Linux 3.11-rc4
[profile/ivi/kernel-x86-ivi.git] / mm / mlock.c
1 /*
2  *      linux/mm/mlock.c
3  *
4  *  (C) Copyright 1995 Linus Torvalds
5  *  (C) Copyright 2002 Christoph Hellwig
6  */
7
8 #include <linux/capability.h>
9 #include <linux/mman.h>
10 #include <linux/mm.h>
11 #include <linux/swap.h>
12 #include <linux/swapops.h>
13 #include <linux/pagemap.h>
14 #include <linux/mempolicy.h>
15 #include <linux/syscalls.h>
16 #include <linux/sched.h>
17 #include <linux/export.h>
18 #include <linux/rmap.h>
19 #include <linux/mmzone.h>
20 #include <linux/hugetlb.h>
21
22 #include "internal.h"
23
24 int can_do_mlock(void)
25 {
26         if (capable(CAP_IPC_LOCK))
27                 return 1;
28         if (rlimit(RLIMIT_MEMLOCK) != 0)
29                 return 1;
30         return 0;
31 }
32 EXPORT_SYMBOL(can_do_mlock);
33
34 /*
35  * Mlocked pages are marked with PageMlocked() flag for efficient testing
36  * in vmscan and, possibly, the fault path; and to support semi-accurate
37  * statistics.
38  *
39  * An mlocked page [PageMlocked(page)] is unevictable.  As such, it will
40  * be placed on the LRU "unevictable" list, rather than the [in]active lists.
41  * The unevictable list is an LRU sibling list to the [in]active lists.
42  * PageUnevictable is set to indicate the unevictable state.
43  *
44  * When lazy mlocking via vmscan, it is important to ensure that the
45  * vma's VM_LOCKED status is not concurrently being modified, otherwise we
46  * may have mlocked a page that is being munlocked. So lazy mlock must take
47  * the mmap_sem for read, and verify that the vma really is locked
48  * (see mm/rmap.c).
49  */
50
51 /*
52  *  LRU accounting for clear_page_mlock()
53  */
54 void clear_page_mlock(struct page *page)
55 {
56         if (!TestClearPageMlocked(page))
57                 return;
58
59         mod_zone_page_state(page_zone(page), NR_MLOCK,
60                             -hpage_nr_pages(page));
61         count_vm_event(UNEVICTABLE_PGCLEARED);
62         if (!isolate_lru_page(page)) {
63                 putback_lru_page(page);
64         } else {
65                 /*
66                  * We lost the race. the page already moved to evictable list.
67                  */
68                 if (PageUnevictable(page))
69                         count_vm_event(UNEVICTABLE_PGSTRANDED);
70         }
71 }
72
73 /*
74  * Mark page as mlocked if not already.
75  * If page on LRU, isolate and putback to move to unevictable list.
76  */
77 void mlock_vma_page(struct page *page)
78 {
79         BUG_ON(!PageLocked(page));
80
81         if (!TestSetPageMlocked(page)) {
82                 mod_zone_page_state(page_zone(page), NR_MLOCK,
83                                     hpage_nr_pages(page));
84                 count_vm_event(UNEVICTABLE_PGMLOCKED);
85                 if (!isolate_lru_page(page))
86                         putback_lru_page(page);
87         }
88 }
89
90 /**
91  * munlock_vma_page - munlock a vma page
92  * @page - page to be unlocked
93  *
94  * called from munlock()/munmap() path with page supposedly on the LRU.
95  * When we munlock a page, because the vma where we found the page is being
96  * munlock()ed or munmap()ed, we want to check whether other vmas hold the
97  * page locked so that we can leave it on the unevictable lru list and not
98  * bother vmscan with it.  However, to walk the page's rmap list in
99  * try_to_munlock() we must isolate the page from the LRU.  If some other
100  * task has removed the page from the LRU, we won't be able to do that.
101  * So we clear the PageMlocked as we might not get another chance.  If we
102  * can't isolate the page, we leave it for putback_lru_page() and vmscan
103  * [page_referenced()/try_to_unmap()] to deal with.
