mm, oom: fix use-after-free in oom_kill_process
[platform/kernel/linux-exynos.git] / mm / migrate.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Memory Migration functionality - linux/mm/migrate.c
4  *
5  * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6  *
7  * Page migration was first developed in the context of the memory hotplug
8  * project. The main authors of the migration code are:
9  *
10  * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
11  * Hirokazu Takahashi <taka@valinux.co.jp>
12  * Dave Hansen <haveblue@us.ibm.com>
13  * Christoph Lameter
14  */
15
16 #include <linux/migrate.h>
17 #include <linux/export.h>
18 #include <linux/swap.h>
19 #include <linux/swapops.h>
20 #include <linux/pagemap.h>
21 #include <linux/buffer_head.h>
22 #include <linux/mm_inline.h>
23 #include <linux/nsproxy.h>
24 #include <linux/pagevec.h>
25 #include <linux/ksm.h>
26 #include <linux/rmap.h>
27 #include <linux/topology.h>
28 #include <linux/cpu.h>
29 #include <linux/cpuset.h>
30 #include <linux/writeback.h>
31 #include <linux/mempolicy.h>
32 #include <linux/vmalloc.h>
33 #include <linux/security.h>
34 #include <linux/backing-dev.h>
35 #include <linux/compaction.h>
36 #include <linux/syscalls.h>
37 #include <linux/hugetlb.h>
38 #include <linux/hugetlb_cgroup.h>
39 #include <linux/gfp.h>
40 #include <linux/pfn_t.h>
41 #include <linux/memremap.h>
42 #include <linux/userfaultfd_k.h>
43 #include <linux/balloon_compaction.h>
44 #include <linux/mmu_notifier.h>
45 #include <linux/page_idle.h>
46 #include <linux/page_owner.h>
47 #include <linux/sched/mm.h>
48 #include <linux/ptrace.h>
49
50 #include <asm/tlbflush.h>
51
52 #define CREATE_TRACE_POINTS
53 #include <trace/events/migrate.h>
54
55 #include "internal.h"
56
57 /*
58  * migrate_prep() needs to be called before we start compiling a list of pages
59  * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
60  * undesirable, use migrate_prep_local()
61  */
62 int migrate_prep(void)
63 {
64         /*
65          * Clear the LRU lists so pages can be isolated.
66          * Note that pages may be moved off the LRU after we have
67          * drained them. Those pages will fail to migrate like other
68          * pages that may be busy.
69          */
70         lru_add_drain_all();
71
72         return 0;
73 }
74
75 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
76 int migrate_prep_local(void)
77 {
78         lru_add_drain();
79
80         return 0;
81 }
82
83 int isolate_movable_page(struct page *page, isolate_mode_t mode)
84 {
85         struct address_space *mapping;
86
87         /*
88          * Avoid burning cycles with pages that are yet under __free_pages(),
89          * or just got freed under us.
90          *
91          * In case we 'win' a race for a movable page being freed under us and
92          * raise its refcount preventing __free_pages() from doing its job
93          * the put_page() at the end of this block will take care of
94          * release this page, thus avoiding a nasty leakage.
95          */
96         if (unlikely(!get_page_unless_zero(page)))
97                 goto out;
98
99         /*
100          * Check PageMovable before holding a PG_lock because page's owner
101          * assumes anybody doesn't touch PG_lock of newly allocated page
102          * so unconditionally grapping the lock ruins page's owner side.
103          */
104         if (unlikely(!__PageMovable(page)))
105                 goto out_putpage;
106         /*
107          * As movable pages are not isolated from LRU lists, concurrent
108          * compaction threads can race against page migration functions
109          * as well as race against the releasing a page.
110          *
111          * In order to avoid having an already isolated movable page
112          * being (wrongly) re-isolated while it is under migration,
113          * or to avoid attempting to isolate pages being released,
114          * lets be sure we have the page lock
115          * before proceeding with the movable page isolation steps.
116          */
117         if (unlikely(!trylock_page(page)))
118                 goto out_putpage;
119
120         if (!PageMovable(page) || PageIsolated(page))
121                 goto out_no_isolated;
122
123         mapping = page_mapping(page);
124         VM_BUG_ON_PAGE(!mapping, page);
125
126         if (!mapping->a_ops->isolate_page(page, mode))
127                 goto out_no_isolated;
128
129         /* Driver shouldn't use PG_isolated bit of page->flags */
130         WARN_ON_ONCE(PageIsolated(page));
131         __SetPageIsolated(page);
132         unlock_page(page);
133
134         return 0;
135
136 out_no_isolated:
137         unlock_page(page);
138 out_putpage:
139         put_page(page);
140 out:
141         return -EBUSY;
142 }
143
144 /* It should be called on page which is PG_movable */
145 void putback_movable_page(struct page *page)
146 {
147         struct address_space *mapping;
148
149         VM_BUG_ON_PAGE(!PageLocked(page), page);
150         VM_BUG_ON_PAGE(!PageMovable(page), page);
151         VM_BUG_ON_PAGE(!PageIsolated(page), page);
152
153         mapping = page_mapping(page);
154         mapping->a_ops->putback_page(page);
155         __ClearPageIsolated(page);
156 }
157
158 /*
159  * Put previously isolated pages back onto the appropriate lists
160  * from where they were once taken off for compaction/migration.
161  *
162  * This function shall be used whenever the isolated pageset has been
163  * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
164  * and isolate_huge_page().
165  */
166 void putback_movable_pages(struct list_head *l)
167 {
168         struct page *page;
169         struct page *page2;
170
171         list_for_each_entry_safe(page, page2, l, lru) {
172                 if (unlikely(PageHuge(page))) {
173                         putback_active_hugepage(page);
174                         continue;
175                 }
176                 list_del(&page->lru);
177                 /*
178                  * We isolated non-lru movable page so here we can use
179                  * __PageMovable because LRU page's mapping cannot have
180                  * PAGE_MAPPING_MOVABLE.
181                  */
182                 if (unlikely(__PageMovable(page))) {
183                         VM_BUG_ON_PAGE(!PageIsolated(page), page);
184                         lock_page(page);
185                         if (PageMovable(page))
186                                 putback_movable_page(page);
187                         else
188                                 __ClearPageIsolated(page);
189                         unlock_page(page);
190                         put_page(page);
191                 } else {
192                         mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
193                                         page_is_file_cache(page), -hpage_nr_pages(page));
194                         putback_lru_page(page);
195                 }
196         }
197 }
198
199 /*
200  * Restore a potential migration pte to a working pte entry
201  */
202 static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma,
203                                  unsigned long addr, void *old)
204 {
205         struct page_vma_mapped_walk pvmw = {
206                 .page = old,
207                 .vma = vma,
208                 .address = addr,
209                 .flags = PVMW_SYNC | PVMW_MIGRATION,
210         };
211         struct page *new;
212         pte_t pte;
213         swp_entry_t entry;
214
215         VM_BUG_ON_PAGE(PageTail(page), page);
216         while (page_vma_mapped_walk(&pvmw)) {
217                 if (PageKsm(page))
218                         new = page;
219                 else
220                         new = page - pvmw.page->index +
221                                 linear_page_index(vma, pvmw.address);
222
223 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
224                 /* PMD-mapped THP migration entry */
225                 if (!pvmw.pte) {
226                         VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
227                         remove_migration_pmd(&pvmw, new);
228                         continue;
229                 }
230 #endif
231
232                 get_page(new);
233                 pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
234                 if (pte_swp_soft_dirty(*pvmw.pte))
235                         pte = pte_mksoft_dirty(pte);
236
237                 /*
238                  * Recheck VMA as permissions can change since migration started
239                  */
240                 entry = pte_to_swp_entry(*pvmw.pte);
241                 if (is_write_migration_entry(entry))
242                         pte = maybe_mkwrite(pte, vma);
243
244                 if (unlikely(is_zone_device_page(new))) {
245                         if (is_device_private_page(new)) {
246                                 entry = make_device_private_entry(new, pte_write(pte));
247                                 pte = swp_entry_to_pte(entry);
248                         } else if (is_device_public_page(new)) {
249                                 pte = pte_mkdevmap(pte);
250                                 flush_dcache_page(new);
251                         }
252                 } else
253                         flush_dcache_page(new);
254
255 #ifdef CONFIG_HUGETLB_PAGE
256                 if (PageHuge(new)) {
257                         pte = pte_mkhuge(pte);
258                         pte = arch_make_huge_pte(pte, vma, new, 0);
259                         set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
260                         if (PageAnon(new))
261                                 hugepage_add_anon_rmap(new, vma, pvmw.address);
262                         else
263                                 page_dup_rmap(new, true);
264                 } else
265 #endif
266                 {
267                         set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
268
269                         if (PageAnon(new))
270                                 page_add_anon_rmap(new, vma, pvmw.address, false);
271                         else
272                                 page_add_file_rmap(new, false);
273                 }
274                 if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
275                         mlock_vma_page(new);
276
277                 if (PageTransHuge(page) && PageMlocked(page))
278                         clear_page_mlock(page);
279
280                 /* No need to invalidate - it was non-present before */
281                 update_mmu_cache(vma, pvmw.address, pvmw.pte);
282         }
283
284         return true;
285 }
286
287 /*
288  * Get rid of all migration entries and replace them by
289  * references to the indicated page.
290  */
291 void remove_migration_ptes(struct page *old, struct page *new, bool locked)
292 {
293         struct rmap_walk_control rwc = {
294                 .rmap_one = remove_migration_pte,
295                 .arg = old,
296         };
297
298         if (locked)
299                 rmap_walk_locked(new, &rwc);
300         else
301                 rmap_walk(new, &rwc);
302 }
303
304 /*
305  * Something used the pte of a page under migration. We need to
306  * get to the page and wait until migration is finished.
307  * When we return from this function the fault will be retried.
308  */
309 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
310                                 spinlock_t *ptl)
311 {
312         pte_t pte;
313         swp_entry_t entry;
314         struct page *page;
315
316         spin_lock(ptl);
317         pte = *ptep;
318         if (!is_swap_pte(pte))
319                 goto out;
320
321         entry = pte_to_swp_entry(pte);
322         if (!is_migration_entry(entry))
323                 goto out;
324
325         page = migration_entry_to_page(entry);
326
327         /*
328          * Once radix-tree replacement of page migration started, page_count
329          * *must* be zero. And, we don't want to call wait_on_page_locked()
330          * against a page without get_page().
331          * So, we use get_page_unless_zero(), here. Even failed, page fault
332          * will occur again.
333          */
334         if (!get_page_unless_zero(page))
335                 goto out;
336         pte_unmap_unlock(ptep, ptl);
337         wait_on_page_locked(page);
338         put_page(page);
339         return;
340 out:
341         pte_unmap_unlock(ptep, ptl);
342 }
343
344 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
345                                 unsigned long address)
346 {
347         spinlock_t *ptl = pte_lockptr(mm, pmd);
348         pte_t *ptep = pte_offset_map(pmd, address);
349         __migration_entry_wait(mm, ptep, ptl);
350 }
351
352 void migration_entry_wait_huge(struct vm_area_struct *vma,
353                 struct mm_struct *mm, pte_t *pte)
354 {
355         spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
356         __migration_entry_wait(mm, pte, ptl);
357 }
358
359 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
360 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
361 {
362         spinlock_t *ptl;
363         struct page *page;
364
365         ptl = pmd_lock(mm, pmd);
366         if (!is_pmd_migration_entry(*pmd))
367                 goto unlock;
368         page = migration_entry_to_page(pmd_to_swp_entry(*pmd));
369         if (!get_page_unless_zero(page))
370                 goto unlock;
371         spin_unlock(ptl);
372         wait_on_page_locked(page);
373         put_page(page);
374         return;
375 unlock:
376         spin_unlock(ptl);
377 }
378 #endif
379
380 #ifdef CONFIG_BLOCK
381 /* Returns true if all buffers are successfully locked */
382 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
383                                                         enum migrate_mode mode)
384 {
385         struct buffer_head *bh = head;
386
387         /* Simple case, sync compaction */
388         if (mode != MIGRATE_ASYNC) {
389                 do {
390                         get_bh(bh);
391                         lock_buffer(bh);
392                         bh = bh->b_this_page;
393
394                 } while (bh != head);
395
396                 return true;
397         }
398
399         /* async case, we cannot block on lock_buffer so use trylock_buffer */
400         do {
401                 get_bh(bh);
402                 if (!trylock_buffer(bh)) {
403                         /*
404                          * We failed to lock the buffer and cannot stall in
405                          * async migration. Release the taken locks
406                          */
407                         struct buffer_head *failed_bh = bh;
408                         put_bh(failed_bh);
409                         bh = head;
410                         while (bh != failed_bh) {
411                                 unlock_buffer(bh);
412                                 put_bh(bh);
413                                 bh = bh->b_this_page;
414                         }
415                         return false;
416                 }
417
418                 bh = bh->b_this_page;
419         } while (bh != head);
420         return true;
421 }
422 #else
423 static inline bool buffer_migrate_lock_buffers(struct buffer_head *head,
424                                                         enum migrate_mode mode)
425 {
426         return true;
427 }
428 #endif /* CONFIG_BLOCK */
429
430 /*
431  * Replace the page in the mapping.
