1 // SPDX-License-Identifier: GPL-2.0
3 * Memory Migration functionality - linux/mm/migrate.c
5 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
7 * Page migration was first developed in the context of the memory hotplug
8 * project. The main authors of the migration code are:
10 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
11 * Hirokazu Takahashi <taka@valinux.co.jp>
12 * Dave Hansen <haveblue@us.ibm.com>
16 #include <linux/migrate.h>
17 #include <linux/export.h>
18 #include <linux/swap.h>
19 #include <linux/swapops.h>
20 #include <linux/pagemap.h>
21 #include <linux/buffer_head.h>
22 #include <linux/mm_inline.h>
23 #include <linux/nsproxy.h>
24 #include <linux/pagevec.h>
25 #include <linux/ksm.h>
26 #include <linux/rmap.h>
27 #include <linux/topology.h>
28 #include <linux/cpu.h>
29 #include <linux/cpuset.h>
30 #include <linux/writeback.h>
31 #include <linux/mempolicy.h>
32 #include <linux/vmalloc.h>
33 #include <linux/security.h>
34 #include <linux/backing-dev.h>
35 #include <linux/compaction.h>
36 #include <linux/syscalls.h>
37 #include <linux/compat.h>
38 #include <linux/hugetlb.h>
39 #include <linux/hugetlb_cgroup.h>
40 #include <linux/gfp.h>
41 #include <linux/pfn_t.h>
42 #include <linux/memremap.h>
43 #include <linux/userfaultfd_k.h>
44 #include <linux/balloon_compaction.h>
45 #include <linux/mmu_notifier.h>
46 #include <linux/page_idle.h>
47 #include <linux/page_owner.h>
48 #include <linux/sched/mm.h>
49 #include <linux/ptrace.h>
51 #include <asm/tlbflush.h>
53 #define CREATE_TRACE_POINTS
54 #include <trace/events/migrate.h>
59 * migrate_prep() needs to be called before we start compiling a list of pages
60 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
61 * undesirable, use migrate_prep_local()
63 int migrate_prep(void)
66 * Clear the LRU lists so pages can be isolated.
67 * Note that pages may be moved off the LRU after we have
68 * drained them. Those pages will fail to migrate like other
69 * pages that may be busy.
76 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
77 int migrate_prep_local(void)
84 int isolate_movable_page(struct page *page, isolate_mode_t mode)
86 struct address_space *mapping;
89 * Avoid burning cycles with pages that are yet under __free_pages(),
90 * or just got freed under us.
92 * In case we 'win' a race for a movable page being freed under us and
93 * raise its refcount preventing __free_pages() from doing its job
94 * the put_page() at the end of this block will take care of
95 * release this page, thus avoiding a nasty leakage.
97 if (unlikely(!get_page_unless_zero(page)))
101 * Check PageMovable before holding a PG_lock because page's owner
102 * assumes anybody doesn't touch PG_lock of newly allocated page
103 * so unconditionally grapping the lock ruins page's owner side.
105 if (unlikely(!__PageMovable(page)))
108 * As movable pages are not isolated from LRU lists, concurrent
109 * compaction threads can race against page migration functions
110 * as well as race against the releasing a page.
112 * In order to avoid having an already isolated movable page
113 * being (wrongly) re-isolated while it is under migration,
114 * or to avoid attempting to isolate pages being released,
115 * lets be sure we have the page lock
116 * before proceeding with the movable page isolation steps.
118 if (unlikely(!trylock_page(page)))
121 if (!PageMovable(page) || PageIsolated(page))
122 goto out_no_isolated;
124 mapping = page_mapping(page);
125 VM_BUG_ON_PAGE(!mapping, page);
127 if (!mapping->a_ops->isolate_page(page, mode))
128 goto out_no_isolated;
130 /* Driver shouldn't use PG_isolated bit of page->flags */
131 WARN_ON_ONCE(PageIsolated(page));
132 __SetPageIsolated(page);
145 /* It should be called on page which is PG_movable */
146 void putback_movable_page(struct page *page)
148 struct address_space *mapping;
150 VM_BUG_ON_PAGE(!PageLocked(page), page);
151 VM_BUG_ON_PAGE(!PageMovable(page), page);
152 VM_BUG_ON_PAGE(!PageIsolated(page), page);
154 mapping = page_mapping(page);
155 mapping->a_ops->putback_page(page);
156 __ClearPageIsolated(page);
160 * Put previously isolated pages back onto the appropriate lists
161 * from where they were once taken off for compaction/migration.
163 * This function shall be used whenever the isolated pageset has been
164 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
165 * and isolate_huge_page().
167 void putback_movable_pages(struct list_head *l)
172 list_for_each_entry_safe(page, page2, l, lru) {
173 if (unlikely(PageHuge(page))) {
174 putback_active_hugepage(page);
177 list_del(&page->lru);
179 * We isolated non-lru movable page so here we can use
180 * __PageMovable because LRU page's mapping cannot have
181 * PAGE_MAPPING_MOVABLE.
183 if (unlikely(__PageMovable(page))) {
184 VM_BUG_ON_PAGE(!PageIsolated(page), page);
186 if (PageMovable(page))
187 putback_movable_page(page);
189 __ClearPageIsolated(page);
193 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
194 page_is_file_cache(page), -hpage_nr_pages(page));
195 putback_lru_page(page);
201 * Restore a potential migration pte to a working pte entry
203 static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma,
204 unsigned long addr, void *old)
206 struct page_vma_mapped_walk pvmw = {
210 .flags = PVMW_SYNC | PVMW_MIGRATION,
216 VM_BUG_ON_PAGE(PageTail(page), page);
217 while (page_vma_mapped_walk(&pvmw)) {
221 new = page - pvmw.page->index +
222 linear_page_index(vma, pvmw.address);
224 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
225 /* PMD-mapped THP migration entry */
227 VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
228 remove_migration_pmd(&pvmw, new);
234 pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
235 if (pte_swp_soft_dirty(*pvmw.pte))
236 pte = pte_mksoft_dirty(pte);
239 * Recheck VMA as permissions can change since migration started
241 entry = pte_to_swp_entry(*pvmw.pte);
242 if (is_write_migration_entry(entry))
243 pte = maybe_mkwrite(pte, vma);
245 if (unlikely(is_zone_device_page(new))) {
246 if (is_device_private_page(new)) {
247 entry = make_device_private_entry(new, pte_write(pte));
248 pte = swp_entry_to_pte(entry);
249 } else if (is_device_public_page(new)) {
250 pte = pte_mkdevmap(pte);
251 flush_dcache_page(new);
254 flush_dcache_page(new);
256 #ifdef CONFIG_HUGETLB_PAGE
258 pte = pte_mkhuge(pte);
259 pte = arch_make_huge_pte(pte, vma, new, 0);
260 set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
262 hugepage_add_anon_rmap(new, vma, pvmw.address);
264 page_dup_rmap(new, true);
268 set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
271 page_add_anon_rmap(new, vma, pvmw.address, false);
273 page_add_file_rmap(new, false);
275 if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
278 if (PageTransHuge(page) && PageMlocked(page))
279 clear_page_mlock(page);
281 /* No need to invalidate - it was non-present before */
282 update_mmu_cache(vma, pvmw.address, pvmw.pte);
289 * Get rid of all migration entries and replace them by
290 * references to the indicated page.
292 void remove_migration_ptes(struct page *old, struct page *new, bool locked)
294 struct rmap_walk_control rwc = {
295 .rmap_one = remove_migration_pte,
300 rmap_walk_locked(new, &rwc);
302 rmap_walk(new, &rwc);
306 * Something used the pte of a page under migration. We need to
307 * get to the page and wait until migration is finished.
308 * When we return from this function the fault will be retried.
310 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
319 if (!is_swap_pte(pte))
322 entry = pte_to_swp_entry(pte);
323 if (!is_migration_entry(entry))
326 page = migration_entry_to_page(entry);
329 * Once radix-tree replacement of page migration started, page_count
330 * *must* be zero. And, we don't want to call wait_on_page_locked()
331 * against a page without get_page().
