6 * Address space accounting code <alan@lxorguk.ukuu.org.uk>
9 #include <linux/kernel.h>
10 #include <linux/slab.h>
11 #include <linux/backing-dev.h>
13 #include <linux/shm.h>
14 #include <linux/mman.h>
15 #include <linux/pagemap.h>
16 #include <linux/swap.h>
17 #include <linux/syscalls.h>
18 #include <linux/capability.h>
19 #include <linux/init.h>
20 #include <linux/file.h>
22 #include <linux/personality.h>
23 #include <linux/security.h>
24 #include <linux/hugetlb.h>
25 #include <linux/profile.h>
26 #include <linux/export.h>
27 #include <linux/mount.h>
28 #include <linux/mempolicy.h>
29 #include <linux/rmap.h>
30 #include <linux/mmu_notifier.h>
31 #include <linux/perf_event.h>
32 #include <linux/audit.h>
33 #include <linux/khugepaged.h>
34 #include <linux/uprobes.h>
35 #include <linux/rbtree_augmented.h>
36 #include <linux/sched/sysctl.h>
37 #include <linux/notifier.h>
38 #include <linux/memory.h>
40 #include <asm/uaccess.h>
41 #include <asm/cacheflush.h>
43 #include <asm/mmu_context.h>
47 #ifndef arch_mmap_check
48 #define arch_mmap_check(addr, len, flags) (0)
51 #ifndef arch_rebalance_pgtables
52 #define arch_rebalance_pgtables(addr, len) (addr)
55 static void unmap_region(struct mm_struct *mm,
56 struct vm_area_struct *vma, struct vm_area_struct *prev,
57 unsigned long start, unsigned long end);
59 /* description of effects of mapping type and prot in current implementation.
60 * this is due to the limited x86 page protection hardware. The expected
61 * behavior is in parens:
64 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC
65 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes
66 * w: (no) no w: (no) no w: (yes) yes w: (no) no
67 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
69 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes
70 * w: (no) no w: (no) no w: (copy) copy w: (no) no
71 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
74 pgprot_t protection_map[16] = {
75 __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
76 __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
79 pgprot_t vm_get_page_prot(unsigned long vm_flags)
81 return __pgprot(pgprot_val(protection_map[vm_flags &
82 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
83 pgprot_val(arch_vm_get_page_prot(vm_flags)));
85 EXPORT_SYMBOL(vm_get_page_prot);
87 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS; /* heuristic overcommit */
88 int sysctl_overcommit_ratio __read_mostly = 50; /* default is 50% */
89 unsigned long sysctl_overcommit_kbytes __read_mostly;
90 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
91 unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
92 unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */
94 * Make sure vm_committed_as in one cacheline and not cacheline shared with
95 * other variables. It can be updated by several CPUs frequently.
97 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
100 * The global memory commitment made in the system can be a metric
101 * that can be used to drive ballooning decisions when Linux is hosted
102 * as a guest. On Hyper-V, the host implements a policy engine for dynamically
103 * balancing memory across competing virtual machines that are hosted.
104 * Several metrics drive this policy engine including the guest reported
107 unsigned long vm_memory_committed(void)
109 return percpu_counter_read_positive(&vm_committed_as);
111 EXPORT_SYMBOL_GPL(vm_memory_committed);
114 * Check that a process has enough memory to allocate a new virtual
115 * mapping. 0 means there is enough memory for the allocation to
116 * succeed and -ENOMEM implies there is not.
118 * We currently support three overcommit policies, which are set via the
119 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting
121 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
122 * Additional code 2002 Jul 20 by Robert Love.
124 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
126 * Note this is a helper function intended to be used by LSMs which
127 * wish to use this logic.
129 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
131 unsigned long free, allowed, reserve;
133 vm_acct_memory(pages);
136 * Sometimes we want to use more memory than we have
138 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
141 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
142 free = global_page_state(NR_FREE_PAGES);
143 free += global_page_state(NR_FILE_PAGES);
146 * shmem pages shouldn't be counted as free in this
147 * case, they can't be purged, only swapped out, and
148 * that won't affect the overall amount of available
149 * memory in the system.
151 free -= global_page_state(NR_SHMEM);
153 free += get_nr_swap_pages();
156 * Any slabs which are created with the
157 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
158 * which are reclaimable, under pressure. The dentry
159 * cache and most inode caches should fall into this
161 free += global_page_state(NR_SLAB_RECLAIMABLE);
164 * Leave reserved pages. The pages are not for anonymous pages.
166 if (free <= totalreserve_pages)
169 free -= totalreserve_pages;
172 * Reserve some for root
175 free -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
183 allowed = vm_commit_limit();
185 * Reserve some for root
188 allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
191 * Don't let a single process grow so big a user can't recover
194 reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);
195 allowed -= min(mm->total_vm / 32, reserve);
198 if (percpu_counter_read_positive(&vm_committed_as) < allowed)
201 vm_unacct_memory(pages);
207 * Requires inode->i_mapping->i_mmap_mutex
209 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
210 struct file *file, struct address_space *mapping)
212 if (vma->vm_flags & VM_DENYWRITE)
213 atomic_inc(&file_inode(file)->i_writecount);
214 if (vma->vm_flags & VM_SHARED)
215 mapping->i_mmap_writable--;
217 flush_dcache_mmap_lock(mapping);
218 if (unlikely(vma->vm_flags & VM_NONLINEAR))
219 list_del_init(&vma->shared.nonlinear);
221 vma_interval_tree_remove(vma, &mapping->i_mmap);
222 flush_dcache_mmap_unlock(mapping);
226 * Unlink a file-based vm structure from its interval tree, to hide
227 * vma from rmap and vmtruncate before freeing its page tables.
229 void unlink_file_vma(struct vm_area_struct *vma)
231 struct file *file = vma->vm_file;
234 struct address_space *mapping = file->f_mapping;
235 mutex_lock(&mapping->i_mmap_mutex);
236 __remove_shared_vm_struct(vma, file, mapping);
237 mutex_unlock(&mapping->i_mmap_mutex);
242 * Close a vm structure and free it, returning the next.
244 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
246 struct vm_area_struct *next = vma->vm_next;
249 if (vma->vm_ops && vma->vm_ops->close)
250 vma->vm_ops->close(vma);
253 mpol_put(vma_policy(vma));
254 kmem_cache_free(vm_area_cachep, vma);
258 static unsigned long do_brk(unsigned long addr, unsigned long len);
260 SYSCALL_DEFINE1(brk, unsigned long, brk)
262 unsigned long rlim, retval;
263 unsigned long newbrk, oldbrk;
264 struct mm_struct *mm = current->mm;
265 unsigned long min_brk;
268 down_write(&mm->mmap_sem);
270 #ifdef CONFIG_COMPAT_BRK
272 * CONFIG_COMPAT_BRK can still be overridden by setting
273 * randomize_va_space to 2, which will still cause mm->start_brk
274 * to be arbitrarily shifted
276 if (current->brk_randomized)
277 min_brk = mm->start_brk;
279 min_brk = mm->end_data;
281 min_brk = mm->start_brk;
287 * Check against rlimit here. If this check is done later after the test
288 * of oldbrk with newbrk then it can escape the test and let the data
289 * segment grow beyond its set limit the in case where the limit is
290 * not page aligned -Ram Gupta
292 rlim = rlimit(RLIMIT_DATA);
293 if (rlim < RLIM_INFINITY && (brk - mm->start_brk) +
294 (mm->end_data - mm->start_data) > rlim)
297 newbrk = PAGE_ALIGN(brk);
298 oldbrk = PAGE_ALIGN(mm->brk);
299 if (oldbrk == newbrk)
302 /* Always allow shrinking brk. */
303 if (brk <= mm->brk) {
304 if (!do_munmap(mm, newbrk, oldbrk-newbrk))
309 /* Check against existing mmap mappings. */
310 if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
313 /* Ok, looks good - let it rip. */
314 if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
319 populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
320 up_write(&mm->mmap_sem);
322 mm_populate(oldbrk, newbrk - oldbrk);
327 up_write(&mm->mmap_sem);
331 static long vma_compute_subtree_gap(struct vm_area_struct *vma)
333 unsigned long max, subtree_gap;
336 max -= vma->vm_prev->vm_end;
337 if (vma->vm_rb.rb_left) {
338 subtree_gap = rb_entry(vma->vm_rb.rb_left,
339 struct vm_area_struct, vm_rb)->rb_subtree_gap;
340 if (subtree_gap > max)
343 if (vma->vm_rb.rb_right) {
344 subtree_gap = rb_entry(vma->vm_rb.rb_right,
345 struct vm_area_struct, vm_rb)->rb_subtree_gap;
346 if (subtree_gap > max)
352 #ifdef CONFIG_DEBUG_VM_RB
353 static int browse_rb(struct rb_root *root)
355 int i = 0, j, bug = 0;
356 struct rb_node *nd, *pn = NULL;
357 unsigned long prev = 0, pend = 0;
359 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
360 struct vm_area_struct *vma;
361 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
362 if (vma->vm_start < prev) {
363 printk("vm_start %lx prev %lx\n", vma->vm_start, prev);
366 if (vma->vm_start < pend) {
367 printk("vm_start %lx pend %lx\n", vma->vm_start, pend);
370 if (vma->vm_start > vma->vm_end) {
371 printk("vm_end %lx < vm_start %lx\n",
372 vma->vm_end, vma->vm_start);
375 if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
376 printk("free gap %lx, correct %lx\n",
378 vma_compute_subtree_gap(vma));
383 prev = vma->vm_start;
387 for (nd = pn; nd; nd = rb_prev(nd))
390 printk("backwards %d, forwards %d\n", j, i);
396 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
400 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
401 struct vm_area_struct *vma;
402 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
403 BUG_ON(vma != ignore &&
404 vma->rb_subtree_gap != vma_compute_subtree_gap(vma));
408 void validate_mm(struct mm_struct *mm)
412 unsigned long highest_address = 0;
413 struct vm_area_struct *vma = mm->mmap;
415 struct anon_vma_chain *avc;
416 vma_lock_anon_vma(vma);
417 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
418 anon_vma_interval_tree_verify(avc);
419 vma_unlock_anon_vma(vma);
420 highest_address = vma->vm_end;
424 if (i != mm->map_count) {
425 printk("map_count %d vm_next %d\n", mm->map_count, i);
428 if (highest_address != mm->highest_vm_end) {
429 printk("mm->highest_vm_end %lx, found %lx\n",
430 mm->highest_vm_end, highest_address);
433 i = browse_rb(&mm->mm_rb);
434 if (i != mm->map_count) {
435 printk("map_count %d rb %d\n", mm->map_count, i);
441 #define validate_mm_rb(root, ignore) do { } while (0)
442 #define validate_mm(mm) do { } while (0)
445 RB_DECLARE_CALLBACKS(static, vma_gap_callbacks, struct vm_area_struct, vm_rb,
446 unsigned long, rb_subtree_gap, vma_compute_subtree_gap)
449 * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
450 * vma->vm_prev->vm_end values changed, without modifying the vma's position
453 static void vma_gap_update(struct vm_area_struct *vma)
456 * As it turns out, RB_DECLARE_CALLBACKS() already created a callback
457 * function that does exacltly what we want.