432  *
433  * The number of remaining references must be:
434  * 1 for anonymous pages without a mapping
435  * 2 for pages with a mapping
436  * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
437  */
438 int migrate_page_move_mapping(struct address_space *mapping,
439                 struct page *newpage, struct page *page,
440                 struct buffer_head *head, enum migrate_mode mode,
441                 int extra_count)
442 {
443         struct zone *oldzone, *newzone;
444         int dirty;
445         int expected_count = 1 + extra_count;
446         void **pslot;
447
448         /*
449          * Device public or private pages have an extra refcount as they are
450          * ZONE_DEVICE pages.
451          */
452         expected_count += is_device_private_page(page);
453         expected_count += is_device_public_page(page);
454
455         if (!mapping) {
456                 /* Anonymous page without mapping */
457                 if (page_count(page) != expected_count)
458                         return -EAGAIN;
459
460                 /* No turning back from here */
461                 newpage->index = page->index;
462                 newpage->mapping = page->mapping;
463                 if (PageSwapBacked(page))
464                         __SetPageSwapBacked(newpage);
465
466                 return MIGRATEPAGE_SUCCESS;
467         }
468
469         oldzone = page_zone(page);
470         newzone = page_zone(newpage);
471
472         spin_lock_irq(&mapping->tree_lock);
473
474         pslot = radix_tree_lookup_slot(&mapping->page_tree,
475                                         page_index(page));
476
477         expected_count += 1 + page_has_private(page);
478         if (page_count(page) != expected_count ||
479                 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
480                 spin_unlock_irq(&mapping->tree_lock);
481                 return -EAGAIN;
482         }
483
484         if (!page_ref_freeze(page, expected_count)) {
485                 spin_unlock_irq(&mapping->tree_lock);
486                 return -EAGAIN;
487         }
488
489         /*
490          * In the async migration case of moving a page with buffers, lock the
491          * buffers using trylock before the mapping is moved. If the mapping
492          * was moved, we later failed to lock the buffers and could not move
493          * the mapping back due to an elevated page count, we would have to
494          * block waiting on other references to be dropped.
495          */
496         if (mode == MIGRATE_ASYNC && head &&
497                         !buffer_migrate_lock_buffers(head, mode)) {
498                 page_ref_unfreeze(page, expected_count);
499                 spin_unlock_irq(&mapping->tree_lock);
500                 return -EAGAIN;
501         }
502
503         /*
504          * Now we know that no one else is looking at the page:
505          * no turning back from here.
506          */
507         newpage->index = page->index;
508         newpage->mapping = page->mapping;
509         get_page(newpage);      /* add cache reference */
510         if (PageSwapBacked(page)) {
511                 __SetPageSwapBacked(newpage);
512                 if (PageSwapCache(page)) {
513                         SetPageSwapCache(newpage);
514                         set_page_private(newpage, page_private(page));
515                 }
516         } else {
517                 VM_BUG_ON_PAGE(PageSwapCache(page), page);
518         }
519
520         /* Move dirty while page refs frozen and newpage not yet exposed */
521         dirty = PageDirty(page);
522         if (dirty) {
523                 ClearPageDirty(page);
524                 SetPageDirty(newpage);
525         }
526
527         radix_tree_replace_slot(&mapping->page_tree, pslot, newpage);
528
529         /*
530          * Drop cache reference from old page by unfreezing
531          * to one less reference.
532          * We know this isn't the last reference.
533          */
534         page_ref_unfreeze(page, expected_count - 1);
535
536         spin_unlock(&mapping->tree_lock);
537         /* Leave irq disabled to prevent preemption while updating stats */
538
539         /*
540          * If moved to a different zone then also account
541          * the page for that zone. Other VM counters will be
542          * taken care of when we establish references to the
543          * new page and drop references to the old page.
544          *
545          * Note that anonymous pages are accounted for
546          * via NR_FILE_PAGES and NR_ANON_MAPPED if they
547          * are mapped to swap space.
548          */
549         if (newzone != oldzone) {
550                 __dec_node_state(oldzone->zone_pgdat, NR_FILE_PAGES);
551                 __inc_node_state(newzone->zone_pgdat, NR_FILE_PAGES);
552                 if (PageSwapBacked(page) && !PageSwapCache(page)) {
553                         __dec_node_state(oldzone->zone_pgdat, NR_SHMEM);
554                         __inc_node_state(newzone->zone_pgdat, NR_SHMEM);
555                 }
556                 if (dirty && mapping_cap_account_dirty(mapping)) {
557                         __dec_node_state(oldzone->zone_pgdat, NR_FILE_DIRTY);
558                         __dec_zone_state(oldzone, NR_ZONE_WRITE_PENDING);
559                         __inc_node_state(newzone->zone_pgdat, NR_FILE_DIRTY);
560                         __inc_zone_state(newzone, NR_ZONE_WRITE_PENDING);
561                 }
562         }
563         local_irq_enable();
564
565         return MIGRATEPAGE_SUCCESS;
566 }
567 EXPORT_SYMBOL(migrate_page_move_mapping);
568
569 /*
570  * The expected number of remaining references is the same as that
571  * of migrate_page_move_mapping().
572  */
573 int migrate_huge_page_move_mapping(struct address_space *mapping,
574                                    struct page *newpage, struct page *page)
575 {
576         int expected_count;
577         void **pslot;
578
579         spin_lock_irq(&mapping->tree_lock);
580
581         pslot = radix_tree_lookup_slot(&mapping->page_tree,
582                                         page_index(page));
583
584         expected_count = 2 + page_has_private(page);
585         if (page_count(page) != expected_count ||
586                 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
587                 spin_unlock_irq(&mapping->tree_lock);
588                 return -EAGAIN;
589         }
590
591         if (!page_ref_freeze(page, expected_count)) {
592                 spin_unlock_irq(&mapping->tree_lock);
593                 return -EAGAIN;
594         }
595
596         newpage->index = page->index;
597         newpage->mapping = page->mapping;
598
599         get_page(newpage);
600
601         radix_tree_replace_slot(&mapping->page_tree, pslot, newpage);
602
603         page_ref_unfreeze(page, expected_count - 1);
604
605         spin_unlock_irq(&mapping->tree_lock);
606
607         return MIGRATEPAGE_SUCCESS;
608 }
609
610 /*
611  * Gigantic pages are so large that we do not guarantee that page++ pointer
612  * arithmetic will work across the entire page.  We need something more
613  * specialized.
614  */
615 static void __copy_gigantic_page(struct page *dst, struct page *src,
616                                 int nr_pages)
617 {
618         int i;
619         struct page *dst_base = dst;
620         struct page *src_base = src;
621
622         for (i = 0; i < nr_pages; ) {
623                 cond_resched();
624                 copy_highpage(dst, src);
625
626                 i++;
627                 dst = mem_map_next(dst, dst_base, i);
628                 src = mem_map_next(src, src_base, i);
629         }
630 }
631
632 static void copy_huge_page(struct page *dst, struct page *src)
633 {
634         int i;
635         int nr_pages;
636
637         if (PageHuge(src)) {
638                 /* hugetlbfs page */
639                 struct hstate *h = page_hstate(src);
640                 nr_pages = pages_per_huge_page(h);
641
642                 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
643                         __copy_gigantic_page(dst, src, nr_pages);
644                         return;
645                 }
646         } else {
647                 /* thp page */
648                 BUG_ON(!PageTransHuge(src));
649                 nr_pages = hpage_nr_pages(src);
650         }
651
652         for (i = 0; i < nr_pages; i++) {
653                 cond_resched();
654                 copy_highpage(dst + i, src + i);
655         }
656 }
657
658 /*
659  * Copy the page to its new location
660  */
661 void migrate_page_states(struct page *newpage, struct page *page)
662 {
663         int cpupid;
664
665         if (PageError(page))
666                 SetPageError(newpage);
667         if (PageReferenced(page))
668                 SetPageReferenced(newpage);
669         if (PageUptodate(page))
670                 SetPageUptodate(newpage);
671         if (TestClearPageActive(page)) {
672                 VM_BUG_ON_PAGE(PageUnevictable(page), page);
673                 SetPageActive(newpage);
674         } else if (TestClearPageUnevictable(page))
675                 SetPageUnevictable(newpage);
676         if (PageChecked(page))
677                 SetPageChecked(newpage);
678         if (PageMappedToDisk(page))
679                 SetPageMappedToDisk(newpage);
680
681         /* Move dirty on pages not done by migrate_page_move_mapping() */
682         if (PageDirty(page))
683                 SetPageDirty(newpage);
684
685         if (page_is_young(page))
686                 set_page_young(newpage);
687         if (page_is_idle(page))
688                 set_page_idle(newpage);
689
690         /*
691          * Copy NUMA information to the new page, to prevent over-eager
692          * future migrations of this same page.
693          */
694         cpupid = page_cpupid_xchg_last(page, -1);
695         page_cpupid_xchg_last(newpage, cpupid);
696
697         ksm_migrate_page(newpage, page);
698         /*
699          * Please do not reorder this without considering how mm/ksm.c's
700          * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
701          */
702         if (PageSwapCache(page))
703                 ClearPageSwapCache(page);
704         ClearPagePrivate(page);
705         set_page_private(page, 0);
706
707         /*
708          * If any waiters have accumulated on the new page then
709          * wake them up.
710          */
711         if (PageWriteback(newpage))
712                 end_page_writeback(newpage);
713
714         copy_page_owner(page, newpage);
715
716         mem_cgroup_migrate(page, newpage);
717 }
718 EXPORT_SYMBOL(migrate_page_states);
719
720 void migrate_page_copy(struct page *newpage, struct page *page)
721 {
722         if (PageHuge(page) || PageTransHuge(page))
723                 copy_huge_page(newpage, page);
724         else
725                 copy_highpage(newpage, page);
726
727         migrate_page_states(newpage, page);
728 }
729 EXPORT_SYMBOL(migrate_page_copy);
730
731 /************************************************************
732  *                    Migration functions
733  ***********************************************************/
734
735 /*
736  * Common logic to directly migrate a single LRU page suitable for
737  * pages that do not use PagePrivate/PagePrivate2.
738  *
739  * Pages are locked upon entry and exit.
740  */
741 int migrate_page(struct address_space *mapping,
742                 struct page *newpage, struct page *page,
743                 enum migrate_mode mode)
744 {
745         int rc;
746
747         BUG_ON(PageWriteback(page));    /* Writeback must be complete */
748
749         rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0);
750
751         if (rc != MIGRATEPAGE_SUCCESS)
752                 return rc;
753
754         if (mode != MIGRATE_SYNC_NO_COPY)
755                 migrate_page_copy(newpage, page);
756         else
757                 migrate_page_states(newpage, page);
758         return MIGRATEPAGE_SUCCESS;
759 }
760 EXPORT_SYMBOL(migrate_page);
761
762 #ifdef CONFIG_BLOCK
763 /*
764  * Migration function for pages with buffers. This function can only be used
765  * if the underlying filesystem guarantees that no other references to "page"
766  * exist.
