1 // SPDX-License-Identifier: GPL-2.0
3 * Device Memory Migration functionality.
5 * Originally written by Jérôme Glisse.
7 #include <linux/export.h>
8 #include <linux/memremap.h>
9 #include <linux/migrate.h>
11 #include <linux/mm_inline.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/oom.h>
14 #include <linux/pagewalk.h>
15 #include <linux/rmap.h>
16 #include <linux/swapops.h>
17 #include <asm/tlbflush.h>
20 static int migrate_vma_collect_skip(unsigned long start,
24 struct migrate_vma *migrate = walk->private;
27 for (addr = start; addr < end; addr += PAGE_SIZE) {
28 migrate->dst[migrate->npages] = 0;
29 migrate->src[migrate->npages++] = 0;
35 static int migrate_vma_collect_hole(unsigned long start,
37 __always_unused int depth,
40 struct migrate_vma *migrate = walk->private;
43 /* Only allow populating anonymous memory. */
44 if (!vma_is_anonymous(walk->vma))
45 return migrate_vma_collect_skip(start, end, walk);
47 for (addr = start; addr < end; addr += PAGE_SIZE) {
48 migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE;
49 migrate->dst[migrate->npages] = 0;
57 static int migrate_vma_collect_pmd(pmd_t *pmdp,
62 struct migrate_vma *migrate = walk->private;
63 struct vm_area_struct *vma = walk->vma;
64 struct mm_struct *mm = vma->vm_mm;
65 unsigned long addr = start, unmapped = 0;
71 return migrate_vma_collect_hole(start, end, -1, walk);
73 if (pmd_trans_huge(*pmdp)) {
76 ptl = pmd_lock(mm, pmdp);
77 if (unlikely(!pmd_trans_huge(*pmdp))) {
82 page = pmd_page(*pmdp);
83 if (is_huge_zero_page(page)) {
85 split_huge_pmd(vma, pmdp, addr);
91 if (unlikely(!trylock_page(page)))
92 return migrate_vma_collect_skip(start, end,
94 ret = split_huge_page(page);
98 return migrate_vma_collect_skip(start, end,
103 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
106 arch_enter_lazy_mmu_mode();
108 for (; addr < end; addr += PAGE_SIZE, ptep++) {
109 unsigned long mpfn = 0, pfn;
114 pte = ptep_get(ptep);
117 if (vma_is_anonymous(vma)) {
118 mpfn = MIGRATE_PFN_MIGRATE;
124 if (!pte_present(pte)) {
126 * Only care about unaddressable device page special
127 * page table entry. Other special swap entries are not
128 * migratable, and we ignore regular swapped page.
130 entry = pte_to_swp_entry(pte);
131 if (!is_device_private_entry(entry))
134 page = pfn_swap_entry_to_page(entry);
135 if (!(migrate->flags &
136 MIGRATE_VMA_SELECT_DEVICE_PRIVATE) ||
137 page->pgmap->owner != migrate->pgmap_owner)
140 mpfn = migrate_pfn(page_to_pfn(page)) |
142 if (is_writable_device_private_entry(entry))
143 mpfn |= MIGRATE_PFN_WRITE;
146 if (is_zero_pfn(pfn) &&
147 (migrate->flags & MIGRATE_VMA_SELECT_SYSTEM)) {
148 mpfn = MIGRATE_PFN_MIGRATE;
152 page = vm_normal_page(migrate->vma, addr, pte);
153 if (page && !is_zone_device_page(page) &&
154 !(migrate->flags & MIGRATE_VMA_SELECT_SYSTEM))
156 else if (page && is_device_coherent_page(page) &&
157 (!(migrate->flags & MIGRATE_VMA_SELECT_DEVICE_COHERENT) ||
158 page->pgmap->owner != migrate->pgmap_owner))
160 mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
161 mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
164 /* FIXME support THP */
165 if (!page || !page->mapping || PageTransCompound(page)) {
171 * By getting a reference on the page we pin it and that blocks
172 * any kind of migration. Side effect is that it "freezes" the
175 * We drop this reference after isolating the page from the lru
176 * for non device page (device page are not on the lru and thus
177 * can't be dropped from it).
182 * We rely on trylock_page() to avoid deadlock between
183 * concurrent migrations where each is waiting on the others
184 * page lock. If we can't immediately lock the page we fail this
185 * migration as it is only best effort anyway.
