1 // SPDX-License-Identifier: GPL-2.0
3 * Memory Migration functionality - linux/mm/migrate.c
5 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
7 * Page migration was first developed in the context of the memory hotplug
8 * project. The main authors of the migration code are:
10 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
11 * Hirokazu Takahashi <taka@valinux.co.jp>
12 * Dave Hansen <haveblue@us.ibm.com>
16 #include <linux/migrate.h>
17 #include <linux/export.h>
18 #include <linux/swap.h>
19 #include <linux/swapops.h>
20 #include <linux/pagemap.h>
21 #include <linux/buffer_head.h>
22 #include <linux/mm_inline.h>
23 #include <linux/nsproxy.h>
24 #include <linux/pagevec.h>
25 #include <linux/ksm.h>
26 #include <linux/rmap.h>
27 #include <linux/topology.h>
28 #include <linux/cpu.h>
29 #include <linux/cpuset.h>
30 #include <linux/writeback.h>
31 #include <linux/mempolicy.h>
32 #include <linux/vmalloc.h>
33 #include <linux/security.h>
34 #include <linux/backing-dev.h>
35 #include <linux/compaction.h>
36 #include <linux/syscalls.h>
37 #include <linux/compat.h>
38 #include <linux/hugetlb.h>
39 #include <linux/hugetlb_cgroup.h>
40 #include <linux/gfp.h>
41 #include <linux/pfn_t.h>
42 #include <linux/memremap.h>
43 #include <linux/userfaultfd_k.h>
44 #include <linux/balloon_compaction.h>
45 #include <linux/page_idle.h>
46 #include <linux/page_owner.h>
47 #include <linux/sched/mm.h>
48 #include <linux/ptrace.h>
49 #include <linux/oom.h>
50 #include <linux/memory.h>
51 #include <linux/random.h>
52 #include <linux/sched/sysctl.h>
53 #include <linux/memory-tiers.h>
55 #include <asm/tlbflush.h>
57 #include <trace/events/migrate.h>
61 bool isolate_movable_page(struct page *page, isolate_mode_t mode)
63 struct folio *folio = folio_get_nontail_page(page);
64 const struct movable_operations *mops;
67 * Avoid burning cycles with pages that are yet under __free_pages(),
68 * or just got freed under us.
70 * In case we 'win' a race for a movable page being freed under us and
71 * raise its refcount preventing __free_pages() from doing its job
72 * the put_page() at the end of this block will take care of
73 * release this page, thus avoiding a nasty leakage.
78 if (unlikely(folio_test_slab(folio)))
80 /* Pairs with smp_wmb() in slab freeing, e.g. SLUB's __free_slab() */
83 * Check movable flag before taking the page lock because
84 * we use non-atomic bitops on newly allocated page flags so
85 * unconditionally grabbing the lock ruins page's owner side.
87 if (unlikely(!__folio_test_movable(folio)))
89 /* Pairs with smp_wmb() in slab allocation, e.g. SLUB's alloc_slab_page() */
91 if (unlikely(folio_test_slab(folio)))
95 * As movable pages are not isolated from LRU lists, concurrent
96 * compaction threads can race against page migration functions
97 * as well as race against the releasing a page.
99 * In order to avoid having an already isolated movable page
100 * being (wrongly) re-isolated while it is under migration,
101 * or to avoid attempting to isolate pages being released,
102 * lets be sure we have the page lock
103 * before proceeding with the movable page isolation steps.
105 if (unlikely(!folio_trylock(folio)))
108 if (!folio_test_movable(folio) || folio_test_isolated(folio))
109 goto out_no_isolated;
111 mops = folio_movable_ops(folio);
112 VM_BUG_ON_FOLIO(!mops, folio);
114 if (!mops->isolate_page(&folio->page, mode))
115 goto out_no_isolated;
117 /* Driver shouldn't use PG_isolated bit of page->flags */
118 WARN_ON_ONCE(folio_test_isolated(folio));
119 folio_set_isolated(folio);
132 static void putback_movable_folio(struct folio *folio)
134 const struct movable_operations *mops = folio_movable_ops(folio);
136 mops->putback_page(&folio->page);
137 folio_clear_isolated(folio);
141 * Put previously isolated pages back onto the appropriate lists
142 * from where they were once taken off for compaction/migration.
144 * This function shall be used whenever the isolated pageset has been
145 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
146 * and isolate_hugetlb().
148 void putback_movable_pages(struct list_head *l)
151 struct folio *folio2;
153 list_for_each_entry_safe(folio, folio2, l, lru) {
154 if (unlikely(folio_test_hugetlb(folio))) {
155 folio_putback_active_hugetlb(folio);
158 list_del(&folio->lru);
160 * We isolated non-lru movable folio so here we can use
161 * __PageMovable because LRU folio's mapping cannot have
162 * PAGE_MAPPING_MOVABLE.
164 if (unlikely(__folio_test_movable(folio))) {
165 VM_BUG_ON_FOLIO(!folio_test_isolated(folio), folio);
167 if (folio_test_movable(folio))
168 putback_movable_folio(folio);
170 folio_clear_isolated(folio);
174 node_stat_mod_folio(folio, NR_ISOLATED_ANON +
175 folio_is_file_lru(folio), -folio_nr_pages(folio));
176 folio_putback_lru(folio);
182 * Restore a potential migration pte to a working pte entry
184 static bool remove_migration_pte(struct folio *folio,
185 struct vm_area_struct *vma, unsigned long addr, void *old)
187 DEFINE_FOLIO_VMA_WALK(pvmw, old, vma, addr, PVMW_SYNC | PVMW_MIGRATION);
189 while (page_vma_mapped_walk(&pvmw)) {
190 rmap_t rmap_flags = RMAP_NONE;
194 unsigned long idx = 0;
196 /* pgoff is invalid for ksm pages, but they are never large */
197 if (folio_test_large(folio) && !folio_test_hugetlb(folio))
198 idx = linear_page_index(vma, pvmw.address) - pvmw.pgoff;
199 new = folio_page(folio, idx);
201 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
202 /* PMD-mapped THP migration entry */
204 VM_BUG_ON_FOLIO(folio_test_hugetlb(folio) ||
205 !folio_test_pmd_mappable(folio), folio);
206 remove_migration_pmd(&pvmw, new);
212 pte = mk_pte(new, READ_ONCE(vma->vm_page_prot));
213 if (pte_swp_soft_dirty(*pvmw.pte))
214 pte = pte_mksoft_dirty(pte);
216 entry = pte_to_swp_entry(*pvmw.pte);
217 if (!is_migration_entry_young(entry))
218 pte = pte_mkold(pte);
219 if (folio_test_dirty(folio) && is_migration_entry_dirty(entry))
220 pte = pte_mkdirty(pte);
221 if (is_writable_migration_entry(entry))
222 pte = pte_mkwrite(pte);
223 else if (pte_swp_uffd_wp(*pvmw.pte))
224 pte = pte_mkuffd_wp(pte);
226 if (folio_test_anon(folio) && !is_readable_migration_entry(entry))
227 rmap_flags |= RMAP_EXCLUSIVE;
229 if (unlikely(is_device_private_page(new))) {
231 entry = make_writable_device_private_entry(
234 entry = make_readable_device_private_entry(
236 pte = swp_entry_to_pte(entry);
237 if (pte_swp_soft_dirty(*pvmw.pte))
238 pte = pte_swp_mksoft_dirty(pte);
239 if (pte_swp_uffd_wp(*pvmw.pte))
240 pte = pte_swp_mkuffd_wp(pte);
243 #ifdef CONFIG_HUGETLB_PAGE
244 if (folio_test_hugetlb(folio)) {
245 unsigned int shift = huge_page_shift(hstate_vma(vma));
247 pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
248 if (folio_test_anon(folio))
249 hugepage_add_anon_rmap(new, vma, pvmw.address,
252 page_dup_file_rmap(new, true);
253 set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
257 if (folio_test_anon(folio))
258 page_add_anon_rmap(new, vma, pvmw.address,
261 page_add_file_rmap(new, vma, false);
262 set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
264 if (vma->vm_flags & VM_LOCKED)
267 trace_remove_migration_pte(pvmw.address, pte_val(pte),
268 compound_order(new));
270 /* No need to invalidate - it was non-present before */
271 update_mmu_cache(vma, pvmw.address, pvmw.pte);
278 * Get rid of all migration entries and replace them by
279 * references to the indicated page.
281 void remove_migration_ptes(struct folio *src, struct folio *dst, bool locked)
283 struct rmap_walk_control rwc = {
284 .rmap_one = remove_migration_pte,
289 rmap_walk_locked(dst, &rwc);
291 rmap_walk(dst, &rwc);
295 * Something used the pte of a page under migration. We need to
296 * get to the page and wait until migration is finished.
297 * When we return from this function the fault will be retried.