767  */
768 int buffer_migrate_page(struct address_space *mapping,
769                 struct page *newpage, struct page *page, enum migrate_mode mode)
770 {
771         struct buffer_head *bh, *head;
772         int rc;
773
774         if (!page_has_buffers(page))
775                 return migrate_page(mapping, newpage, page, mode);
776
777         head = page_buffers(page);
778
779         rc = migrate_page_move_mapping(mapping, newpage, page, head, mode, 0);
780
781         if (rc != MIGRATEPAGE_SUCCESS)
782                 return rc;
783
784         /*
785          * In the async case, migrate_page_move_mapping locked the buffers
786          * with an IRQ-safe spinlock held. In the sync case, the buffers
787          * need to be locked now
788          */
789         if (mode != MIGRATE_ASYNC)
790                 BUG_ON(!buffer_migrate_lock_buffers(head, mode));
791
792         ClearPagePrivate(page);
793         set_page_private(newpage, page_private(page));
794         set_page_private(page, 0);
795         put_page(page);
796         get_page(newpage);
797
798         bh = head;
799         do {
800                 set_bh_page(bh, newpage, bh_offset(bh));
801                 bh = bh->b_this_page;
802
803         } while (bh != head);
804
805         SetPagePrivate(newpage);
806
807         if (mode != MIGRATE_SYNC_NO_COPY)
808                 migrate_page_copy(newpage, page);
809         else
810                 migrate_page_states(newpage, page);
811
812         bh = head;
813         do {
814                 unlock_buffer(bh);
815                 put_bh(bh);
816                 bh = bh->b_this_page;
817
818         } while (bh != head);
819
820         return MIGRATEPAGE_SUCCESS;
821 }
822 EXPORT_SYMBOL(buffer_migrate_page);
823 #endif
824
825 /*
826  * Writeback a page to clean the dirty state
827  */
828 static int writeout(struct address_space *mapping, struct page *page)
829 {
830         struct writeback_control wbc = {
831                 .sync_mode = WB_SYNC_NONE,
832                 .nr_to_write = 1,
833                 .range_start = 0,
834                 .range_end = LLONG_MAX,
835                 .for_reclaim = 1
836         };
837         int rc;
838
839         if (!mapping->a_ops->writepage)
840                 /* No write method for the address space */
841                 return -EINVAL;
842
843         if (!clear_page_dirty_for_io(page))
844                 /* Someone else already triggered a write */
845                 return -EAGAIN;
846
847         /*
848          * A dirty page may imply that the underlying filesystem has
849          * the page on some queue. So the page must be clean for
850          * migration. Writeout may mean we loose the lock and the
851          * page state is no longer what we checked for earlier.
852          * At this point we know that the migration attempt cannot
853          * be successful.
854          */
855         remove_migration_ptes(page, page, false);
856
857         rc = mapping->a_ops->writepage(page, &wbc);
858
859         if (rc != AOP_WRITEPAGE_ACTIVATE)
860                 /* unlocked. Relock */
861                 lock_page(page);
862
863         return (rc < 0) ? -EIO : -EAGAIN;
864 }
865
866 /*
867  * Default handling if a filesystem does not provide a migration function.
868  */
869 static int fallback_migrate_page(struct address_space *mapping,
870         struct page *newpage, struct page *page, enum migrate_mode mode)
871 {
872         if (PageDirty(page)) {
873                 /* Only writeback pages in full synchronous migration */
874                 switch (mode) {
875                 case MIGRATE_SYNC:
876                 case MIGRATE_SYNC_NO_COPY:
877                         break;
878                 default:
879                         return -EBUSY;
880                 }
881                 return writeout(mapping, page);
882         }
883
884         /*
885          * Buffers may be managed in a filesystem specific way.
886          * We must have no buffers or drop them.
887          */
888         if (page_has_private(page) &&
889             !try_to_release_page(page, GFP_KERNEL))
890                 return -EAGAIN;
891
892         return migrate_page(mapping, newpage, page, mode);
893 }
894
895 /*
896  * Move a page to a newly allocated page
897  * The page is locked and all ptes have been successfully removed.
898  *
899  * The new page will have replaced the old page if this function
900  * is successful.
901  *
902  * Return value:
903  *   < 0 - error code
904  *  MIGRATEPAGE_SUCCESS - success
905  */
906 static int move_to_new_page(struct page *newpage, struct page *page,
907                                 enum migrate_mode mode)
908 {
909         struct address_space *mapping;
910         int rc = -EAGAIN;
911         bool is_lru = !__PageMovable(page);
912
913         VM_BUG_ON_PAGE(!PageLocked(page), page);
914         VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
915
916         mapping = page_mapping(page);
917
918         if (likely(is_lru)) {
919                 if (!mapping)
920                         rc = migrate_page(mapping, newpage, page, mode);
921                 else if (mapping->a_ops->migratepage)
922                         /*
923                          * Most pages have a mapping and most filesystems
924                          * provide a migratepage callback. Anonymous pages
925                          * are part of swap space which also has its own
926                          * migratepage callback. This is the most common path
927                          * for page migration.
928                          */
929                         rc = mapping->a_ops->migratepage(mapping, newpage,
930                                                         page, mode);
931                 else
932                         rc = fallback_migrate_page(mapping, newpage,
933                                                         page, mode);
934         } else {
935                 /*
936                  * In case of non-lru page, it could be released after
937                  * isolation step. In that case, we shouldn't try migration.
938                  */
939                 VM_BUG_ON_PAGE(!PageIsolated(page), page);
940                 if (!PageMovable(page)) {
941                         rc = MIGRATEPAGE_SUCCESS;
942                         __ClearPageIsolated(page);
943                         goto out;
944                 }
945
946                 rc = mapping->a_ops->migratepage(mapping, newpage,
947                                                 page, mode);
948                 WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
949                         !PageIsolated(page));
950         }
951
952         /*
953          * When successful, old pagecache page->mapping must be cleared before
954          * page is freed; but stats require that PageAnon be left as PageAnon.
955          */
956         if (rc == MIGRATEPAGE_SUCCESS) {
957                 if (__PageMovable(page)) {
958                         VM_BUG_ON_PAGE(!PageIsolated(page), page);
959
960                         /*
961                          * We clear PG_movable under page_lock so any compactor
962                          * cannot try to migrate this page.
963                          */
964                         __ClearPageIsolated(page);
965                 }
966
967                 /*
968                  * Anonymous and movable page->mapping will be cleard by
969                  * free_pages_prepare so don't reset it here for keeping
970                  * the type to work PageAnon, for example.
971                  */
972                 if (!PageMappingFlags(page))
973                         page->mapping = NULL;
974         }
975 out:
976         return rc;
977 }
978
979 static int __unmap_and_move(struct page *page, struct page *newpage,
980                                 int force, enum migrate_mode mode)
981 {
982         int rc = -EAGAIN;
983         int page_was_mapped = 0;
984         struct anon_vma *anon_vma = NULL;
985         bool is_lru = !__PageMovable(page);
986
987         if (!trylock_page(page)) {
988                 if (!force || mode == MIGRATE_ASYNC)
989                         goto out;
990
991                 /*
992                  * It's not safe for direct compaction to call lock_page.
993                  * For example, during page readahead pages are added locked
994                  * to the LRU. Later, when the IO completes the pages are
995                  * marked uptodate and unlocked. However, the queueing
996                  * could be merging multiple pages for one bio (e.g.
997                  * mpage_readpages). If an allocation happens for the
998                  * second or third page, the process can end up locking
999                  * the same page twice and deadlocking. Rather than
1000                  * trying to be clever about what pages can be locked,
1001                  * avoid the use of lock_page for direct compaction
1002                  * altogether.
1003                  */
1004                 if (current->flags & PF_MEMALLOC)
1005                         goto out;
1006
1007                 lock_page(page);
1008         }
1009
1010         if (PageWriteback(page)) {
1011                 /*
1012                  * Only in the case of a full synchronous migration is it
1013                  * necessary to wait for PageWriteback. In the async case,
1014                  * the retry loop is too short and in the sync-light case,
1015                  * the overhead of stalling is too much
1016                  */
1017                 switch (mode) {
1018                 case MIGRATE_SYNC:
1019                 case MIGRATE_SYNC_NO_COPY:
1020                         break;
1021                 default:
1022                         rc = -EBUSY;
1023                         goto out_unlock;
1024                 }
1025                 if (!force)
1026                         goto out_unlock;
1027                 wait_on_page_writeback(page);
1028         }
1029
1030         /*
1031          * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
1032          * we cannot notice that anon_vma is freed while we migrates a page.
1033          * This get_anon_vma() delays freeing anon_vma pointer until the end
1034          * of migration. File cache pages are no problem because of page_lock()
1035          * File Caches may use write_page() or lock_page() in migration, then,
1036          * just care Anon page here.
1037          *
1038          * Only page_get_anon_vma() understands the subtleties of
1039          * getting a hold on an anon_vma from outside one of its mms.
1040          * But if we cannot get anon_vma, then we won't need it anyway,
1041          * because that implies that the anon page is no longer mapped
1042          * (and cannot be remapped so long as we hold the page lock).
1043          */
1044         if (PageAnon(page) && !PageKsm(page))
1045                 anon_vma = page_get_anon_vma(page);
1046
1047         /*
1048          * Block others from accessing the new page when we get around to
1049          * establishing additional references. We are usually the only one
1050          * holding a reference to newpage at this point. We used to have a BUG
1051          * here if trylock_page(newpage) fails, but would like to allow for
1052          * cases where there might be a race with the previous use of newpage.
1053          * This is much like races on refcount of oldpage: just don't BUG().
1054          */
1055         if (unlikely(!trylock_page(newpage)))
1056                 goto out_unlock;
1057
1058         if (unlikely(!is_lru)) {
1059                 rc = move_to_new_page(newpage, page, mode);
1060                 goto out_unlock_both;
1061         }
1062
1063         /*
1064          * Corner case handling:
1065          * 1. When a new swap-cache page is read into, it is added to the LRU
1066          * and treated as swapcache but it has no rmap yet.
1067          * Calling try_to_unmap() against a page->mapping==NULL page will
1068          * trigger a BUG.  So handle it here.
1069          * 2. An orphaned page (see truncate_complete_page) might have
1070          * fs-private metadata. The page can be picked up due to memory
1071          * offlining.  Everywhere else except page reclaim, the page is
1072          * invisible to the vm, so the page can not be migrated.  So try to
1073          * free the metadata, so the page can be freed.
1074          */
1075         if (!page->mapping) {
1076                 VM_BUG_ON_PAGE(PageAnon(page), page);
1077                 if (page_has_private(page)) {
1078                         try_to_free_buffers(page);
1079                         goto out_unlock_both;
1080                 }
1081         } else if (page_mapped(page)) {
1082                 /* Establish migration ptes */
1083                 VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1084                                 page);
1085                 try_to_unmap(page,
1086                         TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1087                 page_was_mapped = 1;
1088         }
1089
1090         if (!page_mapped(page))
1091                 rc = move_to_new_page(newpage, page, mode);
1092
1093         if (page_was_mapped)
1094                 remove_migration_ptes(page,
1095                         rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
1096
1097 out_unlock_both:
1098         unlock_page(newpage);
1099 out_unlock:
1100         /* Drop an anon_vma reference if we took one */
1101         if (anon_vma)
1102                 put_anon_vma(anon_vma);
1103         unlock_page(page);
1104 out:
1105         /*
1106          * If migration is successful, decrease refcount of the newpage
1107          * which will not free the page because new page owner increased
1108          * refcounter. As well, if it is LRU page, add the page to LRU
1109          * list in here.
1110          */
1111         if (rc == MIGRATEPAGE_SUCCESS) {
1112                 if (unlikely(__PageMovable(newpage)))
1113                         put_page(newpage);
1114                 else
1115                         putback_lru_page(newpage);
1116         }
1117
1118         return rc;
1119 }
1120
1121 /*
1122  * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move().  Work
1123  * around it.
1124  */
1125 #if (GCC_VERSION >= 40700 && GCC_VERSION < 40900) && defined(CONFIG_ARM)
1126 #define ICE_noinline noinline
1127 #else
1128 #define ICE_noinline
1129 #endif
1130
1131 /*
1132  * Obtain the lock on page, remove all ptes and migrate the page
1133  * to the newly allocated page in newpage.
