1 // SPDX-License-Identifier: GPL-2.0
5 * (C) Copyright 1995 Linus Torvalds
6 * (C) Copyright 2002 Christoph Hellwig
9 #include <linux/capability.h>
10 #include <linux/mman.h>
12 #include <linux/sched/user.h>
13 #include <linux/swap.h>
14 #include <linux/swapops.h>
15 #include <linux/pagemap.h>
16 #include <linux/pagevec.h>
17 #include <linux/mempolicy.h>
18 #include <linux/syscalls.h>
19 #include <linux/sched.h>
20 #include <linux/export.h>
21 #include <linux/rmap.h>
22 #include <linux/mmzone.h>
23 #include <linux/hugetlb.h>
24 #include <linux/memcontrol.h>
25 #include <linux/mm_inline.h>
29 bool can_do_mlock(void)
31 if (rlimit(RLIMIT_MEMLOCK) != 0)
33 if (capable(CAP_IPC_LOCK))
37 EXPORT_SYMBOL(can_do_mlock);
40 * Mlocked pages are marked with PageMlocked() flag for efficient testing
41 * in vmscan and, possibly, the fault path; and to support semi-accurate
44 * An mlocked page [PageMlocked(page)] is unevictable. As such, it will
45 * be placed on the LRU "unevictable" list, rather than the [in]active lists.
46 * The unevictable list is an LRU sibling list to the [in]active lists.
47 * PageUnevictable is set to indicate the unevictable state.
49 * When lazy mlocking via vmscan, it is important to ensure that the
50 * vma's VM_LOCKED status is not concurrently being modified, otherwise we
51 * may have mlocked a page that is being munlocked. So lazy mlock must take
52 * the mmap_lock for read, and verify that the vma really is locked
57 * LRU accounting for clear_page_mlock()
59 void clear_page_mlock(struct page *page)
61 if (!TestClearPageMlocked(page))
64 mod_zone_page_state(page_zone(page), NR_MLOCK, -thp_nr_pages(page));
65 count_vm_event(UNEVICTABLE_PGCLEARED);
67 * The previous TestClearPageMlocked() corresponds to the smp_mb()
68 * in __pagevec_lru_add_fn().
70 * See __pagevec_lru_add_fn for more explanation.
72 if (!isolate_lru_page(page)) {
73 putback_lru_page(page);
76 * We lost the race. the page already moved to evictable list.
78 if (PageUnevictable(page))
79 count_vm_event(UNEVICTABLE_PGSTRANDED);
84 * Mark page as mlocked if not already.
85 * If page on LRU, isolate and putback to move to unevictable list.
87 void mlock_vma_page(struct page *page)
89 /* Serialize with page migration */
90 BUG_ON(!PageLocked(page));
92 VM_BUG_ON_PAGE(PageTail(page), page);
93 VM_BUG_ON_PAGE(PageCompound(page) && PageDoubleMap(page), page);
95 if (!TestSetPageMlocked(page)) {
96 mod_zone_page_state(page_zone(page), NR_MLOCK,
98 count_vm_event(UNEVICTABLE_PGMLOCKED);
99 if (!isolate_lru_page(page))
100 putback_lru_page(page);
105 * Isolate a page from LRU with optional get_page() pin.
106 * Assumes lru_lock already held and page already pinned.
108 static bool __munlock_isolate_lru_page(struct page *page, bool getpage)
111 struct lruvec *lruvec;
113 lruvec = mem_cgroup_page_lruvec(page, page_pgdat(page));
117 del_page_from_lru_list(page, lruvec, page_lru(page));
125 * Finish munlock after successful page isolation
127 * Page must be locked. This is a wrapper for try_to_munlock()
128 * and putback_lru_page() with munlock accounting.
130 static void __munlock_isolated_page(struct page *page)
133 * Optimization: if the page was mapped just once, that's our mapping
134 * and we don't need to check all the other vmas.
