2 * Memory Migration functionality - linux/mm/migrate.c
4 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6 * Page migration was first developed in the context of the memory hotplug
7 * project. The main authors of the migration code are:
9 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
10 * Hirokazu Takahashi <taka@valinux.co.jp>
11 * Dave Hansen <haveblue@us.ibm.com>
15 #include <linux/migrate.h>
16 #include <linux/export.h>
17 #include <linux/swap.h>
18 #include <linux/swapops.h>
19 #include <linux/pagemap.h>
20 #include <linux/buffer_head.h>
21 #include <linux/mm_inline.h>
22 #include <linux/nsproxy.h>
23 #include <linux/pagevec.h>
24 #include <linux/ksm.h>
25 #include <linux/rmap.h>
26 #include <linux/topology.h>
27 #include <linux/cpu.h>
28 #include <linux/cpuset.h>
29 #include <linux/writeback.h>
30 #include <linux/mempolicy.h>
31 #include <linux/vmalloc.h>
32 #include <linux/security.h>
33 #include <linux/backing-dev.h>
34 #include <linux/compaction.h>
35 #include <linux/syscalls.h>
36 #include <linux/hugetlb.h>
37 #include <linux/hugetlb_cgroup.h>
38 #include <linux/gfp.h>
39 #include <linux/balloon_compaction.h>
40 #include <linux/mmu_notifier.h>
41 #include <linux/page_idle.h>
42 #include <linux/page_owner.h>
44 #include <asm/tlbflush.h>
46 #define CREATE_TRACE_POINTS
47 #include <trace/events/migrate.h>
52 * migrate_prep() needs to be called before we start compiling a list of pages
53 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
54 * undesirable, use migrate_prep_local()
56 int migrate_prep(void)
59 * Clear the LRU lists so pages can be isolated.
60 * Note that pages may be moved off the LRU after we have
61 * drained them. Those pages will fail to migrate like other
62 * pages that may be busy.
69 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
70 int migrate_prep_local(void)
77 bool isolate_movable_page(struct page *page, isolate_mode_t mode)
79 struct address_space *mapping;
82 * Avoid burning cycles with pages that are yet under __free_pages(),
83 * or just got freed under us.
85 * In case we 'win' a race for a movable page being freed under us and
86 * raise its refcount preventing __free_pages() from doing its job
87 * the put_page() at the end of this block will take care of
88 * release this page, thus avoiding a nasty leakage.
90 if (unlikely(!get_page_unless_zero(page)))
94 * Check PageMovable before holding a PG_lock because page's owner
95 * assumes anybody doesn't touch PG_lock of newly allocated page
96 * so unconditionally grapping the lock ruins page's owner side.
98 if (unlikely(!__PageMovable(page)))
101 * As movable pages are not isolated from LRU lists, concurrent
102 * compaction threads can race against page migration functions
103 * as well as race against the releasing a page.
105 * In order to avoid having an already isolated movable page
106 * being (wrongly) re-isolated while it is under migration,
107 * or to avoid attempting to isolate pages being released,
108 * lets be sure we have the page lock
109 * before proceeding with the movable page isolation steps.
111 if (unlikely(!trylock_page(page)))
114 if (!PageMovable(page) || PageIsolated(page))
115 goto out_no_isolated;
117 mapping = page_mapping(page);
118 VM_BUG_ON_PAGE(!mapping, page);
120 if (!mapping->a_ops->isolate_page(page, mode))
121 goto out_no_isolated;
123 /* Driver shouldn't use PG_isolated bit of page->flags */
124 WARN_ON_ONCE(PageIsolated(page));
125 __SetPageIsolated(page);
138 /* It should be called on page which is PG_movable */
139 void putback_movable_page(struct page *page)
141 struct address_space *mapping;
143 VM_BUG_ON_PAGE(!PageLocked(page), page);
144 VM_BUG_ON_PAGE(!PageMovable(page), page);
145 VM_BUG_ON_PAGE(!PageIsolated(page), page);
147 mapping = page_mapping(page);
148 mapping->a_ops->putback_page(page);
149 __ClearPageIsolated(page);
153 * Put previously isolated pages back onto the appropriate lists
154 * from where they were once taken off for compaction/migration.
156 * This function shall be used whenever the isolated pageset has been
157 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
158 * and isolate_huge_page().
160 void putback_movable_pages(struct list_head *l)
165 list_for_each_entry_safe(page, page2, l, lru) {
166 if (unlikely(PageHuge(page))) {
167 putback_active_hugepage(page);
170 list_del(&page->lru);
172 * We isolated non-lru movable page so here we can use
173 * __PageMovable because LRU page's mapping cannot have
174 * PAGE_MAPPING_MOVABLE.
176 if (unlikely(__PageMovable(page))) {
177 VM_BUG_ON_PAGE(!PageIsolated(page), page);
179 if (PageMovable(page))
180 putback_movable_page(page);
182 __ClearPageIsolated(page);
186 putback_lru_page(page);
187 dec_node_page_state(page, NR_ISOLATED_ANON +
188 page_is_file_cache(page));
194 * Restore a potential migration pte to a working pte entry
196 static int remove_migration_pte(struct page *new, struct vm_area_struct *vma,
197 unsigned long addr, void *old)
199 struct mm_struct *mm = vma->vm_mm;
205 if (unlikely(PageHuge(new))) {
206 ptep = huge_pte_offset(mm, addr);
209 ptl = huge_pte_lockptr(hstate_vma(vma), mm, ptep);
211 pmd = mm_find_pmd(mm, addr);
215 ptep = pte_offset_map(pmd, addr);
218 * Peek to check is_swap_pte() before taking ptlock? No, we
219 * can race mremap's move_ptes(), which skips anon_vma lock.
