1 // SPDX-License-Identifier: GPL-2.0
3 * Memory Migration functionality - linux/mm/migrate.c
5 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
7 * Page migration was first developed in the context of the memory hotplug
8 * project. The main authors of the migration code are:
10 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
11 * Hirokazu Takahashi <taka@valinux.co.jp>
12 * Dave Hansen <haveblue@us.ibm.com>
16 #include <linux/migrate.h>
17 #include <linux/export.h>
18 #include <linux/swap.h>
19 #include <linux/swapops.h>
20 #include <linux/pagemap.h>
21 #include <linux/buffer_head.h>
22 #include <linux/mm_inline.h>
23 #include <linux/nsproxy.h>
24 #include <linux/pagevec.h>
25 #include <linux/ksm.h>
26 #include <linux/rmap.h>
27 #include <linux/topology.h>
28 #include <linux/cpu.h>
29 #include <linux/cpuset.h>
30 #include <linux/writeback.h>
31 #include <linux/mempolicy.h>
32 #include <linux/vmalloc.h>
33 #include <linux/security.h>
34 #include <linux/backing-dev.h>
35 #include <linux/compaction.h>
36 #include <linux/syscalls.h>
37 #include <linux/hugetlb.h>
38 #include <linux/hugetlb_cgroup.h>
39 #include <linux/gfp.h>
40 #include <linux/pfn_t.h>
41 #include <linux/memremap.h>
42 #include <linux/userfaultfd_k.h>
43 #include <linux/balloon_compaction.h>
44 #include <linux/mmu_notifier.h>
45 #include <linux/page_idle.h>
46 #include <linux/page_owner.h>
47 #include <linux/sched/mm.h>
48 #include <linux/ptrace.h>
50 #include <asm/tlbflush.h>
52 #define CREATE_TRACE_POINTS
53 #include <trace/events/migrate.h>
58 * migrate_prep() needs to be called before we start compiling a list of pages
59 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
60 * undesirable, use migrate_prep_local()
62 int migrate_prep(void)
65 * Clear the LRU lists so pages can be isolated.
66 * Note that pages may be moved off the LRU after we have
67 * drained them. Those pages will fail to migrate like other
68 * pages that may be busy.
75 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
76 int migrate_prep_local(void)
83 int isolate_movable_page(struct page *page, isolate_mode_t mode)
85 struct address_space *mapping;
88 * Avoid burning cycles with pages that are yet under __free_pages(),
89 * or just got freed under us.
91 * In case we 'win' a race for a movable page being freed under us and
92 * raise its refcount preventing __free_pages() from doing its job
93 * the put_page() at the end of this block will take care of
94 * release this page, thus avoiding a nasty leakage.
96 if (unlikely(!get_page_unless_zero(page)))
100 * Check PageMovable before holding a PG_lock because page's owner
101 * assumes anybody doesn't touch PG_lock of newly allocated page
102 * so unconditionally grapping the lock ruins page's owner side.
104 if (unlikely(!__PageMovable(page)))
107 * As movable pages are not isolated from LRU lists, concurrent
108 * compaction threads can race against page migration functions
109 * as well as race against the releasing a page.
111 * In order to avoid having an already isolated movable page
112 * being (wrongly) re-isolated while it is under migration,
113 * or to avoid attempting to isolate pages being released,
114 * lets be sure we have the page lock
115 * before proceeding with the movable page isolation steps.
117 if (unlikely(!trylock_page(page)))
120 if (!PageMovable(page) || PageIsolated(page))
121 goto out_no_isolated;
123 mapping = page_mapping(page);
124 VM_BUG_ON_PAGE(!mapping, page);
126 if (!mapping->a_ops->isolate_page(page, mode))
127 goto out_no_isolated;
129 /* Driver shouldn't use PG_isolated bit of page->flags */
130 WARN_ON_ONCE(PageIsolated(page));
131 __SetPageIsolated(page);
144 /* It should be called on page which is PG_movable */
145 void putback_movable_page(struct page *page)
147 struct address_space *mapping;
149 VM_BUG_ON_PAGE(!PageLocked(page), page);
150 VM_BUG_ON_PAGE(!PageMovable(page), page);
151 VM_BUG_ON_PAGE(!PageIsolated(page), page);
153 mapping = page_mapping(page);
154 mapping->a_ops->putback_page(page);
155 __ClearPageIsolated(page);
159 * Put previously isolated pages back onto the appropriate lists
160 * from where they were once taken off for compaction/migration.
162 * This function shall be used whenever the isolated pageset has been
163 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
164 * and isolate_huge_page().
166 void putback_movable_pages(struct list_head *l)
171 list_for_each_entry_safe(page, page2, l, lru) {
172 if (unlikely(PageHuge(page))) {
173 putback_active_hugepage(page);
176 list_del(&page->lru);
178 * We isolated non-lru movable page so here we can use
179 * __PageMovable because LRU page's mapping cannot have
180 * PAGE_MAPPING_MOVABLE.
182 if (unlikely(__PageMovable(page))) {
183 VM_BUG_ON_PAGE(!PageIsolated(page), page);
185 if (PageMovable(page))
186 putback_movable_page(page);
188 __ClearPageIsolated(page);
192 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
193 page_is_file_cache(page), -hpage_nr_pages(page));
194 putback_lru_page(page);
200 * Restore a potential migration pte to a working pte entry
202 static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma,
203 unsigned long addr, void *old)
205 struct page_vma_mapped_walk pvmw = {
209 .flags = PVMW_SYNC | PVMW_MIGRATION,
215 VM_BUG_ON_PAGE(PageTail(page), page);
216 while (page_vma_mapped_walk(&pvmw)) {
220 new = page - pvmw.page->index +
221 linear_page_index(vma, pvmw.address);
223 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
224 /* PMD-mapped THP migration entry */
226 VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
227 remove_migration_pmd(&pvmw, new);
233 pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
234 if (pte_swp_soft_dirty(*pvmw.pte))
235 pte = pte_mksoft_dirty(pte);
238 * Recheck VMA as permissions can change since migration started
240 entry = pte_to_swp_entry(*pvmw.pte);
241 if (is_write_migration_entry(entry))
242 pte = maybe_mkwrite(pte, vma);
244 if (unlikely(is_zone_device_page(new))) {
245 if (is_device_private_page(new)) {
246 entry = make_device_private_entry(new, pte_write(pte));
247 pte = swp_entry_to_pte(entry);
248 } else if (is_device_public_page(new)) {
249 pte = pte_mkdevmap(pte);
250 flush_dcache_page(new);
253 flush_dcache_page(new);
255 #ifdef CONFIG_HUGETLB_PAGE
257 pte = pte_mkhuge(pte);
258 pte = arch_make_huge_pte(pte, vma, new, 0);
259 set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
261 hugepage_add_anon_rmap(new, vma, pvmw.address);
263 page_dup_rmap(new, true);
267 set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
270 page_add_anon_rmap(new, vma, pvmw.address, false);
272 page_add_file_rmap(new, false);
274 if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
277 if (PageTransHuge(page) && PageMlocked(page))
278 clear_page_mlock(page);
280 /* No need to invalidate - it was non-present before */
281 update_mmu_cache(vma, pvmw.address, pvmw.pte);
288 * Get rid of all migration entries and replace them by
289 * references to the indicated page.
291 void remove_migration_ptes(struct page *old, struct page *new, bool locked)
293 struct rmap_walk_control rwc = {
294 .rmap_one = remove_migration_pte,
299 rmap_walk_locked(new, &rwc);
301 rmap_walk(new, &rwc);
305 * Something used the pte of a page under migration. We need to
306 * get to the page and wait until migration is finished.
307 * When we return from this function the fault will be retried.
309 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
318 if (!is_swap_pte(pte))
321 entry = pte_to_swp_entry(pte);
322 if (!is_migration_entry(entry))
325 page = migration_entry_to_page(entry);
328 * Once radix-tree replacement of page migration started, page_count
329 * *must* be zero. And, we don't want to call wait_on_page_locked()
330 * against a page without get_page().
331 * So, we use get_page_unless_zero(), here. Even failed, page fault
334 if (!get_page_unless_zero(page))
336 pte_unmap_unlock(ptep, ptl);
337 wait_on_page_locked(page);
341 pte_unmap_unlock(ptep, ptl);
344 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
345 unsigned long address)
347 spinlock_t *ptl = pte_lockptr(mm, pmd);
348 pte_t *ptep = pte_offset_map(pmd, address);
349 __migration_entry_wait(mm, ptep, ptl);
352 void migration_entry_wait_huge(struct vm_area_struct *vma,
353 struct mm_struct *mm, pte_t *pte)
355 spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
356 __migration_entry_wait(mm, pte, ptl);
359 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
360 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
365 ptl = pmd_lock(mm, pmd);
366 if (!is_pmd_migration_entry(*pmd))
368 page = migration_entry_to_page(pmd_to_swp_entry(*pmd));
369 if (!get_page_unless_zero(page))
372 wait_on_page_locked(page);
381 /* Returns true if all buffers are successfully locked */
382 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
383 enum migrate_mode mode)
385 struct buffer_head *bh = head;
387 /* Simple case, sync compaction */
388 if (mode != MIGRATE_ASYNC) {
392 bh = bh->b_this_page;
394 } while (bh != head);
399 /* async case, we cannot block on lock_buffer so use trylock_buffer */
402 if (!trylock_buffer(bh)) {
404 * We failed to lock the buffer and cannot stall in
405 * async migration. Release the taken locks
407 struct buffer_head *failed_bh = bh;
410 while (bh != failed_bh) {
413 bh = bh->b_this_page;
418 bh = bh->b_this_page;
419 } while (bh != head);
423 static inline bool buffer_migrate_lock_buffers(struct buffer_head *head,
424 enum migrate_mode mode)
428 #endif /* CONFIG_BLOCK */
431 * Replace the page in the mapping.