136 if (page_mapcount(page) > 1)
137 try_to_munlock(page);
139 /* Did try_to_unlock() succeed or punt? */
140 if (!PageMlocked(page))
141 count_vm_event(UNEVICTABLE_PGMUNLOCKED);
143 putback_lru_page(page);
147 * Accounting for page isolation fail during munlock
149 * Performs accounting when page isolation fails in munlock. There is nothing
150 * else to do because it means some other task has already removed the page
151 * from the LRU. putback_lru_page() will take care of removing the page from
152 * the unevictable list, if necessary. vmscan [page_referenced()] will move
153 * the page back to the unevictable list if some other vma has it mlocked.
155 static void __munlock_isolation_failed(struct page *page)
157 if (PageUnevictable(page))
158 __count_vm_event(UNEVICTABLE_PGSTRANDED);
160 __count_vm_event(UNEVICTABLE_PGMUNLOCKED);
164 * munlock_vma_page - munlock a vma page
165 * @page: page to be unlocked, either a normal page or THP page head
167 * returns the size of the page as a page mask (0 for normal page,
168 * HPAGE_PMD_NR - 1 for THP head page)
170 * called from munlock()/munmap() path with page supposedly on the LRU.
171 * When we munlock a page, because the vma where we found the page is being
172 * munlock()ed or munmap()ed, we want to check whether other vmas hold the
173 * page locked so that we can leave it on the unevictable lru list and not
174 * bother vmscan with it. However, to walk the page's rmap list in
175 * try_to_munlock() we must isolate the page from the LRU. If some other
176 * task has removed the page from the LRU, we won't be able to do that.
177 * So we clear the PageMlocked as we might not get another chance. If we
178 * can't isolate the page, we leave it for putback_lru_page() and vmscan
179 * [page_referenced()/try_to_unmap()] to deal with.
181 unsigned int munlock_vma_page(struct page *page)
184 pg_data_t *pgdat = page_pgdat(page);
186 /* For try_to_munlock() and to serialize with page migration */
187 BUG_ON(!PageLocked(page));
189 VM_BUG_ON_PAGE(PageTail(page), page);
192 * Serialize with any parallel __split_huge_page_refcount() which
193 * might otherwise copy PageMlocked to part of the tail pages before
194 * we clear it in the head page. It also stabilizes thp_nr_pages().
196 spin_lock_irq(&pgdat->lru_lock);
198 if (!TestClearPageMlocked(page)) {
199 /* Potentially, PTE-mapped THP: do not skip the rest PTEs */
204 nr_pages = thp_nr_pages(page);
205 __mod_zone_page_state(page_zone(page), NR_MLOCK, -nr_pages);
207 if (__munlock_isolate_lru_page(page, true)) {
208 spin_unlock_irq(&pgdat->lru_lock);
209 __munlock_isolated_page(page);
212 __munlock_isolation_failed(page);
215 spin_unlock_irq(&pgdat->lru_lock);
222 * convert get_user_pages() return value to posix mlock() error
224 static int __mlock_posix_error_return(long retval)
226 if (retval == -EFAULT)
228 else if (retval == -ENOMEM)
234 * Prepare page for fast batched LRU putback via putback_lru_evictable_pagevec()
236 * The fast path is available only for evictable pages with single mapping.
237 * Then we can bypass the per-cpu pvec and get better performance.
238 * when mapcount > 1 we need try_to_munlock() which can fail.
239 * when !page_evictable(), we need the full redo logic of putback_lru_page to
240 * avoid leaving evictable page in unevictable list.
242 * In case of success, @page is added to @pvec and @pgrescued is incremented
243 * in case that the page was previously unevictable. @page is also unlocked.
245 static bool __putback_lru_fast_prepare(struct page *page, struct pagevec *pvec,
248 VM_BUG_ON_PAGE(PageLRU(page), page);
249 VM_BUG_ON_PAGE(!PageLocked(page), page);
251 if (page_mapcount(page) <= 1 && page_evictable(page)) {
252 pagevec_add(pvec, page);
253 if (TestClearPageUnevictable(page))
263 * Putback multiple evictable pages to the LRU
265 * Batched putback of evictable pages that bypasses the per-cpu pvec. Some of
266 * the pages might have meanwhile become unevictable but that is OK.