1134  */
1135 static ICE_noinline int unmap_and_move(new_page_t get_new_page,
1136                                    free_page_t put_new_page,
1137                                    unsigned long private, struct page *page,
1138                                    int force, enum migrate_mode mode,
1139                                    enum migrate_reason reason)
1140 {
1141         int rc = MIGRATEPAGE_SUCCESS;
1142         int *result = NULL;
1143         struct page *newpage;
1144
1145         newpage = get_new_page(page, private, &result);
1146         if (!newpage)
1147                 return -ENOMEM;
1148
1149         if (page_count(page) == 1) {
1150                 /* page was freed from under us. So we are done. */
1151                 ClearPageActive(page);
1152                 ClearPageUnevictable(page);
1153                 if (unlikely(__PageMovable(page))) {
1154                         lock_page(page);
1155                         if (!PageMovable(page))
1156                                 __ClearPageIsolated(page);
1157                         unlock_page(page);
1158                 }
1159                 if (put_new_page)
1160                         put_new_page(newpage, private);
1161                 else
1162                         put_page(newpage);
1163                 goto out;
1164         }
1165
1166         if (unlikely(PageTransHuge(page) && !PageTransHuge(newpage))) {
1167                 lock_page(page);
1168                 rc = split_huge_page(page);
1169                 unlock_page(page);
1170                 if (rc)
1171                         goto out;
1172         }
1173
1174         rc = __unmap_and_move(page, newpage, force, mode);
1175         if (rc == MIGRATEPAGE_SUCCESS)
1176                 set_page_owner_migrate_reason(newpage, reason);
1177
1178 out:
1179         if (rc != -EAGAIN) {
1180                 /*
1181                  * A page that has been migrated has all references
1182                  * removed and will be freed. A page that has not been
1183                  * migrated will have kepts its references and be
1184                  * restored.
1185                  */
1186                 list_del(&page->lru);
1187
1188                 /*
1189                  * Compaction can migrate also non-LRU pages which are
1190                  * not accounted to NR_ISOLATED_*. They can be recognized
1191                  * as __PageMovable
1192                  */
1193                 if (likely(!__PageMovable(page)))
1194                         mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
1195                                         page_is_file_cache(page), -hpage_nr_pages(page));
1196         }
1197
1198         /*
1199          * If migration is successful, releases reference grabbed during
1200          * isolation. Otherwise, restore the page to right list unless
1201          * we want to retry.
1202          */
1203         if (rc == MIGRATEPAGE_SUCCESS) {
1204                 put_page(page);
1205                 if (reason == MR_MEMORY_FAILURE) {
1206                         /*
1207                          * Set PG_HWPoison on just freed page
1208                          * intentionally. Although it's rather weird,
1209                          * it's how HWPoison flag works at the moment.
1210                          */
1211                         if (!test_set_page_hwpoison(page))
1212                                 num_poisoned_pages_inc();
1213                 }
1214         } else {
1215                 if (rc != -EAGAIN) {
1216                         if (likely(!__PageMovable(page))) {
1217                                 putback_lru_page(page);
1218                                 goto put_new;
1219                         }
1220
1221                         lock_page(page);
1222                         if (PageMovable(page))
1223                                 putback_movable_page(page);
1224                         else
1225                                 __ClearPageIsolated(page);
1226                         unlock_page(page);
1227                         put_page(page);
1228                 }
1229 put_new:
1230                 if (put_new_page)
1231                         put_new_page(newpage, private);
1232                 else
1233                         put_page(newpage);
1234         }
1235
1236         if (result) {
1237                 if (rc)
1238                         *result = rc;
1239                 else
1240                         *result = page_to_nid(newpage);
1241         }
1242         return rc;
1243 }
1244
1245 /*
1246  * Counterpart of unmap_and_move_page() for hugepage migration.
1247  *
1248  * This function doesn't wait the completion of hugepage I/O
1249  * because there is no race between I/O and migration for hugepage.
1250  * Note that currently hugepage I/O occurs only in direct I/O
1251  * where no lock is held and PG_writeback is irrelevant,
1252  * and writeback status of all subpages are counted in the reference
1253  * count of the head page (i.e. if all subpages of a 2MB hugepage are
1254  * under direct I/O, the reference of the head page is 512 and a bit more.)
1255  * This means that when we try to migrate hugepage whose subpages are
1256  * doing direct I/O, some references remain after try_to_unmap() and
1257  * hugepage migration fails without data corruption.
1258  *
1259  * There is also no race when direct I/O is issued on the page under migration,
1260  * because then pte is replaced with migration swap entry and direct I/O code
1261  * will wait in the page fault for migration to complete.
1262  */
1263 static int unmap_and_move_huge_page(new_page_t get_new_page,
1264                                 free_page_t put_new_page, unsigned long private,
1265                                 struct page *hpage, int force,
1266                                 enum migrate_mode mode, int reason)
1267 {
1268         int rc = -EAGAIN;
1269         int *result = NULL;
1270         int page_was_mapped = 0;
1271         struct page *new_hpage;
1272         struct anon_vma *anon_vma = NULL;
1273
1274         /*
1275          * Movability of hugepages depends on architectures and hugepage size.
1276          * This check is necessary because some callers of hugepage migration
1277          * like soft offline and memory hotremove don't walk through page
1278          * tables or check whether the hugepage is pmd-based or not before
1279          * kicking migration.
1280          */
1281         if (!hugepage_migration_supported(page_hstate(hpage))) {
1282                 putback_active_hugepage(hpage);
1283                 return -ENOSYS;
1284         }
1285
1286         new_hpage = get_new_page(hpage, private, &result);
1287         if (!new_hpage)
1288                 return -ENOMEM;
1289
1290         if (!trylock_page(hpage)) {
1291                 if (!force)
1292                         goto out;
1293                 switch (mode) {
1294                 case MIGRATE_SYNC:
1295                 case MIGRATE_SYNC_NO_COPY:
1296                         break;
1297                 default:
1298                         goto out;
1299                 }
1300                 lock_page(hpage);
1301         }
1302
1303         if (PageAnon(hpage))
1304                 anon_vma = page_get_anon_vma(hpage);
1305
1306         if (unlikely(!trylock_page(new_hpage)))
1307                 goto put_anon;
1308
1309         if (page_mapped(hpage)) {
1310                 try_to_unmap(hpage,
1311                         TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1312                 page_was_mapped = 1;
1313         }
1314
1315         if (!page_mapped(hpage))
1316                 rc = move_to_new_page(new_hpage, hpage, mode);
1317
1318         if (page_was_mapped)
1319                 remove_migration_ptes(hpage,
1320                         rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false);
1321
1322         unlock_page(new_hpage);
1323
1324 put_anon:
1325         if (anon_vma)
1326                 put_anon_vma(anon_vma);
1327
1328         if (rc == MIGRATEPAGE_SUCCESS) {
1329                 hugetlb_cgroup_migrate(hpage, new_hpage);
1330                 put_new_page = NULL;
1331                 set_page_owner_migrate_reason(new_hpage, reason);
1332         }
1333
1334         unlock_page(hpage);
1335 out:
1336         if (rc != -EAGAIN)
1337                 putback_active_hugepage(hpage);
1338         if (reason == MR_MEMORY_FAILURE && !test_set_page_hwpoison(hpage))
1339                 num_poisoned_pages_inc();
1340
1341         /*
1342          * If migration was not successful and there's a freeing callback, use
1343          * it.  Otherwise, put_page() will drop the reference grabbed during
1344          * isolation.
1345          */
1346         if (put_new_page)
1347                 put_new_page(new_hpage, private);
1348         else
1349                 putback_active_hugepage(new_hpage);
1350
1351         if (result) {
1352                 if (rc)
1353                         *result = rc;
1354                 else
1355                         *result = page_to_nid(new_hpage);
1356         }
1357         return rc;
1358 }
1359
1360 /*
1361  * migrate_pages - migrate the pages specified in a list, to the free pages
1362  *                 supplied as the target for the page migration
1363  *
1364  * @from:               The list of pages to be migrated.
1365  * @get_new_page:       The function used to allocate free pages to be used
1366  *                      as the target of the page migration.
1367  * @put_new_page:       The function used to free target pages if migration
1368  *                      fails, or NULL if no special handling is necessary.
1369  * @private:            Private data to be passed on to get_new_page()
1370  * @mode:               The migration mode that specifies the constraints for
1371  *                      page migration, if any.
1372  * @reason:             The reason for page migration.
1373  *
1374  * The function returns after 10 attempts or if no pages are movable any more
1375  * because the list has become empty or no retryable pages exist any more.
1376  * The caller should call putback_movable_pages() to return pages to the LRU
1377  * or free list only if ret != 0.
1378  *
1379  * Returns the number of pages that were not migrated, or an error code.
1380  */
1381 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1382                 free_page_t put_new_page, unsigned long private,
1383                 enum migrate_mode mode, int reason)
1384 {
1385         int retry = 1;
1386         int nr_failed = 0;
1387         int nr_succeeded = 0;
1388         int pass = 0;
1389         struct page *page;
1390         struct page *page2;
1391         int swapwrite = current->flags & PF_SWAPWRITE;
1392         int rc;
1393
1394         if (!swapwrite)
1395                 current->flags |= PF_SWAPWRITE;
1396
1397         for(pass = 0; pass < 10 && retry; pass++) {
1398                 retry = 0;
1399
1400                 list_for_each_entry_safe(page, page2, from, lru) {
1401                         cond_resched();
1402
1403                         if (PageHuge(page))
1404                                 rc = unmap_and_move_huge_page(get_new_page,
1405                                                 put_new_page, private, page,
1406                                                 pass > 2, mode, reason);
1407                         else
1408                                 rc = unmap_and_move(get_new_page, put_new_page,
1409                                                 private, page, pass > 2, mode,
1410                                                 reason);
1411
1412                         switch(rc) {
1413                         case -ENOMEM:
1414                                 nr_failed++;
1415                                 goto out;
1416                         case -EAGAIN:
1417                                 retry++;
1418                                 break;
1419                         case MIGRATEPAGE_SUCCESS:
1420                                 nr_succeeded++;
1421                                 break;
1422                         default:
1423                                 /*
1424                                  * Permanent failure (-EBUSY, -ENOSYS, etc.):
1425                                  * unlike -EAGAIN case, the failed page is
1426                                  * removed from migration page list and not
1427                                  * retried in the next outer loop.
1428                                  */
1429                                 nr_failed++;
1430                                 break;
1431                         }
1432                 }
1433         }
1434         nr_failed += retry;
1435         rc = nr_failed;
1436 out:
1437         if (nr_succeeded)
1438                 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1439         if (nr_failed)
1440                 count_vm_events(PGMIGRATE_FAIL, nr_failed);
1441         trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);
1442
1443         if (!swapwrite)
1444                 current->flags &= ~PF_SWAPWRITE;
1445
1446         return rc;
1447 }
1448
1449 #ifdef CONFIG_NUMA
1450 /*
1451  * Move a list of individual pages
1452  */
1453 struct page_to_node {
1454         unsigned long addr;
1455         struct page *page;
1456         int node;
1457         int status;
1458 };
1459
1460 static struct page *new_page_node(struct page *p, unsigned long private,
1461                 int **result)
1462 {
1463         struct page_to_node *pm = (struct page_to_node *)private;
1464
1465         while (pm->node != MAX_NUMNODES && pm->page != p)
1466                 pm++;
1467
1468         if (pm->node == MAX_NUMNODES)
1469                 return NULL;
1470
1471         *result = &pm->status;
1472
1473         if (PageHuge(p))
1474                 return alloc_huge_page_node(page_hstate(compound_head(p)),
1475                                         pm->node);
1476         else if (thp_migration_supported() && PageTransHuge(p)) {
1477                 struct page *thp;
1478
1479                 thp = alloc_pages_node(pm->node,
1480                         (GFP_TRANSHUGE | __GFP_THISNODE) & ~__GFP_RECLAIM,
1481                         HPAGE_PMD_ORDER);
1482                 if (!thp)
1483                         return NULL;
1484                 prep_transhuge_page(thp);
1485                 return thp;
1486         } else
1487                 return __alloc_pages_node(pm->node,
1488                                 GFP_HIGHUSER_MOVABLE | __GFP_THISNODE, 0);
1489 }
1490
1491 /*
1492  * Move a set of pages as indicated in the pm array. The addr
1493  * field must be set to the virtual address of the page to be moved
1494  * and the node number must contain a valid target node.
1495  * The pm array ends with node = MAX_NUMNODES.