433 * The number of remaining references must be:
434 * 1 for anonymous pages without a mapping
435 * 2 for pages with a mapping
436 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
438 int migrate_page_move_mapping(struct address_space *mapping,
439 struct page *newpage, struct page *page,
440 struct buffer_head *head, enum migrate_mode mode,
443 struct zone *oldzone, *newzone;
445 int expected_count = 1 + extra_count;
449 * Device public or private pages have an extra refcount as they are
452 expected_count += is_device_private_page(page);
453 expected_count += is_device_public_page(page);
456 /* Anonymous page without mapping */
457 if (page_count(page) != expected_count)
460 /* No turning back from here */
461 newpage->index = page->index;
462 newpage->mapping = page->mapping;
463 if (PageSwapBacked(page))
464 __SetPageSwapBacked(newpage);
466 return MIGRATEPAGE_SUCCESS;
469 oldzone = page_zone(page);
470 newzone = page_zone(newpage);
472 spin_lock_irq(&mapping->tree_lock);
474 pslot = radix_tree_lookup_slot(&mapping->page_tree,
477 expected_count += 1 + page_has_private(page);
478 if (page_count(page) != expected_count ||
479 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
480 spin_unlock_irq(&mapping->tree_lock);
484 if (!page_ref_freeze(page, expected_count)) {
485 spin_unlock_irq(&mapping->tree_lock);
490 * In the async migration case of moving a page with buffers, lock the
491 * buffers using trylock before the mapping is moved. If the mapping
492 * was moved, we later failed to lock the buffers and could not move
493 * the mapping back due to an elevated page count, we would have to
494 * block waiting on other references to be dropped.
496 if (mode == MIGRATE_ASYNC && head &&
497 !buffer_migrate_lock_buffers(head, mode)) {
498 page_ref_unfreeze(page, expected_count);
499 spin_unlock_irq(&mapping->tree_lock);
504 * Now we know that no one else is looking at the page:
505 * no turning back from here.
507 newpage->index = page->index;
508 newpage->mapping = page->mapping;
509 get_page(newpage); /* add cache reference */
510 if (PageSwapBacked(page)) {
511 __SetPageSwapBacked(newpage);
512 if (PageSwapCache(page)) {
513 SetPageSwapCache(newpage);
514 set_page_private(newpage, page_private(page));
517 VM_BUG_ON_PAGE(PageSwapCache(page), page);
520 /* Move dirty while page refs frozen and newpage not yet exposed */
521 dirty = PageDirty(page);
523 ClearPageDirty(page);
524 SetPageDirty(newpage);
527 radix_tree_replace_slot(&mapping->page_tree, pslot, newpage);
530 * Drop cache reference from old page by unfreezing
531 * to one less reference.
532 * We know this isn't the last reference.
534 page_ref_unfreeze(page, expected_count - 1);
536 spin_unlock(&mapping->tree_lock);
537 /* Leave irq disabled to prevent preemption while updating stats */
540 * If moved to a different zone then also account
541 * the page for that zone. Other VM counters will be
542 * taken care of when we establish references to the
543 * new page and drop references to the old page.
545 * Note that anonymous pages are accounted for
546 * via NR_FILE_PAGES and NR_ANON_MAPPED if they
547 * are mapped to swap space.
549 if (newzone != oldzone) {
550 __dec_node_state(oldzone->zone_pgdat, NR_FILE_PAGES);
551 __inc_node_state(newzone->zone_pgdat, NR_FILE_PAGES);
552 if (PageSwapBacked(page) && !PageSwapCache(page)) {
553 __dec_node_state(oldzone->zone_pgdat, NR_SHMEM);
554 __inc_node_state(newzone->zone_pgdat, NR_SHMEM);
556 if (dirty && mapping_cap_account_dirty(mapping)) {
557 __dec_node_state(oldzone->zone_pgdat, NR_FILE_DIRTY);
558 __dec_zone_state(oldzone, NR_ZONE_WRITE_PENDING);
559 __inc_node_state(newzone->zone_pgdat, NR_FILE_DIRTY);
560 __inc_zone_state(newzone, NR_ZONE_WRITE_PENDING);
565 return MIGRATEPAGE_SUCCESS;
567 EXPORT_SYMBOL(migrate_page_move_mapping);
570 * The expected number of remaining references is the same as that
571 * of migrate_page_move_mapping().
573 int migrate_huge_page_move_mapping(struct address_space *mapping,
574 struct page *newpage, struct page *page)
579 spin_lock_irq(&mapping->tree_lock);
581 pslot = radix_tree_lookup_slot(&mapping->page_tree,
584 expected_count = 2 + page_has_private(page);
585 if (page_count(page) != expected_count ||
586 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
587 spin_unlock_irq(&mapping->tree_lock);
591 if (!page_ref_freeze(page, expected_count)) {
592 spin_unlock_irq(&mapping->tree_lock);
596 newpage->index = page->index;
597 newpage->mapping = page->mapping;
601 radix_tree_replace_slot(&mapping->page_tree, pslot, newpage);
603 page_ref_unfreeze(page, expected_count - 1);
605 spin_unlock_irq(&mapping->tree_lock);
607 return MIGRATEPAGE_SUCCESS;
611 * Gigantic pages are so large that we do not guarantee that page++ pointer
612 * arithmetic will work across the entire page. We need something more
615 static void __copy_gigantic_page(struct page *dst, struct page *src,
619 struct page *dst_base = dst;
620 struct page *src_base = src;
622 for (i = 0; i < nr_pages; ) {
624 copy_highpage(dst, src);
627 dst = mem_map_next(dst, dst_base, i);
628 src = mem_map_next(src, src_base, i);
632 static void copy_huge_page(struct page *dst, struct page *src)
639 struct hstate *h = page_hstate(src);
640 nr_pages = pages_per_huge_page(h);
642 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
643 __copy_gigantic_page(dst, src, nr_pages);
648 BUG_ON(!PageTransHuge(src));
649 nr_pages = hpage_nr_pages(src);
652 for (i = 0; i < nr_pages; i++) {
654 copy_highpage(dst + i, src + i);
659 * Copy the page to its new location
661 void migrate_page_states(struct page *newpage, struct page *page)
666 SetPageError(newpage);
667 if (PageReferenced(page))
668 SetPageReferenced(newpage);
669 if (PageUptodate(page))
670 SetPageUptodate(newpage);
671 if (TestClearPageActive(page)) {
672 VM_BUG_ON_PAGE(PageUnevictable(page), page);
673 SetPageActive(newpage);
674 } else if (TestClearPageUnevictable(page))
675 SetPageUnevictable(newpage);
676 if (PageChecked(page))
677 SetPageChecked(newpage);
678 if (PageMappedToDisk(page))
679 SetPageMappedToDisk(newpage);
681 /* Move dirty on pages not done by migrate_page_move_mapping() */
683 SetPageDirty(newpage);
685 if (page_is_young(page))
686 set_page_young(newpage);
687 if (page_is_idle(page))
688 set_page_idle(newpage);
691 * Copy NUMA information to the new page, to prevent over-eager
692 * future migrations of this same page.
694 cpupid = page_cpupid_xchg_last(page, -1);
695 page_cpupid_xchg_last(newpage, cpupid);
697 ksm_migrate_page(newpage, page);
699 * Please do not reorder this without considering how mm/ksm.c's
700 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
702 if (PageSwapCache(page))
703 ClearPageSwapCache(page);
704 ClearPagePrivate(page);
705 set_page_private(page, 0);
708 * If any waiters have accumulated on the new page then
711 if (PageWriteback(newpage))
712 end_page_writeback(newpage);
714 copy_page_owner(page, newpage);
716 mem_cgroup_migrate(page, newpage);
718 EXPORT_SYMBOL(migrate_page_states);
720 void migrate_page_copy(struct page *newpage, struct page *page)
722 if (PageHuge(page) || PageTransHuge(page))
723 copy_huge_page(newpage, page);
725 copy_highpage(newpage, page);
727 migrate_page_states(newpage, page);
729 EXPORT_SYMBOL(migrate_page_copy);
731 /************************************************************
732 * Migration functions
733 ***********************************************************/
736 * Common logic to directly migrate a single LRU page suitable for
737 * pages that do not use PagePrivate/PagePrivate2.