268 static void __putback_lru_fast(struct pagevec *pvec, int pgrescued)
270 count_vm_events(UNEVICTABLE_PGMUNLOCKED, pagevec_count(pvec));
272 *__pagevec_lru_add() calls release_pages() so we don't call
273 * put_page() explicitly
275 __pagevec_lru_add(pvec);
276 count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
280 * Munlock a batch of pages from the same zone
282 * The work is split to two main phases. First phase clears the Mlocked flag
283 * and attempts to isolate the pages, all under a single zone lru lock.
284 * The second phase finishes the munlock only for pages where isolation
287 * Note that the pagevec may be modified during the process.
289 static void __munlock_pagevec(struct pagevec *pvec, struct zone *zone)
292 int nr = pagevec_count(pvec);
293 int delta_munlocked = -nr;
294 struct pagevec pvec_putback;
297 pagevec_init(&pvec_putback);
299 /* Phase 1: page isolation */
300 spin_lock_irq(&zone->zone_pgdat->lru_lock);
301 for (i = 0; i < nr; i++) {
302 struct page *page = pvec->pages[i];
304 if (TestClearPageMlocked(page)) {
306 * We already have pin from follow_page_mask()
307 * so we can spare the get_page() here.
309 if (__munlock_isolate_lru_page(page, false))
312 __munlock_isolation_failed(page);
318 * We won't be munlocking this page in the next phase
319 * but we still need to release the follow_page_mask()
320 * pin. We cannot do it under lru_lock however. If it's
321 * the last pin, __page_cache_release() would deadlock.
323 pagevec_add(&pvec_putback, pvec->pages[i]);
324 pvec->pages[i] = NULL;
326 __mod_zone_page_state(zone, NR_MLOCK, delta_munlocked);
327 spin_unlock_irq(&zone->zone_pgdat->lru_lock);
329 /* Now we can release pins of pages that we are not munlocking */
330 pagevec_release(&pvec_putback);
332 /* Phase 2: page munlock */
333 for (i = 0; i < nr; i++) {
334 struct page *page = pvec->pages[i];
338 if (!__putback_lru_fast_prepare(page, &pvec_putback,
341 * Slow path. We don't want to lose the last
342 * pin before unlock_page()
344 get_page(page); /* for putback_lru_page() */
345 __munlock_isolated_page(page);
347 put_page(page); /* from follow_page_mask() */
353 * Phase 3: page putback for pages that qualified for the fast path
354 * This will also call put_page() to return pin from follow_page_mask()
356 if (pagevec_count(&pvec_putback))
357 __putback_lru_fast(&pvec_putback, pgrescued);
361 * Fill up pagevec for __munlock_pagevec using pte walk
363 * The function expects that the struct page corresponding to @start address is
364 * a non-TPH page already pinned and in the @pvec, and that it belongs to @zone.
366 * The rest of @pvec is filled by subsequent pages within the same pmd and same
367 * zone, as long as the pte's are present and vm_normal_page() succeeds. These
368 * pages also get pinned.
370 * Returns the address of the next page that should be scanned. This equals
371 * @start + PAGE_SIZE when no page could be added by the pte walk.
373 static unsigned long __munlock_pagevec_fill(struct pagevec *pvec,
374 struct vm_area_struct *vma, struct zone *zone,
375 unsigned long start, unsigned long end)
381 * Initialize pte walk starting at the already pinned page where we
382 * are sure that there is a pte, as it was pinned under the same
383 * mmap_lock write op.