222 ptl = pte_lockptr(mm, pmd);
227 if (!is_swap_pte(pte))
230 entry = pte_to_swp_entry(pte);
232 if (!is_migration_entry(entry) ||
233 migration_entry_to_page(entry) != old)
237 pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
238 if (pte_swp_soft_dirty(*ptep))
239 pte = pte_mksoft_dirty(pte);
241 /* Recheck VMA as permissions can change since migration started */
242 if (is_write_migration_entry(entry))
243 pte = maybe_mkwrite(pte, vma);
245 #ifdef CONFIG_HUGETLB_PAGE
247 pte = pte_mkhuge(pte);
248 pte = arch_make_huge_pte(pte, vma, new, 0);
251 flush_dcache_page(new);
252 set_pte_at(mm, addr, ptep, pte);
256 hugepage_add_anon_rmap(new, vma, addr);
258 page_dup_rmap(new, true);
259 } else if (PageAnon(new))
260 page_add_anon_rmap(new, vma, addr, false);
262 page_add_file_rmap(new, false);
264 if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
267 /* No need to invalidate - it was non-present before */
268 update_mmu_cache(vma, addr, ptep);
270 pte_unmap_unlock(ptep, ptl);
276 * Get rid of all migration entries and replace them by
277 * references to the indicated page.
279 void remove_migration_ptes(struct page *old, struct page *new, bool locked)
281 struct rmap_walk_control rwc = {
282 .rmap_one = remove_migration_pte,
287 rmap_walk_locked(new, &rwc);
289 rmap_walk(new, &rwc);
293 * Something used the pte of a page under migration. We need to
294 * get to the page and wait until migration is finished.
295 * When we return from this function the fault will be retried.
297 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
306 if (!is_swap_pte(pte))
309 entry = pte_to_swp_entry(pte);
310 if (!is_migration_entry(entry))
313 page = migration_entry_to_page(entry);
316 * Once radix-tree replacement of page migration started, page_count
317 * *must* be zero. And, we don't want to call wait_on_page_locked()
318 * against a page without get_page().
319 * So, we use get_page_unless_zero(), here. Even failed, page fault
322 if (!get_page_unless_zero(page))
324 pte_unmap_unlock(ptep, ptl);
325 wait_on_page_locked(page);
329 pte_unmap_unlock(ptep, ptl);
332 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
333 unsigned long address)
335 spinlock_t *ptl = pte_lockptr(mm, pmd);
336 pte_t *ptep = pte_offset_map(pmd, address);
337 __migration_entry_wait(mm, ptep, ptl);
340 void migration_entry_wait_huge(struct vm_area_struct *vma,
341 struct mm_struct *mm, pte_t *pte)
343 spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
344 __migration_entry_wait(mm, pte, ptl);
348 /* Returns true if all buffers are successfully locked */
349 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
350 enum migrate_mode mode)
352 struct buffer_head *bh = head;
354 /* Simple case, sync compaction */
355 if (mode != MIGRATE_ASYNC) {
359 bh = bh->b_this_page;
361 } while (bh != head);
366 /* async case, we cannot block on lock_buffer so use trylock_buffer */
369 if (!trylock_buffer(bh)) {
371 * We failed to lock the buffer and cannot stall in
372 * async migration. Release the taken locks
374 struct buffer_head *failed_bh = bh;
377 while (bh != failed_bh) {
380 bh = bh->b_this_page;
385 bh = bh->b_this_page;
386 } while (bh != head);
390 static inline bool buffer_migrate_lock_buffers(struct buffer_head *head,
391 enum migrate_mode mode)
395 #endif /* CONFIG_BLOCK */
398 * Replace the page in the mapping.
400 * The number of remaining references must be:
401 * 1 for anonymous pages without a mapping
402 * 2 for pages with a mapping
403 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
405 int migrate_page_move_mapping(struct address_space *mapping,
406 struct page *newpage, struct page *page,
407 struct buffer_head *head, enum migrate_mode mode,
410 struct zone *oldzone, *newzone;
412 int expected_count = 1 + extra_count;
416 /* Anonymous page without mapping */
417 if (page_count(page) != expected_count)
420 /* No turning back from here */
421 newpage->index = page->index;
422 newpage->mapping = page->mapping;
423 if (PageSwapBacked(page))
424 __SetPageSwapBacked(newpage);
426 return MIGRATEPAGE_SUCCESS;
429 oldzone = page_zone(page);
430 newzone = page_zone(newpage);
432 spin_lock_irq(&mapping->tree_lock);
434 pslot = radix_tree_lookup_slot(&mapping->page_tree,
437 expected_count += 1 + page_has_private(page);
438 if (page_count(page) != expected_count ||
439 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
440 spin_unlock_irq(&mapping->tree_lock);
444 if (!page_ref_freeze(page, expected_count)) {
445 spin_unlock_irq(&mapping->tree_lock);
450 * In the async migration case of moving a page with buffers, lock the
451 * buffers using trylock before the mapping is moved. If the mapping
452 * was moved, we later failed to lock the buffers and could not move
453 * the mapping back due to an elevated page count, we would have to
454 * block waiting on other references to be dropped.
456 if (mode == MIGRATE_ASYNC && head &&
457 !buffer_migrate_lock_buffers(head, mode)) {
458 page_ref_unfreeze(page, expected_count);
459 spin_unlock_irq(&mapping->tree_lock);
464 * Now we know that no one else is looking at the page:
465 * no turning back from here.
467 newpage->index = page->index;
468 newpage->mapping = page->mapping;
469 if (PageSwapBacked(page))
470 __SetPageSwapBacked(newpage);
472 get_page(newpage); /* add cache reference */
473 if (PageSwapCache(page)) {
474 SetPageSwapCache(newpage);
475 set_page_private(newpage, page_private(page));
478 /* Move dirty while page refs frozen and newpage not yet exposed */
479 dirty = PageDirty(page);
481 ClearPageDirty(page);
482 SetPageDirty(newpage);
485 radix_tree_replace_slot(&mapping->page_tree, pslot, newpage);
488 * Drop cache reference from old page by unfreezing
489 * to one less reference.
490 * We know this isn't the last reference.
492 page_ref_unfreeze(page, expected_count - 1);
494 spin_unlock(&mapping->tree_lock);
495 /* Leave irq disabled to prevent preemption while updating stats */
498 * If moved to a different zone then also account
499 * the page for that zone. Other VM counters will be
500 * taken care of when we establish references to the
501 * new page and drop references to the old page.
503 * Note that anonymous pages are accounted for
504 * via NR_FILE_PAGES and NR_ANON_MAPPED if they
505 * are mapped to swap space.