739 * Pages are locked upon entry and exit.
741 int migrate_page(struct address_space *mapping,
742 struct page *newpage, struct page *page,
743 enum migrate_mode mode)
747 BUG_ON(PageWriteback(page)); /* Writeback must be complete */
749 rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0);
751 if (rc != MIGRATEPAGE_SUCCESS)
754 if (mode != MIGRATE_SYNC_NO_COPY)
755 migrate_page_copy(newpage, page);
757 migrate_page_states(newpage, page);
758 return MIGRATEPAGE_SUCCESS;
760 EXPORT_SYMBOL(migrate_page);
764 * Migration function for pages with buffers. This function can only be used
765 * if the underlying filesystem guarantees that no other references to "page"
768 int buffer_migrate_page(struct address_space *mapping,
769 struct page *newpage, struct page *page, enum migrate_mode mode)
771 struct buffer_head *bh, *head;
774 if (!page_has_buffers(page))
775 return migrate_page(mapping, newpage, page, mode);
777 head = page_buffers(page);
779 rc = migrate_page_move_mapping(mapping, newpage, page, head, mode, 0);
781 if (rc != MIGRATEPAGE_SUCCESS)
785 * In the async case, migrate_page_move_mapping locked the buffers
786 * with an IRQ-safe spinlock held. In the sync case, the buffers
787 * need to be locked now
789 if (mode != MIGRATE_ASYNC)
790 BUG_ON(!buffer_migrate_lock_buffers(head, mode));
792 ClearPagePrivate(page);
793 set_page_private(newpage, page_private(page));
794 set_page_private(page, 0);
800 set_bh_page(bh, newpage, bh_offset(bh));
801 bh = bh->b_this_page;
803 } while (bh != head);
805 SetPagePrivate(newpage);
807 if (mode != MIGRATE_SYNC_NO_COPY)
808 migrate_page_copy(newpage, page);
810 migrate_page_states(newpage, page);
816 bh = bh->b_this_page;
818 } while (bh != head);
820 return MIGRATEPAGE_SUCCESS;
822 EXPORT_SYMBOL(buffer_migrate_page);
826 * Writeback a page to clean the dirty state
828 static int writeout(struct address_space *mapping, struct page *page)
830 struct writeback_control wbc = {
831 .sync_mode = WB_SYNC_NONE,
834 .range_end = LLONG_MAX,
839 if (!mapping->a_ops->writepage)
840 /* No write method for the address space */
843 if (!clear_page_dirty_for_io(page))
844 /* Someone else already triggered a write */
848 * A dirty page may imply that the underlying filesystem has
849 * the page on some queue. So the page must be clean for
850 * migration. Writeout may mean we loose the lock and the
851 * page state is no longer what we checked for earlier.
852 * At this point we know that the migration attempt cannot
855 remove_migration_ptes(page, page, false);
857 rc = mapping->a_ops->writepage(page, &wbc);
859 if (rc != AOP_WRITEPAGE_ACTIVATE)
860 /* unlocked. Relock */
863 return (rc < 0) ? -EIO : -EAGAIN;
867 * Default handling if a filesystem does not provide a migration function.
869 static int fallback_migrate_page(struct address_space *mapping,
870 struct page *newpage, struct page *page, enum migrate_mode mode)
872 if (PageDirty(page)) {
873 /* Only writeback pages in full synchronous migration */
876 case MIGRATE_SYNC_NO_COPY:
881 return writeout(mapping, page);
885 * Buffers may be managed in a filesystem specific way.
886 * We must have no buffers or drop them.
888 if (page_has_private(page) &&
889 !try_to_release_page(page, GFP_KERNEL))
892 return migrate_page(mapping, newpage, page, mode);
896 * Move a page to a newly allocated page
897 * The page is locked and all ptes have been successfully removed.
899 * The new page will have replaced the old page if this function
904 * MIGRATEPAGE_SUCCESS - success
906 static int move_to_new_page(struct page *newpage, struct page *page,
907 enum migrate_mode mode)
909 struct address_space *mapping;
911 bool is_lru = !__PageMovable(page);
913 VM_BUG_ON_PAGE(!PageLocked(page), page);
914 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
916 mapping = page_mapping(page);
918 if (likely(is_lru)) {
920 rc = migrate_page(mapping, newpage, page, mode);
921 else if (mapping->a_ops->migratepage)
923 * Most pages have a mapping and most filesystems
924 * provide a migratepage callback. Anonymous pages
925 * are part of swap space which also has its own
926 * migratepage callback. This is the most common path
927 * for page migration.
929 rc = mapping->a_ops->migratepage(mapping, newpage,
932 rc = fallback_migrate_page(mapping, newpage,
936 * In case of non-lru page, it could be released after
937 * isolation step. In that case, we shouldn't try migration.
939 VM_BUG_ON_PAGE(!PageIsolated(page), page);
940 if (!PageMovable(page)) {
941 rc = MIGRATEPAGE_SUCCESS;
942 __ClearPageIsolated(page);
946 rc = mapping->a_ops->migratepage(mapping, newpage,
948 WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
949 !PageIsolated(page));
953 * When successful, old pagecache page->mapping must be cleared before
954 * page is freed; but stats require that PageAnon be left as PageAnon.
956 if (rc == MIGRATEPAGE_SUCCESS) {
957 if (__PageMovable(page)) {
958 VM_BUG_ON_PAGE(!PageIsolated(page), page);
961 * We clear PG_movable under page_lock so any compactor
962 * cannot try to migrate this page.
964 __ClearPageIsolated(page);
968 * Anonymous and movable page->mapping will be cleard by
969 * free_pages_prepare so don't reset it here for keeping
970 * the type to work PageAnon, for example.
972 if (!PageMappingFlags(page))
973 page->mapping = NULL;
979 static int __unmap_and_move(struct page *page, struct page *newpage,
980 int force, enum migrate_mode mode)
983 int page_was_mapped = 0;
984 struct anon_vma *anon_vma = NULL;
985 bool is_lru = !__PageMovable(page);
987 if (!trylock_page(page)) {
988 if (!force || mode == MIGRATE_ASYNC)
992 * It's not safe for direct compaction to call lock_page.
993 * For example, during page readahead pages are added locked
994 * to the LRU. Later, when the IO completes the pages are
995 * marked uptodate and unlocked. However, the queueing
996 * could be merging multiple pages for one bio (e.g.
997 * mpage_readpages). If an allocation happens for the
998 * second or third page, the process can end up locking
999 * the same page twice and deadlocking. Rather than
1000 * trying to be clever about what pages can be locked,
1001 * avoid the use of lock_page for direct compaction
1004 if (current->flags & PF_MEMALLOC)
1010 if (PageWriteback(page)) {
1012 * Only in the case of a full synchronous migration is it
1013 * necessary to wait for PageWriteback. In the async case,
1014 * the retry loop is too short and in the sync-light case,
1015 * the overhead of stalling is too much
1019 case MIGRATE_SYNC_NO_COPY:
1027 wait_on_page_writeback(page);
1031 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
1032 * we cannot notice that anon_vma is freed while we migrates a page.
1033 * This get_anon_vma() delays freeing anon_vma pointer until the end
1034 * of migration. File cache pages are no problem because of page_lock()
1035 * File Caches may use write_page() or lock_page() in migration, then,
1036 * just care Anon page here.
1038 * Only page_get_anon_vma() understands the subtleties of
1039 * getting a hold on an anon_vma from outside one of its mms.
1040 * But if we cannot get anon_vma, then we won't need it anyway,
1041 * because that implies that the anon page is no longer mapped
1042 * (and cannot be remapped so long as we hold the page lock).
1044 if (PageAnon(page) && !PageKsm(page))
1045 anon_vma = page_get_anon_vma(page);
1048 * Block others from accessing the new page when we get around to
1049 * establishing additional references. We are usually the only one
1050 * holding a reference to newpage at this point. We used to have a BUG
1051 * here if trylock_page(newpage) fails, but would like to allow for
1052 * cases where there might be a race with the previous use of newpage.
1053 * This is much like races on refcount of oldpage: just don't BUG().
1055 if (unlikely(!trylock_page(newpage)))
1058 if (unlikely(!is_lru)) {
1059 rc = move_to_new_page(newpage, page, mode);
1060 goto out_unlock_both;
1064 * Corner case handling:
1065 * 1. When a new swap-cache page is read into, it is added to the LRU
1066 * and treated as swapcache but it has no rmap yet.
1067 * Calling try_to_unmap() against a page->mapping==NULL page will
1068 * trigger a BUG. So handle it here.
1069 * 2. An orphaned page (see truncate_complete_page) might have
1070 * fs-private metadata. The page can be picked up due to memory
1071 * offlining. Everywhere else except page reclaim, the page is
1072 * invisible to the vm, so the page can not be migrated. So try to
1073 * free the metadata, so the page can be freed.