104  */
105 unsigned int munlock_vma_page(struct page *page)
106 {
107         unsigned int page_mask = 0;
108
109         BUG_ON(!PageLocked(page));
110
111         if (TestClearPageMlocked(page)) {
112                 unsigned int nr_pages = hpage_nr_pages(page);
113                 mod_zone_page_state(page_zone(page), NR_MLOCK, -nr_pages);
114                 page_mask = nr_pages - 1;
115                 if (!isolate_lru_page(page)) {
116                         int ret = SWAP_AGAIN;
117
118                         /*
119                          * Optimization: if the page was mapped just once,
120                          * that's our mapping and we don't need to check all the
121                          * other vmas.
122                          */
123                         if (page_mapcount(page) > 1)
124                                 ret = try_to_munlock(page);
125                         /*
126                          * did try_to_unlock() succeed or punt?
127                          */
128                         if (ret != SWAP_MLOCK)
129                                 count_vm_event(UNEVICTABLE_PGMUNLOCKED);
130
131                         putback_lru_page(page);
132                 } else {
133                         /*
134                          * Some other task has removed the page from the LRU.
135                          * putback_lru_page() will take care of removing the
136                          * page from the unevictable list, if necessary.
137                          * vmscan [page_referenced()] will move the page back
138                          * to the unevictable list if some other vma has it
139                          * mlocked.
140                          */
141                         if (PageUnevictable(page))
142                                 count_vm_event(UNEVICTABLE_PGSTRANDED);
143                         else
144                                 count_vm_event(UNEVICTABLE_PGMUNLOCKED);
145                 }
146         }
147
148         return page_mask;
149 }
150
151 /**
152  * __mlock_vma_pages_range() -  mlock a range of pages in the vma.
153  * @vma:   target vma
154  * @start: start address
155  * @end:   end address
156  *
157  * This takes care of making the pages present too.
158  *
159  * return 0 on success, negative error code on error.
160  *
161  * vma->vm_mm->mmap_sem must be held for at least read.
162  */
163 long __mlock_vma_pages_range(struct vm_area_struct *vma,
164                 unsigned long start, unsigned long end, int *nonblocking)
165 {
166         struct mm_struct *mm = vma->vm_mm;
167         unsigned long nr_pages = (end - start) / PAGE_SIZE;
168         int gup_flags;
169
170         VM_BUG_ON(start & ~PAGE_MASK);
171         VM_BUG_ON(end   & ~PAGE_MASK);
172         VM_BUG_ON(start < vma->vm_start);
173         VM_BUG_ON(end   > vma->vm_end);
174         VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem));
175
176         gup_flags = FOLL_TOUCH | FOLL_MLOCK;
177         /*
178          * We want to touch writable mappings with a write fault in order
179          * to break COW, except for shared mappings because these don't COW
180          * and we would not want to dirty them for nothing.
181          */
182         if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
183                 gup_flags |= FOLL_WRITE;
184
185         /*
186          * We want mlock to succeed for regions that have any permissions
187          * other than PROT_NONE.
188          */
189         if (vma->vm_flags & (VM_READ | VM_WRITE | VM_EXEC))
190                 gup_flags |= FOLL_FORCE;
191
192         /*
193          * We made sure addr is within a VMA, so the following will
194          * not result in a stack expansion that recurses back here.
195          */
196         return __get_user_pages(current, mm, start, nr_pages, gup_flags,
197                                 NULL, NULL, nonblocking);
198 }
199
200 /*
201  * convert get_user_pages() return value to posix mlock() error
202  */
203 static int __mlock_posix_error_return(long retval)
204 {
205         if (retval == -EFAULT)
206                 retval = -ENOMEM;
207         else if (retval == -ENOMEM)
208                 retval = -EAGAIN;
209         return retval;
210 }
211
212 /*
213  * munlock_vma_pages_range() - munlock all pages in the vma range.'
214  * @vma - vma containing range to be munlock()ed.
215  * @start - start address in @vma of the range
216  * @end - end of range in @vma.
217  *
218  *  For mremap(), munmap() and exit().
219  *
220  * Called with @vma VM_LOCKED.
221  *
222  * Returns with VM_LOCKED cleared.  Callers must be prepared to
223  * deal with this.
