mm, thp, migrate: handling migration of 64KB hugepages
[platform/kernel/linux-rpi.git] / mm / migrate.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Memory Migration functionality - linux/mm/migrate.c
4  *
5  * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6  *
7  * Page migration was first developed in the context of the memory hotplug
8  * project. The main authors of the migration code are:
9  *
10  * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
11  * Hirokazu Takahashi <taka@valinux.co.jp>
12  * Dave Hansen <haveblue@us.ibm.com>
13  * Christoph Lameter
14  */
15
16 #include <linux/migrate.h>
17 #include <linux/export.h>
18 #include <linux/swap.h>
19 #include <linux/swapops.h>
20 #include <linux/pagemap.h>
21 #include <linux/buffer_head.h>
22 #include <linux/mm_inline.h>
23 #include <linux/nsproxy.h>
24 #include <linux/pagevec.h>
25 #include <linux/ksm.h>
26 #include <linux/rmap.h>
27 #include <linux/topology.h>
28 #include <linux/cpu.h>
29 #include <linux/cpuset.h>
30 #include <linux/writeback.h>
31 #include <linux/mempolicy.h>
32 #include <linux/vmalloc.h>
33 #include <linux/security.h>
34 #include <linux/backing-dev.h>
35 #include <linux/compaction.h>
36 #include <linux/syscalls.h>
37 #include <linux/compat.h>
38 #include <linux/hugetlb.h>
39 #include <linux/hugetlb_cgroup.h>
40 #include <linux/gfp.h>
41 #include <linux/pagewalk.h>
42 #include <linux/pfn_t.h>
43 #include <linux/memremap.h>
44 #include <linux/userfaultfd_k.h>
45 #include <linux/balloon_compaction.h>
46 #include <linux/mmu_notifier.h>
47 #include <linux/page_idle.h>
48 #include <linux/page_owner.h>
49 #include <linux/sched/mm.h>
50 #include <linux/ptrace.h>
51 #include <linux/oom.h>
52
53 #include <asm/tlbflush.h>
54
55 #define CREATE_TRACE_POINTS
56 #include <trace/events/migrate.h>
57
58 #include "internal.h"
59
60 /*
61  * migrate_prep() needs to be called before we start compiling a list of pages
62  * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
63  * undesirable, use migrate_prep_local()
64  */
65 int migrate_prep(void)
66 {
67         /*
68          * Clear the LRU lists so pages can be isolated.
69          * Note that pages may be moved off the LRU after we have
70          * drained them. Those pages will fail to migrate like other
71          * pages that may be busy.
72          */
73         lru_add_drain_all();
74
75         return 0;
76 }
77
78 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
79 int migrate_prep_local(void)
80 {
81         lru_add_drain();
82
83         return 0;
84 }
85
86 int isolate_movable_page(struct page *page, isolate_mode_t mode)
87 {
88         struct address_space *mapping;
89
90         /*
91          * Avoid burning cycles with pages that are yet under __free_pages(),
92          * or just got freed under us.
93          *
94          * In case we 'win' a race for a movable page being freed under us and
95          * raise its refcount preventing __free_pages() from doing its job
96          * the put_page() at the end of this block will take care of
97          * release this page, thus avoiding a nasty leakage.
98          */
99         if (unlikely(!get_page_unless_zero(page)))
100                 goto out;
101
102         /*
103          * Check PageMovable before holding a PG_lock because page's owner
104          * assumes anybody doesn't touch PG_lock of newly allocated page
105          * so unconditionally grabbing the lock ruins page's owner side.
106          */
107         if (unlikely(!__PageMovable(page)))
108                 goto out_putpage;
109         /*
110          * As movable pages are not isolated from LRU lists, concurrent
111          * compaction threads can race against page migration functions
112          * as well as race against the releasing a page.
113          *
114          * In order to avoid having an already isolated movable page
115          * being (wrongly) re-isolated while it is under migration,
116          * or to avoid attempting to isolate pages being released,
117          * lets be sure we have the page lock
118          * before proceeding with the movable page isolation steps.
119          */
120         if (unlikely(!trylock_page(page)))
121                 goto out_putpage;
122
123         if (!PageMovable(page) || PageIsolated(page))
124                 goto out_no_isolated;
125
126         mapping = page_mapping(page);
127         VM_BUG_ON_PAGE(!mapping, page);
128
129         if (!mapping->a_ops->isolate_page(page, mode))
130                 goto out_no_isolated;
131
132         /* Driver shouldn't use PG_isolated bit of page->flags */
133         WARN_ON_ONCE(PageIsolated(page));
134         __SetPageIsolated(page);
135         unlock_page(page);
136
137         return 0;
138
139 out_no_isolated:
140         unlock_page(page);
141 out_putpage:
142         put_page(page);
143 out:
144         return -EBUSY;
145 }
146
147 /* It should be called on page which is PG_movable */
148 void putback_movable_page(struct page *page)
149 {
150         struct address_space *mapping;
151
152         VM_BUG_ON_PAGE(!PageLocked(page), page);
153         VM_BUG_ON_PAGE(!PageMovable(page), page);
154         VM_BUG_ON_PAGE(!PageIsolated(page), page);
155
156         mapping = page_mapping(page);
157         mapping->a_ops->putback_page(page);
158         __ClearPageIsolated(page);
159 }
160
161 /*
162  * Put previously isolated pages back onto the appropriate lists
163  * from where they were once taken off for compaction/migration.
164  *
165  * This function shall be used whenever the isolated pageset has been
166  * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
167  * and isolate_huge_page().
168  */
169 void putback_movable_pages(struct list_head *l)
170 {
171         struct page *page;
172         struct page *page2;
173
174         list_for_each_entry_safe(page, page2, l, lru) {
175                 if (unlikely(PageHuge(page))) {
176                         putback_active_hugepage(page);
177                         continue;
178                 }
179                 list_del(&page->lru);
180                 /*
181                  * We isolated non-lru movable page so here we can use
182                  * __PageMovable because LRU page's mapping cannot have
183                  * PAGE_MAPPING_MOVABLE.
184                  */
185                 if (unlikely(__PageMovable(page))) {
186                         VM_BUG_ON_PAGE(!PageIsolated(page), page);
187                         lock_page(page);
188                         if (PageMovable(page))
189                                 putback_movable_page(page);
190                         else
191                                 __ClearPageIsolated(page);
192                         unlock_page(page);
193                         put_page(page);
194                 } else {
195                         mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
196                                         page_is_file_lru(page), -thp_nr_pages(page));
197                         putback_lru_page(page);
198                 }
199         }
200 }
201
202 /*
203  * Restore a potential migration pte to a working pte entry
204  */
205 static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma,
206                                  unsigned long addr, void *old)
207 {
208         struct page_vma_mapped_walk pvmw = {
209                 .page = old,
210                 .vma = vma,
211                 .address = addr,
212                 .flags = PVMW_SYNC | PVMW_MIGRATION,
213         };
214         struct page *new;
215         pte_t pte;
216         swp_entry_t entry;
217
218         VM_BUG_ON_PAGE(PageTail(page), page);
219         while (page_vma_mapped_walk(&pvmw)) {
220                 if (PageKsm(page))
221                         new = page;
222                 else
223                         new = page - pvmw.page->index +
224                                 linear_page_index(vma, pvmw.address);
225
226 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
227                 /* PMD-mapped THP migration entry */
228                 if (!pvmw.pte) {
229                         VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
230                         remove_migration_pmd(&pvmw, new);
231                         continue;
232                 }
233 #ifdef CONFIG_FINEGRAINED_THP
234                 if (PageTransHuge(page) && pte_cont(*pvmw.pte)) {
235                         VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
236                         remove_migration_huge_pte(&pvmw, new);
237                         continue;
238                 }
239 #endif /* CONFIG_FINEGRAINED_THP */
240 #endif
241
242                 get_page(new);
243                 pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
244                 if (pte_swp_soft_dirty(*pvmw.pte))
245                         pte = pte_mksoft_dirty(pte);
246
247                 /*
248                  * Recheck VMA as permissions can change since migration started
249                  */
250                 entry = pte_to_swp_entry(*pvmw.pte);
251                 if (is_write_migration_entry(entry))
252                         pte = maybe_mkwrite(pte, vma);
253                 else if (pte_swp_uffd_wp(*pvmw.pte))
254                         pte = pte_mkuffd_wp(pte);
255
256                 if (unlikely(is_device_private_page(new))) {
257                         entry = make_device_private_entry(new, pte_write(pte));
258                         pte = swp_entry_to_pte(entry);
259                         if (pte_swp_soft_dirty(*pvmw.pte))
260                                 pte = pte_swp_mksoft_dirty(pte);
261                         if (pte_swp_uffd_wp(*pvmw.pte))
262                                 pte = pte_swp_mkuffd_wp(pte);
263                 }
264
265 #ifdef CONFIG_HUGETLB_PAGE
266                 if (PageHuge(new)) {
267                         pte = pte_mkhuge(pte);
268                         pte = arch_make_huge_pte(pte, vma, new, 0);
269                         set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
270                         if (PageAnon(new))
271                                 hugepage_add_anon_rmap(new, vma, pvmw.address);
272                         else
273                                 page_dup_rmap(new, true);
274                 } else
275 #endif
276                 {
277                         set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
278
279                         if (PageAnon(new))
280                                 page_add_anon_rmap(new, vma, pvmw.address, false);
281                         else
282                                 page_add_file_rmap(new, false);
283                 }
284                 if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
285                         mlock_vma_page(new);
286
287                 if (PageTransHuge(page) && PageMlocked(page))
288                         clear_page_mlock(page);
289
290                 /* No need to invalidate - it was non-present before */
291                 update_mmu_cache(vma, pvmw.address, pvmw.pte);
292         }
293
294         return true;
295 }
296
297 /*
298  * Get rid of all migration entries and replace them by
299  * references to the indicated page.
300  */
301 void remove_migration_ptes(struct page *old, struct page *new, bool locked)
302 {
303         struct rmap_walk_control rwc = {
304                 .rmap_one = remove_migration_pte,
305                 .arg = old,
306         };
307
308         if (locked)
309                 rmap_walk_locked(new, &rwc);
310         else
311                 rmap_walk(new, &rwc);
312 }
313
314 /*
315  * Something used the pte of a page under migration. We need to
316  * get to the page and wait until migration is finished.
317  * When we return from this function the fault will be retried.
318  */
319 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
320                                 spinlock_t *ptl)
321 {
322         pte_t pte;
323         swp_entry_t entry;
324         struct page *page;
325
326         spin_lock(ptl);
327         pte = *ptep;
328         if (!is_swap_pte(pte))
329                 goto out;
330
331         entry = pte_to_swp_entry(pte);
332         if (!is_migration_entry(entry))
333                 goto out;
334
335         page = migration_entry_to_page(entry);
336
337         /*
338          * Once page cache replacement of page migration started, page_count
339          * is zero; but we must not call put_and_wait_on_page_locked() without
340          * a ref. Use get_page_unless_zero(), and just fault again if it fails.
341          */
342         if (!get_page_unless_zero(page))
343                 goto out;
344         pte_unmap_unlock(ptep, ptl);
345         put_and_wait_on_page_locked(page);
346         return;
347 out:
348         pte_unmap_unlock(ptep, ptl);
349 }
350
351 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
352                                 unsigned long address)
353 {
354         spinlock_t *ptl = pte_lockptr(mm, pmd);
355         pte_t *ptep = pte_offset_map(pmd, address);
356         __migration_entry_wait(mm, ptep, ptl);
357 }
358
359 void migration_entry_wait_huge(struct vm_area_struct *vma,
360                 struct mm_struct *mm, pte_t *pte)
361 {
362         spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
363         __migration_entry_wait(mm, pte, ptl);
364 }
365
366 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
367 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
368 {
369         spinlock_t *ptl;
370         struct page *page;
371
372         ptl = pmd_lock(mm, pmd);
373         if (!is_pmd_migration_entry(*pmd))
374                 goto unlock;
375         page = migration_entry_to_page(pmd_to_swp_entry(*pmd));
376         if (!get_page_unless_zero(page))
377                 goto unlock;
378         spin_unlock(ptl);
379         put_and_wait_on_page_locked(page);
380         return;
381 unlock:
382         spin_unlock(ptl);
383 }
384 #endif
385
386 static int expected_page_refs(struct address_space *mapping, struct page *page)
387 {
388         int expected_count = 1;
389
390         /*
391          * Device private pages have an extra refcount as they are
392          * ZONE_DEVICE pages.
393          */
394         expected_count += is_device_private_page(page);
395         if (mapping)
396                 expected_count += thp_nr_pages(page) + page_has_private(page);
397
398         return expected_count;
399 }
400
401 /*
402  * Replace the page in the mapping.
