2 * Memory Migration functionality - linux/mm/migration.c
4 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6 * Page migration was first developed in the context of the memory hotplug
7 * project. The main authors of the migration code are:
9 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
10 * Hirokazu Takahashi <taka@valinux.co.jp>
11 * Dave Hansen <haveblue@us.ibm.com>
15 #include <linux/migrate.h>
16 #include <linux/export.h>
17 #include <linux/swap.h>
18 #include <linux/swapops.h>
19 #include <linux/pagemap.h>
20 #include <linux/buffer_head.h>
21 #include <linux/mm_inline.h>
22 #include <linux/nsproxy.h>
23 #include <linux/pagevec.h>
24 #include <linux/ksm.h>
25 #include <linux/rmap.h>
26 #include <linux/topology.h>
27 #include <linux/cpu.h>
28 #include <linux/cpuset.h>
29 #include <linux/writeback.h>
30 #include <linux/mempolicy.h>
31 #include <linux/vmalloc.h>
32 #include <linux/security.h>
33 #include <linux/memcontrol.h>
34 #include <linux/syscalls.h>
35 #include <linux/hugetlb.h>
36 #include <linux/hugetlb_cgroup.h>
37 #include <linux/gfp.h>
38 #include <linux/balloon_compaction.h>
40 #include <asm/tlbflush.h>
45 * migrate_prep() needs to be called before we start compiling a list of pages
46 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
47 * undesirable, use migrate_prep_local()
49 int migrate_prep(void)
52 * Clear the LRU lists so pages can be isolated.
53 * Note that pages may be moved off the LRU after we have
54 * drained them. Those pages will fail to migrate like other
55 * pages that may be busy.
62 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
63 int migrate_prep_local(void)
71 * Add isolated pages on the list back to the LRU under page lock
72 * to avoid leaking evictable pages back onto unevictable list.
74 void putback_lru_pages(struct list_head *l)
79 list_for_each_entry_safe(page, page2, l, lru) {
81 dec_zone_page_state(page, NR_ISOLATED_ANON +
82 page_is_file_cache(page));
83 putback_lru_page(page);
88 * Put previously isolated pages back onto the appropriate lists
89 * from where they were once taken off for compaction/migration.
91 * This function shall be used instead of putback_lru_pages(),
92 * whenever the isolated pageset has been built by isolate_migratepages_range()
94 void putback_movable_pages(struct list_head *l)
99 list_for_each_entry_safe(page, page2, l, lru) {
100 list_del(&page->lru);
101 dec_zone_page_state(page, NR_ISOLATED_ANON +
102 page_is_file_cache(page));
103 if (unlikely(balloon_page_movable(page)))
104 balloon_page_putback(page);
106 putback_lru_page(page);
111 * Restore a potential migration pte to a working pte entry
113 static int remove_migration_pte(struct page *new, struct vm_area_struct *vma,
114 unsigned long addr, void *old)
116 struct mm_struct *mm = vma->vm_mm;
122 if (unlikely(PageHuge(new))) {
123 ptep = huge_pte_offset(mm, addr);
126 ptl = &mm->page_table_lock;
128 pmd = mm_find_pmd(mm, addr);
131 if (pmd_trans_huge(*pmd))
134 ptep = pte_offset_map(pmd, addr);
137 * Peek to check is_swap_pte() before taking ptlock? No, we
138 * can race mremap's move_ptes(), which skips anon_vma lock.
141 ptl = pte_lockptr(mm, pmd);
146 if (!is_swap_pte(pte))
149 entry = pte_to_swp_entry(pte);
151 if (!is_migration_entry(entry) ||
152 migration_entry_to_page(entry) != old)
156 pte = pte_mkold(mk_pte(new, vma->vm_page_prot));
157 if (is_write_migration_entry(entry))
158 pte = pte_mkwrite(pte);
159 #ifdef CONFIG_HUGETLB_PAGE
161 pte = pte_mkhuge(pte);
163 flush_cache_page(vma, addr, pte_pfn(pte));
164 set_pte_at(mm, addr, ptep, pte);
168 hugepage_add_anon_rmap(new, vma, addr);
171 } else if (PageAnon(new))
172 page_add_anon_rmap(new, vma, addr);
174 page_add_file_rmap(new);
176 /* No need to invalidate - it was non-present before */
177 update_mmu_cache(vma, addr, ptep);
179 pte_unmap_unlock(ptep, ptl);
185 * Get rid of all migration entries and replace them by
186 * references to the indicated page.