459 vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
462 static inline void vma_rb_insert(struct vm_area_struct *vma,
463 struct rb_root *root)
465 /* All rb_subtree_gap values must be consistent prior to insertion */
466 validate_mm_rb(root, NULL);
468 rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
471 static void vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
474 * All rb_subtree_gap values must be consistent prior to erase,
475 * with the possible exception of the vma being erased.
477 validate_mm_rb(root, vma);
480 * Note rb_erase_augmented is a fairly large inline function,
481 * so make sure we instantiate it only once with our desired
482 * augmented rbtree callbacks.
484 rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
488 * vma has some anon_vma assigned, and is already inserted on that
489 * anon_vma's interval trees.
491 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
492 * vma must be removed from the anon_vma's interval trees using
493 * anon_vma_interval_tree_pre_update_vma().
495 * After the update, the vma will be reinserted using
496 * anon_vma_interval_tree_post_update_vma().
498 * The entire update must be protected by exclusive mmap_sem and by
499 * the root anon_vma's mutex.
502 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
504 struct anon_vma_chain *avc;
506 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
507 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
511 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
513 struct anon_vma_chain *avc;
515 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
516 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
519 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
520 unsigned long end, struct vm_area_struct **pprev,
521 struct rb_node ***rb_link, struct rb_node **rb_parent)
523 struct rb_node **__rb_link, *__rb_parent, *rb_prev;
525 __rb_link = &mm->mm_rb.rb_node;
526 rb_prev = __rb_parent = NULL;
529 struct vm_area_struct *vma_tmp;
531 __rb_parent = *__rb_link;
532 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
534 if (vma_tmp->vm_end > addr) {
535 /* Fail if an existing vma overlaps the area */
536 if (vma_tmp->vm_start < end)
538 __rb_link = &__rb_parent->rb_left;
540 rb_prev = __rb_parent;
541 __rb_link = &__rb_parent->rb_right;
547 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
548 *rb_link = __rb_link;
549 *rb_parent = __rb_parent;
553 static unsigned long count_vma_pages_range(struct mm_struct *mm,
554 unsigned long addr, unsigned long end)
556 unsigned long nr_pages = 0;
557 struct vm_area_struct *vma;
559 /* Find first overlaping mapping */
560 vma = find_vma_intersection(mm, addr, end);
564 nr_pages = (min(end, vma->vm_end) -
565 max(addr, vma->vm_start)) >> PAGE_SHIFT;
567 /* Iterate over the rest of the overlaps */
568 for (vma = vma->vm_next; vma; vma = vma->vm_next) {
569 unsigned long overlap_len;
571 if (vma->vm_start > end)
574 overlap_len = min(end, vma->vm_end) - vma->vm_start;
575 nr_pages += overlap_len >> PAGE_SHIFT;
581 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
582 struct rb_node **rb_link, struct rb_node *rb_parent)
584 /* Update tracking information for the gap following the new vma. */
586 vma_gap_update(vma->vm_next);
588 mm->highest_vm_end = vma->vm_end;
591 * vma->vm_prev wasn't known when we followed the rbtree to find the
592 * correct insertion point for that vma. As a result, we could not
593 * update the vma vm_rb parents rb_subtree_gap values on the way down.
594 * So, we first insert the vma with a zero rb_subtree_gap value
595 * (to be consistent with what we did on the way down), and then
596 * immediately update the gap to the correct value. Finally we
597 * rebalance the rbtree after all augmented values have been set.
599 rb_link_node(&vma->vm_rb, rb_parent, rb_link);
600 vma->rb_subtree_gap = 0;
602 vma_rb_insert(vma, &mm->mm_rb);
605 static void __vma_link_file(struct vm_area_struct *vma)
611 struct address_space *mapping = file->f_mapping;
613 if (vma->vm_flags & VM_DENYWRITE)
614 atomic_dec(&file_inode(file)->i_writecount);
615 if (vma->vm_flags & VM_SHARED)
616 mapping->i_mmap_writable++;
618 flush_dcache_mmap_lock(mapping);
619 if (unlikely(vma->vm_flags & VM_NONLINEAR))
620 vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear);
622 vma_interval_tree_insert(vma, &mapping->i_mmap);
623 flush_dcache_mmap_unlock(mapping);
628 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
629 struct vm_area_struct *prev, struct rb_node **rb_link,
630 struct rb_node *rb_parent)
632 __vma_link_list(mm, vma, prev, rb_parent);
633 __vma_link_rb(mm, vma, rb_link, rb_parent);
636 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
637 struct vm_area_struct *prev, struct rb_node **rb_link,
638 struct rb_node *rb_parent)
640 struct address_space *mapping = NULL;
643 mapping = vma->vm_file->f_mapping;
646 mutex_lock(&mapping->i_mmap_mutex);
648 __vma_link(mm, vma, prev, rb_link, rb_parent);
649 __vma_link_file(vma);
652 mutex_unlock(&mapping->i_mmap_mutex);
659 * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
660 * mm's list and rbtree. It has already been inserted into the interval tree.
662 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
664 struct vm_area_struct *prev;
665 struct rb_node **rb_link, *rb_parent;
667 if (find_vma_links(mm, vma->vm_start, vma->vm_end,
668 &prev, &rb_link, &rb_parent))
670 __vma_link(mm, vma, prev, rb_link, rb_parent);
675 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
676 struct vm_area_struct *prev)
678 struct vm_area_struct *next;
680 vma_rb_erase(vma, &mm->mm_rb);
681 prev->vm_next = next = vma->vm_next;
683 next->vm_prev = prev;
684 if (mm->mmap_cache == vma)
685 mm->mmap_cache = prev;
689 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
690 * is already present in an i_mmap tree without adjusting the tree.
691 * The following helper function should be used when such adjustments
692 * are necessary. The "insert" vma (if any) is to be inserted
693 * before we drop the necessary locks.
695 int vma_adjust(struct vm_area_struct *vma, unsigned long start,
696 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
698 struct mm_struct *mm = vma->vm_mm;
699 struct vm_area_struct *next = vma->vm_next;
700 struct vm_area_struct *importer = NULL;
701 struct address_space *mapping = NULL;
702 struct rb_root *root = NULL;
703 struct anon_vma *anon_vma = NULL;
704 struct file *file = vma->vm_file;
705 bool start_changed = false, end_changed = false;
706 long adjust_next = 0;
709 if (next && !insert) {
710 struct vm_area_struct *exporter = NULL;
712 if (end >= next->vm_end) {
714 * vma expands, overlapping all the next, and
715 * perhaps the one after too (mprotect case 6).
717 again: remove_next = 1 + (end > next->vm_end);
721 } else if (end > next->vm_start) {
723 * vma expands, overlapping part of the next:
724 * mprotect case 5 shifting the boundary up.
726 adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
729 } else if (end < vma->vm_end) {
731 * vma shrinks, and !insert tells it's not
732 * split_vma inserting another: so it must be
733 * mprotect case 4 shifting the boundary down.
735 adjust_next = - ((vma->vm_end - end) >> PAGE_SHIFT);
741 * Easily overlooked: when mprotect shifts the boundary,
742 * make sure the expanding vma has anon_vma set if the
743 * shrinking vma had, to cover any anon pages imported.
745 if (exporter && exporter->anon_vma && !importer->anon_vma) {
746 if (anon_vma_clone(importer, exporter))
748 importer->anon_vma = exporter->anon_vma;
753 mapping = file->f_mapping;
754 if (!(vma->vm_flags & VM_NONLINEAR)) {
755 root = &mapping->i_mmap;
756 uprobe_munmap(vma, vma->vm_start, vma->vm_end);
759 uprobe_munmap(next, next->vm_start,
763 mutex_lock(&mapping->i_mmap_mutex);
766 * Put into interval tree now, so instantiated pages
767 * are visible to arm/parisc __flush_dcache_page
768 * throughout; but we cannot insert into address
769 * space until vma start or end is updated.
771 __vma_link_file(insert);
775 vma_adjust_trans_huge(vma, start, end, adjust_next);
777 anon_vma = vma->anon_vma;
778 if (!anon_vma && adjust_next)
779 anon_vma = next->anon_vma;
781 VM_BUG_ON(adjust_next && next->anon_vma &&
782 anon_vma != next->anon_vma);
783 anon_vma_lock_write(anon_vma);
784 anon_vma_interval_tree_pre_update_vma(vma);
786 anon_vma_interval_tree_pre_update_vma(next);
790 flush_dcache_mmap_lock(mapping);
791 vma_interval_tree_remove(vma, root);
793 vma_interval_tree_remove(next, root);
796 if (start != vma->vm_start) {
797 vma->vm_start = start;
798 start_changed = true;
800 if (end != vma->vm_end) {
804 vma->vm_pgoff = pgoff;
806 next->vm_start += adjust_next << PAGE_SHIFT;
807 next->vm_pgoff += adjust_next;
812 vma_interval_tree_insert(next, root);
813 vma_interval_tree_insert(vma, root);
814 flush_dcache_mmap_unlock(mapping);
819 * vma_merge has merged next into vma, and needs
820 * us to remove next before dropping the locks.
822 __vma_unlink(mm, next, vma);
824 __remove_shared_vm_struct(next, file, mapping);
827 * split_vma has split insert from vma, and needs
828 * us to insert it before dropping the locks
829 * (it may either follow vma or precede it).