299 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
307 if (!is_swap_pte(pte))
310 entry = pte_to_swp_entry(pte);
311 if (!is_migration_entry(entry))
314 migration_entry_wait_on_locked(entry, ptep, ptl);
317 pte_unmap_unlock(ptep, ptl);
320 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
321 unsigned long address)
323 spinlock_t *ptl = pte_lockptr(mm, pmd);
324 pte_t *ptep = pte_offset_map(pmd, address);
325 __migration_entry_wait(mm, ptep, ptl);
328 #ifdef CONFIG_HUGETLB_PAGE
330 * The vma read lock must be held upon entry. Holding that lock prevents either
331 * the pte or the ptl from being freed.
333 * This function will release the vma lock before returning.
335 void __migration_entry_wait_huge(struct vm_area_struct *vma,
336 pte_t *ptep, spinlock_t *ptl)
340 hugetlb_vma_assert_locked(vma);
342 pte = huge_ptep_get(ptep);
344 if (unlikely(!is_hugetlb_entry_migration(pte))) {
346 hugetlb_vma_unlock_read(vma);
349 * If migration entry existed, safe to release vma lock
350 * here because the pgtable page won't be freed without the
351 * pgtable lock released. See comment right above pgtable
352 * lock release in migration_entry_wait_on_locked().
354 hugetlb_vma_unlock_read(vma);
355 migration_entry_wait_on_locked(pte_to_swp_entry(pte), NULL, ptl);
359 void migration_entry_wait_huge(struct vm_area_struct *vma, pte_t *pte)
361 spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), vma->vm_mm, pte);
363 __migration_entry_wait_huge(vma, pte, ptl);
367 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
368 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
372 ptl = pmd_lock(mm, pmd);
373 if (!is_pmd_migration_entry(*pmd))
375 migration_entry_wait_on_locked(pmd_to_swp_entry(*pmd), NULL, ptl);
382 static int folio_expected_refs(struct address_space *mapping,
389 refs += folio_nr_pages(folio);
390 if (folio_test_private(folio))
397 * Replace the page in the mapping.
399 * The number of remaining references must be:
400 * 1 for anonymous pages without a mapping
401 * 2 for pages with a mapping
402 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
404 int folio_migrate_mapping(struct address_space *mapping,
405 struct folio *newfolio, struct folio *folio, int extra_count)
407 XA_STATE(xas, &mapping->i_pages, folio_index(folio));
408 struct zone *oldzone, *newzone;
410 int expected_count = folio_expected_refs(mapping, folio) + extra_count;
411 long nr = folio_nr_pages(folio);
414 /* Anonymous page without mapping */
415 if (folio_ref_count(folio) != expected_count)
418 /* No turning back from here */
419 newfolio->index = folio->index;
420 newfolio->mapping = folio->mapping;
421 if (folio_test_swapbacked(folio))
422 __folio_set_swapbacked(newfolio);
424 return MIGRATEPAGE_SUCCESS;
427 oldzone = folio_zone(folio);
428 newzone = folio_zone(newfolio);
431 if (!folio_ref_freeze(folio, expected_count)) {
432 xas_unlock_irq(&xas);
437 * Now we know that no one else is looking at the folio:
438 * no turning back from here.
440 newfolio->index = folio->index;
441 newfolio->mapping = folio->mapping;
442 folio_ref_add(newfolio, nr); /* add cache reference */
443 if (folio_test_swapbacked(folio)) {
444 __folio_set_swapbacked(newfolio);
445 if (folio_test_swapcache(folio)) {
446 folio_set_swapcache(newfolio);
447 newfolio->private = folio_get_private(folio);
450 VM_BUG_ON_FOLIO(folio_test_swapcache(folio), folio);
453 /* Move dirty while page refs frozen and newpage not yet exposed */
454 dirty = folio_test_dirty(folio);
456 folio_clear_dirty(folio);
457 folio_set_dirty(newfolio);
460 xas_store(&xas, newfolio);
463 * Drop cache reference from old page by unfreezing
464 * to one less reference.
465 * We know this isn't the last reference.
467 folio_ref_unfreeze(folio, expected_count - nr);
470 /* Leave irq disabled to prevent preemption while updating stats */
473 * If moved to a different zone then also account
474 * the page for that zone. Other VM counters will be
475 * taken care of when we establish references to the
476 * new page and drop references to the old page.
478 * Note that anonymous pages are accounted for
479 * via NR_FILE_PAGES and NR_ANON_MAPPED if they
480 * are mapped to swap space.
482 if (newzone != oldzone) {
483 struct lruvec *old_lruvec, *new_lruvec;
484 struct mem_cgroup *memcg;
486 memcg = folio_memcg(folio);
487 old_lruvec = mem_cgroup_lruvec(memcg, oldzone->zone_pgdat);
488 new_lruvec = mem_cgroup_lruvec(memcg, newzone->zone_pgdat);
490 __mod_lruvec_state(old_lruvec, NR_FILE_PAGES, -nr);
491 __mod_lruvec_state(new_lruvec, NR_FILE_PAGES, nr);
492 if (folio_test_swapbacked(folio) && !folio_test_swapcache(folio)) {
493 __mod_lruvec_state(old_lruvec, NR_SHMEM, -nr);
494 __mod_lruvec_state(new_lruvec, NR_SHMEM, nr);
497 if (folio_test_swapcache(folio)) {
498 __mod_lruvec_state(old_lruvec, NR_SWAPCACHE, -nr);
499 __mod_lruvec_state(new_lruvec, NR_SWAPCACHE, nr);
502 if (dirty && mapping_can_writeback(mapping)) {
503 __mod_lruvec_state(old_lruvec, NR_FILE_DIRTY, -nr);
504 __mod_zone_page_state(oldzone, NR_ZONE_WRITE_PENDING, -nr);
505 __mod_lruvec_state(new_lruvec, NR_FILE_DIRTY, nr);
506 __mod_zone_page_state(newzone, NR_ZONE_WRITE_PENDING, nr);
511 return MIGRATEPAGE_SUCCESS;
513 EXPORT_SYMBOL(folio_migrate_mapping);
516 * The expected number of remaining references is the same as that
517 * of folio_migrate_mapping().
519 int migrate_huge_page_move_mapping(struct address_space *mapping,
520 struct folio *dst, struct folio *src)
522 XA_STATE(xas, &mapping->i_pages, folio_index(src));
526 expected_count = 2 + folio_has_private(src);
527 if (!folio_ref_freeze(src, expected_count)) {
528 xas_unlock_irq(&xas);
532 dst->index = src->index;
533 dst->mapping = src->mapping;
537 xas_store(&xas, dst);
539 folio_ref_unfreeze(src, expected_count - 1);
541 xas_unlock_irq(&xas);
543 return MIGRATEPAGE_SUCCESS;
547 * Copy the flags and some other ancillary information
549 void folio_migrate_flags(struct folio *newfolio, struct folio *folio)
553 if (folio_test_error(folio))
554 folio_set_error(newfolio);
555 if (folio_test_referenced(folio))
556 folio_set_referenced(newfolio);
557 if (folio_test_uptodate(folio))
558 folio_mark_uptodate(newfolio);
559 if (folio_test_clear_active(folio)) {
560 VM_BUG_ON_FOLIO(folio_test_unevictable(folio), folio);
561 folio_set_active(newfolio);
562 } else if (folio_test_clear_unevictable(folio))
563 folio_set_unevictable(newfolio);
564 if (folio_test_workingset(folio))
565 folio_set_workingset(newfolio);
566 if (folio_test_checked(folio))
567 folio_set_checked(newfolio);
569 * PG_anon_exclusive (-> PG_mappedtodisk) is always migrated via
570 * migration entries. We can still have PG_anon_exclusive set on an
571 * effectively unmapped and unreferenced first sub-pages of an
572 * anonymous THP: we can simply copy it here via PG_mappedtodisk.
574 if (folio_test_mappedtodisk(folio))
575 folio_set_mappedtodisk(newfolio);
577 /* Move dirty on pages not done by folio_migrate_mapping() */
578 if (folio_test_dirty(folio))
579 folio_set_dirty(newfolio);
581 if (folio_test_young(folio))
582 folio_set_young(newfolio);
583 if (folio_test_idle(folio))
584 folio_set_idle(newfolio);
587 * Copy NUMA information to the new page, to prevent over-eager
588 * future migrations of this same page.
590 cpupid = page_cpupid_xchg_last(&folio->page, -1);
592 * For memory tiering mode, when migrate between slow and fast
593 * memory node, reset cpupid, because that is used to record
594 * page access time in slow memory node.