1075 if (!page->mapping) {
1076 VM_BUG_ON_PAGE(PageAnon(page), page);
1077 if (page_has_private(page)) {
1078 try_to_free_buffers(page);
1079 goto out_unlock_both;
1081 } else if (page_mapped(page)) {
1082 /* Establish migration ptes */
1083 VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1086 TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1087 page_was_mapped = 1;
1090 if (!page_mapped(page))
1091 rc = move_to_new_page(newpage, page, mode);
1093 if (page_was_mapped)
1094 remove_migration_ptes(page,
1095 rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
1098 unlock_page(newpage);
1100 /* Drop an anon_vma reference if we took one */
1102 put_anon_vma(anon_vma);
1106 * If migration is successful, decrease refcount of the newpage
1107 * which will not free the page because new page owner increased
1108 * refcounter. As well, if it is LRU page, add the page to LRU
1111 if (rc == MIGRATEPAGE_SUCCESS) {
1112 if (unlikely(__PageMovable(newpage)))
1115 putback_lru_page(newpage);
1122 * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move(). Work
1125 #if (GCC_VERSION >= 40700 && GCC_VERSION < 40900) && defined(CONFIG_ARM)
1126 #define ICE_noinline noinline
1128 #define ICE_noinline
1132 * Obtain the lock on page, remove all ptes and migrate the page
1133 * to the newly allocated page in newpage.
1135 static ICE_noinline int unmap_and_move(new_page_t get_new_page,
1136 free_page_t put_new_page,
1137 unsigned long private, struct page *page,
1138 int force, enum migrate_mode mode,
1139 enum migrate_reason reason)
1141 int rc = MIGRATEPAGE_SUCCESS;
1143 struct page *newpage;
1145 newpage = get_new_page(page, private, &result);
1149 if (page_count(page) == 1) {
1150 /* page was freed from under us. So we are done. */
1151 ClearPageActive(page);
1152 ClearPageUnevictable(page);
1153 if (unlikely(__PageMovable(page))) {
1155 if (!PageMovable(page))
1156 __ClearPageIsolated(page);
1160 put_new_page(newpage, private);
1166 if (unlikely(PageTransHuge(page) && !PageTransHuge(newpage))) {
1168 rc = split_huge_page(page);
1174 rc = __unmap_and_move(page, newpage, force, mode);
1175 if (rc == MIGRATEPAGE_SUCCESS)
1176 set_page_owner_migrate_reason(newpage, reason);
1179 if (rc != -EAGAIN) {
1181 * A page that has been migrated has all references
1182 * removed and will be freed. A page that has not been
1183 * migrated will have kepts its references and be
1186 list_del(&page->lru);
1189 * Compaction can migrate also non-LRU pages which are
1190 * not accounted to NR_ISOLATED_*. They can be recognized
1193 if (likely(!__PageMovable(page)))
1194 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
1195 page_is_file_cache(page), -hpage_nr_pages(page));
1199 * If migration is successful, releases reference grabbed during
1200 * isolation. Otherwise, restore the page to right list unless
1203 if (rc == MIGRATEPAGE_SUCCESS) {
1205 if (reason == MR_MEMORY_FAILURE) {
1207 * Set PG_HWPoison on just freed page
1208 * intentionally. Although it's rather weird,
1209 * it's how HWPoison flag works at the moment.
1211 if (!test_set_page_hwpoison(page))
1212 num_poisoned_pages_inc();
1215 if (rc != -EAGAIN) {
1216 if (likely(!__PageMovable(page))) {
1217 putback_lru_page(page);
1222 if (PageMovable(page))
1223 putback_movable_page(page);
1225 __ClearPageIsolated(page);
1231 put_new_page(newpage, private);
1240 *result = page_to_nid(newpage);
1246 * Counterpart of unmap_and_move_page() for hugepage migration.
1248 * This function doesn't wait the completion of hugepage I/O
1249 * because there is no race between I/O and migration for hugepage.
1250 * Note that currently hugepage I/O occurs only in direct I/O
1251 * where no lock is held and PG_writeback is irrelevant,
1252 * and writeback status of all subpages are counted in the reference
1253 * count of the head page (i.e. if all subpages of a 2MB hugepage are
1254 * under direct I/O, the reference of the head page is 512 and a bit more.)
1255 * This means that when we try to migrate hugepage whose subpages are
1256 * doing direct I/O, some references remain after try_to_unmap() and
1257 * hugepage migration fails without data corruption.
1259 * There is also no race when direct I/O is issued on the page under migration,
1260 * because then pte is replaced with migration swap entry and direct I/O code
1261 * will wait in the page fault for migration to complete.
1263 static int unmap_and_move_huge_page(new_page_t get_new_page,
1264 free_page_t put_new_page, unsigned long private,
1265 struct page *hpage, int force,
1266 enum migrate_mode mode, int reason)
1270 int page_was_mapped = 0;
1271 struct page *new_hpage;
1272 struct anon_vma *anon_vma = NULL;
1275 * Movability of hugepages depends on architectures and hugepage size.
1276 * This check is necessary because some callers of hugepage migration
1277 * like soft offline and memory hotremove don't walk through page
1278 * tables or check whether the hugepage is pmd-based or not before
1279 * kicking migration.
1281 if (!hugepage_migration_supported(page_hstate(hpage))) {
1282 putback_active_hugepage(hpage);
1286 new_hpage = get_new_page(hpage, private, &result);
1290 if (!trylock_page(hpage)) {
1295 case MIGRATE_SYNC_NO_COPY:
1303 if (PageAnon(hpage))
1304 anon_vma = page_get_anon_vma(hpage);
1306 if (unlikely(!trylock_page(new_hpage)))
1309 if (page_mapped(hpage)) {
1311 TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1312 page_was_mapped = 1;
1315 if (!page_mapped(hpage))
1316 rc = move_to_new_page(new_hpage, hpage, mode);
1318 if (page_was_mapped)
1319 remove_migration_ptes(hpage,
1320 rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false);
1322 unlock_page(new_hpage);
1326 put_anon_vma(anon_vma);
1328 if (rc == MIGRATEPAGE_SUCCESS) {
1329 hugetlb_cgroup_migrate(hpage, new_hpage);
1330 put_new_page = NULL;
1331 set_page_owner_migrate_reason(new_hpage, reason);
1337 putback_active_hugepage(hpage);
1338 if (reason == MR_MEMORY_FAILURE && !test_set_page_hwpoison(hpage))
1339 num_poisoned_pages_inc();
1342 * If migration was not successful and there's a freeing callback, use
1343 * it. Otherwise, put_page() will drop the reference grabbed during
1347 put_new_page(new_hpage, private);
1349 putback_active_hugepage(new_hpage);
1355 *result = page_to_nid(new_hpage);
1361 * migrate_pages - migrate the pages specified in a list, to the free pages
1362 * supplied as the target for the page migration
1364 * @from: The list of pages to be migrated.
1365 * @get_new_page: The function used to allocate free pages to be used
1366 * as the target of the page migration.
1367 * @put_new_page: The function used to free target pages if migration
1368 * fails, or NULL if no special handling is necessary.
1369 * @private: Private data to be passed on to get_new_page()
1370 * @mode: The migration mode that specifies the constraints for
1371 * page migration, if any.
1372 * @reason: The reason for page migration.
1374 * The function returns after 10 attempts or if no pages are movable any more
1375 * because the list has become empty or no retryable pages exist any more.
1376 * The caller should call putback_movable_pages() to return pages to the LRU
1377 * or free list only if ret != 0.
1379 * Returns the number of pages that were not migrated, or an error code.
1381 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1382 free_page_t put_new_page, unsigned long private,
1383 enum migrate_mode mode, int reason)
1387 int nr_succeeded = 0;
1391 int swapwrite = current->flags & PF_SWAPWRITE;
1395 current->flags |= PF_SWAPWRITE;
1397 for(pass = 0; pass < 10 && retry; pass++) {
1400 list_for_each_entry_safe(page, page2, from, lru) {
1404 rc = unmap_and_move_huge_page(get_new_page,
1405 put_new_page, private, page,
1406 pass > 2, mode, reason);
1408 rc = unmap_and_move(get_new_page, put_new_page,
1409 private, page, pass > 2, mode,
1419 case MIGRATEPAGE_SUCCESS:
1424 * Permanent failure (-EBUSY, -ENOSYS, etc.):
1425 * unlike -EAGAIN case, the failed page is
1426 * removed from migration page list and not
1427 * retried in the next outer loop.