831 __insert_vm_struct(mm, insert);
837 mm->highest_vm_end = end;
838 else if (!adjust_next)
839 vma_gap_update(next);
844 anon_vma_interval_tree_post_update_vma(vma);
846 anon_vma_interval_tree_post_update_vma(next);
847 anon_vma_unlock_write(anon_vma);
850 mutex_unlock(&mapping->i_mmap_mutex);
861 uprobe_munmap(next, next->vm_start, next->vm_end);
865 anon_vma_merge(vma, next);
867 mpol_put(vma_policy(next));
868 kmem_cache_free(vm_area_cachep, next);
870 * In mprotect's case 6 (see comments on vma_merge),
871 * we must remove another next too. It would clutter
872 * up the code too much to do both in one go.
875 if (remove_next == 2)
878 vma_gap_update(next);
880 mm->highest_vm_end = end;
891 * If the vma has a ->close operation then the driver probably needs to release
892 * per-vma resources, so we don't attempt to merge those.
894 static inline int is_mergeable_vma(struct vm_area_struct *vma,
895 struct file *file, unsigned long vm_flags)
898 * VM_SOFTDIRTY should not prevent from VMA merging, if we
899 * match the flags but dirty bit -- the caller should mark
900 * merged VMA as dirty. If dirty bit won't be excluded from
901 * comparison, we increase pressue on the memory system forcing
902 * the kernel to generate new VMAs when old one could be
905 if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
907 if (vma->vm_file != file)
909 if (vma->vm_ops && vma->vm_ops->close)
914 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
915 struct anon_vma *anon_vma2,
916 struct vm_area_struct *vma)
919 * The list_is_singular() test is to avoid merging VMA cloned from
920 * parents. This can improve scalability caused by anon_vma lock.
922 if ((!anon_vma1 || !anon_vma2) && (!vma ||
923 list_is_singular(&vma->anon_vma_chain)))
925 return anon_vma1 == anon_vma2;
929 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
930 * in front of (at a lower virtual address and file offset than) the vma.
932 * We cannot merge two vmas if they have differently assigned (non-NULL)
933 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
935 * We don't check here for the merged mmap wrapping around the end of pagecache
936 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
937 * wrap, nor mmaps which cover the final page at index -1UL.
940 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
941 struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
943 if (is_mergeable_vma(vma, file, vm_flags) &&
944 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
945 if (vma->vm_pgoff == vm_pgoff)
952 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
953 * beyond (at a higher virtual address and file offset than) the vma.
955 * We cannot merge two vmas if they have differently assigned (non-NULL)
956 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
959 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
960 struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
962 if (is_mergeable_vma(vma, file, vm_flags) &&
963 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
965 vm_pglen = vma_pages(vma);
966 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
973 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
974 * whether that can be merged with its predecessor or its successor.
975 * Or both (it neatly fills a hole).
977 * In most cases - when called for mmap, brk or mremap - [addr,end) is
978 * certain not to be mapped by the time vma_merge is called; but when
979 * called for mprotect, it is certain to be already mapped (either at
980 * an offset within prev, or at the start of next), and the flags of
981 * this area are about to be changed to vm_flags - and the no-change
982 * case has already been eliminated.
984 * The following mprotect cases have to be considered, where AAAA is
985 * the area passed down from mprotect_fixup, never extending beyond one
986 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
988 * AAAA AAAA AAAA AAAA
989 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN PPPPNNNNXXXX
990 * cannot merge might become might become might become
991 * PPNNNNNNNNNN PPPPPPPPPPNN PPPPPPPPPPPP 6 or
992 * mmap, brk or case 4 below case 5 below PPPPPPPPXXXX 7 or
993 * mremap move: PPPPNNNNNNNN 8
995 * PPPP NNNN PPPPPPPPPPPP PPPPPPPPNNNN PPPPNNNNNNNN
996 * might become case 1 below case 2 below case 3 below
998 * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
999 * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
1001 struct vm_area_struct *vma_merge(struct mm_struct *mm,
1002 struct vm_area_struct *prev, unsigned long addr,
1003 unsigned long end, unsigned long vm_flags,
1004 struct anon_vma *anon_vma, struct file *file,
1005 pgoff_t pgoff, struct mempolicy *policy)
1007 pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1008 struct vm_area_struct *area, *next;
1012 * We later require that vma->vm_flags == vm_flags,
1013 * so this tests vma->vm_flags & VM_SPECIAL, too.
1015 if (vm_flags & VM_SPECIAL)
1019 next = prev->vm_next;
1023 if (next && next->vm_end == end) /* cases 6, 7, 8 */
1024 next = next->vm_next;
1027 * Can it merge with the predecessor?
1029 if (prev && prev->vm_end == addr &&
1030 mpol_equal(vma_policy(prev), policy) &&
1031 can_vma_merge_after(prev, vm_flags,
1032 anon_vma, file, pgoff)) {
1034 * OK, it can. Can we now merge in the successor as well?
1036 if (next && end == next->vm_start &&
1037 mpol_equal(policy, vma_policy(next)) &&
1038 can_vma_merge_before(next, vm_flags,
1039 anon_vma, file, pgoff+pglen) &&
1040 is_mergeable_anon_vma(prev->anon_vma,
1041 next->anon_vma, NULL)) {
1043 err = vma_adjust(prev, prev->vm_start,
1044 next->vm_end, prev->vm_pgoff, NULL);
1045 } else /* cases 2, 5, 7 */
1046 err = vma_adjust(prev, prev->vm_start,
1047 end, prev->vm_pgoff, NULL);
1050 khugepaged_enter_vma_merge(prev);
1055 * Can this new request be merged in front of next?
1057 if (next && end == next->vm_start &&
1058 mpol_equal(policy, vma_policy(next)) &&
1059 can_vma_merge_before(next, vm_flags,
1060 anon_vma, file, pgoff+pglen)) {
1061 if (prev && addr < prev->vm_end) /* case 4 */
1062 err = vma_adjust(prev, prev->vm_start,
1063 addr, prev->vm_pgoff, NULL);
1064 else /* cases 3, 8 */
1065 err = vma_adjust(area, addr, next->vm_end,
1066 next->vm_pgoff - pglen, NULL);
1069 khugepaged_enter_vma_merge(area);
1077 * Rough compatbility check to quickly see if it's even worth looking
1078 * at sharing an anon_vma.
1080 * They need to have the same vm_file, and the flags can only differ
1081 * in things that mprotect may change.
1083 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1084 * we can merge the two vma's. For example, we refuse to merge a vma if
1085 * there is a vm_ops->close() function, because that indicates that the
1086 * driver is doing some kind of reference counting. But that doesn't
1087 * really matter for the anon_vma sharing case.
1089 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1091 return a->vm_end == b->vm_start &&
1092 mpol_equal(vma_policy(a), vma_policy(b)) &&
1093 a->vm_file == b->vm_file &&
1094 !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC|VM_SOFTDIRTY)) &&
1095 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1099 * Do some basic sanity checking to see if we can re-use the anon_vma
1100 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1101 * the same as 'old', the other will be the new one that is trying
1102 * to share the anon_vma.
1104 * NOTE! This runs with mm_sem held for reading, so it is possible that
1105 * the anon_vma of 'old' is concurrently in the process of being set up
1106 * by another page fault trying to merge _that_. But that's ok: if it
1107 * is being set up, that automatically means that it will be a singleton
1108 * acceptable for merging, so we can do all of this optimistically. But
1109 * we do that ACCESS_ONCE() to make sure that we never re-load the pointer.
1111 * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1112 * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1113 * is to return an anon_vma that is "complex" due to having gone through
1116 * We also make sure that the two vma's are compatible (adjacent,
1117 * and with the same memory policies). That's all stable, even with just
1118 * a read lock on the mm_sem.
1120 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1122 if (anon_vma_compatible(a, b)) {
1123 struct anon_vma *anon_vma = ACCESS_ONCE(old->anon_vma);
1125 if (anon_vma && list_is_singular(&old->anon_vma_chain))
1132 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1133 * neighbouring vmas for a suitable anon_vma, before it goes off
1134 * to allocate a new anon_vma. It checks because a repetitive
1135 * sequence of mprotects and faults may otherwise lead to distinct
1136 * anon_vmas being allocated, preventing vma merge in subsequent
1139 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1141 struct anon_vma *anon_vma;
1142 struct vm_area_struct *near;
1144 near = vma->vm_next;
1148 anon_vma = reusable_anon_vma(near, vma, near);
1152 near = vma->vm_prev;
1156 anon_vma = reusable_anon_vma(near, near, vma);
1161 * There's no absolute need to look only at touching neighbours:
1162 * we could search further afield for "compatible" anon_vmas.
1163 * But it would probably just be a waste of time searching,
1164 * or lead to too many vmas hanging off the same anon_vma.
1165 * We're trying to allow mprotect remerging later on,
1166 * not trying to minimize memory used for anon_vmas.
1171 #ifdef CONFIG_PROC_FS
1172 void vm_stat_account(struct mm_struct *mm, unsigned long flags,
1173 struct file *file, long pages)
1175 const unsigned long stack_flags
1176 = VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN);
1178 mm->total_vm += pages;
1181 mm->shared_vm += pages;
1182 if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC)
1183 mm->exec_vm += pages;
1184 } else if (flags & stack_flags)
1185 mm->stack_vm += pages;
1187 #endif /* CONFIG_PROC_FS */
1190 * If a hint addr is less than mmap_min_addr change hint to be as
1191 * low as possible but still greater than mmap_min_addr
1193 static inline unsigned long round_hint_to_min(unsigned long hint)
1196 if (((void *)hint != NULL) &&
1197 (hint < mmap_min_addr))
1198 return PAGE_ALIGN(mmap_min_addr);
1202 static inline int mlock_future_check(struct mm_struct *mm,
1203 unsigned long flags,
1206 unsigned long locked, lock_limit;
1208 /* mlock MCL_FUTURE? */
1209 if (flags & VM_LOCKED) {
1210 locked = len >> PAGE_SHIFT;
1211 locked += mm->locked_vm;
1212 lock_limit = rlimit(RLIMIT_MEMLOCK);
1213 lock_limit >>= PAGE_SHIFT;
1214 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1221 * The caller must hold down_write(¤t->mm->mmap_sem).
