1 // SPDX-License-Identifier: GPL-2.0
3 * Memory Migration functionality - linux/mm/migrate.c
5 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
7 * Page migration was first developed in the context of the memory hotplug
8 * project. The main authors of the migration code are:
10 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
11 * Hirokazu Takahashi <taka@valinux.co.jp>
12 * Dave Hansen <haveblue@us.ibm.com>
16 #include <linux/migrate.h>
17 #include <linux/export.h>
18 #include <linux/swap.h>
19 #include <linux/swapops.h>
20 #include <linux/pagemap.h>
21 #include <linux/buffer_head.h>
22 #include <linux/mm_inline.h>
23 #include <linux/nsproxy.h>
24 #include <linux/pagevec.h>
25 #include <linux/ksm.h>
26 #include <linux/rmap.h>
27 #include <linux/topology.h>
28 #include <linux/cpu.h>
29 #include <linux/cpuset.h>
30 #include <linux/writeback.h>
31 #include <linux/mempolicy.h>
32 #include <linux/vmalloc.h>
33 #include <linux/security.h>
34 #include <linux/backing-dev.h>
35 #include <linux/compaction.h>
36 #include <linux/syscalls.h>
37 #include <linux/compat.h>
38 #include <linux/hugetlb.h>
39 #include <linux/hugetlb_cgroup.h>
40 #include <linux/gfp.h>
41 #include <linux/pagewalk.h>
42 #include <linux/pfn_t.h>
43 #include <linux/memremap.h>
44 #include <linux/userfaultfd_k.h>
45 #include <linux/balloon_compaction.h>
46 #include <linux/mmu_notifier.h>
47 #include <linux/page_idle.h>
48 #include <linux/page_owner.h>
49 #include <linux/sched/mm.h>
50 #include <linux/ptrace.h>
51 #include <linux/oom.h>
53 #include <asm/tlbflush.h>
55 #define CREATE_TRACE_POINTS
56 #include <trace/events/migrate.h>
61 * migrate_prep() needs to be called before we start compiling a list of pages
62 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
63 * undesirable, use migrate_prep_local()
65 void migrate_prep(void)
68 * Clear the LRU lists so pages can be isolated.
69 * Note that pages may be moved off the LRU after we have
70 * drained them. Those pages will fail to migrate like other
71 * pages that may be busy.
76 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
77 void migrate_prep_local(void)
82 int isolate_movable_page(struct page *page, isolate_mode_t mode)
84 struct address_space *mapping;
87 * Avoid burning cycles with pages that are yet under __free_pages(),
88 * or just got freed under us.
90 * In case we 'win' a race for a movable page being freed under us and
91 * raise its refcount preventing __free_pages() from doing its job
92 * the put_page() at the end of this block will take care of
93 * release this page, thus avoiding a nasty leakage.
95 if (unlikely(!get_page_unless_zero(page)))
99 * Check PageMovable before holding a PG_lock because page's owner
100 * assumes anybody doesn't touch PG_lock of newly allocated page
101 * so unconditionally grabbing the lock ruins page's owner side.
103 if (unlikely(!__PageMovable(page)))
106 * As movable pages are not isolated from LRU lists, concurrent
107 * compaction threads can race against page migration functions
108 * as well as race against the releasing a page.
110 * In order to avoid having an already isolated movable page
111 * being (wrongly) re-isolated while it is under migration,
112 * or to avoid attempting to isolate pages being released,
113 * lets be sure we have the page lock
114 * before proceeding with the movable page isolation steps.
116 if (unlikely(!trylock_page(page)))
119 if (!PageMovable(page) || PageIsolated(page))
120 goto out_no_isolated;
122 mapping = page_mapping(page);
123 VM_BUG_ON_PAGE(!mapping, page);
125 if (!mapping->a_ops->isolate_page(page, mode))
126 goto out_no_isolated;
128 /* Driver shouldn't use PG_isolated bit of page->flags */
129 WARN_ON_ONCE(PageIsolated(page));
130 __SetPageIsolated(page);
143 /* It should be called on page which is PG_movable */
144 void putback_movable_page(struct page *page)
146 struct address_space *mapping;
148 VM_BUG_ON_PAGE(!PageLocked(page), page);
149 VM_BUG_ON_PAGE(!PageMovable(page), page);
150 VM_BUG_ON_PAGE(!PageIsolated(page), page);
152 mapping = page_mapping(page);
153 mapping->a_ops->putback_page(page);
154 __ClearPageIsolated(page);
158 * Put previously isolated pages back onto the appropriate lists
159 * from where they were once taken off for compaction/migration.
161 * This function shall be used whenever the isolated pageset has been
162 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
163 * and isolate_huge_page().
165 void putback_movable_pages(struct list_head *l)
170 list_for_each_entry_safe(page, page2, l, lru) {
171 if (unlikely(PageHuge(page))) {
172 putback_active_hugepage(page);
175 list_del(&page->lru);
177 * We isolated non-lru movable page so here we can use
178 * __PageMovable because LRU page's mapping cannot have
179 * PAGE_MAPPING_MOVABLE.
181 if (unlikely(__PageMovable(page))) {
182 VM_BUG_ON_PAGE(!PageIsolated(page), page);
184 if (PageMovable(page))
185 putback_movable_page(page);
187 __ClearPageIsolated(page);
191 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
192 page_is_file_lru(page), -thp_nr_pages(page));
193 putback_lru_page(page);
199 * Restore a potential migration pte to a working pte entry
201 static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma,
202 unsigned long addr, void *old)
204 struct page_vma_mapped_walk pvmw = {
208 .flags = PVMW_SYNC | PVMW_MIGRATION,
214 VM_BUG_ON_PAGE(PageTail(page), page);
215 while (page_vma_mapped_walk(&pvmw)) {
219 new = page - pvmw.page->index +
220 linear_page_index(vma, pvmw.address);
222 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
223 /* PMD-mapped THP migration entry */
225 VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
226 remove_migration_pmd(&pvmw, new);
232 pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
233 if (pte_swp_soft_dirty(*pvmw.pte))
234 pte = pte_mksoft_dirty(pte);
237 * Recheck VMA as permissions can change since migration started
239 entry = pte_to_swp_entry(*pvmw.pte);
240 if (is_write_migration_entry(entry))
241 pte = maybe_mkwrite(pte, vma);
242 else if (pte_swp_uffd_wp(*pvmw.pte))
243 pte = pte_mkuffd_wp(pte);
245 if (unlikely(is_device_private_page(new))) {
246 entry = make_device_private_entry(new, pte_write(pte));
247 pte = swp_entry_to_pte(entry);
248 if (pte_swp_soft_dirty(*pvmw.pte))
249 pte = pte_swp_mksoft_dirty(pte);
250 if (pte_swp_uffd_wp(*pvmw.pte))
251 pte = pte_swp_mkuffd_wp(pte);
254 #ifdef CONFIG_HUGETLB_PAGE
256 pte = pte_mkhuge(pte);
257 pte = arch_make_huge_pte(pte, vma, new, 0);
258 set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
260 hugepage_add_anon_rmap(new, vma, pvmw.address);
262 page_dup_rmap(new, true);
266 set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
269 page_add_anon_rmap(new, vma, pvmw.address, false);
271 page_add_file_rmap(new, false);
273 if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
276 if (PageTransHuge(page) && PageMlocked(page))
277 clear_page_mlock(page);
279 /* No need to invalidate - it was non-present before */
280 update_mmu_cache(vma, pvmw.address, pvmw.pte);
287 * Get rid of all migration entries and replace them by
288 * references to the indicated page.
290 void remove_migration_ptes(struct page *old, struct page *new, bool locked)
292 struct rmap_walk_control rwc = {
293 .rmap_one = remove_migration_pte,
298 rmap_walk_locked(new, &rwc);
300 rmap_walk(new, &rwc);
304 * Something used the pte of a page under migration. We need to
305 * get to the page and wait until migration is finished.
306 * When we return from this function the fault will be retried.
308 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
317 if (!is_swap_pte(pte))
320 entry = pte_to_swp_entry(pte);
321 if (!is_migration_entry(entry))
324 page = migration_entry_to_page(entry);
327 * Once page cache replacement of page migration started, page_count
328 * is zero; but we must not call put_and_wait_on_page_locked() without
329 * a ref. Use get_page_unless_zero(), and just fault again if it fails.
331 if (!get_page_unless_zero(page))
333 pte_unmap_unlock(ptep, ptl);
334 put_and_wait_on_page_locked(page);
337 pte_unmap_unlock(ptep, ptl);
340 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
341 unsigned long address)
343 spinlock_t *ptl = pte_lockptr(mm, pmd);
344 pte_t *ptep = pte_offset_map(pmd, address);
345 __migration_entry_wait(mm, ptep, ptl);
348 void migration_entry_wait_huge(struct vm_area_struct *vma,
349 struct mm_struct *mm, pte_t *pte)
351 spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
352 __migration_entry_wait(mm, pte, ptl);
355 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
356 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
361 ptl = pmd_lock(mm, pmd);
362 if (!is_pmd_migration_entry(*pmd))
364 page = migration_entry_to_page(pmd_to_swp_entry(*pmd));
365 if (!get_page_unless_zero(page))
368 put_and_wait_on_page_locked(page);
375 static int expected_page_refs(struct address_space *mapping, struct page *page)
377 int expected_count = 1;
380 * Device private pages have an extra refcount as they are
383 expected_count += is_device_private_page(page);
385 expected_count += thp_nr_pages(page) + page_has_private(page);
387 return expected_count;
391 * Replace the page in the mapping.