1496  */
1497 static int do_move_page_to_node_array(struct mm_struct *mm,
1498                                       struct page_to_node *pm,
1499                                       int migrate_all)
1500 {
1501         int err;
1502         struct page_to_node *pp;
1503         LIST_HEAD(pagelist);
1504
1505         down_read(&mm->mmap_sem);
1506
1507         /*
1508          * Build a list of pages to migrate
1509          */
1510         for (pp = pm; pp->node != MAX_NUMNODES; pp++) {
1511                 struct vm_area_struct *vma;
1512                 struct page *page;
1513                 struct page *head;
1514                 unsigned int follflags;
1515
1516                 err = -EFAULT;
1517                 vma = find_vma(mm, pp->addr);
1518                 if (!vma || pp->addr < vma->vm_start || !vma_migratable(vma))
1519                         goto set_status;
1520
1521                 /* FOLL_DUMP to ignore special (like zero) pages */
1522                 follflags = FOLL_GET | FOLL_DUMP;
1523                 if (!thp_migration_supported())
1524                         follflags |= FOLL_SPLIT;
1525                 page = follow_page(vma, pp->addr, follflags);
1526
1527                 err = PTR_ERR(page);
1528                 if (IS_ERR(page))
1529                         goto set_status;
1530
1531                 err = -ENOENT;
1532                 if (!page)
1533                         goto set_status;
1534
1535                 err = page_to_nid(page);
1536
1537                 if (err == pp->node)
1538                         /*
1539                          * Node already in the right place
1540                          */
1541                         goto put_and_set;
1542
1543                 err = -EACCES;
1544                 if (page_mapcount(page) > 1 &&
1545                                 !migrate_all)
1546                         goto put_and_set;
1547
1548                 if (PageHuge(page)) {
1549                         if (PageHead(page)) {
1550                                 isolate_huge_page(page, &pagelist);
1551                                 err = 0;
1552                                 pp->page = page;
1553                         }
1554                         goto put_and_set;
1555                 }
1556
1557                 pp->page = compound_head(page);
1558                 head = compound_head(page);
1559                 err = isolate_lru_page(head);
1560                 if (!err) {
1561                         list_add_tail(&head->lru, &pagelist);
1562                         mod_node_page_state(page_pgdat(head),
1563                                 NR_ISOLATED_ANON + page_is_file_cache(head),
1564                                 hpage_nr_pages(head));
1565                 }
1566 put_and_set:
1567                 /*
1568                  * Either remove the duplicate refcount from
1569                  * isolate_lru_page() or drop the page ref if it was
1570                  * not isolated.
1571                  */
1572                 put_page(page);
1573 set_status:
1574                 pp->status = err;
1575         }
1576
1577         err = 0;
1578         if (!list_empty(&pagelist)) {
1579                 err = migrate_pages(&pagelist, new_page_node, NULL,
1580                                 (unsigned long)pm, MIGRATE_SYNC, MR_SYSCALL);
1581                 if (err)
1582                         putback_movable_pages(&pagelist);
1583         }
1584
1585         up_read(&mm->mmap_sem);
1586         return err;
1587 }
1588
1589 /*
1590  * Migrate an array of page address onto an array of nodes and fill
1591  * the corresponding array of status.
1592  */
1593 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1594                          unsigned long nr_pages,
1595                          const void __user * __user *pages,
1596                          const int __user *nodes,
1597                          int __user *status, int flags)
1598 {
1599         struct page_to_node *pm;
1600         unsigned long chunk_nr_pages;
1601         unsigned long chunk_start;
1602         int err;
1603
1604         err = -ENOMEM;
1605         pm = (struct page_to_node *)__get_free_page(GFP_KERNEL);
1606         if (!pm)
1607                 goto out;
1608
1609         migrate_prep();
1610
1611         /*
1612          * Store a chunk of page_to_node array in a page,
1613          * but keep the last one as a marker
1614          */
1615         chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1;
1616
1617         for (chunk_start = 0;
1618              chunk_start < nr_pages;
1619              chunk_start += chunk_nr_pages) {
1620                 int j;
1621
1622                 if (chunk_start + chunk_nr_pages > nr_pages)
1623                         chunk_nr_pages = nr_pages - chunk_start;
1624
1625                 /* fill the chunk pm with addrs and nodes from user-space */
1626                 for (j = 0; j < chunk_nr_pages; j++) {
1627                         const void __user *p;
1628                         int node;
1629
1630                         err = -EFAULT;
1631                         if (get_user(p, pages + j + chunk_start))
1632                                 goto out_pm;
1633                         pm[j].addr = (unsigned long) p;
1634
1635                         if (get_user(node, nodes + j + chunk_start))
1636                                 goto out_pm;
1637
1638                         err = -ENODEV;
1639                         if (node < 0 || node >= MAX_NUMNODES)
1640                                 goto out_pm;
1641
1642                         if (!node_state(node, N_MEMORY))
1643                                 goto out_pm;
1644
1645                         err = -EACCES;
1646                         if (!node_isset(node, task_nodes))
1647                                 goto out_pm;
1648
1649                         pm[j].node = node;
1650                 }
1651
1652                 /* End marker for this chunk */
1653                 pm[chunk_nr_pages].node = MAX_NUMNODES;
1654
1655                 /* Migrate this chunk */
1656                 err = do_move_page_to_node_array(mm, pm,
1657                                                  flags & MPOL_MF_MOVE_ALL);
1658                 if (err < 0)
1659                         goto out_pm;
1660
1661                 /* Return status information */
1662                 for (j = 0; j < chunk_nr_pages; j++)
1663                         if (put_user(pm[j].status, status + j + chunk_start)) {
1664                                 err = -EFAULT;
1665                                 goto out_pm;
1666                         }
1667         }
1668         err = 0;
1669
1670 out_pm:
1671         free_page((unsigned long)pm);
1672 out:
1673         return err;
1674 }
1675
1676 /*
1677  * Determine the nodes of an array of pages and store it in an array of status.
1678  */
1679 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1680                                 const void __user **pages, int *status)
1681 {
1682         unsigned long i;
1683
1684         down_read(&mm->mmap_sem);
1685
1686         for (i = 0; i < nr_pages; i++) {
1687                 unsigned long addr = (unsigned long)(*pages);
1688                 struct vm_area_struct *vma;
1689                 struct page *page;
1690                 int err = -EFAULT;
1691
1692                 vma = find_vma(mm, addr);
1693                 if (!vma || addr < vma->vm_start)
1694                         goto set_status;
1695
1696                 /* FOLL_DUMP to ignore special (like zero) pages */
1697                 page = follow_page(vma, addr, FOLL_DUMP);
1698
1699                 err = PTR_ERR(page);
1700                 if (IS_ERR(page))
1701                         goto set_status;
1702
1703                 err = page ? page_to_nid(page) : -ENOENT;
1704 set_status:
1705                 *status = err;
1706
1707                 pages++;
1708                 status++;
1709         }
1710
1711         up_read(&mm->mmap_sem);
1712 }
1713
1714 /*
1715  * Determine the nodes of a user array of pages and store it in
1716  * a user array of status.
1717  */
1718 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1719                          const void __user * __user *pages,
1720                          int __user *status)
1721 {
1722 #define DO_PAGES_STAT_CHUNK_NR 16
1723         const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1724         int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1725
1726         while (nr_pages) {
1727                 unsigned long chunk_nr;
1728
1729                 chunk_nr = nr_pages;
1730                 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1731                         chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1732
1733                 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1734                         break;
1735
1736                 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1737
1738                 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1739                         break;
1740
1741                 pages += chunk_nr;
1742                 status += chunk_nr;
1743                 nr_pages -= chunk_nr;
1744         }
1745         return nr_pages ? -EFAULT : 0;
1746 }
1747
1748 /*
1749  * Move a list of pages in the address space of the currently executing
1750  * process.
1751  */
1752 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1753                 const void __user * __user *, pages,
1754                 const int __user *, nodes,
1755                 int __user *, status, int, flags)
1756 {
1757         struct task_struct *task;
1758         struct mm_struct *mm;
1759         int err;
1760         nodemask_t task_nodes;
1761
1762         /* Check flags */
1763         if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1764                 return -EINVAL;
1765
1766         if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1767                 return -EPERM;
1768
1769         /* Find the mm_struct */
1770         rcu_read_lock();
1771         task = pid ? find_task_by_vpid(pid) : current;
1772         if (!task) {
1773                 rcu_read_unlock();
1774                 return -ESRCH;
1775         }
1776         get_task_struct(task);
1777
1778         /*
1779          * Check if this process has the right to modify the specified
1780          * process. Use the regular "ptrace_may_access()" checks.
1781          */
1782         if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1783                 rcu_read_unlock();
1784                 err = -EPERM;
1785                 goto out;
1786         }
1787         rcu_read_unlock();
1788
1789         err = security_task_movememory(task);
1790         if (err)
1791                 goto out;
1792
1793         task_nodes = cpuset_mems_allowed(task);
1794         mm = get_task_mm(task);
1795         put_task_struct(task);
1796
1797         if (!mm)
1798                 return -EINVAL;
1799
1800         if (nodes)
1801                 err = do_pages_move(mm, task_nodes, nr_pages, pages,
1802                                     nodes, status, flags);
1803         else
1804                 err = do_pages_stat(mm, nr_pages, pages, status);
1805
1806         mmput(mm);
1807         return err;
1808
1809 out:
1810         put_task_struct(task);
1811         return err;
1812 }
1813
1814 #ifdef CONFIG_NUMA_BALANCING
1815 /*
1816  * Returns true if this is a safe migration target node for misplaced NUMA
1817  * pages. Currently it only checks the watermarks which crude
1818  */
1819 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1820                                    unsigned long nr_migrate_pages)
1821 {
1822         int z;
1823
1824         for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1825                 struct zone *zone = pgdat->node_zones + z;
1826
1827                 if (!populated_zone(zone))
1828                         continue;
1829
1830                 /* Avoid waking kswapd by allocating pages_to_migrate pages. */
1831                 if (!zone_watermark_ok(zone, 0,
1832                                        high_wmark_pages(zone) +
1833                                        nr_migrate_pages,
1834                                        0, 0))
1835                         continue;
1836                 return true;
1837         }
1838         return false;
1839 }
1840
1841 static struct page *alloc_misplaced_dst_page(struct page *page,
1842                                            unsigned long data,
1843                                            int **result)
1844 {
1845         int nid = (int) data;
1846         struct page *newpage;
1847
1848         newpage = __alloc_pages_node(nid,
1849                                          (GFP_HIGHUSER_MOVABLE |
1850                                           __GFP_THISNODE | __GFP_NOMEMALLOC |
1851                                           __GFP_NORETRY | __GFP_NOWARN) &
1852                                          ~__GFP_RECLAIM, 0);
1853
1854         return newpage;
1855 }
1856
1857 /*
1858  * page migration rate limiting control.
1859  * Do not migrate more than @pages_to_migrate in a @migrate_interval_millisecs
1860  * window of time. Default here says do not migrate more than 1280M per second.
1861  */
1862 static unsigned int migrate_interval_millisecs __read_mostly = 100;
1863 static unsigned int ratelimit_pages __read_mostly = 128 << (20 - PAGE_SHIFT);
1864
1865 /* Returns true if the node is migrate rate-limited after the update */
1866 static bool numamigrate_update_ratelimit(pg_data_t *pgdat,
1867                                         unsigned long nr_pages)
1868 {
1869         /*
1870          * Rate-limit the amount of data that is being migrated to a node.
1871          * Optimal placement is no good if the memory bus is saturated and
1872          * all the time is being spent migrating!
1873          */
1874         if (time_after(jiffies, pgdat->numabalancing_migrate_next_window)) {
1875                 spin_lock(&pgdat->numabalancing_migrate_lock);
1876                 pgdat->numabalancing_migrate_nr_pages = 0;
1877                 pgdat->numabalancing_migrate_next_window = jiffies +
1878                         msecs_to_jiffies(migrate_interval_millisecs);
1879                 spin_unlock(&pgdat->numabalancing_migrate_lock);
1880         }
1881         if (pgdat->numabalancing_migrate_nr_pages > ratelimit_pages) {
1882                 trace_mm_numa_migrate_ratelimit(current, pgdat->node_id,
1883                                                                 nr_pages);
1884                 return true;
1885         }
1886
1887         /*
1888          * This is an unlocked non-atomic update so errors are possible.
1889          * The consequences are failing to migrate when we potentiall should
1890          * have which is not severe enough to warrant locking. If it is ever
1891          * a problem, it can be converted to a per-cpu counter.
1892          */
1893         pgdat->numabalancing_migrate_nr_pages += nr_pages;
1894         return false;
1895 }
1896
1897 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
1898 {
1899         int page_lru;
1900
1901         VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
1902
1903         /* Avoid migrating to a node that is nearly full */
1904         if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page)))
1905                 return 0;
1906
1907         if (isolate_lru_page(page))
1908                 return 0;
1909
1910         /*
1911          * migrate_misplaced_transhuge_page() skips page migration's usual
1912          * check on page_count(), so we must do it here, now that the page
1913          * has been isolated: a GUP pin, or any other pin, prevents migration.