1224 unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1225 unsigned long len, unsigned long prot,
1226 unsigned long flags, unsigned long pgoff,
1227 unsigned long *populate)
1229 struct mm_struct * mm = current->mm;
1230 vm_flags_t vm_flags;
1235 * Does the application expect PROT_READ to imply PROT_EXEC?
1237 * (the exception is when the underlying filesystem is noexec
1238 * mounted, in which case we dont add PROT_EXEC.)
1240 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1241 if (!(file && (file->f_path.mnt->mnt_flags & MNT_NOEXEC)))
1247 if (!(flags & MAP_FIXED))
1248 addr = round_hint_to_min(addr);
1250 /* Careful about overflows.. */
1251 len = PAGE_ALIGN(len);
1255 /* offset overflow? */
1256 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1259 /* Too many mappings? */
1260 if (mm->map_count > sysctl_max_map_count)
1263 /* Obtain the address to map to. we verify (or select) it and ensure
1264 * that it represents a valid section of the address space.
1266 addr = get_unmapped_area(file, addr, len, pgoff, flags);
1267 if (addr & ~PAGE_MASK)
1270 /* Do simple checking here so the lower-level routines won't have
1271 * to. we assume access permissions have been handled by the open
1272 * of the memory object, so we don't do any here.
1274 vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
1275 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1277 if (flags & MAP_LOCKED)
1278 if (!can_do_mlock())
1281 if (mlock_future_check(mm, vm_flags, len))
1285 struct inode *inode = file_inode(file);
1287 switch (flags & MAP_TYPE) {
1289 if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1293 * Make sure we don't allow writing to an append-only
1296 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1300 * Make sure there are no mandatory locks on the file.
1302 if (locks_verify_locked(inode))
1305 vm_flags |= VM_SHARED | VM_MAYSHARE;
1306 if (!(file->f_mode & FMODE_WRITE))
1307 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1311 if (!(file->f_mode & FMODE_READ))
1313 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
1314 if (vm_flags & VM_EXEC)
1316 vm_flags &= ~VM_MAYEXEC;
1319 if (!file->f_op->mmap)
1321 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1329 switch (flags & MAP_TYPE) {
1331 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1337 vm_flags |= VM_SHARED | VM_MAYSHARE;
1341 * Set pgoff according to addr for anon_vma.
1343 pgoff = addr >> PAGE_SHIFT;
1351 * Set 'VM_NORESERVE' if we should not account for the
1352 * memory use of this mapping.
1354 if (flags & MAP_NORESERVE) {
1355 /* We honor MAP_NORESERVE if allowed to overcommit */
1356 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1357 vm_flags |= VM_NORESERVE;
1359 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1360 if (file && is_file_hugepages(file))
1361 vm_flags |= VM_NORESERVE;
1364 addr = mmap_region(file, addr, len, vm_flags, pgoff);
1365 if (!IS_ERR_VALUE(addr) &&
1366 ((vm_flags & VM_LOCKED) ||
1367 (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1372 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1373 unsigned long, prot, unsigned long, flags,
1374 unsigned long, fd, unsigned long, pgoff)
1376 struct file *file = NULL;
1377 unsigned long retval = -EBADF;
1379 if (!(flags & MAP_ANONYMOUS)) {
1380 audit_mmap_fd(fd, flags);
1384 if (is_file_hugepages(file))
1385 len = ALIGN(len, huge_page_size(hstate_file(file)));
1387 if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file)))
1389 } else if (flags & MAP_HUGETLB) {
1390 struct user_struct *user = NULL;
1393 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & SHM_HUGE_MASK);
1397 len = ALIGN(len, huge_page_size(hs));
1399 * VM_NORESERVE is used because the reservations will be
1400 * taken when vm_ops->mmap() is called
1401 * A dummy user value is used because we are not locking
1402 * memory so no accounting is necessary
1404 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1406 &user, HUGETLB_ANONHUGE_INODE,
1407 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1409 return PTR_ERR(file);
1412 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1414 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1422 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1423 struct mmap_arg_struct {
1427 unsigned long flags;
1429 unsigned long offset;
1432 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1434 struct mmap_arg_struct a;
1436 if (copy_from_user(&a, arg, sizeof(a)))
1438 if (a.offset & ~PAGE_MASK)
1441 return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1442 a.offset >> PAGE_SHIFT);
1444 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1447 * Some shared mappigns will want the pages marked read-only
1448 * to track write events. If so, we'll downgrade vm_page_prot
1449 * to the private version (using protection_map[] without the
1452 int vma_wants_writenotify(struct vm_area_struct *vma)
1454 vm_flags_t vm_flags = vma->vm_flags;
1456 /* If it was private or non-writable, the write bit is already clear */
1457 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1460 /* The backer wishes to know when pages are first written to? */
1461 if (vma->vm_ops && vma->vm_ops->page_mkwrite)
1464 /* The open routine did something to the protections already? */
1465 if (pgprot_val(vma->vm_page_prot) !=
1466 pgprot_val(vm_get_page_prot(vm_flags)))
1469 /* Specialty mapping? */
1470 if (vm_flags & VM_PFNMAP)
1473 /* Can the mapping track the dirty pages? */
1474 return vma->vm_file && vma->vm_file->f_mapping &&
1475 mapping_cap_account_dirty(vma->vm_file->f_mapping);
1479 * We account for memory if it's a private writeable mapping,
1480 * not hugepages and VM_NORESERVE wasn't set.
1482 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1485 * hugetlb has its own accounting separate from the core VM
1486 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1488 if (file && is_file_hugepages(file))
1491 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1494 unsigned long mmap_region(struct file *file, unsigned long addr,
1495 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff)
1497 struct mm_struct *mm = current->mm;
1498 struct vm_area_struct *vma, *prev;
1500 struct rb_node **rb_link, *rb_parent;
1501 unsigned long charged = 0;
1503 /* Check against address space limit. */
1504 if (!may_expand_vm(mm, len >> PAGE_SHIFT)) {
1505 unsigned long nr_pages;
1508 * MAP_FIXED may remove pages of mappings that intersects with
1509 * requested mapping. Account for the pages it would unmap.
1511 if (!(vm_flags & MAP_FIXED))
1514 nr_pages = count_vma_pages_range(mm, addr, addr + len);
1516 if (!may_expand_vm(mm, (len >> PAGE_SHIFT) - nr_pages))
1520 /* Clear old maps */
1523 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) {
1524 if (do_munmap(mm, addr, len))
1530 * Private writable mapping: check memory availability
1532 if (accountable_mapping(file, vm_flags)) {
1533 charged = len >> PAGE_SHIFT;
1534 if (security_vm_enough_memory_mm(mm, charged))
1536 vm_flags |= VM_ACCOUNT;
1540 * Can we just expand an old mapping?
1542 vma = vma_merge(mm, prev, addr, addr + len, vm_flags, NULL, file, pgoff, NULL);
1547 * Determine the object being mapped and call the appropriate
1548 * specific mapper. the address has already been validated, but
1549 * not unmapped, but the maps are removed from the list.
1551 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1558 vma->vm_start = addr;
1559 vma->vm_end = addr + len;
1560 vma->vm_flags = vm_flags;
1561 vma->vm_page_prot = vm_get_page_prot(vm_flags);
1562 vma->vm_pgoff = pgoff;
1563 INIT_LIST_HEAD(&vma->anon_vma_chain);
1566 if (vm_flags & VM_DENYWRITE) {
1567 error = deny_write_access(file);
1571 vma->vm_file = get_file(file);
1572 error = file->f_op->mmap(file, vma);
1574 goto unmap_and_free_vma;
1576 /* Can addr have changed??
1578 * Answer: Yes, several device drivers can do it in their
1579 * f_op->mmap method. -DaveM
1580 * Bug: If addr is changed, prev, rb_link, rb_parent should
1581 * be updated for vma_link()
1583 WARN_ON_ONCE(addr != vma->vm_start);
1585 addr = vma->vm_start;
1586 vm_flags = vma->vm_flags;
1587 } else if (vm_flags & VM_SHARED) {
1588 error = shmem_zero_setup(vma);
1593 if (vma_wants_writenotify(vma)) {
1594 pgprot_t pprot = vma->vm_page_prot;
1596 /* Can vma->vm_page_prot have changed??
1598 * Answer: Yes, drivers may have changed it in their
1599 * f_op->mmap method.
1601 * Ensures that vmas marked as uncached stay that way.
1603 vma->vm_page_prot = vm_get_page_prot(vm_flags & ~VM_SHARED);
1604 if (pgprot_val(pprot) == pgprot_val(pgprot_noncached(pprot)))
1605 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1608 vma_link(mm, vma, prev, rb_link, rb_parent);
1609 /* Once vma denies write, undo our temporary denial count */
1610 if (vm_flags & VM_DENYWRITE)
1611 allow_write_access(file);
1612 file = vma->vm_file;
1614 perf_event_mmap(vma);
1616 vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT);
1617 if (vm_flags & VM_LOCKED) {
1618 if (!((vm_flags & VM_SPECIAL) || is_vm_hugetlb_page(vma) ||
1619 vma == get_gate_vma(current->mm)))
1620 mm->locked_vm += (len >> PAGE_SHIFT);
1622 vma->vm_flags &= ~VM_LOCKED;
1629 * New (or expanded) vma always get soft dirty status.
1630 * Otherwise user-space soft-dirty page tracker won't
1631 * be able to distinguish situation when vma area unmapped,
1632 * then new mapped in-place (which must be aimed as
1633 * a completely new data area).