596 if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) {
597 bool f_toptier = node_is_toptier(page_to_nid(&folio->page));
598 bool t_toptier = node_is_toptier(page_to_nid(&newfolio->page));
600 if (f_toptier != t_toptier)
603 page_cpupid_xchg_last(&newfolio->page, cpupid);
605 folio_migrate_ksm(newfolio, folio);
607 * Please do not reorder this without considering how mm/ksm.c's
608 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
610 if (folio_test_swapcache(folio))
611 folio_clear_swapcache(folio);
612 folio_clear_private(folio);
614 /* page->private contains hugetlb specific flags */
615 if (!folio_test_hugetlb(folio))
616 folio->private = NULL;
619 * If any waiters have accumulated on the new page then
622 if (folio_test_writeback(newfolio))
623 folio_end_writeback(newfolio);
626 * PG_readahead shares the same bit with PG_reclaim. The above
627 * end_page_writeback() may clear PG_readahead mistakenly, so set the
630 if (folio_test_readahead(folio))
631 folio_set_readahead(newfolio);
633 folio_copy_owner(newfolio, folio);
635 if (!folio_test_hugetlb(folio))
636 mem_cgroup_migrate(folio, newfolio);
638 EXPORT_SYMBOL(folio_migrate_flags);
640 void folio_migrate_copy(struct folio *newfolio, struct folio *folio)
642 folio_copy(newfolio, folio);
643 folio_migrate_flags(newfolio, folio);
645 EXPORT_SYMBOL(folio_migrate_copy);
647 /************************************************************
648 * Migration functions
649 ***********************************************************/
651 int migrate_folio_extra(struct address_space *mapping, struct folio *dst,
652 struct folio *src, enum migrate_mode mode, int extra_count)
656 BUG_ON(folio_test_writeback(src)); /* Writeback must be complete */
658 rc = folio_migrate_mapping(mapping, dst, src, extra_count);
660 if (rc != MIGRATEPAGE_SUCCESS)
663 if (mode != MIGRATE_SYNC_NO_COPY)
664 folio_migrate_copy(dst, src);
666 folio_migrate_flags(dst, src);
667 return MIGRATEPAGE_SUCCESS;
671 * migrate_folio() - Simple folio migration.
672 * @mapping: The address_space containing the folio.
673 * @dst: The folio to migrate the data to.
674 * @src: The folio containing the current data.
675 * @mode: How to migrate the page.
677 * Common logic to directly migrate a single LRU folio suitable for
678 * folios that do not use PagePrivate/PagePrivate2.
680 * Folios are locked upon entry and exit.
682 int migrate_folio(struct address_space *mapping, struct folio *dst,
683 struct folio *src, enum migrate_mode mode)
685 return migrate_folio_extra(mapping, dst, src, mode, 0);
687 EXPORT_SYMBOL(migrate_folio);
690 /* Returns true if all buffers are successfully locked */
691 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
692 enum migrate_mode mode)
694 struct buffer_head *bh = head;
696 /* Simple case, sync compaction */
697 if (mode != MIGRATE_ASYNC) {
700 bh = bh->b_this_page;
702 } while (bh != head);
707 /* async case, we cannot block on lock_buffer so use trylock_buffer */
709 if (!trylock_buffer(bh)) {
711 * We failed to lock the buffer and cannot stall in
712 * async migration. Release the taken locks
714 struct buffer_head *failed_bh = bh;
716 while (bh != failed_bh) {
718 bh = bh->b_this_page;
723 bh = bh->b_this_page;
724 } while (bh != head);
728 static int __buffer_migrate_folio(struct address_space *mapping,
729 struct folio *dst, struct folio *src, enum migrate_mode mode,
732 struct buffer_head *bh, *head;
736 head = folio_buffers(src);
738 return migrate_folio(mapping, dst, src, mode);
740 /* Check whether page does not have extra refs before we do more work */
741 expected_count = folio_expected_refs(mapping, src);
742 if (folio_ref_count(src) != expected_count)
745 if (!buffer_migrate_lock_buffers(head, mode))
750 bool invalidated = false;
754 spin_lock(&mapping->private_lock);
757 if (atomic_read(&bh->b_count)) {
761 bh = bh->b_this_page;
762 } while (bh != head);
768 spin_unlock(&mapping->private_lock);
769 invalidate_bh_lrus();
771 goto recheck_buffers;
775 rc = folio_migrate_mapping(mapping, dst, src, 0);
776 if (rc != MIGRATEPAGE_SUCCESS)
779 folio_attach_private(dst, folio_detach_private(src));
783 set_bh_page(bh, &dst->page, bh_offset(bh));
784 bh = bh->b_this_page;
785 } while (bh != head);
787 if (mode != MIGRATE_SYNC_NO_COPY)
788 folio_migrate_copy(dst, src);
790 folio_migrate_flags(dst, src);
792 rc = MIGRATEPAGE_SUCCESS;
795 spin_unlock(&mapping->private_lock);
799 bh = bh->b_this_page;
800 } while (bh != head);
806 * buffer_migrate_folio() - Migration function for folios with buffers.
807 * @mapping: The address space containing @src.
808 * @dst: The folio to migrate to.
809 * @src: The folio to migrate from.
810 * @mode: How to migrate the folio.
812 * This function can only be used if the underlying filesystem guarantees
813 * that no other references to @src exist. For example attached buffer
814 * heads are accessed only under the folio lock. If your filesystem cannot
815 * provide this guarantee, buffer_migrate_folio_norefs() may be more
818 * Return: 0 on success or a negative errno on failure.
820 int buffer_migrate_folio(struct address_space *mapping,
821 struct folio *dst, struct folio *src, enum migrate_mode mode)
823 return __buffer_migrate_folio(mapping, dst, src, mode, false);
825 EXPORT_SYMBOL(buffer_migrate_folio);
828 * buffer_migrate_folio_norefs() - Migration function for folios with buffers.
829 * @mapping: The address space containing @src.
830 * @dst: The folio to migrate to.
831 * @src: The folio to migrate from.
832 * @mode: How to migrate the folio.
834 * Like buffer_migrate_folio() except that this variant is more careful
835 * and checks that there are also no buffer head references. This function
836 * is the right one for mappings where buffer heads are directly looked
837 * up and referenced (such as block device mappings).
839 * Return: 0 on success or a negative errno on failure.
841 int buffer_migrate_folio_norefs(struct address_space *mapping,
842 struct folio *dst, struct folio *src, enum migrate_mode mode)
844 return __buffer_migrate_folio(mapping, dst, src, mode, true);
846 EXPORT_SYMBOL_GPL(buffer_migrate_folio_norefs);
849 int filemap_migrate_folio(struct address_space *mapping,
850 struct folio *dst, struct folio *src, enum migrate_mode mode)
854 ret = folio_migrate_mapping(mapping, dst, src, 0);
855 if (ret != MIGRATEPAGE_SUCCESS)
858 if (folio_get_private(src))
859 folio_attach_private(dst, folio_detach_private(src));
861 if (mode != MIGRATE_SYNC_NO_COPY)
862 folio_migrate_copy(dst, src);
864 folio_migrate_flags(dst, src);
865 return MIGRATEPAGE_SUCCESS;
867 EXPORT_SYMBOL_GPL(filemap_migrate_folio);
870 * Writeback a folio to clean the dirty state
872 static int writeout(struct address_space *mapping, struct folio *folio)
874 struct writeback_control wbc = {
875 .sync_mode = WB_SYNC_NONE,
878 .range_end = LLONG_MAX,
883 if (!mapping->a_ops->writepage)
884 /* No write method for the address space */
887 if (!folio_clear_dirty_for_io(folio))
888 /* Someone else already triggered a write */
892 * A dirty folio may imply that the underlying filesystem has
893 * the folio on some queue. So the folio must be clean for
894 * migration. Writeout may mean we lose the lock and the
895 * folio state is no longer what we checked for earlier.
896 * At this point we know that the migration attempt cannot
899 remove_migration_ptes(folio, folio, false);
901 rc = mapping->a_ops->writepage(&folio->page, &wbc);
903 if (rc != AOP_WRITEPAGE_ACTIVATE)
904 /* unlocked. Relock */
907 return (rc < 0) ? -EIO : -EAGAIN;
911 * Default handling if a filesystem does not provide a migration function.
913 static int fallback_migrate_folio(struct address_space *mapping,
914 struct folio *dst, struct folio *src, enum migrate_mode mode)
916 if (folio_test_dirty(src)) {
917 /* Only writeback folios in full synchronous migration */
920 case MIGRATE_SYNC_NO_COPY:
925 return writeout(mapping, src);
929 * Buffers may be managed in a filesystem specific way.
930 * We must have no buffers or drop them.
932 if (folio_test_private(src) &&
933 !filemap_release_folio(src, GFP_KERNEL))
934 return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY;
936 return migrate_folio(mapping, dst, src, mode);
940 * Move a page to a newly allocated page
941 * The page is locked and all ptes have been successfully removed.
943 * The new page will have replaced the old page if this function
948 * MIGRATEPAGE_SUCCESS - success
950 static int move_to_new_folio(struct folio *dst, struct folio *src,
951 enum migrate_mode mode)
954 bool is_lru = !__PageMovable(&src->page);
956 VM_BUG_ON_FOLIO(!folio_test_locked(src), src);
957 VM_BUG_ON_FOLIO(!folio_test_locked(dst), dst);
959 if (likely(is_lru)) {
960 struct address_space *mapping = folio_mapping(src);
963 rc = migrate_folio(mapping, dst, src, mode);
964 else if (mapping->a_ops->migrate_folio)
966 * Most folios have a mapping and most filesystems
967 * provide a migrate_folio callback. Anonymous folios
968 * are part of swap space which also has its own
969 * migrate_folio callback. This is the most common path
970 * for page migration.