188 static void remove_migration_ptes(struct page *old, struct page *new)
190 rmap_walk(new, remove_migration_pte, old);
194 * Something used the pte of a page under migration. We need to
195 * get to the page and wait until migration is finished.
196 * When we return from this function the fault will be retried.
198 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
199 unsigned long address)
206 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
208 if (!is_swap_pte(pte))
211 entry = pte_to_swp_entry(pte);
212 if (!is_migration_entry(entry))
215 page = migration_entry_to_page(entry);
218 * Once radix-tree replacement of page migration started, page_count
219 * *must* be zero. And, we don't want to call wait_on_page_locked()
220 * against a page without get_page().
221 * So, we use get_page_unless_zero(), here. Even failed, page fault
224 if (!get_page_unless_zero(page))
226 pte_unmap_unlock(ptep, ptl);
227 wait_on_page_locked(page);
231 pte_unmap_unlock(ptep, ptl);
235 /* Returns true if all buffers are successfully locked */
236 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
237 enum migrate_mode mode)
239 struct buffer_head *bh = head;
241 /* Simple case, sync compaction */
242 if (mode != MIGRATE_ASYNC) {
246 bh = bh->b_this_page;
248 } while (bh != head);
253 /* async case, we cannot block on lock_buffer so use trylock_buffer */
256 if (!trylock_buffer(bh)) {
258 * We failed to lock the buffer and cannot stall in
259 * async migration. Release the taken locks
261 struct buffer_head *failed_bh = bh;
264 while (bh != failed_bh) {
267 bh = bh->b_this_page;
272 bh = bh->b_this_page;
273 } while (bh != head);
277 static inline bool buffer_migrate_lock_buffers(struct buffer_head *head,
278 enum migrate_mode mode)
282 #endif /* CONFIG_BLOCK */
285 * Replace the page in the mapping.
287 * The number of remaining references must be:
288 * 1 for anonymous pages without a mapping
289 * 2 for pages with a mapping
290 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
292 static int migrate_page_move_mapping(struct address_space *mapping,
293 struct page *newpage, struct page *page,
294 struct buffer_head *head, enum migrate_mode mode)
300 /* Anonymous page without mapping */
301 if (page_count(page) != 1)
303 return MIGRATEPAGE_SUCCESS;
306 spin_lock_irq(&mapping->tree_lock);
308 pslot = radix_tree_lookup_slot(&mapping->page_tree,
311 expected_count = 2 + page_has_private(page);
312 if (page_count(page) != expected_count ||
313 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
314 spin_unlock_irq(&mapping->tree_lock);
318 if (!page_freeze_refs(page, expected_count)) {
319 spin_unlock_irq(&mapping->tree_lock);
324 * In the async migration case of moving a page with buffers, lock the
325 * buffers using trylock before the mapping is moved. If the mapping
326 * was moved, we later failed to lock the buffers and could not move
327 * the mapping back due to an elevated page count, we would have to
328 * block waiting on other references to be dropped.
330 if (mode == MIGRATE_ASYNC && head &&
331 !buffer_migrate_lock_buffers(head, mode)) {
332 page_unfreeze_refs(page, expected_count);
333 spin_unlock_irq(&mapping->tree_lock);
338 * Now we know that no one else is looking at the page.
340 get_page(newpage); /* add cache reference */
341 if (PageSwapCache(page)) {
342 SetPageSwapCache(newpage);
343 set_page_private(newpage, page_private(page));
346 radix_tree_replace_slot(pslot, newpage);
349 * Drop cache reference from old page by unfreezing
350 * to one less reference.
351 * We know this isn't the last reference.
353 page_unfreeze_refs(page, expected_count - 1);
356 * If moved to a different zone then also account
357 * the page for that zone. Other VM counters will be
358 * taken care of when we establish references to the
359 * new page and drop references to the old page.
361 * Note that anonymous pages are accounted for
362 * via NR_FILE_PAGES and NR_ANON_PAGES if they
363 * are mapped to swap space.