393 * The number of remaining references must be:
394 * 1 for anonymous pages without a mapping
395 * 2 for pages with a mapping
396 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
398 int migrate_page_move_mapping(struct address_space *mapping,
399 struct page *newpage, struct page *page, int extra_count)
401 XA_STATE(xas, &mapping->i_pages, page_index(page));
402 struct zone *oldzone, *newzone;
404 int expected_count = expected_page_refs(mapping, page) + extra_count;
405 int nr = thp_nr_pages(page);
408 /* Anonymous page without mapping */
409 if (page_count(page) != expected_count)
412 /* No turning back from here */
413 newpage->index = page->index;
414 newpage->mapping = page->mapping;
415 if (PageSwapBacked(page))
416 __SetPageSwapBacked(newpage);
418 return MIGRATEPAGE_SUCCESS;
421 oldzone = page_zone(page);
422 newzone = page_zone(newpage);
425 if (page_count(page) != expected_count || xas_load(&xas) != page) {
426 xas_unlock_irq(&xas);
430 if (!page_ref_freeze(page, expected_count)) {
431 xas_unlock_irq(&xas);
436 * Now we know that no one else is looking at the page:
437 * no turning back from here.
439 newpage->index = page->index;
440 newpage->mapping = page->mapping;
441 page_ref_add(newpage, nr); /* add cache reference */
442 if (PageSwapBacked(page)) {
443 __SetPageSwapBacked(newpage);
444 if (PageSwapCache(page)) {
445 SetPageSwapCache(newpage);
446 set_page_private(newpage, page_private(page));
449 VM_BUG_ON_PAGE(PageSwapCache(page), page);
452 /* Move dirty while page refs frozen and newpage not yet exposed */
453 dirty = PageDirty(page);
455 ClearPageDirty(page);
456 SetPageDirty(newpage);
459 xas_store(&xas, newpage);
460 if (PageTransHuge(page)) {
463 for (i = 1; i < nr; i++) {
465 xas_store(&xas, newpage);
470 * Drop cache reference from old page by unfreezing
471 * to one less reference.
472 * We know this isn't the last reference.
474 page_ref_unfreeze(page, expected_count - nr);
477 /* Leave irq disabled to prevent preemption while updating stats */
480 * If moved to a different zone then also account
481 * the page for that zone. Other VM counters will be
482 * taken care of when we establish references to the
483 * new page and drop references to the old page.
485 * Note that anonymous pages are accounted for
486 * via NR_FILE_PAGES and NR_ANON_MAPPED if they
487 * are mapped to swap space.
489 if (newzone != oldzone) {
490 struct lruvec *old_lruvec, *new_lruvec;
491 struct mem_cgroup *memcg;
493 memcg = page_memcg(page);
494 old_lruvec = mem_cgroup_lruvec(memcg, oldzone->zone_pgdat);
495 new_lruvec = mem_cgroup_lruvec(memcg, newzone->zone_pgdat);
497 __mod_lruvec_state(old_lruvec, NR_FILE_PAGES, -nr);
498 __mod_lruvec_state(new_lruvec, NR_FILE_PAGES, nr);
499 if (PageSwapBacked(page) && !PageSwapCache(page)) {
500 __mod_lruvec_state(old_lruvec, NR_SHMEM, -nr);
501 __mod_lruvec_state(new_lruvec, NR_SHMEM, nr);
503 if (dirty && mapping_can_writeback(mapping)) {
504 __mod_lruvec_state(old_lruvec, NR_FILE_DIRTY, -nr);
505 __mod_zone_page_state(oldzone, NR_ZONE_WRITE_PENDING, -nr);
506 __mod_lruvec_state(new_lruvec, NR_FILE_DIRTY, nr);
507 __mod_zone_page_state(newzone, NR_ZONE_WRITE_PENDING, nr);
512 return MIGRATEPAGE_SUCCESS;
514 EXPORT_SYMBOL(migrate_page_move_mapping);
517 * The expected number of remaining references is the same as that
518 * of migrate_page_move_mapping().
520 int migrate_huge_page_move_mapping(struct address_space *mapping,
521 struct page *newpage, struct page *page)
523 XA_STATE(xas, &mapping->i_pages, page_index(page));
527 expected_count = 2 + page_has_private(page);
528 if (page_count(page) != expected_count || xas_load(&xas) != page) {
529 xas_unlock_irq(&xas);
533 if (!page_ref_freeze(page, expected_count)) {
534 xas_unlock_irq(&xas);
538 newpage->index = page->index;
539 newpage->mapping = page->mapping;
543 xas_store(&xas, newpage);
545 page_ref_unfreeze(page, expected_count - 1);
547 xas_unlock_irq(&xas);
549 return MIGRATEPAGE_SUCCESS;
553 * Gigantic pages are so large that we do not guarantee that page++ pointer
554 * arithmetic will work across the entire page. We need something more
557 static void __copy_gigantic_page(struct page *dst, struct page *src,
561 struct page *dst_base = dst;
562 struct page *src_base = src;
564 for (i = 0; i < nr_pages; ) {
566 copy_highpage(dst, src);
569 dst = mem_map_next(dst, dst_base, i);
570 src = mem_map_next(src, src_base, i);
574 static void copy_huge_page(struct page *dst, struct page *src)
581 struct hstate *h = page_hstate(src);
582 nr_pages = pages_per_huge_page(h);
584 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
585 __copy_gigantic_page(dst, src, nr_pages);
590 BUG_ON(!PageTransHuge(src));
591 nr_pages = thp_nr_pages(src);
594 for (i = 0; i < nr_pages; i++) {
596 copy_highpage(dst + i, src + i);
601 * Copy the page to its new location
603 void migrate_page_states(struct page *newpage, struct page *page)
608 SetPageError(newpage);
609 if (PageReferenced(page))
610 SetPageReferenced(newpage);
611 if (PageUptodate(page))
612 SetPageUptodate(newpage);
613 if (TestClearPageActive(page)) {
614 VM_BUG_ON_PAGE(PageUnevictable(page), page);
615 SetPageActive(newpage);
616 } else if (TestClearPageUnevictable(page))
617 SetPageUnevictable(newpage);
618 if (PageWorkingset(page))
619 SetPageWorkingset(newpage);
620 if (PageChecked(page))
621 SetPageChecked(newpage);
622 if (PageMappedToDisk(page))
623 SetPageMappedToDisk(newpage);
625 /* Move dirty on pages not done by migrate_page_move_mapping() */
627 SetPageDirty(newpage);
629 if (page_is_young(page))
630 set_page_young(newpage);
631 if (page_is_idle(page))
632 set_page_idle(newpage);
635 * Copy NUMA information to the new page, to prevent over-eager
636 * future migrations of this same page.
638 cpupid = page_cpupid_xchg_last(page, -1);
639 page_cpupid_xchg_last(newpage, cpupid);
641 ksm_migrate_page(newpage, page);
643 * Please do not reorder this without considering how mm/ksm.c's
644 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
646 if (PageSwapCache(page))
647 ClearPageSwapCache(page);
648 ClearPagePrivate(page);
649 set_page_private(page, 0);
652 * If any waiters have accumulated on the new page then
655 if (PageWriteback(newpage))
656 end_page_writeback(newpage);
659 * PG_readahead shares the same bit with PG_reclaim. The above
660 * end_page_writeback() may clear PG_readahead mistakenly, so set the
663 if (PageReadahead(page))
664 SetPageReadahead(newpage);
666 copy_page_owner(page, newpage);
669 mem_cgroup_migrate(page, newpage);
671 EXPORT_SYMBOL(migrate_page_states);
673 void migrate_page_copy(struct page *newpage, struct page *page)
675 if (PageHuge(page) || PageTransHuge(page))
676 copy_huge_page(newpage, page);
678 copy_highpage(newpage, page);
680 migrate_page_states(newpage, page);
682 EXPORT_SYMBOL(migrate_page_copy);
684 /************************************************************
685 * Migration functions
686 ***********************************************************/
689 * Common logic to directly migrate a single LRU page suitable for
690 * pages that do not use PagePrivate/PagePrivate2.
692 * Pages are locked upon entry and exit.
694 int migrate_page(struct address_space *mapping,
695 struct page *newpage, struct page *page,
696 enum migrate_mode mode)
700 BUG_ON(PageWriteback(page)); /* Writeback must be complete */
702 rc = migrate_page_move_mapping(mapping, newpage, page, 0);
704 if (rc != MIGRATEPAGE_SUCCESS)
707 if (mode != MIGRATE_SYNC_NO_COPY)
708 migrate_page_copy(newpage, page);
710 migrate_page_states(newpage, page);
711 return MIGRATEPAGE_SUCCESS;
713 EXPORT_SYMBOL(migrate_page);
716 /* Returns true if all buffers are successfully locked */
717 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
718 enum migrate_mode mode)
720 struct buffer_head *bh = head;
722 /* Simple case, sync compaction */
723 if (mode != MIGRATE_ASYNC) {
726 bh = bh->b_this_page;
728 } while (bh != head);
733 /* async case, we cannot block on lock_buffer so use trylock_buffer */
735 if (!trylock_buffer(bh)) {
737 * We failed to lock the buffer and cannot stall in
738 * async migration. Release the taken locks
740 struct buffer_head *failed_bh = bh;
742 while (bh != failed_bh) {
744 bh = bh->b_this_page;
749 bh = bh->b_this_page;
750 } while (bh != head);
754 static int __buffer_migrate_page(struct address_space *mapping,
755 struct page *newpage, struct page *page, enum migrate_mode mode,
758 struct buffer_head *bh, *head;
762 if (!page_has_buffers(page))
763 return migrate_page(mapping, newpage, page, mode);
765 /* Check whether page does not have extra refs before we do more work */
766 expected_count = expected_page_refs(mapping, page);
767 if (page_count(page) != expected_count)
770 head = page_buffers(page);
771 if (!buffer_migrate_lock_buffers(head, mode))
776 bool invalidated = false;
780 spin_lock(&mapping->private_lock);
783 if (atomic_read(&bh->b_count)) {
787 bh = bh->b_this_page;
788 } while (bh != head);
794 spin_unlock(&mapping->private_lock);
795 invalidate_bh_lrus();
797 goto recheck_buffers;
801 rc = migrate_page_move_mapping(mapping, newpage, page, 0);
802 if (rc != MIGRATEPAGE_SUCCESS)
805 attach_page_private(newpage, detach_page_private(page));
809 set_bh_page(bh, newpage, bh_offset(bh));
810 bh = bh->b_this_page;
812 } while (bh != head);
814 if (mode != MIGRATE_SYNC_NO_COPY)
815 migrate_page_copy(newpage, page);
817 migrate_page_states(newpage, page);
819 rc = MIGRATEPAGE_SUCCESS;
822 spin_unlock(&mapping->private_lock);
826 bh = bh->b_this_page;
828 } while (bh != head);
834 * Migration function for pages with buffers. This function can only be used
835 * if the underlying filesystem guarantees that no other references to "page"
836 * exist. For example attached buffer heads are accessed only under page lock.