332 * So, we use get_page_unless_zero(), here. Even failed, page fault
335 if (!get_page_unless_zero(page))
337 pte_unmap_unlock(ptep, ptl);
338 wait_on_page_locked(page);
342 pte_unmap_unlock(ptep, ptl);
345 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
346 unsigned long address)
348 spinlock_t *ptl = pte_lockptr(mm, pmd);
349 pte_t *ptep = pte_offset_map(pmd, address);
350 __migration_entry_wait(mm, ptep, ptl);
353 void migration_entry_wait_huge(struct vm_area_struct *vma,
354 struct mm_struct *mm, pte_t *pte)
356 spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
357 __migration_entry_wait(mm, pte, ptl);
360 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
361 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
366 ptl = pmd_lock(mm, pmd);
367 if (!is_pmd_migration_entry(*pmd))
369 page = migration_entry_to_page(pmd_to_swp_entry(*pmd));
370 if (!get_page_unless_zero(page))
373 wait_on_page_locked(page);
382 /* Returns true if all buffers are successfully locked */
383 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
384 enum migrate_mode mode)
386 struct buffer_head *bh = head;
388 /* Simple case, sync compaction */
389 if (mode != MIGRATE_ASYNC) {
393 bh = bh->b_this_page;
395 } while (bh != head);
400 /* async case, we cannot block on lock_buffer so use trylock_buffer */
403 if (!trylock_buffer(bh)) {
405 * We failed to lock the buffer and cannot stall in
406 * async migration. Release the taken locks
408 struct buffer_head *failed_bh = bh;
411 while (bh != failed_bh) {
414 bh = bh->b_this_page;
419 bh = bh->b_this_page;
420 } while (bh != head);
424 static inline bool buffer_migrate_lock_buffers(struct buffer_head *head,
425 enum migrate_mode mode)
429 #endif /* CONFIG_BLOCK */
432 * Replace the page in the mapping.
434 * The number of remaining references must be:
435 * 1 for anonymous pages without a mapping
436 * 2 for pages with a mapping
437 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
439 int migrate_page_move_mapping(struct address_space *mapping,
440 struct page *newpage, struct page *page,
441 struct buffer_head *head, enum migrate_mode mode,
444 struct zone *oldzone, *newzone;
446 int expected_count = 1 + extra_count;
450 * Device public or private pages have an extra refcount as they are
453 expected_count += is_device_private_page(page);
454 expected_count += is_device_public_page(page);
457 /* Anonymous page without mapping */
458 if (page_count(page) != expected_count)
461 /* No turning back from here */
462 newpage->index = page->index;
463 newpage->mapping = page->mapping;
464 if (PageSwapBacked(page))
465 __SetPageSwapBacked(newpage);
467 return MIGRATEPAGE_SUCCESS;
470 oldzone = page_zone(page);
471 newzone = page_zone(newpage);
473 xa_lock_irq(&mapping->i_pages);
475 pslot = radix_tree_lookup_slot(&mapping->i_pages,
478 expected_count += hpage_nr_pages(page) + page_has_private(page);
479 if (page_count(page) != expected_count ||
480 radix_tree_deref_slot_protected(pslot,
481 &mapping->i_pages.xa_lock) != page) {
482 xa_unlock_irq(&mapping->i_pages);
486 if (!page_ref_freeze(page, expected_count)) {
487 xa_unlock_irq(&mapping->i_pages);
492 * In the async migration case of moving a page with buffers, lock the
493 * buffers using trylock before the mapping is moved. If the mapping
494 * was moved, we later failed to lock the buffers and could not move
495 * the mapping back due to an elevated page count, we would have to
496 * block waiting on other references to be dropped.
498 if (mode == MIGRATE_ASYNC && head &&
499 !buffer_migrate_lock_buffers(head, mode)) {
500 page_ref_unfreeze(page, expected_count);
501 xa_unlock_irq(&mapping->i_pages);
506 * Now we know that no one else is looking at the page:
507 * no turning back from here.
509 newpage->index = page->index;
510 newpage->mapping = page->mapping;
511 page_ref_add(newpage, hpage_nr_pages(page)); /* add cache reference */
512 if (PageSwapBacked(page)) {
513 __SetPageSwapBacked(newpage);
514 if (PageSwapCache(page)) {
515 SetPageSwapCache(newpage);
516 set_page_private(newpage, page_private(page));
519 VM_BUG_ON_PAGE(PageSwapCache(page), page);
522 /* Move dirty while page refs frozen and newpage not yet exposed */
523 dirty = PageDirty(page);
525 ClearPageDirty(page);
526 SetPageDirty(newpage);
529 radix_tree_replace_slot(&mapping->i_pages, pslot, newpage);
530 if (PageTransHuge(page)) {
532 int index = page_index(page);
534 for (i = 1; i < HPAGE_PMD_NR; i++) {
535 pslot = radix_tree_lookup_slot(&mapping->i_pages,
537 radix_tree_replace_slot(&mapping->i_pages, pslot,
543 * Drop cache reference from old page by unfreezing
544 * to one less reference.
545 * We know this isn't the last reference.
547 page_ref_unfreeze(page, expected_count - hpage_nr_pages(page));
549 xa_unlock(&mapping->i_pages);
550 /* Leave irq disabled to prevent preemption while updating stats */
553 * If moved to a different zone then also account
554 * the page for that zone. Other VM counters will be
555 * taken care of when we establish references to the
556 * new page and drop references to the old page.
558 * Note that anonymous pages are accounted for
559 * via NR_FILE_PAGES and NR_ANON_MAPPED if they
560 * are mapped to swap space.
562 if (newzone != oldzone) {
563 __dec_node_state(oldzone->zone_pgdat, NR_FILE_PAGES);
564 __inc_node_state(newzone->zone_pgdat, NR_FILE_PAGES);
565 if (PageSwapBacked(page) && !PageSwapCache(page)) {
566 __dec_node_state(oldzone->zone_pgdat, NR_SHMEM);
567 __inc_node_state(newzone->zone_pgdat, NR_SHMEM);
569 if (dirty && mapping_cap_account_dirty(mapping)) {
570 __dec_node_state(oldzone->zone_pgdat, NR_FILE_DIRTY);
571 __dec_zone_state(oldzone, NR_ZONE_WRITE_PENDING);
572 __inc_node_state(newzone->zone_pgdat, NR_FILE_DIRTY);
573 __inc_zone_state(newzone, NR_ZONE_WRITE_PENDING);
578 return MIGRATEPAGE_SUCCESS;
580 EXPORT_SYMBOL(migrate_page_move_mapping);
583 * The expected number of remaining references is the same as that
584 * of migrate_page_move_mapping().
586 int migrate_huge_page_move_mapping(struct address_space *mapping,
587 struct page *newpage, struct page *page)
592 xa_lock_irq(&mapping->i_pages);
594 pslot = radix_tree_lookup_slot(&mapping->i_pages, page_index(page));
596 expected_count = 2 + page_has_private(page);
597 if (page_count(page) != expected_count ||
598 radix_tree_deref_slot_protected(pslot, &mapping->i_pages.xa_lock) != page) {
599 xa_unlock_irq(&mapping->i_pages);
603 if (!page_ref_freeze(page, expected_count)) {
604 xa_unlock_irq(&mapping->i_pages);
608 newpage->index = page->index;
609 newpage->mapping = page->mapping;
613 radix_tree_replace_slot(&mapping->i_pages, pslot, newpage);
615 page_ref_unfreeze(page, expected_count - 1);
617 xa_unlock_irq(&mapping->i_pages);
619 return MIGRATEPAGE_SUCCESS;
623 * Gigantic pages are so large that we do not guarantee that page++ pointer
624 * arithmetic will work across the entire page. We need something more
627 static void __copy_gigantic_page(struct page *dst, struct page *src,
631 struct page *dst_base = dst;
632 struct page *src_base = src;
634 for (i = 0; i < nr_pages; ) {
636 copy_highpage(dst, src);
639 dst = mem_map_next(dst, dst_base, i);
640 src = mem_map_next(src, src_base, i);
644 static void copy_huge_page(struct page *dst, struct page *src)
651 struct hstate *h = page_hstate(src);
652 nr_pages = pages_per_huge_page(h);
654 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
655 __copy_gigantic_page(dst, src, nr_pages);
660 BUG_ON(!PageTransHuge(src));
661 nr_pages = hpage_nr_pages(src);
664 for (i = 0; i < nr_pages; i++) {
666 copy_highpage(dst + i, src + i);
671 * Copy the page to its new location
673 void migrate_page_states(struct page *newpage, struct page *page)
678 SetPageError(newpage);
679 if (PageReferenced(page))
680 SetPageReferenced(newpage);
681 if (PageUptodate(page))
682 SetPageUptodate(newpage);
683 if (TestClearPageActive(page)) {
684 VM_BUG_ON_PAGE(PageUnevictable(page), page);
685 SetPageActive(newpage);
686 } else if (TestClearPageUnevictable(page))
687 SetPageUnevictable(newpage);
688 if (PageChecked(page))
689 SetPageChecked(newpage);
690 if (PageMappedToDisk(page))
691 SetPageMappedToDisk(newpage);
693 /* Move dirty on pages not done by migrate_page_move_mapping() */
695 SetPageDirty(newpage);
697 if (page_is_young(page))
698 set_page_young(newpage);
699 if (page_is_idle(page))
700 set_page_idle(newpage);
703 * Copy NUMA information to the new page, to prevent over-eager
704 * future migrations of this same page.