224  *
225  * We don't save and restore VM_LOCKED here because pages are
226  * still on lru.  In unmap path, pages might be scanned by reclaim
227  * and re-mlocked by try_to_{munlock|unmap} before we unmap and
228  * free them.  This will result in freeing mlocked pages.
229  */
230 void munlock_vma_pages_range(struct vm_area_struct *vma,
231                              unsigned long start, unsigned long end)
232 {
233         vma->vm_flags &= ~VM_LOCKED;
234
235         while (start < end) {
236                 struct page *page;
237                 unsigned int page_mask, page_increm;
238
239                 /*
240                  * Although FOLL_DUMP is intended for get_dump_page(),
241                  * it just so happens that its special treatment of the
242                  * ZERO_PAGE (returning an error instead of doing get_page)
243                  * suits munlock very well (and if somehow an abnormal page
244                  * has sneaked into the range, we won't oops here: great).
245                  */
246                 page = follow_page_mask(vma, start, FOLL_GET | FOLL_DUMP,
247                                         &page_mask);
248                 if (page && !IS_ERR(page)) {
249                         lock_page(page);
250                         lru_add_drain();
251                         /*
252                          * Any THP page found by follow_page_mask() may have
253                          * gotten split before reaching munlock_vma_page(),
254                          * so we need to recompute the page_mask here.
255                          */
256                         page_mask = munlock_vma_page(page);
257                         unlock_page(page);
258                         put_page(page);
259                 }
260                 page_increm = 1 + (~(start >> PAGE_SHIFT) & page_mask);
261                 start += page_increm * PAGE_SIZE;
262                 cond_resched();
263         }
264 }
265
266 /*
267  * mlock_fixup  - handle mlock[all]/munlock[all] requests.
268  *
269  * Filters out "special" vmas -- VM_LOCKED never gets set for these, and
270  * munlock is a no-op.  However, for some special vmas, we go ahead and
271  * populate the ptes.
272  *
273  * For vmas that pass the filters, merge/split as appropriate.
274  */
275 static int mlock_fixup(struct vm_area_struct *vma, struct vm_area_struct **prev,
276         unsigned long start, unsigned long end, vm_flags_t newflags)
277 {
278         struct mm_struct *mm = vma->vm_mm;
279         pgoff_t pgoff;
280         int nr_pages;
281         int ret = 0;
282         int lock = !!(newflags & VM_LOCKED);
283
284         if (newflags == vma->vm_flags || (vma->vm_flags & VM_SPECIAL) ||
285             is_vm_hugetlb_page(vma) || vma == get_gate_vma(current->mm))
286                 goto out;       /* don't set VM_LOCKED,  don't count */
287
288         pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
289         *prev = vma_merge(mm, *prev, start, end, newflags, vma->anon_vma,
290                           vma->vm_file, pgoff, vma_policy(vma));
291         if (*prev) {
292                 vma = *prev;
293                 goto success;
294         }
295
296         if (start != vma->vm_start) {
297                 ret = split_vma(mm, vma, start, 1);
298                 if (ret)
299                         goto out;
300         }
301
302         if (end != vma->vm_end) {
303                 ret = split_vma(mm, vma, end, 0);
304                 if (ret)
305                         goto out;
306         }
307
308 success:
309         /*
310          * Keep track of amount of locked VM.
311          */
312         nr_pages = (end - start) >> PAGE_SHIFT;
313         if (!lock)
314                 nr_pages = -nr_pages;
315         mm->locked_vm += nr_pages;
316
317         /*
318          * vm_flags is protected by the mmap_sem held in write mode.
319          * It's okay if try_to_unmap_one unmaps a page just after we
320          * set VM_LOCKED, __mlock_vma_pages_range will bring it back.