385 pte = get_locked_pte(vma->vm_mm, start, &ptl);
386 /* Make sure we do not cross the page table boundary */
387 end = pgd_addr_end(start, end);
388 end = p4d_addr_end(start, end);
389 end = pud_addr_end(start, end);
390 end = pmd_addr_end(start, end);
392 /* The page next to the pinned page is the first we will try to get */
394 while (start < end) {
395 struct page *page = NULL;
397 if (pte_present(*pte))
398 page = vm_normal_page(vma, start, *pte);
400 * Break if page could not be obtained or the page's node+zone does not
403 if (!page || page_zone(page) != zone)
407 * Do not use pagevec for PTE-mapped THP,
408 * munlock_vma_pages_range() will handle them.
410 if (PageTransCompound(page))
415 * Increase the address that will be returned *before* the
416 * eventual break due to pvec becoming full by adding the page
419 if (pagevec_add(pvec, page) == 0)
422 pte_unmap_unlock(pte, ptl);
427 * munlock_vma_pages_range() - munlock all pages in the vma range.'
428 * @vma - vma containing range to be munlock()ed.
429 * @start - start address in @vma of the range
430 * @end - end of range in @vma.
432 * For mremap(), munmap() and exit().
434 * Called with @vma VM_LOCKED.
436 * Returns with VM_LOCKED cleared. Callers must be prepared to
439 * We don't save and restore VM_LOCKED here because pages are
440 * still on lru. In unmap path, pages might be scanned by reclaim
441 * and re-mlocked by try_to_{munlock|unmap} before we unmap and
442 * free them. This will result in freeing mlocked pages.
444 void munlock_vma_pages_range(struct vm_area_struct *vma,
445 unsigned long start, unsigned long end)
447 vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
449 while (start < end) {
451 unsigned int page_mask = 0;
452 unsigned long page_increm;
458 * Although FOLL_DUMP is intended for get_dump_page(),
459 * it just so happens that its special treatment of the
460 * ZERO_PAGE (returning an error instead of doing get_page)
461 * suits munlock very well (and if somehow an abnormal page
462 * has sneaked into the range, we won't oops here: great).
464 page = follow_page(vma, start, FOLL_GET | FOLL_DUMP);
466 if (page && !IS_ERR(page)) {
467 if (PageTransTail(page)) {
468 VM_BUG_ON_PAGE(PageMlocked(page), page);
469 put_page(page); /* follow_page_mask() */
470 } else if (PageTransHuge(page)) {
473 * Any THP page found by follow_page_mask() may
474 * have gotten split before reaching
475 * munlock_vma_page(), so we need to compute
476 * the page_mask here instead.
478 page_mask = munlock_vma_page(page);
480 put_page(page); /* follow_page_mask() */
483 * Non-huge pages are handled in batches via
484 * pagevec. The pin from follow_page_mask()
485 * prevents them from collapsing by THP.
487 pagevec_add(&pvec, page);
488 zone = page_zone(page);
491 * Try to fill the rest of pagevec using fast
492 * pte walk. This will also update start to
493 * the next page to process. Then munlock the
496 start = __munlock_pagevec_fill(&pvec, vma,
498 __munlock_pagevec(&pvec, zone);
502 page_increm = 1 + page_mask;
503 start += page_increm * PAGE_SIZE;
510 * mlock_fixup - handle mlock[all]/munlock[all] requests.
512 * Filters out "special" vmas -- VM_LOCKED never gets set for these, and
513 * munlock is a no-op. However, for some special vmas, we go ahead and
516 * For vmas that pass the filters, merge/split as appropriate.
518 static int mlock_fixup(struct vm_area_struct *vma, struct vm_area_struct **prev,
519 unsigned long start, unsigned long end, vm_flags_t newflags)
521 struct mm_struct *mm = vma->vm_mm;
525 int lock = !!(newflags & VM_LOCKED);
526 vm_flags_t old_flags = vma->vm_flags;
528 if (newflags == vma->vm_flags || (vma->vm_flags & VM_SPECIAL) ||
529 is_vm_hugetlb_page(vma) || vma == get_gate_vma(current->mm) ||
531 /* don't set VM_LOCKED or VM_LOCKONFAULT and don't count */
534 pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
535 *prev = vma_merge(mm, *prev, start, end, newflags, vma->anon_vma,
536 vma->vm_file, pgoff, vma_policy(vma),
537 vma->vm_userfaultfd_ctx);
543 if (start != vma->vm_start) {
544 ret = split_vma(mm, vma, start, 1);
549 if (end != vma->vm_end) {
550 ret = split_vma(mm, vma, end, 0);
557 * Keep track of amount of locked VM.