1635 vma->vm_flags |= VM_SOFTDIRTY;
1640 if (vm_flags & VM_DENYWRITE)
1641 allow_write_access(file);
1642 vma->vm_file = NULL;
1645 /* Undo any partial mapping done by a device driver. */
1646 unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1649 kmem_cache_free(vm_area_cachep, vma);
1652 vm_unacct_memory(charged);
1656 unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1659 * We implement the search by looking for an rbtree node that
1660 * immediately follows a suitable gap. That is,
1661 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1662 * - gap_end = vma->vm_start >= info->low_limit + length;
1663 * - gap_end - gap_start >= length
1666 struct mm_struct *mm = current->mm;
1667 struct vm_area_struct *vma;
1668 unsigned long length, low_limit, high_limit, gap_start, gap_end;
1670 /* Adjust search length to account for worst case alignment overhead */
1671 length = info->length + info->align_mask;
1672 if (length < info->length)
1675 /* Adjust search limits by the desired length */
1676 if (info->high_limit < length)
1678 high_limit = info->high_limit - length;
1680 if (info->low_limit > high_limit)
1682 low_limit = info->low_limit + length;
1684 /* Check if rbtree root looks promising */
1685 if (RB_EMPTY_ROOT(&mm->mm_rb))
1687 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1688 if (vma->rb_subtree_gap < length)
1692 /* Visit left subtree if it looks promising */
1693 gap_end = vma->vm_start;
1694 if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1695 struct vm_area_struct *left =
1696 rb_entry(vma->vm_rb.rb_left,
1697 struct vm_area_struct, vm_rb);
1698 if (left->rb_subtree_gap >= length) {
1704 gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1706 /* Check if current node has a suitable gap */
1707 if (gap_start > high_limit)
1709 if (gap_end >= low_limit && gap_end - gap_start >= length)
1712 /* Visit right subtree if it looks promising */
1713 if (vma->vm_rb.rb_right) {
1714 struct vm_area_struct *right =
1715 rb_entry(vma->vm_rb.rb_right,
1716 struct vm_area_struct, vm_rb);
1717 if (right->rb_subtree_gap >= length) {
1723 /* Go back up the rbtree to find next candidate node */
1725 struct rb_node *prev = &vma->vm_rb;
1726 if (!rb_parent(prev))
1728 vma = rb_entry(rb_parent(prev),
1729 struct vm_area_struct, vm_rb);
1730 if (prev == vma->vm_rb.rb_left) {
1731 gap_start = vma->vm_prev->vm_end;
1732 gap_end = vma->vm_start;
1739 /* Check highest gap, which does not precede any rbtree node */
1740 gap_start = mm->highest_vm_end;
1741 gap_end = ULONG_MAX; /* Only for VM_BUG_ON below */
1742 if (gap_start > high_limit)
1746 /* We found a suitable gap. Clip it with the original low_limit. */
1747 if (gap_start < info->low_limit)
1748 gap_start = info->low_limit;
1750 /* Adjust gap address to the desired alignment */
1751 gap_start += (info->align_offset - gap_start) & info->align_mask;
1753 VM_BUG_ON(gap_start + info->length > info->high_limit);
1754 VM_BUG_ON(gap_start + info->length > gap_end);
1758 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1760 struct mm_struct *mm = current->mm;
1761 struct vm_area_struct *vma;
1762 unsigned long length, low_limit, high_limit, gap_start, gap_end;
1764 /* Adjust search length to account for worst case alignment overhead */
1765 length = info->length + info->align_mask;
1766 if (length < info->length)
1770 * Adjust search limits by the desired length.
1771 * See implementation comment at top of unmapped_area().
1773 gap_end = info->high_limit;
1774 if (gap_end < length)
1776 high_limit = gap_end - length;
1778 if (info->low_limit > high_limit)
1780 low_limit = info->low_limit + length;
1782 /* Check highest gap, which does not precede any rbtree node */
1783 gap_start = mm->highest_vm_end;
1784 if (gap_start <= high_limit)
1787 /* Check if rbtree root looks promising */
1788 if (RB_EMPTY_ROOT(&mm->mm_rb))
1790 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1791 if (vma->rb_subtree_gap < length)
1795 /* Visit right subtree if it looks promising */
1796 gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1797 if (gap_start <= high_limit && vma->vm_rb.rb_right) {
1798 struct vm_area_struct *right =
1799 rb_entry(vma->vm_rb.rb_right,
1800 struct vm_area_struct, vm_rb);
1801 if (right->rb_subtree_gap >= length) {
1808 /* Check if current node has a suitable gap */
1809 gap_end = vma->vm_start;
1810 if (gap_end < low_limit)
1812 if (gap_start <= high_limit && gap_end - gap_start >= length)
1815 /* Visit left subtree if it looks promising */
1816 if (vma->vm_rb.rb_left) {
1817 struct vm_area_struct *left =
1818 rb_entry(vma->vm_rb.rb_left,
1819 struct vm_area_struct, vm_rb);
1820 if (left->rb_subtree_gap >= length) {
1826 /* Go back up the rbtree to find next candidate node */
1828 struct rb_node *prev = &vma->vm_rb;
1829 if (!rb_parent(prev))
1831 vma = rb_entry(rb_parent(prev),
1832 struct vm_area_struct, vm_rb);
1833 if (prev == vma->vm_rb.rb_right) {
1834 gap_start = vma->vm_prev ?
1835 vma->vm_prev->vm_end : 0;
1842 /* We found a suitable gap. Clip it with the original high_limit. */
1843 if (gap_end > info->high_limit)
1844 gap_end = info->high_limit;
1847 /* Compute highest gap address at the desired alignment */
1848 gap_end -= info->length;
1849 gap_end -= (gap_end - info->align_offset) & info->align_mask;
1851 VM_BUG_ON(gap_end < info->low_limit);
1852 VM_BUG_ON(gap_end < gap_start);
1856 /* Get an address range which is currently unmapped.
1857 * For shmat() with addr=0.
1859 * Ugly calling convention alert:
1860 * Return value with the low bits set means error value,
1862 * if (ret & ~PAGE_MASK)
1865 * This function "knows" that -ENOMEM has the bits set.
1867 #ifndef HAVE_ARCH_UNMAPPED_AREA
1869 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1870 unsigned long len, unsigned long pgoff, unsigned long flags)
1872 struct mm_struct *mm = current->mm;
1873 struct vm_area_struct *vma;
1874 struct vm_unmapped_area_info info;
1876 if (len > TASK_SIZE - mmap_min_addr)
1879 if (flags & MAP_FIXED)
1883 addr = PAGE_ALIGN(addr);
1884 vma = find_vma(mm, addr);
1885 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1886 (!vma || addr + len <= vma->vm_start))
1892 info.low_limit = mm->mmap_base;
1893 info.high_limit = TASK_SIZE;
1894 info.align_mask = 0;
1895 return vm_unmapped_area(&info);
1900 * This mmap-allocator allocates new areas top-down from below the
1901 * stack's low limit (the base):
1903 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1905 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1906 const unsigned long len, const unsigned long pgoff,
1907 const unsigned long flags)
1909 struct vm_area_struct *vma;
1910 struct mm_struct *mm = current->mm;
1911 unsigned long addr = addr0;
1912 struct vm_unmapped_area_info info;
1914 /* requested length too big for entire address space */
1915 if (len > TASK_SIZE - mmap_min_addr)
1918 if (flags & MAP_FIXED)
1921 /* requesting a specific address */
1923 addr = PAGE_ALIGN(addr);
1924 vma = find_vma(mm, addr);
1925 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1926 (!vma || addr + len <= vma->vm_start))
1930 info.flags = VM_UNMAPPED_AREA_TOPDOWN;
1932 info.low_limit = max(PAGE_SIZE, mmap_min_addr);
1933 info.high_limit = mm->mmap_base;
1934 info.align_mask = 0;
1935 addr = vm_unmapped_area(&info);
1938 * A failed mmap() very likely causes application failure,
1939 * so fall back to the bottom-up function here. This scenario
1940 * can happen with large stack limits and large mmap()
1943 if (addr & ~PAGE_MASK) {
1944 VM_BUG_ON(addr != -ENOMEM);
1946 info.low_limit = TASK_UNMAPPED_BASE;
1947 info.high_limit = TASK_SIZE;
1948 addr = vm_unmapped_area(&info);
1956 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1957 unsigned long pgoff, unsigned long flags)
1959 unsigned long (*get_area)(struct file *, unsigned long,
1960 unsigned long, unsigned long, unsigned long);
1962 unsigned long error = arch_mmap_check(addr, len, flags);
1966 /* Careful about overflows.. */
1967 if (len > TASK_SIZE)
1970 get_area = current->mm->get_unmapped_area;
1971 if (file && file->f_op->get_unmapped_area)
1972 get_area = file->f_op->get_unmapped_area;
1973 addr = get_area(file, addr, len, pgoff, flags);
1974 if (IS_ERR_VALUE(addr))
1977 if (addr > TASK_SIZE - len)
1979 if (addr & ~PAGE_MASK)
1982 addr = arch_rebalance_pgtables(addr, len);
1983 error = security_mmap_addr(addr);
1984 return error ? error : addr;
1987 EXPORT_SYMBOL(get_unmapped_area);
1989 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1990 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
1992 struct vm_area_struct *vma = NULL;
1994 /* Check the cache first. */
1995 /* (Cache hit rate is typically around 35%.) */
1996 vma = ACCESS_ONCE(mm->mmap_cache);
1997 if (!(vma && vma->vm_end > addr && vma->vm_start <= addr)) {
1998 struct rb_node *rb_node;
2000 rb_node = mm->mm_rb.rb_node;
2004 struct vm_area_struct *vma_tmp;
2006 vma_tmp = rb_entry(rb_node,
2007 struct vm_area_struct, vm_rb);
2009 if (vma_tmp->vm_end > addr) {
2011 if (vma_tmp->vm_start <= addr)
2013 rb_node = rb_node->rb_left;
2015 rb_node = rb_node->rb_right;
2018 mm->mmap_cache = vma;
2023 EXPORT_SYMBOL(find_vma);
2026 * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2028 struct vm_area_struct *
2029 find_vma_prev(struct mm_struct *mm, unsigned long addr,
2030 struct vm_area_struct **pprev)
2032 struct vm_area_struct *vma;
2034 vma = find_vma(mm, addr);
2036 *pprev = vma->vm_prev;
2038 struct rb_node *rb_node = mm->mm_rb.rb_node;
2041 *pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2042 rb_node = rb_node->rb_right;
2049 * Verify that the stack growth is acceptable and
2050 * update accounting. This is shared with both the
2051 * grow-up and grow-down cases.