838 int buffer_migrate_page(struct address_space *mapping,
839 struct page *newpage, struct page *page, enum migrate_mode mode)
841 return __buffer_migrate_page(mapping, newpage, page, mode, false);
843 EXPORT_SYMBOL(buffer_migrate_page);
846 * Same as above except that this variant is more careful and checks that there
847 * are also no buffer head references. This function is the right one for
848 * mappings where buffer heads are directly looked up and referenced (such as
849 * block device mappings).
851 int buffer_migrate_page_norefs(struct address_space *mapping,
852 struct page *newpage, struct page *page, enum migrate_mode mode)
854 return __buffer_migrate_page(mapping, newpage, page, mode, true);
859 * Writeback a page to clean the dirty state
861 static int writeout(struct address_space *mapping, struct page *page)
863 struct writeback_control wbc = {
864 .sync_mode = WB_SYNC_NONE,
867 .range_end = LLONG_MAX,
872 if (!mapping->a_ops->writepage)
873 /* No write method for the address space */
876 if (!clear_page_dirty_for_io(page))
877 /* Someone else already triggered a write */
881 * A dirty page may imply that the underlying filesystem has
882 * the page on some queue. So the page must be clean for
883 * migration. Writeout may mean we loose the lock and the
884 * page state is no longer what we checked for earlier.
885 * At this point we know that the migration attempt cannot
888 remove_migration_ptes(page, page, false);
890 rc = mapping->a_ops->writepage(page, &wbc);
892 if (rc != AOP_WRITEPAGE_ACTIVATE)
893 /* unlocked. Relock */
896 return (rc < 0) ? -EIO : -EAGAIN;
900 * Default handling if a filesystem does not provide a migration function.
902 static int fallback_migrate_page(struct address_space *mapping,
903 struct page *newpage, struct page *page, enum migrate_mode mode)
905 if (PageDirty(page)) {
906 /* Only writeback pages in full synchronous migration */
909 case MIGRATE_SYNC_NO_COPY:
914 return writeout(mapping, page);
918 * Buffers may be managed in a filesystem specific way.
919 * We must have no buffers or drop them.
921 if (page_has_private(page) &&
922 !try_to_release_page(page, GFP_KERNEL))
923 return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY;
925 return migrate_page(mapping, newpage, page, mode);
929 * Move a page to a newly allocated page
930 * The page is locked and all ptes have been successfully removed.
932 * The new page will have replaced the old page if this function
937 * MIGRATEPAGE_SUCCESS - success
939 static int move_to_new_page(struct page *newpage, struct page *page,
940 enum migrate_mode mode)
942 struct address_space *mapping;
944 bool is_lru = !__PageMovable(page);
946 VM_BUG_ON_PAGE(!PageLocked(page), page);
947 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
949 mapping = page_mapping(page);
951 if (likely(is_lru)) {
953 rc = migrate_page(mapping, newpage, page, mode);
954 else if (mapping->a_ops->migratepage)
956 * Most pages have a mapping and most filesystems
957 * provide a migratepage callback. Anonymous pages
958 * are part of swap space which also has its own
959 * migratepage callback. This is the most common path
960 * for page migration.
962 rc = mapping->a_ops->migratepage(mapping, newpage,
965 rc = fallback_migrate_page(mapping, newpage,
969 * In case of non-lru page, it could be released after
970 * isolation step. In that case, we shouldn't try migration.
972 VM_BUG_ON_PAGE(!PageIsolated(page), page);
973 if (!PageMovable(page)) {
974 rc = MIGRATEPAGE_SUCCESS;
975 __ClearPageIsolated(page);
979 rc = mapping->a_ops->migratepage(mapping, newpage,
981 WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
982 !PageIsolated(page));
986 * When successful, old pagecache page->mapping must be cleared before
987 * page is freed; but stats require that PageAnon be left as PageAnon.
989 if (rc == MIGRATEPAGE_SUCCESS) {
990 if (__PageMovable(page)) {
991 VM_BUG_ON_PAGE(!PageIsolated(page), page);
994 * We clear PG_movable under page_lock so any compactor
995 * cannot try to migrate this page.
997 __ClearPageIsolated(page);
1001 * Anonymous and movable page->mapping will be cleared by
1002 * free_pages_prepare so don't reset it here for keeping
1003 * the type to work PageAnon, for example.
1005 if (!PageMappingFlags(page))
1006 page->mapping = NULL;
1008 if (likely(!is_zone_device_page(newpage)))
1009 flush_dcache_page(newpage);
1016 static int __unmap_and_move(struct page *page, struct page *newpage,
1017 int force, enum migrate_mode mode)
1020 int page_was_mapped = 0;
1021 struct anon_vma *anon_vma = NULL;
1022 bool is_lru = !__PageMovable(page);
1024 if (!trylock_page(page)) {
1025 if (!force || mode == MIGRATE_ASYNC)
1029 * It's not safe for direct compaction to call lock_page.
1030 * For example, during page readahead pages are added locked
1031 * to the LRU. Later, when the IO completes the pages are
1032 * marked uptodate and unlocked. However, the queueing
1033 * could be merging multiple pages for one bio (e.g.
1034 * mpage_readahead). If an allocation happens for the
1035 * second or third page, the process can end up locking
1036 * the same page twice and deadlocking. Rather than
1037 * trying to be clever about what pages can be locked,
1038 * avoid the use of lock_page for direct compaction
1041 if (current->flags & PF_MEMALLOC)
1047 if (PageWriteback(page)) {
1049 * Only in the case of a full synchronous migration is it
1050 * necessary to wait for PageWriteback. In the async case,
1051 * the retry loop is too short and in the sync-light case,
1052 * the overhead of stalling is too much
1056 case MIGRATE_SYNC_NO_COPY:
1064 wait_on_page_writeback(page);
1068 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
1069 * we cannot notice that anon_vma is freed while we migrates a page.
1070 * This get_anon_vma() delays freeing anon_vma pointer until the end
1071 * of migration. File cache pages are no problem because of page_lock()
1072 * File Caches may use write_page() or lock_page() in migration, then,
1073 * just care Anon page here.
1075 * Only page_get_anon_vma() understands the subtleties of
1076 * getting a hold on an anon_vma from outside one of its mms.
1077 * But if we cannot get anon_vma, then we won't need it anyway,
1078 * because that implies that the anon page is no longer mapped
1079 * (and cannot be remapped so long as we hold the page lock).
1081 if (PageAnon(page) && !PageKsm(page))
1082 anon_vma = page_get_anon_vma(page);
1085 * Block others from accessing the new page when we get around to
1086 * establishing additional references. We are usually the only one
1087 * holding a reference to newpage at this point. We used to have a BUG
1088 * here if trylock_page(newpage) fails, but would like to allow for
1089 * cases where there might be a race with the previous use of newpage.
1090 * This is much like races on refcount of oldpage: just don't BUG().
1092 if (unlikely(!trylock_page(newpage)))
1095 if (unlikely(!is_lru)) {
1096 rc = move_to_new_page(newpage, page, mode);
1097 goto out_unlock_both;
1101 * Corner case handling:
1102 * 1. When a new swap-cache page is read into, it is added to the LRU
1103 * and treated as swapcache but it has no rmap yet.
1104 * Calling try_to_unmap() against a page->mapping==NULL page will
1105 * trigger a BUG. So handle it here.
1106 * 2. An orphaned page (see truncate_cleanup_page) might have
1107 * fs-private metadata. The page can be picked up due to memory
1108 * offlining. Everywhere else except page reclaim, the page is
1109 * invisible to the vm, so the page can not be migrated. So try to
1110 * free the metadata, so the page can be freed.
1112 if (!page->mapping) {
1113 VM_BUG_ON_PAGE(PageAnon(page), page);
1114 if (page_has_private(page)) {
1115 try_to_free_buffers(page);
1116 goto out_unlock_both;
1118 } else if (page_mapped(page)) {
1119 /* Establish migration ptes */
1120 VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1122 try_to_unmap(page, TTU_MIGRATION|TTU_IGNORE_MLOCK);
1123 page_was_mapped = 1;
1126 if (!page_mapped(page))
1127 rc = move_to_new_page(newpage, page, mode);
1129 if (page_was_mapped)
1130 remove_migration_ptes(page,
1131 rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
1134 unlock_page(newpage);
1136 /* Drop an anon_vma reference if we took one */
1138 put_anon_vma(anon_vma);
1142 * If migration is successful, decrease refcount of the newpage
1143 * which will not free the page because new page owner increased
1144 * refcounter. As well, if it is LRU page, add the page to LRU
1145 * list in here. Use the old state of the isolated source page to
1146 * determine if we migrated a LRU page. newpage was already unlocked
1147 * and possibly modified by its owner - don't rely on the page
1150 if (rc == MIGRATEPAGE_SUCCESS) {
1151 if (unlikely(!is_lru))
1154 putback_lru_page(newpage);
1161 * Obtain the lock on page, remove all ptes and migrate the page
1162 * to the newly allocated page in newpage.