507 if (newzone != oldzone) {
508 __dec_node_state(oldzone->zone_pgdat, NR_FILE_PAGES);
509 __inc_node_state(newzone->zone_pgdat, NR_FILE_PAGES);
510 if (PageSwapBacked(page) && !PageSwapCache(page)) {
511 __dec_node_state(oldzone->zone_pgdat, NR_SHMEM);
512 __inc_node_state(newzone->zone_pgdat, NR_SHMEM);
514 if (dirty && mapping_cap_account_dirty(mapping)) {
515 __dec_node_state(oldzone->zone_pgdat, NR_FILE_DIRTY);
516 __dec_zone_state(oldzone, NR_ZONE_WRITE_PENDING);
517 __inc_node_state(newzone->zone_pgdat, NR_FILE_DIRTY);
518 __inc_zone_state(newzone, NR_ZONE_WRITE_PENDING);
523 return MIGRATEPAGE_SUCCESS;
525 EXPORT_SYMBOL(migrate_page_move_mapping);
528 * The expected number of remaining references is the same as that
529 * of migrate_page_move_mapping().
531 int migrate_huge_page_move_mapping(struct address_space *mapping,
532 struct page *newpage, struct page *page)
537 spin_lock_irq(&mapping->tree_lock);
539 pslot = radix_tree_lookup_slot(&mapping->page_tree,
542 expected_count = 2 + page_has_private(page);
543 if (page_count(page) != expected_count ||
544 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
545 spin_unlock_irq(&mapping->tree_lock);
549 if (!page_ref_freeze(page, expected_count)) {
550 spin_unlock_irq(&mapping->tree_lock);
554 newpage->index = page->index;
555 newpage->mapping = page->mapping;
559 radix_tree_replace_slot(&mapping->page_tree, pslot, newpage);
561 page_ref_unfreeze(page, expected_count - 1);
563 spin_unlock_irq(&mapping->tree_lock);
565 return MIGRATEPAGE_SUCCESS;
569 * Gigantic pages are so large that we do not guarantee that page++ pointer
570 * arithmetic will work across the entire page. We need something more
573 static void __copy_gigantic_page(struct page *dst, struct page *src,
577 struct page *dst_base = dst;
578 struct page *src_base = src;
580 for (i = 0; i < nr_pages; ) {
582 copy_highpage(dst, src);
585 dst = mem_map_next(dst, dst_base, i);
586 src = mem_map_next(src, src_base, i);
590 static void copy_huge_page(struct page *dst, struct page *src)
597 struct hstate *h = page_hstate(src);
598 nr_pages = pages_per_huge_page(h);
600 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
601 __copy_gigantic_page(dst, src, nr_pages);
606 BUG_ON(!PageTransHuge(src));
607 nr_pages = hpage_nr_pages(src);
610 for (i = 0; i < nr_pages; i++) {
612 copy_highpage(dst + i, src + i);
617 * Copy the page to its new location
619 void migrate_page_copy(struct page *newpage, struct page *page)
623 if (PageHuge(page) || PageTransHuge(page))
624 copy_huge_page(newpage, page);
626 copy_highpage(newpage, page);
629 SetPageError(newpage);
630 if (PageReferenced(page))
631 SetPageReferenced(newpage);
632 if (PageUptodate(page))
633 SetPageUptodate(newpage);
634 if (TestClearPageActive(page)) {
635 VM_BUG_ON_PAGE(PageUnevictable(page), page);
636 SetPageActive(newpage);
637 } else if (TestClearPageUnevictable(page))
638 SetPageUnevictable(newpage);
639 if (PageChecked(page))
640 SetPageChecked(newpage);
641 if (PageMappedToDisk(page))
642 SetPageMappedToDisk(newpage);
644 /* Move dirty on pages not done by migrate_page_move_mapping() */
646 SetPageDirty(newpage);
648 if (page_is_young(page))
649 set_page_young(newpage);
650 if (page_is_idle(page))
651 set_page_idle(newpage);
654 * Copy NUMA information to the new page, to prevent over-eager
655 * future migrations of this same page.
657 cpupid = page_cpupid_xchg_last(page, -1);
658 page_cpupid_xchg_last(newpage, cpupid);
660 ksm_migrate_page(newpage, page);
662 * Please do not reorder this without considering how mm/ksm.c's
663 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
665 if (PageSwapCache(page))
666 ClearPageSwapCache(page);
667 ClearPagePrivate(page);
668 set_page_private(page, 0);
671 * If any waiters have accumulated on the new page then
674 if (PageWriteback(newpage))
675 end_page_writeback(newpage);
677 copy_page_owner(page, newpage);
679 mem_cgroup_migrate(page, newpage);
681 EXPORT_SYMBOL(migrate_page_copy);
683 /************************************************************
684 * Migration functions
685 ***********************************************************/
688 * Common logic to directly migrate a single LRU page suitable for
689 * pages that do not use PagePrivate/PagePrivate2.
691 * Pages are locked upon entry and exit.
693 int migrate_page(struct address_space *mapping,
694 struct page *newpage, struct page *page,
695 enum migrate_mode mode)
699 BUG_ON(PageWriteback(page)); /* Writeback must be complete */
701 rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0);
703 if (rc != MIGRATEPAGE_SUCCESS)
706 migrate_page_copy(newpage, page);
707 return MIGRATEPAGE_SUCCESS;
709 EXPORT_SYMBOL(migrate_page);
713 * Migration function for pages with buffers. This function can only be used
714 * if the underlying filesystem guarantees that no other references to "page"
717 int buffer_migrate_page(struct address_space *mapping,
718 struct page *newpage, struct page *page, enum migrate_mode mode)
720 struct buffer_head *bh, *head;
723 if (!page_has_buffers(page))
724 return migrate_page(mapping, newpage, page, mode);
726 head = page_buffers(page);
728 rc = migrate_page_move_mapping(mapping, newpage, page, head, mode, 0);
730 if (rc != MIGRATEPAGE_SUCCESS)
734 * In the async case, migrate_page_move_mapping locked the buffers
735 * with an IRQ-safe spinlock held. In the sync case, the buffers
736 * need to be locked now
738 if (mode != MIGRATE_ASYNC)
739 BUG_ON(!buffer_migrate_lock_buffers(head, mode));
741 ClearPagePrivate(page);
742 set_page_private(newpage, page_private(page));
743 set_page_private(page, 0);
749 set_bh_page(bh, newpage, bh_offset(bh));
750 bh = bh->b_this_page;
752 } while (bh != head);
754 SetPagePrivate(newpage);
756 migrate_page_copy(newpage, page);
762 bh = bh->b_this_page;
764 } while (bh != head);
766 return MIGRATEPAGE_SUCCESS;
768 EXPORT_SYMBOL(buffer_migrate_page);
772 * Writeback a page to clean the dirty state
774 static int writeout(struct address_space *mapping, struct page *page)
776 struct writeback_control wbc = {
777 .sync_mode = WB_SYNC_NONE,
780 .range_end = LLONG_MAX,
785 if (!mapping->a_ops->writepage)
786 /* No write method for the address space */
789 if (!clear_page_dirty_for_io(page))
790 /* Someone else already triggered a write */
794 * A dirty page may imply that the underlying filesystem has
795 * the page on some queue. So the page must be clean for
796 * migration. Writeout may mean we loose the lock and the
797 * page state is no longer what we checked for earlier.