706 cpupid = page_cpupid_xchg_last(page, -1);
707 page_cpupid_xchg_last(newpage, cpupid);
709 ksm_migrate_page(newpage, page);
711 * Please do not reorder this without considering how mm/ksm.c's
712 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
714 if (PageSwapCache(page))
715 ClearPageSwapCache(page);
716 ClearPagePrivate(page);
717 set_page_private(page, 0);
720 * If any waiters have accumulated on the new page then
723 if (PageWriteback(newpage))
724 end_page_writeback(newpage);
726 copy_page_owner(page, newpage);
728 mem_cgroup_migrate(page, newpage);
730 EXPORT_SYMBOL(migrate_page_states);
732 void migrate_page_copy(struct page *newpage, struct page *page)
734 if (PageHuge(page) || PageTransHuge(page))
735 copy_huge_page(newpage, page);
737 copy_highpage(newpage, page);
739 migrate_page_states(newpage, page);
741 EXPORT_SYMBOL(migrate_page_copy);
743 /************************************************************
744 * Migration functions
745 ***********************************************************/
748 * Common logic to directly migrate a single LRU page suitable for
749 * pages that do not use PagePrivate/PagePrivate2.
751 * Pages are locked upon entry and exit.
753 int migrate_page(struct address_space *mapping,
754 struct page *newpage, struct page *page,
755 enum migrate_mode mode)
759 BUG_ON(PageWriteback(page)); /* Writeback must be complete */
761 rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0);
763 if (rc != MIGRATEPAGE_SUCCESS)
766 if (mode != MIGRATE_SYNC_NO_COPY)
767 migrate_page_copy(newpage, page);
769 migrate_page_states(newpage, page);
770 return MIGRATEPAGE_SUCCESS;
772 EXPORT_SYMBOL(migrate_page);
776 * Migration function for pages with buffers. This function can only be used
777 * if the underlying filesystem guarantees that no other references to "page"
780 int buffer_migrate_page(struct address_space *mapping,
781 struct page *newpage, struct page *page, enum migrate_mode mode)
783 struct buffer_head *bh, *head;
786 if (!page_has_buffers(page))
787 return migrate_page(mapping, newpage, page, mode);
789 head = page_buffers(page);
791 rc = migrate_page_move_mapping(mapping, newpage, page, head, mode, 0);
793 if (rc != MIGRATEPAGE_SUCCESS)
797 * In the async case, migrate_page_move_mapping locked the buffers
798 * with an IRQ-safe spinlock held. In the sync case, the buffers
799 * need to be locked now
801 if (mode != MIGRATE_ASYNC)
802 BUG_ON(!buffer_migrate_lock_buffers(head, mode));
804 ClearPagePrivate(page);
805 set_page_private(newpage, page_private(page));
806 set_page_private(page, 0);
812 set_bh_page(bh, newpage, bh_offset(bh));
813 bh = bh->b_this_page;
815 } while (bh != head);
817 SetPagePrivate(newpage);
819 if (mode != MIGRATE_SYNC_NO_COPY)
820 migrate_page_copy(newpage, page);
822 migrate_page_states(newpage, page);
828 bh = bh->b_this_page;
830 } while (bh != head);
832 return MIGRATEPAGE_SUCCESS;
834 EXPORT_SYMBOL(buffer_migrate_page);
838 * Writeback a page to clean the dirty state
840 static int writeout(struct address_space *mapping, struct page *page)
842 struct writeback_control wbc = {
843 .sync_mode = WB_SYNC_NONE,
846 .range_end = LLONG_MAX,
851 if (!mapping->a_ops->writepage)
852 /* No write method for the address space */
855 if (!clear_page_dirty_for_io(page))
856 /* Someone else already triggered a write */
860 * A dirty page may imply that the underlying filesystem has
861 * the page on some queue. So the page must be clean for
862 * migration. Writeout may mean we loose the lock and the
863 * page state is no longer what we checked for earlier.
864 * At this point we know that the migration attempt cannot
867 remove_migration_ptes(page, page, false);
869 rc = mapping->a_ops->writepage(page, &wbc);
871 if (rc != AOP_WRITEPAGE_ACTIVATE)
872 /* unlocked. Relock */
875 return (rc < 0) ? -EIO : -EAGAIN;
879 * Default handling if a filesystem does not provide a migration function.
881 static int fallback_migrate_page(struct address_space *mapping,
882 struct page *newpage, struct page *page, enum migrate_mode mode)
884 if (PageDirty(page)) {
885 /* Only writeback pages in full synchronous migration */
888 case MIGRATE_SYNC_NO_COPY:
893 return writeout(mapping, page);
897 * Buffers may be managed in a filesystem specific way.
898 * We must have no buffers or drop them.
900 if (page_has_private(page) &&
901 !try_to_release_page(page, GFP_KERNEL))
904 return migrate_page(mapping, newpage, page, mode);
908 * Move a page to a newly allocated page
909 * The page is locked and all ptes have been successfully removed.
911 * The new page will have replaced the old page if this function
916 * MIGRATEPAGE_SUCCESS - success
918 static int move_to_new_page(struct page *newpage, struct page *page,
919 enum migrate_mode mode)
921 struct address_space *mapping;
923 bool is_lru = !__PageMovable(page);
925 VM_BUG_ON_PAGE(!PageLocked(page), page);
926 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
928 mapping = page_mapping(page);
930 if (likely(is_lru)) {
932 rc = migrate_page(mapping, newpage, page, mode);
933 else if (mapping->a_ops->migratepage)
935 * Most pages have a mapping and most filesystems
936 * provide a migratepage callback. Anonymous pages
937 * are part of swap space which also has its own
938 * migratepage callback. This is the most common path
939 * for page migration.
941 rc = mapping->a_ops->migratepage(mapping, newpage,
944 rc = fallback_migrate_page(mapping, newpage,
948 * In case of non-lru page, it could be released after
949 * isolation step. In that case, we shouldn't try migration.
951 VM_BUG_ON_PAGE(!PageIsolated(page), page);
952 if (!PageMovable(page)) {
953 rc = MIGRATEPAGE_SUCCESS;
954 __ClearPageIsolated(page);
958 rc = mapping->a_ops->migratepage(mapping, newpage,
960 WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
961 !PageIsolated(page));
965 * When successful, old pagecache page->mapping must be cleared before
966 * page is freed; but stats require that PageAnon be left as PageAnon.
968 if (rc == MIGRATEPAGE_SUCCESS) {
969 if (__PageMovable(page)) {
970 VM_BUG_ON_PAGE(!PageIsolated(page), page);
973 * We clear PG_movable under page_lock so any compactor
974 * cannot try to migrate this page.
976 __ClearPageIsolated(page);
980 * Anonymous and movable page->mapping will be cleard by
981 * free_pages_prepare so don't reset it here for keeping
982 * the type to work PageAnon, for example.
984 if (!PageMappingFlags(page))
985 page->mapping = NULL;
991 static int __unmap_and_move(struct page *page, struct page *newpage,
992 int force, enum migrate_mode mode)
995 int page_was_mapped = 0;
996 struct anon_vma *anon_vma = NULL;
997 bool is_lru = !__PageMovable(page);
999 if (!trylock_page(page)) {
1000 if (!force || mode == MIGRATE_ASYNC)
1004 * It's not safe for direct compaction to call lock_page.
1005 * For example, during page readahead pages are added locked
1006 * to the LRU. Later, when the IO completes the pages are
1007 * marked uptodate and unlocked. However, the queueing
1008 * could be merging multiple pages for one bio (e.g.
1009 * mpage_readpages). If an allocation happens for the
1010 * second or third page, the process can end up locking
1011 * the same page twice and deadlocking. Rather than
1012 * trying to be clever about what pages can be locked,
1013 * avoid the use of lock_page for direct compaction
1016 if (current->flags & PF_MEMALLOC)
1022 if (PageWriteback(page)) {
1024 * Only in the case of a full synchronous migration is it
1025 * necessary to wait for PageWriteback. In the async case,
1026 * the retry loop is too short and in the sync-light case,
1027 * the overhead of stalling is too much
1031 case MIGRATE_SYNC_NO_COPY:
1039 wait_on_page_writeback(page);
1043 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
1044 * we cannot notice that anon_vma is freed while we migrates a page.
1045 * This get_anon_vma() delays freeing anon_vma pointer until the end
1046 * of migration. File cache pages are no problem because of page_lock()
1047 * File Caches may use write_page() or lock_page() in migration, then,
1048 * just care Anon page here.
1050 * Only page_get_anon_vma() understands the subtleties of
1051 * getting a hold on an anon_vma from outside one of its mms.
1052 * But if we cannot get anon_vma, then we won't need it anyway,
1053 * because that implies that the anon page is no longer mapped
1054 * (and cannot be remapped so long as we hold the page lock).
