1 // SPDX-License-Identifier: GPL-2.0
3 * Memory Migration functionality - linux/mm/migrate.c
5 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
7 * Page migration was first developed in the context of the memory hotplug
8 * project. The main authors of the migration code are:
10 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
11 * Hirokazu Takahashi <taka@valinux.co.jp>
12 * Dave Hansen <haveblue@us.ibm.com>
16 #include <linux/migrate.h>
17 #include <linux/export.h>
18 #include <linux/swap.h>
19 #include <linux/swapops.h>
20 #include <linux/pagemap.h>
21 #include <linux/buffer_head.h>
22 #include <linux/mm_inline.h>
23 #include <linux/nsproxy.h>
24 #include <linux/pagevec.h>
25 #include <linux/ksm.h>
26 #include <linux/rmap.h>
27 #include <linux/topology.h>
28 #include <linux/cpu.h>
29 #include <linux/cpuset.h>
30 #include <linux/writeback.h>
31 #include <linux/mempolicy.h>
32 #include <linux/vmalloc.h>
33 #include <linux/security.h>
34 #include <linux/backing-dev.h>
35 #include <linux/compaction.h>
36 #include <linux/syscalls.h>
37 #include <linux/compat.h>
38 #include <linux/hugetlb.h>
39 #include <linux/hugetlb_cgroup.h>
40 #include <linux/gfp.h>
41 #include <linux/pfn_t.h>
42 #include <linux/memremap.h>
43 #include <linux/userfaultfd_k.h>
44 #include <linux/balloon_compaction.h>
45 #include <linux/mmu_notifier.h>
46 #include <linux/page_idle.h>
47 #include <linux/page_owner.h>
48 #include <linux/sched/mm.h>
49 #include <linux/ptrace.h>
51 #include <asm/tlbflush.h>
53 #define CREATE_TRACE_POINTS
54 #include <trace/events/migrate.h>
59 * migrate_prep() needs to be called before we start compiling a list of pages
60 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
61 * undesirable, use migrate_prep_local()
63 int migrate_prep(void)
66 * Clear the LRU lists so pages can be isolated.
67 * Note that pages may be moved off the LRU after we have
68 * drained them. Those pages will fail to migrate like other
69 * pages that may be busy.
76 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
77 int migrate_prep_local(void)
84 int isolate_movable_page(struct page *page, isolate_mode_t mode)
86 struct address_space *mapping;
89 * Avoid burning cycles with pages that are yet under __free_pages(),
90 * or just got freed under us.
92 * In case we 'win' a race for a movable page being freed under us and
93 * raise its refcount preventing __free_pages() from doing its job
94 * the put_page() at the end of this block will take care of
95 * release this page, thus avoiding a nasty leakage.
97 if (unlikely(!get_page_unless_zero(page)))
101 * Check PageMovable before holding a PG_lock because page's owner
102 * assumes anybody doesn't touch PG_lock of newly allocated page
103 * so unconditionally grapping the lock ruins page's owner side.
105 if (unlikely(!__PageMovable(page)))
108 * As movable pages are not isolated from LRU lists, concurrent
109 * compaction threads can race against page migration functions
110 * as well as race against the releasing a page.
112 * In order to avoid having an already isolated movable page
113 * being (wrongly) re-isolated while it is under migration,
114 * or to avoid attempting to isolate pages being released,
115 * lets be sure we have the page lock
116 * before proceeding with the movable page isolation steps.
118 if (unlikely(!trylock_page(page)))
121 if (!PageMovable(page) || PageIsolated(page))
122 goto out_no_isolated;
124 mapping = page_mapping(page);
125 VM_BUG_ON_PAGE(!mapping, page);
127 if (!mapping->a_ops->isolate_page(page, mode))
128 goto out_no_isolated;
130 /* Driver shouldn't use PG_isolated bit of page->flags */
131 WARN_ON_ONCE(PageIsolated(page));
132 __SetPageIsolated(page);
145 /* It should be called on page which is PG_movable */
146 void putback_movable_page(struct page *page)
148 struct address_space *mapping;
150 VM_BUG_ON_PAGE(!PageLocked(page), page);
151 VM_BUG_ON_PAGE(!PageMovable(page), page);
152 VM_BUG_ON_PAGE(!PageIsolated(page), page);
154 mapping = page_mapping(page);
155 mapping->a_ops->putback_page(page);
156 __ClearPageIsolated(page);
160 * Put previously isolated pages back onto the appropriate lists
161 * from where they were once taken off for compaction/migration.
163 * This function shall be used whenever the isolated pageset has been
164 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
165 * and isolate_huge_page().
167 void putback_movable_pages(struct list_head *l)
172 list_for_each_entry_safe(page, page2, l, lru) {
173 if (unlikely(PageHuge(page))) {
174 putback_active_hugepage(page);
177 list_del(&page->lru);
179 * We isolated non-lru movable page so here we can use
180 * __PageMovable because LRU page's mapping cannot have
181 * PAGE_MAPPING_MOVABLE.
183 if (unlikely(__PageMovable(page))) {
184 VM_BUG_ON_PAGE(!PageIsolated(page), page);
186 if (PageMovable(page))
187 putback_movable_page(page);
189 __ClearPageIsolated(page);
193 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
194 page_is_file_cache(page), -hpage_nr_pages(page));
195 putback_lru_page(page);
201 * Restore a potential migration pte to a working pte entry
203 static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma,
204 unsigned long addr, void *old)
206 struct page_vma_mapped_walk pvmw = {
210 .flags = PVMW_SYNC | PVMW_MIGRATION,
216 VM_BUG_ON_PAGE(PageTail(page), page);
217 while (page_vma_mapped_walk(&pvmw)) {
221 new = page - pvmw.page->index +
222 linear_page_index(vma, pvmw.address);
224 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
225 /* PMD-mapped THP migration entry */
227 VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
228 remove_migration_pmd(&pvmw, new);
234 pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
235 if (pte_swp_soft_dirty(*pvmw.pte))
236 pte = pte_mksoft_dirty(pte);
239 * Recheck VMA as permissions can change since migration started
241 entry = pte_to_swp_entry(*pvmw.pte);
242 if (is_write_migration_entry(entry))
243 pte = maybe_mkwrite(pte, vma);
245 if (unlikely(is_zone_device_page(new))) {
246 if (is_device_private_page(new)) {
247 entry = make_device_private_entry(new, pte_write(pte));
248 pte = swp_entry_to_pte(entry);
249 } else if (is_device_public_page(new)) {
250 pte = pte_mkdevmap(pte);
251 flush_dcache_page(new);
254 flush_dcache_page(new);
256 #ifdef CONFIG_HUGETLB_PAGE
258 pte = pte_mkhuge(pte);
259 pte = arch_make_huge_pte(pte, vma, new, 0);
260 set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
262 hugepage_add_anon_rmap(new, vma, pvmw.address);
264 page_dup_rmap(new, true);
268 set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
271 page_add_anon_rmap(new, vma, pvmw.address, false);
273 page_add_file_rmap(new, false);
275 if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
278 if (PageTransHuge(page) && PageMlocked(page))
279 clear_page_mlock(page);
281 /* No need to invalidate - it was non-present before */
282 update_mmu_cache(vma, pvmw.address, pvmw.pte);
289 * Get rid of all migration entries and replace them by
290 * references to the indicated page.
292 void remove_migration_ptes(struct page *old, struct page *new, bool locked)
294 struct rmap_walk_control rwc = {
295 .rmap_one = remove_migration_pte,
300 rmap_walk_locked(new, &rwc);
302 rmap_walk(new, &rwc);
306 * Something used the pte of a page under migration. We need to
307 * get to the page and wait until migration is finished.
308 * When we return from this function the fault will be retried.
310 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
319 if (!is_swap_pte(pte))
322 entry = pte_to_swp_entry(pte);
323 if (!is_migration_entry(entry))
326 page = migration_entry_to_page(entry);
329 * Once page cache replacement of page migration started, page_count
330 * is zero; but we must not call put_and_wait_on_page_locked() without
331 * a ref. Use get_page_unless_zero(), and just fault again if it fails.
333 if (!get_page_unless_zero(page))
335 pte_unmap_unlock(ptep, ptl);
336 put_and_wait_on_page_locked(page);
339 pte_unmap_unlock(ptep, ptl);
342 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
343 unsigned long address)
345 spinlock_t *ptl = pte_lockptr(mm, pmd);
346 pte_t *ptep = pte_offset_map(pmd, address);
347 __migration_entry_wait(mm, ptep, ptl);
350 void migration_entry_wait_huge(struct vm_area_struct *vma,
351 struct mm_struct *mm, pte_t *pte)
353 spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
354 __migration_entry_wait(mm, pte, ptl);
357 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
358 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
363 ptl = pmd_lock(mm, pmd);
364 if (!is_pmd_migration_entry(*pmd))
366 page = migration_entry_to_page(pmd_to_swp_entry(*pmd));
367 if (!get_page_unless_zero(page))
370 put_and_wait_on_page_locked(page);
377 static int expected_page_refs(struct page *page)
379 int expected_count = 1;
382 * Device public or private pages have an extra refcount as they are
385 expected_count += is_device_private_page(page);
386 expected_count += is_device_public_page(page);
387 if (page_mapping(page))
388 expected_count += hpage_nr_pages(page) + page_has_private(page);
390 return expected_count;
394 * Replace the page in the mapping.