798 * At this point we know that the migration attempt cannot
801 remove_migration_ptes(page, page, false);
803 rc = mapping->a_ops->writepage(page, &wbc);
805 if (rc != AOP_WRITEPAGE_ACTIVATE)
806 /* unlocked. Relock */
809 return (rc < 0) ? -EIO : -EAGAIN;
813 * Default handling if a filesystem does not provide a migration function.
815 static int fallback_migrate_page(struct address_space *mapping,
816 struct page *newpage, struct page *page, enum migrate_mode mode)
818 if (PageDirty(page)) {
819 /* Only writeback pages in full synchronous migration */
820 if (mode != MIGRATE_SYNC)
822 return writeout(mapping, page);
826 * Buffers may be managed in a filesystem specific way.
827 * We must have no buffers or drop them.
829 if (page_has_private(page) &&
830 !try_to_release_page(page, GFP_KERNEL))
833 return migrate_page(mapping, newpage, page, mode);
837 * Move a page to a newly allocated page
838 * The page is locked and all ptes have been successfully removed.
840 * The new page will have replaced the old page if this function
845 * MIGRATEPAGE_SUCCESS - success
847 static int move_to_new_page(struct page *newpage, struct page *page,
848 enum migrate_mode mode)
850 struct address_space *mapping;
852 bool is_lru = !__PageMovable(page);
854 VM_BUG_ON_PAGE(!PageLocked(page), page);
855 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
857 mapping = page_mapping(page);
859 if (likely(is_lru)) {
861 rc = migrate_page(mapping, newpage, page, mode);
862 else if (mapping->a_ops->migratepage)
864 * Most pages have a mapping and most filesystems
865 * provide a migratepage callback. Anonymous pages
866 * are part of swap space which also has its own
867 * migratepage callback. This is the most common path
868 * for page migration.
870 rc = mapping->a_ops->migratepage(mapping, newpage,
873 rc = fallback_migrate_page(mapping, newpage,
877 * In case of non-lru page, it could be released after
878 * isolation step. In that case, we shouldn't try migration.
880 VM_BUG_ON_PAGE(!PageIsolated(page), page);
881 if (!PageMovable(page)) {
882 rc = MIGRATEPAGE_SUCCESS;
883 __ClearPageIsolated(page);
887 rc = mapping->a_ops->migratepage(mapping, newpage,
889 WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
890 !PageIsolated(page));
894 * When successful, old pagecache page->mapping must be cleared before
895 * page is freed; but stats require that PageAnon be left as PageAnon.
897 if (rc == MIGRATEPAGE_SUCCESS) {
898 if (__PageMovable(page)) {
899 VM_BUG_ON_PAGE(!PageIsolated(page), page);
902 * We clear PG_movable under page_lock so any compactor
903 * cannot try to migrate this page.
905 __ClearPageIsolated(page);
909 * Anonymous and movable page->mapping will be cleard by
910 * free_pages_prepare so don't reset it here for keeping
911 * the type to work PageAnon, for example.
913 if (!PageMappingFlags(page))
914 page->mapping = NULL;
920 static int __unmap_and_move(struct page *page, struct page *newpage,
921 int force, enum migrate_mode mode)
924 int page_was_mapped = 0;
925 struct anon_vma *anon_vma = NULL;
926 bool is_lru = !__PageMovable(page);
928 if (!trylock_page(page)) {
929 if (!force || mode == MIGRATE_ASYNC)
933 * It's not safe for direct compaction to call lock_page.
934 * For example, during page readahead pages are added locked
935 * to the LRU. Later, when the IO completes the pages are
936 * marked uptodate and unlocked. However, the queueing
937 * could be merging multiple pages for one bio (e.g.
938 * mpage_readpages). If an allocation happens for the
939 * second or third page, the process can end up locking
940 * the same page twice and deadlocking. Rather than
941 * trying to be clever about what pages can be locked,
942 * avoid the use of lock_page for direct compaction
945 if (current->flags & PF_MEMALLOC)
951 if (PageWriteback(page)) {
953 * Only in the case of a full synchronous migration is it
954 * necessary to wait for PageWriteback. In the async case,
955 * the retry loop is too short and in the sync-light case,
956 * the overhead of stalling is too much
958 if (mode != MIGRATE_SYNC) {
964 wait_on_page_writeback(page);
968 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
969 * we cannot notice that anon_vma is freed while we migrates a page.
970 * This get_anon_vma() delays freeing anon_vma pointer until the end
971 * of migration. File cache pages are no problem because of page_lock()
972 * File Caches may use write_page() or lock_page() in migration, then,
973 * just care Anon page here.
975 * Only page_get_anon_vma() understands the subtleties of
976 * getting a hold on an anon_vma from outside one of its mms.
977 * But if we cannot get anon_vma, then we won't need it anyway,
978 * because that implies that the anon page is no longer mapped
979 * (and cannot be remapped so long as we hold the page lock).
981 if (PageAnon(page) && !PageKsm(page))
982 anon_vma = page_get_anon_vma(page);
985 * Block others from accessing the new page when we get around to
986 * establishing additional references. We are usually the only one
987 * holding a reference to newpage at this point. We used to have a BUG
988 * here if trylock_page(newpage) fails, but would like to allow for
989 * cases where there might be a race with the previous use of newpage.
990 * This is much like races on refcount of oldpage: just don't BUG().
992 if (unlikely(!trylock_page(newpage)))
995 if (unlikely(!is_lru)) {
996 rc = move_to_new_page(newpage, page, mode);
997 goto out_unlock_both;
1001 * Corner case handling:
1002 * 1. When a new swap-cache page is read into, it is added to the LRU
1003 * and treated as swapcache but it has no rmap yet.