1056 if (PageAnon(page) && !PageKsm(page))
1057 anon_vma = page_get_anon_vma(page);
1060 * Block others from accessing the new page when we get around to
1061 * establishing additional references. We are usually the only one
1062 * holding a reference to newpage at this point. We used to have a BUG
1063 * here if trylock_page(newpage) fails, but would like to allow for
1064 * cases where there might be a race with the previous use of newpage.
1065 * This is much like races on refcount of oldpage: just don't BUG().
1067 if (unlikely(!trylock_page(newpage)))
1070 if (unlikely(!is_lru)) {
1071 rc = move_to_new_page(newpage, page, mode);
1072 goto out_unlock_both;
1076 * Corner case handling:
1077 * 1. When a new swap-cache page is read into, it is added to the LRU
1078 * and treated as swapcache but it has no rmap yet.
1079 * Calling try_to_unmap() against a page->mapping==NULL page will
1080 * trigger a BUG. So handle it here.
1081 * 2. An orphaned page (see truncate_complete_page) might have
1082 * fs-private metadata. The page can be picked up due to memory
1083 * offlining. Everywhere else except page reclaim, the page is
1084 * invisible to the vm, so the page can not be migrated. So try to
1085 * free the metadata, so the page can be freed.
1087 if (!page->mapping) {
1088 VM_BUG_ON_PAGE(PageAnon(page), page);
1089 if (page_has_private(page)) {
1090 try_to_free_buffers(page);
1091 goto out_unlock_both;
1093 } else if (page_mapped(page)) {
1094 /* Establish migration ptes */
1095 VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1098 TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1099 page_was_mapped = 1;
1102 if (!page_mapped(page))
1103 rc = move_to_new_page(newpage, page, mode);
1105 if (page_was_mapped)
1106 remove_migration_ptes(page,
1107 rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
1110 unlock_page(newpage);
1112 /* Drop an anon_vma reference if we took one */
1114 put_anon_vma(anon_vma);
1118 * If migration is successful, decrease refcount of the newpage
1119 * which will not free the page because new page owner increased
1120 * refcounter. As well, if it is LRU page, add the page to LRU
1123 if (rc == MIGRATEPAGE_SUCCESS) {
1124 if (unlikely(__PageMovable(newpage)))
1127 putback_lru_page(newpage);
1134 * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move(). Work
1137 #if defined(CONFIG_ARM) && \
1138 defined(GCC_VERSION) && GCC_VERSION < 40900 && GCC_VERSION >= 40700
1139 #define ICE_noinline noinline
1141 #define ICE_noinline
1145 * Obtain the lock on page, remove all ptes and migrate the page
1146 * to the newly allocated page in newpage.
1148 static ICE_noinline int unmap_and_move(new_page_t get_new_page,
1149 free_page_t put_new_page,
1150 unsigned long private, struct page *page,
1151 int force, enum migrate_mode mode,
1152 enum migrate_reason reason)
1154 int rc = MIGRATEPAGE_SUCCESS;
1155 struct page *newpage;
1157 if (!thp_migration_supported() && PageTransHuge(page))
1160 newpage = get_new_page(page, private);
1164 if (page_count(page) == 1) {
1165 /* page was freed from under us. So we are done. */
1166 ClearPageActive(page);
1167 ClearPageUnevictable(page);
1168 if (unlikely(__PageMovable(page))) {
1170 if (!PageMovable(page))
1171 __ClearPageIsolated(page);
1175 put_new_page(newpage, private);
1181 rc = __unmap_and_move(page, newpage, force, mode);
1182 if (rc == MIGRATEPAGE_SUCCESS)
1183 set_page_owner_migrate_reason(newpage, reason);
1186 if (rc != -EAGAIN) {
1188 * A page that has been migrated has all references
1189 * removed and will be freed. A page that has not been
1190 * migrated will have kepts its references and be
1193 list_del(&page->lru);
1196 * Compaction can migrate also non-LRU pages which are
1197 * not accounted to NR_ISOLATED_*. They can be recognized
1200 if (likely(!__PageMovable(page)))
1201 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
1202 page_is_file_cache(page), -hpage_nr_pages(page));
1206 * If migration is successful, releases reference grabbed during
1207 * isolation. Otherwise, restore the page to right list unless
1210 if (rc == MIGRATEPAGE_SUCCESS) {
1212 if (reason == MR_MEMORY_FAILURE) {
1214 * Set PG_HWPoison on just freed page
1215 * intentionally. Although it's rather weird,
1216 * it's how HWPoison flag works at the moment.
1218 if (set_hwpoison_free_buddy_page(page))
1219 num_poisoned_pages_inc();
1222 if (rc != -EAGAIN) {
1223 if (likely(!__PageMovable(page))) {
1224 putback_lru_page(page);
1229 if (PageMovable(page))
1230 putback_movable_page(page);
1232 __ClearPageIsolated(page);
1238 put_new_page(newpage, private);
1247 * Counterpart of unmap_and_move_page() for hugepage migration.
1249 * This function doesn't wait the completion of hugepage I/O
1250 * because there is no race between I/O and migration for hugepage.
1251 * Note that currently hugepage I/O occurs only in direct I/O
1252 * where no lock is held and PG_writeback is irrelevant,
1253 * and writeback status of all subpages are counted in the reference
1254 * count of the head page (i.e. if all subpages of a 2MB hugepage are
1255 * under direct I/O, the reference of the head page is 512 and a bit more.)
1256 * This means that when we try to migrate hugepage whose subpages are
1257 * doing direct I/O, some references remain after try_to_unmap() and
1258 * hugepage migration fails without data corruption.
1260 * There is also no race when direct I/O is issued on the page under migration,
1261 * because then pte is replaced with migration swap entry and direct I/O code
1262 * will wait in the page fault for migration to complete.
1264 static int unmap_and_move_huge_page(new_page_t get_new_page,
1265 free_page_t put_new_page, unsigned long private,
1266 struct page *hpage, int force,
1267 enum migrate_mode mode, int reason)
1270 int page_was_mapped = 0;
1271 struct page *new_hpage;
1272 struct anon_vma *anon_vma = NULL;
1275 * Movability of hugepages depends on architectures and hugepage size.
1276 * This check is necessary because some callers of hugepage migration
1277 * like soft offline and memory hotremove don't walk through page
1278 * tables or check whether the hugepage is pmd-based or not before
1279 * kicking migration.
1281 if (!hugepage_migration_supported(page_hstate(hpage))) {
1282 putback_active_hugepage(hpage);
1286 new_hpage = get_new_page(hpage, private);
1290 if (!trylock_page(hpage)) {
1295 case MIGRATE_SYNC_NO_COPY:
1303 if (PageAnon(hpage))
1304 anon_vma = page_get_anon_vma(hpage);
1306 if (unlikely(!trylock_page(new_hpage)))
1309 if (page_mapped(hpage)) {
1311 TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1312 page_was_mapped = 1;
1315 if (!page_mapped(hpage))
1316 rc = move_to_new_page(new_hpage, hpage, mode);
1318 if (page_was_mapped)
1319 remove_migration_ptes(hpage,
1320 rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false);
1322 unlock_page(new_hpage);
1326 put_anon_vma(anon_vma);
1328 if (rc == MIGRATEPAGE_SUCCESS) {
1329 move_hugetlb_state(hpage, new_hpage, reason);
1330 put_new_page = NULL;
1336 putback_active_hugepage(hpage);
1339 * If migration was not successful and there's a freeing callback, use
1340 * it. Otherwise, put_page() will drop the reference grabbed during
1344 put_new_page(new_hpage, private);
1346 putback_active_hugepage(new_hpage);
1352 * migrate_pages - migrate the pages specified in a list, to the free pages
1353 * supplied as the target for the page migration
1355 * @from: The list of pages to be migrated.
1356 * @get_new_page: The function used to allocate free pages to be used
1357 * as the target of the page migration.
1358 * @put_new_page: The function used to free target pages if migration
1359 * fails, or NULL if no special handling is necessary.
1360 * @private: Private data to be passed on to get_new_page()
1361 * @mode: The migration mode that specifies the constraints for
1362 * page migration, if any.
1363 * @reason: The reason for page migration.
1365 * The function returns after 10 attempts or if no pages are movable any more
1366 * because the list has become empty or no retryable pages exist any more.
1367 * The caller should call putback_movable_pages() to return pages to the LRU
1368 * or free list only if ret != 0.
1370 * Returns the number of pages that were not migrated, or an error code.