1438 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1440 count_vm_events(PGMIGRATE_FAIL, nr_failed);
1441 trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);
1444 current->flags &= ~PF_SWAPWRITE;
1451 * Move a list of individual pages
1453 struct page_to_node {
1460 static struct page *new_page_node(struct page *p, unsigned long private,
1463 struct page_to_node *pm = (struct page_to_node *)private;
1465 while (pm->node != MAX_NUMNODES && pm->page != p)
1468 if (pm->node == MAX_NUMNODES)
1471 *result = &pm->status;
1474 return alloc_huge_page_node(page_hstate(compound_head(p)),
1476 else if (thp_migration_supported() && PageTransHuge(p)) {
1479 thp = alloc_pages_node(pm->node,
1480 (GFP_TRANSHUGE | __GFP_THISNODE) & ~__GFP_RECLAIM,
1484 prep_transhuge_page(thp);
1487 return __alloc_pages_node(pm->node,
1488 GFP_HIGHUSER_MOVABLE | __GFP_THISNODE, 0);
1492 * Move a set of pages as indicated in the pm array. The addr
1493 * field must be set to the virtual address of the page to be moved
1494 * and the node number must contain a valid target node.
1495 * The pm array ends with node = MAX_NUMNODES.
1497 static int do_move_page_to_node_array(struct mm_struct *mm,
1498 struct page_to_node *pm,
1502 struct page_to_node *pp;
1503 LIST_HEAD(pagelist);
1505 down_read(&mm->mmap_sem);
1508 * Build a list of pages to migrate
1510 for (pp = pm; pp->node != MAX_NUMNODES; pp++) {
1511 struct vm_area_struct *vma;
1514 unsigned int follflags;
1517 vma = find_vma(mm, pp->addr);
1518 if (!vma || pp->addr < vma->vm_start || !vma_migratable(vma))
1521 /* FOLL_DUMP to ignore special (like zero) pages */
1522 follflags = FOLL_GET | FOLL_DUMP;
1523 if (!thp_migration_supported())
1524 follflags |= FOLL_SPLIT;
1525 page = follow_page(vma, pp->addr, follflags);
1527 err = PTR_ERR(page);
1535 err = page_to_nid(page);
1537 if (err == pp->node)
1539 * Node already in the right place
1544 if (page_mapcount(page) > 1 &&
1548 if (PageHuge(page)) {
1549 if (PageHead(page)) {
1550 isolate_huge_page(page, &pagelist);
1557 pp->page = compound_head(page);
1558 head = compound_head(page);
1559 err = isolate_lru_page(head);
1561 list_add_tail(&head->lru, &pagelist);
1562 mod_node_page_state(page_pgdat(head),
1563 NR_ISOLATED_ANON + page_is_file_cache(head),
1564 hpage_nr_pages(head));
1568 * Either remove the duplicate refcount from
1569 * isolate_lru_page() or drop the page ref if it was
1578 if (!list_empty(&pagelist)) {
1579 err = migrate_pages(&pagelist, new_page_node, NULL,
1580 (unsigned long)pm, MIGRATE_SYNC, MR_SYSCALL);
1582 putback_movable_pages(&pagelist);
1585 up_read(&mm->mmap_sem);
1590 * Migrate an array of page address onto an array of nodes and fill
1591 * the corresponding array of status.
1593 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1594 unsigned long nr_pages,
1595 const void __user * __user *pages,
1596 const int __user *nodes,
1597 int __user *status, int flags)
1599 struct page_to_node *pm;
1600 unsigned long chunk_nr_pages;
1601 unsigned long chunk_start;
1605 pm = (struct page_to_node *)__get_free_page(GFP_KERNEL);
1612 * Store a chunk of page_to_node array in a page,
1613 * but keep the last one as a marker
1615 chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1;
1617 for (chunk_start = 0;
1618 chunk_start < nr_pages;
1619 chunk_start += chunk_nr_pages) {
1622 if (chunk_start + chunk_nr_pages > nr_pages)
1623 chunk_nr_pages = nr_pages - chunk_start;
1625 /* fill the chunk pm with addrs and nodes from user-space */
1626 for (j = 0; j < chunk_nr_pages; j++) {
1627 const void __user *p;
1631 if (get_user(p, pages + j + chunk_start))
1633 pm[j].addr = (unsigned long) p;
1635 if (get_user(node, nodes + j + chunk_start))
1639 if (node < 0 || node >= MAX_NUMNODES)
1642 if (!node_state(node, N_MEMORY))
1646 if (!node_isset(node, task_nodes))
1652 /* End marker for this chunk */
1653 pm[chunk_nr_pages].node = MAX_NUMNODES;
1655 /* Migrate this chunk */
1656 err = do_move_page_to_node_array(mm, pm,
1657 flags & MPOL_MF_MOVE_ALL);
1661 /* Return status information */
1662 for (j = 0; j < chunk_nr_pages; j++)
1663 if (put_user(pm[j].status, status + j + chunk_start)) {
1671 free_page((unsigned long)pm);
1677 * Determine the nodes of an array of pages and store it in an array of status.
1679 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1680 const void __user **pages, int *status)
1684 down_read(&mm->mmap_sem);
1686 for (i = 0; i < nr_pages; i++) {
1687 unsigned long addr = (unsigned long)(*pages);
1688 struct vm_area_struct *vma;
1692 vma = find_vma(mm, addr);
1693 if (!vma || addr < vma->vm_start)
1696 /* FOLL_DUMP to ignore special (like zero) pages */
1697 page = follow_page(vma, addr, FOLL_DUMP);
1699 err = PTR_ERR(page);
1703 err = page ? page_to_nid(page) : -ENOENT;
1711 up_read(&mm->mmap_sem);
1715 * Determine the nodes of a user array of pages and store it in
1716 * a user array of status.
1718 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1719 const void __user * __user *pages,
1722 #define DO_PAGES_STAT_CHUNK_NR 16
1723 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1724 int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1727 unsigned long chunk_nr;
1729 chunk_nr = nr_pages;
1730 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1731 chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1733 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1736 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1738 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1743 nr_pages -= chunk_nr;
1745 return nr_pages ? -EFAULT : 0;
1749 * Move a list of pages in the address space of the currently executing
1752 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1753 const void __user * __user *, pages,
1754 const int __user *, nodes,
1755 int __user *, status, int, flags)
1757 struct task_struct *task;
1758 struct mm_struct *mm;
1760 nodemask_t task_nodes;
1763 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1766 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1769 /* Find the mm_struct */
1771 task = pid ? find_task_by_vpid(pid) : current;
1776 get_task_struct(task);
1779 * Check if this process has the right to modify the specified
1780 * process. Use the regular "ptrace_may_access()" checks.
1782 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1789 err = security_task_movememory(task);
1793 task_nodes = cpuset_mems_allowed(task);
1794 mm = get_task_mm(task);
1795 put_task_struct(task);
1801 err = do_pages_move(mm, task_nodes, nr_pages, pages,
1802 nodes, status, flags);
1804 err = do_pages_stat(mm, nr_pages, pages, status);
1810 put_task_struct(task);
1814 #ifdef CONFIG_NUMA_BALANCING
1816 * Returns true if this is a safe migration target node for misplaced NUMA
1817 * pages. Currently it only checks the watermarks which crude
1819 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1820 unsigned long nr_migrate_pages)
1824 for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1825 struct zone *zone = pgdat->node_zones + z;
1827 if (!populated_zone(zone))
1830 /* Avoid waking kswapd by allocating pages_to_migrate pages. */
1831 if (!zone_watermark_ok(zone, 0,
1832 high_wmark_pages(zone) +
1841 static struct page *alloc_misplaced_dst_page(struct page *page,
1845 int nid = (int) data;
1846 struct page *newpage;
1848 newpage = __alloc_pages_node(nid,
1849 (GFP_HIGHUSER_MOVABLE |
1850 __GFP_THISNODE | __GFP_NOMEMALLOC |
1851 __GFP_NORETRY | __GFP_NOWARN) &
1858 * page migration rate limiting control.
1859 * Do not migrate more than @pages_to_migrate in a @migrate_interval_millisecs
1860 * window of time. Default here says do not migrate more than 1280M per second.
1862 static unsigned int migrate_interval_millisecs __read_mostly = 100;
1863 static unsigned int ratelimit_pages __read_mostly = 128 << (20 - PAGE_SHIFT);
1865 /* Returns true if the node is migrate rate-limited after the update */
1866 static bool numamigrate_update_ratelimit(pg_data_t *pgdat,
1867 unsigned long nr_pages)
1870 * Rate-limit the amount of data that is being migrated to a node.
1871 * Optimal placement is no good if the memory bus is saturated and
1872 * all the time is being spent migrating!
1874 if (time_after(jiffies, pgdat->numabalancing_migrate_next_window)) {
1875 spin_lock(&pgdat->numabalancing_migrate_lock);
1876 pgdat->numabalancing_migrate_nr_pages = 0;
1877 pgdat->numabalancing_migrate_next_window = jiffies +
1878 msecs_to_jiffies(migrate_interval_millisecs);
1879 spin_unlock(&pgdat->numabalancing_migrate_lock);
1881 if (pgdat->numabalancing_migrate_nr_pages > ratelimit_pages) {
1882 trace_mm_numa_migrate_ratelimit(current, pgdat->node_id,
1888 * This is an unlocked non-atomic update so errors are possible.
1889 * The consequences are failing to migrate when we potentiall should
1890 * have which is not severe enough to warrant locking. If it is ever
1891 * a problem, it can be converted to a per-cpu counter.