396 * The number of remaining references must be:
397 * 1 for anonymous pages without a mapping
398 * 2 for pages with a mapping
399 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
401 int migrate_page_move_mapping(struct address_space *mapping,
402 struct page *newpage, struct page *page, enum migrate_mode mode,
405 XA_STATE(xas, &mapping->i_pages, page_index(page));
406 struct zone *oldzone, *newzone;
408 int expected_count = expected_page_refs(page) + extra_count;
411 /* Anonymous page without mapping */
412 if (page_count(page) != expected_count)
415 /* No turning back from here */
416 newpage->index = page->index;
417 newpage->mapping = page->mapping;
418 if (PageSwapBacked(page))
419 __SetPageSwapBacked(newpage);
421 return MIGRATEPAGE_SUCCESS;
424 oldzone = page_zone(page);
425 newzone = page_zone(newpage);
428 if (page_count(page) != expected_count || xas_load(&xas) != page) {
429 xas_unlock_irq(&xas);
433 if (!page_ref_freeze(page, expected_count)) {
434 xas_unlock_irq(&xas);
439 * Now we know that no one else is looking at the page:
440 * no turning back from here.
442 newpage->index = page->index;
443 newpage->mapping = page->mapping;
444 page_ref_add(newpage, hpage_nr_pages(page)); /* add cache reference */
445 if (PageSwapBacked(page)) {
446 __SetPageSwapBacked(newpage);
447 if (PageSwapCache(page)) {
448 SetPageSwapCache(newpage);
449 set_page_private(newpage, page_private(page));
452 VM_BUG_ON_PAGE(PageSwapCache(page), page);
455 /* Move dirty while page refs frozen and newpage not yet exposed */
456 dirty = PageDirty(page);
458 ClearPageDirty(page);
459 SetPageDirty(newpage);
462 xas_store(&xas, newpage);
463 if (PageTransHuge(page)) {
466 for (i = 1; i < HPAGE_PMD_NR; i++) {
468 xas_store(&xas, newpage + i);
473 * Drop cache reference from old page by unfreezing
474 * to one less reference.
475 * We know this isn't the last reference.
477 page_ref_unfreeze(page, expected_count - hpage_nr_pages(page));
480 /* Leave irq disabled to prevent preemption while updating stats */
483 * If moved to a different zone then also account
484 * the page for that zone. Other VM counters will be
485 * taken care of when we establish references to the
486 * new page and drop references to the old page.
488 * Note that anonymous pages are accounted for
489 * via NR_FILE_PAGES and NR_ANON_MAPPED if they
490 * are mapped to swap space.
492 if (newzone != oldzone) {
493 __dec_node_state(oldzone->zone_pgdat, NR_FILE_PAGES);
494 __inc_node_state(newzone->zone_pgdat, NR_FILE_PAGES);
495 if (PageSwapBacked(page) && !PageSwapCache(page)) {
496 __dec_node_state(oldzone->zone_pgdat, NR_SHMEM);
497 __inc_node_state(newzone->zone_pgdat, NR_SHMEM);
499 if (dirty && mapping_cap_account_dirty(mapping)) {
500 __dec_node_state(oldzone->zone_pgdat, NR_FILE_DIRTY);
501 __dec_zone_state(oldzone, NR_ZONE_WRITE_PENDING);
502 __inc_node_state(newzone->zone_pgdat, NR_FILE_DIRTY);
503 __inc_zone_state(newzone, NR_ZONE_WRITE_PENDING);
508 return MIGRATEPAGE_SUCCESS;
510 EXPORT_SYMBOL(migrate_page_move_mapping);
513 * The expected number of remaining references is the same as that
514 * of migrate_page_move_mapping().
516 int migrate_huge_page_move_mapping(struct address_space *mapping,
517 struct page *newpage, struct page *page)
519 XA_STATE(xas, &mapping->i_pages, page_index(page));
523 expected_count = 2 + page_has_private(page);
524 if (page_count(page) != expected_count || xas_load(&xas) != page) {
525 xas_unlock_irq(&xas);
529 if (!page_ref_freeze(page, expected_count)) {
530 xas_unlock_irq(&xas);
534 newpage->index = page->index;
535 newpage->mapping = page->mapping;
539 xas_store(&xas, newpage);
541 page_ref_unfreeze(page, expected_count - 1);
543 xas_unlock_irq(&xas);
545 return MIGRATEPAGE_SUCCESS;
549 * Gigantic pages are so large that we do not guarantee that page++ pointer
550 * arithmetic will work across the entire page. We need something more
553 static void __copy_gigantic_page(struct page *dst, struct page *src,
557 struct page *dst_base = dst;
558 struct page *src_base = src;
560 for (i = 0; i < nr_pages; ) {
562 copy_highpage(dst, src);
565 dst = mem_map_next(dst, dst_base, i);
566 src = mem_map_next(src, src_base, i);
570 static void copy_huge_page(struct page *dst, struct page *src)
577 struct hstate *h = page_hstate(src);
578 nr_pages = pages_per_huge_page(h);
580 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
581 __copy_gigantic_page(dst, src, nr_pages);
586 BUG_ON(!PageTransHuge(src));
587 nr_pages = hpage_nr_pages(src);
590 for (i = 0; i < nr_pages; i++) {
592 copy_highpage(dst + i, src + i);
597 * Copy the page to its new location
599 void migrate_page_states(struct page *newpage, struct page *page)
604 SetPageError(newpage);
605 if (PageReferenced(page))
606 SetPageReferenced(newpage);
607 if (PageUptodate(page))
608 SetPageUptodate(newpage);
609 if (TestClearPageActive(page)) {
610 VM_BUG_ON_PAGE(PageUnevictable(page), page);
611 SetPageActive(newpage);
612 } else if (TestClearPageUnevictable(page))
613 SetPageUnevictable(newpage);
614 if (PageWorkingset(page))
615 SetPageWorkingset(newpage);
616 if (PageChecked(page))
617 SetPageChecked(newpage);
618 if (PageMappedToDisk(page))
619 SetPageMappedToDisk(newpage);
621 /* Move dirty on pages not done by migrate_page_move_mapping() */
623 SetPageDirty(newpage);
625 if (page_is_young(page))
626 set_page_young(newpage);
627 if (page_is_idle(page))
628 set_page_idle(newpage);
631 * Copy NUMA information to the new page, to prevent over-eager
632 * future migrations of this same page.
634 cpupid = page_cpupid_xchg_last(page, -1);
635 page_cpupid_xchg_last(newpage, cpupid);
637 ksm_migrate_page(newpage, page);
639 * Please do not reorder this without considering how mm/ksm.c's
640 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
642 if (PageSwapCache(page))
643 ClearPageSwapCache(page);
644 ClearPagePrivate(page);
645 set_page_private(page, 0);
648 * If any waiters have accumulated on the new page then
651 if (PageWriteback(newpage))
652 end_page_writeback(newpage);
654 copy_page_owner(page, newpage);
656 mem_cgroup_migrate(page, newpage);
658 EXPORT_SYMBOL(migrate_page_states);
660 void migrate_page_copy(struct page *newpage, struct page *page)
662 if (PageHuge(page) || PageTransHuge(page))
663 copy_huge_page(newpage, page);
665 copy_highpage(newpage, page);
667 migrate_page_states(newpage, page);
669 EXPORT_SYMBOL(migrate_page_copy);
671 /************************************************************
672 * Migration functions
673 ***********************************************************/
676 * Common logic to directly migrate a single LRU page suitable for
677 * pages that do not use PagePrivate/PagePrivate2.
679 * Pages are locked upon entry and exit.