187 * If we can lock the page it's safe to set up a migration entry
188 * now. In the common case where the page is mapped once in a
189 * single process setting up the migration entry now is an
190 * optimisation to avoid walking the rmap later with
193 if (trylock_page(page)) {
197 flush_cache_page(vma, addr, pte_pfn(pte));
198 anon_exclusive = PageAnon(page) && PageAnonExclusive(page);
199 if (anon_exclusive) {
200 pte = ptep_clear_flush(vma, addr, ptep);
202 if (page_try_share_anon_rmap(page)) {
203 set_pte_at(mm, addr, ptep, pte);
210 pte = ptep_get_and_clear(mm, addr, ptep);
215 /* Set the dirty flag on the folio now the pte is gone. */
217 folio_mark_dirty(page_folio(page));
219 /* Setup special migration page table entry */
220 if (mpfn & MIGRATE_PFN_WRITE)
221 entry = make_writable_migration_entry(
223 else if (anon_exclusive)
224 entry = make_readable_exclusive_migration_entry(
227 entry = make_readable_migration_entry(
229 if (pte_present(pte)) {
231 entry = make_migration_entry_young(entry);
233 entry = make_migration_entry_dirty(entry);
235 swp_pte = swp_entry_to_pte(entry);
236 if (pte_present(pte)) {
237 if (pte_soft_dirty(pte))
238 swp_pte = pte_swp_mksoft_dirty(swp_pte);
239 if (pte_uffd_wp(pte))
240 swp_pte = pte_swp_mkuffd_wp(swp_pte);
242 if (pte_swp_soft_dirty(pte))
243 swp_pte = pte_swp_mksoft_dirty(swp_pte);
244 if (pte_swp_uffd_wp(pte))
245 swp_pte = pte_swp_mkuffd_wp(swp_pte);
247 set_pte_at(mm, addr, ptep, swp_pte);
250 * This is like regular unmap: we remove the rmap and
251 * drop page refcount. Page won't be freed, as we took
252 * a reference just above.
254 page_remove_rmap(page, vma, false);
257 if (pte_present(pte))
265 migrate->dst[migrate->npages] = 0;
266 migrate->src[migrate->npages++] = mpfn;
269 /* Only flush the TLB if we actually modified any entries */
271 flush_tlb_range(walk->vma, start, end);
273 arch_leave_lazy_mmu_mode();
274 pte_unmap_unlock(ptep - 1, ptl);
279 static const struct mm_walk_ops migrate_vma_walk_ops = {
280 .pmd_entry = migrate_vma_collect_pmd,
281 .pte_hole = migrate_vma_collect_hole,
285 * migrate_vma_collect() - collect pages over a range of virtual addresses
286 * @migrate: migrate struct containing all migration information
288 * This will walk the CPU page table. For each virtual address backed by a
289 * valid page, it updates the src array and takes a reference on the page, in
290 * order to pin the page until we lock it and unmap it.
292 static void migrate_vma_collect(struct migrate_vma *migrate)
294 struct mmu_notifier_range range;
297 * Note that the pgmap_owner is passed to the mmu notifier callback so
298 * that the registered device driver can skip invalidating device
299 * private page mappings that won't be migrated.
301 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_MIGRATE, 0,
302 migrate->vma->vm_mm, migrate->start, migrate->end,
303 migrate->pgmap_owner);
304 mmu_notifier_invalidate_range_start(&range);
306 walk_page_range(migrate->vma->vm_mm, migrate->start, migrate->end,
307 &migrate_vma_walk_ops, migrate);
309 mmu_notifier_invalidate_range_end(&range);
310 migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
314 * migrate_vma_check_page() - check if page is pinned or not
315 * @page: struct page to check
317 * Pinned pages cannot be migrated. This is the same test as in
318 * folio_migrate_mapping(), except that here we allow migration of a
321 static bool migrate_vma_check_page(struct page *page, struct page *fault_page)
324 * One extra ref because caller holds an extra reference, either from
325 * isolate_lru_page() for a regular page, or migrate_vma_collect() for
328 int extra = 1 + (page == fault_page);
331 * FIXME support THP (transparent huge page), it is bit more complex to
332 * check them than regular pages, because they can be mapped with a pmd
333 * or with a pte (split pte mapping).