972 rc = mapping->a_ops->migrate_folio(mapping, dst, src,
975 rc = fallback_migrate_folio(mapping, dst, src, mode);
977 const struct movable_operations *mops;
980 * In case of non-lru page, it could be released after
981 * isolation step. In that case, we shouldn't try migration.
983 VM_BUG_ON_FOLIO(!folio_test_isolated(src), src);
984 if (!folio_test_movable(src)) {
985 rc = MIGRATEPAGE_SUCCESS;
986 folio_clear_isolated(src);
990 mops = folio_movable_ops(src);
991 rc = mops->migrate_page(&dst->page, &src->page, mode);
992 WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
993 !folio_test_isolated(src));
997 * When successful, old pagecache src->mapping must be cleared before
998 * src is freed; but stats require that PageAnon be left as PageAnon.
1000 if (rc == MIGRATEPAGE_SUCCESS) {
1001 if (__PageMovable(&src->page)) {
1002 VM_BUG_ON_FOLIO(!folio_test_isolated(src), src);
1005 * We clear PG_movable under page_lock so any compactor
1006 * cannot try to migrate this page.
1008 folio_clear_isolated(src);
1012 * Anonymous and movable src->mapping will be cleared by
1013 * free_pages_prepare so don't reset it here for keeping
1014 * the type to work PageAnon, for example.
1016 if (!folio_mapping_flags(src))
1017 src->mapping = NULL;
1019 if (likely(!folio_is_zone_device(dst)))
1020 flush_dcache_folio(dst);
1027 * To record some information during migration, we use some unused
1028 * fields (mapping and private) of struct folio of the newly allocated
1029 * destination folio. This is safe because nobody is using them
1032 union migration_ptr {
1033 struct anon_vma *anon_vma;
1034 struct address_space *mapping;
1036 static void __migrate_folio_record(struct folio *dst,
1037 unsigned long page_was_mapped,
1038 struct anon_vma *anon_vma)
1040 union migration_ptr ptr = { .anon_vma = anon_vma };
1041 dst->mapping = ptr.mapping;
1042 dst->private = (void *)page_was_mapped;
1045 static void __migrate_folio_extract(struct folio *dst,
1046 int *page_was_mappedp,
1047 struct anon_vma **anon_vmap)
1049 union migration_ptr ptr = { .mapping = dst->mapping };
1050 *anon_vmap = ptr.anon_vma;
1051 *page_was_mappedp = (unsigned long)dst->private;
1052 dst->mapping = NULL;
1053 dst->private = NULL;
1056 /* Restore the source folio to the original state upon failure */
1057 static void migrate_folio_undo_src(struct folio *src,
1058 int page_was_mapped,
1059 struct anon_vma *anon_vma,
1061 struct list_head *ret)
1063 if (page_was_mapped)
1064 remove_migration_ptes(src, src, false);
1065 /* Drop an anon_vma reference if we took one */
1067 put_anon_vma(anon_vma);
1071 list_move_tail(&src->lru, ret);
1074 /* Restore the destination folio to the original state upon failure */
1075 static void migrate_folio_undo_dst(struct folio *dst,
1077 free_page_t put_new_page,
1078 unsigned long private)
1083 put_new_page(&dst->page, private);
1088 /* Cleanup src folio upon migration success */
1089 static void migrate_folio_done(struct folio *src,
1090 enum migrate_reason reason)
1093 * Compaction can migrate also non-LRU pages which are
1094 * not accounted to NR_ISOLATED_*. They can be recognized
1097 if (likely(!__folio_test_movable(src)))
1098 mod_node_page_state(folio_pgdat(src), NR_ISOLATED_ANON +
1099 folio_is_file_lru(src), -folio_nr_pages(src));
1101 if (reason != MR_MEMORY_FAILURE)
1102 /* We release the page in page_handle_poison. */
1106 /* Obtain the lock on page, remove all ptes. */
1107 static int migrate_folio_unmap(new_page_t get_new_page, free_page_t put_new_page,
1108 unsigned long private, struct folio *src,
1109 struct folio **dstp, enum migrate_mode mode,
1110 enum migrate_reason reason, struct list_head *ret)
1114 struct page *newpage = NULL;
1115 int page_was_mapped = 0;
1116 struct anon_vma *anon_vma = NULL;
1117 bool is_lru = !__PageMovable(&src->page);
1118 bool locked = false;
1119 bool dst_locked = false;
1121 if (folio_ref_count(src) == 1) {
1122 /* Folio was freed from under us. So we are done. */
1123 folio_clear_active(src);
1124 folio_clear_unevictable(src);
1125 /* free_pages_prepare() will clear PG_isolated. */
1126 list_del(&src->lru);
1127 migrate_folio_done(src, reason);
1128 return MIGRATEPAGE_SUCCESS;
1131 newpage = get_new_page(&src->page, private);
1134 dst = page_folio(newpage);
1137 dst->private = NULL;
1139 if (!folio_trylock(src)) {
1140 if (mode == MIGRATE_ASYNC)
1144 * It's not safe for direct compaction to call lock_page.
1145 * For example, during page readahead pages are added locked
1146 * to the LRU. Later, when the IO completes the pages are
1147 * marked uptodate and unlocked. However, the queueing
1148 * could be merging multiple pages for one bio (e.g.
1149 * mpage_readahead). If an allocation happens for the
1150 * second or third page, the process can end up locking
1151 * the same page twice and deadlocking. Rather than
1152 * trying to be clever about what pages can be locked,
1153 * avoid the use of lock_page for direct compaction
1156 if (current->flags & PF_MEMALLOC)
1163 if (folio_test_writeback(src)) {
1165 * Only in the case of a full synchronous migration is it
1166 * necessary to wait for PageWriteback. In the async case,
1167 * the retry loop is too short and in the sync-light case,
1168 * the overhead of stalling is too much
1172 case MIGRATE_SYNC_NO_COPY:
1178 folio_wait_writeback(src);
1182 * By try_to_migrate(), src->mapcount goes down to 0 here. In this case,
1183 * we cannot notice that anon_vma is freed while we migrate a page.
1184 * This get_anon_vma() delays freeing anon_vma pointer until the end
1185 * of migration. File cache pages are no problem because of page_lock()
1186 * File Caches may use write_page() or lock_page() in migration, then,
1187 * just care Anon page here.
1189 * Only folio_get_anon_vma() understands the subtleties of
1190 * getting a hold on an anon_vma from outside one of its mms.
1191 * But if we cannot get anon_vma, then we won't need it anyway,
1192 * because that implies that the anon page is no longer mapped
1193 * (and cannot be remapped so long as we hold the page lock).
1195 if (folio_test_anon(src) && !folio_test_ksm(src))
1196 anon_vma = folio_get_anon_vma(src);
1199 * Block others from accessing the new page when we get around to
1200 * establishing additional references. We are usually the only one
1201 * holding a reference to dst at this point. We used to have a BUG
1202 * here if folio_trylock(dst) fails, but would like to allow for
1203 * cases where there might be a race with the previous use of dst.
1204 * This is much like races on refcount of oldpage: just don't BUG().
1206 if (unlikely(!folio_trylock(dst)))
1210 if (unlikely(!is_lru)) {
1211 __migrate_folio_record(dst, page_was_mapped, anon_vma);
1212 return MIGRATEPAGE_UNMAP;
1216 * Corner case handling:
1217 * 1. When a new swap-cache page is read into, it is added to the LRU
1218 * and treated as swapcache but it has no rmap yet.
1219 * Calling try_to_unmap() against a src->mapping==NULL page will
1220 * trigger a BUG. So handle it here.
1221 * 2. An orphaned page (see truncate_cleanup_page) might have
1222 * fs-private metadata. The page can be picked up due to memory
1223 * offlining. Everywhere else except page reclaim, the page is
1224 * invisible to the vm, so the page can not be migrated. So try to
1225 * free the metadata, so the page can be freed.
1227 if (!src->mapping) {
1228 if (folio_test_private(src)) {
1229 try_to_free_buffers(src);
1232 } else if (folio_mapped(src)) {
1233 /* Establish migration ptes */
1234 VM_BUG_ON_FOLIO(folio_test_anon(src) &&
1235 !folio_test_ksm(src) && !anon_vma, src);
1236 try_to_migrate(src, mode == MIGRATE_ASYNC ? TTU_BATCH_FLUSH : 0);
1237 page_was_mapped = 1;
1240 if (!folio_mapped(src)) {
1241 __migrate_folio_record(dst, page_was_mapped, anon_vma);
1242 return MIGRATEPAGE_UNMAP;
1247 * A folio that has not been unmapped will be restored to
1248 * right list unless we want to retry.