403  *
404  * The number of remaining references must be:
405  * 1 for anonymous pages without a mapping
406  * 2 for pages with a mapping
407  * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
408  */
409 int migrate_page_move_mapping(struct address_space *mapping,
410                 struct page *newpage, struct page *page, int extra_count)
411 {
412         XA_STATE(xas, &mapping->i_pages, page_index(page));
413         struct zone *oldzone, *newzone;
414         int dirty;
415         int expected_count = expected_page_refs(mapping, page) + extra_count;
416         int nr = thp_nr_pages(page);
417
418         if (!mapping) {
419                 /* Anonymous page without mapping */
420                 if (page_count(page) != expected_count)
421                         return -EAGAIN;
422
423                 /* No turning back from here */
424                 newpage->index = page->index;
425                 newpage->mapping = page->mapping;
426                 if (PageSwapBacked(page))
427                         __SetPageSwapBacked(newpage);
428
429                 return MIGRATEPAGE_SUCCESS;
430         }
431
432         oldzone = page_zone(page);
433         newzone = page_zone(newpage);
434
435         xas_lock_irq(&xas);
436         if (page_count(page) != expected_count || xas_load(&xas) != page) {
437                 xas_unlock_irq(&xas);
438                 return -EAGAIN;
439         }
440
441         if (!page_ref_freeze(page, expected_count)) {
442                 xas_unlock_irq(&xas);
443                 return -EAGAIN;
444         }
445
446         /*
447          * Now we know that no one else is looking at the page:
448          * no turning back from here.
449          */
450         newpage->index = page->index;
451         newpage->mapping = page->mapping;
452         page_ref_add(newpage, nr); /* add cache reference */
453         if (PageSwapBacked(page)) {
454                 __SetPageSwapBacked(newpage);
455                 if (PageSwapCache(page)) {
456                         SetPageSwapCache(newpage);
457                         set_page_private(newpage, page_private(page));
458                 }
459         } else {
460                 VM_BUG_ON_PAGE(PageSwapCache(page), page);
461         }
462
463         /* Move dirty while page refs frozen and newpage not yet exposed */
464         dirty = PageDirty(page);
465         if (dirty) {
466                 ClearPageDirty(page);
467                 SetPageDirty(newpage);
468         }
469
470         xas_store(&xas, newpage);
471         if (PageTransHuge(page)) {
472                 int i;
473
474                 for (i = 1; i < nr; i++) {
475                         xas_next(&xas);
476                         xas_store(&xas, newpage);
477                 }
478         }
479
480         /*
481          * Drop cache reference from old page by unfreezing
482          * to one less reference.
483          * We know this isn't the last reference.
484          */
485         page_ref_unfreeze(page, expected_count - nr);
486
487         xas_unlock(&xas);
488         /* Leave irq disabled to prevent preemption while updating stats */
489
490         /*
491          * If moved to a different zone then also account
492          * the page for that zone. Other VM counters will be
493          * taken care of when we establish references to the
494          * new page and drop references to the old page.
495          *
496          * Note that anonymous pages are accounted for
497          * via NR_FILE_PAGES and NR_ANON_MAPPED if they
498          * are mapped to swap space.
499          */
500         if (newzone != oldzone) {
501                 struct lruvec *old_lruvec, *new_lruvec;
502                 struct mem_cgroup *memcg;
503
504                 memcg = page_memcg(page);
505                 old_lruvec = mem_cgroup_lruvec(memcg, oldzone->zone_pgdat);
506                 new_lruvec = mem_cgroup_lruvec(memcg, newzone->zone_pgdat);
507
508                 __mod_lruvec_state(old_lruvec, NR_FILE_PAGES, -nr);
509                 __mod_lruvec_state(new_lruvec, NR_FILE_PAGES, nr);
510                 if (PageSwapBacked(page) && !PageSwapCache(page)) {
511                         __mod_lruvec_state(old_lruvec, NR_SHMEM, -nr);
512                         __mod_lruvec_state(new_lruvec, NR_SHMEM, nr);
513                 }
514                 if (dirty && mapping_can_writeback(mapping)) {
515                         __mod_lruvec_state(old_lruvec, NR_FILE_DIRTY, -nr);
516                         __mod_zone_page_state(oldzone, NR_ZONE_WRITE_PENDING, -nr);
517                         __mod_lruvec_state(new_lruvec, NR_FILE_DIRTY, nr);
518                         __mod_zone_page_state(newzone, NR_ZONE_WRITE_PENDING, nr);
519                 }
520         }
521         local_irq_enable();
522
523         return MIGRATEPAGE_SUCCESS;
524 }
525 EXPORT_SYMBOL(migrate_page_move_mapping);
526
527 /*
528  * The expected number of remaining references is the same as that
529  * of migrate_page_move_mapping().
530  */
531 int migrate_huge_page_move_mapping(struct address_space *mapping,
532                                    struct page *newpage, struct page *page)
533 {
534         XA_STATE(xas, &mapping->i_pages, page_index(page));
535         int expected_count;
536
537         xas_lock_irq(&xas);
538         expected_count = 2 + page_has_private(page);
539         if (page_count(page) != expected_count || xas_load(&xas) != page) {
540                 xas_unlock_irq(&xas);
541                 return -EAGAIN;
542         }
543
544         if (!page_ref_freeze(page, expected_count)) {
545                 xas_unlock_irq(&xas);
546                 return -EAGAIN;
547         }
548
549         newpage->index = page->index;
550         newpage->mapping = page->mapping;
551
552         get_page(newpage);
553
554         xas_store(&xas, newpage);
555
556         page_ref_unfreeze(page, expected_count - 1);
557
558         xas_unlock_irq(&xas);
559
560         return MIGRATEPAGE_SUCCESS;
561 }
562
563 /*
564  * Gigantic pages are so large that we do not guarantee that page++ pointer
565  * arithmetic will work across the entire page.  We need something more
566  * specialized.
567  */
568 static void __copy_gigantic_page(struct page *dst, struct page *src,
569                                 int nr_pages)
570 {
571         int i;
572         struct page *dst_base = dst;
573         struct page *src_base = src;
574
575         for (i = 0; i < nr_pages; ) {
576                 cond_resched();
577                 copy_highpage(dst, src);
578
579                 i++;
580                 dst = mem_map_next(dst, dst_base, i);
581                 src = mem_map_next(src, src_base, i);
582         }
583 }
584
585 static void copy_huge_page(struct page *dst, struct page *src)
586 {
587         int i;
588         int nr_pages;
589
590         if (PageHuge(src)) {
591                 /* hugetlbfs page */
592                 struct hstate *h = page_hstate(src);
593                 nr_pages = pages_per_huge_page(h);
594
595                 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
596                         __copy_gigantic_page(dst, src, nr_pages);
597                         return;
598                 }
599         } else {
600                 /* thp page */
601                 BUG_ON(!PageTransHuge(src));
602                 nr_pages = thp_nr_pages(src);
603         }
604
605         for (i = 0; i < nr_pages; i++) {
606                 cond_resched();
607                 copy_highpage(dst + i, src + i);
608         }
609 }
610
611 /*
612  * Copy the page to its new location
613  */
614 void migrate_page_states(struct page *newpage, struct page *page)
615 {
616         int cpupid;
617
618         if (PageError(page))
619                 SetPageError(newpage);
620         if (PageReferenced(page))
621                 SetPageReferenced(newpage);
622         if (PageUptodate(page))
623                 SetPageUptodate(newpage);
624         if (TestClearPageActive(page)) {
625                 VM_BUG_ON_PAGE(PageUnevictable(page), page);
626                 SetPageActive(newpage);
627         } else if (TestClearPageUnevictable(page))
628                 SetPageUnevictable(newpage);
629         if (PageWorkingset(page))
630                 SetPageWorkingset(newpage);
631         if (PageChecked(page))
632                 SetPageChecked(newpage);
633         if (PageMappedToDisk(page))
634                 SetPageMappedToDisk(newpage);
635
636         /* Move dirty on pages not done by migrate_page_move_mapping() */
637         if (PageDirty(page))
638                 SetPageDirty(newpage);
639
640         if (page_is_young(page))
641                 set_page_young(newpage);
642         if (page_is_idle(page))
643                 set_page_idle(newpage);
644
645         /*
646          * Copy NUMA information to the new page, to prevent over-eager
647          * future migrations of this same page.
648          */
649         cpupid = page_cpupid_xchg_last(page, -1);
650         page_cpupid_xchg_last(newpage, cpupid);
651
652         ksm_migrate_page(newpage, page);
653         /*
654          * Please do not reorder this without considering how mm/ksm.c's
655          * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
656          */
657         if (PageSwapCache(page))
658                 ClearPageSwapCache(page);
659         ClearPagePrivate(page);
660         set_page_private(page, 0);
661
662         /*
663          * If any waiters have accumulated on the new page then
664          * wake them up.
665          */
666         if (PageWriteback(newpage))
667                 end_page_writeback(newpage);
668
669         /*
670          * PG_readahead shares the same bit with PG_reclaim.  The above
671          * end_page_writeback() may clear PG_readahead mistakenly, so set the
672          * bit after that.
673          */
674         if (PageReadahead(page))
675                 SetPageReadahead(newpage);
676
677         copy_page_owner(page, newpage);
678
679         if (!PageHuge(page))
680                 mem_cgroup_migrate(page, newpage);
681 }
682 EXPORT_SYMBOL(migrate_page_states);
683
684 void migrate_page_copy(struct page *newpage, struct page *page)
685 {
686         if (PageHuge(page) || PageTransHuge(page))
687                 copy_huge_page(newpage, page);
688         else
689                 copy_highpage(newpage, page);
690
691         migrate_page_states(newpage, page);
692 }
693 EXPORT_SYMBOL(migrate_page_copy);
694
695 /************************************************************
696  *                    Migration functions
697  ***********************************************************/
698
699 /*
700  * Common logic to directly migrate a single LRU page suitable for
701  * pages that do not use PagePrivate/PagePrivate2.
702  *
703  * Pages are locked upon entry and exit.
704  */
705 int migrate_page(struct address_space *mapping,
706                 struct page *newpage, struct page *page,
707                 enum migrate_mode mode)
708 {
709         int rc;
710
711         BUG_ON(PageWriteback(page));    /* Writeback must be complete */
712
713         rc = migrate_page_move_mapping(mapping, newpage, page, 0);
714
715         if (rc != MIGRATEPAGE_SUCCESS)
716                 return rc;
717
718         if (mode != MIGRATE_SYNC_NO_COPY)
719                 migrate_page_copy(newpage, page);
720         else
721                 migrate_page_states(newpage, page);
722         return MIGRATEPAGE_SUCCESS;
723 }
724 EXPORT_SYMBOL(migrate_page);
725
726 #ifdef CONFIG_BLOCK
727 /* Returns true if all buffers are successfully locked */
728 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
729                                                         enum migrate_mode mode)
730 {
731         struct buffer_head *bh = head;
732
733         /* Simple case, sync compaction */
734         if (mode != MIGRATE_ASYNC) {
735                 do {
736                         lock_buffer(bh);
737                         bh = bh->b_this_page;
738
739                 } while (bh != head);
740
741                 return true;
742         }
743
744         /* async case, we cannot block on lock_buffer so use trylock_buffer */
745         do {
746                 if (!trylock_buffer(bh)) {
747                         /*
748                          * We failed to lock the buffer and cannot stall in
749                          * async migration. Release the taken locks
750                          */
751                         struct buffer_head *failed_bh = bh;
752                         bh = head;
753                         while (bh != failed_bh) {
754                                 unlock_buffer(bh);
755                                 bh = bh->b_this_page;
756                         }
757                         return false;
758                 }
759
760                 bh = bh->b_this_page;
761         } while (bh != head);
762         return true;
763 }
764
765 static int __buffer_migrate_page(struct address_space *mapping,
766                 struct page *newpage, struct page *page, enum migrate_mode mode,
767                 bool check_refs)
768 {
769         struct buffer_head *bh, *head;
770         int rc;
771         int expected_count;
772
773         if (!page_has_buffers(page))
774                 return migrate_page(mapping, newpage, page, mode);
775
776         /* Check whether page does not have extra refs before we do more work */
777         expected_count = expected_page_refs(mapping, page);
778         if (page_count(page) != expected_count)
779                 return -EAGAIN;
780
781         head = page_buffers(page);
782         if (!buffer_migrate_lock_buffers(head, mode))
783                 return -EAGAIN;
784
785         if (check_refs) {
786                 bool busy;
787                 bool invalidated = false;
788
789 recheck_buffers:
790                 busy = false;
791                 spin_lock(&mapping->private_lock);
792                 bh = head;
793                 do {
794                         if (atomic_read(&bh->b_count)) {
795                                 busy = true;
796                                 break;
797                         }
798                         bh = bh->b_this_page;
799                 } while (bh != head);
800                 if (busy) {
801                         if (invalidated) {
802                                 rc = -EAGAIN;
803                                 goto unlock_buffers;
804                         }
805                         spin_unlock(&mapping->private_lock);
806                         invalidate_bh_lrus();
807                         invalidated = true;
808                         goto recheck_buffers;
809                 }
810         }
811
812         rc = migrate_page_move_mapping(mapping, newpage, page, 0);
813         if (rc != MIGRATEPAGE_SUCCESS)
814                 goto unlock_buffers;
815
816         attach_page_private(newpage, detach_page_private(page));
817
818         bh = head;
819         do {
820                 set_bh_page(bh, newpage, bh_offset(bh));
821                 bh = bh->b_this_page;
822
823         } while (bh != head);
824
825         if (mode != MIGRATE_SYNC_NO_COPY)
826                 migrate_page_copy(newpage, page);
827         else
828                 migrate_page_states(newpage, page);
829
830         rc = MIGRATEPAGE_SUCCESS;
831 unlock_buffers:
832         if (check_refs)
833                 spin_unlock(&mapping->private_lock);
834         bh = head;
835         do {
836                 unlock_buffer(bh);
837                 bh = bh->b_this_page;
838
839         } while (bh != head);
840
841         return rc;
842 }
843
844 /*
845  * Migration function for pages with buffers. This function can only be used
846  * if the underlying filesystem guarantees that no other references to "page"
847  * exist. For example attached buffer heads are accessed only under page lock.