1164 static int unmap_and_move(new_page_t get_new_page,
1165 free_page_t put_new_page,
1166 unsigned long private, struct page *page,
1167 int force, enum migrate_mode mode,
1168 enum migrate_reason reason,
1169 struct list_head *ret)
1171 int rc = MIGRATEPAGE_SUCCESS;
1172 struct page *newpage = NULL;
1174 if (!thp_migration_supported() && PageTransHuge(page))
1177 if (page_count(page) == 1) {
1178 /* page was freed from under us. So we are done. */
1179 ClearPageActive(page);
1180 ClearPageUnevictable(page);
1181 if (unlikely(__PageMovable(page))) {
1183 if (!PageMovable(page))
1184 __ClearPageIsolated(page);
1190 newpage = get_new_page(page, private);
1194 rc = __unmap_and_move(page, newpage, force, mode);
1195 if (rc == MIGRATEPAGE_SUCCESS)
1196 set_page_owner_migrate_reason(newpage, reason);
1199 if (rc != -EAGAIN) {
1201 * A page that has been migrated has all references
1202 * removed and will be freed. A page that has not been
1203 * migrated will have kept its references and be restored.
1205 list_del(&page->lru);
1209 * If migration is successful, releases reference grabbed during
1210 * isolation. Otherwise, restore the page to right list unless
1213 if (rc == MIGRATEPAGE_SUCCESS) {
1215 * Compaction can migrate also non-LRU pages which are
1216 * not accounted to NR_ISOLATED_*. They can be recognized
1219 if (likely(!__PageMovable(page)))
1220 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
1221 page_is_file_lru(page), -thp_nr_pages(page));
1223 if (reason != MR_MEMORY_FAILURE)
1225 * We release the page in page_handle_poison.
1230 list_add_tail(&page->lru, ret);
1233 put_new_page(newpage, private);
1242 * Counterpart of unmap_and_move_page() for hugepage migration.
1244 * This function doesn't wait the completion of hugepage I/O
1245 * because there is no race between I/O and migration for hugepage.
1246 * Note that currently hugepage I/O occurs only in direct I/O
1247 * where no lock is held and PG_writeback is irrelevant,
1248 * and writeback status of all subpages are counted in the reference
1249 * count of the head page (i.e. if all subpages of a 2MB hugepage are
1250 * under direct I/O, the reference of the head page is 512 and a bit more.)
1251 * This means that when we try to migrate hugepage whose subpages are
1252 * doing direct I/O, some references remain after try_to_unmap() and
1253 * hugepage migration fails without data corruption.
1255 * There is also no race when direct I/O is issued on the page under migration,
1256 * because then pte is replaced with migration swap entry and direct I/O code
1257 * will wait in the page fault for migration to complete.
1259 static int unmap_and_move_huge_page(new_page_t get_new_page,
1260 free_page_t put_new_page, unsigned long private,
1261 struct page *hpage, int force,
1262 enum migrate_mode mode, int reason,
1263 struct list_head *ret)
1266 int page_was_mapped = 0;
1267 struct page *new_hpage;
1268 struct anon_vma *anon_vma = NULL;
1269 struct address_space *mapping = NULL;
1272 * Migratability of hugepages depends on architectures and their size.
1273 * This check is necessary because some callers of hugepage migration
1274 * like soft offline and memory hotremove don't walk through page
1275 * tables or check whether the hugepage is pmd-based or not before
1276 * kicking migration.
1278 if (!hugepage_migration_supported(page_hstate(hpage))) {
1279 list_move_tail(&hpage->lru, ret);
1283 if (page_count(hpage) == 1) {
1284 /* page was freed from under us. So we are done. */
1285 putback_active_hugepage(hpage);
1286 return MIGRATEPAGE_SUCCESS;
1289 new_hpage = get_new_page(hpage, private);
1293 if (!trylock_page(hpage)) {
1298 case MIGRATE_SYNC_NO_COPY:
1307 * Check for pages which are in the process of being freed. Without
1308 * page_mapping() set, hugetlbfs specific move page routine will not
1309 * be called and we could leak usage counts for subpools.
1311 if (page_private(hpage) && !page_mapping(hpage)) {
1316 if (PageAnon(hpage))
1317 anon_vma = page_get_anon_vma(hpage);
1319 if (unlikely(!trylock_page(new_hpage)))
1322 if (page_mapped(hpage)) {
1323 bool mapping_locked = false;
1324 enum ttu_flags ttu = TTU_MIGRATION|TTU_IGNORE_MLOCK;
1326 if (!PageAnon(hpage)) {
1328 * In shared mappings, try_to_unmap could potentially
1329 * call huge_pmd_unshare. Because of this, take
1330 * semaphore in write mode here and set TTU_RMAP_LOCKED
1331 * to let lower levels know we have taken the lock.
1333 mapping = hugetlb_page_mapping_lock_write(hpage);
1334 if (unlikely(!mapping))
1335 goto unlock_put_anon;
1337 mapping_locked = true;
1338 ttu |= TTU_RMAP_LOCKED;
1341 try_to_unmap(hpage, ttu);
1342 page_was_mapped = 1;
1345 i_mmap_unlock_write(mapping);
1348 if (!page_mapped(hpage))
1349 rc = move_to_new_page(new_hpage, hpage, mode);
1351 if (page_was_mapped)
1352 remove_migration_ptes(hpage,
1353 rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false);
1356 unlock_page(new_hpage);
1360 put_anon_vma(anon_vma);
1362 if (rc == MIGRATEPAGE_SUCCESS) {
1363 move_hugetlb_state(hpage, new_hpage, reason);
1364 put_new_page = NULL;
1370 if (rc == MIGRATEPAGE_SUCCESS)
1371 putback_active_hugepage(hpage);
1372 else if (rc != -EAGAIN && rc != MIGRATEPAGE_SUCCESS)
1373 list_move_tail(&hpage->lru, ret);
1376 * If migration was not successful and there's a freeing callback, use
1377 * it. Otherwise, put_page() will drop the reference grabbed during
1381 put_new_page(new_hpage, private);
1383 putback_active_hugepage(new_hpage);
1388 static inline int try_split_thp(struct page *page, struct page **page2,
1389 struct list_head *from)
1394 rc = split_huge_page_to_list(page, from);
1397 list_safe_reset_next(page, *page2, lru);
1403 * migrate_pages - migrate the pages specified in a list, to the free pages
1404 * supplied as the target for the page migration
1406 * @from: The list of pages to be migrated.
1407 * @get_new_page: The function used to allocate free pages to be used
1408 * as the target of the page migration.
1409 * @put_new_page: The function used to free target pages if migration
1410 * fails, or NULL if no special handling is necessary.
1411 * @private: Private data to be passed on to get_new_page()
1412 * @mode: The migration mode that specifies the constraints for
1413 * page migration, if any.
1414 * @reason: The reason for page migration.
1416 * The function returns after 10 attempts or if no pages are movable any more
1417 * because the list has become empty or no retryable pages exist any more.
1418 * It is caller's responsibility to call putback_movable_pages() to return pages
1419 * to the LRU or free list only if ret != 0.
1421 * Returns the number of pages that were not migrated, or an error code.
1423 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1424 free_page_t put_new_page, unsigned long private,
1425 enum migrate_mode mode, int reason)
1430 int nr_succeeded = 0;
1431 int nr_thp_succeeded = 0;
1432 int nr_thp_failed = 0;
1433 int nr_thp_split = 0;
1435 bool is_thp = false;
1438 int swapwrite = current->flags & PF_SWAPWRITE;
1439 int rc, nr_subpages;
1440 LIST_HEAD(ret_pages);
1443 current->flags |= PF_SWAPWRITE;
1445 for (pass = 0; pass < 10 && (retry || thp_retry); pass++) {
1449 list_for_each_entry_safe(page, page2, from, lru) {
1452 * THP statistics is based on the source huge page.
1453 * Capture required information that might get lost
1456 is_thp = PageTransHuge(page) && !PageHuge(page);
1457 nr_subpages = thp_nr_pages(page);
1461 rc = unmap_and_move_huge_page(get_new_page,
1462 put_new_page, private, page,
1463 pass > 2, mode, reason,
1466 rc = unmap_and_move(get_new_page, put_new_page,
1467 private, page, pass > 2, mode,
1468 reason, &ret_pages);
1471 * Success: non hugetlb page will be freed, hugetlb
1472 * page will be put back
1473 * -EAGAIN: stay on the from list
1474 * -ENOMEM: stay on the from list
1475 * Other errno: put on ret_pages list then splice to
1480 * THP migration might be unsupported or the
1481 * allocation could've failed so we should
1482 * retry on the same page with the THP split
1485 * Head page is retried immediately and tail
1486 * pages are added to the tail of the list so
1487 * we encounter them after the rest of the list
1491 /* THP migration is unsupported */
1493 if (!try_split_thp(page, &page2, from)) {
1499 nr_failed += nr_subpages;
1503 /* Hugetlb migration is unsupported */
1508 * When memory is low, don't bother to try to migrate
1509 * other pages, just exit.
1512 if (!try_split_thp(page, &page2, from)) {
1518 nr_failed += nr_subpages;
1530 case MIGRATEPAGE_SUCCESS:
1533 nr_succeeded += nr_subpages;
1540 * Permanent failure (-EBUSY, etc.):
1541 * unlike -EAGAIN case, the failed page is
1542 * removed from migration page list and not
1543 * retried in the next outer loop.
1547 nr_failed += nr_subpages;
1555 nr_failed += retry + thp_retry;
1556 nr_thp_failed += thp_retry;
1560 * Put the permanent failure page back to migration list, they
1561 * will be put back to the right list by the caller.