1253 migrate_folio_undo_src(src, page_was_mapped, anon_vma, locked, ret);
1254 migrate_folio_undo_dst(dst, dst_locked, put_new_page, private);
1259 /* Migrate the folio to the newly allocated folio in dst. */
1260 static int migrate_folio_move(free_page_t put_new_page, unsigned long private,
1261 struct folio *src, struct folio *dst,
1262 enum migrate_mode mode, enum migrate_reason reason,
1263 struct list_head *ret)
1266 int page_was_mapped = 0;
1267 struct anon_vma *anon_vma = NULL;
1268 bool is_lru = !__PageMovable(&src->page);
1269 struct list_head *prev;
1271 __migrate_folio_extract(dst, &page_was_mapped, &anon_vma);
1272 prev = dst->lru.prev;
1273 list_del(&dst->lru);
1275 rc = move_to_new_folio(dst, src, mode);
1279 if (unlikely(!is_lru))
1280 goto out_unlock_both;
1283 * When successful, push dst to LRU immediately: so that if it
1284 * turns out to be an mlocked page, remove_migration_ptes() will
1285 * automatically build up the correct dst->mlock_count for it.
1287 * We would like to do something similar for the old page, when
1288 * unsuccessful, and other cases when a page has been temporarily
1289 * isolated from the unevictable LRU: but this case is the easiest.
1292 if (page_was_mapped)
1295 if (page_was_mapped)
1296 remove_migration_ptes(src, dst, false);
1300 set_page_owner_migrate_reason(&dst->page, reason);
1302 * If migration is successful, decrease refcount of dst,
1303 * which will not free the page because new page owner increased
1309 * A folio that has been migrated has all references removed
1310 * and will be freed.
1312 list_del(&src->lru);
1313 /* Drop an anon_vma reference if we took one */
1315 put_anon_vma(anon_vma);
1317 migrate_folio_done(src, reason);
1322 * A folio that has not been migrated will be restored to
1323 * right list unless we want to retry.
1325 if (rc == -EAGAIN) {
1326 list_add(&dst->lru, prev);
1327 __migrate_folio_record(dst, page_was_mapped, anon_vma);
1331 migrate_folio_undo_src(src, page_was_mapped, anon_vma, true, ret);
1332 migrate_folio_undo_dst(dst, true, put_new_page, private);
1338 * Counterpart of unmap_and_move_page() for hugepage migration.
1340 * This function doesn't wait the completion of hugepage I/O
1341 * because there is no race between I/O and migration for hugepage.
1342 * Note that currently hugepage I/O occurs only in direct I/O
1343 * where no lock is held and PG_writeback is irrelevant,
1344 * and writeback status of all subpages are counted in the reference
1345 * count of the head page (i.e. if all subpages of a 2MB hugepage are
1346 * under direct I/O, the reference of the head page is 512 and a bit more.)
1347 * This means that when we try to migrate hugepage whose subpages are
1348 * doing direct I/O, some references remain after try_to_unmap() and
1349 * hugepage migration fails without data corruption.
1351 * There is also no race when direct I/O is issued on the page under migration,
1352 * because then pte is replaced with migration swap entry and direct I/O code
1353 * will wait in the page fault for migration to complete.
1355 static int unmap_and_move_huge_page(new_page_t get_new_page,
1356 free_page_t put_new_page, unsigned long private,
1357 struct page *hpage, int force,
1358 enum migrate_mode mode, int reason,
1359 struct list_head *ret)
1361 struct folio *dst, *src = page_folio(hpage);
1363 int page_was_mapped = 0;
1364 struct page *new_hpage;
1365 struct anon_vma *anon_vma = NULL;
1366 struct address_space *mapping = NULL;
1368 if (folio_ref_count(src) == 1) {
1369 /* page was freed from under us. So we are done. */
1370 folio_putback_active_hugetlb(src);
1371 return MIGRATEPAGE_SUCCESS;
1374 new_hpage = get_new_page(hpage, private);
1377 dst = page_folio(new_hpage);
1379 if (!folio_trylock(src)) {
1384 case MIGRATE_SYNC_NO_COPY:
1393 * Check for pages which are in the process of being freed. Without
1394 * folio_mapping() set, hugetlbfs specific move page routine will not
1395 * be called and we could leak usage counts for subpools.
1397 if (hugetlb_folio_subpool(src) && !folio_mapping(src)) {
1402 if (folio_test_anon(src))
1403 anon_vma = folio_get_anon_vma(src);
1405 if (unlikely(!folio_trylock(dst)))
1408 if (folio_mapped(src)) {
1409 enum ttu_flags ttu = 0;
1411 if (!folio_test_anon(src)) {
1413 * In shared mappings, try_to_unmap could potentially
1414 * call huge_pmd_unshare. Because of this, take
1415 * semaphore in write mode here and set TTU_RMAP_LOCKED
1416 * to let lower levels know we have taken the lock.
1418 mapping = hugetlb_page_mapping_lock_write(hpage);
1419 if (unlikely(!mapping))
1420 goto unlock_put_anon;
1422 ttu = TTU_RMAP_LOCKED;
1425 try_to_migrate(src, ttu);
1426 page_was_mapped = 1;
1428 if (ttu & TTU_RMAP_LOCKED)
1429 i_mmap_unlock_write(mapping);
1432 if (!folio_mapped(src))
1433 rc = move_to_new_folio(dst, src, mode);
1435 if (page_was_mapped)
1436 remove_migration_ptes(src,
1437 rc == MIGRATEPAGE_SUCCESS ? dst : src, false);
1444 put_anon_vma(anon_vma);
1446 if (rc == MIGRATEPAGE_SUCCESS) {
1447 move_hugetlb_state(src, dst, reason);
1448 put_new_page = NULL;
1454 if (rc == MIGRATEPAGE_SUCCESS)
1455 folio_putback_active_hugetlb(src);
1456 else if (rc != -EAGAIN)
1457 list_move_tail(&src->lru, ret);
1460 * If migration was not successful and there's a freeing callback, use
1461 * it. Otherwise, put_page() will drop the reference grabbed during
1465 put_new_page(new_hpage, private);
1467 folio_putback_active_hugetlb(dst);
1472 static inline int try_split_folio(struct folio *folio, struct list_head *split_folios)
1477 rc = split_folio_to_list(folio, split_folios);
1478 folio_unlock(folio);
1480 list_move_tail(&folio->lru, split_folios);
1485 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1486 #define NR_MAX_BATCHED_MIGRATION HPAGE_PMD_NR
1488 #define NR_MAX_BATCHED_MIGRATION 512
1490 #define NR_MAX_MIGRATE_PAGES_RETRY 10
1491 #define NR_MAX_MIGRATE_ASYNC_RETRY 3
1492 #define NR_MAX_MIGRATE_SYNC_RETRY \
1493 (NR_MAX_MIGRATE_PAGES_RETRY - NR_MAX_MIGRATE_ASYNC_RETRY)
1495 struct migrate_pages_stats {
1496 int nr_succeeded; /* Normal and large folios migrated successfully, in
1497 units of base pages */
1498 int nr_failed_pages; /* Normal and large folios failed to be migrated, in
1499 units of base pages. Untried folios aren't counted */
1500 int nr_thp_succeeded; /* THP migrated successfully */
1501 int nr_thp_failed; /* THP failed to be migrated */
1502 int nr_thp_split; /* THP split before migrating */
1506 * Returns the number of hugetlb folios that were not migrated, or an error code
1507 * after NR_MAX_MIGRATE_PAGES_RETRY attempts or if no hugetlb folios are movable
1508 * any more because the list has become empty or no retryable hugetlb folios
1509 * exist any more. It is caller's responsibility to call putback_movable_pages()
1512 static int migrate_hugetlbs(struct list_head *from, new_page_t get_new_page,
1513 free_page_t put_new_page, unsigned long private,
1514 enum migrate_mode mode, int reason,
1515 struct migrate_pages_stats *stats,
1516 struct list_head *ret_folios)
1520 int nr_retry_pages = 0;
1522 struct folio *folio, *folio2;
1525 for (pass = 0; pass < NR_MAX_MIGRATE_PAGES_RETRY && retry; pass++) {
1529 list_for_each_entry_safe(folio, folio2, from, lru) {
1530 if (!folio_test_hugetlb(folio))
1533 nr_pages = folio_nr_pages(folio);
1538 * Migratability of hugepages depends on architectures and
1539 * their size. This check is necessary because some callers
1540 * of hugepage migration like soft offline and memory
1541 * hotremove don't walk through page tables or check whether
1542 * the hugepage is pmd-based or not before kicking migration.
1544 if (!hugepage_migration_supported(folio_hstate(folio))) {
1546 stats->nr_failed_pages += nr_pages;
1547 list_move_tail(&folio->lru, ret_folios);
1551 rc = unmap_and_move_huge_page(get_new_page,
1552 put_new_page, private,
1553 &folio->page, pass > 2, mode,
1554 reason, ret_folios);
1557 * Success: hugetlb folio will be put back
1558 * -EAGAIN: stay on the from list
1559 * -ENOMEM: stay on the from list
1560 * Other errno: put on ret_folios list
1565 * When memory is low, don't bother to try to migrate
1566 * other folios, just exit.