2053 static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow)
2055 struct mm_struct *mm = vma->vm_mm;
2056 struct rlimit *rlim = current->signal->rlim;
2057 unsigned long new_start;
2059 /* address space limit tests */
2060 if (!may_expand_vm(mm, grow))
2063 /* Stack limit test */
2064 if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur))
2067 /* mlock limit tests */
2068 if (vma->vm_flags & VM_LOCKED) {
2069 unsigned long locked;
2070 unsigned long limit;
2071 locked = mm->locked_vm + grow;
2072 limit = ACCESS_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur);
2073 limit >>= PAGE_SHIFT;
2074 if (locked > limit && !capable(CAP_IPC_LOCK))
2078 /* Check to ensure the stack will not grow into a hugetlb-only region */
2079 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2081 if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2085 * Overcommit.. This must be the final test, as it will
2086 * update security statistics.
2088 if (security_vm_enough_memory_mm(mm, grow))
2091 /* Ok, everything looks good - let it rip */
2092 if (vma->vm_flags & VM_LOCKED)
2093 mm->locked_vm += grow;
2094 vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow);
2098 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2100 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2101 * vma is the last one with address > vma->vm_end. Have to extend vma.
2103 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2107 if (!(vma->vm_flags & VM_GROWSUP))
2111 * We must make sure the anon_vma is allocated
2112 * so that the anon_vma locking is not a noop.
2114 if (unlikely(anon_vma_prepare(vma)))
2116 vma_lock_anon_vma(vma);
2119 * vma->vm_start/vm_end cannot change under us because the caller
2120 * is required to hold the mmap_sem in read mode. We need the
2121 * anon_vma lock to serialize against concurrent expand_stacks.
2122 * Also guard against wrapping around to address 0.
2124 if (address < PAGE_ALIGN(address+4))
2125 address = PAGE_ALIGN(address+4);
2127 vma_unlock_anon_vma(vma);
2132 /* Somebody else might have raced and expanded it already */
2133 if (address > vma->vm_end) {
2134 unsigned long size, grow;
2136 size = address - vma->vm_start;
2137 grow = (address - vma->vm_end) >> PAGE_SHIFT;
2140 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2141 error = acct_stack_growth(vma, size, grow);
2144 * vma_gap_update() doesn't support concurrent
2145 * updates, but we only hold a shared mmap_sem
2146 * lock here, so we need to protect against
2147 * concurrent vma expansions.
2148 * vma_lock_anon_vma() doesn't help here, as
2149 * we don't guarantee that all growable vmas
2150 * in a mm share the same root anon vma.
2151 * So, we reuse mm->page_table_lock to guard
2152 * against concurrent vma expansions.
2154 spin_lock(&vma->vm_mm->page_table_lock);
2155 anon_vma_interval_tree_pre_update_vma(vma);
2156 vma->vm_end = address;
2157 anon_vma_interval_tree_post_update_vma(vma);
2159 vma_gap_update(vma->vm_next);
2161 vma->vm_mm->highest_vm_end = address;
2162 spin_unlock(&vma->vm_mm->page_table_lock);
2164 perf_event_mmap(vma);
2168 vma_unlock_anon_vma(vma);
2169 khugepaged_enter_vma_merge(vma);
2170 validate_mm(vma->vm_mm);
2173 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2176 * vma is the first one with address < vma->vm_start. Have to extend vma.
2178 int expand_downwards(struct vm_area_struct *vma,
2179 unsigned long address)
2184 * We must make sure the anon_vma is allocated
2185 * so that the anon_vma locking is not a noop.
2187 if (unlikely(anon_vma_prepare(vma)))
2190 address &= PAGE_MASK;
2191 error = security_mmap_addr(address);
2195 vma_lock_anon_vma(vma);
2198 * vma->vm_start/vm_end cannot change under us because the caller
2199 * is required to hold the mmap_sem in read mode. We need the
2200 * anon_vma lock to serialize against concurrent expand_stacks.
2203 /* Somebody else might have raced and expanded it already */
2204 if (address < vma->vm_start) {
2205 unsigned long size, grow;
2207 size = vma->vm_end - address;
2208 grow = (vma->vm_start - address) >> PAGE_SHIFT;
2211 if (grow <= vma->vm_pgoff) {
2212 error = acct_stack_growth(vma, size, grow);
2215 * vma_gap_update() doesn't support concurrent
2216 * updates, but we only hold a shared mmap_sem
2217 * lock here, so we need to protect against
2218 * concurrent vma expansions.
2219 * vma_lock_anon_vma() doesn't help here, as
2220 * we don't guarantee that all growable vmas
2221 * in a mm share the same root anon vma.
2222 * So, we reuse mm->page_table_lock to guard
2223 * against concurrent vma expansions.
2225 spin_lock(&vma->vm_mm->page_table_lock);
2226 anon_vma_interval_tree_pre_update_vma(vma);
2227 vma->vm_start = address;
2228 vma->vm_pgoff -= grow;
2229 anon_vma_interval_tree_post_update_vma(vma);
2230 vma_gap_update(vma);
2231 spin_unlock(&vma->vm_mm->page_table_lock);
2233 perf_event_mmap(vma);
2237 vma_unlock_anon_vma(vma);
2238 khugepaged_enter_vma_merge(vma);
2239 validate_mm(vma->vm_mm);
2244 * Note how expand_stack() refuses to expand the stack all the way to
2245 * abut the next virtual mapping, *unless* that mapping itself is also
2246 * a stack mapping. We want to leave room for a guard page, after all
2247 * (the guard page itself is not added here, that is done by the
2248 * actual page faulting logic)
2250 * This matches the behavior of the guard page logic (see mm/memory.c:
2251 * check_stack_guard_page()), which only allows the guard page to be
2252 * removed under these circumstances.
2254 #ifdef CONFIG_STACK_GROWSUP
2255 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2257 struct vm_area_struct *next;
2259 address &= PAGE_MASK;
2260 next = vma->vm_next;
2261 if (next && next->vm_start == address + PAGE_SIZE) {
2262 if (!(next->vm_flags & VM_GROWSUP))
2265 return expand_upwards(vma, address);
2268 struct vm_area_struct *
2269 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2271 struct vm_area_struct *vma, *prev;
2274 vma = find_vma_prev(mm, addr, &prev);
2275 if (vma && (vma->vm_start <= addr))
2277 if (!prev || expand_stack(prev, addr))
2279 if (prev->vm_flags & VM_LOCKED)
2280 __mlock_vma_pages_range(prev, addr, prev->vm_end, NULL);
2284 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2286 struct vm_area_struct *prev;
2288 address &= PAGE_MASK;
2289 prev = vma->vm_prev;
2290 if (prev && prev->vm_end == address) {
2291 if (!(prev->vm_flags & VM_GROWSDOWN))
2294 return expand_downwards(vma, address);
2297 struct vm_area_struct *
2298 find_extend_vma(struct mm_struct * mm, unsigned long addr)
2300 struct vm_area_struct * vma;
2301 unsigned long start;
2304 vma = find_vma(mm,addr);
2307 if (vma->vm_start <= addr)
2309 if (!(vma->vm_flags & VM_GROWSDOWN))
2311 start = vma->vm_start;
2312 if (expand_stack(vma, addr))
2314 if (vma->vm_flags & VM_LOCKED)
2315 __mlock_vma_pages_range(vma, addr, start, NULL);
2321 * Ok - we have the memory areas we should free on the vma list,
2322 * so release them, and do the vma updates.
2324 * Called with the mm semaphore held.
2326 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2328 unsigned long nr_accounted = 0;
2330 /* Update high watermark before we lower total_vm */
2331 update_hiwater_vm(mm);
2333 long nrpages = vma_pages(vma);
2335 if (vma->vm_flags & VM_ACCOUNT)
2336 nr_accounted += nrpages;
2337 vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages);
2338 vma = remove_vma(vma);
2340 vm_unacct_memory(nr_accounted);
2345 * Get rid of page table information in the indicated region.
2347 * Called with the mm semaphore held.
2349 static void unmap_region(struct mm_struct *mm,
2350 struct vm_area_struct *vma, struct vm_area_struct *prev,
2351 unsigned long start, unsigned long end)
2353 struct vm_area_struct *next = prev? prev->vm_next: mm->mmap;
2354 struct mmu_gather tlb;
2357 tlb_gather_mmu(&tlb, mm, start, end);
2358 update_hiwater_rss(mm);
2359 unmap_vmas(&tlb, vma, start, end);
2360 free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2361 next ? next->vm_start : USER_PGTABLES_CEILING);
2362 tlb_finish_mmu(&tlb, start, end);
2366 * Create a list of vma's touched by the unmap, removing them from the mm's
2367 * vma list as we go..
2370 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2371 struct vm_area_struct *prev, unsigned long end)
2373 struct vm_area_struct **insertion_point;
2374 struct vm_area_struct *tail_vma = NULL;
2376 insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2377 vma->vm_prev = NULL;
2379 vma_rb_erase(vma, &mm->mm_rb);
2383 } while (vma && vma->vm_start < end);
2384 *insertion_point = vma;
2386 vma->vm_prev = prev;
2387 vma_gap_update(vma);
2389 mm->highest_vm_end = prev ? prev->vm_end : 0;
2390 tail_vma->vm_next = NULL;
2391 mm->mmap_cache = NULL; /* Kill the cache. */
2395 * __split_vma() bypasses sysctl_max_map_count checking. We use this on the
2396 * munmap path where it doesn't make sense to fail.
2398 static int __split_vma(struct mm_struct * mm, struct vm_area_struct * vma,
2399 unsigned long addr, int new_below)
2401 struct vm_area_struct *new;
2404 if (is_vm_hugetlb_page(vma) && (addr &
2405 ~(huge_page_mask(hstate_vma(vma)))))
2408 new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2412 /* most fields are the same, copy all, and then fixup */
2415 INIT_LIST_HEAD(&new->anon_vma_chain);
2420 new->vm_start = addr;
2421 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2424 err = vma_dup_policy(vma, new);
2428 if (anon_vma_clone(new, vma))
2432 get_file(new->vm_file);
2434 if (new->vm_ops && new->vm_ops->open)
2435 new->vm_ops->open(new);
2438 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2439 ((addr - new->vm_start) >> PAGE_SHIFT), new);
2441 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2447 /* Clean everything up if vma_adjust failed. */
2448 if (new->vm_ops && new->vm_ops->close)
2449 new->vm_ops->close(new);
2452 unlink_anon_vmas(new);
2454 mpol_put(vma_policy(new));
2456 kmem_cache_free(vm_area_cachep, new);
2462 * Split a vma into two pieces at address 'addr', a new vma is allocated
2463 * either for the first part or the tail.