1914          * The expected page count is 3: 1 for page's mapcount and 1 for the
1915          * caller's pin and 1 for the reference taken by isolate_lru_page().
1916          */
1917         if (PageTransHuge(page) && page_count(page) != 3) {
1918                 putback_lru_page(page);
1919                 return 0;
1920         }
1921
1922         page_lru = page_is_file_cache(page);
1923         mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
1924                                 hpage_nr_pages(page));
1925
1926         /*
1927          * Isolating the page has taken another reference, so the
1928          * caller's reference can be safely dropped without the page
1929          * disappearing underneath us during migration.
1930          */
1931         put_page(page);
1932         return 1;
1933 }
1934
1935 bool pmd_trans_migrating(pmd_t pmd)
1936 {
1937         struct page *page = pmd_page(pmd);
1938         return PageLocked(page);
1939 }
1940
1941 /*
1942  * Attempt to migrate a misplaced page to the specified destination
1943  * node. Caller is expected to have an elevated reference count on
1944  * the page that will be dropped by this function before returning.
1945  */
1946 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
1947                            int node)
1948 {
1949         pg_data_t *pgdat = NODE_DATA(node);
1950         int isolated;
1951         int nr_remaining;
1952         LIST_HEAD(migratepages);
1953
1954         /*
1955          * Don't migrate file pages that are mapped in multiple processes
1956          * with execute permissions as they are probably shared libraries.
1957          */
1958         if (page_mapcount(page) != 1 && page_is_file_cache(page) &&
1959             (vma->vm_flags & VM_EXEC))
1960                 goto out;
1961
1962         /*
1963          * Rate-limit the amount of data that is being migrated to a node.
1964          * Optimal placement is no good if the memory bus is saturated and
1965          * all the time is being spent migrating!
1966          */
1967         if (numamigrate_update_ratelimit(pgdat, 1))
1968                 goto out;
1969
1970         isolated = numamigrate_isolate_page(pgdat, page);
1971         if (!isolated)
1972                 goto out;
1973
1974         list_add(&page->lru, &migratepages);
1975         nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
1976                                      NULL, node, MIGRATE_ASYNC,
1977                                      MR_NUMA_MISPLACED);
1978         if (nr_remaining) {
1979                 if (!list_empty(&migratepages)) {
1980                         list_del(&page->lru);
1981                         dec_node_page_state(page, NR_ISOLATED_ANON +
1982                                         page_is_file_cache(page));
1983                         putback_lru_page(page);
1984                 }
1985                 isolated = 0;
1986         } else
1987                 count_vm_numa_event(NUMA_PAGE_MIGRATE);
1988         BUG_ON(!list_empty(&migratepages));
1989         return isolated;
1990
1991 out:
1992         put_page(page);
1993         return 0;
1994 }
1995 #endif /* CONFIG_NUMA_BALANCING */
1996
1997 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1998 /*
1999  * Migrates a THP to a given target node. page must be locked and is unlocked
2000  * before returning.
2001  */
2002 int migrate_misplaced_transhuge_page(struct mm_struct *mm,
2003                                 struct vm_area_struct *vma,
2004                                 pmd_t *pmd, pmd_t entry,
2005                                 unsigned long address,
2006                                 struct page *page, int node)
2007 {
2008         spinlock_t *ptl;
2009         pg_data_t *pgdat = NODE_DATA(node);
2010         int isolated = 0;
2011         struct page *new_page = NULL;
2012         int page_lru = page_is_file_cache(page);
2013         unsigned long mmun_start = address & HPAGE_PMD_MASK;
2014         unsigned long mmun_end = mmun_start + HPAGE_PMD_SIZE;
2015
2016         /*
2017          * Rate-limit the amount of data that is being migrated to a node.
2018          * Optimal placement is no good if the memory bus is saturated and
2019          * all the time is being spent migrating!
2020          */
2021         if (numamigrate_update_ratelimit(pgdat, HPAGE_PMD_NR))
2022                 goto out_dropref;
2023
2024         new_page = alloc_pages_node(node,
2025                 (GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
2026                 HPAGE_PMD_ORDER);
2027         if (!new_page)
2028                 goto out_fail;
2029         prep_transhuge_page(new_page);
2030
2031         isolated = numamigrate_isolate_page(pgdat, page);
2032         if (!isolated) {
2033                 put_page(new_page);
2034                 goto out_fail;
2035         }
2036
2037         /* Prepare a page as a migration target */
2038         __SetPageLocked(new_page);
2039         if (PageSwapBacked(page))
2040                 __SetPageSwapBacked(new_page);
2041
2042         /* anon mapping, we can simply copy page->mapping to the new page: */
2043         new_page->mapping = page->mapping;
2044         new_page->index = page->index;
2045         migrate_page_copy(new_page, page);
2046         WARN_ON(PageLRU(new_page));
2047
2048         /* Recheck the target PMD */
2049         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2050         ptl = pmd_lock(mm, pmd);
2051         if (unlikely(!pmd_same(*pmd, entry) || !page_ref_freeze(page, 2))) {
2052                 spin_unlock(ptl);
2053                 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2054
2055                 /* Reverse changes made by migrate_page_copy() */
2056                 if (TestClearPageActive(new_page))
2057                         SetPageActive(page);
2058                 if (TestClearPageUnevictable(new_page))
2059                         SetPageUnevictable(page);
2060
2061                 unlock_page(new_page);
2062                 put_page(new_page);             /* Free it */
2063
2064                 /* Retake the callers reference and putback on LRU */
2065                 get_page(page);
2066                 putback_lru_page(page);
2067                 mod_node_page_state(page_pgdat(page),
2068                          NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
2069
2070                 goto out_unlock;
2071         }
2072
2073         entry = mk_huge_pmd(new_page, vma->vm_page_prot);
2074         entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
2075
2076         /*
2077          * Clear the old entry under pagetable lock and establish the new PTE.
2078          * Any parallel GUP will either observe the old page blocking on the
2079          * page lock, block on the page table lock or observe the new page.
2080          * The SetPageUptodate on the new page and page_add_new_anon_rmap
2081          * guarantee the copy is visible before the pagetable update.
2082          */
2083         flush_cache_range(vma, mmun_start, mmun_end);
2084         page_add_anon_rmap(new_page, vma, mmun_start, true);
2085         pmdp_huge_clear_flush_notify(vma, mmun_start, pmd);
2086         set_pmd_at(mm, mmun_start, pmd, entry);
2087         update_mmu_cache_pmd(vma, address, &entry);
2088
2089         page_ref_unfreeze(page, 2);
2090         mlock_migrate_page(new_page, page);
2091         page_remove_rmap(page, true);
2092         set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED);
2093
2094         spin_unlock(ptl);
2095         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2096
2097         /* Take an "isolate" reference and put new page on the LRU. */
2098         get_page(new_page);
2099         putback_lru_page(new_page);
2100
2101         unlock_page(new_page);
2102         unlock_page(page);
2103         put_page(page);                 /* Drop the rmap reference */
2104         put_page(page);                 /* Drop the LRU isolation reference */
2105
2106         count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
2107         count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
2108
2109         mod_node_page_state(page_pgdat(page),
2110                         NR_ISOLATED_ANON + page_lru,
2111                         -HPAGE_PMD_NR);
2112         return isolated;
2113
2114 out_fail:
2115         count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
2116 out_dropref:
2117         ptl = pmd_lock(mm, pmd);
2118         if (pmd_same(*pmd, entry)) {
2119                 entry = pmd_modify(entry, vma->vm_page_prot);
2120                 set_pmd_at(mm, mmun_start, pmd, entry);
2121                 update_mmu_cache_pmd(vma, address, &entry);
2122         }
2123         spin_unlock(ptl);
2124
2125 out_unlock:
2126         unlock_page(page);
2127         put_page(page);
2128         return 0;
2129 }
2130 #endif /* CONFIG_NUMA_BALANCING */
2131
2132 #endif /* CONFIG_NUMA */
2133
2134 #if defined(CONFIG_MIGRATE_VMA_HELPER)
2135 struct migrate_vma {
2136         struct vm_area_struct   *vma;
2137         unsigned long           *dst;
2138         unsigned long           *src;
2139         unsigned long           cpages;
2140         unsigned long           npages;
2141         unsigned long           start;
2142         unsigned long           end;
2143 };
2144
2145 static int migrate_vma_collect_hole(unsigned long start,
2146                                     unsigned long end,
2147                                     struct mm_walk *walk)
2148 {
2149         struct migrate_vma *migrate = walk->private;
2150         unsigned long addr;
2151
2152         for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) {
2153                 migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE;
2154                 migrate->dst[migrate->npages] = 0;
2155                 migrate->npages++;
2156                 migrate->cpages++;
2157         }
2158
2159         return 0;
2160 }
2161
2162 static int migrate_vma_collect_skip(unsigned long start,
2163                                     unsigned long end,
2164                                     struct mm_walk *walk)
2165 {
2166         struct migrate_vma *migrate = walk->private;
2167         unsigned long addr;
2168
2169         for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) {
2170                 migrate->dst[migrate->npages] = 0;
2171                 migrate->src[migrate->npages++] = 0;
2172         }
2173
2174         return 0;
2175 }
2176
2177 static int migrate_vma_collect_pmd(pmd_t *pmdp,
2178                                    unsigned long start,
2179                                    unsigned long end,
2180                                    struct mm_walk *walk)
2181 {
2182         struct migrate_vma *migrate = walk->private;
2183         struct vm_area_struct *vma = walk->vma;
2184         struct mm_struct *mm = vma->vm_mm;
2185         unsigned long addr = start, unmapped = 0;
2186         spinlock_t *ptl;
2187         pte_t *ptep;
2188
2189 again:
2190         if (pmd_none(*pmdp))
2191                 return migrate_vma_collect_hole(start, end, walk);
2192
2193         if (pmd_trans_huge(*pmdp)) {
2194                 struct page *page;
2195
2196                 ptl = pmd_lock(mm, pmdp);
2197                 if (unlikely(!pmd_trans_huge(*pmdp))) {
2198                         spin_unlock(ptl);
2199                         goto again;
2200                 }
2201
2202                 page = pmd_page(*pmdp);
2203                 if (is_huge_zero_page(page)) {
2204                         spin_unlock(ptl);
2205                         split_huge_pmd(vma, pmdp, addr);
2206                         if (pmd_trans_unstable(pmdp))
2207                                 return migrate_vma_collect_skip(start, end,
2208                                                                 walk);
2209                 } else {
2210                         int ret;
2211
2212                         get_page(page);
2213                         spin_unlock(ptl);
2214                         if (unlikely(!trylock_page(page)))
2215                                 return migrate_vma_collect_skip(start, end,
2216                                                                 walk);
2217                         ret = split_huge_page(page);
2218                         unlock_page(page);
2219                         put_page(page);
2220                         if (ret)
2221                                 return migrate_vma_collect_skip(start, end,
2222                                                                 walk);
2223                         if (pmd_none(*pmdp))
2224                                 return migrate_vma_collect_hole(start, end,
2225                                                                 walk);
2226                 }
2227         }
2228
2229         if (unlikely(pmd_bad(*pmdp)))
2230                 return migrate_vma_collect_skip(start, end, walk);
2231
2232         ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2233         arch_enter_lazy_mmu_mode();
2234
2235         for (; addr < end; addr += PAGE_SIZE, ptep++) {
2236                 unsigned long mpfn, pfn;
2237                 struct page *page;
2238                 swp_entry_t entry;
2239                 pte_t pte;
2240
2241                 pte = *ptep;
2242                 pfn = pte_pfn(pte);
2243
2244                 if (pte_none(pte)) {
2245                         mpfn = MIGRATE_PFN_MIGRATE;
2246                         migrate->cpages++;
2247                         pfn = 0;
2248                         goto next;
2249                 }
2250
2251                 if (!pte_present(pte)) {
2252                         mpfn = pfn = 0;
2253
2254                         /*
2255                          * Only care about unaddressable device page special
2256                          * page table entry. Other special swap entries are not
2257                          * migratable, and we ignore regular swapped page.