559 nr_pages = (end - start) >> PAGE_SHIFT;
561 nr_pages = -nr_pages;
562 else if (old_flags & VM_LOCKED)
564 mm->locked_vm += nr_pages;
567 * vm_flags is protected by the mmap_lock held in write mode.
568 * It's okay if try_to_unmap_one unmaps a page just after we
569 * set VM_LOCKED, populate_vma_page_range will bring it back.
573 vma->vm_flags = newflags;
575 munlock_vma_pages_range(vma, start, end);
582 static int apply_vma_lock_flags(unsigned long start, size_t len,
585 unsigned long nstart, end, tmp;
586 struct vm_area_struct * vma, * prev;
589 VM_BUG_ON(offset_in_page(start));
590 VM_BUG_ON(len != PAGE_ALIGN(len));
596 vma = find_vma(current->mm, start);
597 if (!vma || vma->vm_start > start)
601 if (start > vma->vm_start)
604 for (nstart = start ; ; ) {
605 vm_flags_t newflags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
609 /* Here we know that vma->vm_start <= nstart < vma->vm_end. */
613 error = mlock_fixup(vma, &prev, nstart, tmp, newflags);
617 if (nstart < prev->vm_end)
618 nstart = prev->vm_end;
623 if (!vma || vma->vm_start != nstart) {
632 * Go through vma areas and sum size of mlocked
633 * vma pages, as return value.
634 * Note deferred memory locking case(mlock2(,,MLOCK_ONFAULT)
636 * Return value: previously mlocked page counts
638 static unsigned long count_mm_mlocked_page_nr(struct mm_struct *mm,
639 unsigned long start, size_t len)
641 struct vm_area_struct *vma;
642 unsigned long count = 0;
647 vma = find_vma(mm, start);
651 for (; vma ; vma = vma->vm_next) {
652 if (start >= vma->vm_end)
654 if (start + len <= vma->vm_start)
656 if (vma->vm_flags & VM_LOCKED) {
657 if (start > vma->vm_start)
658 count -= (start - vma->vm_start);
659 if (start + len < vma->vm_end) {
660 count += start + len - vma->vm_start;
663 count += vma->vm_end - vma->vm_start;
667 return count >> PAGE_SHIFT;
670 static __must_check int do_mlock(unsigned long start, size_t len, vm_flags_t flags)
672 unsigned long locked;
673 unsigned long lock_limit;
676 start = untagged_addr(start);
681 len = PAGE_ALIGN(len + (offset_in_page(start)));
684 lock_limit = rlimit(RLIMIT_MEMLOCK);
685 lock_limit >>= PAGE_SHIFT;
686 locked = len >> PAGE_SHIFT;
688 if (mmap_write_lock_killable(current->mm))
691 locked += current->mm->locked_vm;
692 if ((locked > lock_limit) && (!capable(CAP_IPC_LOCK))) {
694 * It is possible that the regions requested intersect with
695 * previously mlocked areas, that part area in "mm->locked_vm"
696 * should not be counted to new mlock increment count. So check
697 * and adjust locked count if necessary.