681 int migrate_page(struct address_space *mapping,
682 struct page *newpage, struct page *page,
683 enum migrate_mode mode)
687 BUG_ON(PageWriteback(page)); /* Writeback must be complete */
689 rc = migrate_page_move_mapping(mapping, newpage, page, mode, 0);
691 if (rc != MIGRATEPAGE_SUCCESS)
694 if (mode != MIGRATE_SYNC_NO_COPY)
695 migrate_page_copy(newpage, page);
697 migrate_page_states(newpage, page);
698 return MIGRATEPAGE_SUCCESS;
700 EXPORT_SYMBOL(migrate_page);
703 /* Returns true if all buffers are successfully locked */
704 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
705 enum migrate_mode mode)
707 struct buffer_head *bh = head;
709 /* Simple case, sync compaction */
710 if (mode != MIGRATE_ASYNC) {
713 bh = bh->b_this_page;
715 } while (bh != head);
720 /* async case, we cannot block on lock_buffer so use trylock_buffer */
722 if (!trylock_buffer(bh)) {
724 * We failed to lock the buffer and cannot stall in
725 * async migration. Release the taken locks
727 struct buffer_head *failed_bh = bh;
729 while (bh != failed_bh) {
731 bh = bh->b_this_page;
736 bh = bh->b_this_page;
737 } while (bh != head);
741 static int __buffer_migrate_page(struct address_space *mapping,
742 struct page *newpage, struct page *page, enum migrate_mode mode,
745 struct buffer_head *bh, *head;
749 if (!page_has_buffers(page))
750 return migrate_page(mapping, newpage, page, mode);
752 /* Check whether page does not have extra refs before we do more work */
753 expected_count = expected_page_refs(page);
754 if (page_count(page) != expected_count)
757 head = page_buffers(page);
758 if (!buffer_migrate_lock_buffers(head, mode))
763 bool invalidated = false;
767 spin_lock(&mapping->private_lock);
770 if (atomic_read(&bh->b_count)) {
774 bh = bh->b_this_page;
775 } while (bh != head);
776 spin_unlock(&mapping->private_lock);
782 invalidate_bh_lrus();
784 goto recheck_buffers;
788 rc = migrate_page_move_mapping(mapping, newpage, page, mode, 0);
789 if (rc != MIGRATEPAGE_SUCCESS)
792 ClearPagePrivate(page);
793 set_page_private(newpage, page_private(page));
794 set_page_private(page, 0);
800 set_bh_page(bh, newpage, bh_offset(bh));
801 bh = bh->b_this_page;
803 } while (bh != head);
805 SetPagePrivate(newpage);
807 if (mode != MIGRATE_SYNC_NO_COPY)
808 migrate_page_copy(newpage, page);
810 migrate_page_states(newpage, page);
812 rc = MIGRATEPAGE_SUCCESS;
817 bh = bh->b_this_page;
819 } while (bh != head);
825 * Migration function for pages with buffers. This function can only be used
826 * if the underlying filesystem guarantees that no other references to "page"
827 * exist. For example attached buffer heads are accessed only under page lock.
829 int buffer_migrate_page(struct address_space *mapping,
830 struct page *newpage, struct page *page, enum migrate_mode mode)
832 return __buffer_migrate_page(mapping, newpage, page, mode, false);
834 EXPORT_SYMBOL(buffer_migrate_page);
837 * Same as above except that this variant is more careful and checks that there
838 * are also no buffer head references. This function is the right one for
839 * mappings where buffer heads are directly looked up and referenced (such as
840 * block device mappings).
842 int buffer_migrate_page_norefs(struct address_space *mapping,
843 struct page *newpage, struct page *page, enum migrate_mode mode)
845 return __buffer_migrate_page(mapping, newpage, page, mode, true);
850 * Writeback a page to clean the dirty state
852 static int writeout(struct address_space *mapping, struct page *page)
854 struct writeback_control wbc = {
855 .sync_mode = WB_SYNC_NONE,
858 .range_end = LLONG_MAX,
863 if (!mapping->a_ops->writepage)
864 /* No write method for the address space */
867 if (!clear_page_dirty_for_io(page))
868 /* Someone else already triggered a write */
872 * A dirty page may imply that the underlying filesystem has
873 * the page on some queue. So the page must be clean for
874 * migration. Writeout may mean we loose the lock and the
875 * page state is no longer what we checked for earlier.
876 * At this point we know that the migration attempt cannot
879 remove_migration_ptes(page, page, false);
881 rc = mapping->a_ops->writepage(page, &wbc);
883 if (rc != AOP_WRITEPAGE_ACTIVATE)
884 /* unlocked. Relock */
887 return (rc < 0) ? -EIO : -EAGAIN;
891 * Default handling if a filesystem does not provide a migration function.
893 static int fallback_migrate_page(struct address_space *mapping,
894 struct page *newpage, struct page *page, enum migrate_mode mode)
896 if (PageDirty(page)) {
897 /* Only writeback pages in full synchronous migration */
900 case MIGRATE_SYNC_NO_COPY:
905 return writeout(mapping, page);
909 * Buffers may be managed in a filesystem specific way.
910 * We must have no buffers or drop them.
912 if (page_has_private(page) &&
913 !try_to_release_page(page, GFP_KERNEL))
916 return migrate_page(mapping, newpage, page, mode);
920 * Move a page to a newly allocated page
921 * The page is locked and all ptes have been successfully removed.
923 * The new page will have replaced the old page if this function
928 * MIGRATEPAGE_SUCCESS - success
930 static int move_to_new_page(struct page *newpage, struct page *page,
931 enum migrate_mode mode)
933 struct address_space *mapping;
935 bool is_lru = !__PageMovable(page);
937 VM_BUG_ON_PAGE(!PageLocked(page), page);
938 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
940 mapping = page_mapping(page);
942 if (likely(is_lru)) {
944 rc = migrate_page(mapping, newpage, page, mode);
945 else if (mapping->a_ops->migratepage)
947 * Most pages have a mapping and most filesystems
948 * provide a migratepage callback. Anonymous pages
949 * are part of swap space which also has its own
950 * migratepage callback. This is the most common path
951 * for page migration.
953 rc = mapping->a_ops->migratepage(mapping, newpage,
956 rc = fallback_migrate_page(mapping, newpage,
960 * In case of non-lru page, it could be released after
961 * isolation step. In that case, we shouldn't try migration.
963 VM_BUG_ON_PAGE(!PageIsolated(page), page);
964 if (!PageMovable(page)) {
965 rc = MIGRATEPAGE_SUCCESS;
966 __ClearPageIsolated(page);
970 rc = mapping->a_ops->migratepage(mapping, newpage,
972 WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
973 !PageIsolated(page));
977 * When successful, old pagecache page->mapping must be cleared before
978 * page is freed; but stats require that PageAnon be left as PageAnon.
980 if (rc == MIGRATEPAGE_SUCCESS) {
981 if (__PageMovable(page)) {
982 VM_BUG_ON_PAGE(!PageIsolated(page), page);
985 * We clear PG_movable under page_lock so any compactor
986 * cannot try to migrate this page.
988 __ClearPageIsolated(page);
992 * Anonymous and movable page->mapping will be cleard by
993 * free_pages_prepare so don't reset it here for keeping
994 * the type to work PageAnon, for example.
996 if (!PageMappingFlags(page))
997 page->mapping = NULL;
1003 static int __unmap_and_move(struct page *page, struct page *newpage,
1004 int force, enum migrate_mode mode)
1007 int page_was_mapped = 0;
1008 struct anon_vma *anon_vma = NULL;
1009 bool is_lru = !__PageMovable(page);
1011 if (!trylock_page(page)) {
1012 if (!force || mode == MIGRATE_ASYNC)
1016 * It's not safe for direct compaction to call lock_page.
1017 * For example, during page readahead pages are added locked
1018 * to the LRU. Later, when the IO completes the pages are
1019 * marked uptodate and unlocked. However, the queueing
1020 * could be merging multiple pages for one bio (e.g.
1021 * mpage_readpages). If an allocation happens for the
1022 * second or third page, the process can end up locking
1023 * the same page twice and deadlocking. Rather than
1024 * trying to be clever about what pages can be locked,
1025 * avoid the use of lock_page for direct compaction
1028 if (current->flags & PF_MEMALLOC)
1034 if (PageWriteback(page)) {
1036 * Only in the case of a full synchronous migration is it
1037 * necessary to wait for PageWriteback. In the async case,
1038 * the retry loop is too short and in the sync-light case,
1039 * the overhead of stalling is too much
1043 case MIGRATE_SYNC_NO_COPY:
1051 wait_on_page_writeback(page);
1055 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
1056 * we cannot notice that anon_vma is freed while we migrates a page.
1057 * This get_anon_vma() delays freeing anon_vma pointer until the end
1058 * of migration. File cache pages are no problem because of page_lock()
1059 * File Caches may use write_page() or lock_page() in migration, then,
1060 * just care Anon page here.
1062 * Only page_get_anon_vma() understands the subtleties of
1063 * getting a hold on an anon_vma from outside one of its mms.
1064 * But if we cannot get anon_vma, then we won't need it anyway,
1065 * because that implies that the anon page is no longer mapped
1066 * (and cannot be remapped so long as we hold the page lock).
1068 if (PageAnon(page) && !PageKsm(page))
1069 anon_vma = page_get_anon_vma(page);
1072 * Block others from accessing the new page when we get around to
1073 * establishing additional references. We are usually the only one
1074 * holding a reference to newpage at this point. We used to have a BUG
1075 * here if trylock_page(newpage) fails, but would like to allow for
1076 * cases where there might be a race with the previous use of newpage.
1077 * This is much like races on refcount of oldpage: just don't BUG().