1568 stats->nr_failed_pages += nr_pages + nr_retry_pages;
1572 nr_retry_pages += nr_pages;
1574 case MIGRATEPAGE_SUCCESS:
1575 stats->nr_succeeded += nr_pages;
1579 * Permanent failure (-EBUSY, etc.):
1580 * unlike -EAGAIN case, the failed folio is
1581 * removed from migration folio list and not
1582 * retried in the next outer loop.
1585 stats->nr_failed_pages += nr_pages;
1591 * nr_failed is number of hugetlb folios failed to be migrated. After
1592 * NR_MAX_MIGRATE_PAGES_RETRY attempts, give up and count retried hugetlb
1596 stats->nr_failed_pages += nr_retry_pages;
1602 * migrate_pages_batch() first unmaps folios in the from list as many as
1603 * possible, then move the unmapped folios.
1605 * We only batch migration if mode == MIGRATE_ASYNC to avoid to wait a
1606 * lock or bit when we have locked more than one folio. Which may cause
1607 * deadlock (e.g., for loop device). So, if mode != MIGRATE_ASYNC, the
1608 * length of the from list must be <= 1.
1610 static int migrate_pages_batch(struct list_head *from, new_page_t get_new_page,
1611 free_page_t put_new_page, unsigned long private,
1612 enum migrate_mode mode, int reason, struct list_head *ret_folios,
1613 struct list_head *split_folios, struct migrate_pages_stats *stats,
1617 int large_retry = 1;
1620 int nr_retry_pages = 0;
1621 int nr_large_failed = 0;
1623 bool is_large = false;
1624 bool is_thp = false;
1625 struct folio *folio, *folio2, *dst = NULL, *dst2;
1626 int rc, rc_saved = 0, nr_pages;
1627 LIST_HEAD(unmap_folios);
1628 LIST_HEAD(dst_folios);
1629 bool nosplit = (reason == MR_NUMA_MISPLACED);
1631 VM_WARN_ON_ONCE(mode != MIGRATE_ASYNC &&
1632 !list_empty(from) && !list_is_singular(from));
1634 for (pass = 0; pass < nr_pass && (retry || large_retry); pass++) {
1640 list_for_each_entry_safe(folio, folio2, from, lru) {
1642 * Large folio statistics is based on the source large
1643 * folio. Capture required information that might get
1644 * lost during migration.
1646 is_large = folio_test_large(folio);
1647 is_thp = is_large && folio_test_pmd_mappable(folio);
1648 nr_pages = folio_nr_pages(folio);
1653 * Large folio migration might be unsupported or
1654 * the allocation might be failed so we should retry
1655 * on the same folio with the large folio split
1658 * Split folios are put in split_folios, and
1659 * we will migrate them after the rest of the
1660 * list is processed.
1662 if (!thp_migration_supported() && is_thp) {
1664 stats->nr_thp_failed++;
1665 if (!try_split_folio(folio, split_folios)) {
1666 stats->nr_thp_split++;
1669 stats->nr_failed_pages += nr_pages;
1670 list_move_tail(&folio->lru, ret_folios);
1674 rc = migrate_folio_unmap(get_new_page, put_new_page, private,
1675 folio, &dst, mode, reason, ret_folios);
1678 * Success: folio will be freed
1679 * Unmap: folio will be put on unmap_folios list,
1680 * dst folio put on dst_folios list
1681 * -EAGAIN: stay on the from list
1682 * -ENOMEM: stay on the from list
1683 * Other errno: put on ret_folios list
1688 * When memory is low, don't bother to try to migrate
1689 * other folios, move unmapped folios, then exit.
1693 stats->nr_thp_failed += is_thp;
1694 /* Large folio NUMA faulting doesn't split to retry. */
1696 int ret = try_split_folio(folio, split_folios);
1699 stats->nr_thp_split += is_thp;
1701 } else if (reason == MR_LONGTERM_PIN &&
1704 * Try again to split large folio to
1705 * mitigate the failure of longterm pinning.
1708 thp_retry += is_thp;
1709 nr_retry_pages += nr_pages;
1710 /* Undo duplicated failure counting. */
1712 stats->nr_thp_failed -= is_thp;
1720 stats->nr_failed_pages += nr_pages + nr_retry_pages;
1721 /* nr_failed isn't updated for not used */
1722 nr_large_failed += large_retry;
1723 stats->nr_thp_failed += thp_retry;
1725 if (list_empty(&unmap_folios))
1732 thp_retry += is_thp;
1736 nr_retry_pages += nr_pages;
1738 case MIGRATEPAGE_SUCCESS:
1739 stats->nr_succeeded += nr_pages;
1740 stats->nr_thp_succeeded += is_thp;
1742 case MIGRATEPAGE_UNMAP:
1743 list_move_tail(&folio->lru, &unmap_folios);
1744 list_add_tail(&dst->lru, &dst_folios);
1748 * Permanent failure (-EBUSY, etc.):
1749 * unlike -EAGAIN case, the failed folio is
1750 * removed from migration folio list and not
1751 * retried in the next outer loop.
1755 stats->nr_thp_failed += is_thp;
1760 stats->nr_failed_pages += nr_pages;
1766 nr_large_failed += large_retry;
1767 stats->nr_thp_failed += thp_retry;
1768 stats->nr_failed_pages += nr_retry_pages;
1770 /* Flush TLBs for all unmapped folios */
1771 try_to_unmap_flush();
1774 for (pass = 0; pass < nr_pass && (retry || large_retry); pass++) {
1780 dst = list_first_entry(&dst_folios, struct folio, lru);
1781 dst2 = list_next_entry(dst, lru);
1782 list_for_each_entry_safe(folio, folio2, &unmap_folios, lru) {
1783 is_large = folio_test_large(folio);
1784 is_thp = is_large && folio_test_pmd_mappable(folio);
1785 nr_pages = folio_nr_pages(folio);
1789 rc = migrate_folio_move(put_new_page, private,
1791 reason, ret_folios);
1794 * Success: folio will be freed
1795 * -EAGAIN: stay on the unmap_folios list
1796 * Other errno: put on ret_folios list
1802 thp_retry += is_thp;
1806 nr_retry_pages += nr_pages;
1808 case MIGRATEPAGE_SUCCESS:
1809 stats->nr_succeeded += nr_pages;
1810 stats->nr_thp_succeeded += is_thp;
1815 stats->nr_thp_failed += is_thp;
1820 stats->nr_failed_pages += nr_pages;
1824 dst2 = list_next_entry(dst, lru);
1828 nr_large_failed += large_retry;
1829 stats->nr_thp_failed += thp_retry;
1830 stats->nr_failed_pages += nr_retry_pages;
1835 rc = nr_failed + nr_large_failed;
1837 /* Cleanup remaining folios */
1838 dst = list_first_entry(&dst_folios, struct folio, lru);
1839 dst2 = list_next_entry(dst, lru);
1840 list_for_each_entry_safe(folio, folio2, &unmap_folios, lru) {
1841 int page_was_mapped = 0;
1842 struct anon_vma *anon_vma = NULL;
1844 __migrate_folio_extract(dst, &page_was_mapped, &anon_vma);
1845 migrate_folio_undo_src(folio, page_was_mapped, anon_vma,
1847 list_del(&dst->lru);
1848 migrate_folio_undo_dst(dst, true, put_new_page, private);
1850 dst2 = list_next_entry(dst, lru);
1856 static int migrate_pages_sync(struct list_head *from, new_page_t get_new_page,
1857 free_page_t put_new_page, unsigned long private,
1858 enum migrate_mode mode, int reason, struct list_head *ret_folios,
1859 struct list_head *split_folios, struct migrate_pages_stats *stats)
1861 int rc, nr_failed = 0;
1863 struct migrate_pages_stats astats;
1865 memset(&astats, 0, sizeof(astats));
1866 /* Try to migrate in batch with MIGRATE_ASYNC mode firstly */
1867 rc = migrate_pages_batch(from, get_new_page, put_new_page, private, MIGRATE_ASYNC,
1868 reason, &folios, split_folios, &astats,
1869 NR_MAX_MIGRATE_ASYNC_RETRY);
1870 stats->nr_succeeded += astats.nr_succeeded;
1871 stats->nr_thp_succeeded += astats.nr_thp_succeeded;
1872 stats->nr_thp_split += astats.nr_thp_split;
1874 stats->nr_failed_pages += astats.nr_failed_pages;
1875 stats->nr_thp_failed += astats.nr_thp_failed;
1876 list_splice_tail(&folios, ret_folios);
1879 stats->nr_thp_failed += astats.nr_thp_split;
1880 nr_failed += astats.nr_thp_split;
1882 * Fall back to migrate all failed folios one by one synchronously. All
1883 * failed folios except split THPs will be retried, so their failure
1886 list_splice_tail_init(&folios, from);
1887 while (!list_empty(from)) {
1888 list_move(from->next, &folios);
1889 rc = migrate_pages_batch(&folios, get_new_page, put_new_page,
1890 private, mode, reason, ret_folios,
1891 split_folios, stats, NR_MAX_MIGRATE_SYNC_RETRY);
1892 list_splice_tail_init(&folios, ret_folios);
1902 * migrate_pages - migrate the folios specified in a list, to the free folios
1903 * supplied as the target for the page migration
1905 * @from: The list of folios to be migrated.