335 if (PageCompound(page))
338 /* Page from ZONE_DEVICE have one extra reference */
339 if (is_zone_device_page(page))
342 /* For file back page */
343 if (page_mapping(page))
344 extra += 1 + page_has_private(page);
346 if ((page_count(page) - extra) > page_mapcount(page))
353 * Unmaps pages for migration. Returns number of source pfns marked as
356 static unsigned long migrate_device_unmap(unsigned long *src_pfns,
357 unsigned long npages,
358 struct page *fault_page)
360 unsigned long i, restore = 0;
361 bool allow_drain = true;
362 unsigned long unmapped = 0;
366 for (i = 0; i < npages; i++) {
367 struct page *page = migrate_pfn_to_page(src_pfns[i]);
371 if (src_pfns[i] & MIGRATE_PFN_MIGRATE)
376 /* ZONE_DEVICE pages are not on LRU */
377 if (!is_zone_device_page(page)) {
378 if (!PageLRU(page) && allow_drain) {
379 /* Drain CPU's lru cache */
384 if (!isolate_lru_page(page)) {
385 src_pfns[i] &= ~MIGRATE_PFN_MIGRATE;
390 /* Drop the reference we took in collect */
394 folio = page_folio(page);
395 if (folio_mapped(folio))
396 try_to_migrate(folio, 0);
398 if (page_mapped(page) ||
399 !migrate_vma_check_page(page, fault_page)) {
400 if (!is_zone_device_page(page)) {
402 putback_lru_page(page);
405 src_pfns[i] &= ~MIGRATE_PFN_MIGRATE;
413 for (i = 0; i < npages && restore; i++) {
414 struct page *page = migrate_pfn_to_page(src_pfns[i]);
417 if (!page || (src_pfns[i] & MIGRATE_PFN_MIGRATE))
420 folio = page_folio(page);
421 remove_migration_ptes(folio, folio, false);
433 * migrate_vma_unmap() - replace page mapping with special migration pte entry
434 * @migrate: migrate struct containing all migration information
436 * Isolate pages from the LRU and replace mappings (CPU page table pte) with a
437 * special migration pte entry and check if it has been pinned. Pinned pages are
438 * restored because we cannot migrate them.
440 * This is the last step before we call the device driver callback to allocate
441 * destination memory and copy contents of original page over to new page.
443 static void migrate_vma_unmap(struct migrate_vma *migrate)
445 migrate->cpages = migrate_device_unmap(migrate->src, migrate->npages,
446 migrate->fault_page);
450 * migrate_vma_setup() - prepare to migrate a range of memory
451 * @args: contains the vma, start, and pfns arrays for the migration
453 * Returns: negative errno on failures, 0 when 0 or more pages were migrated
456 * Prepare to migrate a range of memory virtual address range by collecting all
457 * the pages backing each virtual address in the range, saving them inside the
458 * src array. Then lock those pages and unmap them. Once the pages are locked
459 * and unmapped, check whether each page is pinned or not. Pages that aren't
460 * pinned have the MIGRATE_PFN_MIGRATE flag set (by this function) in the
461 * corresponding src array entry. Then restores any pages that are pinned, by
462 * remapping and unlocking those pages.
464 * The caller should then allocate destination memory and copy source memory to
465 * it for all those entries (ie with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE
466 * flag set). Once these are allocated and copied, the caller must update each
467 * corresponding entry in the dst array with the pfn value of the destination
468 * page and with MIGRATE_PFN_VALID. Destination pages must be locked via
471 * Note that the caller does not have to migrate all the pages that are marked
472 * with MIGRATE_PFN_MIGRATE flag in src array unless this is a migration from
473 * device memory to system memory. If the caller cannot migrate a device page
474 * back to system memory, then it must return VM_FAULT_SIGBUS, which has severe
475 * consequences for the userspace process, so it must be avoided if at all
478 * For empty entries inside CPU page table (pte_none() or pmd_none() is true) we
479 * do set MIGRATE_PFN_MIGRATE flag inside the corresponding source array thus
480 * allowing the caller to allocate device memory for those unbacked virtual
481 * addresses. For this the caller simply has to allocate device memory and
482 * properly set the destination entry like for regular migration. Note that
483 * this can still fail, and thus inside the device driver you must check if the
484 * migration was successful for those entries after calling migrate_vma_pages(),
485 * just like for regular migration.