1004 * Calling try_to_unmap() against a page->mapping==NULL page will
1005 * trigger a BUG. So handle it here.
1006 * 2. An orphaned page (see truncate_complete_page) might have
1007 * fs-private metadata. The page can be picked up due to memory
1008 * offlining. Everywhere else except page reclaim, the page is
1009 * invisible to the vm, so the page can not be migrated. So try to
1010 * free the metadata, so the page can be freed.
1012 if (!page->mapping) {
1013 VM_BUG_ON_PAGE(PageAnon(page), page);
1014 if (page_has_private(page)) {
1015 try_to_free_buffers(page);
1016 goto out_unlock_both;
1018 } else if (page_mapped(page)) {
1019 /* Establish migration ptes */
1020 VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1023 TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1024 page_was_mapped = 1;
1027 if (!page_mapped(page))
1028 rc = move_to_new_page(newpage, page, mode);
1030 if (page_was_mapped)
1031 remove_migration_ptes(page,
1032 rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
1035 unlock_page(newpage);
1037 /* Drop an anon_vma reference if we took one */
1039 put_anon_vma(anon_vma);
1043 * If migration is successful, decrease refcount of the newpage
1044 * which will not free the page because new page owner increased
1045 * refcounter. As well, if it is LRU page, add the page to LRU
1048 if (rc == MIGRATEPAGE_SUCCESS) {
1049 if (unlikely(__PageMovable(newpage)))
1052 putback_lru_page(newpage);
1059 * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move(). Work
1062 #if (GCC_VERSION >= 40700 && GCC_VERSION < 40900) && defined(CONFIG_ARM)
1063 #define ICE_noinline noinline
1065 #define ICE_noinline
1069 * Obtain the lock on page, remove all ptes and migrate the page
1070 * to the newly allocated page in newpage.
1072 static ICE_noinline int unmap_and_move(new_page_t get_new_page,
1073 free_page_t put_new_page,
1074 unsigned long private, struct page *page,
1075 int force, enum migrate_mode mode,
1076 enum migrate_reason reason)
1078 int rc = MIGRATEPAGE_SUCCESS;
1080 struct page *newpage;
1082 newpage = get_new_page(page, private, &result);
1086 if (page_count(page) == 1) {
1087 /* page was freed from under us. So we are done. */
1088 ClearPageActive(page);
1089 ClearPageUnevictable(page);
1090 if (unlikely(__PageMovable(page))) {
1092 if (!PageMovable(page))
1093 __ClearPageIsolated(page);
1097 put_new_page(newpage, private);
1103 if (unlikely(PageTransHuge(page))) {
1105 rc = split_huge_page(page);
1111 rc = __unmap_and_move(page, newpage, force, mode);
1112 if (rc == MIGRATEPAGE_SUCCESS)
1113 set_page_owner_migrate_reason(newpage, reason);
1116 if (rc != -EAGAIN) {
1118 * A page that has been migrated has all references
1119 * removed and will be freed. A page that has not been
1120 * migrated will have kepts its references and be
1123 list_del(&page->lru);
1126 * Compaction can migrate also non-LRU pages which are
1127 * not accounted to NR_ISOLATED_*. They can be recognized
1130 if (likely(!__PageMovable(page)))
1131 dec_node_page_state(page, NR_ISOLATED_ANON +
1132 page_is_file_cache(page));
1136 * If migration is successful, releases reference grabbed during
1137 * isolation. Otherwise, restore the page to right list unless
1140 if (rc == MIGRATEPAGE_SUCCESS) {
1142 if (reason == MR_MEMORY_FAILURE) {
1144 * Set PG_HWPoison on just freed page
1145 * intentionally. Although it's rather weird,
1146 * it's how HWPoison flag works at the moment.
1148 if (!test_set_page_hwpoison(page))
1149 num_poisoned_pages_inc();
1152 if (rc != -EAGAIN) {
1153 if (likely(!__PageMovable(page))) {
1154 putback_lru_page(page);
1159 if (PageMovable(page))
1160 putback_movable_page(page);
1162 __ClearPageIsolated(page);
1168 put_new_page(newpage, private);
1177 *result = page_to_nid(newpage);
1183 * Counterpart of unmap_and_move_page() for hugepage migration.
1185 * This function doesn't wait the completion of hugepage I/O
1186 * because there is no race between I/O and migration for hugepage.
1187 * Note that currently hugepage I/O occurs only in direct I/O
1188 * where no lock is held and PG_writeback is irrelevant,
1189 * and writeback status of all subpages are counted in the reference
1190 * count of the head page (i.e. if all subpages of a 2MB hugepage are
1191 * under direct I/O, the reference of the head page is 512 and a bit more.)
1192 * This means that when we try to migrate hugepage whose subpages are
1193 * doing direct I/O, some references remain after try_to_unmap() and
1194 * hugepage migration fails without data corruption.
1196 * There is also no race when direct I/O is issued on the page under migration,
1197 * because then pte is replaced with migration swap entry and direct I/O code
1198 * will wait in the page fault for migration to complete.
1200 static int unmap_and_move_huge_page(new_page_t get_new_page,
1201 free_page_t put_new_page, unsigned long private,
1202 struct page *hpage, int force,
1203 enum migrate_mode mode, int reason)
1207 int page_was_mapped = 0;
1208 struct page *new_hpage;
1209 struct anon_vma *anon_vma = NULL;
1212 * Movability of hugepages depends on architectures and hugepage size.
1213 * This check is necessary because some callers of hugepage migration
1214 * like soft offline and memory hotremove don't walk through page
1215 * tables or check whether the hugepage is pmd-based or not before
1216 * kicking migration.