365 __dec_zone_page_state(page, NR_FILE_PAGES);
366 __inc_zone_page_state(newpage, NR_FILE_PAGES);
367 if (!PageSwapCache(page) && PageSwapBacked(page)) {
368 __dec_zone_page_state(page, NR_SHMEM);
369 __inc_zone_page_state(newpage, NR_SHMEM);
371 spin_unlock_irq(&mapping->tree_lock);
373 return MIGRATEPAGE_SUCCESS;
377 * The expected number of remaining references is the same as that
378 * of migrate_page_move_mapping().
380 int migrate_huge_page_move_mapping(struct address_space *mapping,
381 struct page *newpage, struct page *page)
387 if (page_count(page) != 1)
389 return MIGRATEPAGE_SUCCESS;
392 spin_lock_irq(&mapping->tree_lock);
394 pslot = radix_tree_lookup_slot(&mapping->page_tree,
397 expected_count = 2 + page_has_private(page);
398 if (page_count(page) != expected_count ||
399 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
400 spin_unlock_irq(&mapping->tree_lock);
404 if (!page_freeze_refs(page, expected_count)) {
405 spin_unlock_irq(&mapping->tree_lock);
411 radix_tree_replace_slot(pslot, newpage);
413 page_unfreeze_refs(page, expected_count - 1);
415 spin_unlock_irq(&mapping->tree_lock);
416 return MIGRATEPAGE_SUCCESS;
420 * Copy the page to its new location
422 void migrate_page_copy(struct page *newpage, struct page *page)
425 copy_huge_page(newpage, page);
427 copy_highpage(newpage, page);
430 SetPageError(newpage);
431 if (PageReferenced(page))
432 SetPageReferenced(newpage);
433 if (PageUptodate(page))
434 SetPageUptodate(newpage);
435 if (TestClearPageActive(page)) {
436 VM_BUG_ON(PageUnevictable(page));
437 SetPageActive(newpage);
438 } else if (TestClearPageUnevictable(page))
439 SetPageUnevictable(newpage);
440 if (PageChecked(page))
441 SetPageChecked(newpage);
442 if (PageMappedToDisk(page))
443 SetPageMappedToDisk(newpage);
445 if (PageDirty(page)) {
446 clear_page_dirty_for_io(page);
448 * Want to mark the page and the radix tree as dirty, and
449 * redo the accounting that clear_page_dirty_for_io undid,
450 * but we can't use set_page_dirty because that function
451 * is actually a signal that all of the page has become dirty.
452 * Whereas only part of our page may be dirty.
454 if (PageSwapBacked(page))
455 SetPageDirty(newpage);
457 __set_page_dirty_nobuffers(newpage);
460 mlock_migrate_page(newpage, page);
461 ksm_migrate_page(newpage, page);
463 ClearPageSwapCache(page);
464 ClearPagePrivate(page);
465 set_page_private(page, 0);
468 * If any waiters have accumulated on the new page then
471 if (PageWriteback(newpage))
472 end_page_writeback(newpage);
475 /************************************************************
476 * Migration functions
477 ***********************************************************/
479 /* Always fail migration. Used for mappings that are not movable */
480 int fail_migrate_page(struct address_space *mapping,
481 struct page *newpage, struct page *page)
485 EXPORT_SYMBOL(fail_migrate_page);
488 * Common logic to directly migrate a single page suitable for
489 * pages that do not use PagePrivate/PagePrivate2.
491 * Pages are locked upon entry and exit.