1079 if (unlikely(!trylock_page(newpage)))
1082 if (unlikely(!is_lru)) {
1083 rc = move_to_new_page(newpage, page, mode);
1084 goto out_unlock_both;
1088 * Corner case handling:
1089 * 1. When a new swap-cache page is read into, it is added to the LRU
1090 * and treated as swapcache but it has no rmap yet.
1091 * Calling try_to_unmap() against a page->mapping==NULL page will
1092 * trigger a BUG. So handle it here.
1093 * 2. An orphaned page (see truncate_complete_page) might have
1094 * fs-private metadata. The page can be picked up due to memory
1095 * offlining. Everywhere else except page reclaim, the page is
1096 * invisible to the vm, so the page can not be migrated. So try to
1097 * free the metadata, so the page can be freed.
1099 if (!page->mapping) {
1100 VM_BUG_ON_PAGE(PageAnon(page), page);
1101 if (page_has_private(page)) {
1102 try_to_free_buffers(page);
1103 goto out_unlock_both;
1105 } else if (page_mapped(page)) {
1106 /* Establish migration ptes */
1107 VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1110 TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1111 page_was_mapped = 1;
1114 if (!page_mapped(page))
1115 rc = move_to_new_page(newpage, page, mode);
1117 if (page_was_mapped)
1118 remove_migration_ptes(page,
1119 rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
1122 unlock_page(newpage);
1124 /* Drop an anon_vma reference if we took one */
1126 put_anon_vma(anon_vma);
1130 * If migration is successful, decrease refcount of the newpage
1131 * which will not free the page because new page owner increased
1132 * refcounter. As well, if it is LRU page, add the page to LRU
1133 * list in here. Use the old state of the isolated source page to
1134 * determine if we migrated a LRU page. newpage was already unlocked
1135 * and possibly modified by its owner - don't rely on the page
1138 if (rc == MIGRATEPAGE_SUCCESS) {
1139 if (unlikely(!is_lru))
1142 putback_lru_page(newpage);
1149 * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move(). Work
1152 #if defined(CONFIG_ARM) && \
1153 defined(GCC_VERSION) && GCC_VERSION < 40900 && GCC_VERSION >= 40700
1154 #define ICE_noinline noinline
1156 #define ICE_noinline
1160 * Obtain the lock on page, remove all ptes and migrate the page
1161 * to the newly allocated page in newpage.
1163 static ICE_noinline int unmap_and_move(new_page_t get_new_page,
1164 free_page_t put_new_page,
1165 unsigned long private, struct page *page,
1166 int force, enum migrate_mode mode,
1167 enum migrate_reason reason)
1169 int rc = MIGRATEPAGE_SUCCESS;
1170 struct page *newpage;
1172 if (!thp_migration_supported() && PageTransHuge(page))
1175 newpage = get_new_page(page, private);
1179 if (page_count(page) == 1) {
1180 /* page was freed from under us. So we are done. */
1181 ClearPageActive(page);
1182 ClearPageUnevictable(page);
1183 if (unlikely(__PageMovable(page))) {
1185 if (!PageMovable(page))
1186 __ClearPageIsolated(page);
1190 put_new_page(newpage, private);
1196 rc = __unmap_and_move(page, newpage, force, mode);
1197 if (rc == MIGRATEPAGE_SUCCESS)
1198 set_page_owner_migrate_reason(newpage, reason);
1201 if (rc != -EAGAIN) {
1203 * A page that has been migrated has all references
1204 * removed and will be freed. A page that has not been
1205 * migrated will have kepts its references and be
1208 list_del(&page->lru);
1211 * Compaction can migrate also non-LRU pages which are
1212 * not accounted to NR_ISOLATED_*. They can be recognized
1215 if (likely(!__PageMovable(page)))
1216 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
1217 page_is_file_cache(page), -hpage_nr_pages(page));
1221 * If migration is successful, releases reference grabbed during
1222 * isolation. Otherwise, restore the page to right list unless
1225 if (rc == MIGRATEPAGE_SUCCESS) {
1227 if (reason == MR_MEMORY_FAILURE) {
1229 * Set PG_HWPoison on just freed page
1230 * intentionally. Although it's rather weird,
1231 * it's how HWPoison flag works at the moment.
1233 if (set_hwpoison_free_buddy_page(page))
1234 num_poisoned_pages_inc();
1237 if (rc != -EAGAIN) {
1238 if (likely(!__PageMovable(page))) {
1239 putback_lru_page(page);
1244 if (PageMovable(page))
1245 putback_movable_page(page);
1247 __ClearPageIsolated(page);
1253 put_new_page(newpage, private);
1262 * Counterpart of unmap_and_move_page() for hugepage migration.
1264 * This function doesn't wait the completion of hugepage I/O
1265 * because there is no race between I/O and migration for hugepage.
1266 * Note that currently hugepage I/O occurs only in direct I/O
1267 * where no lock is held and PG_writeback is irrelevant,
1268 * and writeback status of all subpages are counted in the reference
1269 * count of the head page (i.e. if all subpages of a 2MB hugepage are
1270 * under direct I/O, the reference of the head page is 512 and a bit more.)
1271 * This means that when we try to migrate hugepage whose subpages are
1272 * doing direct I/O, some references remain after try_to_unmap() and
1273 * hugepage migration fails without data corruption.
1275 * There is also no race when direct I/O is issued on the page under migration,
1276 * because then pte is replaced with migration swap entry and direct I/O code
1277 * will wait in the page fault for migration to complete.
1279 static int unmap_and_move_huge_page(new_page_t get_new_page,
1280 free_page_t put_new_page, unsigned long private,
1281 struct page *hpage, int force,
1282 enum migrate_mode mode, int reason)
1285 int page_was_mapped = 0;
1286 struct page *new_hpage;
1287 struct anon_vma *anon_vma = NULL;
1290 * Movability of hugepages depends on architectures and hugepage size.
1291 * This check is necessary because some callers of hugepage migration
1292 * like soft offline and memory hotremove don't walk through page
1293 * tables or check whether the hugepage is pmd-based or not before
1294 * kicking migration.
1296 if (!hugepage_migration_supported(page_hstate(hpage))) {
1297 putback_active_hugepage(hpage);
1301 new_hpage = get_new_page(hpage, private);
1305 if (!trylock_page(hpage)) {
1310 case MIGRATE_SYNC_NO_COPY:
1318 if (PageAnon(hpage))
1319 anon_vma = page_get_anon_vma(hpage);
1321 if (unlikely(!trylock_page(new_hpage)))
1324 if (page_mapped(hpage)) {
1326 TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1327 page_was_mapped = 1;
1330 if (!page_mapped(hpage))
1331 rc = move_to_new_page(new_hpage, hpage, mode);
1333 if (page_was_mapped)
1334 remove_migration_ptes(hpage,
1335 rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false);
1337 unlock_page(new_hpage);
1341 put_anon_vma(anon_vma);
1343 if (rc == MIGRATEPAGE_SUCCESS) {
1344 move_hugetlb_state(hpage, new_hpage, reason);
1345 put_new_page = NULL;
1351 putback_active_hugepage(hpage);
1354 * If migration was not successful and there's a freeing callback, use
1355 * it. Otherwise, put_page() will drop the reference grabbed during
1359 put_new_page(new_hpage, private);
1361 putback_active_hugepage(new_hpage);
1367 * migrate_pages - migrate the pages specified in a list, to the free pages
1368 * supplied as the target for the page migration
1370 * @from: The list of pages to be migrated.
1371 * @get_new_page: The function used to allocate free pages to be used
1372 * as the target of the page migration.
1373 * @put_new_page: The function used to free target pages if migration
1374 * fails, or NULL if no special handling is necessary.
1375 * @private: Private data to be passed on to get_new_page()
1376 * @mode: The migration mode that specifies the constraints for
1377 * page migration, if any.
1378 * @reason: The reason for page migration.
1380 * The function returns after 10 attempts or if no pages are movable any more
1381 * because the list has become empty or no retryable pages exist any more.
1382 * The caller should call putback_movable_pages() to return pages to the LRU
1383 * or free list only if ret != 0.
1385 * Returns the number of pages that were not migrated, or an error code.
1387 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1388 free_page_t put_new_page, unsigned long private,
1389 enum migrate_mode mode, int reason)
1393 int nr_succeeded = 0;
1397 int swapwrite = current->flags & PF_SWAPWRITE;
1401 current->flags |= PF_SWAPWRITE;
1403 for(pass = 0; pass < 10 && retry; pass++) {
1406 list_for_each_entry_safe(page, page2, from, lru) {
1411 rc = unmap_and_move_huge_page(get_new_page,
1412 put_new_page, private, page,
1413 pass > 2, mode, reason);
1415 rc = unmap_and_move(get_new_page, put_new_page,
1416 private, page, pass > 2, mode,
1422 * THP migration might be unsupported or the
1423 * allocation could've failed so we should
1424 * retry on the same page with the THP split
1427 * Head page is retried immediately and tail
1428 * pages are added to the tail of the list so
1429 * we encounter them after the rest of the list
1432 if (PageTransHuge(page) && !PageHuge(page)) {
1434 rc = split_huge_page_to_list(page, from);
1437 list_safe_reset_next(page, page2, lru);
1446 case MIGRATEPAGE_SUCCESS:
1451 * Permanent failure (-EBUSY, -ENOSYS, etc.):
1452 * unlike -EAGAIN case, the failed page is
1453 * removed from migration page list and not
1454 * retried in the next outer loop.