1563 list_splice(&ret_pages, from);
1565 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1566 count_vm_events(PGMIGRATE_FAIL, nr_failed);
1567 count_vm_events(THP_MIGRATION_SUCCESS, nr_thp_succeeded);
1568 count_vm_events(THP_MIGRATION_FAIL, nr_thp_failed);
1569 count_vm_events(THP_MIGRATION_SPLIT, nr_thp_split);
1570 trace_mm_migrate_pages(nr_succeeded, nr_failed, nr_thp_succeeded,
1571 nr_thp_failed, nr_thp_split, mode, reason);
1574 current->flags &= ~PF_SWAPWRITE;
1579 struct page *alloc_migration_target(struct page *page, unsigned long private)
1581 struct migration_target_control *mtc;
1583 unsigned int order = 0;
1584 struct page *new_page = NULL;
1588 mtc = (struct migration_target_control *)private;
1589 gfp_mask = mtc->gfp_mask;
1591 if (nid == NUMA_NO_NODE)
1592 nid = page_to_nid(page);
1594 if (PageHuge(page)) {
1595 struct hstate *h = page_hstate(compound_head(page));
1597 gfp_mask = htlb_modify_alloc_mask(h, gfp_mask);
1598 return alloc_huge_page_nodemask(h, nid, mtc->nmask, gfp_mask);
1601 if (PageTransHuge(page)) {
1603 * clear __GFP_RECLAIM to make the migration callback
1604 * consistent with regular THP allocations.
1606 gfp_mask &= ~__GFP_RECLAIM;
1607 gfp_mask |= GFP_TRANSHUGE;
1608 order = HPAGE_PMD_ORDER;
1610 zidx = zone_idx(page_zone(page));
1611 if (is_highmem_idx(zidx) || zidx == ZONE_MOVABLE)
1612 gfp_mask |= __GFP_HIGHMEM;
1614 new_page = __alloc_pages_nodemask(gfp_mask, order, nid, mtc->nmask);
1616 if (new_page && PageTransHuge(new_page))
1617 prep_transhuge_page(new_page);
1624 static int store_status(int __user *status, int start, int value, int nr)
1627 if (put_user(value, status + start))
1635 static int do_move_pages_to_node(struct mm_struct *mm,
1636 struct list_head *pagelist, int node)
1639 struct migration_target_control mtc = {
1641 .gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE,
1644 err = migrate_pages(pagelist, alloc_migration_target, NULL,
1645 (unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL);
1647 putback_movable_pages(pagelist);
1652 * Resolves the given address to a struct page, isolates it from the LRU and
1653 * puts it to the given pagelist.
1655 * errno - if the page cannot be found/isolated
1656 * 0 - when it doesn't have to be migrated because it is already on the
1658 * 1 - when it has been queued
1660 static int add_page_for_migration(struct mm_struct *mm, unsigned long addr,
1661 int node, struct list_head *pagelist, bool migrate_all)
1663 struct vm_area_struct *vma;
1665 unsigned int follflags;
1670 vma = find_vma(mm, addr);
1671 if (!vma || addr < vma->vm_start || !vma_migratable(vma))
1674 /* FOLL_DUMP to ignore special (like zero) pages */
1675 follflags = FOLL_GET | FOLL_DUMP;
1676 page = follow_page(vma, addr, follflags);
1678 err = PTR_ERR(page);
1687 if (page_to_nid(page) == node)
1691 if (page_mapcount(page) > 1 && !migrate_all)
1694 if (PageHuge(page)) {
1695 if (PageHead(page)) {
1696 isolate_huge_page(page, pagelist);
1702 head = compound_head(page);
1703 err = isolate_lru_page(head);
1708 list_add_tail(&head->lru, pagelist);
1709 mod_node_page_state(page_pgdat(head),
1710 NR_ISOLATED_ANON + page_is_file_lru(head),
1711 thp_nr_pages(head));
1715 * Either remove the duplicate refcount from
1716 * isolate_lru_page() or drop the page ref if it was
1721 mmap_read_unlock(mm);
1725 static int move_pages_and_store_status(struct mm_struct *mm, int node,
1726 struct list_head *pagelist, int __user *status,
1727 int start, int i, unsigned long nr_pages)
1731 if (list_empty(pagelist))
1734 err = do_move_pages_to_node(mm, pagelist, node);
1737 * Positive err means the number of failed
1738 * pages to migrate. Since we are going to
1739 * abort and return the number of non-migrated
1740 * pages, so need to include the rest of the
1741 * nr_pages that have not been attempted as
1745 err += nr_pages - i - 1;
1748 return store_status(status, start, node, i - start);
1752 * Migrate an array of page address onto an array of nodes and fill
1753 * the corresponding array of status.
1755 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1756 unsigned long nr_pages,
1757 const void __user * __user *pages,
1758 const int __user *nodes,
1759 int __user *status, int flags)
1761 int current_node = NUMA_NO_NODE;
1762 LIST_HEAD(pagelist);
1768 for (i = start = 0; i < nr_pages; i++) {
1769 const void __user *p;
1774 if (get_user(p, pages + i))
1776 if (get_user(node, nodes + i))
1778 addr = (unsigned long)untagged_addr(p);
1781 if (node < 0 || node >= MAX_NUMNODES)
1783 if (!node_state(node, N_MEMORY))
1787 if (!node_isset(node, task_nodes))
1790 if (current_node == NUMA_NO_NODE) {
1791 current_node = node;
1793 } else if (node != current_node) {
1794 err = move_pages_and_store_status(mm, current_node,
1795 &pagelist, status, start, i, nr_pages);
1799 current_node = node;
1803 * Errors in the page lookup or isolation are not fatal and we simply
1804 * report them via status
1806 err = add_page_for_migration(mm, addr, current_node,
1807 &pagelist, flags & MPOL_MF_MOVE_ALL);
1810 /* The page is successfully queued for migration */
1815 * If the page is already on the target node (!err), store the
1816 * node, otherwise, store the err.
1818 err = store_status(status, i, err ? : current_node, 1);
1822 err = move_pages_and_store_status(mm, current_node, &pagelist,
1823 status, start, i, nr_pages);
1826 current_node = NUMA_NO_NODE;
1829 /* Make sure we do not overwrite the existing error */
1830 err1 = move_pages_and_store_status(mm, current_node, &pagelist,
1831 status, start, i, nr_pages);
1839 * Determine the nodes of an array of pages and store it in an array of status.
1841 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1842 const void __user **pages, int *status)
1848 for (i = 0; i < nr_pages; i++) {
1849 unsigned long addr = (unsigned long)(*pages);
1850 struct vm_area_struct *vma;
1854 vma = find_vma(mm, addr);
1855 if (!vma || addr < vma->vm_start)
1858 /* FOLL_DUMP to ignore special (like zero) pages */
1859 page = follow_page(vma, addr, FOLL_DUMP);
1861 err = PTR_ERR(page);
1865 err = page ? page_to_nid(page) : -ENOENT;
1873 mmap_read_unlock(mm);
1877 * Determine the nodes of a user array of pages and store it in
1878 * a user array of status.
1880 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1881 const void __user * __user *pages,
1884 #define DO_PAGES_STAT_CHUNK_NR 16
1885 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1886 int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1889 unsigned long chunk_nr;
1891 chunk_nr = nr_pages;
1892 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1893 chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1895 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1898 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1900 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1905 nr_pages -= chunk_nr;
1907 return nr_pages ? -EFAULT : 0;
1910 static struct mm_struct *find_mm_struct(pid_t pid, nodemask_t *mem_nodes)
1912 struct task_struct *task;
1913 struct mm_struct *mm;
1916 * There is no need to check if current process has the right to modify
1917 * the specified process when they are same.
1921 *mem_nodes = cpuset_mems_allowed(current);
1925 /* Find the mm_struct */
1927 task = find_task_by_vpid(pid);
1930 return ERR_PTR(-ESRCH);
1932 get_task_struct(task);
1935 * Check if this process has the right to modify the specified
1936 * process. Use the regular "ptrace_may_access()" checks.
1938 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1940 mm = ERR_PTR(-EPERM);
1945 mm = ERR_PTR(security_task_movememory(task));
1948 *mem_nodes = cpuset_mems_allowed(task);
1949 mm = get_task_mm(task);
1951 put_task_struct(task);
1953 mm = ERR_PTR(-EINVAL);
1958 * Move a list of pages in the address space of the currently executing
1961 static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
1962 const void __user * __user *pages,
1963 const int __user *nodes,
1964 int __user *status, int flags)
1966 struct mm_struct *mm;
1968 nodemask_t task_nodes;
1971 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1974 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1977 mm = find_mm_struct(pid, &task_nodes);
1982 err = do_pages_move(mm, task_nodes, nr_pages, pages,
1983 nodes, status, flags);
1985 err = do_pages_stat(mm, nr_pages, pages, status);
1991 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1992 const void __user * __user *, pages,
1993 const int __user *, nodes,
1994 int __user *, status, int, flags)
1996 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1999 #ifdef CONFIG_COMPAT
2000 COMPAT_SYSCALL_DEFINE6(move_pages, pid_t, pid, compat_ulong_t, nr_pages,
2001 compat_uptr_t __user *, pages32,
2002 const int __user *, nodes,
2003 int __user *, status,
2006 const void __user * __user *pages;
2009 pages = compat_alloc_user_space(nr_pages * sizeof(void *));
2010 for (i = 0; i < nr_pages; i++) {
2013 if (get_user(p, pages32 + i) ||
2014 put_user(compat_ptr(p), pages + i))
2017 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
2019 #endif /* CONFIG_COMPAT */
2021 #ifdef CONFIG_NUMA_BALANCING
2023 * Returns true if this is a safe migration target node for misplaced NUMA
2024 * pages. Currently it only checks the watermarks which crude
2026 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
2027 unsigned long nr_migrate_pages)
2031 for (z = pgdat->nr_zones - 1; z >= 0; z--) {
2032 struct zone *zone = pgdat->node_zones + z;
2034 if (!populated_zone(zone))
2037 /* Avoid waking kswapd by allocating pages_to_migrate pages. */
2038 if (!zone_watermark_ok(zone, 0,
2039 high_wmark_pages(zone) +
2048 static struct page *alloc_misplaced_dst_page(struct page *page,
2051 int nid = (int) data;
2052 struct page *newpage;
2054 newpage = __alloc_pages_node(nid,
2055 (GFP_HIGHUSER_MOVABLE |
2056 __GFP_THISNODE | __GFP_NOMEMALLOC |
2057 __GFP_NORETRY | __GFP_NOWARN) &
2063 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
2067 VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
2069 /* Avoid migrating to a node that is nearly full */
2070 if (!migrate_balanced_pgdat(pgdat, compound_nr(page)))
2073 if (isolate_lru_page(page))
2077 * migrate_misplaced_transhuge_page() skips page migration's usual
2078 * check on page_count(), so we must do it here, now that the page
2079 * has been isolated: a GUP pin, or any other pin, prevents migration.