1893 pgdat->numabalancing_migrate_nr_pages += nr_pages;
1897 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
1901 VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
1903 /* Avoid migrating to a node that is nearly full */
1904 if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page)))
1907 if (isolate_lru_page(page))
1911 * migrate_misplaced_transhuge_page() skips page migration's usual
1912 * check on page_count(), so we must do it here, now that the page
1913 * has been isolated: a GUP pin, or any other pin, prevents migration.
1914 * The expected page count is 3: 1 for page's mapcount and 1 for the
1915 * caller's pin and 1 for the reference taken by isolate_lru_page().
1917 if (PageTransHuge(page) && page_count(page) != 3) {
1918 putback_lru_page(page);
1922 page_lru = page_is_file_cache(page);
1923 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
1924 hpage_nr_pages(page));
1927 * Isolating the page has taken another reference, so the
1928 * caller's reference can be safely dropped without the page
1929 * disappearing underneath us during migration.
1935 bool pmd_trans_migrating(pmd_t pmd)
1937 struct page *page = pmd_page(pmd);
1938 return PageLocked(page);
1942 * Attempt to migrate a misplaced page to the specified destination
1943 * node. Caller is expected to have an elevated reference count on
1944 * the page that will be dropped by this function before returning.
1946 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
1949 pg_data_t *pgdat = NODE_DATA(node);
1952 LIST_HEAD(migratepages);
1955 * Don't migrate file pages that are mapped in multiple processes
1956 * with execute permissions as they are probably shared libraries.
1958 if (page_mapcount(page) != 1 && page_is_file_cache(page) &&
1959 (vma->vm_flags & VM_EXEC))
1963 * Rate-limit the amount of data that is being migrated to a node.
1964 * Optimal placement is no good if the memory bus is saturated and
1965 * all the time is being spent migrating!
1967 if (numamigrate_update_ratelimit(pgdat, 1))
1970 isolated = numamigrate_isolate_page(pgdat, page);
1974 list_add(&page->lru, &migratepages);
1975 nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
1976 NULL, node, MIGRATE_ASYNC,
1979 if (!list_empty(&migratepages)) {
1980 list_del(&page->lru);
1981 dec_node_page_state(page, NR_ISOLATED_ANON +
1982 page_is_file_cache(page));
1983 putback_lru_page(page);
1987 count_vm_numa_event(NUMA_PAGE_MIGRATE);
1988 BUG_ON(!list_empty(&migratepages));
1995 #endif /* CONFIG_NUMA_BALANCING */
1997 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1999 * Migrates a THP to a given target node. page must be locked and is unlocked
2002 int migrate_misplaced_transhuge_page(struct mm_struct *mm,
2003 struct vm_area_struct *vma,
2004 pmd_t *pmd, pmd_t entry,
2005 unsigned long address,
2006 struct page *page, int node)
2009 pg_data_t *pgdat = NODE_DATA(node);
2011 struct page *new_page = NULL;
2012 int page_lru = page_is_file_cache(page);
2013 unsigned long mmun_start = address & HPAGE_PMD_MASK;
2014 unsigned long mmun_end = mmun_start + HPAGE_PMD_SIZE;
2017 * Rate-limit the amount of data that is being migrated to a node.
2018 * Optimal placement is no good if the memory bus is saturated and
2019 * all the time is being spent migrating!
2021 if (numamigrate_update_ratelimit(pgdat, HPAGE_PMD_NR))
2024 new_page = alloc_pages_node(node,
2025 (GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
2029 prep_transhuge_page(new_page);
2031 isolated = numamigrate_isolate_page(pgdat, page);
2037 /* Prepare a page as a migration target */
2038 __SetPageLocked(new_page);
2039 if (PageSwapBacked(page))
2040 __SetPageSwapBacked(new_page);
2042 /* anon mapping, we can simply copy page->mapping to the new page: */
2043 new_page->mapping = page->mapping;
2044 new_page->index = page->index;
2045 migrate_page_copy(new_page, page);
2046 WARN_ON(PageLRU(new_page));
2048 /* Recheck the target PMD */
2049 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2050 ptl = pmd_lock(mm, pmd);
2051 if (unlikely(!pmd_same(*pmd, entry) || !page_ref_freeze(page, 2))) {
2053 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2055 /* Reverse changes made by migrate_page_copy() */
2056 if (TestClearPageActive(new_page))
2057 SetPageActive(page);
2058 if (TestClearPageUnevictable(new_page))
2059 SetPageUnevictable(page);
2061 unlock_page(new_page);
2062 put_page(new_page); /* Free it */
2064 /* Retake the callers reference and putback on LRU */
2066 putback_lru_page(page);
2067 mod_node_page_state(page_pgdat(page),
2068 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
2073 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
2074 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
2077 * Clear the old entry under pagetable lock and establish the new PTE.
2078 * Any parallel GUP will either observe the old page blocking on the
2079 * page lock, block on the page table lock or observe the new page.
2080 * The SetPageUptodate on the new page and page_add_new_anon_rmap
2081 * guarantee the copy is visible before the pagetable update.
2083 flush_cache_range(vma, mmun_start, mmun_end);
2084 page_add_anon_rmap(new_page, vma, mmun_start, true);
2085 pmdp_huge_clear_flush_notify(vma, mmun_start, pmd);
2086 set_pmd_at(mm, mmun_start, pmd, entry);
2087 update_mmu_cache_pmd(vma, address, &entry);
2089 page_ref_unfreeze(page, 2);
2090 mlock_migrate_page(new_page, page);
2091 page_remove_rmap(page, true);
2092 set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED);
2095 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2097 /* Take an "isolate" reference and put new page on the LRU. */
2099 putback_lru_page(new_page);
2101 unlock_page(new_page);
2103 put_page(page); /* Drop the rmap reference */
2104 put_page(page); /* Drop the LRU isolation reference */
2106 count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
2107 count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
2109 mod_node_page_state(page_pgdat(page),
2110 NR_ISOLATED_ANON + page_lru,
2115 count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
2117 ptl = pmd_lock(mm, pmd);
2118 if (pmd_same(*pmd, entry)) {
2119 entry = pmd_modify(entry, vma->vm_page_prot);
2120 set_pmd_at(mm, mmun_start, pmd, entry);
2121 update_mmu_cache_pmd(vma, address, &entry);
2130 #endif /* CONFIG_NUMA_BALANCING */
2132 #endif /* CONFIG_NUMA */
2134 #if defined(CONFIG_MIGRATE_VMA_HELPER)
2135 struct migrate_vma {
2136 struct vm_area_struct *vma;
2139 unsigned long cpages;
2140 unsigned long npages;
2141 unsigned long start;
2145 static int migrate_vma_collect_hole(unsigned long start,
2147 struct mm_walk *walk)
2149 struct migrate_vma *migrate = walk->private;
2152 for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) {
2153 migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE;
2154 migrate->dst[migrate->npages] = 0;
2162 static int migrate_vma_collect_skip(unsigned long start,
2164 struct mm_walk *walk)
2166 struct migrate_vma *migrate = walk->private;
2169 for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) {
2170 migrate->dst[migrate->npages] = 0;
2171 migrate->src[migrate->npages++] = 0;
2177 static int migrate_vma_collect_pmd(pmd_t *pmdp,
2178 unsigned long start,
2180 struct mm_walk *walk)
2182 struct migrate_vma *migrate = walk->private;
2183 struct vm_area_struct *vma = walk->vma;
2184 struct mm_struct *mm = vma->vm_mm;
2185 unsigned long addr = start, unmapped = 0;
2190 if (pmd_none(*pmdp))
2191 return migrate_vma_collect_hole(start, end, walk);
2193 if (pmd_trans_huge(*pmdp)) {
2196 ptl = pmd_lock(mm, pmdp);
2197 if (unlikely(!pmd_trans_huge(*pmdp))) {
2202 page = pmd_page(*pmdp);
2203 if (is_huge_zero_page(page)) {
2205 split_huge_pmd(vma, pmdp, addr);
2206 if (pmd_trans_unstable(pmdp))
2207 return migrate_vma_collect_skip(start, end,
2214 if (unlikely(!trylock_page(page)))
2215 return migrate_vma_collect_skip(start, end,
2217 ret = split_huge_page(page);
2221 return migrate_vma_collect_skip(start, end,
2223 if (pmd_none(*pmdp))
2224 return migrate_vma_collect_hole(start, end,
2229 if (unlikely(pmd_bad(*pmdp)))
2230 return migrate_vma_collect_skip(start, end, walk);
2232 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2233 arch_enter_lazy_mmu_mode();
2235 for (; addr < end; addr += PAGE_SIZE, ptep++) {
2236 unsigned long mpfn, pfn;
2244 if (pte_none(pte)) {
2245 mpfn = MIGRATE_PFN_MIGRATE;
2251 if (!pte_present(pte)) {
2255 * Only care about unaddressable device page special
2256 * page table entry. Other special swap entries are not
2257 * migratable, and we ignore regular swapped page.