1372 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1373 free_page_t put_new_page, unsigned long private,
1374 enum migrate_mode mode, int reason)
1378 int nr_succeeded = 0;
1382 int swapwrite = current->flags & PF_SWAPWRITE;
1386 current->flags |= PF_SWAPWRITE;
1388 for(pass = 0; pass < 10 && retry; pass++) {
1391 list_for_each_entry_safe(page, page2, from, lru) {
1396 rc = unmap_and_move_huge_page(get_new_page,
1397 put_new_page, private, page,
1398 pass > 2, mode, reason);
1400 rc = unmap_and_move(get_new_page, put_new_page,
1401 private, page, pass > 2, mode,
1407 * THP migration might be unsupported or the
1408 * allocation could've failed so we should
1409 * retry on the same page with the THP split
1412 * Head page is retried immediately and tail
1413 * pages are added to the tail of the list so
1414 * we encounter them after the rest of the list
1417 if (PageTransHuge(page) && !PageHuge(page)) {
1419 rc = split_huge_page_to_list(page, from);
1422 list_safe_reset_next(page, page2, lru);
1431 case MIGRATEPAGE_SUCCESS:
1436 * Permanent failure (-EBUSY, -ENOSYS, etc.):
1437 * unlike -EAGAIN case, the failed page is
1438 * removed from migration page list and not
1439 * retried in the next outer loop.
1450 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1452 count_vm_events(PGMIGRATE_FAIL, nr_failed);
1453 trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);
1456 current->flags &= ~PF_SWAPWRITE;
1463 static int store_status(int __user *status, int start, int value, int nr)
1466 if (put_user(value, status + start))
1474 static int do_move_pages_to_node(struct mm_struct *mm,
1475 struct list_head *pagelist, int node)
1479 if (list_empty(pagelist))
1482 err = migrate_pages(pagelist, alloc_new_node_page, NULL, node,
1483 MIGRATE_SYNC, MR_SYSCALL);
1485 putback_movable_pages(pagelist);
1490 * Resolves the given address to a struct page, isolates it from the LRU and
1491 * puts it to the given pagelist.
1492 * Returns -errno if the page cannot be found/isolated or 0 when it has been
1493 * queued or the page doesn't need to be migrated because it is already on
1496 static int add_page_for_migration(struct mm_struct *mm, unsigned long addr,
1497 int node, struct list_head *pagelist, bool migrate_all)
1499 struct vm_area_struct *vma;
1501 unsigned int follflags;
1504 down_read(&mm->mmap_sem);
1506 vma = find_vma(mm, addr);
1507 if (!vma || addr < vma->vm_start || !vma_migratable(vma))
1510 /* FOLL_DUMP to ignore special (like zero) pages */
1511 follflags = FOLL_GET | FOLL_DUMP;
1512 page = follow_page(vma, addr, follflags);
1514 err = PTR_ERR(page);
1523 if (page_to_nid(page) == node)
1527 if (page_mapcount(page) > 1 && !migrate_all)
1530 if (PageHuge(page)) {
1531 if (PageHead(page)) {
1532 isolate_huge_page(page, pagelist);
1538 head = compound_head(page);
1539 err = isolate_lru_page(head);
1544 list_add_tail(&head->lru, pagelist);
1545 mod_node_page_state(page_pgdat(head),
1546 NR_ISOLATED_ANON + page_is_file_cache(head),
1547 hpage_nr_pages(head));
1551 * Either remove the duplicate refcount from
1552 * isolate_lru_page() or drop the page ref if it was
1557 up_read(&mm->mmap_sem);
1562 * Migrate an array of page address onto an array of nodes and fill
1563 * the corresponding array of status.
1565 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1566 unsigned long nr_pages,
1567 const void __user * __user *pages,
1568 const int __user *nodes,
1569 int __user *status, int flags)
1571 int current_node = NUMA_NO_NODE;
1572 LIST_HEAD(pagelist);
1578 for (i = start = 0; i < nr_pages; i++) {
1579 const void __user *p;
1584 if (get_user(p, pages + i))
1586 if (get_user(node, nodes + i))
1588 addr = (unsigned long)p;
1591 if (node < 0 || node >= MAX_NUMNODES)
1593 if (!node_state(node, N_MEMORY))
1597 if (!node_isset(node, task_nodes))
1600 if (current_node == NUMA_NO_NODE) {
1601 current_node = node;
1603 } else if (node != current_node) {
1604 err = do_move_pages_to_node(mm, &pagelist, current_node);
1607 err = store_status(status, start, current_node, i - start);
1611 current_node = node;
1615 * Errors in the page lookup or isolation are not fatal and we simply
1616 * report them via status
1618 err = add_page_for_migration(mm, addr, current_node,
1619 &pagelist, flags & MPOL_MF_MOVE_ALL);
1623 err = store_status(status, i, err, 1);
1627 err = do_move_pages_to_node(mm, &pagelist, current_node);
1631 err = store_status(status, start, current_node, i - start);
1635 current_node = NUMA_NO_NODE;
1638 if (list_empty(&pagelist))
1641 /* Make sure we do not overwrite the existing error */
1642 err1 = do_move_pages_to_node(mm, &pagelist, current_node);
1644 err1 = store_status(status, start, current_node, i - start);
1652 * Determine the nodes of an array of pages and store it in an array of status.
1654 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1655 const void __user **pages, int *status)
1659 down_read(&mm->mmap_sem);
1661 for (i = 0; i < nr_pages; i++) {
1662 unsigned long addr = (unsigned long)(*pages);
1663 struct vm_area_struct *vma;
1667 vma = find_vma(mm, addr);
1668 if (!vma || addr < vma->vm_start)
1671 /* FOLL_DUMP to ignore special (like zero) pages */
1672 page = follow_page(vma, addr, FOLL_DUMP);
1674 err = PTR_ERR(page);
1678 err = page ? page_to_nid(page) : -ENOENT;
1686 up_read(&mm->mmap_sem);
1690 * Determine the nodes of a user array of pages and store it in
1691 * a user array of status.
1693 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1694 const void __user * __user *pages,
1697 #define DO_PAGES_STAT_CHUNK_NR 16
1698 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1699 int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1702 unsigned long chunk_nr;
1704 chunk_nr = nr_pages;
1705 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1706 chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1708 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1711 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1713 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1718 nr_pages -= chunk_nr;
1720 return nr_pages ? -EFAULT : 0;
1724 * Move a list of pages in the address space of the currently executing
1727 static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
1728 const void __user * __user *pages,
1729 const int __user *nodes,
1730 int __user *status, int flags)
1732 struct task_struct *task;
1733 struct mm_struct *mm;
1735 nodemask_t task_nodes;
1738 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1741 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1744 /* Find the mm_struct */
1746 task = pid ? find_task_by_vpid(pid) : current;
1751 get_task_struct(task);
1754 * Check if this process has the right to modify the specified
1755 * process. Use the regular "ptrace_may_access()" checks.
1757 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1764 err = security_task_movememory(task);
1768 task_nodes = cpuset_mems_allowed(task);
1769 mm = get_task_mm(task);
1770 put_task_struct(task);
1776 err = do_pages_move(mm, task_nodes, nr_pages, pages,
1777 nodes, status, flags);
1779 err = do_pages_stat(mm, nr_pages, pages, status);
1785 put_task_struct(task);
1789 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1790 const void __user * __user *, pages,
1791 const int __user *, nodes,
1792 int __user *, status, int, flags)
1794 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1797 #ifdef CONFIG_COMPAT
1798 COMPAT_SYSCALL_DEFINE6(move_pages, pid_t, pid, compat_ulong_t, nr_pages,
1799 compat_uptr_t __user *, pages32,
1800 const int __user *, nodes,
1801 int __user *, status,
1804 const void __user * __user *pages;
1807 pages = compat_alloc_user_space(nr_pages * sizeof(void *));
1808 for (i = 0; i < nr_pages; i++) {
1811 if (get_user(p, pages32 + i) ||
1812 put_user(compat_ptr(p), pages + i))
1815 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1817 #endif /* CONFIG_COMPAT */
1819 #ifdef CONFIG_NUMA_BALANCING
1821 * Returns true if this is a safe migration target node for misplaced NUMA
1822 * pages. Currently it only checks the watermarks which crude
1824 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1825 unsigned long nr_migrate_pages)
1829 for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1830 struct zone *zone = pgdat->node_zones + z;
1832 if (!populated_zone(zone))
1835 /* Avoid waking kswapd by allocating pages_to_migrate pages. */
1836 if (!zone_watermark_ok(zone, 0,
1837 high_wmark_pages(zone) +
1846 static struct page *alloc_misplaced_dst_page(struct page *page,
1849 int nid = (int) data;
1850 struct page *newpage;
1852 newpage = __alloc_pages_node(nid,
1853 (GFP_HIGHUSER_MOVABLE |
1854 __GFP_THISNODE | __GFP_NOMEMALLOC |
1855 __GFP_NORETRY | __GFP_NOWARN) &
1861 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
1865 VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
1867 /* Avoid migrating to a node that is nearly full */
1868 if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page)))
1871 if (isolate_lru_page(page))
1875 * migrate_misplaced_transhuge_page() skips page migration's usual
1876 * check on page_count(), so we must do it here, now that the page
1877 * has been isolated: a GUP pin, or any other pin, prevents migration.
1878 * The expected page count is 3: 1 for page's mapcount and 1 for the
1879 * caller's pin and 1 for the reference taken by isolate_lru_page().