2080 * The expected page count is 3: 1 for page's mapcount and 1 for the
2081 * caller's pin and 1 for the reference taken by isolate_lru_page().
2083 if (PageTransHuge(page) && page_count(page) != 3) {
2084 putback_lru_page(page);
2088 page_lru = page_is_file_lru(page);
2089 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
2090 thp_nr_pages(page));
2093 * Isolating the page has taken another reference, so the
2094 * caller's reference can be safely dropped without the page
2095 * disappearing underneath us during migration.
2101 bool pmd_trans_migrating(pmd_t pmd)
2103 struct page *page = pmd_page(pmd);
2104 return PageLocked(page);
2107 static inline bool is_shared_exec_page(struct vm_area_struct *vma,
2110 if (page_mapcount(page) != 1 &&
2111 (page_is_file_lru(page) || vma_is_shmem(vma)) &&
2112 (vma->vm_flags & VM_EXEC))
2119 * Attempt to migrate a misplaced page to the specified destination
2120 * node. Caller is expected to have an elevated reference count on
2121 * the page that will be dropped by this function before returning.
2123 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
2126 pg_data_t *pgdat = NODE_DATA(node);
2129 LIST_HEAD(migratepages);
2132 * Don't migrate file pages that are mapped in multiple processes
2133 * with execute permissions as they are probably shared libraries.
2135 if (is_shared_exec_page(vma, page))
2139 * Also do not migrate dirty pages as not all filesystems can move
2140 * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles.
2142 if (page_is_file_lru(page) && PageDirty(page))
2145 isolated = numamigrate_isolate_page(pgdat, page);
2149 list_add(&page->lru, &migratepages);
2150 nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
2151 NULL, node, MIGRATE_ASYNC,
2154 if (!list_empty(&migratepages)) {
2155 list_del(&page->lru);
2156 dec_node_page_state(page, NR_ISOLATED_ANON +
2157 page_is_file_lru(page));
2158 putback_lru_page(page);
2162 count_vm_numa_event(NUMA_PAGE_MIGRATE);
2163 BUG_ON(!list_empty(&migratepages));
2170 #endif /* CONFIG_NUMA_BALANCING */
2172 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
2174 * Migrates a THP to a given target node. page must be locked and is unlocked
2177 int migrate_misplaced_transhuge_page(struct mm_struct *mm,
2178 struct vm_area_struct *vma,
2179 pmd_t *pmd, pmd_t entry,
2180 unsigned long address,
2181 struct page *page, int node)
2184 pg_data_t *pgdat = NODE_DATA(node);
2186 struct page *new_page = NULL;
2187 int page_lru = page_is_file_lru(page);
2188 unsigned long start = address & HPAGE_PMD_MASK;
2190 if (is_shared_exec_page(vma, page))
2193 new_page = alloc_pages_node(node,
2194 (GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
2198 prep_transhuge_page(new_page);
2200 isolated = numamigrate_isolate_page(pgdat, page);
2206 /* Prepare a page as a migration target */
2207 __SetPageLocked(new_page);
2208 if (PageSwapBacked(page))
2209 __SetPageSwapBacked(new_page);
2211 /* anon mapping, we can simply copy page->mapping to the new page: */
2212 new_page->mapping = page->mapping;
2213 new_page->index = page->index;
2214 /* flush the cache before copying using the kernel virtual address */
2215 flush_cache_range(vma, start, start + HPAGE_PMD_SIZE);
2216 migrate_page_copy(new_page, page);
2217 WARN_ON(PageLRU(new_page));
2219 /* Recheck the target PMD */
2220 ptl = pmd_lock(mm, pmd);
2221 if (unlikely(!pmd_same(*pmd, entry) || !page_ref_freeze(page, 2))) {
2224 /* Reverse changes made by migrate_page_copy() */
2225 if (TestClearPageActive(new_page))
2226 SetPageActive(page);
2227 if (TestClearPageUnevictable(new_page))
2228 SetPageUnevictable(page);
2230 unlock_page(new_page);
2231 put_page(new_page); /* Free it */
2233 /* Retake the callers reference and putback on LRU */
2235 putback_lru_page(page);
2236 mod_node_page_state(page_pgdat(page),
2237 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
2242 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
2243 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
2246 * Overwrite the old entry under pagetable lock and establish
2247 * the new PTE. Any parallel GUP will either observe the old
2248 * page blocking on the page lock, block on the page table
2249 * lock or observe the new page. The SetPageUptodate on the
2250 * new page and page_add_new_anon_rmap guarantee the copy is
2251 * visible before the pagetable update.
2253 page_add_anon_rmap(new_page, vma, start, true);
2255 * At this point the pmd is numa/protnone (i.e. non present) and the TLB
2256 * has already been flushed globally. So no TLB can be currently
2257 * caching this non present pmd mapping. There's no need to clear the
2258 * pmd before doing set_pmd_at(), nor to flush the TLB after
2259 * set_pmd_at(). Clearing the pmd here would introduce a race
2260 * condition against MADV_DONTNEED, because MADV_DONTNEED only holds the
2261 * mmap_lock for reading. If the pmd is set to NULL at any given time,
2262 * MADV_DONTNEED won't wait on the pmd lock and it'll skip clearing this
2265 set_pmd_at(mm, start, pmd, entry);
2266 update_mmu_cache_pmd(vma, address, &entry);
2268 page_ref_unfreeze(page, 2);
2269 mlock_migrate_page(new_page, page);
2270 page_remove_rmap(page, true);
2271 set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED);
2275 /* Take an "isolate" reference and put new page on the LRU. */
2277 putback_lru_page(new_page);
2279 unlock_page(new_page);
2281 put_page(page); /* Drop the rmap reference */
2282 put_page(page); /* Drop the LRU isolation reference */
2284 count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
2285 count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
2287 mod_node_page_state(page_pgdat(page),
2288 NR_ISOLATED_ANON + page_lru,
2293 count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
2294 ptl = pmd_lock(mm, pmd);
2295 if (pmd_same(*pmd, entry)) {
2296 entry = pmd_modify(entry, vma->vm_page_prot);
2297 set_pmd_at(mm, start, pmd, entry);
2298 update_mmu_cache_pmd(vma, address, &entry);
2308 #endif /* CONFIG_NUMA_BALANCING */
2310 #endif /* CONFIG_NUMA */
2312 #ifdef CONFIG_DEVICE_PRIVATE
2313 static int migrate_vma_collect_hole(unsigned long start,
2315 __always_unused int depth,
2316 struct mm_walk *walk)
2318 struct migrate_vma *migrate = walk->private;
2321 /* Only allow populating anonymous memory. */
2322 if (!vma_is_anonymous(walk->vma)) {
2323 for (addr = start; addr < end; addr += PAGE_SIZE) {
2324 migrate->src[migrate->npages] = 0;
2325 migrate->dst[migrate->npages] = 0;
2331 for (addr = start; addr < end; addr += PAGE_SIZE) {
2332 migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE;
2333 migrate->dst[migrate->npages] = 0;
2341 static int migrate_vma_collect_skip(unsigned long start,
2343 struct mm_walk *walk)
2345 struct migrate_vma *migrate = walk->private;
2348 for (addr = start; addr < end; addr += PAGE_SIZE) {
2349 migrate->dst[migrate->npages] = 0;
2350 migrate->src[migrate->npages++] = 0;
2356 static int migrate_vma_collect_pmd(pmd_t *pmdp,
2357 unsigned long start,
2359 struct mm_walk *walk)
2361 struct migrate_vma *migrate = walk->private;
2362 struct vm_area_struct *vma = walk->vma;
2363 struct mm_struct *mm = vma->vm_mm;
2364 unsigned long addr = start, unmapped = 0;
2369 if (pmd_none(*pmdp))
2370 return migrate_vma_collect_hole(start, end, -1, walk);
2372 if (pmd_trans_huge(*pmdp)) {
2375 ptl = pmd_lock(mm, pmdp);
2376 if (unlikely(!pmd_trans_huge(*pmdp))) {
2381 page = pmd_page(*pmdp);
2382 if (is_huge_zero_page(page)) {
2384 split_huge_pmd(vma, pmdp, addr);
2385 if (pmd_trans_unstable(pmdp))
2386 return migrate_vma_collect_skip(start, end,
2393 if (unlikely(!trylock_page(page)))
2394 return migrate_vma_collect_skip(start, end,
2396 ret = split_huge_page(page);
2400 return migrate_vma_collect_skip(start, end,
2402 if (pmd_none(*pmdp))
2403 return migrate_vma_collect_hole(start, end, -1,
2408 if (unlikely(pmd_bad(*pmdp)))
2409 return migrate_vma_collect_skip(start, end, walk);
2411 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2412 arch_enter_lazy_mmu_mode();
2414 for (; addr < end; addr += PAGE_SIZE, ptep++) {
2415 unsigned long mpfn = 0, pfn;
2422 if (pte_none(pte)) {
2423 if (vma_is_anonymous(vma)) {
2424 mpfn = MIGRATE_PFN_MIGRATE;
2430 if (!pte_present(pte)) {
2432 * Only care about unaddressable device page special
2433 * page table entry. Other special swap entries are not
2434 * migratable, and we ignore regular swapped page.