1465 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1467 count_vm_events(PGMIGRATE_FAIL, nr_failed);
1468 trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);
1471 current->flags &= ~PF_SWAPWRITE;
1478 static int store_status(int __user *status, int start, int value, int nr)
1481 if (put_user(value, status + start))
1489 static int do_move_pages_to_node(struct mm_struct *mm,
1490 struct list_head *pagelist, int node)
1494 if (list_empty(pagelist))
1497 err = migrate_pages(pagelist, alloc_new_node_page, NULL, node,
1498 MIGRATE_SYNC, MR_SYSCALL);
1500 putback_movable_pages(pagelist);
1505 * Resolves the given address to a struct page, isolates it from the LRU and
1506 * puts it to the given pagelist.
1507 * Returns -errno if the page cannot be found/isolated or 0 when it has been
1508 * queued or the page doesn't need to be migrated because it is already on
1511 static int add_page_for_migration(struct mm_struct *mm, unsigned long addr,
1512 int node, struct list_head *pagelist, bool migrate_all)
1514 struct vm_area_struct *vma;
1516 unsigned int follflags;
1519 down_read(&mm->mmap_sem);
1521 vma = find_vma(mm, addr);
1522 if (!vma || addr < vma->vm_start || !vma_migratable(vma))
1525 /* FOLL_DUMP to ignore special (like zero) pages */
1526 follflags = FOLL_GET | FOLL_DUMP;
1527 page = follow_page(vma, addr, follflags);
1529 err = PTR_ERR(page);
1538 if (page_to_nid(page) == node)
1542 if (page_mapcount(page) > 1 && !migrate_all)
1545 if (PageHuge(page)) {
1546 if (PageHead(page)) {
1547 isolate_huge_page(page, pagelist);
1553 head = compound_head(page);
1554 err = isolate_lru_page(head);
1559 list_add_tail(&head->lru, pagelist);
1560 mod_node_page_state(page_pgdat(head),
1561 NR_ISOLATED_ANON + page_is_file_cache(head),
1562 hpage_nr_pages(head));
1566 * Either remove the duplicate refcount from
1567 * isolate_lru_page() or drop the page ref if it was
1572 up_read(&mm->mmap_sem);
1577 * Migrate an array of page address onto an array of nodes and fill
1578 * the corresponding array of status.
1580 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1581 unsigned long nr_pages,
1582 const void __user * __user *pages,
1583 const int __user *nodes,
1584 int __user *status, int flags)
1586 int current_node = NUMA_NO_NODE;
1587 LIST_HEAD(pagelist);
1593 for (i = start = 0; i < nr_pages; i++) {
1594 const void __user *p;
1599 if (get_user(p, pages + i))
1601 if (get_user(node, nodes + i))
1603 addr = (unsigned long)p;
1606 if (node < 0 || node >= MAX_NUMNODES)
1608 if (!node_state(node, N_MEMORY))
1612 if (!node_isset(node, task_nodes))
1615 if (current_node == NUMA_NO_NODE) {
1616 current_node = node;
1618 } else if (node != current_node) {
1619 err = do_move_pages_to_node(mm, &pagelist, current_node);
1622 err = store_status(status, start, current_node, i - start);
1626 current_node = node;
1630 * Errors in the page lookup or isolation are not fatal and we simply
1631 * report them via status
1633 err = add_page_for_migration(mm, addr, current_node,
1634 &pagelist, flags & MPOL_MF_MOVE_ALL);
1638 err = store_status(status, i, err, 1);
1642 err = do_move_pages_to_node(mm, &pagelist, current_node);
1646 err = store_status(status, start, current_node, i - start);
1650 current_node = NUMA_NO_NODE;
1653 if (list_empty(&pagelist))
1656 /* Make sure we do not overwrite the existing error */
1657 err1 = do_move_pages_to_node(mm, &pagelist, current_node);
1659 err1 = store_status(status, start, current_node, i - start);
1667 * Determine the nodes of an array of pages and store it in an array of status.
1669 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1670 const void __user **pages, int *status)
1674 down_read(&mm->mmap_sem);
1676 for (i = 0; i < nr_pages; i++) {
1677 unsigned long addr = (unsigned long)(*pages);
1678 struct vm_area_struct *vma;
1682 vma = find_vma(mm, addr);
1683 if (!vma || addr < vma->vm_start)
1686 /* FOLL_DUMP to ignore special (like zero) pages */
1687 page = follow_page(vma, addr, FOLL_DUMP);
1689 err = PTR_ERR(page);
1693 err = page ? page_to_nid(page) : -ENOENT;
1701 up_read(&mm->mmap_sem);
1705 * Determine the nodes of a user array of pages and store it in
1706 * a user array of status.
1708 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1709 const void __user * __user *pages,
1712 #define DO_PAGES_STAT_CHUNK_NR 16
1713 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1714 int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1717 unsigned long chunk_nr;
1719 chunk_nr = nr_pages;
1720 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1721 chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1723 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1726 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1728 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1733 nr_pages -= chunk_nr;
1735 return nr_pages ? -EFAULT : 0;
1739 * Move a list of pages in the address space of the currently executing
1742 static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
1743 const void __user * __user *pages,
1744 const int __user *nodes,
1745 int __user *status, int flags)
1747 struct task_struct *task;
1748 struct mm_struct *mm;
1750 nodemask_t task_nodes;
1753 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1756 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1759 /* Find the mm_struct */
1761 task = pid ? find_task_by_vpid(pid) : current;
1766 get_task_struct(task);
1769 * Check if this process has the right to modify the specified
1770 * process. Use the regular "ptrace_may_access()" checks.
1772 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1779 err = security_task_movememory(task);
1783 task_nodes = cpuset_mems_allowed(task);
1784 mm = get_task_mm(task);
1785 put_task_struct(task);
1791 err = do_pages_move(mm, task_nodes, nr_pages, pages,
1792 nodes, status, flags);
1794 err = do_pages_stat(mm, nr_pages, pages, status);
1800 put_task_struct(task);
1804 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1805 const void __user * __user *, pages,
1806 const int __user *, nodes,
1807 int __user *, status, int, flags)
1809 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1812 #ifdef CONFIG_COMPAT
1813 COMPAT_SYSCALL_DEFINE6(move_pages, pid_t, pid, compat_ulong_t, nr_pages,
1814 compat_uptr_t __user *, pages32,
1815 const int __user *, nodes,
1816 int __user *, status,
1819 const void __user * __user *pages;
1822 pages = compat_alloc_user_space(nr_pages * sizeof(void *));
1823 for (i = 0; i < nr_pages; i++) {
1826 if (get_user(p, pages32 + i) ||
1827 put_user(compat_ptr(p), pages + i))
1830 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1832 #endif /* CONFIG_COMPAT */
1834 #ifdef CONFIG_NUMA_BALANCING
1836 * Returns true if this is a safe migration target node for misplaced NUMA
1837 * pages. Currently it only checks the watermarks which crude
1839 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1840 unsigned long nr_migrate_pages)
1844 for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1845 struct zone *zone = pgdat->node_zones + z;
1847 if (!populated_zone(zone))
1850 /* Avoid waking kswapd by allocating pages_to_migrate pages. */
1851 if (!zone_watermark_ok(zone, 0,
1852 high_wmark_pages(zone) +
1861 static struct page *alloc_misplaced_dst_page(struct page *page,
1864 int nid = (int) data;
1865 struct page *newpage;
1867 newpage = __alloc_pages_node(nid,
1868 (GFP_HIGHUSER_MOVABLE |
1869 __GFP_THISNODE | __GFP_NOMEMALLOC |
1870 __GFP_NORETRY | __GFP_NOWARN) &
1876 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
1880 VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
1882 /* Avoid migrating to a node that is nearly full */
1883 if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page)))
1886 if (isolate_lru_page(page))
1890 * migrate_misplaced_transhuge_page() skips page migration's usual
1891 * check on page_count(), so we must do it here, now that the page
1892 * has been isolated: a GUP pin, or any other pin, prevents migration.
1893 * The expected page count is 3: 1 for page's mapcount and 1 for the
1894 * caller's pin and 1 for the reference taken by isolate_lru_page().
