct mm_struct *mm)
2641 {
2642         struct vm_area_struct *vma;
2643         struct anon_vma_chain *avc;
2644
2645         BUG_ON(down_read_trylock(&mm->mmap_sem));
2646         BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
2647
2648         for (vma = mm->mmap; vma; vma = vma->vm_next) {
2649                 if (vma->anon_vma)
2650                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
2651                                 vm_unlock_anon_vma(avc->anon_vma);
2652                 if (vma->vm_file && vma->vm_file->f_mapping)
2653                         vm_unlock_mapping(vma->vm_file->f_mapping);
2654         }
2655
2656         mutex_unlock(&mm_all_locks_mutex);
2657 }
2658
2659 /*
2660  * initialise the VMA slab
2661  */
2662 void __init mmap_init(void)
2663 {
2664         int ret;
2665
2666         ret = percpu_counter_init(&vm_committed_as, 0);
2667         VM_BUG_ON(ret);
2668 }