1881 if (PageTransHuge(page) && page_count(page) != 3) {
1882 putback_lru_page(page);
1886 page_lru = page_is_file_cache(page);
1887 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
1888 hpage_nr_pages(page));
1891 * Isolating the page has taken another reference, so the
1892 * caller's reference can be safely dropped without the page
1893 * disappearing underneath us during migration.
1899 bool pmd_trans_migrating(pmd_t pmd)
1901 struct page *page = pmd_page(pmd);
1902 return PageLocked(page);
1906 * Attempt to migrate a misplaced page to the specified destination
1907 * node. Caller is expected to have an elevated reference count on
1908 * the page that will be dropped by this function before returning.
1910 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
1913 pg_data_t *pgdat = NODE_DATA(node);
1916 LIST_HEAD(migratepages);
1919 * Don't migrate file pages that are mapped in multiple processes
1920 * with execute permissions as they are probably shared libraries.
1922 if (page_mapcount(page) != 1 && page_is_file_cache(page) &&
1923 (vma->vm_flags & VM_EXEC))
1927 * Also do not migrate dirty pages as not all filesystems can move
1928 * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles.
1930 if (page_is_file_cache(page) && PageDirty(page))
1933 isolated = numamigrate_isolate_page(pgdat, page);
1937 list_add(&page->lru, &migratepages);
1938 nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
1939 NULL, node, MIGRATE_ASYNC,
1942 if (!list_empty(&migratepages)) {
1943 list_del(&page->lru);
1944 dec_node_page_state(page, NR_ISOLATED_ANON +
1945 page_is_file_cache(page));
1946 putback_lru_page(page);
1950 count_vm_numa_event(NUMA_PAGE_MIGRATE);
1951 BUG_ON(!list_empty(&migratepages));
1958 #endif /* CONFIG_NUMA_BALANCING */
1960 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1962 * Migrates a THP to a given target node. page must be locked and is unlocked
1965 int migrate_misplaced_transhuge_page(struct mm_struct *mm,
1966 struct vm_area_struct *vma,
1967 pmd_t *pmd, pmd_t entry,
1968 unsigned long address,
1969 struct page *page, int node)
1972 pg_data_t *pgdat = NODE_DATA(node);
1974 struct page *new_page = NULL;
1975 int page_lru = page_is_file_cache(page);
1976 unsigned long mmun_start = address & HPAGE_PMD_MASK;
1977 unsigned long mmun_end = mmun_start + HPAGE_PMD_SIZE;
1979 new_page = alloc_pages_node(node,
1980 (GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
1984 prep_transhuge_page(new_page);
1986 isolated = numamigrate_isolate_page(pgdat, page);
1992 /* Prepare a page as a migration target */
1993 __SetPageLocked(new_page);
1994 if (PageSwapBacked(page))
1995 __SetPageSwapBacked(new_page);
1997 /* anon mapping, we can simply copy page->mapping to the new page: */
1998 new_page->mapping = page->mapping;
1999 new_page->index = page->index;
2000 migrate_page_copy(new_page, page);
2001 WARN_ON(PageLRU(new_page));
2003 /* Recheck the target PMD */
2004 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2005 ptl = pmd_lock(mm, pmd);
2006 if (unlikely(!pmd_same(*pmd, entry) || !page_ref_freeze(page, 2))) {
2008 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2010 /* Reverse changes made by migrate_page_copy() */
2011 if (TestClearPageActive(new_page))
2012 SetPageActive(page);
2013 if (TestClearPageUnevictable(new_page))
2014 SetPageUnevictable(page);
2016 unlock_page(new_page);
2017 put_page(new_page); /* Free it */
2019 /* Retake the callers reference and putback on LRU */
2021 putback_lru_page(page);
2022 mod_node_page_state(page_pgdat(page),
2023 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
2028 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
2029 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
2032 * Clear the old entry under pagetable lock and establish the new PTE.
2033 * Any parallel GUP will either observe the old page blocking on the
2034 * page lock, block on the page table lock or observe the new page.
2035 * The SetPageUptodate on the new page and page_add_new_anon_rmap
2036 * guarantee the copy is visible before the pagetable update.
2038 flush_cache_range(vma, mmun_start, mmun_end);
2039 page_add_anon_rmap(new_page, vma, mmun_start, true);
2040 pmdp_huge_clear_flush_notify(vma, mmun_start, pmd);
2041 set_pmd_at(mm, mmun_start, pmd, entry);
2042 update_mmu_cache_pmd(vma, address, &entry);
2044 page_ref_unfreeze(page, 2);
2045 mlock_migrate_page(new_page, page);
2046 page_remove_rmap(page, true);
2047 set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED);
2051 * No need to double call mmu_notifier->invalidate_range() callback as
2052 * the above pmdp_huge_clear_flush_notify() did already call it.
2054 mmu_notifier_invalidate_range_only_end(mm, mmun_start, mmun_end);
2056 /* Take an "isolate" reference and put new page on the LRU. */
2058 putback_lru_page(new_page);
2060 unlock_page(new_page);
2062 put_page(page); /* Drop the rmap reference */
2063 put_page(page); /* Drop the LRU isolation reference */
2065 count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
2066 count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
2068 mod_node_page_state(page_pgdat(page),
2069 NR_ISOLATED_ANON + page_lru,
2074 count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
2075 ptl = pmd_lock(mm, pmd);
2076 if (pmd_same(*pmd, entry)) {
2077 entry = pmd_modify(entry, vma->vm_page_prot);
2078 set_pmd_at(mm, mmun_start, pmd, entry);
2079 update_mmu_cache_pmd(vma, address, &entry);
2088 #endif /* CONFIG_NUMA_BALANCING */
2090 #endif /* CONFIG_NUMA */
2092 #if defined(CONFIG_MIGRATE_VMA_HELPER)
2093 struct migrate_vma {
2094 struct vm_area_struct *vma;
2097 unsigned long cpages;
2098 unsigned long npages;
2099 unsigned long start;
2103 static int migrate_vma_collect_hole(unsigned long start,
2105 struct mm_walk *walk)
2107 struct migrate_vma *migrate = walk->private;
2110 for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) {
2111 migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE;
2112 migrate->dst[migrate->npages] = 0;
2120 static int migrate_vma_collect_skip(unsigned long start,
2122 struct mm_walk *walk)
2124 struct migrate_vma *migrate = walk->private;
2127 for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) {
2128 migrate->dst[migrate->npages] = 0;
2129 migrate->src[migrate->npages++] = 0;
2135 static int migrate_vma_collect_pmd(pmd_t *pmdp,
2136 unsigned long start,
2138 struct mm_walk *walk)
2140 struct migrate_vma *migrate = walk->private;
2141 struct vm_area_struct *vma = walk->vma;
2142 struct mm_struct *mm = vma->vm_mm;
2143 unsigned long addr = start, unmapped = 0;
2148 if (pmd_none(*pmdp))
2149 return migrate_vma_collect_hole(start, end, walk);
2151 if (pmd_trans_huge(*pmdp)) {
2154 ptl = pmd_lock(mm, pmdp);
2155 if (unlikely(!pmd_trans_huge(*pmdp))) {
2160 page = pmd_page(*pmdp);
2161 if (is_huge_zero_page(page)) {
2163 split_huge_pmd(vma, pmdp, addr);
2164 if (pmd_trans_unstable(pmdp))
2165 return migrate_vma_collect_skip(start, end,
2172 if (unlikely(!trylock_page(page)))
2173 return migrate_vma_collect_skip(start, end,
2175 ret = split_huge_page(page);
2179 return migrate_vma_collect_skip(start, end,
2181 if (pmd_none(*pmdp))
2182 return migrate_vma_collect_hole(start, end,
2187 if (unlikely(pmd_bad(*pmdp)))
2188 return migrate_vma_collect_skip(start, end, walk);
2190 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2191 arch_enter_lazy_mmu_mode();
2193 for (; addr < end; addr += PAGE_SIZE, ptep++) {
2194 unsigned long mpfn, pfn;
2202 if (pte_none(pte)) {
2203 mpfn = MIGRATE_PFN_MIGRATE;
2209 if (!pte_present(pte)) {
2213 * Only care about unaddressable device page special
2214 * page table entry. Other special swap entries are not
2215 * migratable, and we ignore regular swapped page.