487 * After that, the callers must call migrate_vma_pages() to go over each entry
488 * in the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
489 * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
490 * then migrate_vma_pages() to migrate struct page information from the source
491 * struct page to the destination struct page. If it fails to migrate the
492 * struct page information, then it clears the MIGRATE_PFN_MIGRATE flag in the
495 * At this point all successfully migrated pages have an entry in the src
496 * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
497 * array entry with MIGRATE_PFN_VALID flag set.
499 * Once migrate_vma_pages() returns the caller may inspect which pages were
500 * successfully migrated, and which were not. Successfully migrated pages will
501 * have the MIGRATE_PFN_MIGRATE flag set for their src array entry.
503 * It is safe to update device page table after migrate_vma_pages() because
504 * both destination and source page are still locked, and the mmap_lock is held
505 * in read mode (hence no one can unmap the range being migrated).
507 * Once the caller is done cleaning up things and updating its page table (if it
508 * chose to do so, this is not an obligation) it finally calls
509 * migrate_vma_finalize() to update the CPU page table to point to new pages
510 * for successfully migrated pages or otherwise restore the CPU page table to
511 * point to the original source pages.
513 int migrate_vma_setup(struct migrate_vma *args)
515 long nr_pages = (args->end - args->start) >> PAGE_SHIFT;
517 args->start &= PAGE_MASK;
518 args->end &= PAGE_MASK;
519 if (!args->vma || is_vm_hugetlb_page(args->vma) ||
520 (args->vma->vm_flags & VM_SPECIAL) || vma_is_dax(args->vma))
524 if (args->start < args->vma->vm_start ||
525 args->start >= args->vma->vm_end)
527 if (args->end <= args->vma->vm_start || args->end > args->vma->vm_end)
529 if (!args->src || !args->dst)
531 if (args->fault_page && !is_device_private_page(args->fault_page))
534 memset(args->src, 0, sizeof(*args->src) * nr_pages);
538 migrate_vma_collect(args);
541 migrate_vma_unmap(args);
544 * At this point pages are locked and unmapped, and thus they have
545 * stable content and can safely be copied to destination memory that
546 * is allocated by the drivers.
551 EXPORT_SYMBOL(migrate_vma_setup);
554 * This code closely matches the code in:
555 * __handle_mm_fault()
557 * do_anonymous_page()
558 * to map in an anonymous zero page but the struct page will be a ZONE_DEVICE
559 * private or coherent page.
561 static void migrate_vma_insert_page(struct migrate_vma *migrate,
566 struct vm_area_struct *vma = migrate->vma;
567 struct mm_struct *mm = vma->vm_mm;
578 /* Only allow populating anonymous memory */
579 if (!vma_is_anonymous(vma))
582 pgdp = pgd_offset(mm, addr);
583 p4dp = p4d_alloc(mm, pgdp, addr);
586 pudp = pud_alloc(mm, p4dp, addr);
589 pmdp = pmd_alloc(mm, pudp, addr);
592 if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp))
594 if (pte_alloc(mm, pmdp))
596 if (unlikely(anon_vma_prepare(vma)))
598 if (mem_cgroup_charge(page_folio(page), vma->vm_mm, GFP_KERNEL))
602 * The memory barrier inside __SetPageUptodate makes sure that
603 * preceding stores to the page contents become visible before
604 * the set_pte_at() write.