1218 if (!hugepage_migration_supported(page_hstate(hpage))) {
1219 putback_active_hugepage(hpage);
1223 new_hpage = get_new_page(hpage, private, &result);
1227 if (!trylock_page(hpage)) {
1228 if (!force || mode != MIGRATE_SYNC)
1233 if (PageAnon(hpage))
1234 anon_vma = page_get_anon_vma(hpage);
1236 if (unlikely(!trylock_page(new_hpage)))
1239 if (page_mapped(hpage)) {
1241 TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1242 page_was_mapped = 1;
1245 if (!page_mapped(hpage))
1246 rc = move_to_new_page(new_hpage, hpage, mode);
1248 if (page_was_mapped)
1249 remove_migration_ptes(hpage,
1250 rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false);
1252 unlock_page(new_hpage);
1256 put_anon_vma(anon_vma);
1258 if (rc == MIGRATEPAGE_SUCCESS) {
1259 hugetlb_cgroup_migrate(hpage, new_hpage);
1260 put_new_page = NULL;
1261 set_page_owner_migrate_reason(new_hpage, reason);
1267 putback_active_hugepage(hpage);
1270 * If migration was not successful and there's a freeing callback, use
1271 * it. Otherwise, put_page() will drop the reference grabbed during
1275 put_new_page(new_hpage, private);
1277 putback_active_hugepage(new_hpage);
1283 *result = page_to_nid(new_hpage);
1289 * migrate_pages - migrate the pages specified in a list, to the free pages
1290 * supplied as the target for the page migration
1292 * @from: The list of pages to be migrated.
1293 * @get_new_page: The function used to allocate free pages to be used
1294 * as the target of the page migration.
1295 * @put_new_page: The function used to free target pages if migration
1296 * fails, or NULL if no special handling is necessary.
1297 * @private: Private data to be passed on to get_new_page()
1298 * @mode: The migration mode that specifies the constraints for
1299 * page migration, if any.
1300 * @reason: The reason for page migration.
1302 * The function returns after 10 attempts or if no pages are movable any more
1303 * because the list has become empty or no retryable pages exist any more.
1304 * The caller should call putback_movable_pages() to return pages to the LRU
1305 * or free list only if ret != 0.
1307 * Returns the number of pages that were not migrated, or an error code.
1309 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1310 free_page_t put_new_page, unsigned long private,
1311 enum migrate_mode mode, int reason)
1315 int nr_succeeded = 0;
1319 int swapwrite = current->flags & PF_SWAPWRITE;
1323 current->flags |= PF_SWAPWRITE;
1325 for(pass = 0; pass < 10 && retry; pass++) {
1328 list_for_each_entry_safe(page, page2, from, lru) {
1332 rc = unmap_and_move_huge_page(get_new_page,
1333 put_new_page, private, page,
1334 pass > 2, mode, reason);
1336 rc = unmap_and_move(get_new_page, put_new_page,
1337 private, page, pass > 2, mode,
1347 case MIGRATEPAGE_SUCCESS:
1352 * Permanent failure (-EBUSY, -ENOSYS, etc.):
1353 * unlike -EAGAIN case, the failed page is
1354 * removed from migration page list and not
1355 * retried in the next outer loop.
1366 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1368 count_vm_events(PGMIGRATE_FAIL, nr_failed);
1369 trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);
1372 current->flags &= ~PF_SWAPWRITE;
1379 * Move a list of individual pages
1381 struct page_to_node {
1388 static struct page *new_page_node(struct page *p, unsigned long private,
1391 struct page_to_node *pm = (struct page_to_node *)private;
1393 while (pm->node != MAX_NUMNODES && pm->page != p)
1396 if (pm->node == MAX_NUMNODES)
1399 *result = &pm->status;
1402 return alloc_huge_page_node(page_hstate(compound_head(p)),
1405 return __alloc_pages_node(pm->node,
1406 GFP_HIGHUSER_MOVABLE | __GFP_THISNODE, 0);
1410 * Move a set of pages as indicated in the pm array. The addr
1411 * field must be set to the virtual address of the page to be moved
1412 * and the node number must contain a valid target node.
1413 * The pm array ends with node = MAX_NUMNODES.
1415 static int do_move_page_to_node_array(struct mm_struct *mm,
1416 struct page_to_node *pm,
1420 struct page_to_node *pp;
1421 LIST_HEAD(pagelist);
1423 down_read(&mm->mmap_sem);
1426 * Build a list of pages to migrate
1428 for (pp = pm; pp->node != MAX_NUMNODES; pp++) {
1429 struct vm_area_struct *vma;
1433 vma = find_vma(mm, pp->addr);
1434 if (!vma || pp->addr < vma->vm_start || !vma_migratable(vma))
1437 /* FOLL_DUMP to ignore special (like zero) pages */
1438 page = follow_page(vma, pp->addr,
1439 FOLL_GET | FOLL_SPLIT | FOLL_DUMP);
1441 err = PTR_ERR(page);
1450 err = page_to_nid(page);
1452 if (err == pp->node)
1454 * Node already in the right place
1459 if (page_mapcount(page) > 1 &&
1463 if (PageHuge(page)) {
1465 isolate_huge_page(page, &pagelist);
1469 err = isolate_lru_page(page);
1471 list_add_tail(&page->lru, &pagelist);
1472 inc_node_page_state(page, NR_ISOLATED_ANON +
1473 page_is_file_cache(page));
1477 * Either remove the duplicate refcount from
1478 * isolate_lru_page() or drop the page ref if it was
1487 if (!list_empty(&pagelist)) {
1488 err = migrate_pages(&pagelist, new_page_node, NULL,
1489 (unsigned long)pm, MIGRATE_SYNC, MR_SYSCALL);
1491 putback_movable_pages(&pagelist);
1494 up_read(&mm->mmap_sem);
1499 * Migrate an array of page address onto an array of nodes and fill
1500 * the corresponding array of status.
1502 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1503 unsigned long nr_pages,
1504 const void __user * __user *pages,
1505 const int __user *nodes,
1506 int __user *status, int flags)
1508 struct page_to_node *pm;
1509 unsigned long chunk_nr_pages;
1510 unsigned long chunk_start;
1514 pm = (struct page_to_node *)__get_free_page(GFP_KERNEL);
1521 * Store a chunk of page_to_node array in a page,
1522 * but keep the last one as a marker
1524 chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1;
1526 for (chunk_start = 0;
1527 chunk_start < nr_pages;
1528 chunk_start += chunk_nr_pages) {
1531 if (chunk_start + chunk_nr_pages > nr_pages)
1532 chunk_nr_pages = nr_pages - chunk_start;
1534 /* fill the chunk pm with addrs and nodes from user-space */
1535 for (j = 0; j < chunk_nr_pages; j++) {
1536 const void __user *p;
1540 if (get_user(p, pages + j + chunk_start))
1542 pm[j].addr = (unsigned long) p;
1544 if (get_user(node, nodes + j + chunk_start))
1548 if (node < 0 || node >= MAX_NUMNODES)
1551 if (!node_state(node, N_MEMORY))
1555 if (!node_isset(node, task_nodes))
1561 /* End marker for this chunk */
1562 pm[chunk_nr_pages].node = MAX_NUMNODES;
1564 /* Migrate this chunk */
1565 err = do_move_page_to_node_array(mm, pm,
1566 flags & MPOL_MF_MOVE_ALL);
1570 /* Return status information */
1571 for (j = 0; j < chunk_nr_pages; j++)
1572 if (put_user(pm[j].status, status + j + chunk_start)) {
1580 free_page((unsigned long)pm);
1586 * Determine the nodes of an array of pages and store it in an array of status.