1896 if (PageTransHuge(page) && page_count(page) != 3) {
1897 putback_lru_page(page);
1901 page_lru = page_is_file_cache(page);
1902 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
1903 hpage_nr_pages(page));
1906 * Isolating the page has taken another reference, so the
1907 * caller's reference can be safely dropped without the page
1908 * disappearing underneath us during migration.
1914 bool pmd_trans_migrating(pmd_t pmd)
1916 struct page *page = pmd_page(pmd);
1917 return PageLocked(page);
1921 * Attempt to migrate a misplaced page to the specified destination
1922 * node. Caller is expected to have an elevated reference count on
1923 * the page that will be dropped by this function before returning.
1925 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
1928 pg_data_t *pgdat = NODE_DATA(node);
1931 LIST_HEAD(migratepages);
1934 * Don't migrate file pages that are mapped in multiple processes
1935 * with execute permissions as they are probably shared libraries.
1937 if (page_mapcount(page) != 1 && page_is_file_cache(page) &&
1938 (vma->vm_flags & VM_EXEC))
1942 * Also do not migrate dirty pages as not all filesystems can move
1943 * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles.
1945 if (page_is_file_cache(page) && PageDirty(page))
1948 isolated = numamigrate_isolate_page(pgdat, page);
1952 list_add(&page->lru, &migratepages);
1953 nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
1954 NULL, node, MIGRATE_ASYNC,
1957 if (!list_empty(&migratepages)) {
1958 list_del(&page->lru);
1959 dec_node_page_state(page, NR_ISOLATED_ANON +
1960 page_is_file_cache(page));
1961 putback_lru_page(page);
1965 count_vm_numa_event(NUMA_PAGE_MIGRATE);
1966 BUG_ON(!list_empty(&migratepages));
1973 #endif /* CONFIG_NUMA_BALANCING */
1975 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1977 * Migrates a THP to a given target node. page must be locked and is unlocked
1980 int migrate_misplaced_transhuge_page(struct mm_struct *mm,
1981 struct vm_area_struct *vma,
1982 pmd_t *pmd, pmd_t entry,
1983 unsigned long address,
1984 struct page *page, int node)
1987 pg_data_t *pgdat = NODE_DATA(node);
1989 struct page *new_page = NULL;
1990 int page_lru = page_is_file_cache(page);
1991 unsigned long start = address & HPAGE_PMD_MASK;
1993 new_page = alloc_pages_node(node,
1994 (GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
1998 prep_transhuge_page(new_page);
2000 isolated = numamigrate_isolate_page(pgdat, page);
2006 /* Prepare a page as a migration target */
2007 __SetPageLocked(new_page);
2008 if (PageSwapBacked(page))
2009 __SetPageSwapBacked(new_page);
2011 /* anon mapping, we can simply copy page->mapping to the new page: */
2012 new_page->mapping = page->mapping;
2013 new_page->index = page->index;
2014 /* flush the cache before copying using the kernel virtual address */
2015 flush_cache_range(vma, start, start + HPAGE_PMD_SIZE);
2016 migrate_page_copy(new_page, page);
2017 WARN_ON(PageLRU(new_page));
2019 /* Recheck the target PMD */
2020 ptl = pmd_lock(mm, pmd);
2021 if (unlikely(!pmd_same(*pmd, entry) || !page_ref_freeze(page, 2))) {
2024 /* Reverse changes made by migrate_page_copy() */
2025 if (TestClearPageActive(new_page))
2026 SetPageActive(page);
2027 if (TestClearPageUnevictable(new_page))
2028 SetPageUnevictable(page);
2030 unlock_page(new_page);
2031 put_page(new_page); /* Free it */
2033 /* Retake the callers reference and putback on LRU */
2035 putback_lru_page(page);
2036 mod_node_page_state(page_pgdat(page),
2037 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
2042 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
2043 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
2046 * Overwrite the old entry under pagetable lock and establish
2047 * the new PTE. Any parallel GUP will either observe the old
2048 * page blocking on the page lock, block on the page table
2049 * lock or observe the new page. The SetPageUptodate on the
2050 * new page and page_add_new_anon_rmap guarantee the copy is
2051 * visible before the pagetable update.
2053 page_add_anon_rmap(new_page, vma, start, true);
2055 * At this point the pmd is numa/protnone (i.e. non present) and the TLB
2056 * has already been flushed globally. So no TLB can be currently
2057 * caching this non present pmd mapping. There's no need to clear the
2058 * pmd before doing set_pmd_at(), nor to flush the TLB after
2059 * set_pmd_at(). Clearing the pmd here would introduce a race
2060 * condition against MADV_DONTNEED, because MADV_DONTNEED only holds the
2061 * mmap_sem for reading. If the pmd is set to NULL at any given time,
2062 * MADV_DONTNEED won't wait on the pmd lock and it'll skip clearing this
2065 set_pmd_at(mm, start, pmd, entry);
2066 update_mmu_cache_pmd(vma, address, &entry);
2068 page_ref_unfreeze(page, 2);
2069 mlock_migrate_page(new_page, page);
2070 page_remove_rmap(page, true);
2071 set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED);
2075 /* Take an "isolate" reference and put new page on the LRU. */
2077 putback_lru_page(new_page);
2079 unlock_page(new_page);
2081 put_page(page); /* Drop the rmap reference */
2082 put_page(page); /* Drop the LRU isolation reference */
2084 count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
2085 count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
2087 mod_node_page_state(page_pgdat(page),
2088 NR_ISOLATED_ANON + page_lru,
2093 count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
2094 ptl = pmd_lock(mm, pmd);
2095 if (pmd_same(*pmd, entry)) {
2096 entry = pmd_modify(entry, vma->vm_page_prot);
2097 set_pmd_at(mm, start, pmd, entry);
2098 update_mmu_cache_pmd(vma, address, &entry);
2107 #endif /* CONFIG_NUMA_BALANCING */
2109 #endif /* CONFIG_NUMA */
2111 #if defined(CONFIG_MIGRATE_VMA_HELPER)
2112 struct migrate_vma {
2113 struct vm_area_struct *vma;
2116 unsigned long cpages;
2117 unsigned long npages;
2118 unsigned long start;
2122 static int migrate_vma_collect_hole(unsigned long start,
2124 struct mm_walk *walk)
2126 struct migrate_vma *migrate = walk->private;
2129 for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) {
2130 migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE;
2131 migrate->dst[migrate->npages] = 0;
2139 static int migrate_vma_collect_skip(unsigned long start,
2141 struct mm_walk *walk)
2143 struct migrate_vma *migrate = walk->private;
2146 for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) {
2147 migrate->dst[migrate->npages] = 0;
2148 migrate->src[migrate->npages++] = 0;
2154 static int migrate_vma_collect_pmd(pmd_t *pmdp,
2155 unsigned long start,
2157 struct mm_walk *walk)
2159 struct migrate_vma *migrate = walk->private;
2160 struct vm_area_struct *vma = walk->vma;
2161 struct mm_struct *mm = vma->vm_mm;
2162 unsigned long addr = start, unmapped = 0;
2167 if (pmd_none(*pmdp))
2168 return migrate_vma_collect_hole(start, end, walk);
2170 if (pmd_trans_huge(*pmdp)) {
2173 ptl = pmd_lock(mm, pmdp);
2174 if (unlikely(!pmd_trans_huge(*pmdp))) {
2179 page = pmd_page(*pmdp);
2180 if (is_huge_zero_page(page)) {
2182 split_huge_pmd(vma, pmdp, addr);
2183 if (pmd_trans_unstable(pmdp))
2184 return migrate_vma_collect_skip(start, end,
2191 if (unlikely(!trylock_page(page)))
2192 return migrate_vma_collect_skip(start, end,
2194 ret = split_huge_page(page);
2198 return migrate_vma_collect_skip(start, end,
2200 if (pmd_none(*pmdp))
2201 return migrate_vma_collect_hole(start, end,
2206 if (unlikely(pmd_bad(*pmdp)))
2207 return migrate_vma_collect_skip(start, end, walk);
2209 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2210 arch_enter_lazy_mmu_mode();
2212 for (; addr < end; addr += PAGE_SIZE, ptep++) {
2213 unsigned long mpfn, pfn;
2221 if (pte_none(pte)) {
2222 mpfn = MIGRATE_PFN_MIGRATE;
2228 if (!pte_present(pte)) {
2232 * Only care about unaddressable device page special
2233 * page table entry. Other special swap entries are not
2234 * migratable, and we ignore regular swapped page.