2258                          */
2259                         entry = pte_to_swp_entry(pte);
2260                         if (!is_device_private_entry(entry))
2261                                 goto next;
2262
2263                         page = device_private_entry_to_page(entry);
2264                         mpfn = migrate_pfn(page_to_pfn(page))|
2265                                 MIGRATE_PFN_DEVICE | MIGRATE_PFN_MIGRATE;
2266                         if (is_write_device_private_entry(entry))
2267                                 mpfn |= MIGRATE_PFN_WRITE;
2268                 } else {
2269                         if (is_zero_pfn(pfn)) {
2270                                 mpfn = MIGRATE_PFN_MIGRATE;
2271                                 migrate->cpages++;
2272                                 pfn = 0;
2273                                 goto next;
2274                         }
2275                         page = _vm_normal_page(migrate->vma, addr, pte, true);
2276                         mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
2277                         mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
2278                 }
2279
2280                 /* FIXME support THP */
2281                 if (!page || !page->mapping || PageTransCompound(page)) {
2282                         mpfn = pfn = 0;
2283                         goto next;
2284                 }
2285                 pfn = page_to_pfn(page);
2286
2287                 /*
2288                  * By getting a reference on the page we pin it and that blocks
2289                  * any kind of migration. Side effect is that it "freezes" the
2290                  * pte.
2291                  *
2292                  * We drop this reference after isolating the page from the lru
2293                  * for non device page (device page are not on the lru and thus
2294                  * can't be dropped from it).
2295                  */
2296                 get_page(page);
2297                 migrate->cpages++;
2298
2299                 /*
2300                  * Optimize for the common case where page is only mapped once
2301                  * in one process. If we can lock the page, then we can safely
2302                  * set up a special migration page table entry now.
2303                  */
2304                 if (trylock_page(page)) {
2305                         pte_t swp_pte;
2306
2307                         mpfn |= MIGRATE_PFN_LOCKED;
2308                         ptep_get_and_clear(mm, addr, ptep);
2309
2310                         /* Setup special migration page table entry */
2311                         entry = make_migration_entry(page, pte_write(pte));
2312                         swp_pte = swp_entry_to_pte(entry);
2313                         if (pte_soft_dirty(pte))
2314                                 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2315                         set_pte_at(mm, addr, ptep, swp_pte);
2316
2317                         /*
2318                          * This is like regular unmap: we remove the rmap and
2319                          * drop page refcount. Page won't be freed, as we took
2320                          * a reference just above.
2321                          */
2322                         page_remove_rmap(page, false);
2323                         put_page(page);
2324
2325                         if (pte_present(pte))
2326                                 unmapped++;
2327                 }
2328
2329 next:
2330                 migrate->dst[migrate->npages] = 0;
2331                 migrate->src[migrate->npages++] = mpfn;
2332         }
2333         arch_leave_lazy_mmu_mode();
2334         pte_unmap_unlock(ptep - 1, ptl);
2335
2336         /* Only flush the TLB if we actually modified any entries */
2337         if (unmapped)
2338                 flush_tlb_range(walk->vma, start, end);
2339
2340         return 0;
2341 }
2342
2343 /*
2344  * migrate_vma_collect() - collect pages over a range of virtual addresses
2345  * @migrate: migrate struct containing all migration information
2346  *
2347  * This will walk the CPU page table. For each virtual address backed by a
2348  * valid page, it updates the src array and takes a reference on the page, in
2349  * order to pin the page until we lock it and unmap it.
2350  */
2351 static void migrate_vma_collect(struct migrate_vma *migrate)
2352 {
2353         struct mm_walk mm_walk;
2354
2355         mm_walk.pmd_entry = migrate_vma_collect_pmd;
2356         mm_walk.pte_entry = NULL;
2357         mm_walk.pte_hole = migrate_vma_collect_hole;
2358         mm_walk.hugetlb_entry = NULL;
2359         mm_walk.test_walk = NULL;
2360         mm_walk.vma = migrate->vma;
2361         mm_walk.mm = migrate->vma->vm_mm;
2362         mm_walk.private = migrate;
2363
2364         mmu_notifier_invalidate_range_start(mm_walk.mm,
2365                                             migrate->start,
2366                                             migrate->end);
2367         walk_page_range(migrate->start, migrate->end, &mm_walk);
2368         mmu_notifier_invalidate_range_end(mm_walk.mm,
2369                                           migrate->start,
2370                                           migrate->end);
2371
2372         migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
2373 }
2374
2375 /*
2376  * migrate_vma_check_page() - check if page is pinned or not
2377  * @page: struct page to check
2378  *
2379  * Pinned pages cannot be migrated. This is the same test as in
2380  * migrate_page_move_mapping(), except that here we allow migration of a
2381  * ZONE_DEVICE page.
2382  */
2383 static bool migrate_vma_check_page(struct page *page)
2384 {
2385         /*
2386          * One extra ref because caller holds an extra reference, either from
2387          * isolate_lru_page() for a regular page, or migrate_vma_collect() for
2388          * a device page.
2389          */
2390         int extra = 1;
2391
2392         /*
2393          * FIXME support THP (transparent huge page), it is bit more complex to
2394          * check them than regular pages, because they can be mapped with a pmd
2395          * or with a pte (split pte mapping).
2396          */
2397         if (PageCompound(page))
2398                 return false;
2399
2400         /* Page from ZONE_DEVICE have one extra reference */
2401         if (is_zone_device_page(page)) {
2402                 /*
2403                  * Private page can never be pin as they have no valid pte and
2404                  * GUP will fail for those. Yet if there is a pending migration
2405                  * a thread might try to wait on the pte migration entry and
2406                  * will bump the page reference count. Sadly there is no way to
2407                  * differentiate a regular pin from migration wait. Hence to
2408                  * avoid 2 racing thread trying to migrate back to CPU to enter
2409                  * infinite loop (one stoping migration because the other is
2410                  * waiting on pte migration entry). We always return true here.
2411                  *
2412                  * FIXME proper solution is to rework migration_entry_wait() so
2413                  * it does not need to take a reference on page.
2414                  */
2415                 if (is_device_private_page(page))
2416                         return true;
2417
2418                 /*
2419                  * Only allow device public page to be migrated and account for
2420                  * the extra reference count imply by ZONE_DEVICE pages.
2421                  */
2422                 if (!is_device_public_page(page))
2423                         return false;
2424                 extra++;
2425         }
2426
2427         /* For file back page */
2428         if (page_mapping(page))
2429                 extra += 1 + page_has_private(page);
2430
2431         if ((page_count(page) - extra) > page_mapcount(page))
2432                 return false;
2433
2434         return true;
2435 }
2436
2437 /*
2438  * migrate_vma_prepare() - lock pages and isolate them from the lru
2439  * @migrate: migrate struct containing all migration information
2440  *
2441  * This locks pages that have been collected by migrate_vma_collect(). Once each
2442  * page is locked it is isolated from the lru (for non-device pages). Finally,
2443  * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be
2444  * migrated by concurrent kernel threads.
2445  */
2446 static void migrate_vma_prepare(struct migrate_vma *migrate)
2447 {
2448         const unsigned long npages = migrate->npages;
2449         const unsigned long start = migrate->start;
2450         unsigned long addr, i, restore = 0;
2451         bool allow_drain = true;
2452
2453         lru_add_drain();
2454
2455         for (i = 0; (i < npages) && migrate->cpages; i++) {
2456                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2457                 bool remap = true;
2458
2459                 if (!page)
2460                         continue;
2461
2462                 if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) {
2463                         /*
2464                          * Because we are migrating several pages there can be
2465                          * a deadlock between 2 concurrent migration where each
2466                          * are waiting on each other page lock.
2467                          *
2468                          * Make migrate_vma() a best effort thing and backoff
2469                          * for any page we can not lock right away.
2470                          */
2471                         if (!trylock_page(page)) {
2472                                 migrate->src[i] = 0;
2473                                 migrate->cpages--;
2474                                 put_page(page);
2475                                 continue;
2476                         }
2477                         remap = false;
2478                         migrate->src[i] |= MIGRATE_PFN_LOCKED;
2479                 }
2480
2481                 /* ZONE_DEVICE pages are not on LRU */
2482                 if (!is_zone_device_page(page)) {
2483                         if (!PageLRU(page) && allow_drain) {
2484                                 /* Drain CPU's pagevec */
2485                                 lru_add_drain_all();
2486                                 allow_drain = false;
2487                         }
2488
2489                         if (isolate_lru_page(page)) {
2490                                 if (remap) {
2491                                         migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2492                                         migrate->cpages--;
2493                                         restore++;
2494                                 } else {
2495                                         migrate->src[i] = 0;
2496                                         unlock_page(page);
2497                                         migrate->cpages--;
2498                                         put_page(page);
2499                                 }
2500                                 continue;
2501                         }
2502
2503                         /* Drop the reference we took in collect */
2504                         put_page(page);
2505                 }
2506
2507                 if (!migrate_vma_check_page(page)) {
2508                         if (remap) {
2509                                 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2510                                 migrate->cpages--;
2511                                 restore++;
2512
2513                                 if (!is_zone_device_page(page)) {
2514                                         get_page(page);
2515                                         putback_lru_page(page);
2516                                 }
2517                         } else {
2518                                 migrate->src[i] = 0;
2519                                 unlock_page(page);
2520                                 migrate->cpages--;
2521
2522                                 if (!is_zone_device_page(page))
2523                                         putback_lru_page(page);
2524                                 else
2525                                         put_page(page);
2526                         }
2527                 }
2528         }
2529
2530         for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) {
2531                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2532
2533                 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2534                         continue;
2535
2536                 remove_migration_pte(page, migrate->vma, addr, page);
2537
2538                 migrate->src[i] = 0;
2539                 unlock_page(page);
2540                 put_page(page);
2541                 restore--;
2542         }
2543 }
2544
2545 /*
2546  * migrate_vma_unmap() - replace page mapping with special migration pte entry
2547  * @migrate: migrate struct containing all migration information
2548  *
2549  * Replace page mapping (CPU page table pte) with a special migration pte entry
2550  * and check again if it has been pinned. Pinned pages are restored because we
2551  * cannot migrate them.
2552  *
2553  * This is the last step before we call the device driver callback to allocate
2554  * destination memory and copy contents of original page over to new page.
2555  */
2556 static void migrate_vma_unmap(struct migrate_vma *migrate)
2557 {
2558         int flags = TTU_MIGRATION | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
2559         const unsigned long npages = migrate->npages;
2560         const unsigned long start = migrate->start;
2561         unsigned long addr, i, restore = 0;
2562
2563         for (i = 0; i < npages; i++) {
2564                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2565
2566                 if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2567                         continue;
2568
2569                 if (page_mapped(page)) {
2570                         try_to_unmap(page, flags);
2571                         if (page_mapped(page))
2572                                 goto restore;
2573                 }
2574
2575                 if (migrate_vma_check_page(page))
2576                         continue;
2577
2578 restore:
2579                 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2580                 migrate->cpages--;
2581                 restore++;
2582         }
2583
2584         for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) {
2585                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2586
2587                 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2588                         continue;
2589
2590                 remove_migration_ptes(page, page, false);
2591
2592                 migrate->src[i] = 0;
2593                 unlock_page(page);
2594                 restore--;
2595
2596                 if (is_zone_device_page(page))
2597                         put_page(page);
2598                 else
2599                         putback_lru_page(page);
2600         }
2601 }
2602
2603 static void migrate_vma_insert_page(struct migrate_vma *migrate,
2604                                     unsigned long addr,
2605                                     struct page *page,
2606                                     unsigned long *src,
2607                                     unsigned long *dst)
2608 {
2609         struct vm_area_struct *vma = migrate->vma;
2610         struct mm_struct *mm = vma->vm_mm;
2611         struct mem_cgroup *memcg;
2612         bool flush = false;
2613         spinlock_t *ptl;
2614         pte_t entry;
2615         pgd_t *pgdp;
2616         p4d_t *p4dp;
2617         pud_t *pudp;
2618         pmd_t *pmdp;
2619         pte_t *ptep;
2620
2621         /* Only allow populating anonymous memory */
2622         if (!vma_is_anonymous(vma))
2623                 goto abort;
2624
2625         pgdp = pgd_offset(mm, addr);
2626         p4dp = p4d_alloc(mm, pgdp, addr);
2627         if (!p4dp)
2628                 goto abort;
2629         pudp = pud_alloc(mm, p4dp, addr);
2630         if (!pudp)
2631                 goto abort;
2632         pmdp = pmd_alloc(mm, pudp, addr);
2633         if (!pmdp)
2634                 goto abort;
2635
2636         if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp))
2637                 goto abort;
2638
2639         /*
2640          * Use pte_alloc() instead of pte_alloc_map().  We can't run
2641          * pte_offset_map() on pmds where a huge pmd might be created
2642          * from a different thread.