848  */
849 int buffer_migrate_page(struct address_space *mapping,
850                 struct page *newpage, struct page *page, enum migrate_mode mode)
851 {
852         return __buffer_migrate_page(mapping, newpage, page, mode, false);
853 }
854 EXPORT_SYMBOL(buffer_migrate_page);
855
856 /*
857  * Same as above except that this variant is more careful and checks that there
858  * are also no buffer head references. This function is the right one for
859  * mappings where buffer heads are directly looked up and referenced (such as
860  * block device mappings).
861  */
862 int buffer_migrate_page_norefs(struct address_space *mapping,
863                 struct page *newpage, struct page *page, enum migrate_mode mode)
864 {
865         return __buffer_migrate_page(mapping, newpage, page, mode, true);
866 }
867 #endif
868
869 /*
870  * Writeback a page to clean the dirty state
871  */
872 static int writeout(struct address_space *mapping, struct page *page)
873 {
874         struct writeback_control wbc = {
875                 .sync_mode = WB_SYNC_NONE,
876                 .nr_to_write = 1,
877                 .range_start = 0,
878                 .range_end = LLONG_MAX,
879                 .for_reclaim = 1
880         };
881         int rc;
882
883         if (!mapping->a_ops->writepage)
884                 /* No write method for the address space */
885                 return -EINVAL;
886
887         if (!clear_page_dirty_for_io(page))
888                 /* Someone else already triggered a write */
889                 return -EAGAIN;
890
891         /*
892          * A dirty page may imply that the underlying filesystem has
893          * the page on some queue. So the page must be clean for
894          * migration. Writeout may mean we loose the lock and the
895          * page state is no longer what we checked for earlier.
896          * At this point we know that the migration attempt cannot
897          * be successful.
898          */
899         remove_migration_ptes(page, page, false);
900
901         rc = mapping->a_ops->writepage(page, &wbc);
902
903         if (rc != AOP_WRITEPAGE_ACTIVATE)
904                 /* unlocked. Relock */
905                 lock_page(page);
906
907         return (rc < 0) ? -EIO : -EAGAIN;
908 }
909
910 /*
911  * Default handling if a filesystem does not provide a migration function.
912  */
913 static int fallback_migrate_page(struct address_space *mapping,
914         struct page *newpage, struct page *page, enum migrate_mode mode)
915 {
916         if (PageDirty(page)) {
917                 /* Only writeback pages in full synchronous migration */
918                 switch (mode) {
919                 case MIGRATE_SYNC:
920                 case MIGRATE_SYNC_NO_COPY:
921                         break;
922                 default:
923                         return -EBUSY;
924                 }
925                 return writeout(mapping, page);
926         }
927
928         /*
929          * Buffers may be managed in a filesystem specific way.
930          * We must have no buffers or drop them.
931          */
932         if (page_has_private(page) &&
933             !try_to_release_page(page, GFP_KERNEL))
934                 return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY;
935
936         return migrate_page(mapping, newpage, page, mode);
937 }
938
939 /*
940  * Move a page to a newly allocated page
941  * The page is locked and all ptes have been successfully removed.
942  *
943  * The new page will have replaced the old page if this function
944  * is successful.
945  *
946  * Return value:
947  *   < 0 - error code
948  *  MIGRATEPAGE_SUCCESS - success
949  */
950 static int move_to_new_page(struct page *newpage, struct page *page,
951                                 enum migrate_mode mode)
952 {
953         struct address_space *mapping;
954         int rc = -EAGAIN;
955         bool is_lru = !__PageMovable(page);
956
957         VM_BUG_ON_PAGE(!PageLocked(page), page);
958         VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
959
960         mapping = page_mapping(page);
961
962         if (likely(is_lru)) {
963                 if (!mapping)
964                         rc = migrate_page(mapping, newpage, page, mode);
965                 else if (mapping->a_ops->migratepage)
966                         /*
967                          * Most pages have a mapping and most filesystems
968                          * provide a migratepage callback. Anonymous pages
969                          * are part of swap space which also has its own
970                          * migratepage callback. This is the most common path
971                          * for page migration.
972                          */
973                         rc = mapping->a_ops->migratepage(mapping, newpage,
974                                                         page, mode);
975                 else
976                         rc = fallback_migrate_page(mapping, newpage,
977                                                         page, mode);
978         } else {
979                 /*
980                  * In case of non-lru page, it could be released after
981                  * isolation step. In that case, we shouldn't try migration.
982                  */
983                 VM_BUG_ON_PAGE(!PageIsolated(page), page);
984                 if (!PageMovable(page)) {
985                         rc = MIGRATEPAGE_SUCCESS;
986                         __ClearPageIsolated(page);
987                         goto out;
988                 }
989
990                 rc = mapping->a_ops->migratepage(mapping, newpage,
991                                                 page, mode);
992                 WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
993                         !PageIsolated(page));
994         }
995
996         /*
997          * When successful, old pagecache page->mapping must be cleared before
998          * page is freed; but stats require that PageAnon be left as PageAnon.
999          */
1000         if (rc == MIGRATEPAGE_SUCCESS) {
1001                 if (__PageMovable(page)) {
1002                         VM_BUG_ON_PAGE(!PageIsolated(page), page);
1003
1004                         /*
1005                          * We clear PG_movable under page_lock so any compactor
1006                          * cannot try to migrate this page.
1007                          */
1008                         __ClearPageIsolated(page);
1009                 }
1010
1011                 /*
1012                  * Anonymous and movable page->mapping will be cleared by
1013                  * free_pages_prepare so don't reset it here for keeping
1014                  * the type to work PageAnon, for example.
1015                  */
1016                 if (!PageMappingFlags(page))
1017                         page->mapping = NULL;
1018
1019                 if (likely(!is_zone_device_page(newpage)))
1020                         flush_dcache_page(newpage);
1021
1022         }
1023 out:
1024         return rc;
1025 }
1026
1027 static int __unmap_and_move(struct page *page, struct page *newpage,
1028                                 int force, enum migrate_mode mode)
1029 {
1030         int rc = -EAGAIN;
1031         int page_was_mapped = 0;
1032         struct anon_vma *anon_vma = NULL;
1033         bool is_lru = !__PageMovable(page);
1034
1035         if (!trylock_page(page)) {
1036                 if (!force || mode == MIGRATE_ASYNC)
1037                         goto out;
1038
1039                 /*
1040                  * It's not safe for direct compaction to call lock_page.
1041                  * For example, during page readahead pages are added locked
1042                  * to the LRU. Later, when the IO completes the pages are
1043                  * marked uptodate and unlocked. However, the queueing
1044                  * could be merging multiple pages for one bio (e.g.
1045                  * mpage_readahead). If an allocation happens for the
1046                  * second or third page, the process can end up locking
1047                  * the same page twice and deadlocking. Rather than
1048                  * trying to be clever about what pages can be locked,
1049                  * avoid the use of lock_page for direct compaction
1050                  * altogether.
1051                  */
1052                 if (current->flags & PF_MEMALLOC)
1053                         goto out;
1054
1055                 lock_page(page);
1056         }
1057
1058         if (PageWriteback(page)) {
1059                 /*
1060                  * Only in the case of a full synchronous migration is it
1061                  * necessary to wait for PageWriteback. In the async case,
1062                  * the retry loop is too short and in the sync-light case,
1063                  * the overhead of stalling is too much
1064                  */
1065                 switch (mode) {
1066                 case MIGRATE_SYNC:
1067                 case MIGRATE_SYNC_NO_COPY:
1068                         break;
1069                 default:
1070                         rc = -EBUSY;
1071                         goto out_unlock;
1072                 }
1073                 if (!force)
1074                         goto out_unlock;
1075                 wait_on_page_writeback(page);
1076         }
1077
1078         /*
1079          * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
1080          * we cannot notice that anon_vma is freed while we migrates a page.
1081          * This get_anon_vma() delays freeing anon_vma pointer until the end
1082          * of migration. File cache pages are no problem because of page_lock()
1083          * File Caches may use write_page() or lock_page() in migration, then,
1084          * just care Anon page here.
1085          *
1086          * Only page_get_anon_vma() understands the subtleties of
1087          * getting a hold on an anon_vma from outside one of its mms.
1088          * But if we cannot get anon_vma, then we won't need it anyway,
1089          * because that implies that the anon page is no longer mapped
1090          * (and cannot be remapped so long as we hold the page lock).
1091          */
1092         if (PageAnon(page) && !PageKsm(page))
1093                 anon_vma = page_get_anon_vma(page);
1094
1095         /*
1096          * Block others from accessing the new page when we get around to
1097          * establishing additional references. We are usually the only one
1098          * holding a reference to newpage at this point. We used to have a BUG
1099          * here if trylock_page(newpage) fails, but would like to allow for
1100          * cases where there might be a race with the previous use of newpage.
1101          * This is much like races on refcount of oldpage: just don't BUG().
1102          */
1103         if (unlikely(!trylock_page(newpage)))
1104                 goto out_unlock;
1105
1106         if (unlikely(!is_lru)) {
1107                 rc = move_to_new_page(newpage, page, mode);
1108                 goto out_unlock_both;
1109         }
1110
1111         /*
1112          * Corner case handling:
1113          * 1. When a new swap-cache page is read into, it is added to the LRU
1114          * and treated as swapcache but it has no rmap yet.
1115          * Calling try_to_unmap() against a page->mapping==NULL page will
1116          * trigger a BUG.  So handle it here.
1117          * 2. An orphaned page (see truncate_complete_page) might have
1118          * fs-private metadata. The page can be picked up due to memory
1119          * offlining.  Everywhere else except page reclaim, the page is
1120          * invisible to the vm, so the page can not be migrated.  So try to
1121          * free the metadata, so the page can be freed.
1122          */
1123         if (!page->mapping) {
1124                 VM_BUG_ON_PAGE(PageAnon(page), page);
1125                 if (page_has_private(page)) {
1126                         try_to_free_buffers(page);
1127                         goto out_unlock_both;
1128                 }
1129         } else if (page_mapped(page)) {
1130                 /* Establish migration ptes */
1131                 VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1132                                 page);
1133                 try_to_unmap(page, TTU_MIGRATION|TTU_IGNORE_MLOCK);
1134                 page_was_mapped = 1;
1135         }
1136
1137         if (!page_mapped(page))
1138                 rc = move_to_new_page(newpage, page, mode);
1139
1140         if (page_was_mapped)
1141                 remove_migration_ptes(page,
1142                         rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
1143
1144 out_unlock_both:
1145         unlock_page(newpage);
1146 out_unlock:
1147         /* Drop an anon_vma reference if we took one */
1148         if (anon_vma)
1149                 put_anon_vma(anon_vma);
1150         unlock_page(page);
1151 out:
1152         /*
1153          * If migration is successful, decrease refcount of the newpage
1154          * which will not free the page because new page owner increased
1155          * refcounter. As well, if it is LRU page, add the page to LRU
1156          * list in here. Use the old state of the isolated source page to
1157          * determine if we migrated a LRU page. newpage was already unlocked
1158          * and possibly modified by its owner - don't rely on the page
1159          * state.
1160          */
1161         if (rc == MIGRATEPAGE_SUCCESS) {
1162                 if (unlikely(!is_lru))
1163                         put_page(newpage);
1164                 else
1165                         putback_lru_page(newpage);
1166         }
1167
1168         return rc;
1169 }
1170
1171 /*
1172  * Obtain the lock on page, remove all ptes and migrate the page
1173  * to the newly allocated page in newpage.
1174  */
1175 static int unmap_and_move(new_page_t get_new_page,
1176                                    free_page_t put_new_page,
1177                                    unsigned long private, struct page *page,
1178                                    int force, enum migrate_mode mode,
1179                                    enum migrate_reason reason)
1180 {
1181         int rc = MIGRATEPAGE_SUCCESS;
1182         struct page *newpage = NULL;
1183
1184         if (!thp_migration_supported() && PageTransHuge(page))
1185                 return -ENOMEM;
1186
1187         if (page_count(page) == 1) {
1188                 /* page was freed from under us. So we are done. */
1189                 ClearPageActive(page);
1190                 ClearPageUnevictable(page);
1191                 if (unlikely(__PageMovable(page))) {
1192                         lock_page(page);
1193                         if (!PageMovable(page))
1194                                 __ClearPageIsolated(page);
1195                         unlock_page(page);
1196                 }
1197                 goto out;
1198         }
1199
1200         newpage = get_new_page(page, private);
1201         if (!newpage)
1202                 return -ENOMEM;
1203
1204         rc = __unmap_and_move(page, newpage, force, mode);
1205         if (rc == MIGRATEPAGE_SUCCESS)
1206                 set_page_owner_migrate_reason(newpage, reason);
1207
1208 out:
1209         if (rc != -EAGAIN) {
1210                 /*
1211                  * A page that has been migrated has all references
1212                  * removed and will be freed. A page that has not been
1213                  * migrated will have kept its references and be restored.