606 __SetPageUptodate(page);
608 if (is_device_private_page(page)) {
609 swp_entry_t swp_entry;
611 if (vma->vm_flags & VM_WRITE)
612 swp_entry = make_writable_device_private_entry(
615 swp_entry = make_readable_device_private_entry(
617 entry = swp_entry_to_pte(swp_entry);
619 if (is_zone_device_page(page) &&
620 !is_device_coherent_page(page)) {
621 pr_warn_once("Unsupported ZONE_DEVICE page type.\n");
624 entry = mk_pte(page, vma->vm_page_prot);
625 if (vma->vm_flags & VM_WRITE)
626 entry = pte_mkwrite(pte_mkdirty(entry));
629 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
632 orig_pte = ptep_get(ptep);
634 if (check_stable_address_space(mm))
637 if (pte_present(orig_pte)) {
638 unsigned long pfn = pte_pfn(orig_pte);
640 if (!is_zero_pfn(pfn))
643 } else if (!pte_none(orig_pte))
647 * Check for userfaultfd but do not deliver the fault. Instead,
650 if (userfaultfd_missing(vma))
653 inc_mm_counter(mm, MM_ANONPAGES);
654 page_add_new_anon_rmap(page, vma, addr);
655 if (!is_zone_device_page(page))
656 lru_cache_add_inactive_or_unevictable(page, vma);
660 flush_cache_page(vma, addr, pte_pfn(orig_pte));
661 ptep_clear_flush_notify(vma, addr, ptep);
662 set_pte_at_notify(mm, addr, ptep, entry);
663 update_mmu_cache(vma, addr, ptep);
665 /* No need to invalidate - it was non-present before */
666 set_pte_at(mm, addr, ptep, entry);
667 update_mmu_cache(vma, addr, ptep);
670 pte_unmap_unlock(ptep, ptl);
671 *src = MIGRATE_PFN_MIGRATE;
675 pte_unmap_unlock(ptep, ptl);
677 *src &= ~MIGRATE_PFN_MIGRATE;
680 static void __migrate_device_pages(unsigned long *src_pfns,
681 unsigned long *dst_pfns, unsigned long npages,
682 struct migrate_vma *migrate)
684 struct mmu_notifier_range range;
686 bool notified = false;
688 for (i = 0; i < npages; i++) {
689 struct page *newpage = migrate_pfn_to_page(dst_pfns[i]);
690 struct page *page = migrate_pfn_to_page(src_pfns[i]);
691 struct address_space *mapping;
695 src_pfns[i] &= ~MIGRATE_PFN_MIGRATE;
702 if (!(src_pfns[i] & MIGRATE_PFN_MIGRATE))
706 * The only time there is no vma is when called from
707 * migrate_device_coherent_page(). However this isn't
708 * called if the page could not be unmapped.
711 addr = migrate->start + i*PAGE_SIZE;
715 mmu_notifier_range_init_owner(&range,
716 MMU_NOTIFY_MIGRATE, 0,
717 migrate->vma->vm_mm, addr, migrate->end,
718 migrate->pgmap_owner);
719 mmu_notifier_invalidate_range_start(&range);
721 migrate_vma_insert_page(migrate, addr, newpage,
726 mapping = page_mapping(page);
728 if (is_device_private_page(newpage) ||
729 is_device_coherent_page(newpage)) {
731 * For now only support anonymous memory migrating to
732 * device private or coherent memory.
735 src_pfns[i] &= ~MIGRATE_PFN_MIGRATE;
738 } else if (is_zone_device_page(newpage)) {
740 * Other types of ZONE_DEVICE page are not supported.
742 src_pfns[i] &= ~MIGRATE_PFN_MIGRATE;
746 if (migrate && migrate->fault_page == page)
747 r = migrate_folio_extra(mapping, page_folio(newpage),
749 MIGRATE_SYNC_NO_COPY, 1);
751 r = migrate_folio(mapping, page_folio(newpage),
752 page_folio(page), MIGRATE_SYNC_NO_COPY);
753 if (r != MIGRATEPAGE_SUCCESS)
754 src_pfns[i] &= ~MIGRATE_PFN_MIGRATE;
758 * No need to double call mmu_notifier->invalidate_range() callback as
759 * the above ptep_clear_flush_notify() inside migrate_vma_insert_page()
760 * did already call it.
763 mmu_notifier_invalidate_range_only_end(&range);
767 * migrate_device_pages() - migrate meta-data from src page to dst page
768 * @src_pfns: src_pfns returned from migrate_device_range()
769 * @dst_pfns: array of pfns allocated by the driver to migrate memory to
770 * @npages: number of pages in the range
772 * Equivalent to migrate_vma_pages(). This is called to migrate struct page
773 * meta-data from source struct page to destination.
775 void migrate_device_pages(unsigned long *src_pfns, unsigned long *dst_pfns,
776 unsigned long npages)
778 __migrate_device_pages(src_pfns, dst_pfns, npages, NULL);
780 EXPORT_SYMBOL(migrate_device_pages);
783 * migrate_vma_pages() - migrate meta-data from src page to dst page
784 * @migrate: migrate struct containing all migration information
786 * This migrates struct page meta-data from source struct page to destination
787 * struct page. This effectively finishes the migration from source page to the
790 void migrate_vma_pages(struct migrate_vma *migrate)
792 __migrate_device_pages(migrate->src, migrate->dst, migrate->npages, migrate);
794 EXPORT_SYMBOL(migrate_vma_pages);
797 * migrate_device_finalize() - complete page migration
798 * @src_pfns: src_pfns returned from migrate_device_range()
799 * @dst_pfns: array of pfns allocated by the driver to migrate memory to
800 * @npages: number of pages in the range
802 * Completes migration of the page by removing special migration entries.