2643          *
2644          * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
2645          * parallel threads are excluded by other means.
2646          *
2647          * Here we only have down_read(mmap_sem).
2648          */
2649         if (pte_alloc(mm, pmdp, addr))
2650                 goto abort;
2651
2652         /* See the comment in pte_alloc_one_map() */
2653         if (unlikely(pmd_trans_unstable(pmdp)))
2654                 goto abort;
2655
2656         if (unlikely(anon_vma_prepare(vma)))
2657                 goto abort;
2658         if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg, false))
2659                 goto abort;
2660
2661         /*
2662          * The memory barrier inside __SetPageUptodate makes sure that
2663          * preceding stores to the page contents become visible before
2664          * the set_pte_at() write.
2665          */
2666         __SetPageUptodate(page);
2667
2668         if (is_zone_device_page(page)) {
2669                 if (is_device_private_page(page)) {
2670                         swp_entry_t swp_entry;
2671
2672                         swp_entry = make_device_private_entry(page, vma->vm_flags & VM_WRITE);
2673                         entry = swp_entry_to_pte(swp_entry);
2674                 } else if (is_device_public_page(page)) {
2675                         entry = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
2676                         if (vma->vm_flags & VM_WRITE)
2677                                 entry = pte_mkwrite(pte_mkdirty(entry));
2678                         entry = pte_mkdevmap(entry);
2679                 }
2680         } else {
2681                 entry = mk_pte(page, vma->vm_page_prot);
2682                 if (vma->vm_flags & VM_WRITE)
2683                         entry = pte_mkwrite(pte_mkdirty(entry));
2684         }
2685
2686         ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2687
2688         if (pte_present(*ptep)) {
2689                 unsigned long pfn = pte_pfn(*ptep);
2690
2691                 if (!is_zero_pfn(pfn)) {
2692                         pte_unmap_unlock(ptep, ptl);
2693                         mem_cgroup_cancel_charge(page, memcg, false);
2694                         goto abort;
2695                 }
2696                 flush = true;
2697         } else if (!pte_none(*ptep)) {
2698                 pte_unmap_unlock(ptep, ptl);
2699                 mem_cgroup_cancel_charge(page, memcg, false);
2700                 goto abort;
2701         }
2702
2703         /*
2704          * Check for usefaultfd but do not deliver the fault. Instead,
2705          * just back off.
2706          */
2707         if (userfaultfd_missing(vma)) {
2708                 pte_unmap_unlock(ptep, ptl);
2709                 mem_cgroup_cancel_charge(page, memcg, false);
2710                 goto abort;
2711         }
2712
2713         inc_mm_counter(mm, MM_ANONPAGES);
2714         page_add_new_anon_rmap(page, vma, addr, false);
2715         mem_cgroup_commit_charge(page, memcg, false, false);
2716         if (!is_zone_device_page(page))
2717                 lru_cache_add_active_or_unevictable(page, vma);
2718         get_page(page);
2719
2720         if (flush) {
2721                 flush_cache_page(vma, addr, pte_pfn(*ptep));
2722                 ptep_clear_flush_notify(vma, addr, ptep);
2723                 set_pte_at_notify(mm, addr, ptep, entry);
2724                 update_mmu_cache(vma, addr, ptep);
2725         } else {
2726                 /* No need to invalidate - it was non-present before */
2727                 set_pte_at(mm, addr, ptep, entry);
2728                 update_mmu_cache(vma, addr, ptep);
2729         }
2730
2731         pte_unmap_unlock(ptep, ptl);
2732         *src = MIGRATE_PFN_MIGRATE;
2733         return;
2734
2735 abort:
2736         *src &= ~MIGRATE_PFN_MIGRATE;
2737 }
2738
2739 /*
2740  * migrate_vma_pages() - migrate meta-data from src page to dst page
2741  * @migrate: migrate struct containing all migration information
2742  *
2743  * This migrates struct page meta-data from source struct page to destination
2744  * struct page. This effectively finishes the migration from source page to the
2745  * destination page.
2746  */
2747 static void migrate_vma_pages(struct migrate_vma *migrate)
2748 {
2749         const unsigned long npages = migrate->npages;
2750         const unsigned long start = migrate->start;
2751         struct vm_area_struct *vma = migrate->vma;
2752         struct mm_struct *mm = vma->vm_mm;
2753         unsigned long addr, i, mmu_start;
2754         bool notified = false;
2755
2756         for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) {
2757                 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2758                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2759                 struct address_space *mapping;
2760                 int r;
2761
2762                 if (!newpage) {
2763                         migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2764                         continue;
2765                 }
2766
2767                 if (!page) {
2768                         if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE)) {
2769                                 continue;
2770                         }
2771                         if (!notified) {
2772                                 mmu_start = addr;
2773                                 notified = true;
2774                                 mmu_notifier_invalidate_range_start(mm,
2775                                                                 mmu_start,
2776                                                                 migrate->end);
2777                         }
2778                         migrate_vma_insert_page(migrate, addr, newpage,
2779                                                 &migrate->src[i],
2780                                                 &migrate->dst[i]);
2781                         continue;
2782                 }
2783
2784                 mapping = page_mapping(page);
2785
2786                 if (is_zone_device_page(newpage)) {
2787                         if (is_device_private_page(newpage)) {
2788                                 /*
2789                                  * For now only support private anonymous when
2790                                  * migrating to un-addressable device memory.
2791                                  */
2792                                 if (mapping) {
2793                                         migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2794                                         continue;
2795                                 }
2796                         } else if (!is_device_public_page(newpage)) {
2797                                 /*
2798                                  * Other types of ZONE_DEVICE page are not
2799                                  * supported.
2800                                  */
2801                                 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2802                                 continue;
2803                         }
2804                 }
2805
2806                 r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY);
2807                 if (r != MIGRATEPAGE_SUCCESS)
2808                         migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2809         }
2810
2811         if (notified)
2812                 mmu_notifier_invalidate_range_end(mm, mmu_start,
2813                                                   migrate->end);
2814 }
2815
2816 /*
2817  * migrate_vma_finalize() - restore CPU page table entry
2818  * @migrate: migrate struct containing all migration information
2819  *
2820  * This replaces the special migration pte entry with either a mapping to the
2821  * new page if migration was successful for that page, or to the original page
2822  * otherwise.
2823  *
2824  * This also unlocks the pages and puts them back on the lru, or drops the extra
2825  * refcount, for device pages.
2826  */
2827 static void migrate_vma_finalize(struct migrate_vma *migrate)
2828 {
2829         const unsigned long npages = migrate->npages;
2830         unsigned long i;
2831
2832         for (i = 0; i < npages; i++) {
2833                 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2834                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2835
2836                 if (!page) {
2837                         if (newpage) {
2838                                 unlock_page(newpage);
2839                                 put_page(newpage);
2840                         }
2841                         continue;
2842                 }
2843
2844                 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) {
2845                         if (newpage) {
2846                                 unlock_page(newpage);
2847                                 put_page(newpage);
2848                         }
2849                         newpage = page;
2850                 }
2851
2852                 remove_migration_ptes(page, newpage, false);
2853                 unlock_page(page);
2854                 migrate->cpages--;
2855
2856                 if (is_zone_device_page(page))
2857                         put_page(page);
2858                 else
2859                         putback_lru_page(page);
2860
2861                 if (newpage != page) {
2862                         unlock_page(newpage);
2863                         if (is_zone_device_page(newpage))
2864                                 put_page(newpage);
2865                         else
2866                                 putback_lru_page(newpage);
2867                 }
2868         }
2869 }
2870
2871 /*
2872  * migrate_vma() - migrate a range of memory inside vma
2873  *
2874  * @ops: migration callback for allocating destination memory and copying
2875  * @vma: virtual memory area containing the range to be migrated
2876  * @start: start address of the range to migrate (inclusive)
2877  * @end: end address of the range to migrate (exclusive)
2878  * @src: array of hmm_pfn_t containing source pfns
2879  * @dst: array of hmm_pfn_t containing destination pfns
2880  * @private: pointer passed back to each of the callback
2881  * Returns: 0 on success, error code otherwise
2882  *
2883  * This function tries to migrate a range of memory virtual address range, using
2884  * callbacks to allocate and copy memory from source to destination. First it
2885  * collects all the pages backing each virtual address in the range, saving this
2886  * inside the src array. Then it locks those pages and unmaps them. Once the pages
2887  * are locked and unmapped, it checks whether each page is pinned or not. Pages
2888  * that aren't pinned have the MIGRATE_PFN_MIGRATE flag set (by this function)
2889  * in the corresponding src array entry. It then restores any pages that are
2890  * pinned, by remapping and unlocking those pages.
2891  *
2892  * At this point it calls the alloc_and_copy() callback. For documentation on
2893  * what is expected from that callback, see struct migrate_vma_ops comments in
2894  * include/linux/migrate.h
2895  *
2896  * After the alloc_and_copy() callback, this function goes over each entry in
2897  * the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
2898  * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
2899  * then the function tries to migrate struct page information from the source
2900  * struct page to the destination struct page. If it fails to migrate the struct
2901  * page information, then it clears the MIGRATE_PFN_MIGRATE flag in the src
2902  * array.
2903  *
2904  * At this point all successfully migrated pages have an entry in the src
2905  * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
2906  * array entry with MIGRATE_PFN_VALID flag set.
2907  *
2908  * It then calls the finalize_and_map() callback. See comments for "struct
2909  * migrate_vma_ops", in include/linux/migrate.h for details about
2910  * finalize_and_map() behavior.
2911  *
2912  * After the finalize_and_map() callback, for successfully migrated pages, this
2913  * function updates the CPU page table to point to new pages, otherwise it
2914  * restores the CPU page table to point to the original source pages.
2915  *
2916  * Function returns 0 after the above steps, even if no pages were migrated
2917  * (The function only returns an error if any of the arguments are invalid.)
2918  *
2919  * Both src and dst array must be big enough for (end - start) >> PAGE_SHIFT
2920  * unsigned long entries.
2921  */
2922 int migrate_vma(const struct migrate_vma_ops *ops,
2923                 struct vm_area_struct *vma,
2924                 unsigned long start,
2925                 unsigned long end,
2926                 unsigned long *src,
2927                 unsigned long *dst,
2928                 void *private)
2929 {
2930         struct migrate_vma migrate;
2931
2932         /* Sanity check the arguments */
2933         start &= PAGE_MASK;
2934         end &= PAGE_MASK;
2935         if (!vma || is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_SPECIAL))
2936                 return -EINVAL;
2937         if (start < vma->vm_start || start >= vma->vm_end)
2938                 return -EINVAL;
2939         if (end <= vma->vm_start || end > vma->vm_end)
2940                 return -EINVAL;
2941         if (!ops || !src || !dst || start >= end)
2942                 return -EINVAL;
2943
2944         memset(src, 0, sizeof(*src) * ((end - start) >> PAGE_SHIFT));
2945         migrate.src = src;
2946         migrate.dst = dst;
2947         migrate.start = start;
2948         migrate.npages = 0;
2949         migrate.cpages = 0;
2950         migrate.end = end;
2951         migrate.vma = vma;
2952
2953         /* Collect, and try to unmap source pages */
2954         migrate_vma_collect(&migrate);
2955         if (!migrate.cpages)
2956                 return 0;
2957
2958         /* Lock and isolate page */
2959         migrate_vma_prepare(&migrate);
2960         if (!migrate.cpages)
2961                 return 0;
2962
2963         /* Unmap pages */
2964         migrate_vma_unmap(&migrate);
2965         if (!migrate.cpages)
2966                 return 0;
2967
2968         /*
2969          * At this point pages are locked and unmapped, and thus they have
2970          * stable content and can safely be copied to destination memory that
2971          * is allocated by the callback.
2972          *
2973          * Note that migration can fail in migrate_vma_struct_page() for each
2974          * individual page.
2975          */
2976         ops->alloc_and_copy(vma, src, dst, start, end, private);
2977
2978         /* This does the real migration of struct page */
2979         migrate_vma_pages(&migrate);
2980
2981         ops->finalize_and_map(vma, src, dst, start, end, private);
2982
2983         /* Unlock and remap pages */
2984         migrate_vma_finalize(&migrate);
2985
2986         return 0;
2987 }
2988 EXPORT_SYMBOL(migrate_vma);
2989 #endif /* defined(MIGRATE_VMA_HELPER) */