1588 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1589 const void __user **pages, int *status)
1593 down_read(&mm->mmap_sem);
1595 for (i = 0; i < nr_pages; i++) {
1596 unsigned long addr = (unsigned long)(*pages);
1597 struct vm_area_struct *vma;
1601 vma = find_vma(mm, addr);
1602 if (!vma || addr < vma->vm_start)
1605 /* FOLL_DUMP to ignore special (like zero) pages */
1606 page = follow_page(vma, addr, FOLL_DUMP);
1608 err = PTR_ERR(page);
1612 err = page ? page_to_nid(page) : -ENOENT;
1620 up_read(&mm->mmap_sem);
1624 * Determine the nodes of a user array of pages and store it in
1625 * a user array of status.
1627 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1628 const void __user * __user *pages,
1631 #define DO_PAGES_STAT_CHUNK_NR 16
1632 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1633 int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1636 unsigned long chunk_nr;
1638 chunk_nr = nr_pages;
1639 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1640 chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1642 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1645 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1647 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1652 nr_pages -= chunk_nr;
1654 return nr_pages ? -EFAULT : 0;
1658 * Move a list of pages in the address space of the currently executing
1661 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1662 const void __user * __user *, pages,
1663 const int __user *, nodes,
1664 int __user *, status, int, flags)
1666 const struct cred *cred = current_cred(), *tcred;
1667 struct task_struct *task;
1668 struct mm_struct *mm;
1670 nodemask_t task_nodes;
1673 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1676 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1679 /* Find the mm_struct */
1681 task = pid ? find_task_by_vpid(pid) : current;
1686 get_task_struct(task);
1689 * Check if this process has the right to modify the specified
1690 * process. The right exists if the process has administrative
1691 * capabilities, superuser privileges or the same
1692 * userid as the target process.
1694 tcred = __task_cred(task);
1695 if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) &&
1696 !uid_eq(cred->uid, tcred->suid) && !uid_eq(cred->uid, tcred->uid) &&
1697 !capable(CAP_SYS_NICE)) {
1704 err = security_task_movememory(task);
1708 task_nodes = cpuset_mems_allowed(task);
1709 mm = get_task_mm(task);
1710 put_task_struct(task);
1716 err = do_pages_move(mm, task_nodes, nr_pages, pages,
1717 nodes, status, flags);
1719 err = do_pages_stat(mm, nr_pages, pages, status);
1725 put_task_struct(task);
1729 #ifdef CONFIG_NUMA_BALANCING
1731 * Returns true if this is a safe migration target node for misplaced NUMA
1732 * pages. Currently it only checks the watermarks which crude
1734 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1735 unsigned long nr_migrate_pages)
1739 if (!pgdat_reclaimable(pgdat))
1742 for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1743 struct zone *zone = pgdat->node_zones + z;
1745 if (!populated_zone(zone))
1748 /* Avoid waking kswapd by allocating pages_to_migrate pages. */
1749 if (!zone_watermark_ok(zone, 0,
1750 high_wmark_pages(zone) +
1759 static struct page *alloc_misplaced_dst_page(struct page *page,
1763 int nid = (int) data;
1764 struct page *newpage;
1766 newpage = __alloc_pages_node(nid,
1767 (GFP_HIGHUSER_MOVABLE |
1768 __GFP_THISNODE | __GFP_NOMEMALLOC |
1769 __GFP_NORETRY | __GFP_NOWARN) &
1776 * page migration rate limiting control.
1777 * Do not migrate more than @pages_to_migrate in a @migrate_interval_millisecs
1778 * window of time. Default here says do not migrate more than 1280M per second.
1780 static unsigned int migrate_interval_millisecs __read_mostly = 100;
1781 static unsigned int ratelimit_pages __read_mostly = 128 << (20 - PAGE_SHIFT);
1783 /* Returns true if the node is migrate rate-limited after the update */
1784 static bool numamigrate_update_ratelimit(pg_data_t *pgdat,
1785 unsigned long nr_pages)
1788 * Rate-limit the amount of data that is being migrated to a node.
1789 * Optimal placement is no good if the memory bus is saturated and
1790 * all the time is being spent migrating!
1792 if (time_after(jiffies, pgdat->numabalancing_migrate_next_window)) {
1793 spin_lock(&pgdat->numabalancing_migrate_lock);
1794 pgdat->numabalancing_migrate_nr_pages = 0;
1795 pgdat->numabalancing_migrate_next_window = jiffies +
1796 msecs_to_jiffies(migrate_interval_millisecs);
1797 spin_unlock(&pgdat->numabalancing_migrate_lock);
1799 if (pgdat->numabalancing_migrate_nr_pages > ratelimit_pages) {
1800 trace_mm_numa_migrate_ratelimit(current, pgdat->node_id,
1806 * This is an unlocked non-atomic update so errors are possible.
1807 * The consequences are failing to migrate when we potentiall should
1808 * have which is not severe enough to warrant locking. If it is ever
1809 * a problem, it can be converted to a per-cpu counter.
1811 pgdat->numabalancing_migrate_nr_pages += nr_pages;
1815 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
1819 VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
1821 /* Avoid migrating to a node that is nearly full */
1822 if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page)))
1825 if (isolate_lru_page(page))
1829 * migrate_misplaced_transhuge_page() skips page migration's usual
1830 * check on page_count(), so we must do it here, now that the page
1831 * has been isolated: a GUP pin, or any other pin, prevents migration.
1832 * The expected page count is 3: 1 for page's mapcount and 1 for the
1833 * caller's pin and 1 for the reference taken by isolate_lru_page().