1906 * @get_new_page: The function used to allocate free folios to be used
1907 * as the target of the folio migration.
1908 * @put_new_page: The function used to free target folios if migration
1909 * fails, or NULL if no special handling is necessary.
1910 * @private: Private data to be passed on to get_new_page()
1911 * @mode: The migration mode that specifies the constraints for
1912 * folio migration, if any.
1913 * @reason: The reason for folio migration.
1914 * @ret_succeeded: Set to the number of folios migrated successfully if
1915 * the caller passes a non-NULL pointer.
1917 * The function returns after NR_MAX_MIGRATE_PAGES_RETRY attempts or if no folios
1918 * are movable any more because the list has become empty or no retryable folios
1919 * exist any more. It is caller's responsibility to call putback_movable_pages()
1922 * Returns the number of {normal folio, large folio, hugetlb} that were not
1923 * migrated, or an error code. The number of large folio splits will be
1924 * considered as the number of non-migrated large folio, no matter how many
1925 * split folios of the large folio are migrated successfully.
1927 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1928 free_page_t put_new_page, unsigned long private,
1929 enum migrate_mode mode, int reason, unsigned int *ret_succeeded)
1933 struct folio *folio, *folio2;
1935 LIST_HEAD(ret_folios);
1936 LIST_HEAD(split_folios);
1937 struct migrate_pages_stats stats;
1939 trace_mm_migrate_pages_start(mode, reason);
1941 memset(&stats, 0, sizeof(stats));
1943 rc_gather = migrate_hugetlbs(from, get_new_page, put_new_page, private,
1944 mode, reason, &stats, &ret_folios);
1950 list_for_each_entry_safe(folio, folio2, from, lru) {
1951 /* Retried hugetlb folios will be kept in list */
1952 if (folio_test_hugetlb(folio)) {
1953 list_move_tail(&folio->lru, &ret_folios);
1957 nr_pages += folio_nr_pages(folio);
1958 if (nr_pages >= NR_MAX_BATCHED_MIGRATION)
1961 if (nr_pages >= NR_MAX_BATCHED_MIGRATION)
1962 list_cut_before(&folios, from, &folio2->lru);
1964 list_splice_init(from, &folios);
1965 if (mode == MIGRATE_ASYNC)
1966 rc = migrate_pages_batch(&folios, get_new_page, put_new_page, private,
1967 mode, reason, &ret_folios, &split_folios, &stats,
1968 NR_MAX_MIGRATE_PAGES_RETRY);
1970 rc = migrate_pages_sync(&folios, get_new_page, put_new_page, private,
1971 mode, reason, &ret_folios, &split_folios, &stats);
1972 list_splice_tail_init(&folios, &ret_folios);
1975 list_splice_tail(&split_folios, &ret_folios);
1978 if (!list_empty(&split_folios)) {
1980 * Failure isn't counted since all split folios of a large folio
1981 * is counted as 1 failure already. And, we only try to migrate
1982 * with minimal effort, force MIGRATE_ASYNC mode and retry once.
1984 migrate_pages_batch(&split_folios, get_new_page, put_new_page, private,
1985 MIGRATE_ASYNC, reason, &ret_folios, NULL, &stats, 1);
1986 list_splice_tail_init(&split_folios, &ret_folios);
1989 if (!list_empty(from))
1993 * Put the permanent failure folio back to migration list, they
1994 * will be put back to the right list by the caller.
1996 list_splice(&ret_folios, from);
1999 * Return 0 in case all split folios of fail-to-migrate large folios
2000 * are migrated successfully.
2002 if (list_empty(from))
2005 count_vm_events(PGMIGRATE_SUCCESS, stats.nr_succeeded);
2006 count_vm_events(PGMIGRATE_FAIL, stats.nr_failed_pages);
2007 count_vm_events(THP_MIGRATION_SUCCESS, stats.nr_thp_succeeded);
2008 count_vm_events(THP_MIGRATION_FAIL, stats.nr_thp_failed);
2009 count_vm_events(THP_MIGRATION_SPLIT, stats.nr_thp_split);
2010 trace_mm_migrate_pages(stats.nr_succeeded, stats.nr_failed_pages,
2011 stats.nr_thp_succeeded, stats.nr_thp_failed,
2012 stats.nr_thp_split, mode, reason);
2015 *ret_succeeded = stats.nr_succeeded;
2020 struct page *alloc_migration_target(struct page *page, unsigned long private)
2022 struct folio *folio = page_folio(page);
2023 struct migration_target_control *mtc;
2025 unsigned int order = 0;
2026 struct folio *hugetlb_folio = NULL;
2027 struct folio *new_folio = NULL;
2031 mtc = (struct migration_target_control *)private;
2032 gfp_mask = mtc->gfp_mask;
2034 if (nid == NUMA_NO_NODE)
2035 nid = folio_nid(folio);
2037 if (folio_test_hugetlb(folio)) {
2038 struct hstate *h = folio_hstate(folio);
2040 gfp_mask = htlb_modify_alloc_mask(h, gfp_mask);
2041 hugetlb_folio = alloc_hugetlb_folio_nodemask(h, nid,
2042 mtc->nmask, gfp_mask);
2043 return &hugetlb_folio->page;
2046 if (folio_test_large(folio)) {
2048 * clear __GFP_RECLAIM to make the migration callback
2049 * consistent with regular THP allocations.
2051 gfp_mask &= ~__GFP_RECLAIM;
2052 gfp_mask |= GFP_TRANSHUGE;
2053 order = folio_order(folio);
2055 zidx = zone_idx(folio_zone(folio));
2056 if (is_highmem_idx(zidx) || zidx == ZONE_MOVABLE)
2057 gfp_mask |= __GFP_HIGHMEM;
2059 new_folio = __folio_alloc(gfp_mask, order, nid, mtc->nmask);
2061 return &new_folio->page;
2066 static int store_status(int __user *status, int start, int value, int nr)
2069 if (put_user(value, status + start))
2077 static int do_move_pages_to_node(struct mm_struct *mm,
2078 struct list_head *pagelist, int node)
2081 struct migration_target_control mtc = {
2083 .gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE,
2086 err = migrate_pages(pagelist, alloc_migration_target, NULL,
2087 (unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL, NULL);
2089 putback_movable_pages(pagelist);
2094 * Resolves the given address to a struct page, isolates it from the LRU and
2095 * puts it to the given pagelist.
2097 * errno - if the page cannot be found/isolated
2098 * 0 - when it doesn't have to be migrated because it is already on the
2100 * 1 - when it has been queued
2102 static int add_page_for_migration(struct mm_struct *mm, const void __user *p,
2103 int node, struct list_head *pagelist, bool migrate_all)
2105 struct vm_area_struct *vma;
2112 addr = (unsigned long)untagged_addr_remote(mm, p);
2115 vma = vma_lookup(mm, addr);
2116 if (!vma || !vma_migratable(vma))
2119 /* FOLL_DUMP to ignore special (like zero) pages */
2120 page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP);
2122 err = PTR_ERR(page);
2130 if (is_zone_device_page(page))
2134 if (page_to_nid(page) == node)
2138 if (page_mapcount(page) > 1 && !migrate_all)
2141 if (PageHuge(page)) {
2142 if (PageHead(page)) {
2143 isolated = isolate_hugetlb(page_folio(page), pagelist);
2144 err = isolated ? 1 : -EBUSY;
2149 head = compound_head(page);
2150 isolated = isolate_lru_page(head);
2157 list_add_tail(&head->lru, pagelist);
2158 mod_node_page_state(page_pgdat(head),
2159 NR_ISOLATED_ANON + page_is_file_lru(head),
2160 thp_nr_pages(head));
2164 * Either remove the duplicate refcount from
2165 * isolate_lru_page() or drop the page ref if it was
2170 mmap_read_unlock(mm);
2174 static int move_pages_and_store_status(struct mm_struct *mm, int node,
2175 struct list_head *pagelist, int __user *status,
2176 int start, int i, unsigned long nr_pages)
2180 if (list_empty(pagelist))
2183 err = do_move_pages_to_node(mm, pagelist, node);
2186 * Positive err means the number of failed
2187 * pages to migrate. Since we are going to
2188 * abort and return the number of non-migrated
2189 * pages, so need to include the rest of the
2190 * nr_pages that have not been attempted as
2194 err += nr_pages - i;
2197 return store_status(status, start, node, i - start);
2201 * Migrate an array of page address onto an array of nodes and fill
2202 * the corresponding array of status.