2259 entry = pte_to_swp_entry(pte);
2260 if (!is_device_private_entry(entry))
2263 page = device_private_entry_to_page(entry);
2264 mpfn = migrate_pfn(page_to_pfn(page))|
2265 MIGRATE_PFN_DEVICE | MIGRATE_PFN_MIGRATE;
2266 if (is_write_device_private_entry(entry))
2267 mpfn |= MIGRATE_PFN_WRITE;
2269 if (is_zero_pfn(pfn)) {
2270 mpfn = MIGRATE_PFN_MIGRATE;
2275 page = _vm_normal_page(migrate->vma, addr, pte, true);
2276 mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
2277 mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
2280 /* FIXME support THP */
2281 if (!page || !page->mapping || PageTransCompound(page)) {
2285 pfn = page_to_pfn(page);
2288 * By getting a reference on the page we pin it and that blocks
2289 * any kind of migration. Side effect is that it "freezes" the
2292 * We drop this reference after isolating the page from the lru
2293 * for non device page (device page are not on the lru and thus
2294 * can't be dropped from it).
2300 * Optimize for the common case where page is only mapped once
2301 * in one process. If we can lock the page, then we can safely
2302 * set up a special migration page table entry now.
2304 if (trylock_page(page)) {
2307 mpfn |= MIGRATE_PFN_LOCKED;
2308 ptep_get_and_clear(mm, addr, ptep);
2310 /* Setup special migration page table entry */
2311 entry = make_migration_entry(page, pte_write(pte));
2312 swp_pte = swp_entry_to_pte(entry);
2313 if (pte_soft_dirty(pte))
2314 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2315 set_pte_at(mm, addr, ptep, swp_pte);
2318 * This is like regular unmap: we remove the rmap and
2319 * drop page refcount. Page won't be freed, as we took
2320 * a reference just above.
2322 page_remove_rmap(page, false);
2325 if (pte_present(pte))
2330 migrate->dst[migrate->npages] = 0;
2331 migrate->src[migrate->npages++] = mpfn;
2333 arch_leave_lazy_mmu_mode();
2334 pte_unmap_unlock(ptep - 1, ptl);
2336 /* Only flush the TLB if we actually modified any entries */
2338 flush_tlb_range(walk->vma, start, end);
2344 * migrate_vma_collect() - collect pages over a range of virtual addresses
2345 * @migrate: migrate struct containing all migration information
2347 * This will walk the CPU page table. For each virtual address backed by a
2348 * valid page, it updates the src array and takes a reference on the page, in
2349 * order to pin the page until we lock it and unmap it.
2351 static void migrate_vma_collect(struct migrate_vma *migrate)
2353 struct mm_walk mm_walk;
2355 mm_walk.pmd_entry = migrate_vma_collect_pmd;
2356 mm_walk.pte_entry = NULL;
2357 mm_walk.pte_hole = migrate_vma_collect_hole;
2358 mm_walk.hugetlb_entry = NULL;
2359 mm_walk.test_walk = NULL;
2360 mm_walk.vma = migrate->vma;
2361 mm_walk.mm = migrate->vma->vm_mm;
2362 mm_walk.private = migrate;
2364 mmu_notifier_invalidate_range_start(mm_walk.mm,
2367 walk_page_range(migrate->start, migrate->end, &mm_walk);
2368 mmu_notifier_invalidate_range_end(mm_walk.mm,
2372 migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
2376 * migrate_vma_check_page() - check if page is pinned or not
2377 * @page: struct page to check
2379 * Pinned pages cannot be migrated. This is the same test as in
2380 * migrate_page_move_mapping(), except that here we allow migration of a
2383 static bool migrate_vma_check_page(struct page *page)
2386 * One extra ref because caller holds an extra reference, either from
2387 * isolate_lru_page() for a regular page, or migrate_vma_collect() for
2393 * FIXME support THP (transparent huge page), it is bit more complex to
2394 * check them than regular pages, because they can be mapped with a pmd
2395 * or with a pte (split pte mapping).
2397 if (PageCompound(page))
2400 /* Page from ZONE_DEVICE have one extra reference */
2401 if (is_zone_device_page(page)) {
2403 * Private page can never be pin as they have no valid pte and
2404 * GUP will fail for those. Yet if there is a pending migration
2405 * a thread might try to wait on the pte migration entry and
2406 * will bump the page reference count. Sadly there is no way to
2407 * differentiate a regular pin from migration wait. Hence to
2408 * avoid 2 racing thread trying to migrate back to CPU to enter
2409 * infinite loop (one stoping migration because the other is
2410 * waiting on pte migration entry). We always return true here.
2412 * FIXME proper solution is to rework migration_entry_wait() so
2413 * it does not need to take a reference on page.
2415 if (is_device_private_page(page))
2419 * Only allow device public page to be migrated and account for
2420 * the extra reference count imply by ZONE_DEVICE pages.
2422 if (!is_device_public_page(page))
2427 /* For file back page */
2428 if (page_mapping(page))
2429 extra += 1 + page_has_private(page);
2431 if ((page_count(page) - extra) > page_mapcount(page))
2438 * migrate_vma_prepare() - lock pages and isolate them from the lru
2439 * @migrate: migrate struct containing all migration information
2441 * This locks pages that have been collected by migrate_vma_collect(). Once each
2442 * page is locked it is isolated from the lru (for non-device pages). Finally,
2443 * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be
2444 * migrated by concurrent kernel threads.
2446 static void migrate_vma_prepare(struct migrate_vma *migrate)
2448 const unsigned long npages = migrate->npages;
2449 const unsigned long start = migrate->start;
2450 unsigned long addr, i, restore = 0;
2451 bool allow_drain = true;
2455 for (i = 0; (i < npages) && migrate->cpages; i++) {
2456 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2462 if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) {
2464 * Because we are migrating several pages there can be
2465 * a deadlock between 2 concurrent migration where each
2466 * are waiting on each other page lock.
2468 * Make migrate_vma() a best effort thing and backoff
2469 * for any page we can not lock right away.
2471 if (!trylock_page(page)) {
2472 migrate->src[i] = 0;
2478 migrate->src[i] |= MIGRATE_PFN_LOCKED;
2481 /* ZONE_DEVICE pages are not on LRU */
2482 if (!is_zone_device_page(page)) {
2483 if (!PageLRU(page) && allow_drain) {
2484 /* Drain CPU's pagevec */
2485 lru_add_drain_all();
2486 allow_drain = false;
2489 if (isolate_lru_page(page)) {
2491 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2495 migrate->src[i] = 0;
2503 /* Drop the reference we took in collect */
2507 if (!migrate_vma_check_page(page)) {
2509 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2513 if (!is_zone_device_page(page)) {
2515 putback_lru_page(page);
2518 migrate->src[i] = 0;
2522 if (!is_zone_device_page(page))
2523 putback_lru_page(page);
2530 for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) {
2531 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2533 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2536 remove_migration_pte(page, migrate->vma, addr, page);
2538 migrate->src[i] = 0;
2546 * migrate_vma_unmap() - replace page mapping with special migration pte entry
2547 * @migrate: migrate struct containing all migration information
2549 * Replace page mapping (CPU page table pte) with a special migration pte entry
2550 * and check again if it has been pinned. Pinned pages are restored because we
2551 * cannot migrate them.
2553 * This is the last step before we call the device driver callback to allocate
2554 * destination memory and copy contents of original page over to new page.
2556 static void migrate_vma_unmap(struct migrate_vma *migrate)
2558 int flags = TTU_MIGRATION | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
2559 const unsigned long npages = migrate->npages;
2560 const unsigned long start = migrate->start;
2561 unsigned long addr, i, restore = 0;
2563 for (i = 0; i < npages; i++) {
2564 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2566 if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2569 if (page_mapped(page)) {
2570 try_to_unmap(page, flags);
2571 if (page_mapped(page))
2575 if (migrate_vma_check_page(page))
2579 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2584 for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) {
2585 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2587 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2590 remove_migration_ptes(page, page, false);
2592 migrate->src[i] = 0;
2596 if (is_zone_device_page(page))
2599 putback_lru_page(page);
2603 static void migrate_vma_insert_page(struct migrate_vma *migrate,
2609 struct vm_area_struct *vma = migrate->vma;
2610 struct mm_struct *mm = vma->vm_mm;
2611 struct mem_cgroup *memcg;
2621 /* Only allow populating anonymous memory */
2622 if (!vma_is_anonymous(vma))
2625 pgdp = pgd_offset(mm, addr);
2626 p4dp = p4d_alloc(mm, pgdp, addr);
2629 pudp = pud_alloc(mm, p4dp, addr);
2632 pmdp = pmd_alloc(mm, pudp, addr);
2636 if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp))
2640 * Use pte_alloc() instead of pte_alloc_map(). We can't run
2641 * pte_offset_map() on pmds where a huge pmd might be created
2642 * from a different thread.
2644 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
2645 * parallel threads are excluded by other means.
2647 * Here we only have down_read(mmap_sem).