2236 entry = pte_to_swp_entry(pte);
2237 if (!is_device_private_entry(entry))
2240 page = device_private_entry_to_page(entry);
2241 mpfn = migrate_pfn(page_to_pfn(page))|
2242 MIGRATE_PFN_DEVICE | MIGRATE_PFN_MIGRATE;
2243 if (is_write_device_private_entry(entry))
2244 mpfn |= MIGRATE_PFN_WRITE;
2246 if (is_zero_pfn(pfn)) {
2247 mpfn = MIGRATE_PFN_MIGRATE;
2252 page = _vm_normal_page(migrate->vma, addr, pte, true);
2253 mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
2254 mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
2257 /* FIXME support THP */
2258 if (!page || !page->mapping || PageTransCompound(page)) {
2262 pfn = page_to_pfn(page);
2265 * By getting a reference on the page we pin it and that blocks
2266 * any kind of migration. Side effect is that it "freezes" the
2269 * We drop this reference after isolating the page from the lru
2270 * for non device page (device page are not on the lru and thus
2271 * can't be dropped from it).
2277 * Optimize for the common case where page is only mapped once
2278 * in one process. If we can lock the page, then we can safely
2279 * set up a special migration page table entry now.
2281 if (trylock_page(page)) {
2284 mpfn |= MIGRATE_PFN_LOCKED;
2285 ptep_get_and_clear(mm, addr, ptep);
2287 /* Setup special migration page table entry */
2288 entry = make_migration_entry(page, mpfn &
2290 swp_pte = swp_entry_to_pte(entry);
2291 if (pte_soft_dirty(pte))
2292 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2293 set_pte_at(mm, addr, ptep, swp_pte);
2296 * This is like regular unmap: we remove the rmap and
2297 * drop page refcount. Page won't be freed, as we took
2298 * a reference just above.
2300 page_remove_rmap(page, false);
2303 if (pte_present(pte))
2308 migrate->dst[migrate->npages] = 0;
2309 migrate->src[migrate->npages++] = mpfn;
2311 arch_leave_lazy_mmu_mode();
2312 pte_unmap_unlock(ptep - 1, ptl);
2314 /* Only flush the TLB if we actually modified any entries */
2316 flush_tlb_range(walk->vma, start, end);
2322 * migrate_vma_collect() - collect pages over a range of virtual addresses
2323 * @migrate: migrate struct containing all migration information
2325 * This will walk the CPU page table. For each virtual address backed by a
2326 * valid page, it updates the src array and takes a reference on the page, in
2327 * order to pin the page until we lock it and unmap it.
2329 static void migrate_vma_collect(struct migrate_vma *migrate)
2331 struct mmu_notifier_range range;
2332 struct mm_walk mm_walk;
2334 mm_walk.pmd_entry = migrate_vma_collect_pmd;
2335 mm_walk.pte_entry = NULL;
2336 mm_walk.pte_hole = migrate_vma_collect_hole;
2337 mm_walk.hugetlb_entry = NULL;
2338 mm_walk.test_walk = NULL;
2339 mm_walk.vma = migrate->vma;
2340 mm_walk.mm = migrate->vma->vm_mm;
2341 mm_walk.private = migrate;
2343 mmu_notifier_range_init(&range, mm_walk.mm, migrate->start,
2345 mmu_notifier_invalidate_range_start(&range);
2346 walk_page_range(migrate->start, migrate->end, &mm_walk);
2347 mmu_notifier_invalidate_range_end(&range);
2349 migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
2353 * migrate_vma_check_page() - check if page is pinned or not
2354 * @page: struct page to check
2356 * Pinned pages cannot be migrated. This is the same test as in
2357 * migrate_page_move_mapping(), except that here we allow migration of a
2360 static bool migrate_vma_check_page(struct page *page)
2363 * One extra ref because caller holds an extra reference, either from
2364 * isolate_lru_page() for a regular page, or migrate_vma_collect() for
2370 * FIXME support THP (transparent huge page), it is bit more complex to
2371 * check them than regular pages, because they can be mapped with a pmd
2372 * or with a pte (split pte mapping).
2374 if (PageCompound(page))
2377 /* Page from ZONE_DEVICE have one extra reference */
2378 if (is_zone_device_page(page)) {
2380 * Private page can never be pin as they have no valid pte and
2381 * GUP will fail for those. Yet if there is a pending migration
2382 * a thread might try to wait on the pte migration entry and
2383 * will bump the page reference count. Sadly there is no way to
2384 * differentiate a regular pin from migration wait. Hence to
2385 * avoid 2 racing thread trying to migrate back to CPU to enter
2386 * infinite loop (one stoping migration because the other is
2387 * waiting on pte migration entry). We always return true here.
2389 * FIXME proper solution is to rework migration_entry_wait() so
2390 * it does not need to take a reference on page.
2392 if (is_device_private_page(page))
2396 * Only allow device public page to be migrated and account for
2397 * the extra reference count imply by ZONE_DEVICE pages.
2399 if (!is_device_public_page(page))
2404 /* For file back page */
2405 if (page_mapping(page))
2406 extra += 1 + page_has_private(page);
2408 if ((page_count(page) - extra) > page_mapcount(page))
2415 * migrate_vma_prepare() - lock pages and isolate them from the lru
2416 * @migrate: migrate struct containing all migration information
2418 * This locks pages that have been collected by migrate_vma_collect(). Once each
2419 * page is locked it is isolated from the lru (for non-device pages). Finally,
2420 * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be
2421 * migrated by concurrent kernel threads.
2423 static void migrate_vma_prepare(struct migrate_vma *migrate)
2425 const unsigned long npages = migrate->npages;
2426 const unsigned long start = migrate->start;
2427 unsigned long addr, i, restore = 0;
2428 bool allow_drain = true;
2432 for (i = 0; (i < npages) && migrate->cpages; i++) {
2433 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2439 if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) {
2441 * Because we are migrating several pages there can be
2442 * a deadlock between 2 concurrent migration where each
2443 * are waiting on each other page lock.
2445 * Make migrate_vma() a best effort thing and backoff
2446 * for any page we can not lock right away.
2448 if (!trylock_page(page)) {
2449 migrate->src[i] = 0;
2455 migrate->src[i] |= MIGRATE_PFN_LOCKED;
2458 /* ZONE_DEVICE pages are not on LRU */
2459 if (!is_zone_device_page(page)) {
2460 if (!PageLRU(page) && allow_drain) {
2461 /* Drain CPU's pagevec */
2462 lru_add_drain_all();
2463 allow_drain = false;
2466 if (isolate_lru_page(page)) {
2468 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2472 migrate->src[i] = 0;
2480 /* Drop the reference we took in collect */
2484 if (!migrate_vma_check_page(page)) {
2486 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2490 if (!is_zone_device_page(page)) {
2492 putback_lru_page(page);
2495 migrate->src[i] = 0;
2499 if (!is_zone_device_page(page))
2500 putback_lru_page(page);
2507 for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) {
2508 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2510 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2513 remove_migration_pte(page, migrate->vma, addr, page);
2515 migrate->src[i] = 0;
2523 * migrate_vma_unmap() - replace page mapping with special migration pte entry
2524 * @migrate: migrate struct containing all migration information
2526 * Replace page mapping (CPU page table pte) with a special migration pte entry
2527 * and check again if it has been pinned. Pinned pages are restored because we
2528 * cannot migrate them.
2530 * This is the last step before we call the device driver callback to allocate
2531 * destination memory and copy contents of original page over to new page.
2533 static void migrate_vma_unmap(struct migrate_vma *migrate)
2535 int flags = TTU_MIGRATION | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
2536 const unsigned long npages = migrate->npages;
2537 const unsigned long start = migrate->start;
2538 unsigned long addr, i, restore = 0;
2540 for (i = 0; i < npages; i++) {
2541 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2543 if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2546 if (page_mapped(page)) {
2547 try_to_unmap(page, flags);
2548 if (page_mapped(page))
2552 if (migrate_vma_check_page(page))
2556 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2561 for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) {
2562 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2564 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2567 remove_migration_ptes(page, page, false);
2569 migrate->src[i] = 0;
2573 if (is_zone_device_page(page))
2576 putback_lru_page(page);
2580 static void migrate_vma_insert_page(struct migrate_vma *migrate,
2586 struct vm_area_struct *vma = migrate->vma;
2587 struct mm_struct *mm = vma->vm_mm;
2588 struct mem_cgroup *memcg;
2598 /* Only allow populating anonymous memory */
2599 if (!vma_is_anonymous(vma))
2602 pgdp = pgd_offset(mm, addr);
2603 p4dp = p4d_alloc(mm, pgdp, addr);
2606 pudp = pud_alloc(mm, p4dp, addr);
2609 pmdp = pmd_alloc(mm, pudp, addr);
2613 if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp))
2617 * Use pte_alloc() instead of pte_alloc_map(). We can't run
2618 * pte_offset_map() on pmds where a huge pmd might be created
2619 * from a different thread.
2621 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
2622 * parallel threads are excluded by other means.
2624 * Here we only have down_read(mmap_sem).
2626 if (pte_alloc(mm, pmdp))
2629 /* See the comment in pte_alloc_one_map() */
2630 if (unlikely(pmd_trans_unstable(pmdp)))
2633 if (unlikely(anon_vma_prepare(vma)))
2635 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg, false))
2639 * The memory barrier inside __SetPageUptodate makes sure that
2640 * preceding stores to the page contents become visible before
2641 * the set_pte_at() write.