321          */
322
323         if (lock)
324                 vma->vm_flags = newflags;
325         else
326                 munlock_vma_pages_range(vma, start, end);
327
328 out:
329         *prev = vma;
330         return ret;
331 }
332
333 static int do_mlock(unsigned long start, size_t len, int on)
334 {
335         unsigned long nstart, end, tmp;
336         struct vm_area_struct * vma, * prev;
337         int error;
338
339         VM_BUG_ON(start & ~PAGE_MASK);
340         VM_BUG_ON(len != PAGE_ALIGN(len));
341         end = start + len;
342         if (end < start)
343                 return -EINVAL;
344         if (end == start)
345                 return 0;
346         vma = find_vma(current->mm, start);
347         if (!vma || vma->vm_start > start)
348                 return -ENOMEM;
349
350         prev = vma->vm_prev;
351         if (start > vma->vm_start)
352                 prev = vma;
353
354         for (nstart = start ; ; ) {
355                 vm_flags_t newflags;
356
357                 /* Here we know that  vma->vm_start <= nstart < vma->vm_end. */
358
359                 newflags = vma->vm_flags & ~VM_LOCKED;
360                 if (on)
361                         newflags |= VM_LOCKED;
362
363                 tmp = vma->vm_end;
364                 if (tmp > end)
365                         tmp = end;
366                 error = mlock_fixup(vma, &prev, nstart, tmp, newflags);
367                 if (error)
368                         break;
369                 nstart = tmp;
370                 if (nstart < prev->vm_end)
371                         nstart = prev->vm_end;
372                 if (nstart >= end)
373                         break;
374
375                 vma = prev->vm_next;
376                 if (!vma || vma->vm_start != nstart) {
377                         error = -ENOMEM;
378                         break;
379                 }
380         }
381         return error;
382 }
383
384 /*
385  * __mm_populate - populate and/or mlock pages within a range of address space.
386  *
387  * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
388  * flags. VMAs must be already marked with the desired vm_flags, and
389  * mmap_sem must not be held.
390  */
391 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
392 {
393         struct mm_struct *mm = current->mm;
394         unsigned long end, nstart, nend;
395         struct vm_area_struct *vma = NULL;
396         int locked = 0;
397         long ret = 0;
398
399         VM_BUG_ON(start & ~PAGE_MASK);
400         VM_BUG_ON(len != PAGE_ALIGN(len));
401         end = start + len;
402
403         for (nstart = start; nstart < end; nstart = nend) {
404                 /*
405                  * We want to fault in pages for [nstart; end) address range.
406                  * Find first corresponding VMA.
407                  */
408                 if (!locked) {
409                         locked = 1;
410                         down_read(&mm->mmap_sem);
411                         vma = find_vma(mm, nstart);
412                 } else if (nstart >= vma->vm_end)
413                         vma = vma->vm_next;
414                 if (!vma || vma->vm_start >= end)
415                         break;
416                 /*
417                  * Set [nstart; nend) to intersection of desired address
418                  * range with the first VMA. Also, skip undesirable VMA types.
419                  */
420                 nend = min(end, vma->vm_end);
421                 if (vma->vm_flags & (VM_IO | VM_PFNMAP))
422                         continue;
423                 if (nstart < vma->vm_start)
424                         nstart = vma->vm_start;
425                 /*
426                  * Now fault in a range of pages. __mlock_vma_pages_range()
427                  * double checks the vma flags, so that it won't mlock pages
428                  * if the vma was already munlocked.
429                  */
430                 ret = __mlock_vma_pages_range(vma, nstart, nend, &locked);
431                 if (ret < 0) {
432                         if (ignore_errors) {
433                                 ret = 0;
434                                 continue;       /* continue at next VMA */
435                         }
436                         ret = __mlock_posix_error_return(ret);
437                         break;
438                 }
439                 nend = nstart + ret * PAGE_SIZE;
440                 ret = 0;
441         }
442         if (locked)
443                 up_read(&mm->mmap_sem);