2217 entry = pte_to_swp_entry(pte);
2218 if (!is_device_private_entry(entry))
2221 page = device_private_entry_to_page(entry);
2222 mpfn = migrate_pfn(page_to_pfn(page))|
2223 MIGRATE_PFN_DEVICE | MIGRATE_PFN_MIGRATE;
2224 if (is_write_device_private_entry(entry))
2225 mpfn |= MIGRATE_PFN_WRITE;
2227 if (is_zero_pfn(pfn)) {
2228 mpfn = MIGRATE_PFN_MIGRATE;
2233 page = _vm_normal_page(migrate->vma, addr, pte, true);
2234 mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
2235 mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
2238 /* FIXME support THP */
2239 if (!page || !page->mapping || PageTransCompound(page)) {
2243 pfn = page_to_pfn(page);
2246 * By getting a reference on the page we pin it and that blocks
2247 * any kind of migration. Side effect is that it "freezes" the
2250 * We drop this reference after isolating the page from the lru
2251 * for non device page (device page are not on the lru and thus
2252 * can't be dropped from it).
2258 * Optimize for the common case where page is only mapped once
2259 * in one process. If we can lock the page, then we can safely
2260 * set up a special migration page table entry now.
2262 if (trylock_page(page)) {
2265 mpfn |= MIGRATE_PFN_LOCKED;
2266 ptep_get_and_clear(mm, addr, ptep);
2268 /* Setup special migration page table entry */
2269 entry = make_migration_entry(page, mpfn &
2271 swp_pte = swp_entry_to_pte(entry);
2272 if (pte_soft_dirty(pte))
2273 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2274 set_pte_at(mm, addr, ptep, swp_pte);
2277 * This is like regular unmap: we remove the rmap and
2278 * drop page refcount. Page won't be freed, as we took
2279 * a reference just above.
2281 page_remove_rmap(page, false);
2284 if (pte_present(pte))
2289 migrate->dst[migrate->npages] = 0;
2290 migrate->src[migrate->npages++] = mpfn;
2292 arch_leave_lazy_mmu_mode();
2293 pte_unmap_unlock(ptep - 1, ptl);
2295 /* Only flush the TLB if we actually modified any entries */
2297 flush_tlb_range(walk->vma, start, end);
2303 * migrate_vma_collect() - collect pages over a range of virtual addresses
2304 * @migrate: migrate struct containing all migration information
2306 * This will walk the CPU page table. For each virtual address backed by a
2307 * valid page, it updates the src array and takes a reference on the page, in
2308 * order to pin the page until we lock it and unmap it.
2310 static void migrate_vma_collect(struct migrate_vma *migrate)
2312 struct mm_walk mm_walk;
2314 mm_walk.pmd_entry = migrate_vma_collect_pmd;
2315 mm_walk.pte_entry = NULL;
2316 mm_walk.pte_hole = migrate_vma_collect_hole;
2317 mm_walk.hugetlb_entry = NULL;
2318 mm_walk.test_walk = NULL;
2319 mm_walk.vma = migrate->vma;
2320 mm_walk.mm = migrate->vma->vm_mm;
2321 mm_walk.private = migrate;
2323 mmu_notifier_invalidate_range_start(mm_walk.mm,
2326 walk_page_range(migrate->start, migrate->end, &mm_walk);
2327 mmu_notifier_invalidate_range_end(mm_walk.mm,
2331 migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
2335 * migrate_vma_check_page() - check if page is pinned or not
2336 * @page: struct page to check
2338 * Pinned pages cannot be migrated. This is the same test as in
2339 * migrate_page_move_mapping(), except that here we allow migration of a
2342 static bool migrate_vma_check_page(struct page *page)
2345 * One extra ref because caller holds an extra reference, either from
2346 * isolate_lru_page() for a regular page, or migrate_vma_collect() for
2352 * FIXME support THP (transparent huge page), it is bit more complex to
2353 * check them than regular pages, because they can be mapped with a pmd
2354 * or with a pte (split pte mapping).
2356 if (PageCompound(page))
2359 /* Page from ZONE_DEVICE have one extra reference */
2360 if (is_zone_device_page(page)) {
2362 * Private page can never be pin as they have no valid pte and
2363 * GUP will fail for those. Yet if there is a pending migration
2364 * a thread might try to wait on the pte migration entry and
2365 * will bump the page reference count. Sadly there is no way to
2366 * differentiate a regular pin from migration wait. Hence to
2367 * avoid 2 racing thread trying to migrate back to CPU to enter
2368 * infinite loop (one stoping migration because the other is
2369 * waiting on pte migration entry). We always return true here.
2371 * FIXME proper solution is to rework migration_entry_wait() so
2372 * it does not need to take a reference on page.
2374 if (is_device_private_page(page))
2378 * Only allow device public page to be migrated and account for
2379 * the extra reference count imply by ZONE_DEVICE pages.
2381 if (!is_device_public_page(page))
2386 /* For file back page */
2387 if (page_mapping(page))
2388 extra += 1 + page_has_private(page);
2390 if ((page_count(page) - extra) > page_mapcount(page))
2397 * migrate_vma_prepare() - lock pages and isolate them from the lru
2398 * @migrate: migrate struct containing all migration information
2400 * This locks pages that have been collected by migrate_vma_collect(). Once each
2401 * page is locked it is isolated from the lru (for non-device pages). Finally,
2402 * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be
2403 * migrated by concurrent kernel threads.
2405 static void migrate_vma_prepare(struct migrate_vma *migrate)
2407 const unsigned long npages = migrate->npages;
2408 const unsigned long start = migrate->start;
2409 unsigned long addr, i, restore = 0;
2410 bool allow_drain = true;
2414 for (i = 0; (i < npages) && migrate->cpages; i++) {
2415 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2421 if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) {
2423 * Because we are migrating several pages there can be
2424 * a deadlock between 2 concurrent migration where each
2425 * are waiting on each other page lock.
2427 * Make migrate_vma() a best effort thing and backoff
2428 * for any page we can not lock right away.
2430 if (!trylock_page(page)) {
2431 migrate->src[i] = 0;
2437 migrate->src[i] |= MIGRATE_PFN_LOCKED;
2440 /* ZONE_DEVICE pages are not on LRU */
2441 if (!is_zone_device_page(page)) {
2442 if (!PageLRU(page) && allow_drain) {
2443 /* Drain CPU's pagevec */
2444 lru_add_drain_all();
2445 allow_drain = false;
2448 if (isolate_lru_page(page)) {
2450 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2454 migrate->src[i] = 0;
2462 /* Drop the reference we took in collect */
2466 if (!migrate_vma_check_page(page)) {
2468 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2472 if (!is_zone_device_page(page)) {
2474 putback_lru_page(page);
2477 migrate->src[i] = 0;
2481 if (!is_zone_device_page(page))
2482 putback_lru_page(page);
2489 for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) {
2490 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2492 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2495 remove_migration_pte(page, migrate->vma, addr, page);
2497 migrate->src[i] = 0;
2505 * migrate_vma_unmap() - replace page mapping with special migration pte entry
2506 * @migrate: migrate struct containing all migration information
2508 * Replace page mapping (CPU page table pte) with a special migration pte entry
2509 * and check again if it has been pinned. Pinned pages are restored because we
2510 * cannot migrate them.
2512 * This is the last step before we call the device driver callback to allocate
2513 * destination memory and copy contents of original page over to new page.
2515 static void migrate_vma_unmap(struct migrate_vma *migrate)
2517 int flags = TTU_MIGRATION | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
2518 const unsigned long npages = migrate->npages;
2519 const unsigned long start = migrate->start;
2520 unsigned long addr, i, restore = 0;
2522 for (i = 0; i < npages; i++) {
2523 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2525 if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2528 if (page_mapped(page)) {
2529 try_to_unmap(page, flags);
2530 if (page_mapped(page))
2534 if (migrate_vma_check_page(page))
2538 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2543 for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) {
2544 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2546 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2549 remove_migration_ptes(page, page, false);
2551 migrate->src[i] = 0;
2555 if (is_zone_device_page(page))
2558 putback_lru_page(page);
2562 static void migrate_vma_insert_page(struct migrate_vma *migrate,
2568 struct vm_area_struct *vma = migrate->vma;
2569 struct mm_struct *mm = vma->vm_mm;
2570 struct mem_cgroup *memcg;
2580 /* Only allow populating anonymous memory */
2581 if (!vma_is_anonymous(vma))
2584 pgdp = pgd_offset(mm, addr);
2585 p4dp = p4d_alloc(mm, pgdp, addr);
2588 pudp = pud_alloc(mm, p4dp, addr);
2591 pmdp = pmd_alloc(mm, pudp, addr);
2595 if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp))
2599 * Use pte_alloc() instead of pte_alloc_map(). We can't run
2600 * pte_offset_map() on pmds where a huge pmd might be created
2601 * from a different thread.
2603 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
2604 * parallel threads are excluded by other means.
2606 * Here we only have down_read(mmap_sem).
2608 if (pte_alloc(mm, pmdp, addr))
2611 /* See the comment in pte_alloc_one_map() */
2612 if (unlikely(pmd_trans_unstable(pmdp)))
2615 if (unlikely(anon_vma_prepare(vma)))
2617 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg, false))
2621 * The memory barrier inside __SetPageUptodate makes sure that
2622 * preceding stores to the page contents become visible before
2623 * the set_pte_at() write.