803 * Drivers must ensure copying of page data is complete and visible to the CPU
804 * before calling this.
806 void migrate_device_finalize(unsigned long *src_pfns,
807 unsigned long *dst_pfns, unsigned long npages)
811 for (i = 0; i < npages; i++) {
812 struct folio *dst, *src;
813 struct page *newpage = migrate_pfn_to_page(dst_pfns[i]);
814 struct page *page = migrate_pfn_to_page(src_pfns[i]);
818 unlock_page(newpage);
824 if (!(src_pfns[i] & MIGRATE_PFN_MIGRATE) || !newpage) {
826 unlock_page(newpage);
832 src = page_folio(page);
833 dst = page_folio(newpage);
834 remove_migration_ptes(src, dst, false);
837 if (is_zone_device_page(page))
840 putback_lru_page(page);
842 if (newpage != page) {
843 unlock_page(newpage);
844 if (is_zone_device_page(newpage))
847 putback_lru_page(newpage);
851 EXPORT_SYMBOL(migrate_device_finalize);
854 * migrate_vma_finalize() - restore CPU page table entry
855 * @migrate: migrate struct containing all migration information
857 * This replaces the special migration pte entry with either a mapping to the
858 * new page if migration was successful for that page, or to the original page
861 * This also unlocks the pages and puts them back on the lru, or drops the extra
862 * refcount, for device pages.
864 void migrate_vma_finalize(struct migrate_vma *migrate)
866 migrate_device_finalize(migrate->src, migrate->dst, migrate->npages);
868 EXPORT_SYMBOL(migrate_vma_finalize);
871 * migrate_device_range() - migrate device private pfns to normal memory.
872 * @src_pfns: array large enough to hold migrating source device private pfns.
873 * @start: starting pfn in the range to migrate.
874 * @npages: number of pages to migrate.
876 * migrate_vma_setup() is similar in concept to migrate_vma_setup() except that
877 * instead of looking up pages based on virtual address mappings a range of
878 * device pfns that should be migrated to system memory is used instead.
880 * This is useful when a driver needs to free device memory but doesn't know the
881 * virtual mappings of every page that may be in device memory. For example this
882 * is often the case when a driver is being unloaded or unbound from a device.
884 * Like migrate_vma_setup() this function will take a reference and lock any
885 * migrating pages that aren't free before unmapping them. Drivers may then
886 * allocate destination pages and start copying data from the device to CPU
887 * memory before calling migrate_device_pages().
889 int migrate_device_range(unsigned long *src_pfns, unsigned long start,
890 unsigned long npages)
892 unsigned long i, pfn;
894 for (pfn = start, i = 0; i < npages; pfn++, i++) {
895 struct page *page = pfn_to_page(pfn);
897 if (!get_page_unless_zero(page)) {
902 if (!trylock_page(page)) {
908 src_pfns[i] = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
911 migrate_device_unmap(src_pfns, npages, NULL);
915 EXPORT_SYMBOL(migrate_device_range);
918 * Migrate a device coherent page back to normal memory. The caller should have
919 * a reference on page which will be copied to the new page if migration is
920 * successful or dropped on failure.
922 int migrate_device_coherent_page(struct page *page)
924 unsigned long src_pfn, dst_pfn = 0;
927 WARN_ON_ONCE(PageCompound(page));
930 src_pfn = migrate_pfn(page_to_pfn(page)) | MIGRATE_PFN_MIGRATE;
933 * We don't have a VMA and don't need to walk the page tables to find
934 * the source page. So call migrate_vma_unmap() directly to unmap the
935 * page as migrate_vma_setup() will fail if args.vma == NULL.
937 migrate_device_unmap(&src_pfn, 1, NULL);
938 if (!(src_pfn & MIGRATE_PFN_MIGRATE))
941 dpage = alloc_page(GFP_USER | __GFP_NOWARN);
944 dst_pfn = migrate_pfn(page_to_pfn(dpage));
947 migrate_device_pages(&src_pfn, &dst_pfn, 1);
948 if (src_pfn & MIGRATE_PFN_MIGRATE)
949 copy_highpage(dpage, page);
950 migrate_device_finalize(&src_pfn, &dst_pfn, 1);
952 if (src_pfn & MIGRATE_PFN_MIGRATE)