2643 __SetPageUptodate(page);
2645 if (is_zone_device_page(page)) {
2646 if (is_device_private_page(page)) {
2647 swp_entry_t swp_entry;
2649 swp_entry = make_device_private_entry(page, vma->vm_flags & VM_WRITE);
2650 entry = swp_entry_to_pte(swp_entry);
2651 } else if (is_device_public_page(page)) {
2652 entry = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
2653 if (vma->vm_flags & VM_WRITE)
2654 entry = pte_mkwrite(pte_mkdirty(entry));
2655 entry = pte_mkdevmap(entry);
2658 entry = mk_pte(page, vma->vm_page_prot);
2659 if (vma->vm_flags & VM_WRITE)
2660 entry = pte_mkwrite(pte_mkdirty(entry));
2663 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2665 if (pte_present(*ptep)) {
2666 unsigned long pfn = pte_pfn(*ptep);
2668 if (!is_zero_pfn(pfn)) {
2669 pte_unmap_unlock(ptep, ptl);
2670 mem_cgroup_cancel_charge(page, memcg, false);
2674 } else if (!pte_none(*ptep)) {
2675 pte_unmap_unlock(ptep, ptl);
2676 mem_cgroup_cancel_charge(page, memcg, false);
2681 * Check for usefaultfd but do not deliver the fault. Instead,
2684 if (userfaultfd_missing(vma)) {
2685 pte_unmap_unlock(ptep, ptl);
2686 mem_cgroup_cancel_charge(page, memcg, false);
2690 inc_mm_counter(mm, MM_ANONPAGES);
2691 page_add_new_anon_rmap(page, vma, addr, false);
2692 mem_cgroup_commit_charge(page, memcg, false, false);
2693 if (!is_zone_device_page(page))
2694 lru_cache_add_active_or_unevictable(page, vma);
2698 flush_cache_page(vma, addr, pte_pfn(*ptep));
2699 ptep_clear_flush_notify(vma, addr, ptep);
2700 set_pte_at_notify(mm, addr, ptep, entry);
2701 update_mmu_cache(vma, addr, ptep);
2703 /* No need to invalidate - it was non-present before */
2704 set_pte_at(mm, addr, ptep, entry);
2705 update_mmu_cache(vma, addr, ptep);
2708 pte_unmap_unlock(ptep, ptl);
2709 *src = MIGRATE_PFN_MIGRATE;
2713 *src &= ~MIGRATE_PFN_MIGRATE;
2717 * migrate_vma_pages() - migrate meta-data from src page to dst page
2718 * @migrate: migrate struct containing all migration information
2720 * This migrates struct page meta-data from source struct page to destination
2721 * struct page. This effectively finishes the migration from source page to the
2724 static void migrate_vma_pages(struct migrate_vma *migrate)
2726 const unsigned long npages = migrate->npages;
2727 const unsigned long start = migrate->start;
2728 struct mmu_notifier_range range;
2729 unsigned long addr, i;
2730 bool notified = false;
2732 for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) {
2733 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2734 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2735 struct address_space *mapping;
2739 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2744 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE)) {
2750 mmu_notifier_range_init(&range,
2751 migrate->vma->vm_mm,
2752 addr, migrate->end);
2753 mmu_notifier_invalidate_range_start(&range);
2755 migrate_vma_insert_page(migrate, addr, newpage,
2761 mapping = page_mapping(page);
2763 if (is_zone_device_page(newpage)) {
2764 if (is_device_private_page(newpage)) {
2766 * For now only support private anonymous when
2767 * migrating to un-addressable device memory.
2770 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2773 } else if (!is_device_public_page(newpage)) {
2775 * Other types of ZONE_DEVICE page are not
2778 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2783 r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY);
2784 if (r != MIGRATEPAGE_SUCCESS)
2785 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2789 * No need to double call mmu_notifier->invalidate_range() callback as
2790 * the above ptep_clear_flush_notify() inside migrate_vma_insert_page()
2791 * did already call it.
2794 mmu_notifier_invalidate_range_only_end(&range);
2798 * migrate_vma_finalize() - restore CPU page table entry
2799 * @migrate: migrate struct containing all migration information
2801 * This replaces the special migration pte entry with either a mapping to the
2802 * new page if migration was successful for that page, or to the original page
2805 * This also unlocks the pages and puts them back on the lru, or drops the extra
2806 * refcount, for device pages.
2808 static void migrate_vma_finalize(struct migrate_vma *migrate)
2810 const unsigned long npages = migrate->npages;
2813 for (i = 0; i < npages; i++) {
2814 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2815 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2819 unlock_page(newpage);
2825 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) {
2827 unlock_page(newpage);
2833 remove_migration_ptes(page, newpage, false);
2837 if (is_zone_device_page(page))
2840 putback_lru_page(page);
2842 if (newpage != page) {
2843 unlock_page(newpage);
2844 if (is_zone_device_page(newpage))
2847 putback_lru_page(newpage);
2853 * migrate_vma() - migrate a range of memory inside vma
2855 * @ops: migration callback for allocating destination memory and copying
2856 * @vma: virtual memory area containing the range to be migrated
2857 * @start: start address of the range to migrate (inclusive)
2858 * @end: end address of the range to migrate (exclusive)
2859 * @src: array of hmm_pfn_t containing source pfns
2860 * @dst: array of hmm_pfn_t containing destination pfns
2861 * @private: pointer passed back to each of the callback
2862 * Returns: 0 on success, error code otherwise
2864 * This function tries to migrate a range of memory virtual address range, using
2865 * callbacks to allocate and copy memory from source to destination. First it
2866 * collects all the pages backing each virtual address in the range, saving this
2867 * inside the src array. Then it locks those pages and unmaps them. Once the pages
2868 * are locked and unmapped, it checks whether each page is pinned or not. Pages
2869 * that aren't pinned have the MIGRATE_PFN_MIGRATE flag set (by this function)
2870 * in the corresponding src array entry. It then restores any pages that are
2871 * pinned, by remapping and unlocking those pages.
2873 * At this point it calls the alloc_and_copy() callback. For documentation on
2874 * what is expected from that callback, see struct migrate_vma_ops comments in
2875 * include/linux/migrate.h
2877 * After the alloc_and_copy() callback, this function goes over each entry in
2878 * the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
2879 * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
2880 * then the function tries to migrate struct page information from the source
2881 * struct page to the destination struct page. If it fails to migrate the struct
2882 * page information, then it clears the MIGRATE_PFN_MIGRATE flag in the src
2885 * At this point all successfully migrated pages have an entry in the src
2886 * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
2887 * array entry with MIGRATE_PFN_VALID flag set.
2889 * It then calls the finalize_and_map() callback. See comments for "struct
2890 * migrate_vma_ops", in include/linux/migrate.h for details about
2891 * finalize_and_map() behavior.
2893 * After the finalize_and_map() callback, for successfully migrated pages, this
2894 * function updates the CPU page table to point to new pages, otherwise it
2895 * restores the CPU page table to point to the original source pages.
2897 * Function returns 0 after the above steps, even if no pages were migrated
2898 * (The function only returns an error if any of the arguments are invalid.)
2900 * Both src and dst array must be big enough for (end - start) >> PAGE_SHIFT
2901 * unsigned long entries.
2903 int migrate_vma(const struct migrate_vma_ops *ops,
2904 struct vm_area_struct *vma,
2905 unsigned long start,
2911 struct migrate_vma migrate;
2913 /* Sanity check the arguments */
2916 if (!vma || is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_SPECIAL) ||
2919 if (start < vma->vm_start || start >= vma->vm_end)
2921 if (end <= vma->vm_start || end > vma->vm_end)
2923 if (!ops || !src || !dst || start >= end)
2926 memset(src, 0, sizeof(*src) * ((end - start) >> PAGE_SHIFT));
2929 migrate.start = start;
2935 /* Collect, and try to unmap source pages */
2936 migrate_vma_collect(&migrate);
2937 if (!migrate.cpages)
2940 /* Lock and isolate page */
2941 migrate_vma_prepare(&migrate);
2942 if (!migrate.cpages)
2946 migrate_vma_unmap(&migrate);
2947 if (!migrate.cpages)
2951 * At this point pages are locked and unmapped, and thus they have
2952 * stable content and can safely be copied to destination memory that
2953 * is allocated by the callback.
2955 * Note that migration can fail in migrate_vma_struct_page() for each
2958 ops->alloc_and_copy(vma, src, dst, start, end, private);
2960 /* This does the real migration of struct page */
2961 migrate_vma_pages(&migrate);
2963 ops->finalize_and_map(vma, src, dst, start, end, private);
2965 /* Unlock and remap pages */
2966 migrate_vma_finalize(&migrate);
2970 EXPORT_SYMBOL(migrate_vma);
2971 #endif /* defined(MIGRATE_VMA_HELPER) */