1214                  */
1215                 list_del(&page->lru);
1216
1217                 /*
1218                  * Compaction can migrate also non-LRU pages which are
1219                  * not accounted to NR_ISOLATED_*. They can be recognized
1220                  * as __PageMovable
1221                  */
1222                 if (likely(!__PageMovable(page)))
1223                         mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
1224                                         page_is_file_lru(page), -thp_nr_pages(page));
1225         }
1226
1227         /*
1228          * If migration is successful, releases reference grabbed during
1229          * isolation. Otherwise, restore the page to right list unless
1230          * we want to retry.
1231          */
1232         if (rc == MIGRATEPAGE_SUCCESS) {
1233                 if (reason != MR_MEMORY_FAILURE)
1234                         /*
1235                          * We release the page in page_handle_poison.
1236                          */
1237                         put_page(page);
1238         } else {
1239                 if (rc != -EAGAIN) {
1240                         if (likely(!__PageMovable(page))) {
1241                                 putback_lru_page(page);
1242                                 goto put_new;
1243                         }
1244
1245                         lock_page(page);
1246                         if (PageMovable(page))
1247                                 putback_movable_page(page);
1248                         else
1249                                 __ClearPageIsolated(page);
1250                         unlock_page(page);
1251                         put_page(page);
1252                 }
1253 put_new:
1254                 if (put_new_page)
1255                         put_new_page(newpage, private);
1256                 else
1257                         put_page(newpage);
1258         }
1259
1260         return rc;
1261 }
1262
1263 /*
1264  * Counterpart of unmap_and_move_page() for hugepage migration.
1265  *
1266  * This function doesn't wait the completion of hugepage I/O
1267  * because there is no race between I/O and migration for hugepage.
1268  * Note that currently hugepage I/O occurs only in direct I/O
1269  * where no lock is held and PG_writeback is irrelevant,
1270  * and writeback status of all subpages are counted in the reference
1271  * count of the head page (i.e. if all subpages of a 2MB hugepage are
1272  * under direct I/O, the reference of the head page is 512 and a bit more.)
1273  * This means that when we try to migrate hugepage whose subpages are
1274  * doing direct I/O, some references remain after try_to_unmap() and
1275  * hugepage migration fails without data corruption.
1276  *
1277  * There is also no race when direct I/O is issued on the page under migration,
1278  * because then pte is replaced with migration swap entry and direct I/O code
1279  * will wait in the page fault for migration to complete.
1280  */
1281 static int unmap_and_move_huge_page(new_page_t get_new_page,
1282                                 free_page_t put_new_page, unsigned long private,
1283                                 struct page *hpage, int force,
1284                                 enum migrate_mode mode, int reason)
1285 {
1286         int rc = -EAGAIN;
1287         int page_was_mapped = 0;
1288         struct page *new_hpage;
1289         struct anon_vma *anon_vma = NULL;
1290         struct address_space *mapping = NULL;
1291
1292         /*
1293          * Migratability of hugepages depends on architectures and their size.
1294          * This check is necessary because some callers of hugepage migration
1295          * like soft offline and memory hotremove don't walk through page
1296          * tables or check whether the hugepage is pmd-based or not before
1297          * kicking migration.
1298          */
1299         if (!hugepage_migration_supported(page_hstate(hpage))) {
1300                 putback_active_hugepage(hpage);
1301                 return -ENOSYS;
1302         }
1303
1304         new_hpage = get_new_page(hpage, private);
1305         if (!new_hpage)
1306                 return -ENOMEM;
1307
1308         if (!trylock_page(hpage)) {
1309                 if (!force)
1310                         goto out;
1311                 switch (mode) {
1312                 case MIGRATE_SYNC:
1313                 case MIGRATE_SYNC_NO_COPY:
1314                         break;
1315                 default:
1316                         goto out;
1317                 }
1318                 lock_page(hpage);
1319         }
1320
1321         /*
1322          * Check for pages which are in the process of being freed.  Without
1323          * page_mapping() set, hugetlbfs specific move page routine will not
1324          * be called and we could leak usage counts for subpools.
1325          */
1326         if (page_private(hpage) && !page_mapping(hpage)) {
1327                 rc = -EBUSY;
1328                 goto out_unlock;
1329         }
1330
1331         if (PageAnon(hpage))
1332                 anon_vma = page_get_anon_vma(hpage);
1333
1334         if (unlikely(!trylock_page(new_hpage)))
1335                 goto put_anon;
1336
1337         if (page_mapped(hpage)) {
1338                 bool mapping_locked = false;
1339                 enum ttu_flags ttu = TTU_MIGRATION|TTU_IGNORE_MLOCK;
1340
1341                 if (!PageAnon(hpage)) {
1342                         /*
1343                          * In shared mappings, try_to_unmap could potentially
1344                          * call huge_pmd_unshare.  Because of this, take
1345                          * semaphore in write mode here and set TTU_RMAP_LOCKED
1346                          * to let lower levels know we have taken the lock.
1347                          */
1348                         mapping = hugetlb_page_mapping_lock_write(hpage);
1349                         if (unlikely(!mapping))
1350                                 goto unlock_put_anon;
1351
1352                         mapping_locked = true;
1353                         ttu |= TTU_RMAP_LOCKED;
1354                 }
1355
1356                 try_to_unmap(hpage, ttu);
1357                 page_was_mapped = 1;
1358
1359                 if (mapping_locked)
1360                         i_mmap_unlock_write(mapping);
1361         }
1362
1363         if (!page_mapped(hpage))
1364                 rc = move_to_new_page(new_hpage, hpage, mode);
1365
1366         if (page_was_mapped)
1367                 remove_migration_ptes(hpage,
1368                         rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false);
1369
1370 unlock_put_anon:
1371         unlock_page(new_hpage);
1372
1373 put_anon:
1374         if (anon_vma)
1375                 put_anon_vma(anon_vma);
1376
1377         if (rc == MIGRATEPAGE_SUCCESS) {
1378                 move_hugetlb_state(hpage, new_hpage, reason);
1379                 put_new_page = NULL;
1380         }
1381
1382 out_unlock:
1383         unlock_page(hpage);
1384 out:
1385         if (rc != -EAGAIN)
1386                 putback_active_hugepage(hpage);
1387
1388         /*
1389          * If migration was not successful and there's a freeing callback, use
1390          * it.  Otherwise, put_page() will drop the reference grabbed during
1391          * isolation.
1392          */
1393         if (put_new_page)
1394                 put_new_page(new_hpage, private);
1395         else
1396                 putback_active_hugepage(new_hpage);
1397
1398         return rc;
1399 }
1400
1401 /*
1402  * migrate_pages - migrate the pages specified in a list, to the free pages
1403  *                 supplied as the target for the page migration
1404  *
1405  * @from:               The list of pages to be migrated.
1406  * @get_new_page:       The function used to allocate free pages to be used
1407  *                      as the target of the page migration.
1408  * @put_new_page:       The function used to free target pages if migration
1409  *                      fails, or NULL if no special handling is necessary.
1410  * @private:            Private data to be passed on to get_new_page()
1411  * @mode:               The migration mode that specifies the constraints for
1412  *                      page migration, if any.
1413  * @reason:             The reason for page migration.
1414  *
1415  * The function returns after 10 attempts or if no pages are movable any more
1416  * because the list has become empty or no retryable pages exist any more.
1417  * The caller should call putback_movable_pages() to return pages to the LRU
1418  * or free list only if ret != 0.
1419  *
1420  * Returns the number of pages that were not migrated, or an error code.
1421  */
1422 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1423                 free_page_t put_new_page, unsigned long private,
1424                 enum migrate_mode mode, int reason)
1425 {
1426         int retry = 1;
1427         int thp_retry = 1;
1428         int nr_failed = 0;
1429         int nr_succeeded = 0;
1430         int nr_thp_succeeded = 0;
1431         int nr_thp_failed = 0;
1432         int nr_thp_split = 0;
1433         int pass = 0;
1434         bool is_thp = false;
1435         struct page *page;
1436         struct page *page2;
1437         int swapwrite = current->flags & PF_SWAPWRITE;
1438         int rc, nr_subpages;
1439
1440         trace_mm_migrate_pages_start(mode, reason);
1441
1442         if (!swapwrite)
1443                 current->flags |= PF_SWAPWRITE;
1444
1445         for (pass = 0; pass < 10 && (retry || thp_retry); pass++) {
1446                 retry = 0;
1447                 thp_retry = 0;
1448
1449                 list_for_each_entry_safe(page, page2, from, lru) {
1450 retry:
1451                         /*
1452                          * THP statistics is based on the source huge page.
1453                          * Capture required information that might get lost
1454                          * during migration.
1455                          */
1456                         is_thp = PageTransHuge(page) && !PageHuge(page);
1457                         nr_subpages = thp_nr_pages(page);
1458                         cond_resched();
1459
1460                         if (PageHuge(page))
1461                                 rc = unmap_and_move_huge_page(get_new_page,
1462                                                 put_new_page, private, page,
1463                                                 pass > 2, mode, reason);
1464                         else
1465                                 rc = unmap_and_move(get_new_page, put_new_page,
1466                                                 private, page, pass > 2, mode,
1467                                                 reason);
1468
1469                         switch(rc) {
1470                         case -ENOMEM:
1471                                 /*
1472                                  * THP migration might be unsupported or the
1473                                  * allocation could've failed so we should
1474                                  * retry on the same page with the THP split
1475                                  * to base pages.
1476                                  *
1477                                  * Head page is retried immediately and tail
1478                                  * pages are added to the tail of the list so
1479                                  * we encounter them after the rest of the list
1480                                  * is processed.
1481                                  */
1482                                 if (is_thp) {
1483                                         lock_page(page);
1484                                         rc = split_huge_page_to_list(page, from);
1485                                         unlock_page(page);
1486                                         if (!rc) {
1487                                                 list_safe_reset_next(page, page2, lru);
1488                                                 nr_thp_split++;
1489                                                 goto retry;
1490                                         }
1491
1492                                         nr_thp_failed++;
1493                                         nr_failed += nr_subpages;
1494                                         goto out;
1495                                 }
1496                                 nr_failed++;
1497                                 goto out;
1498                         case -EAGAIN:
1499                                 if (is_thp) {
1500                                         thp_retry++;
1501                                         break;
1502                                 }
1503                                 retry++;
1504                                 break;
1505                         case MIGRATEPAGE_SUCCESS:
1506                                 if (is_thp) {
1507                                         nr_thp_succeeded++;
1508                                         nr_succeeded += nr_subpages;
1509                                         break;
1510                                 }
1511                                 nr_succeeded++;
1512                                 break;
1513                         default:
1514                                 /*
1515                                  * Permanent failure (-EBUSY, -ENOSYS, etc.):
1516                                  * unlike -EAGAIN case, the failed page is
1517                                  * removed from migration page list and not
1518                                  * retried in the next outer loop.
1519                                  */
1520                                 if (is_thp) {
1521                                         nr_thp_failed++;
1522                                         nr_failed += nr_subpages;
1523                                         break;
1524                                 }
1525                                 nr_failed++;
1526                                 break;
1527                         }
1528                 }
1529         }
1530         nr_failed += retry + thp_retry;
1531         nr_thp_failed += thp_retry;
1532         rc = nr_failed;
1533 out:
1534         count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1535         count_vm_events(PGMIGRATE_FAIL, nr_failed);
1536         count_vm_events(THP_MIGRATION_SUCCESS, nr_thp_succeeded);
1537         count_vm_events(THP_MIGRATION_FAIL, nr_thp_failed);
1538         count_vm_events(THP_MIGRATION_SPLIT, nr_thp_split);
1539         trace_mm_migrate_pages(nr_succeeded, nr_failed, nr_thp_succeeded,
1540                                nr_thp_failed, nr_thp_split, mode, reason);
1541
1542         if (!swapwrite)
1543                 current->flags &= ~PF_SWAPWRITE;
1544
1545         return rc;
1546 }
1547
1548 struct page *alloc_migration_target(struct page *page, unsigned long private)
1549 {
1550         struct migration_target_control *mtc;
1551         gfp_t gfp_mask;
1552         unsigned int order = 0;
1553         struct page *new_page = NULL;
1554         int nid;
1555         int zidx;
1556
1557         mtc = (struct migration_target_control *)private;
1558         gfp_mask = mtc->gfp_mask;
1559         nid = mtc->nid;
1560         if (nid == NUMA_NO_NODE)
1561                 nid = page_to_nid(page);
1562
1563         if (PageHuge(page)) {
1564                 struct hstate *h = page_hstate(compound_head(page));
1565
1566                 gfp_mask = htlb_modify_alloc_mask(h, gfp_mask);
1567                 return alloc_huge_page_nodemask(h, nid, mtc->nmask, gfp_mask);
1568         }
1569
1570         if (PageTransHuge(page)) {
1571                 /*
1572                  * clear __GFP_RECLAIM to make the migration callback
1573                  * consistent with regular THP allocations.