2204 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
2205 unsigned long nr_pages,
2206 const void __user * __user *pages,
2207 const int __user *nodes,
2208 int __user *status, int flags)
2210 int current_node = NUMA_NO_NODE;
2211 LIST_HEAD(pagelist);
2215 lru_cache_disable();
2217 for (i = start = 0; i < nr_pages; i++) {
2218 const void __user *p;
2222 if (get_user(p, pages + i))
2224 if (get_user(node, nodes + i))
2228 if (node < 0 || node >= MAX_NUMNODES)
2230 if (!node_state(node, N_MEMORY))
2234 if (!node_isset(node, task_nodes))
2237 if (current_node == NUMA_NO_NODE) {
2238 current_node = node;
2240 } else if (node != current_node) {
2241 err = move_pages_and_store_status(mm, current_node,
2242 &pagelist, status, start, i, nr_pages);
2246 current_node = node;
2250 * Errors in the page lookup or isolation are not fatal and we simply
2251 * report them via status
2253 err = add_page_for_migration(mm, p, current_node, &pagelist,
2254 flags & MPOL_MF_MOVE_ALL);
2257 /* The page is successfully queued for migration */
2262 * The move_pages() man page does not have an -EEXIST choice, so
2263 * use -EFAULT instead.
2269 * If the page is already on the target node (!err), store the
2270 * node, otherwise, store the err.
2272 err = store_status(status, i, err ? : current_node, 1);
2276 err = move_pages_and_store_status(mm, current_node, &pagelist,
2277 status, start, i, nr_pages);
2279 /* We have accounted for page i */
2284 current_node = NUMA_NO_NODE;
2287 /* Make sure we do not overwrite the existing error */
2288 err1 = move_pages_and_store_status(mm, current_node, &pagelist,
2289 status, start, i, nr_pages);
2298 * Determine the nodes of an array of pages and store it in an array of status.
2300 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
2301 const void __user **pages, int *status)
2307 for (i = 0; i < nr_pages; i++) {
2308 unsigned long addr = (unsigned long)(*pages);
2309 struct vm_area_struct *vma;
2313 vma = vma_lookup(mm, addr);
2317 /* FOLL_DUMP to ignore special (like zero) pages */
2318 page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP);
2320 err = PTR_ERR(page);
2328 if (!is_zone_device_page(page))
2329 err = page_to_nid(page);
2339 mmap_read_unlock(mm);
2342 static int get_compat_pages_array(const void __user *chunk_pages[],
2343 const void __user * __user *pages,
2344 unsigned long chunk_nr)
2346 compat_uptr_t __user *pages32 = (compat_uptr_t __user *)pages;
2350 for (i = 0; i < chunk_nr; i++) {
2351 if (get_user(p, pages32 + i))
2353 chunk_pages[i] = compat_ptr(p);
2360 * Determine the nodes of a user array of pages and store it in
2361 * a user array of status.
2363 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
2364 const void __user * __user *pages,
2367 #define DO_PAGES_STAT_CHUNK_NR 16UL
2368 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
2369 int chunk_status[DO_PAGES_STAT_CHUNK_NR];
2372 unsigned long chunk_nr = min(nr_pages, DO_PAGES_STAT_CHUNK_NR);
2374 if (in_compat_syscall()) {
2375 if (get_compat_pages_array(chunk_pages, pages,
2379 if (copy_from_user(chunk_pages, pages,
2380 chunk_nr * sizeof(*chunk_pages)))
2384 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
2386 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
2391 nr_pages -= chunk_nr;
2393 return nr_pages ? -EFAULT : 0;
2396 static struct mm_struct *find_mm_struct(pid_t pid, nodemask_t *mem_nodes)
2398 struct task_struct *task;
2399 struct mm_struct *mm;
2402 * There is no need to check if current process has the right to modify
2403 * the specified process when they are same.
2407 *mem_nodes = cpuset_mems_allowed(current);
2411 /* Find the mm_struct */
2413 task = find_task_by_vpid(pid);
2416 return ERR_PTR(-ESRCH);
2418 get_task_struct(task);
2421 * Check if this process has the right to modify the specified
2422 * process. Use the regular "ptrace_may_access()" checks.
2424 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
2426 mm = ERR_PTR(-EPERM);
2431 mm = ERR_PTR(security_task_movememory(task));
2434 *mem_nodes = cpuset_mems_allowed(task);
2435 mm = get_task_mm(task);
2437 put_task_struct(task);
2439 mm = ERR_PTR(-EINVAL);
2444 * Move a list of pages in the address space of the currently executing
2447 static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
2448 const void __user * __user *pages,
2449 const int __user *nodes,
2450 int __user *status, int flags)
2452 struct mm_struct *mm;
2454 nodemask_t task_nodes;
2457 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
2460 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
2463 mm = find_mm_struct(pid, &task_nodes);
2468 err = do_pages_move(mm, task_nodes, nr_pages, pages,
2469 nodes, status, flags);
2471 err = do_pages_stat(mm, nr_pages, pages, status);
2477 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
2478 const void __user * __user *, pages,
2479 const int __user *, nodes,
2480 int __user *, status, int, flags)
2482 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
2485 #ifdef CONFIG_NUMA_BALANCING
2487 * Returns true if this is a safe migration target node for misplaced NUMA
2488 * pages. Currently it only checks the watermarks which is crude.
2490 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
2491 unsigned long nr_migrate_pages)
2495 for (z = pgdat->nr_zones - 1; z >= 0; z--) {
2496 struct zone *zone = pgdat->node_zones + z;
2498 if (!managed_zone(zone))
2501 /* Avoid waking kswapd by allocating pages_to_migrate pages. */
2502 if (!zone_watermark_ok(zone, 0,
2503 high_wmark_pages(zone) +
2512 static struct page *alloc_misplaced_dst_page(struct page *page,
2515 int nid = (int) data;
2516 int order = compound_order(page);
2517 gfp_t gfp = __GFP_THISNODE;
2521 gfp |= GFP_TRANSHUGE_LIGHT;
2523 gfp |= GFP_HIGHUSER_MOVABLE | __GFP_NOMEMALLOC | __GFP_NORETRY |
2525 gfp &= ~__GFP_RECLAIM;
2527 new = __folio_alloc_node(gfp, order, nid);
2532 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
2534 int nr_pages = thp_nr_pages(page);
2535 int order = compound_order(page);
2537 VM_BUG_ON_PAGE(order && !PageTransHuge(page), page);
2539 /* Do not migrate THP mapped by multiple processes */
2540 if (PageTransHuge(page) && total_mapcount(page) > 1)
2543 /* Avoid migrating to a node that is nearly full */
2544 if (!migrate_balanced_pgdat(pgdat, nr_pages)) {
2547 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING))
2549 for (z = pgdat->nr_zones - 1; z >= 0; z--) {
2550 if (managed_zone(pgdat->node_zones + z))
2553 wakeup_kswapd(pgdat->node_zones + z, 0, order, ZONE_MOVABLE);
2557 if (!isolate_lru_page(page))
2560 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_is_file_lru(page),
2564 * Isolating the page has taken another reference, so the
2565 * caller's reference can be safely dropped without the page
2566 * disappearing underneath us during migration.
2573 * Attempt to migrate a misplaced page to the specified destination
2574 * node. Caller is expected to have an elevated reference count on
2575 * the page that will be dropped by this function before returning.
2577 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
2580 pg_data_t *pgdat = NODE_DATA(node);
2583 unsigned int nr_succeeded;
2584 LIST_HEAD(migratepages);
2585 int nr_pages = thp_nr_pages(page);
2588 * Don't migrate file pages that are mapped in multiple processes
2589 * with execute permissions as they are probably shared libraries.
2591 if (page_mapcount(page) != 1 && page_is_file_lru(page) &&
2592 (vma->vm_flags & VM_EXEC))
2596 * Also do not migrate dirty pages as not all filesystems can move
2597 * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles.
2599 if (page_is_file_lru(page) && PageDirty(page))
2602 isolated = numamigrate_isolate_page(pgdat, page);
2606 list_add(&page->lru, &migratepages);
2607 nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
2608 NULL, node, MIGRATE_ASYNC,
2609 MR_NUMA_MISPLACED, &nr_succeeded);
2611 if (!list_empty(&migratepages)) {
2612 list_del(&page->lru);
2613 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
2614 page_is_file_lru(page), -nr_pages);
2615 putback_lru_page(page);
2620 count_vm_numa_events(NUMA_PAGE_MIGRATE, nr_succeeded);
2621 if (!node_is_toptier(page_to_nid(page)) && node_is_toptier(node))
2622 mod_node_page_state(pgdat, PGPROMOTE_SUCCESS,
2625 BUG_ON(!list_empty(&migratepages));
2632 #endif /* CONFIG_NUMA_BALANCING */
2633 #endif /* CONFIG_NUMA */