493 int migrate_page(struct address_space *mapping,
494 struct page *newpage, struct page *page,
495 enum migrate_mode mode)
499 BUG_ON(PageWriteback(page)); /* Writeback must be complete */
501 rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode);
503 if (rc != MIGRATEPAGE_SUCCESS)
506 migrate_page_copy(newpage, page);
507 return MIGRATEPAGE_SUCCESS;
509 EXPORT_SYMBOL(migrate_page);
513 * Migration function for pages with buffers. This function can only be used
514 * if the underlying filesystem guarantees that no other references to "page"
517 int buffer_migrate_page(struct address_space *mapping,
518 struct page *newpage, struct page *page, enum migrate_mode mode)
520 struct buffer_head *bh, *head;
523 if (!page_has_buffers(page))
524 return migrate_page(mapping, newpage, page, mode);
526 head = page_buffers(page);
528 rc = migrate_page_move_mapping(mapping, newpage, page, head, mode);
530 if (rc != MIGRATEPAGE_SUCCESS)
534 * In the async case, migrate_page_move_mapping locked the buffers
535 * with an IRQ-safe spinlock held. In the sync case, the buffers
536 * need to be locked now
538 if (mode != MIGRATE_ASYNC)
539 BUG_ON(!buffer_migrate_lock_buffers(head, mode));
541 ClearPagePrivate(page);
542 set_page_private(newpage, page_private(page));
543 set_page_private(page, 0);
549 set_bh_page(bh, newpage, bh_offset(bh));
550 bh = bh->b_this_page;
552 } while (bh != head);
554 SetPagePrivate(newpage);
556 migrate_page_copy(newpage, page);
562 bh = bh->b_this_page;
564 } while (bh != head);
566 return MIGRATEPAGE_SUCCESS;
568 EXPORT_SYMBOL(buffer_migrate_page);
572 * Writeback a page to clean the dirty state
574 static int writeout(struct address_space *mapping, struct page *page)
576 struct writeback_control wbc = {
577 .sync_mode = WB_SYNC_NONE,
580 .range_end = LLONG_MAX,
585 if (!mapping->a_ops->writepage)
586 /* No write method for the address space */
589 if (!clear_page_dirty_for_io(page))
590 /* Someone else already triggered a write */
594 * A dirty page may imply that the underlying filesystem has
595 * the page on some queue. So the page must be clean for
596 * migration. Writeout may mean we loose the lock and the
597 * page state is no longer what we checked for earlier.
598 * At this point we know that the migration attempt cannot
601 remove_migration_ptes(page, page);
603 rc = mapping->a_ops->writepage(page, &wbc);
605 if (rc != AOP_WRITEPAGE_ACTIVATE)
606 /* unlocked. Relock */
609 return (rc < 0) ? -EIO : -EAGAIN;
613 * Default handling if a filesystem does not provide a migration function.
615 static int fallback_migrate_page(struct address_space *mapping,
616 struct page *newpage, struct page *page, enum migrate_mode mode)
618 if (PageDirty(page)) {
619 /* Only writeback pages in full synchronous migration */
620 if (mode != MIGRATE_SYNC)
622 return writeout(mapping, page);
626 * Buffers may be managed in a filesystem specific way.
627 * We must have no buffers or drop them.
629 if (page_has_private(page) &&
630 !try_to_release_page(page, GFP_KERNEL))
633 return migrate_page(mapping, newpage, page, mode);
637 * Move a page to a newly allocated page
638 * The page is locked and all ptes have been successfully removed.
640 * The new page will have replaced the old page if this function
645 * MIGRATEPAGE_SUCCESS - success
647 static int move_to_new_page(struct page *newpage, struct page *page,
648 int remap_swapcache, enum migrate_mode mode)
650 struct address_space *mapping;
654 * Block others from accessing the page when we get around to
655 * establishing additional references. We are the only one
656 * holding a reference to the new page at this point.
658 if (!trylock_page(newpage))
661 /* Prepare mapping for the new page.*/
662 newpage->index = page->index;
663 newpage->mapping = page->mapping;
664 if (PageSwapBacked(page))
665 SetPageSwapBacked(newpage);
667 mapping = page_mapping(page);
669 rc = migrate_page(mapping, newpage, page, mode);
670 else if (mapping->a_ops->migratepage)
672 * Most pages have a mapping and most filesystems provide a
673 * migratepage callback. Anonymous pages are part of swap
674 * space which also has its own migratepage callback. This
675 * is the most common path for page migration.
677 rc = mapping->a_ops->migratepage(mapping,
678 newpage, page, mode);
680 rc = fallback_migrate_page(mapping, newpage, page, mode);
682 if (rc != MIGRATEPAGE_SUCCESS) {
683 newpage->mapping = NULL;
686 remove_migration_ptes(page, newpage);
687 page->mapping = NULL;
690 unlock_page(newpage);
695 static int __unmap_and_move(struct page *page, struct page *newpage,
696 int force, bool offlining, enum migrate_mode mode)
699 int remap_swapcache = 1;
700 struct mem_cgroup *mem;
701 struct anon_vma *anon_vma = NULL;
703 if (!trylock_page(page)) {
704 if (!force || mode == MIGRATE_ASYNC)
708 * It's not safe for direct compaction to call lock_page.