1574                  */
1575                 gfp_mask &= ~__GFP_RECLAIM;
1576                 gfp_mask |= GFP_TRANSHUGE;
1577                 order = HPAGE_PMD_ORDER;
1578         }
1579         zidx = zone_idx(page_zone(page));
1580         if (is_highmem_idx(zidx) || zidx == ZONE_MOVABLE)
1581                 gfp_mask |= __GFP_HIGHMEM;
1582
1583         new_page = __alloc_pages_nodemask(gfp_mask, order, nid, mtc->nmask);
1584
1585         if (new_page && PageTransHuge(new_page))
1586                 prep_transhuge_page(new_page);
1587
1588         return new_page;
1589 }
1590
1591 #ifdef CONFIG_NUMA
1592
1593 static int store_status(int __user *status, int start, int value, int nr)
1594 {
1595         while (nr-- > 0) {
1596                 if (put_user(value, status + start))
1597                         return -EFAULT;
1598                 start++;
1599         }
1600
1601         return 0;
1602 }
1603
1604 static int do_move_pages_to_node(struct mm_struct *mm,
1605                 struct list_head *pagelist, int node)
1606 {
1607         int err;
1608         struct migration_target_control mtc = {
1609                 .nid = node,
1610                 .gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE,
1611         };
1612
1613         err = migrate_pages(pagelist, alloc_migration_target, NULL,
1614                         (unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL);
1615         if (err)
1616                 putback_movable_pages(pagelist);
1617         return err;
1618 }
1619
1620 /*
1621  * Resolves the given address to a struct page, isolates it from the LRU and
1622  * puts it to the given pagelist.
1623  * Returns:
1624  *     errno - if the page cannot be found/isolated
1625  *     0 - when it doesn't have to be migrated because it is already on the
1626  *         target node
1627  *     1 - when it has been queued
1628  */
1629 static int add_page_for_migration(struct mm_struct *mm, unsigned long addr,
1630                 int node, struct list_head *pagelist, bool migrate_all)
1631 {
1632         struct vm_area_struct *vma;
1633         struct page *page;
1634         unsigned int follflags;
1635         int err;
1636
1637         mmap_read_lock(mm);
1638         err = -EFAULT;
1639         vma = find_vma(mm, addr);
1640         if (!vma || addr < vma->vm_start || !vma_migratable(vma))
1641                 goto out;
1642
1643         /* FOLL_DUMP to ignore special (like zero) pages */
1644         follflags = FOLL_GET | FOLL_DUMP;
1645         page = follow_page(vma, addr, follflags);
1646
1647         err = PTR_ERR(page);
1648         if (IS_ERR(page))
1649                 goto out;
1650
1651         err = -ENOENT;
1652         if (!page)
1653                 goto out;
1654
1655         err = 0;
1656         if (page_to_nid(page) == node)
1657                 goto out_putpage;
1658
1659         err = -EACCES;
1660         if (page_mapcount(page) > 1 && !migrate_all)
1661                 goto out_putpage;
1662
1663         if (PageHuge(page)) {
1664                 if (PageHead(page)) {
1665                         isolate_huge_page(page, pagelist);
1666                         err = 1;
1667                 }
1668         } else {
1669                 struct page *head;
1670
1671                 head = compound_head(page);
1672                 err = isolate_lru_page(head);
1673                 if (err)
1674                         goto out_putpage;
1675
1676                 err = 1;
1677                 list_add_tail(&head->lru, pagelist);
1678                 mod_node_page_state(page_pgdat(head),
1679                         NR_ISOLATED_ANON + page_is_file_lru(head),
1680                         thp_nr_pages(head));
1681         }
1682 out_putpage:
1683         /*
1684          * Either remove the duplicate refcount from
1685          * isolate_lru_page() or drop the page ref if it was
1686          * not isolated.
1687          */
1688         put_page(page);
1689 out:
1690         mmap_read_unlock(mm);
1691         return err;
1692 }
1693
1694 static int move_pages_and_store_status(struct mm_struct *mm, int node,
1695                 struct list_head *pagelist, int __user *status,
1696                 int start, int i, unsigned long nr_pages)
1697 {
1698         int err;
1699
1700         if (list_empty(pagelist))
1701                 return 0;
1702
1703         err = do_move_pages_to_node(mm, pagelist, node);
1704         if (err) {
1705                 /*
1706                  * Positive err means the number of failed
1707                  * pages to migrate.  Since we are going to
1708                  * abort and return the number of non-migrated
1709                  * pages, so need to incude the rest of the
1710                  * nr_pages that have not been attempted as
1711                  * well.
1712                  */
1713                 if (err > 0)
1714                         err += nr_pages - i - 1;
1715                 return err;
1716         }
1717         return store_status(status, start, node, i - start);
1718 }
1719
1720 /*
1721  * Migrate an array of page address onto an array of nodes and fill
1722  * the corresponding array of status.
1723  */
1724 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1725                          unsigned long nr_pages,
1726                          const void __user * __user *pages,
1727                          const int __user *nodes,
1728                          int __user *status, int flags)
1729 {
1730         int current_node = NUMA_NO_NODE;
1731         LIST_HEAD(pagelist);
1732         int start, i;
1733         int err = 0, err1;
1734
1735         migrate_prep();
1736
1737         for (i = start = 0; i < nr_pages; i++) {
1738                 const void __user *p;
1739                 unsigned long addr;
1740                 int node;
1741
1742                 err = -EFAULT;
1743                 if (get_user(p, pages + i))
1744                         goto out_flush;
1745                 if (get_user(node, nodes + i))
1746                         goto out_flush;
1747                 addr = (unsigned long)untagged_addr(p);
1748
1749                 err = -ENODEV;
1750                 if (node < 0 || node >= MAX_NUMNODES)
1751                         goto out_flush;
1752                 if (!node_state(node, N_MEMORY))
1753                         goto out_flush;
1754
1755                 err = -EACCES;
1756                 if (!node_isset(node, task_nodes))
1757                         goto out_flush;
1758
1759                 if (current_node == NUMA_NO_NODE) {
1760                         current_node = node;
1761                         start = i;
1762                 } else if (node != current_node) {
1763                         err = move_pages_and_store_status(mm, current_node,
1764                                         &pagelist, status, start, i, nr_pages);
1765                         if (err)
1766                                 goto out;
1767                         start = i;
1768                         current_node = node;
1769                 }
1770
1771                 /*
1772                  * Errors in the page lookup or isolation are not fatal and we simply
1773                  * report them via status
1774                  */
1775                 err = add_page_for_migration(mm, addr, current_node,
1776                                 &pagelist, flags & MPOL_MF_MOVE_ALL);
1777
1778                 if (err > 0) {
1779                         /* The page is successfully queued for migration */
1780                         continue;
1781                 }
1782
1783                 /*
1784                  * If the page is already on the target node (!err), store the
1785                  * node, otherwise, store the err.
1786                  */
1787                 err = store_status(status, i, err ? : current_node, 1);
1788                 if (err)
1789                         goto out_flush;
1790
1791                 err = move_pages_and_store_status(mm, current_node, &pagelist,
1792                                 status, start, i, nr_pages);
1793                 if (err)
1794                         goto out;
1795                 current_node = NUMA_NO_NODE;
1796         }
1797 out_flush:
1798         /* Make sure we do not overwrite the existing error */
1799         err1 = move_pages_and_store_status(mm, current_node, &pagelist,
1800                                 status, start, i, nr_pages);
1801         if (err >= 0)
1802                 err = err1;
1803 out:
1804         return err;
1805 }
1806
1807 /*
1808  * Determine the nodes of an array of pages and store it in an array of status.
1809  */
1810 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1811                                 const void __user **pages, int *status)
1812 {
1813         unsigned long i;
1814
1815         mmap_read_lock(mm);
1816
1817         for (i = 0; i < nr_pages; i++) {
1818                 unsigned long addr = (unsigned long)(*pages);
1819                 struct vm_area_struct *vma;
1820                 struct page *page;
1821                 int err = -EFAULT;
1822
1823                 vma = find_vma(mm, addr);
1824                 if (!vma || addr < vma->vm_start)
1825                         goto set_status;
1826
1827                 /* FOLL_DUMP to ignore special (like zero) pages */
1828                 page = follow_page(vma, addr, FOLL_DUMP);
1829
1830                 err = PTR_ERR(page);
1831                 if (IS_ERR(page))
1832                         goto set_status;
1833
1834                 err = page ? page_to_nid(page) : -ENOENT;
1835 set_status:
1836                 *status = err;
1837
1838                 pages++;
1839                 status++;
1840         }
1841
1842         mmap_read_unlock(mm);
1843 }
1844
1845 /*
1846  * Determine the nodes of a user array of pages and store it in
1847  * a user array of status.
1848  */
1849 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1850                          const void __user * __user *pages,
1851                          int __user *status)
1852 {
1853 #define DO_PAGES_STAT_CHUNK_NR 16
1854         const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1855         int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1856
1857         while (nr_pages) {
1858                 unsigned long chunk_nr;
1859
1860                 chunk_nr = nr_pages;
1861                 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1862                         chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1863
1864                 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1865                         break;
1866
1867                 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1868
1869                 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1870                         break;
1871
1872                 pages += chunk_nr;
1873                 status += chunk_nr;
1874                 nr_pages -= chunk_nr;
1875         }
1876         return nr_pages ? -EFAULT : 0;
1877 }
1878
1879 static struct mm_struct *find_mm_struct(pid_t pid, nodemask_t *mem_nodes)
1880 {
1881         struct task_struct *task;
1882         struct mm_struct *mm;
1883
1884         /*
1885          * There is no need to check if current process has the right to modify
1886          * the specified process when they are same.
1887          */
1888         if (!pid) {
1889                 mmget(current->mm);
1890                 *mem_nodes = cpuset_mems_allowed(current);
1891                 return current->mm;
1892         }
1893
1894         /* Find the mm_struct */
1895         rcu_read_lock();
1896         task = find_task_by_vpid(pid);
1897         if (!task) {
1898                 rcu_read_unlock();
1899                 return ERR_PTR(-ESRCH);
1900         }
1901         get_task_struct(task);
1902
1903         /*
1904          * Check if this process has the right to modify the specified
1905          * process. Use the regular "ptrace_may_access()" checks.
1906          */
1907         if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1908                 rcu_read_unlock();
1909                 mm = ERR_PTR(-EPERM);
1910                 goto out;
1911         }
1912         rcu_read_unlock();
1913
1914         mm = ERR_PTR(security_task_movememory(task));
1915         if (IS_ERR(mm))
1916                 goto out;
1917         *mem_nodes = cpuset_mems_allowed(task);
1918         mm = get_task_mm(task);
1919 out:
1920         put_task_struct(task);
1921         if (!mm)
1922                 mm = ERR_PTR(-EINVAL);
1923         return mm;
1924 }
1925
1926 /*
1927  * Move a list of pages in the address space of the currently executing
1928  * process.
1929  */
1930 static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
1931                              const void __user * __user *pages,
1932                              const int __user *nodes,
1933                              int __user *status, int flags)
1934 {
1935         struct mm_struct *mm;
1936         int err;
1937         nodemask_t task_nodes;
1938
1939         /* Check flags */
1940         if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1941                 return -EINVAL;
1942
1943         if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1944                 return -EPERM;
1945
1946         mm = find_mm_struct(pid, &task_nodes);
1947         if (IS_ERR(mm))
1948                 return PTR_ERR(mm);
1949
1950         if (nodes)
1951                 err = do_pages_move(mm, task_nodes, nr_pages, pages,
1952                                     nodes, status, flags);
1953         else
1954                 err = do_pages_stat(mm, nr_pages, pages, status);
1955
1956         mmput(mm);
1957         return err;
1958 }
1959
1960 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1961                 const void __user * __user *, pages,
1962                 const int __user *, nodes,
1963                 int __user *, status, int, flags)
1964 {
1965         return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1966 }
1967
1968 #ifdef CONFIG_COMPAT
1969 COMPAT_SYSCALL_DEFINE6(move_pages, pid_t, pid, compat_ulong_t, nr_pages,
1970                        compat_uptr_t __user *, pages32,
1971                        const int __user *, nodes,
1972                        int __user *, status,
1973                        int, flags)
1974 {
1975         const void __user * __user *pages;
1976         int i;
1977
1978         pages = compat_alloc_user_space(nr_pages * sizeof(void *));
1979         for (i = 0; i < nr_pages; i++) {
1980                 compat_uptr_t p;
1981
1982                 if (get_user(p, pages32 + i) ||
1983                         put_user(compat_ptr(p), pages + i))
1984                         return -EFAULT;
1985         }
1986         return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1987 }
1988 #endif /* CONFIG_COMPAT */
1989
1990 #ifdef CONFIG_NUMA_BALANCING
1991 /*
1992  * Returns true if this is a safe migration target node for misplaced NUMA
1993  * pages. Currently it only checks the watermarks which crude
1994  */
1995 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1996                                    unsigned long nr_migrate_pages)
1997 {
1998         int z;
1999
2000         for (z = pgdat->nr_zones - 1; z >= 0; z--) {
2001                 struct zone *zone = pgdat->node_zones + z;
2002
2003                 if (!populated_zone(zone))
2004                         continue;
2005
2006                 /* Avoid waking kswapd by allocating pages_to_migrate pages. */
2007                 if (!zone_watermark_ok(zone, 0,
2008                                        high_wmark_pages(zone) +
2009                                        nr_migrate_pages,
2010                                        ZONE_MOVABLE, 0))
2011                         continue;
2012                 return true;
2013         }
2014         return false;
2015 }
2016
2017 static struct page *alloc_misplaced_dst_page(struct page *page,
2018                                            unsigned long data)
2019 {
2020         int nid = (int) data;
2021         struct page *newpage;
2022
2023         newpage = __alloc_pages_node(nid,
2024                                          (GFP_HIGHUSER_MOVABLE |
2025                                           __GFP_THISNODE | __GFP_NOMEMALLOC |
2026                                           __GFP_NORETRY | __GFP_NOWARN) &
2027                                          ~__GFP_RECLAIM, 0);
2028
2029         return newpage;
2030 }
2031
2032 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
2033 {
2034         int page_lru;
2035
2036         VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
2037
2038         /* Avoid migrating to a node that is nearly full */
2039         if (!migrate_balanced_pgdat(pgdat, compound_nr(page)))
2040                 return 0;
2041
2042         if (isolate_lru_page(page))
2043                 return 0;
2044
2045         /*
2046          * migrate_misplaced_transhuge_page() skips page migration's usual
2047          * check on page_count(), so we must do it here, now that the page
2048          * has been isolated: a GUP pin, or any other pin, prevents migration.