2649 if (pte_alloc(mm, pmdp, addr))
2652 /* See the comment in pte_alloc_one_map() */
2653 if (unlikely(pmd_trans_unstable(pmdp)))
2656 if (unlikely(anon_vma_prepare(vma)))
2658 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg, false))
2662 * The memory barrier inside __SetPageUptodate makes sure that
2663 * preceding stores to the page contents become visible before
2664 * the set_pte_at() write.
2666 __SetPageUptodate(page);
2668 if (is_zone_device_page(page)) {
2669 if (is_device_private_page(page)) {
2670 swp_entry_t swp_entry;
2672 swp_entry = make_device_private_entry(page, vma->vm_flags & VM_WRITE);
2673 entry = swp_entry_to_pte(swp_entry);
2674 } else if (is_device_public_page(page)) {
2675 entry = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
2676 if (vma->vm_flags & VM_WRITE)
2677 entry = pte_mkwrite(pte_mkdirty(entry));
2678 entry = pte_mkdevmap(entry);
2681 entry = mk_pte(page, vma->vm_page_prot);
2682 if (vma->vm_flags & VM_WRITE)
2683 entry = pte_mkwrite(pte_mkdirty(entry));
2686 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2688 if (pte_present(*ptep)) {
2689 unsigned long pfn = pte_pfn(*ptep);
2691 if (!is_zero_pfn(pfn)) {
2692 pte_unmap_unlock(ptep, ptl);
2693 mem_cgroup_cancel_charge(page, memcg, false);
2697 } else if (!pte_none(*ptep)) {
2698 pte_unmap_unlock(ptep, ptl);
2699 mem_cgroup_cancel_charge(page, memcg, false);
2704 * Check for usefaultfd but do not deliver the fault. Instead,
2707 if (userfaultfd_missing(vma)) {
2708 pte_unmap_unlock(ptep, ptl);
2709 mem_cgroup_cancel_charge(page, memcg, false);
2713 inc_mm_counter(mm, MM_ANONPAGES);
2714 page_add_new_anon_rmap(page, vma, addr, false);
2715 mem_cgroup_commit_charge(page, memcg, false, false);
2716 if (!is_zone_device_page(page))
2717 lru_cache_add_active_or_unevictable(page, vma);
2721 flush_cache_page(vma, addr, pte_pfn(*ptep));
2722 ptep_clear_flush_notify(vma, addr, ptep);
2723 set_pte_at_notify(mm, addr, ptep, entry);
2724 update_mmu_cache(vma, addr, ptep);
2726 /* No need to invalidate - it was non-present before */
2727 set_pte_at(mm, addr, ptep, entry);
2728 update_mmu_cache(vma, addr, ptep);
2731 pte_unmap_unlock(ptep, ptl);
2732 *src = MIGRATE_PFN_MIGRATE;
2736 *src &= ~MIGRATE_PFN_MIGRATE;
2740 * migrate_vma_pages() - migrate meta-data from src page to dst page
2741 * @migrate: migrate struct containing all migration information
2743 * This migrates struct page meta-data from source struct page to destination
2744 * struct page. This effectively finishes the migration from source page to the
2747 static void migrate_vma_pages(struct migrate_vma *migrate)
2749 const unsigned long npages = migrate->npages;
2750 const unsigned long start = migrate->start;
2751 struct vm_area_struct *vma = migrate->vma;
2752 struct mm_struct *mm = vma->vm_mm;
2753 unsigned long addr, i, mmu_start;
2754 bool notified = false;
2756 for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) {
2757 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2758 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2759 struct address_space *mapping;
2763 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2768 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE)) {
2774 mmu_notifier_invalidate_range_start(mm,
2778 migrate_vma_insert_page(migrate, addr, newpage,
2784 mapping = page_mapping(page);
2786 if (is_zone_device_page(newpage)) {
2787 if (is_device_private_page(newpage)) {
2789 * For now only support private anonymous when
2790 * migrating to un-addressable device memory.
2793 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2796 } else if (!is_device_public_page(newpage)) {
2798 * Other types of ZONE_DEVICE page are not
2801 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2806 r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY);
2807 if (r != MIGRATEPAGE_SUCCESS)
2808 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2812 mmu_notifier_invalidate_range_end(mm, mmu_start,
2817 * migrate_vma_finalize() - restore CPU page table entry
2818 * @migrate: migrate struct containing all migration information
2820 * This replaces the special migration pte entry with either a mapping to the
2821 * new page if migration was successful for that page, or to the original page
2824 * This also unlocks the pages and puts them back on the lru, or drops the extra
2825 * refcount, for device pages.
2827 static void migrate_vma_finalize(struct migrate_vma *migrate)
2829 const unsigned long npages = migrate->npages;
2832 for (i = 0; i < npages; i++) {
2833 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2834 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2838 unlock_page(newpage);
2844 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) {
2846 unlock_page(newpage);
2852 remove_migration_ptes(page, newpage, false);
2856 if (is_zone_device_page(page))
2859 putback_lru_page(page);
2861 if (newpage != page) {
2862 unlock_page(newpage);
2863 if (is_zone_device_page(newpage))
2866 putback_lru_page(newpage);
2872 * migrate_vma() - migrate a range of memory inside vma
2874 * @ops: migration callback for allocating destination memory and copying
2875 * @vma: virtual memory area containing the range to be migrated
2876 * @start: start address of the range to migrate (inclusive)
2877 * @end: end address of the range to migrate (exclusive)
2878 * @src: array of hmm_pfn_t containing source pfns
2879 * @dst: array of hmm_pfn_t containing destination pfns
2880 * @private: pointer passed back to each of the callback
2881 * Returns: 0 on success, error code otherwise
2883 * This function tries to migrate a range of memory virtual address range, using
2884 * callbacks to allocate and copy memory from source to destination. First it
2885 * collects all the pages backing each virtual address in the range, saving this
2886 * inside the src array. Then it locks those pages and unmaps them. Once the pages
2887 * are locked and unmapped, it checks whether each page is pinned or not. Pages
2888 * that aren't pinned have the MIGRATE_PFN_MIGRATE flag set (by this function)
2889 * in the corresponding src array entry. It then restores any pages that are
2890 * pinned, by remapping and unlocking those pages.
2892 * At this point it calls the alloc_and_copy() callback. For documentation on
2893 * what is expected from that callback, see struct migrate_vma_ops comments in
2894 * include/linux/migrate.h
2896 * After the alloc_and_copy() callback, this function goes over each entry in
2897 * the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
2898 * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
2899 * then the function tries to migrate struct page information from the source
2900 * struct page to the destination struct page. If it fails to migrate the struct
2901 * page information, then it clears the MIGRATE_PFN_MIGRATE flag in the src
2904 * At this point all successfully migrated pages have an entry in the src
2905 * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
2906 * array entry with MIGRATE_PFN_VALID flag set.
2908 * It then calls the finalize_and_map() callback. See comments for "struct
2909 * migrate_vma_ops", in include/linux/migrate.h for details about
2910 * finalize_and_map() behavior.
2912 * After the finalize_and_map() callback, for successfully migrated pages, this
2913 * function updates the CPU page table to point to new pages, otherwise it
2914 * restores the CPU page table to point to the original source pages.
2916 * Function returns 0 after the above steps, even if no pages were migrated
2917 * (The function only returns an error if any of the arguments are invalid.)
2919 * Both src and dst array must be big enough for (end - start) >> PAGE_SHIFT
2920 * unsigned long entries.
2922 int migrate_vma(const struct migrate_vma_ops *ops,
2923 struct vm_area_struct *vma,
2924 unsigned long start,
2930 struct migrate_vma migrate;
2932 /* Sanity check the arguments */
2935 if (!vma || is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_SPECIAL))
2937 if (start < vma->vm_start || start >= vma->vm_end)
2939 if (end <= vma->vm_start || end > vma->vm_end)
2941 if (!ops || !src || !dst || start >= end)
2944 memset(src, 0, sizeof(*src) * ((end - start) >> PAGE_SHIFT));
2947 migrate.start = start;
2953 /* Collect, and try to unmap source pages */
2954 migrate_vma_collect(&migrate);
2955 if (!migrate.cpages)
2958 /* Lock and isolate page */
2959 migrate_vma_prepare(&migrate);
2960 if (!migrate.cpages)
2964 migrate_vma_unmap(&migrate);
2965 if (!migrate.cpages)
2969 * At this point pages are locked and unmapped, and thus they have
2970 * stable content and can safely be copied to destination memory that
2971 * is allocated by the callback.
2973 * Note that migration can fail in migrate_vma_struct_page() for each
2976 ops->alloc_and_copy(vma, src, dst, start, end, private);
2978 /* This does the real migration of struct page */
2979 migrate_vma_pages(&migrate);
2981 ops->finalize_and_map(vma, src, dst, start, end, private);
2983 /* Unlock and remap pages */
2984 migrate_vma_finalize(&migrate);
2988 EXPORT_SYMBOL(migrate_vma);
2989 #endif /* defined(MIGRATE_VMA_HELPER) */