2625 __SetPageUptodate(page);
2627 if (is_zone_device_page(page)) {
2628 if (is_device_private_page(page)) {
2629 swp_entry_t swp_entry;
2631 swp_entry = make_device_private_entry(page, vma->vm_flags & VM_WRITE);
2632 entry = swp_entry_to_pte(swp_entry);
2633 } else if (is_device_public_page(page)) {
2634 entry = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
2635 if (vma->vm_flags & VM_WRITE)
2636 entry = pte_mkwrite(pte_mkdirty(entry));
2637 entry = pte_mkdevmap(entry);
2640 entry = mk_pte(page, vma->vm_page_prot);
2641 if (vma->vm_flags & VM_WRITE)
2642 entry = pte_mkwrite(pte_mkdirty(entry));
2645 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2647 if (pte_present(*ptep)) {
2648 unsigned long pfn = pte_pfn(*ptep);
2650 if (!is_zero_pfn(pfn)) {
2651 pte_unmap_unlock(ptep, ptl);
2652 mem_cgroup_cancel_charge(page, memcg, false);
2656 } else if (!pte_none(*ptep)) {
2657 pte_unmap_unlock(ptep, ptl);
2658 mem_cgroup_cancel_charge(page, memcg, false);
2663 * Check for usefaultfd but do not deliver the fault. Instead,
2666 if (userfaultfd_missing(vma)) {
2667 pte_unmap_unlock(ptep, ptl);
2668 mem_cgroup_cancel_charge(page, memcg, false);
2672 inc_mm_counter(mm, MM_ANONPAGES);
2673 page_add_new_anon_rmap(page, vma, addr, false);
2674 mem_cgroup_commit_charge(page, memcg, false, false);
2675 if (!is_zone_device_page(page))
2676 lru_cache_add_active_or_unevictable(page, vma);
2680 flush_cache_page(vma, addr, pte_pfn(*ptep));
2681 ptep_clear_flush_notify(vma, addr, ptep);
2682 set_pte_at_notify(mm, addr, ptep, entry);
2683 update_mmu_cache(vma, addr, ptep);
2685 /* No need to invalidate - it was non-present before */
2686 set_pte_at(mm, addr, ptep, entry);
2687 update_mmu_cache(vma, addr, ptep);
2690 pte_unmap_unlock(ptep, ptl);
2691 *src = MIGRATE_PFN_MIGRATE;
2695 *src &= ~MIGRATE_PFN_MIGRATE;
2699 * migrate_vma_pages() - migrate meta-data from src page to dst page
2700 * @migrate: migrate struct containing all migration information
2702 * This migrates struct page meta-data from source struct page to destination
2703 * struct page. This effectively finishes the migration from source page to the
2706 static void migrate_vma_pages(struct migrate_vma *migrate)
2708 const unsigned long npages = migrate->npages;
2709 const unsigned long start = migrate->start;
2710 struct vm_area_struct *vma = migrate->vma;
2711 struct mm_struct *mm = vma->vm_mm;
2712 unsigned long addr, i, mmu_start;
2713 bool notified = false;
2715 for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) {
2716 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2717 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2718 struct address_space *mapping;
2722 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2727 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE)) {
2733 mmu_notifier_invalidate_range_start(mm,
2737 migrate_vma_insert_page(migrate, addr, newpage,
2743 mapping = page_mapping(page);
2745 if (is_zone_device_page(newpage)) {
2746 if (is_device_private_page(newpage)) {
2748 * For now only support private anonymous when
2749 * migrating to un-addressable device memory.
2752 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2755 } else if (!is_device_public_page(newpage)) {
2757 * Other types of ZONE_DEVICE page are not
2760 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2765 r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY);
2766 if (r != MIGRATEPAGE_SUCCESS)
2767 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2771 * No need to double call mmu_notifier->invalidate_range() callback as
2772 * the above ptep_clear_flush_notify() inside migrate_vma_insert_page()
2773 * did already call it.
2776 mmu_notifier_invalidate_range_only_end(mm, mmu_start,
2781 * migrate_vma_finalize() - restore CPU page table entry
2782 * @migrate: migrate struct containing all migration information
2784 * This replaces the special migration pte entry with either a mapping to the
2785 * new page if migration was successful for that page, or to the original page
2788 * This also unlocks the pages and puts them back on the lru, or drops the extra
2789 * refcount, for device pages.
2791 static void migrate_vma_finalize(struct migrate_vma *migrate)
2793 const unsigned long npages = migrate->npages;
2796 for (i = 0; i < npages; i++) {
2797 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2798 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2802 unlock_page(newpage);
2808 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) {
2810 unlock_page(newpage);
2816 remove_migration_ptes(page, newpage, false);
2820 if (is_zone_device_page(page))
2823 putback_lru_page(page);
2825 if (newpage != page) {
2826 unlock_page(newpage);
2827 if (is_zone_device_page(newpage))
2830 putback_lru_page(newpage);
2836 * migrate_vma() - migrate a range of memory inside vma
2838 * @ops: migration callback for allocating destination memory and copying
2839 * @vma: virtual memory area containing the range to be migrated
2840 * @start: start address of the range to migrate (inclusive)
2841 * @end: end address of the range to migrate (exclusive)
2842 * @src: array of hmm_pfn_t containing source pfns
2843 * @dst: array of hmm_pfn_t containing destination pfns
2844 * @private: pointer passed back to each of the callback
2845 * Returns: 0 on success, error code otherwise
2847 * This function tries to migrate a range of memory virtual address range, using
2848 * callbacks to allocate and copy memory from source to destination. First it
2849 * collects all the pages backing each virtual address in the range, saving this
2850 * inside the src array. Then it locks those pages and unmaps them. Once the pages
2851 * are locked and unmapped, it checks whether each page is pinned or not. Pages
2852 * that aren't pinned have the MIGRATE_PFN_MIGRATE flag set (by this function)
2853 * in the corresponding src array entry. It then restores any pages that are
2854 * pinned, by remapping and unlocking those pages.
2856 * At this point it calls the alloc_and_copy() callback. For documentation on
2857 * what is expected from that callback, see struct migrate_vma_ops comments in
2858 * include/linux/migrate.h
2860 * After the alloc_and_copy() callback, this function goes over each entry in
2861 * the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
2862 * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
2863 * then the function tries to migrate struct page information from the source
2864 * struct page to the destination struct page. If it fails to migrate the struct
2865 * page information, then it clears the MIGRATE_PFN_MIGRATE flag in the src
2868 * At this point all successfully migrated pages have an entry in the src
2869 * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
2870 * array entry with MIGRATE_PFN_VALID flag set.
2872 * It then calls the finalize_and_map() callback. See comments for "struct
2873 * migrate_vma_ops", in include/linux/migrate.h for details about
2874 * finalize_and_map() behavior.
2876 * After the finalize_and_map() callback, for successfully migrated pages, this
2877 * function updates the CPU page table to point to new pages, otherwise it
2878 * restores the CPU page table to point to the original source pages.
2880 * Function returns 0 after the above steps, even if no pages were migrated
2881 * (The function only returns an error if any of the arguments are invalid.)
2883 * Both src and dst array must be big enough for (end - start) >> PAGE_SHIFT
2884 * unsigned long entries.
2886 int migrate_vma(const struct migrate_vma_ops *ops,
2887 struct vm_area_struct *vma,
2888 unsigned long start,
2894 struct migrate_vma migrate;
2896 /* Sanity check the arguments */
2899 if (!vma || is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_SPECIAL) ||
2902 if (start < vma->vm_start || start >= vma->vm_end)
2904 if (end <= vma->vm_start || end > vma->vm_end)
2906 if (!ops || !src || !dst || start >= end)
2909 memset(src, 0, sizeof(*src) * ((end - start) >> PAGE_SHIFT));
2912 migrate.start = start;
2918 /* Collect, and try to unmap source pages */
2919 migrate_vma_collect(&migrate);
2920 if (!migrate.cpages)
2923 /* Lock and isolate page */
2924 migrate_vma_prepare(&migrate);
2925 if (!migrate.cpages)
2929 migrate_vma_unmap(&migrate);
2930 if (!migrate.cpages)
2934 * At this point pages are locked and unmapped, and thus they have
2935 * stable content and can safely be copied to destination memory that
2936 * is allocated by the callback.
2938 * Note that migration can fail in migrate_vma_struct_page() for each
2941 ops->alloc_and_copy(vma, src, dst, start, end, private);
2943 /* This does the real migration of struct page */
2944 migrate_vma_pages(&migrate);
2946 ops->finalize_and_map(vma, src, dst, start, end, private);
2948 /* Unlock and remap pages */
2949 migrate_vma_finalize(&migrate);
2953 EXPORT_SYMBOL(migrate_vma);
2954 #endif /* defined(MIGRATE_VMA_HELPER) */