2049          * The expected page count is 3: 1 for page's mapcount and 1 for the
2050          * caller's pin and 1 for the reference taken by isolate_lru_page().
2051          */
2052         if (PageTransHuge(page) && page_count(page) != 3) {
2053                 putback_lru_page(page);
2054                 return 0;
2055         }
2056
2057         page_lru = page_is_file_lru(page);
2058         mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
2059                                 thp_nr_pages(page));
2060
2061         /*
2062          * Isolating the page has taken another reference, so the
2063          * caller's reference can be safely dropped without the page
2064          * disappearing underneath us during migration.
2065          */
2066         put_page(page);
2067         return 1;
2068 }
2069
2070 bool pmd_trans_migrating(pmd_t pmd)
2071 {
2072         struct page *page = pmd_page(pmd);
2073         return PageLocked(page);
2074 }
2075
2076 /*
2077  * Attempt to migrate a misplaced page to the specified destination
2078  * node. Caller is expected to have an elevated reference count on
2079  * the page that will be dropped by this function before returning.
2080  */
2081 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
2082                            int node)
2083 {
2084         pg_data_t *pgdat = NODE_DATA(node);
2085         int isolated;
2086         int nr_remaining;
2087         LIST_HEAD(migratepages);
2088
2089         /*
2090          * Don't migrate file pages that are mapped in multiple processes
2091          * with execute permissions as they are probably shared libraries.
2092          */
2093         if (page_mapcount(page) != 1 && page_is_file_lru(page) &&
2094             (vma->vm_flags & VM_EXEC))
2095                 goto out;
2096
2097         /*
2098          * Also do not migrate dirty pages as not all filesystems can move
2099          * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles.
2100          */
2101         if (page_is_file_lru(page) && PageDirty(page))
2102                 goto out;
2103
2104         isolated = numamigrate_isolate_page(pgdat, page);
2105         if (!isolated)
2106                 goto out;
2107
2108         list_add(&page->lru, &migratepages);
2109         nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
2110                                      NULL, node, MIGRATE_ASYNC,
2111                                      MR_NUMA_MISPLACED);
2112         if (nr_remaining) {
2113                 if (!list_empty(&migratepages)) {
2114                         list_del(&page->lru);
2115                         dec_node_page_state(page, NR_ISOLATED_ANON +
2116                                         page_is_file_lru(page));
2117                         putback_lru_page(page);
2118                 }
2119                 isolated = 0;
2120         } else
2121                 count_vm_numa_event(NUMA_PAGE_MIGRATE);
2122         BUG_ON(!list_empty(&migratepages));
2123         return isolated;
2124
2125 out:
2126         put_page(page);
2127         return 0;
2128 }
2129 #endif /* CONFIG_NUMA_BALANCING */
2130
2131 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
2132 /*
2133  * Migrates a THP to a given target node. page must be locked and is unlocked
2134  * before returning.
2135  */
2136 int migrate_misplaced_transhuge_page(struct mm_struct *mm,
2137                                 struct vm_area_struct *vma,
2138                                 pmd_t *pmd, pmd_t entry,
2139                                 unsigned long address,
2140                                 struct page *page, int node)
2141 {
2142         spinlock_t *ptl;
2143         pg_data_t *pgdat = NODE_DATA(node);
2144         int isolated = 0;
2145         struct page *new_page = NULL;
2146         int page_lru = page_is_file_lru(page);
2147         unsigned long start = address & HPAGE_PMD_MASK;
2148
2149         new_page = alloc_pages_node(node,
2150                 (GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
2151                 HPAGE_PMD_ORDER);
2152         if (!new_page)
2153                 goto out_fail;
2154         prep_transhuge_page(new_page);
2155
2156         isolated = numamigrate_isolate_page(pgdat, page);
2157         if (!isolated) {
2158                 put_page(new_page);
2159                 goto out_fail;
2160         }
2161
2162         /* Prepare a page as a migration target */
2163         __SetPageLocked(new_page);
2164         if (PageSwapBacked(page))
2165                 __SetPageSwapBacked(new_page);
2166
2167         /* anon mapping, we can simply copy page->mapping to the new page: */
2168         new_page->mapping = page->mapping;
2169         new_page->index = page->index;
2170         /* flush the cache before copying using the kernel virtual address */
2171         flush_cache_range(vma, start, start + HPAGE_PMD_SIZE);
2172         migrate_page_copy(new_page, page);
2173         WARN_ON(PageLRU(new_page));
2174
2175         /* Recheck the target PMD */
2176         ptl = pmd_lock(mm, pmd);
2177         if (unlikely(!pmd_same(*pmd, entry) || !page_ref_freeze(page, 2))) {
2178                 spin_unlock(ptl);
2179
2180                 /* Reverse changes made by migrate_page_copy() */
2181                 if (TestClearPageActive(new_page))
2182                         SetPageActive(page);
2183                 if (TestClearPageUnevictable(new_page))
2184                         SetPageUnevictable(page);
2185
2186                 unlock_page(new_page);
2187                 put_page(new_page);             /* Free it */
2188
2189                 /* Retake the callers reference and putback on LRU */
2190                 get_page(page);
2191                 putback_lru_page(page);
2192                 mod_node_page_state(page_pgdat(page),
2193                          NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
2194
2195                 goto out_unlock;
2196         }
2197
2198         entry = mk_huge_pmd(new_page, vma->vm_page_prot);
2199         entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
2200
2201         /*
2202          * Overwrite the old entry under pagetable lock and establish
2203          * the new PTE. Any parallel GUP will either observe the old
2204          * page blocking on the page lock, block on the page table
2205          * lock or observe the new page. The SetPageUptodate on the
2206          * new page and page_add_new_anon_rmap guarantee the copy is
2207          * visible before the pagetable update.
2208          */
2209         page_add_anon_rmap(new_page, vma, start, true);
2210         /*
2211          * At this point the pmd is numa/protnone (i.e. non present) and the TLB
2212          * has already been flushed globally.  So no TLB can be currently
2213          * caching this non present pmd mapping.  There's no need to clear the
2214          * pmd before doing set_pmd_at(), nor to flush the TLB after
2215          * set_pmd_at().  Clearing the pmd here would introduce a race
2216          * condition against MADV_DONTNEED, because MADV_DONTNEED only holds the
2217          * mmap_lock for reading.  If the pmd is set to NULL at any given time,
2218          * MADV_DONTNEED won't wait on the pmd lock and it'll skip clearing this
2219          * pmd.
2220          */
2221         set_pmd_at(mm, start, pmd, entry);
2222         update_mmu_cache_pmd(vma, address, &entry);
2223
2224         page_ref_unfreeze(page, 2);
2225         mlock_migrate_page(new_page, page);
2226         page_remove_rmap(page, true);
2227         set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED);
2228
2229         spin_unlock(ptl);
2230
2231         /* Take an "isolate" reference and put new page on the LRU. */
2232         get_page(new_page);
2233         putback_lru_page(new_page);
2234
2235         unlock_page(new_page);
2236         unlock_page(page);
2237         put_page(page);                 /* Drop the rmap reference */
2238         put_page(page);                 /* Drop the LRU isolation reference */
2239
2240         count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
2241         count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
2242
2243         mod_node_page_state(page_pgdat(page),
2244                         NR_ISOLATED_ANON + page_lru,
2245                         -HPAGE_PMD_NR);
2246         return isolated;
2247
2248 out_fail:
2249         count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
2250         ptl = pmd_lock(mm, pmd);
2251         if (pmd_same(*pmd, entry)) {
2252                 entry = pmd_modify(entry, vma->vm_page_prot);
2253                 set_pmd_at(mm, start, pmd, entry);
2254                 update_mmu_cache_pmd(vma, address, &entry);
2255         }
2256         spin_unlock(ptl);
2257
2258 out_unlock:
2259         unlock_page(page);
2260         put_page(page);
2261         return 0;
2262 }
2263 #endif /* CONFIG_NUMA_BALANCING */
2264
2265 #endif /* CONFIG_NUMA */
2266
2267 #ifdef CONFIG_DEVICE_PRIVATE
2268 static int migrate_vma_collect_hole(unsigned long start,
2269                                     unsigned long end,
2270                                     __always_unused int depth,
2271                                     struct mm_walk *walk)
2272 {
2273         struct migrate_vma *migrate = walk->private;
2274         unsigned long addr;
2275
2276         /* Only allow populating anonymous memory. */
2277         if (!vma_is_anonymous(walk->vma)) {
2278                 for (addr = start; addr < end; addr += PAGE_SIZE) {
2279                         migrate->src[migrate->npages] = 0;
2280                         migrate->dst[migrate->npages] = 0;
2281                         migrate->npages++;
2282                 }
2283                 return 0;
2284         }
2285
2286         for (addr = start; addr < end; addr += PAGE_SIZE) {
2287                 migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE;
2288                 migrate->dst[migrate->npages] = 0;
2289                 migrate->npages++;
2290                 migrate->cpages++;
2291         }
2292
2293         return 0;
2294 }
2295
2296 static int migrate_vma_collect_skip(unsigned long start,
2297                                     unsigned long end,
2298                                     struct mm_walk *walk)
2299 {
2300         struct migrate_vma *migrate = walk->private;
2301         unsigned long addr;
2302
2303         for (addr = start; addr < end; addr += PAGE_SIZE) {
2304                 migrate->dst[migrate->npages] = 0;
2305                 migrate->src[migrate->npages++] = 0;
2306         }
2307
2308         return 0;
2309 }
2310
2311 static int migrate_vma_collect_pmd(pmd_t *pmdp,
2312                                    unsigned long start,
2313                                    unsigned long end,
2314                                    struct mm_walk *walk)
2315 {
2316         struct migrate_vma *migrate = walk->private;
2317         struct vm_area_struct *vma = walk->vma;
2318         struct mm_struct *mm = vma->vm_mm;
2319         unsigned long addr = start, unmapped = 0;
2320         spinlock_t *ptl;
2321         pte_t *ptep;
2322
2323 again:
2324         if (pmd_none(*pmdp))
2325                 return migrate_vma_collect_hole(start, end, -1, walk);
2326
2327         if (pmd_trans_huge(*pmdp)) {
2328                 struct page *page;
2329
2330                 ptl = pmd_lock(mm, pmdp);
2331                 if (unlikely(!pmd_trans_huge(*pmdp))) {
2332                         spin_unlock(ptl);
2333                         goto again;
2334                 }
2335
2336                 page = pmd_page(*pmdp);
2337                 if (is_huge_zero_page(page)) {
2338                         spin_unlock(ptl);
2339                         split_huge_pmd(vma, pmdp, addr);
2340                         if (pmd_trans_unstable(pmdp))
2341                                 return migrate_vma_collect_skip(start, end,
2342                                                                 walk);
2343                 } else {
2344                         int ret;
2345
2346                         get_page(page);
2347                         spin_unlock(ptl);
2348                         if (unlikely(!trylock_page(page)))
2349                                 return migrate_vma_collect_skip(start, end,
2350                                                                 walk);
2351                         ret = split_huge_page(page);
2352                         unlock_page(page);
2353                         put_page(page);
2354                         if (ret)
2355                                 return migrate_vma_collect_skip(start, end,
2356                                                                 walk);
2357                         if (pmd_none(*pmdp))
2358                                 return migrate_vma_collect_hole(start, end, -1,
2359                                                                 walk);
2360                 }
2361         }
2362
2363         if (unlikely(pmd_bad(*pmdp)))
2364                 return migrate_vma_collect_skip(start, end, walk);
2365
2366         ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2367         arch_enter_lazy_mmu_mode();
2368
2369         for (; addr < end; addr += PAGE_SIZE, ptep++) {
2370                 unsigned long mpfn = 0, pfn;
2371                 struct page *page;
2372                 swp_entry_t entry;
2373                 pte_t pte;
2374
2375                 pte = *ptep;
2376
2377                 if (pte_none(pte)) {
2378                         if (vma_is_anonymous(vma)) {
2379                                 mpfn = MIGRATE_PFN_MIGRATE;
2380                                 migrate->cpages++;
2381                         }
2382                         goto next;
2383                 }
2384
2385                 if (!pte_present(pte)) {
2386                         /*
2387                          * Only care about unaddressable device page special
2388                          * page table entry. Other special swap entries are not
2389                          * migratable, and we ignore regular swapped page.