2436 entry = pte_to_swp_entry(pte);
2437 if (!is_device_private_entry(entry))
2440 page = device_private_entry_to_page(entry);
2441 if (!(migrate->flags &
2442 MIGRATE_VMA_SELECT_DEVICE_PRIVATE) ||
2443 page->pgmap->owner != migrate->pgmap_owner)
2446 mpfn = migrate_pfn(page_to_pfn(page)) |
2447 MIGRATE_PFN_MIGRATE;
2448 if (is_write_device_private_entry(entry))
2449 mpfn |= MIGRATE_PFN_WRITE;
2451 if (!(migrate->flags & MIGRATE_VMA_SELECT_SYSTEM))
2454 if (is_zero_pfn(pfn)) {
2455 mpfn = MIGRATE_PFN_MIGRATE;
2459 page = vm_normal_page(migrate->vma, addr, pte);
2460 mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
2461 mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
2464 /* FIXME support THP */
2465 if (!page || !page->mapping || PageTransCompound(page)) {
2471 * By getting a reference on the page we pin it and that blocks
2472 * any kind of migration. Side effect is that it "freezes" the
2475 * We drop this reference after isolating the page from the lru
2476 * for non device page (device page are not on the lru and thus
2477 * can't be dropped from it).
2483 * Optimize for the common case where page is only mapped once
2484 * in one process. If we can lock the page, then we can safely
2485 * set up a special migration page table entry now.
2487 if (trylock_page(page)) {
2490 mpfn |= MIGRATE_PFN_LOCKED;
2491 ptep_get_and_clear(mm, addr, ptep);
2493 /* Setup special migration page table entry */
2494 entry = make_migration_entry(page, mpfn &
2496 swp_pte = swp_entry_to_pte(entry);
2497 if (pte_present(pte)) {
2498 if (pte_soft_dirty(pte))
2499 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2500 if (pte_uffd_wp(pte))
2501 swp_pte = pte_swp_mkuffd_wp(swp_pte);
2503 if (pte_swp_soft_dirty(pte))
2504 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2505 if (pte_swp_uffd_wp(pte))
2506 swp_pte = pte_swp_mkuffd_wp(swp_pte);
2508 set_pte_at(mm, addr, ptep, swp_pte);
2511 * This is like regular unmap: we remove the rmap and
2512 * drop page refcount. Page won't be freed, as we took
2513 * a reference just above.
2515 page_remove_rmap(page, false);
2518 if (pte_present(pte))
2523 migrate->dst[migrate->npages] = 0;
2524 migrate->src[migrate->npages++] = mpfn;
2526 arch_leave_lazy_mmu_mode();
2527 pte_unmap_unlock(ptep - 1, ptl);
2529 /* Only flush the TLB if we actually modified any entries */
2531 flush_tlb_range(walk->vma, start, end);
2536 static const struct mm_walk_ops migrate_vma_walk_ops = {
2537 .pmd_entry = migrate_vma_collect_pmd,
2538 .pte_hole = migrate_vma_collect_hole,
2542 * migrate_vma_collect() - collect pages over a range of virtual addresses
2543 * @migrate: migrate struct containing all migration information
2545 * This will walk the CPU page table. For each virtual address backed by a
2546 * valid page, it updates the src array and takes a reference on the page, in
2547 * order to pin the page until we lock it and unmap it.
2549 static void migrate_vma_collect(struct migrate_vma *migrate)
2551 struct mmu_notifier_range range;
2554 * Note that the pgmap_owner is passed to the mmu notifier callback so
2555 * that the registered device driver can skip invalidating device
2556 * private page mappings that won't be migrated.
2558 mmu_notifier_range_init_migrate(&range, 0, migrate->vma,
2559 migrate->vma->vm_mm, migrate->start, migrate->end,
2560 migrate->pgmap_owner);
2561 mmu_notifier_invalidate_range_start(&range);
2563 walk_page_range(migrate->vma->vm_mm, migrate->start, migrate->end,
2564 &migrate_vma_walk_ops, migrate);
2566 mmu_notifier_invalidate_range_end(&range);
2567 migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
2571 * migrate_vma_check_page() - check if page is pinned or not
2572 * @page: struct page to check
2574 * Pinned pages cannot be migrated. This is the same test as in
2575 * migrate_page_move_mapping(), except that here we allow migration of a
2578 static bool migrate_vma_check_page(struct page *page)
2581 * One extra ref because caller holds an extra reference, either from
2582 * isolate_lru_page() for a regular page, or migrate_vma_collect() for
2588 * FIXME support THP (transparent huge page), it is bit more complex to
2589 * check them than regular pages, because they can be mapped with a pmd
2590 * or with a pte (split pte mapping).
2592 if (PageCompound(page))
2595 /* Page from ZONE_DEVICE have one extra reference */
2596 if (is_zone_device_page(page)) {
2598 * Private page can never be pin as they have no valid pte and
2599 * GUP will fail for those. Yet if there is a pending migration
2600 * a thread might try to wait on the pte migration entry and
2601 * will bump the page reference count. Sadly there is no way to
2602 * differentiate a regular pin from migration wait. Hence to
2603 * avoid 2 racing thread trying to migrate back to CPU to enter
2604 * infinite loop (one stopping migration because the other is
2605 * waiting on pte migration entry). We always return true here.
2607 * FIXME proper solution is to rework migration_entry_wait() so
2608 * it does not need to take a reference on page.
2610 return is_device_private_page(page);
2613 /* For file back page */
2614 if (page_mapping(page))
2615 extra += 1 + page_has_private(page);
2617 if ((page_count(page) - extra) > page_mapcount(page))
2624 * migrate_vma_prepare() - lock pages and isolate them from the lru
2625 * @migrate: migrate struct containing all migration information
2627 * This locks pages that have been collected by migrate_vma_collect(). Once each
2628 * page is locked it is isolated from the lru (for non-device pages). Finally,
2629 * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be
2630 * migrated by concurrent kernel threads.
2632 static void migrate_vma_prepare(struct migrate_vma *migrate)
2634 const unsigned long npages = migrate->npages;
2635 const unsigned long start = migrate->start;
2636 unsigned long addr, i, restore = 0;
2637 bool allow_drain = true;
2641 for (i = 0; (i < npages) && migrate->cpages; i++) {
2642 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2648 if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) {
2650 * Because we are migrating several pages there can be
2651 * a deadlock between 2 concurrent migration where each
2652 * are waiting on each other page lock.
2654 * Make migrate_vma() a best effort thing and backoff
2655 * for any page we can not lock right away.
2657 if (!trylock_page(page)) {
2658 migrate->src[i] = 0;
2664 migrate->src[i] |= MIGRATE_PFN_LOCKED;
2667 /* ZONE_DEVICE pages are not on LRU */
2668 if (!is_zone_device_page(page)) {
2669 if (!PageLRU(page) && allow_drain) {
2670 /* Drain CPU's pagevec */
2671 lru_add_drain_all();
2672 allow_drain = false;
2675 if (isolate_lru_page(page)) {
2677 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2681 migrate->src[i] = 0;
2689 /* Drop the reference we took in collect */
2693 if (!migrate_vma_check_page(page)) {
2695 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2699 if (!is_zone_device_page(page)) {
2701 putback_lru_page(page);
2704 migrate->src[i] = 0;
2708 if (!is_zone_device_page(page))
2709 putback_lru_page(page);
2716 for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) {
2717 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2719 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2722 remove_migration_pte(page, migrate->vma, addr, page);
2724 migrate->src[i] = 0;
2732 * migrate_vma_unmap() - replace page mapping with special migration pte entry
2733 * @migrate: migrate struct containing all migration information
2735 * Replace page mapping (CPU page table pte) with a special migration pte entry
2736 * and check again if it has been pinned. Pinned pages are restored because we
2737 * cannot migrate them.
2739 * This is the last step before we call the device driver callback to allocate
2740 * destination memory and copy contents of original page over to new page.
2742 static void migrate_vma_unmap(struct migrate_vma *migrate)
2744 int flags = TTU_MIGRATION | TTU_IGNORE_MLOCK;
2745 const unsigned long npages = migrate->npages;
2746 const unsigned long start = migrate->start;
2747 unsigned long addr, i, restore = 0;
2749 for (i = 0; i < npages; i++) {
2750 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2752 if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2755 if (page_mapped(page)) {
2756 try_to_unmap(page, flags);
2757 if (page_mapped(page))
2761 if (migrate_vma_check_page(page))
2765 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2770 for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) {
2771 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2773 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2776 remove_migration_ptes(page, page, false);
2778 migrate->src[i] = 0;
2782 if (is_zone_device_page(page))
2785 putback_lru_page(page);
2790 * migrate_vma_setup() - prepare to migrate a range of memory
2791 * @args: contains the vma, start, and pfns arrays for the migration
2793 * Returns: negative errno on failures, 0 when 0 or more pages were migrated
2796 * Prepare to migrate a range of memory virtual address range by collecting all
2797 * the pages backing each virtual address in the range, saving them inside the
2798 * src array. Then lock those pages and unmap them. Once the pages are locked
2799 * and unmapped, check whether each page is pinned or not. Pages that aren't
2800 * pinned have the MIGRATE_PFN_MIGRATE flag set (by this function) in the
2801 * corresponding src array entry. Then restores any pages that are pinned, by
2802 * remapping and unlocking those pages.