444         return ret;     /* 0 or negative error code */
445 }
446
447 SYSCALL_DEFINE2(mlock, unsigned long, start, size_t, len)
448 {
449         unsigned long locked;
450         unsigned long lock_limit;
451         int error = -ENOMEM;
452
453         if (!can_do_mlock())
454                 return -EPERM;
455
456         lru_add_drain_all();    /* flush pagevec */
457
458         down_write(&current->mm->mmap_sem);
459         len = PAGE_ALIGN(len + (start & ~PAGE_MASK));
460         start &= PAGE_MASK;
461
462         locked = len >> PAGE_SHIFT;
463         locked += current->mm->locked_vm;
464
465         lock_limit = rlimit(RLIMIT_MEMLOCK);
466         lock_limit >>= PAGE_SHIFT;
467
468         /* check against resource limits */
469         if ((locked <= lock_limit) || capable(CAP_IPC_LOCK))
470                 error = do_mlock(start, len, 1);
471         up_write(&current->mm->mmap_sem);
472         if (!error)
473                 error = __mm_populate(start, len, 0);
474         return error;
475 }
476
477 SYSCALL_DEFINE2(munlock, unsigned long, start, size_t, len)
478 {
479         int ret;
480
481         down_write(&current->mm->mmap_sem);
482         len = PAGE_ALIGN(len + (start & ~PAGE_MASK));
483         start &= PAGE_MASK;
484         ret = do_mlock(start, len, 0);
485         up_write(&current->mm->mmap_sem);
486         return ret;
487 }
488
489 static int do_mlockall(int flags)
490 {
491         struct vm_area_struct * vma, * prev = NULL;
492
493         if (flags & MCL_FUTURE)
494                 current->mm->def_flags |= VM_LOCKED;
495         else
496                 current->mm->def_flags &= ~VM_LOCKED;
497         if (flags == MCL_FUTURE)
498                 goto out;
499
500         for (vma = current->mm->mmap; vma ; vma = prev->vm_next) {
501                 vm_flags_t newflags;
502
503                 newflags = vma->vm_flags & ~VM_LOCKED;
504                 if (flags & MCL_CURRENT)
505                         newflags |= VM_LOCKED;
506
507                 /* Ignore errors */
508                 mlock_fixup(vma, &prev, vma->vm_start, vma->vm_end, newflags);
509         }
510 out:
511         return 0;
512 }
513
514 SYSCALL_DEFINE1(mlockall, int, flags)
515 {
516         unsigned long lock_limit;
517         int ret = -EINVAL;
518
519         if (!flags || (flags & ~(MCL_CURRENT | MCL_FUTURE)))
520                 goto out;
521
522         ret = -EPERM;
523         if (!can_do_mlock())
524                 goto out;
525
526         if (flags & MCL_CURRENT)
527                 lru_add_drain_all();    /* flush pagevec */
528
529         down_write(&current->mm->mmap_sem);
530
531         lock_limit = rlimit(RLIMIT_MEMLOCK);
532         lock_limit >>= PAGE_SHIFT;
533
534         ret = -ENOMEM;
535         if (!(flags & MCL_CURRENT) || (current->mm->total_vm <= lock_limit) ||
536             capable(CAP_IPC_LOCK))
537                 ret = do_mlockall(flags);
538         up_write(&current->mm->mmap_sem);
539         if (!ret && (flags & MCL_CURRENT))
540                 mm_populate(0, TASK_SIZE);
541 out:
542         return ret;
543 }
544
545 SYSCALL_DEFINE0(munlockall)
546 {
547         int ret;
548
549         down_write(&current->mm->mmap_sem);
550         ret = do_mlockall(0);
551         up_write(&current->mm->mmap_sem);
552         return ret;
553 }
554
555 /*
556  * Objects with different lifetime than processes (SHM_LOCK and SHM_HUGETLB
557  * shm segments) get accounted against the user_struct instead.
558  */
559 static DEFINE_SPINLOCK(shmlock_user_lock);
560
561 int user_shm_lock(size_t size, struct user_struct *user)
562 {
563         unsigned long lock_limit, locked;
564         int allowed = 0;
565
566         locked = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
567         lock_limit = rlimit(RLIMIT_MEMLOCK);
568         if (lock_limit == RLIM_INFINITY)
569                 allowed = 1;
570         lock_limit >>= PAGE_SHIFT;
571         spin_lock(&shmlock_user_lock);
572         if (!allowed &&
573             locked + user->locked_shm > lock_limit && !capable(CAP_IPC_LOCK))
574                 goto out;
575         get_uid(user);
576         user->locked_shm += locked;
577         allowed = 1;
578 out:
579         spin_unlock(&shmlock_user_lock);
580         return allowed;
581 }
582
583 void user_shm_unlock(size_t size, struct user_struct *user)
584 {
585         spin_lock(&shmlock_user_lock);
586         user->locked_shm -= (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
587         spin_unlock(&shmlock_user_lock);
588         free_uid(user);
589 }