2390                          */
2391                         entry = pte_to_swp_entry(pte);
2392                         if (!is_device_private_entry(entry))
2393                                 goto next;
2394
2395                         page = device_private_entry_to_page(entry);
2396                         if (!(migrate->flags &
2397                                 MIGRATE_VMA_SELECT_DEVICE_PRIVATE) ||
2398                             page->pgmap->owner != migrate->pgmap_owner)
2399                                 goto next;
2400
2401                         mpfn = migrate_pfn(page_to_pfn(page)) |
2402                                         MIGRATE_PFN_MIGRATE;
2403                         if (is_write_device_private_entry(entry))
2404                                 mpfn |= MIGRATE_PFN_WRITE;
2405                 } else {
2406                         if (!(migrate->flags & MIGRATE_VMA_SELECT_SYSTEM))
2407                                 goto next;
2408                         pfn = pte_pfn(pte);
2409                         if (is_zero_pfn(pfn)) {
2410                                 mpfn = MIGRATE_PFN_MIGRATE;
2411                                 migrate->cpages++;
2412                                 goto next;
2413                         }
2414                         page = vm_normal_page(migrate->vma, addr, pte);
2415                         mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
2416                         mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
2417                 }
2418
2419                 /* FIXME support THP */
2420                 if (!page || !page->mapping || PageTransCompound(page)) {
2421                         mpfn = 0;
2422                         goto next;
2423                 }
2424
2425                 /*
2426                  * By getting a reference on the page we pin it and that blocks
2427                  * any kind of migration. Side effect is that it "freezes" the
2428                  * pte.
2429                  *
2430                  * We drop this reference after isolating the page from the lru
2431                  * for non device page (device page are not on the lru and thus
2432                  * can't be dropped from it).
2433                  */
2434                 get_page(page);
2435                 migrate->cpages++;
2436
2437                 /*
2438                  * Optimize for the common case where page is only mapped once
2439                  * in one process. If we can lock the page, then we can safely
2440                  * set up a special migration page table entry now.
2441                  */
2442                 if (trylock_page(page)) {
2443                         pte_t swp_pte;
2444
2445                         mpfn |= MIGRATE_PFN_LOCKED;
2446                         ptep_get_and_clear(mm, addr, ptep);
2447
2448                         /* Setup special migration page table entry */
2449                         entry = make_migration_entry(page, mpfn &
2450                                                      MIGRATE_PFN_WRITE);
2451                         swp_pte = swp_entry_to_pte(entry);
2452                         if (pte_present(pte)) {
2453                                 if (pte_soft_dirty(pte))
2454                                         swp_pte = pte_swp_mksoft_dirty(swp_pte);
2455                                 if (pte_uffd_wp(pte))
2456                                         swp_pte = pte_swp_mkuffd_wp(swp_pte);
2457                         } else {
2458                                 if (pte_swp_soft_dirty(pte))
2459                                         swp_pte = pte_swp_mksoft_dirty(swp_pte);
2460                                 if (pte_swp_uffd_wp(pte))
2461                                         swp_pte = pte_swp_mkuffd_wp(swp_pte);
2462                         }
2463                         set_pte_at(mm, addr, ptep, swp_pte);
2464
2465                         /*
2466                          * This is like regular unmap: we remove the rmap and
2467                          * drop page refcount. Page won't be freed, as we took
2468                          * a reference just above.
2469                          */
2470                         page_remove_rmap(page, false);
2471                         put_page(page);
2472
2473                         if (pte_present(pte))
2474                                 unmapped++;
2475                 }
2476
2477 next:
2478                 migrate->dst[migrate->npages] = 0;
2479                 migrate->src[migrate->npages++] = mpfn;
2480         }
2481         arch_leave_lazy_mmu_mode();
2482         pte_unmap_unlock(ptep - 1, ptl);
2483
2484         /* Only flush the TLB if we actually modified any entries */
2485         if (unmapped)
2486                 flush_tlb_range(walk->vma, start, end);
2487
2488         return 0;
2489 }
2490
2491 static const struct mm_walk_ops migrate_vma_walk_ops = {
2492         .pmd_entry              = migrate_vma_collect_pmd,
2493         .pte_hole               = migrate_vma_collect_hole,
2494 };
2495
2496 /*
2497  * migrate_vma_collect() - collect pages over a range of virtual addresses
2498  * @migrate: migrate struct containing all migration information
2499  *
2500  * This will walk the CPU page table. For each virtual address backed by a
2501  * valid page, it updates the src array and takes a reference on the page, in
2502  * order to pin the page until we lock it and unmap it.
2503  */
2504 static void migrate_vma_collect(struct migrate_vma *migrate)
2505 {
2506         struct mmu_notifier_range range;
2507
2508         /*
2509          * Note that the pgmap_owner is passed to the mmu notifier callback so
2510          * that the registered device driver can skip invalidating device
2511          * private page mappings that won't be migrated.
2512          */
2513         mmu_notifier_range_init_migrate(&range, 0, migrate->vma,
2514                 migrate->vma->vm_mm, migrate->start, migrate->end,
2515                 migrate->pgmap_owner);
2516         mmu_notifier_invalidate_range_start(&range);
2517
2518         walk_page_range(migrate->vma->vm_mm, migrate->start, migrate->end,
2519                         &migrate_vma_walk_ops, migrate);
2520
2521         mmu_notifier_invalidate_range_end(&range);
2522         migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
2523 }
2524
2525 /*
2526  * migrate_vma_check_page() - check if page is pinned or not
2527  * @page: struct page to check
2528  *
2529  * Pinned pages cannot be migrated. This is the same test as in
2530  * migrate_page_move_mapping(), except that here we allow migration of a
2531  * ZONE_DEVICE page.
2532  */
2533 static bool migrate_vma_check_page(struct page *page)
2534 {
2535         /*
2536          * One extra ref because caller holds an extra reference, either from
2537          * isolate_lru_page() for a regular page, or migrate_vma_collect() for
2538          * a device page.
2539          */
2540         int extra = 1;
2541
2542         /*
2543          * FIXME support THP (transparent huge page), it is bit more complex to
2544          * check them than regular pages, because they can be mapped with a pmd
2545          * or with a pte (split pte mapping).
2546          */
2547         if (PageCompound(page))
2548                 return false;
2549
2550         /* Page from ZONE_DEVICE have one extra reference */
2551         if (is_zone_device_page(page)) {
2552                 /*
2553                  * Private page can never be pin as they have no valid pte and
2554                  * GUP will fail for those. Yet if there is a pending migration
2555                  * a thread might try to wait on the pte migration entry and
2556                  * will bump the page reference count. Sadly there is no way to
2557                  * differentiate a regular pin from migration wait. Hence to
2558                  * avoid 2 racing thread trying to migrate back to CPU to enter
2559                  * infinite loop (one stoping migration because the other is
2560                  * waiting on pte migration entry). We always return true here.
2561                  *
2562                  * FIXME proper solution is to rework migration_entry_wait() so
2563                  * it does not need to take a reference on page.
2564                  */
2565                 return is_device_private_page(page);
2566         }
2567
2568         /* For file back page */
2569         if (page_mapping(page))
2570                 extra += 1 + page_has_private(page);
2571
2572         if ((page_count(page) - extra) > page_mapcount(page))
2573                 return false;
2574
2575         return true;
2576 }
2577
2578 /*
2579  * migrate_vma_prepare() - lock pages and isolate them from the lru
2580  * @migrate: migrate struct containing all migration information
2581  *
2582  * This locks pages that have been collected by migrate_vma_collect(). Once each
2583  * page is locked it is isolated from the lru (for non-device pages). Finally,
2584  * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be
2585  * migrated by concurrent kernel threads.
2586  */
2587 static void migrate_vma_prepare(struct migrate_vma *migrate)
2588 {
2589         const unsigned long npages = migrate->npages;
2590         const unsigned long start = migrate->start;
2591         unsigned long addr, i, restore = 0;
2592         bool allow_drain = true;
2593
2594         lru_add_drain();
2595
2596         for (i = 0; (i < npages) && migrate->cpages; i++) {
2597                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2598                 bool remap = true;
2599
2600                 if (!page)
2601                         continue;
2602
2603                 if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) {
2604                         /*
2605                          * Because we are migrating several pages there can be
2606                          * a deadlock between 2 concurrent migration where each
2607                          * are waiting on each other page lock.
2608                          *
2609                          * Make migrate_vma() a best effort thing and backoff
2610                          * for any page we can not lock right away.
2611                          */
2612                         if (!trylock_page(page)) {
2613                                 migrate->src[i] = 0;
2614                                 migrate->cpages--;
2615                                 put_page(page);
2616                                 continue;
2617                         }
2618                         remap = false;
2619                         migrate->src[i] |= MIGRATE_PFN_LOCKED;
2620                 }
2621
2622                 /* ZONE_DEVICE pages are not on LRU */
2623                 if (!is_zone_device_page(page)) {
2624                         if (!PageLRU(page) && allow_drain) {
2625                                 /* Drain CPU's pagevec */
2626                                 lru_add_drain_all();
2627                                 allow_drain = false;
2628                         }
2629
2630                         if (isolate_lru_page(page)) {
2631                                 if (remap) {
2632                                         migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2633                                         migrate->cpages--;
2634                                         restore++;
2635                                 } else {
2636                                         migrate->src[i] = 0;
2637                                         unlock_page(page);
2638                                         migrate->cpages--;
2639                                         put_page(page);
2640                                 }
2641                                 continue;
2642                         }
2643
2644                         /* Drop the reference we took in collect */
2645                         put_page(page);
2646                 }
2647
2648                 if (!migrate_vma_check_page(page)) {
2649                         if (remap) {
2650                                 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2651                                 migrate->cpages--;
2652                                 restore++;
2653
2654                                 if (!is_zone_device_page(page)) {
2655                                         get_page(page);
2656                                         putback_lru_page(page);
2657                                 }
2658                         } else {
2659                                 migrate->src[i] = 0;
2660                                 unlock_page(page);
2661                                 migrate->cpages--;
2662
2663                                 if (!is_zone_device_page(page))
2664                                         putback_lru_page(page);
2665                                 else
2666                                         put_page(page);
2667                         }
2668                 }
2669         }
2670
2671         for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) {
2672                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2673
2674                 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2675                         continue;
2676
2677                 remove_migration_pte(page, migrate->vma, addr, page);
2678
2679                 migrate->src[i] = 0;
2680                 unlock_page(page);
2681                 put_page(page);
2682                 restore--;
2683         }
2684 }
2685
2686 /*
2687  * migrate_vma_unmap() - replace page mapping with special migration pte entry
2688  * @migrate: migrate struct containing all migration information
2689  *
2690  * Replace page mapping (CPU page table pte) with a special migration pte entry
2691  * and check again if it has been pinned. Pinned pages are restored because we
2692  * cannot migrate them.
2693  *
2694  * This is the last step before we call the device driver callback to allocate
2695  * destination memory and copy contents of original page over to new page.
2696  */
2697 static void migrate_vma_unmap(struct migrate_vma *migrate)
2698 {
2699         int flags = TTU_MIGRATION | TTU_IGNORE_MLOCK;
2700         const unsigned long npages = migrate->npages;
2701         const unsigned long start = migrate->start;
2702         unsigned long addr, i, restore = 0;
2703
2704         for (i = 0; i < npages; i++) {
2705                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2706
2707                 if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2708                         continue;
2709
2710                 if (page_mapped(page)) {
2711                         try_to_unmap(page, flags);
2712                         if (page_mapped(page))
2713                                 goto restore;
2714                 }
2715
2716                 if (migrate_vma_check_page(page))
2717                         continue;
2718
2719 restore:
2720                 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2721                 migrate->cpages--;
2722                 restore++;
2723         }
2724
2725         for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) {
2726                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2727
2728                 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2729                         continue;
2730
2731                 remove_migration_ptes(page, page, false);
2732
2733                 migrate->src[i] = 0;
2734                 unlock_page(page);
2735                 restore--;
2736
2737                 if (is_zone_device_page(page))
2738                         put_page(page);
2739                 else
2740                         putback_lru_page(page);
2741         }
2742 }
2743
2744 /**
2745  * migrate_vma_setup() - prepare to migrate a range of memory
2746  * @args: contains the vma, start, and pfns arrays for the migration
2747  *
2748  * Returns: negative errno on failures, 0 when 0 or more pages were migrated
2749  * without an error.
2750  *
2751  * Prepare to migrate a range of memory virtual address range by collecting all
2752  * the pages backing each virtual address in the range, saving them inside the
2753  * src array.  Then lock those pages and unmap them. Once the pages are locked
2754  * and unmapped, check whether each page is pinned or not.  Pages that aren't
2755  * pinned have the MIGRATE_PFN_MIGRATE flag set (by this function) in the
2756  * corresponding src array entry.  Then restores any pages that are pinned, by
2757  * remapping and unlocking those pages.