709 * For example, during page readahead pages are added locked
710 * to the LRU. Later, when the IO completes the pages are
711 * marked uptodate and unlocked. However, the queueing
712 * could be merging multiple pages for one bio (e.g.
713 * mpage_readpages). If an allocation happens for the
714 * second or third page, the process can end up locking
715 * the same page twice and deadlocking. Rather than
716 * trying to be clever about what pages can be locked,
717 * avoid the use of lock_page for direct compaction
720 if (current->flags & PF_MEMALLOC)
727 * Only memory hotplug's offline_pages() caller has locked out KSM,
728 * and can safely migrate a KSM page. The other cases have skipped
729 * PageKsm along with PageReserved - but it is only now when we have
730 * the page lock that we can be certain it will not go KSM beneath us
731 * (KSM will not upgrade a page from PageAnon to PageKsm when it sees
732 * its pagecount raised, but only here do we take the page lock which
735 if (PageKsm(page) && !offlining) {
740 /* charge against new page */
741 mem_cgroup_prepare_migration(page, newpage, &mem);
743 if (PageWriteback(page)) {
745 * Only in the case of a full syncronous migration is it
746 * necessary to wait for PageWriteback. In the async case,
747 * the retry loop is too short and in the sync-light case,
748 * the overhead of stalling is too much
750 if (mode != MIGRATE_SYNC) {
756 wait_on_page_writeback(page);
759 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
760 * we cannot notice that anon_vma is freed while we migrates a page.
761 * This get_anon_vma() delays freeing anon_vma pointer until the end
762 * of migration. File cache pages are no problem because of page_lock()
763 * File Caches may use write_page() or lock_page() in migration, then,
764 * just care Anon page here.
766 if (PageAnon(page)) {
768 * Only page_lock_anon_vma() understands the subtleties of
769 * getting a hold on an anon_vma from outside one of its mms.
771 anon_vma = page_get_anon_vma(page);
776 } else if (PageSwapCache(page)) {
778 * We cannot be sure that the anon_vma of an unmapped
779 * swapcache page is safe to use because we don't
780 * know in advance if the VMA that this page belonged
781 * to still exists. If the VMA and others sharing the
782 * data have been freed, then the anon_vma could
783 * already be invalid.
785 * To avoid this possibility, swapcache pages get
786 * migrated but are not remapped when migration
795 if (unlikely(balloon_page_movable(page))) {
797 * A ballooned page does not need any special attention from
798 * physical to virtual reverse mapping procedures.
799 * Skip any attempt to unmap PTEs or to remap swap cache,
800 * in order to avoid burning cycles at rmap level, and perform
801 * the page migration right away (proteced by page lock).
803 rc = balloon_page_migrate(newpage, page, mode);
808 * Corner case handling:
809 * 1. When a new swap-cache page is read into, it is added to the LRU
810 * and treated as swapcache but it has no rmap yet.
811 * Calling try_to_unmap() against a page->mapping==NULL page will
812 * trigger a BUG. So handle it here.
813 * 2. An orphaned page (see truncate_complete_page) might have
814 * fs-private metadata. The page can be picked up due to memory
815 * offlining. Everywhere else except page reclaim, the page is
816 * invisible to the vm, so the page can not be migrated. So try to
817 * free the metadata, so the page can be freed.
819 if (!page->mapping) {
820 VM_BUG_ON(PageAnon(page));
821 if (page_has_private(page)) {
822 try_to_free_buffers(page);
828 /* Establish migration ptes or remove ptes */
829 try_to_unmap(page, TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
832 if (!page_mapped(page))
833 rc = move_to_new_page(newpage, page, remap_swapcache, mode);
835 if (rc && remap_swapcache)
836 remove_migration_ptes(page, page);
838 /* Drop an anon_vma reference if we took one */
840 put_anon_vma(anon_vma);
843 mem_cgroup_end_migration(mem, page, newpage,
844 (rc == MIGRATEPAGE_SUCCESS ||
845 rc == MIGRATEPAGE_BALLOON_SUCCESS));
853 * Obtain the lock on page, remove all ptes and migrate the page
854 * to the newly allocated page in newpage.