699 locked -= count_mm_mlocked_page_nr(current->mm,
703 /* check against resource limits */
704 if ((locked <= lock_limit) || capable(CAP_IPC_LOCK))
705 error = apply_vma_lock_flags(start, len, flags);
707 mmap_write_unlock(current->mm);
711 error = __mm_populate(start, len, 0);
713 return __mlock_posix_error_return(error);
717 SYSCALL_DEFINE2(mlock, unsigned long, start, size_t, len)
719 return do_mlock(start, len, VM_LOCKED);
722 SYSCALL_DEFINE3(mlock2, unsigned long, start, size_t, len, int, flags)
724 vm_flags_t vm_flags = VM_LOCKED;
726 if (flags & ~MLOCK_ONFAULT)
729 if (flags & MLOCK_ONFAULT)
730 vm_flags |= VM_LOCKONFAULT;
732 return do_mlock(start, len, vm_flags);
735 SYSCALL_DEFINE2(munlock, unsigned long, start, size_t, len)
739 start = untagged_addr(start);
741 len = PAGE_ALIGN(len + (offset_in_page(start)));
744 if (mmap_write_lock_killable(current->mm))
746 ret = apply_vma_lock_flags(start, len, 0);
747 mmap_write_unlock(current->mm);
753 * Take the MCL_* flags passed into mlockall (or 0 if called from munlockall)
754 * and translate into the appropriate modifications to mm->def_flags and/or the
755 * flags for all current VMAs.
757 * There are a couple of subtleties with this. If mlockall() is called multiple
758 * times with different flags, the values do not necessarily stack. If mlockall
759 * is called once including the MCL_FUTURE flag and then a second time without
760 * it, VM_LOCKED and VM_LOCKONFAULT will be cleared from mm->def_flags.
762 static int apply_mlockall_flags(int flags)
764 struct vm_area_struct * vma, * prev = NULL;
765 vm_flags_t to_add = 0;
767 current->mm->def_flags &= VM_LOCKED_CLEAR_MASK;
768 if (flags & MCL_FUTURE) {
769 current->mm->def_flags |= VM_LOCKED;
771 if (flags & MCL_ONFAULT)
772 current->mm->def_flags |= VM_LOCKONFAULT;
774 if (!(flags & MCL_CURRENT))
778 if (flags & MCL_CURRENT) {
780 if (flags & MCL_ONFAULT)
781 to_add |= VM_LOCKONFAULT;
784 for (vma = current->mm->mmap; vma ; vma = prev->vm_next) {
787 newflags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
791 mlock_fixup(vma, &prev, vma->vm_start, vma->vm_end, newflags);
798 SYSCALL_DEFINE1(mlockall, int, flags)
800 unsigned long lock_limit;
803 if (!flags || (flags & ~(MCL_CURRENT | MCL_FUTURE | MCL_ONFAULT)) ||
804 flags == MCL_ONFAULT)
810 lock_limit = rlimit(RLIMIT_MEMLOCK);
811 lock_limit >>= PAGE_SHIFT;
813 if (mmap_write_lock_killable(current->mm))
817 if (!(flags & MCL_CURRENT) || (current->mm->total_vm <= lock_limit) ||
818 capable(CAP_IPC_LOCK))
819 ret = apply_mlockall_flags(flags);
820 mmap_write_unlock(current->mm);
821 if (!ret && (flags & MCL_CURRENT))
822 mm_populate(0, TASK_SIZE);
827 SYSCALL_DEFINE0(munlockall)
831 if (mmap_write_lock_killable(current->mm))
833 ret = apply_mlockall_flags(0);
834 mmap_write_unlock(current->mm);
839 * Objects with different lifetime than processes (SHM_LOCK and SHM_HUGETLB
840 * shm segments) get accounted against the user_struct instead.
842 static DEFINE_SPINLOCK(shmlock_user_lock);
844 int user_shm_lock(size_t size, struct user_struct *user)
846 unsigned long lock_limit, locked;
849 locked = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
850 lock_limit = rlimit(RLIMIT_MEMLOCK);
851 if (lock_limit == RLIM_INFINITY)
853 lock_limit >>= PAGE_SHIFT;
854 spin_lock(&shmlock_user_lock);
856 locked + user->locked_shm > lock_limit && !capable(CAP_IPC_LOCK))
859 user->locked_shm += locked;
862 spin_unlock(&shmlock_user_lock);
866 void user_shm_unlock(size_t size, struct user_struct *user)
868 spin_lock(&shmlock_user_lock);
869 user->locked_shm -= (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
870 spin_unlock(&shmlock_user_lock);