2804 * The caller should then allocate destination memory and copy source memory to
2805 * it for all those entries (ie with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE
2806 * flag set). Once these are allocated and copied, the caller must update each
2807 * corresponding entry in the dst array with the pfn value of the destination
2808 * page and with the MIGRATE_PFN_VALID and MIGRATE_PFN_LOCKED flags set
2809 * (destination pages must have their struct pages locked, via lock_page()).
2811 * Note that the caller does not have to migrate all the pages that are marked
2812 * with MIGRATE_PFN_MIGRATE flag in src array unless this is a migration from
2813 * device memory to system memory. If the caller cannot migrate a device page
2814 * back to system memory, then it must return VM_FAULT_SIGBUS, which has severe
2815 * consequences for the userspace process, so it must be avoided if at all
2818 * For empty entries inside CPU page table (pte_none() or pmd_none() is true) we
2819 * do set MIGRATE_PFN_MIGRATE flag inside the corresponding source array thus
2820 * allowing the caller to allocate device memory for those unback virtual
2821 * address. For this the caller simply has to allocate device memory and
2822 * properly set the destination entry like for regular migration. Note that
2823 * this can still fails and thus inside the device driver must check if the
2824 * migration was successful for those entries after calling migrate_vma_pages()
2825 * just like for regular migration.
2827 * After that, the callers must call migrate_vma_pages() to go over each entry
2828 * in the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
2829 * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
2830 * then migrate_vma_pages() to migrate struct page information from the source
2831 * struct page to the destination struct page. If it fails to migrate the
2832 * struct page information, then it clears the MIGRATE_PFN_MIGRATE flag in the
2835 * At this point all successfully migrated pages have an entry in the src
2836 * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
2837 * array entry with MIGRATE_PFN_VALID flag set.
2839 * Once migrate_vma_pages() returns the caller may inspect which pages were
2840 * successfully migrated, and which were not. Successfully migrated pages will
2841 * have the MIGRATE_PFN_MIGRATE flag set for their src array entry.
2843 * It is safe to update device page table after migrate_vma_pages() because
2844 * both destination and source page are still locked, and the mmap_lock is held
2845 * in read mode (hence no one can unmap the range being migrated).
2847 * Once the caller is done cleaning up things and updating its page table (if it
2848 * chose to do so, this is not an obligation) it finally calls
2849 * migrate_vma_finalize() to update the CPU page table to point to new pages
2850 * for successfully migrated pages or otherwise restore the CPU page table to
2851 * point to the original source pages.
2853 int migrate_vma_setup(struct migrate_vma *args)
2855 long nr_pages = (args->end - args->start) >> PAGE_SHIFT;
2857 args->start &= PAGE_MASK;
2858 args->end &= PAGE_MASK;
2859 if (!args->vma || is_vm_hugetlb_page(args->vma) ||
2860 (args->vma->vm_flags & VM_SPECIAL) || vma_is_dax(args->vma))
2864 if (args->start < args->vma->vm_start ||
2865 args->start >= args->vma->vm_end)
2867 if (args->end <= args->vma->vm_start || args->end > args->vma->vm_end)
2869 if (!args->src || !args->dst)
2872 memset(args->src, 0, sizeof(*args->src) * nr_pages);
2876 migrate_vma_collect(args);
2879 migrate_vma_prepare(args);
2881 migrate_vma_unmap(args);
2884 * At this point pages are locked and unmapped, and thus they have
2885 * stable content and can safely be copied to destination memory that
2886 * is allocated by the drivers.
2891 EXPORT_SYMBOL(migrate_vma_setup);
2894 * This code closely matches the code in:
2895 * __handle_mm_fault()
2896 * handle_pte_fault()
2897 * do_anonymous_page()
2898 * to map in an anonymous zero page but the struct page will be a ZONE_DEVICE
2901 static void migrate_vma_insert_page(struct migrate_vma *migrate,
2906 struct vm_area_struct *vma = migrate->vma;
2907 struct mm_struct *mm = vma->vm_mm;
2917 /* Only allow populating anonymous memory */
2918 if (!vma_is_anonymous(vma))
2921 pgdp = pgd_offset(mm, addr);
2922 p4dp = p4d_alloc(mm, pgdp, addr);
2925 pudp = pud_alloc(mm, p4dp, addr);
2928 pmdp = pmd_alloc(mm, pudp, addr);
2932 if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp))
2936 * Use pte_alloc() instead of pte_alloc_map(). We can't run
2937 * pte_offset_map() on pmds where a huge pmd might be created
2938 * from a different thread.
2940 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
2941 * parallel threads are excluded by other means.
2943 * Here we only have mmap_read_lock(mm).
2945 if (pte_alloc(mm, pmdp))
2948 /* See the comment in pte_alloc_one_map() */
2949 if (unlikely(pmd_trans_unstable(pmdp)))
2952 if (unlikely(anon_vma_prepare(vma)))
2954 if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL))
2958 * The memory barrier inside __SetPageUptodate makes sure that
2959 * preceding stores to the page contents become visible before
2960 * the set_pte_at() write.
2962 __SetPageUptodate(page);
2964 if (is_zone_device_page(page)) {
2965 if (is_device_private_page(page)) {
2966 swp_entry_t swp_entry;
2968 swp_entry = make_device_private_entry(page, vma->vm_flags & VM_WRITE);
2969 entry = swp_entry_to_pte(swp_entry);
2972 entry = mk_pte(page, vma->vm_page_prot);
2973 if (vma->vm_flags & VM_WRITE)
2974 entry = pte_mkwrite(pte_mkdirty(entry));
2977 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2979 if (check_stable_address_space(mm))
2982 if (pte_present(*ptep)) {
2983 unsigned long pfn = pte_pfn(*ptep);
2985 if (!is_zero_pfn(pfn))
2988 } else if (!pte_none(*ptep))
2992 * Check for userfaultfd but do not deliver the fault. Instead,
2995 if (userfaultfd_missing(vma))
2998 inc_mm_counter(mm, MM_ANONPAGES);
2999 page_add_new_anon_rmap(page, vma, addr, false);
3000 if (!is_zone_device_page(page))
3001 lru_cache_add_inactive_or_unevictable(page, vma);
3005 flush_cache_page(vma, addr, pte_pfn(*ptep));
3006 ptep_clear_flush_notify(vma, addr, ptep);
3007 set_pte_at_notify(mm, addr, ptep, entry);
3008 update_mmu_cache(vma, addr, ptep);
3010 /* No need to invalidate - it was non-present before */
3011 set_pte_at(mm, addr, ptep, entry);
3012 update_mmu_cache(vma, addr, ptep);
3015 pte_unmap_unlock(ptep, ptl);
3016 *src = MIGRATE_PFN_MIGRATE;
3020 pte_unmap_unlock(ptep, ptl);
3022 *src &= ~MIGRATE_PFN_MIGRATE;
3026 * migrate_vma_pages() - migrate meta-data from src page to dst page
3027 * @migrate: migrate struct containing all migration information
3029 * This migrates struct page meta-data from source struct page to destination
3030 * struct page. This effectively finishes the migration from source page to the
3033 void migrate_vma_pages(struct migrate_vma *migrate)
3035 const unsigned long npages = migrate->npages;
3036 const unsigned long start = migrate->start;
3037 struct mmu_notifier_range range;
3038 unsigned long addr, i;
3039 bool notified = false;
3041 for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) {
3042 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
3043 struct page *page = migrate_pfn_to_page(migrate->src[i]);
3044 struct address_space *mapping;
3048 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
3053 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE))
3058 mmu_notifier_range_init_migrate(&range, 0,
3059 migrate->vma, migrate->vma->vm_mm,
3061 migrate->pgmap_owner);
3062 mmu_notifier_invalidate_range_start(&range);
3064 migrate_vma_insert_page(migrate, addr, newpage,
3069 mapping = page_mapping(page);
3071 if (is_zone_device_page(newpage)) {
3072 if (is_device_private_page(newpage)) {
3074 * For now only support private anonymous when
3075 * migrating to un-addressable device memory.
3078 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
3083 * Other types of ZONE_DEVICE page are not
3086 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
3091 r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY);
3092 if (r != MIGRATEPAGE_SUCCESS)
3093 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
3097 * No need to double call mmu_notifier->invalidate_range() callback as
3098 * the above ptep_clear_flush_notify() inside migrate_vma_insert_page()
3099 * did already call it.
3102 mmu_notifier_invalidate_range_only_end(&range);
3104 EXPORT_SYMBOL(migrate_vma_pages);
3107 * migrate_vma_finalize() - restore CPU page table entry
3108 * @migrate: migrate struct containing all migration information
3110 * This replaces the special migration pte entry with either a mapping to the
3111 * new page if migration was successful for that page, or to the original page
3114 * This also unlocks the pages and puts them back on the lru, or drops the extra
3115 * refcount, for device pages.
3117 void migrate_vma_finalize(struct migrate_vma *migrate)
3119 const unsigned long npages = migrate->npages;
3122 for (i = 0; i < npages; i++) {
3123 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
3124 struct page *page = migrate_pfn_to_page(migrate->src[i]);
3128 unlock_page(newpage);
3134 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) {
3136 unlock_page(newpage);
3142 remove_migration_ptes(page, newpage, false);
3145 if (is_zone_device_page(page))
3148 putback_lru_page(page);
3150 if (newpage != page) {
3151 unlock_page(newpage);
3152 if (is_zone_device_page(newpage))
3155 putback_lru_page(newpage);
3159 EXPORT_SYMBOL(migrate_vma_finalize);
3160 #endif /* CONFIG_DEVICE_PRIVATE */