2465 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2466 unsigned long addr, int new_below)
2468 if (mm->map_count >= sysctl_max_map_count)
2471 return __split_vma(mm, vma, addr, new_below);
2474 /* Munmap is split into 2 main parts -- this part which finds
2475 * what needs doing, and the areas themselves, which do the
2476 * work. This now handles partial unmappings.
2477 * Jeremy Fitzhardinge <jeremy@goop.org>
2479 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
2482 struct vm_area_struct *vma, *prev, *last;
2484 if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start)
2487 if ((len = PAGE_ALIGN(len)) == 0)
2490 /* Find the first overlapping VMA */
2491 vma = find_vma(mm, start);
2494 prev = vma->vm_prev;
2495 /* we have start < vma->vm_end */
2497 /* if it doesn't overlap, we have nothing.. */
2499 if (vma->vm_start >= end)
2503 * If we need to split any vma, do it now to save pain later.
2505 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2506 * unmapped vm_area_struct will remain in use: so lower split_vma
2507 * places tmp vma above, and higher split_vma places tmp vma below.
2509 if (start > vma->vm_start) {
2513 * Make sure that map_count on return from munmap() will
2514 * not exceed its limit; but let map_count go just above
2515 * its limit temporarily, to help free resources as expected.
2517 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2520 error = __split_vma(mm, vma, start, 0);
2526 /* Does it split the last one? */
2527 last = find_vma(mm, end);
2528 if (last && end > last->vm_start) {
2529 int error = __split_vma(mm, last, end, 1);
2533 vma = prev? prev->vm_next: mm->mmap;
2536 * unlock any mlock()ed ranges before detaching vmas
2538 if (mm->locked_vm) {
2539 struct vm_area_struct *tmp = vma;
2540 while (tmp && tmp->vm_start < end) {
2541 if (tmp->vm_flags & VM_LOCKED) {
2542 mm->locked_vm -= vma_pages(tmp);
2543 munlock_vma_pages_all(tmp);
2550 * Remove the vma's, and unmap the actual pages
2552 detach_vmas_to_be_unmapped(mm, vma, prev, end);
2553 unmap_region(mm, vma, prev, start, end);
2555 /* Fix up all other VM information */
2556 remove_vma_list(mm, vma);
2561 int vm_munmap(unsigned long start, size_t len)
2564 struct mm_struct *mm = current->mm;
2566 down_write(&mm->mmap_sem);
2567 ret = do_munmap(mm, start, len);
2568 up_write(&mm->mmap_sem);
2571 EXPORT_SYMBOL(vm_munmap);
2573 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2575 profile_munmap(addr);
2576 return vm_munmap(addr, len);
2579 static inline void verify_mm_writelocked(struct mm_struct *mm)
2581 #ifdef CONFIG_DEBUG_VM
2582 if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2584 up_read(&mm->mmap_sem);
2590 * this is really a simplified "do_mmap". it only handles
2591 * anonymous maps. eventually we may be able to do some
2592 * brk-specific accounting here.
2594 static unsigned long do_brk(unsigned long addr, unsigned long len)
2596 struct mm_struct * mm = current->mm;
2597 struct vm_area_struct * vma, * prev;
2598 unsigned long flags;
2599 struct rb_node ** rb_link, * rb_parent;
2600 pgoff_t pgoff = addr >> PAGE_SHIFT;
2603 len = PAGE_ALIGN(len);
2607 flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2609 error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2610 if (error & ~PAGE_MASK)
2613 error = mlock_future_check(mm, mm->def_flags, len);
2618 * mm->mmap_sem is required to protect against another thread
2619 * changing the mappings in case we sleep.
2621 verify_mm_writelocked(mm);
2624 * Clear old maps. this also does some error checking for us
2627 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) {
2628 if (do_munmap(mm, addr, len))
2633 /* Check against address space limits *after* clearing old maps... */
2634 if (!may_expand_vm(mm, len >> PAGE_SHIFT))
2637 if (mm->map_count > sysctl_max_map_count)
2640 if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
2643 /* Can we just expand an old private anonymous mapping? */
2644 vma = vma_merge(mm, prev, addr, addr + len, flags,
2645 NULL, NULL, pgoff, NULL);
2650 * create a vma struct for an anonymous mapping
2652 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2654 vm_unacct_memory(len >> PAGE_SHIFT);
2658 INIT_LIST_HEAD(&vma->anon_vma_chain);
2660 vma->vm_start = addr;
2661 vma->vm_end = addr + len;
2662 vma->vm_pgoff = pgoff;
2663 vma->vm_flags = flags;
2664 vma->vm_page_prot = vm_get_page_prot(flags);
2665 vma_link(mm, vma, prev, rb_link, rb_parent);
2667 perf_event_mmap(vma);
2668 mm->total_vm += len >> PAGE_SHIFT;
2669 if (flags & VM_LOCKED)
2670 mm->locked_vm += (len >> PAGE_SHIFT);
2671 vma->vm_flags |= VM_SOFTDIRTY;
2675 unsigned long vm_brk(unsigned long addr, unsigned long len)
2677 struct mm_struct *mm = current->mm;
2681 down_write(&mm->mmap_sem);
2682 ret = do_brk(addr, len);
2683 populate = ((mm->def_flags & VM_LOCKED) != 0);
2684 up_write(&mm->mmap_sem);
2686 mm_populate(addr, len);
2689 EXPORT_SYMBOL(vm_brk);
2691 /* Release all mmaps. */
2692 void exit_mmap(struct mm_struct *mm)
2694 struct mmu_gather tlb;
2695 struct vm_area_struct *vma;
2696 unsigned long nr_accounted = 0;
2698 /* mm's last user has gone, and its about to be pulled down */
2699 mmu_notifier_release(mm);
2701 if (mm->locked_vm) {
2704 if (vma->vm_flags & VM_LOCKED)
2705 munlock_vma_pages_all(vma);
2713 if (!vma) /* Can happen if dup_mmap() received an OOM */
2718 tlb_gather_mmu(&tlb, mm, 0, -1);
2719 /* update_hiwater_rss(mm) here? but nobody should be looking */
2720 /* Use -1 here to ensure all VMAs in the mm are unmapped */
2721 unmap_vmas(&tlb, vma, 0, -1);
2723 free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
2724 tlb_finish_mmu(&tlb, 0, -1);
2727 * Walk the list again, actually closing and freeing it,
2728 * with preemption enabled, without holding any MM locks.
2731 if (vma->vm_flags & VM_ACCOUNT)
2732 nr_accounted += vma_pages(vma);
2733 vma = remove_vma(vma);
2735 vm_unacct_memory(nr_accounted);
2737 WARN_ON(atomic_long_read(&mm->nr_ptes) >
2738 (FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT);
2741 /* Insert vm structure into process list sorted by address
2742 * and into the inode's i_mmap tree. If vm_file is non-NULL
2743 * then i_mmap_mutex is taken here.
2745 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
2747 struct vm_area_struct *prev;
2748 struct rb_node **rb_link, *rb_parent;
2751 * The vm_pgoff of a purely anonymous vma should be irrelevant
2752 * until its first write fault, when page's anon_vma and index
2753 * are set. But now set the vm_pgoff it will almost certainly
2754 * end up with (unless mremap moves it elsewhere before that
2755 * first wfault), so /proc/pid/maps tells a consistent story.
2757 * By setting it to reflect the virtual start address of the
2758 * vma, merges and splits can happen in a seamless way, just
2759 * using the existing file pgoff checks and manipulations.
2760 * Similarly in do_mmap_pgoff and in do_brk.
2762 if (!vma->vm_file) {
2763 BUG_ON(vma->anon_vma);
2764 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2766 if (find_vma_links(mm, vma->vm_start, vma->vm_end,
2767 &prev, &rb_link, &rb_parent))
2769 if ((vma->vm_flags & VM_ACCOUNT) &&
2770 security_vm_enough_memory_mm(mm, vma_pages(vma)))
2773 vma_link(mm, vma, prev, rb_link, rb_parent);
2778 * Copy the vma structure to a new location in the same mm,
2779 * prior to moving page table entries, to effect an mremap move.
2781 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2782 unsigned long addr, unsigned long len, pgoff_t pgoff,
2783 bool *need_rmap_locks)
2785 struct vm_area_struct *vma = *vmap;
2786 unsigned long vma_start = vma->vm_start;
2787 struct mm_struct *mm = vma->vm_mm;
2788 struct vm_area_struct *new_vma, *prev;
2789 struct rb_node **rb_link, *rb_parent;
2790 bool faulted_in_anon_vma = true;
2793 * If anonymous vma has not yet been faulted, update new pgoff
2794 * to match new location, to increase its chance of merging.
2796 if (unlikely(!vma->vm_file && !vma->anon_vma)) {
2797 pgoff = addr >> PAGE_SHIFT;
2798 faulted_in_anon_vma = false;
2801 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
2802 return NULL; /* should never get here */
2803 new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2804 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma));
2807 * Source vma may have been merged into new_vma
2809 if (unlikely(vma_start >= new_vma->vm_start &&
2810 vma_start < new_vma->vm_end)) {
2812 * The only way we can get a vma_merge with
2813 * self during an mremap is if the vma hasn't
2814 * been faulted in yet and we were allowed to
2815 * reset the dst vma->vm_pgoff to the
2816 * destination address of the mremap to allow
2817 * the merge to happen. mremap must change the
2818 * vm_pgoff linearity between src and dst vmas
2819 * (in turn preventing a vma_merge) to be
2820 * safe. It is only safe to keep the vm_pgoff
2821 * linear if there are no pages mapped yet.