1835 if (PageTransHuge(page) && page_count(page) != 3) {
1836 putback_lru_page(page);
1840 page_lru = page_is_file_cache(page);
1841 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
1842 hpage_nr_pages(page));
1845 * Isolating the page has taken another reference, so the
1846 * caller's reference can be safely dropped without the page
1847 * disappearing underneath us during migration.
1853 bool pmd_trans_migrating(pmd_t pmd)
1855 struct page *page = pmd_page(pmd);
1856 return PageLocked(page);
1860 * Attempt to migrate a misplaced page to the specified destination
1861 * node. Caller is expected to have an elevated reference count on
1862 * the page that will be dropped by this function before returning.
1864 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
1867 pg_data_t *pgdat = NODE_DATA(node);
1870 LIST_HEAD(migratepages);
1873 * Don't migrate file pages that are mapped in multiple processes
1874 * with execute permissions as they are probably shared libraries.
1876 if (page_mapcount(page) != 1 && page_is_file_cache(page) &&
1877 (vma->vm_flags & VM_EXEC))
1881 * Rate-limit the amount of data that is being migrated to a node.
1882 * Optimal placement is no good if the memory bus is saturated and
1883 * all the time is being spent migrating!
1885 if (numamigrate_update_ratelimit(pgdat, 1))
1888 isolated = numamigrate_isolate_page(pgdat, page);
1892 list_add(&page->lru, &migratepages);
1893 nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
1894 NULL, node, MIGRATE_ASYNC,
1897 if (!list_empty(&migratepages)) {
1898 list_del(&page->lru);
1899 dec_node_page_state(page, NR_ISOLATED_ANON +
1900 page_is_file_cache(page));
1901 putback_lru_page(page);
1905 count_vm_numa_event(NUMA_PAGE_MIGRATE);
1906 BUG_ON(!list_empty(&migratepages));
1913 #endif /* CONFIG_NUMA_BALANCING */
1915 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1917 * Migrates a THP to a given target node. page must be locked and is unlocked
1920 int migrate_misplaced_transhuge_page(struct mm_struct *mm,
1921 struct vm_area_struct *vma,
1922 pmd_t *pmd, pmd_t entry,
1923 unsigned long address,
1924 struct page *page, int node)
1927 pg_data_t *pgdat = NODE_DATA(node);
1929 struct page *new_page = NULL;
1930 int page_lru = page_is_file_cache(page);
1931 unsigned long mmun_start = address & HPAGE_PMD_MASK;
1932 unsigned long mmun_end = mmun_start + HPAGE_PMD_SIZE;
1936 * Rate-limit the amount of data that is being migrated to a node.
1937 * Optimal placement is no good if the memory bus is saturated and
1938 * all the time is being spent migrating!
1940 if (numamigrate_update_ratelimit(pgdat, HPAGE_PMD_NR))
1943 new_page = alloc_pages_node(node,
1944 (GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
1948 prep_transhuge_page(new_page);
1950 isolated = numamigrate_isolate_page(pgdat, page);
1956 * We are not sure a pending tlb flush here is for a huge page
1957 * mapping or not. Hence use the tlb range variant
1959 if (mm_tlb_flush_pending(mm))
1960 flush_tlb_range(vma, mmun_start, mmun_end);
1962 /* Prepare a page as a migration target */
1963 __SetPageLocked(new_page);
1964 __SetPageSwapBacked(new_page);
1966 /* anon mapping, we can simply copy page->mapping to the new page: */
1967 new_page->mapping = page->mapping;
1968 new_page->index = page->index;
1969 migrate_page_copy(new_page, page);
1970 WARN_ON(PageLRU(new_page));
1972 /* Recheck the target PMD */
1973 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1974 ptl = pmd_lock(mm, pmd);
1975 if (unlikely(!pmd_same(*pmd, entry) || page_count(page) != 2)) {
1978 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1980 /* Reverse changes made by migrate_page_copy() */
1981 if (TestClearPageActive(new_page))
1982 SetPageActive(page);
1983 if (TestClearPageUnevictable(new_page))
1984 SetPageUnevictable(page);
1986 unlock_page(new_page);
1987 put_page(new_page); /* Free it */
1989 /* Retake the callers reference and putback on LRU */
1991 putback_lru_page(page);
1992 mod_node_page_state(page_pgdat(page),
1993 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
1999 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
2000 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
2003 * Clear the old entry under pagetable lock and establish the new PTE.
2004 * Any parallel GUP will either observe the old page blocking on the
2005 * page lock, block on the page table lock or observe the new page.
2006 * The SetPageUptodate on the new page and page_add_new_anon_rmap
2007 * guarantee the copy is visible before the pagetable update.
2009 flush_cache_range(vma, mmun_start, mmun_end);
2010 page_add_anon_rmap(new_page, vma, mmun_start, true);
2011 pmdp_huge_clear_flush_notify(vma, mmun_start, pmd);
2012 set_pmd_at(mm, mmun_start, pmd, entry);
2013 update_mmu_cache_pmd(vma, address, &entry);
2015 if (page_count(page) != 2) {
2016 set_pmd_at(mm, mmun_start, pmd, orig_entry);
2017 flush_pmd_tlb_range(vma, mmun_start, mmun_end);
2018 mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
2019 update_mmu_cache_pmd(vma, address, &entry);
2020 page_remove_rmap(new_page, true);
2024 mlock_migrate_page(new_page, page);
2025 page_remove_rmap(page, true);
2026 set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED);
2029 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2031 /* Take an "isolate" reference and put new page on the LRU. */
2033 putback_lru_page(new_page);
2035 unlock_page(new_page);
2037 put_page(page); /* Drop the rmap reference */
2038 put_page(page); /* Drop the LRU isolation reference */
2040 count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
2041 count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
2043 mod_node_page_state(page_pgdat(page),
2044 NR_ISOLATED_ANON + page_lru,
2049 count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
2051 ptl = pmd_lock(mm, pmd);
2052 if (pmd_same(*pmd, entry)) {
2053 entry = pmd_modify(entry, vma->vm_page_prot);
2054 set_pmd_at(mm, mmun_start, pmd, entry);
2055 update_mmu_cache_pmd(vma, address, &entry);
2064 #endif /* CONFIG_NUMA_BALANCING */
2066 #endif /* CONFIG_NUMA */