2758  *
2759  * The caller should then allocate destination memory and copy source memory to
2760  * it for all those entries (ie with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE
2761  * flag set).  Once these are allocated and copied, the caller must update each
2762  * corresponding entry in the dst array with the pfn value of the destination
2763  * page and with the MIGRATE_PFN_VALID and MIGRATE_PFN_LOCKED flags set
2764  * (destination pages must have their struct pages locked, via lock_page()).
2765  *
2766  * Note that the caller does not have to migrate all the pages that are marked
2767  * with MIGRATE_PFN_MIGRATE flag in src array unless this is a migration from
2768  * device memory to system memory.  If the caller cannot migrate a device page
2769  * back to system memory, then it must return VM_FAULT_SIGBUS, which has severe
2770  * consequences for the userspace process, so it must be avoided if at all
2771  * possible.
2772  *
2773  * For empty entries inside CPU page table (pte_none() or pmd_none() is true) we
2774  * do set MIGRATE_PFN_MIGRATE flag inside the corresponding source array thus
2775  * allowing the caller to allocate device memory for those unback virtual
2776  * address.  For this the caller simply has to allocate device memory and
2777  * properly set the destination entry like for regular migration.  Note that
2778  * this can still fails and thus inside the device driver must check if the
2779  * migration was successful for those entries after calling migrate_vma_pages()
2780  * just like for regular migration.
2781  *
2782  * After that, the callers must call migrate_vma_pages() to go over each entry
2783  * in the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
2784  * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
2785  * then migrate_vma_pages() to migrate struct page information from the source
2786  * struct page to the destination struct page.  If it fails to migrate the
2787  * struct page information, then it clears the MIGRATE_PFN_MIGRATE flag in the
2788  * src array.
2789  *
2790  * At this point all successfully migrated pages have an entry in the src
2791  * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
2792  * array entry with MIGRATE_PFN_VALID flag set.
2793  *
2794  * Once migrate_vma_pages() returns the caller may inspect which pages were
2795  * successfully migrated, and which were not.  Successfully migrated pages will
2796  * have the MIGRATE_PFN_MIGRATE flag set for their src array entry.
2797  *
2798  * It is safe to update device page table after migrate_vma_pages() because
2799  * both destination and source page are still locked, and the mmap_lock is held
2800  * in read mode (hence no one can unmap the range being migrated).
2801  *
2802  * Once the caller is done cleaning up things and updating its page table (if it
2803  * chose to do so, this is not an obligation) it finally calls
2804  * migrate_vma_finalize() to update the CPU page table to point to new pages
2805  * for successfully migrated pages or otherwise restore the CPU page table to
2806  * point to the original source pages.
2807  */
2808 int migrate_vma_setup(struct migrate_vma *args)
2809 {
2810         long nr_pages = (args->end - args->start) >> PAGE_SHIFT;
2811
2812         args->start &= PAGE_MASK;
2813         args->end &= PAGE_MASK;
2814         if (!args->vma || is_vm_hugetlb_page(args->vma) ||
2815             (args->vma->vm_flags & VM_SPECIAL) || vma_is_dax(args->vma))
2816                 return -EINVAL;
2817         if (nr_pages <= 0)
2818                 return -EINVAL;
2819         if (args->start < args->vma->vm_start ||
2820             args->start >= args->vma->vm_end)
2821                 return -EINVAL;
2822         if (args->end <= args->vma->vm_start || args->end > args->vma->vm_end)
2823                 return -EINVAL;
2824         if (!args->src || !args->dst)
2825                 return -EINVAL;
2826
2827         memset(args->src, 0, sizeof(*args->src) * nr_pages);
2828         args->cpages = 0;
2829         args->npages = 0;
2830
2831         migrate_vma_collect(args);
2832
2833         if (args->cpages)
2834                 migrate_vma_prepare(args);
2835         if (args->cpages)
2836                 migrate_vma_unmap(args);
2837
2838         /*
2839          * At this point pages are locked and unmapped, and thus they have
2840          * stable content and can safely be copied to destination memory that
2841          * is allocated by the drivers.
2842          */
2843         return 0;
2844
2845 }
2846 EXPORT_SYMBOL(migrate_vma_setup);
2847
2848 /*
2849  * This code closely matches the code in:
2850  *   __handle_mm_fault()
2851  *     handle_pte_fault()
2852  *       do_anonymous_page()
2853  * to map in an anonymous zero page but the struct page will be a ZONE_DEVICE
2854  * private page.
2855  */
2856 static void migrate_vma_insert_page(struct migrate_vma *migrate,
2857                                     unsigned long addr,
2858                                     struct page *page,
2859                                     unsigned long *src,
2860                                     unsigned long *dst)
2861 {
2862         struct vm_area_struct *vma = migrate->vma;
2863         struct mm_struct *mm = vma->vm_mm;
2864         bool flush = false;
2865         spinlock_t *ptl;
2866         pte_t entry;
2867         pgd_t *pgdp;
2868         p4d_t *p4dp;
2869         pud_t *pudp;
2870         pmd_t *pmdp;
2871         pte_t *ptep;
2872
2873         /* Only allow populating anonymous memory */
2874         if (!vma_is_anonymous(vma))
2875                 goto abort;
2876
2877         pgdp = pgd_offset(mm, addr);
2878         p4dp = p4d_alloc(mm, pgdp, addr);
2879         if (!p4dp)
2880                 goto abort;
2881         pudp = pud_alloc(mm, p4dp, addr);
2882         if (!pudp)
2883                 goto abort;
2884         pmdp = pmd_alloc(mm, pudp, addr);
2885         if (!pmdp)
2886                 goto abort;
2887
2888         if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp))
2889                 goto abort;
2890
2891         /*
2892          * Use pte_alloc() instead of pte_alloc_map().  We can't run
2893          * pte_offset_map() on pmds where a huge pmd might be created
2894          * from a different thread.
2895          *
2896          * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
2897          * parallel threads are excluded by other means.
2898          *
2899          * Here we only have mmap_read_lock(mm).
2900          */
2901         if (pte_alloc(mm, pmdp))
2902                 goto abort;
2903
2904         /* See the comment in pte_alloc_one_map() */
2905         if (unlikely(pmd_trans_unstable(pmdp)))
2906                 goto abort;
2907
2908         if (unlikely(anon_vma_prepare(vma)))
2909                 goto abort;
2910         if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL))
2911                 goto abort;
2912
2913         /*
2914          * The memory barrier inside __SetPageUptodate makes sure that
2915          * preceding stores to the page contents become visible before
2916          * the set_pte_at() write.
2917          */
2918         __SetPageUptodate(page);
2919
2920         if (is_zone_device_page(page)) {
2921                 if (is_device_private_page(page)) {
2922                         swp_entry_t swp_entry;
2923
2924                         swp_entry = make_device_private_entry(page, vma->vm_flags & VM_WRITE);
2925                         entry = swp_entry_to_pte(swp_entry);
2926                 }
2927         } else {
2928                 entry = mk_pte(page, vma->vm_page_prot);
2929                 if (vma->vm_flags & VM_WRITE)
2930                         entry = pte_mkwrite(pte_mkdirty(entry));
2931         }
2932
2933         ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2934
2935         if (check_stable_address_space(mm))
2936                 goto unlock_abort;
2937
2938         if (pte_present(*ptep)) {
2939                 unsigned long pfn = pte_pfn(*ptep);
2940
2941                 if (!is_zero_pfn(pfn))
2942                         goto unlock_abort;
2943                 flush = true;
2944         } else if (!pte_none(*ptep))
2945                 goto unlock_abort;
2946
2947         /*
2948          * Check for userfaultfd but do not deliver the fault. Instead,
2949          * just back off.
2950          */
2951         if (userfaultfd_missing(vma))
2952                 goto unlock_abort;
2953
2954         inc_mm_counter(mm, MM_ANONPAGES);
2955         page_add_new_anon_rmap(page, vma, addr, false);
2956         if (!is_zone_device_page(page))
2957                 lru_cache_add_inactive_or_unevictable(page, vma);
2958         get_page(page);
2959
2960         if (flush) {
2961                 flush_cache_page(vma, addr, pte_pfn(*ptep));
2962                 ptep_clear_flush_notify(vma, addr, ptep);
2963                 set_pte_at_notify(mm, addr, ptep, entry);
2964                 update_mmu_cache(vma, addr, ptep);
2965         } else {
2966                 /* No need to invalidate - it was non-present before */
2967                 set_pte_at(mm, addr, ptep, entry);
2968                 update_mmu_cache(vma, addr, ptep);
2969         }
2970
2971         pte_unmap_unlock(ptep, ptl);
2972         *src = MIGRATE_PFN_MIGRATE;
2973         return;
2974
2975 unlock_abort:
2976         pte_unmap_unlock(ptep, ptl);
2977 abort:
2978         *src &= ~MIGRATE_PFN_MIGRATE;
2979 }
2980
2981 /**
2982  * migrate_vma_pages() - migrate meta-data from src page to dst page
2983  * @migrate: migrate struct containing all migration information
2984  *
2985  * This migrates struct page meta-data from source struct page to destination
2986  * struct page. This effectively finishes the migration from source page to the
2987  * destination page.
2988  */
2989 void migrate_vma_pages(struct migrate_vma *migrate)
2990 {
2991         const unsigned long npages = migrate->npages;
2992         const unsigned long start = migrate->start;
2993         struct mmu_notifier_range range;
2994         unsigned long addr, i;
2995         bool notified = false;
2996
2997         for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) {
2998                 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2999                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
3000                 struct address_space *mapping;
3001                 int r;
3002
3003                 if (!newpage) {
3004                         migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
3005                         continue;
3006                 }
3007
3008                 if (!page) {
3009                         if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE))
3010                                 continue;
3011                         if (!notified) {
3012                                 notified = true;
3013
3014                                 mmu_notifier_range_init(&range,
3015                                                         MMU_NOTIFY_CLEAR, 0,
3016                                                         NULL,
3017                                                         migrate->vma->vm_mm,
3018                                                         addr, migrate->end);
3019                                 mmu_notifier_invalidate_range_start(&range);
3020                         }
3021                         migrate_vma_insert_page(migrate, addr, newpage,
3022                                                 &migrate->src[i],
3023                                                 &migrate->dst[i]);
3024                         continue;
3025                 }
3026
3027                 mapping = page_mapping(page);
3028
3029                 if (is_zone_device_page(newpage)) {
3030                         if (is_device_private_page(newpage)) {
3031                                 /*
3032                                  * For now only support private anonymous when
3033                                  * migrating to un-addressable device memory.
3034                                  */
3035                                 if (mapping) {
3036                                         migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
3037                                         continue;
3038                                 }
3039                         } else {
3040                                 /*
3041                                  * Other types of ZONE_DEVICE page are not
3042                                  * supported.
3043                                  */
3044                                 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
3045                                 continue;
3046                         }
3047                 }
3048
3049                 r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY);
3050                 if (r != MIGRATEPAGE_SUCCESS)
3051                         migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
3052         }
3053
3054         /*
3055          * No need to double call mmu_notifier->invalidate_range() callback as
3056          * the above ptep_clear_flush_notify() inside migrate_vma_insert_page()
3057          * did already call it.
3058          */
3059         if (notified)
3060                 mmu_notifier_invalidate_range_only_end(&range);
3061 }
3062 EXPORT_SYMBOL(migrate_vma_pages);
3063
3064 /**
3065  * migrate_vma_finalize() - restore CPU page table entry
3066  * @migrate: migrate struct containing all migration information
3067  *
3068  * This replaces the special migration pte entry with either a mapping to the
3069  * new page if migration was successful for that page, or to the original page
3070  * otherwise.
3071  *
3072  * This also unlocks the pages and puts them back on the lru, or drops the extra
3073  * refcount, for device pages.
3074  */
3075 void migrate_vma_finalize(struct migrate_vma *migrate)
3076 {
3077         const unsigned long npages = migrate->npages;
3078         unsigned long i;
3079
3080         for (i = 0; i < npages; i++) {
3081                 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
3082                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
3083
3084                 if (!page) {
3085                         if (newpage) {
3086                                 unlock_page(newpage);
3087                                 put_page(newpage);
3088                         }
3089                         continue;
3090                 }
3091
3092                 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) {
3093                         if (newpage) {
3094                                 unlock_page(newpage);
3095                                 put_page(newpage);
3096                         }
3097                         newpage = page;
3098                 }
3099
3100                 remove_migration_ptes(page, newpage, false);
3101                 unlock_page(page);
3102
3103                 if (is_zone_device_page(page))
3104                         put_page(page);
3105                 else
3106                         putback_lru_page(page);
3107
3108                 if (newpage != page) {
3109                         unlock_page(newpage);
3110                         if (is_zone_device_page(newpage))
3111                                 put_page(newpage);
3112                         else
3113                                 putback_lru_page(newpage);
3114                 }
3115         }
3116 }
3117 EXPORT_SYMBOL(migrate_vma_finalize);
3118 #endif /* CONFIG_DEVICE_PRIVATE */