2823 VM_BUG_ON(faulted_in_anon_vma);
2824 *vmap = vma = new_vma;
2826 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
2828 new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2831 new_vma->vm_start = addr;
2832 new_vma->vm_end = addr + len;
2833 new_vma->vm_pgoff = pgoff;
2834 if (vma_dup_policy(vma, new_vma))
2836 INIT_LIST_HEAD(&new_vma->anon_vma_chain);
2837 if (anon_vma_clone(new_vma, vma))
2838 goto out_free_mempol;
2839 if (new_vma->vm_file)
2840 get_file(new_vma->vm_file);
2841 if (new_vma->vm_ops && new_vma->vm_ops->open)
2842 new_vma->vm_ops->open(new_vma);
2843 vma_link(mm, new_vma, prev, rb_link, rb_parent);
2844 *need_rmap_locks = false;
2850 mpol_put(vma_policy(new_vma));
2852 kmem_cache_free(vm_area_cachep, new_vma);
2857 * Return true if the calling process may expand its vm space by the passed
2860 int may_expand_vm(struct mm_struct *mm, unsigned long npages)
2862 unsigned long cur = mm->total_vm; /* pages */
2865 lim = rlimit(RLIMIT_AS) >> PAGE_SHIFT;
2867 if (cur + npages > lim)
2873 static int special_mapping_fault(struct vm_area_struct *vma,
2874 struct vm_fault *vmf)
2877 struct page **pages;
2880 * special mappings have no vm_file, and in that case, the mm
2881 * uses vm_pgoff internally. So we have to subtract it from here.
2882 * We are allowed to do this because we are the mm; do not copy
2883 * this code into drivers!
2885 pgoff = vmf->pgoff - vma->vm_pgoff;
2887 for (pages = vma->vm_private_data; pgoff && *pages; ++pages)
2891 struct page *page = *pages;
2897 return VM_FAULT_SIGBUS;
2901 * Having a close hook prevents vma merging regardless of flags.
2903 static void special_mapping_close(struct vm_area_struct *vma)
2907 static const struct vm_operations_struct special_mapping_vmops = {
2908 .close = special_mapping_close,
2909 .fault = special_mapping_fault,
2913 * Called with mm->mmap_sem held for writing.
2914 * Insert a new vma covering the given region, with the given flags.
2915 * Its pages are supplied by the given array of struct page *.
2916 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
2917 * The region past the last page supplied will always produce SIGBUS.
2918 * The array pointer and the pages it points to are assumed to stay alive
2919 * for as long as this mapping might exist.
2921 int install_special_mapping(struct mm_struct *mm,
2922 unsigned long addr, unsigned long len,
2923 unsigned long vm_flags, struct page **pages)
2926 struct vm_area_struct *vma;
2928 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2929 if (unlikely(vma == NULL))
2932 INIT_LIST_HEAD(&vma->anon_vma_chain);
2934 vma->vm_start = addr;
2935 vma->vm_end = addr + len;
2937 vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
2938 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2940 vma->vm_ops = &special_mapping_vmops;
2941 vma->vm_private_data = pages;
2943 ret = insert_vm_struct(mm, vma);
2947 mm->total_vm += len >> PAGE_SHIFT;
2949 perf_event_mmap(vma);
2954 kmem_cache_free(vm_area_cachep, vma);
2958 static DEFINE_MUTEX(mm_all_locks_mutex);
2960 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
2962 if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
2964 * The LSB of head.next can't change from under us
2965 * because we hold the mm_all_locks_mutex.
2967 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem);
2969 * We can safely modify head.next after taking the
2970 * anon_vma->root->rwsem. If some other vma in this mm shares
2971 * the same anon_vma we won't take it again.
2973 * No need of atomic instructions here, head.next
2974 * can't change from under us thanks to the
2975 * anon_vma->root->rwsem.
2977 if (__test_and_set_bit(0, (unsigned long *)
2978 &anon_vma->root->rb_root.rb_node))
2983 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
2985 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2987 * AS_MM_ALL_LOCKS can't change from under us because
2988 * we hold the mm_all_locks_mutex.
2990 * Operations on ->flags have to be atomic because
2991 * even if AS_MM_ALL_LOCKS is stable thanks to the
2992 * mm_all_locks_mutex, there may be other cpus
2993 * changing other bitflags in parallel to us.
2995 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
2997 mutex_lock_nest_lock(&mapping->i_mmap_mutex, &mm->mmap_sem);
3002 * This operation locks against the VM for all pte/vma/mm related
3003 * operations that could ever happen on a certain mm. This includes
3004 * vmtruncate, try_to_unmap, and all page faults.
3006 * The caller must take the mmap_sem in write mode before calling
3007 * mm_take_all_locks(). The caller isn't allowed to release the
3008 * mmap_sem until mm_drop_all_locks() returns.
3010 * mmap_sem in write mode is required in order to block all operations
3011 * that could modify pagetables and free pages without need of
3012 * altering the vma layout (for example populate_range() with
3013 * nonlinear vmas). It's also needed in write mode to avoid new
3014 * anon_vmas to be associated with existing vmas.
3016 * A single task can't take more than one mm_take_all_locks() in a row
3017 * or it would deadlock.
3019 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3020 * mapping->flags avoid to take the same lock twice, if more than one
3021 * vma in this mm is backed by the same anon_vma or address_space.
3023 * We can take all the locks in random order because the VM code
3024 * taking i_mmap_mutex or anon_vma->rwsem outside the mmap_sem never
3025 * takes more than one of them in a row. Secondly we're protected
3026 * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex.
3028 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3029 * that may have to take thousand of locks.
3031 * mm_take_all_locks() can fail if it's interrupted by signals.
3033 int mm_take_all_locks(struct mm_struct *mm)
3035 struct vm_area_struct *vma;
3036 struct anon_vma_chain *avc;
3038 BUG_ON(down_read_trylock(&mm->mmap_sem));
3040 mutex_lock(&mm_all_locks_mutex);
3042 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3043 if (signal_pending(current))
3045 if (vma->vm_file && vma->vm_file->f_mapping)
3046 vm_lock_mapping(mm, vma->vm_file->f_mapping);
3049 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3050 if (signal_pending(current))
3053 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3054 vm_lock_anon_vma(mm, avc->anon_vma);
3060 mm_drop_all_locks(mm);
3064 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3066 if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3068 * The LSB of head.next can't change to 0 from under
3069 * us because we hold the mm_all_locks_mutex.
3071 * We must however clear the bitflag before unlocking
3072 * the vma so the users using the anon_vma->rb_root will
3073 * never see our bitflag.
3075 * No need of atomic instructions here, head.next
3076 * can't change from under us until we release the
3077 * anon_vma->root->rwsem.
3079 if (!__test_and_clear_bit(0, (unsigned long *)
3080 &anon_vma->root->rb_root.rb_node))
3082 anon_vma_unlock_write(anon_vma);
3086 static void vm_unlock_mapping(struct address_space *mapping)
3088 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3090 * AS_MM_ALL_LOCKS can't change to 0 from under us
3091 * because we hold the mm_all_locks_mutex.
3093 mutex_unlock(&mapping->i_mmap_mutex);
3094 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3101 * The mmap_sem cannot be released by the caller until
3102 * mm_drop_all_locks() returns.
3104 void mm_drop_all_locks(struct mm_struct *mm)
3106 struct vm_area_struct *vma;
3107 struct anon_vma_chain *avc;
3109 BUG_ON(down_read_trylock(&mm->mmap_sem));
3110 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3112 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3114 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3115 vm_unlock_anon_vma(avc->anon_vma);
3116 if (vma->vm_file && vma->vm_file->f_mapping)
3117 vm_unlock_mapping(vma->vm_file->f_mapping);
3120 mutex_unlock(&mm_all_locks_mutex);
3124 * initialise the VMA slab
3126 void __init mmap_init(void)
3130 ret = percpu_counter_init(&vm_committed_as, 0);
3135 * Initialise sysctl_user_reserve_kbytes.
3137 * This is intended to prevent a user from starting a single memory hogging
3138 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3141 * The default value is min(3% of free memory, 128MB)
3142 * 128MB is enough to recover with sshd/login, bash, and top/kill.
3144 static int init_user_reserve(void)
3146 unsigned long free_kbytes;
3148 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3150 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3153 subsys_initcall(init_user_reserve);
3156 * Initialise sysctl_admin_reserve_kbytes.
3158 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3159 * to log in and kill a memory hogging process.
3161 * Systems with more than 256MB will reserve 8MB, enough to recover
3162 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3163 * only reserve 3% of free pages by default.
3165 static int init_admin_reserve(void)
3167 unsigned long free_kbytes;
3169 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3171 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3174 subsys_initcall(init_admin_reserve);
3177 * Reinititalise user and admin reserves if memory is added or removed.
3179 * The default user reserve max is 128MB, and the default max for the
3180 * admin reserve is 8MB. These are usually, but not always, enough to
3181 * enable recovery from a memory hogging process using login/sshd, a shell,
3182 * and tools like top. It may make sense to increase or even disable the
3183 * reserve depending on the existence of swap or variations in the recovery
3184 * tools. So, the admin may have changed them.
3186 * If memory is added and the reserves have been eliminated or increased above
3187 * the default max, then we'll trust the admin.
3189 * If memory is removed and there isn't enough free memory, then we
3190 * need to reset the reserves.
3192 * Otherwise keep the reserve set by the admin.
3194 static int reserve_mem_notifier(struct notifier_block *nb,
3195 unsigned long action, void *data)
3197 unsigned long tmp, free_kbytes;
3201 /* Default max is 128MB. Leave alone if modified by operator. */
3202 tmp = sysctl_user_reserve_kbytes;
3203 if (0 < tmp && tmp < (1UL << 17))
3204 init_user_reserve();
3206 /* Default max is 8MB. Leave alone if modified by operator. */
3207 tmp = sysctl_admin_reserve_kbytes;
3208 if (0 < tmp && tmp < (1UL << 13))
3209 init_admin_reserve();
3213 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3215 if (sysctl_user_reserve_kbytes > free_kbytes) {
3216 init_user_reserve();
3217 pr_info("vm.user_reserve_kbytes reset to %lu\n",
3218 sysctl_user_reserve_kbytes);
3221 if (sysctl_admin_reserve_kbytes > free_kbytes) {
3222 init_admin_reserve();
3223 pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3224 sysctl_admin_reserve_kbytes);
3233 static struct notifier_block reserve_mem_nb = {
3234 .notifier_call = reserve_mem_notifier,
3237 static int __meminit init_reserve_notifier(void)
3239 if (register_hotmemory_notifier(&reserve_mem_nb))
3240 printk("Failed registering memory add/remove notifier for admin reserve");
3244 subsys_initcall(init_reserve_notifier);