856 static int unmap_and_move(new_page_t get_new_page, unsigned long private,
857 struct page *page, int force, bool offlining,
858 enum migrate_mode mode)
862 struct page *newpage = get_new_page(page, private, &result);
867 if (page_count(page) == 1) {
868 /* page was freed from under us. So we are done. */
872 if (unlikely(PageTransHuge(page)))
873 if (unlikely(split_huge_page(page)))
876 rc = __unmap_and_move(page, newpage, force, offlining, mode);
878 if (unlikely(rc == MIGRATEPAGE_BALLOON_SUCCESS)) {
880 * A ballooned page has been migrated already.
881 * Now, it's the time to wrap-up counters,
882 * handle the page back to Buddy and return.
884 dec_zone_page_state(page, NR_ISOLATED_ANON +
885 page_is_file_cache(page));
886 balloon_page_free(page);
887 return MIGRATEPAGE_SUCCESS;
892 * A page that has been migrated has all references
893 * removed and will be freed. A page that has not been
894 * migrated will have kepts its references and be
897 list_del(&page->lru);
898 dec_zone_page_state(page, NR_ISOLATED_ANON +
899 page_is_file_cache(page));
900 putback_lru_page(page);
903 * Move the new page to the LRU. If migration was not successful
904 * then this will free the page.
906 putback_lru_page(newpage);
911 *result = page_to_nid(newpage);
917 * Counterpart of unmap_and_move_page() for hugepage migration.
919 * This function doesn't wait the completion of hugepage I/O
920 * because there is no race between I/O and migration for hugepage.
921 * Note that currently hugepage I/O occurs only in direct I/O
922 * where no lock is held and PG_writeback is irrelevant,
923 * and writeback status of all subpages are counted in the reference
924 * count of the head page (i.e. if all subpages of a 2MB hugepage are
925 * under direct I/O, the reference of the head page is 512 and a bit more.)
926 * This means that when we try to migrate hugepage whose subpages are
927 * doing direct I/O, some references remain after try_to_unmap() and
928 * hugepage migration fails without data corruption.
930 * There is also no race when direct I/O is issued on the page under migration,
931 * because then pte is replaced with migration swap entry and direct I/O code
932 * will wait in the page fault for migration to complete.
934 static int unmap_and_move_huge_page(new_page_t get_new_page,
935 unsigned long private, struct page *hpage,
936 int force, bool offlining,
937 enum migrate_mode mode)
941 struct page *new_hpage = get_new_page(hpage, private, &result);
942 struct anon_vma *anon_vma = NULL;
949 if (!trylock_page(hpage)) {
950 if (!force || mode != MIGRATE_SYNC)
956 anon_vma = page_get_anon_vma(hpage);
958 try_to_unmap(hpage, TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
960 if (!page_mapped(hpage))
961 rc = move_to_new_page(new_hpage, hpage, 1, mode);
964 remove_migration_ptes(hpage, hpage);
967 put_anon_vma(anon_vma);
970 hugetlb_cgroup_migrate(hpage, new_hpage);
979 *result = page_to_nid(new_hpage);
987 * The function takes one list of pages to migrate and a function
988 * that determines from the page to be migrated and the private data
989 * the target of the move and allocates the page.
991 * The function returns after 10 attempts or if no pages
992 * are movable anymore because to has become empty
993 * or no retryable pages exist anymore.
994 * Caller should call putback_lru_pages to return pages to the LRU
995 * or free list only if ret != 0.
997 * Return: Number of pages not migrated or error code.
999 int migrate_pages(struct list_head *from,
1000 new_page_t get_new_page, unsigned long private, bool offlining,
1001 enum migrate_mode mode)
1008 int swapwrite = current->flags & PF_SWAPWRITE;
1012 current->flags |= PF_SWAPWRITE;
1014 for(pass = 0; pass < 10 && retry; pass++) {
1017 list_for_each_entry_safe(page, page2, from, lru) {
1020 rc = unmap_and_move(get_new_page, private,
1021 page, pass > 2, offlining,
1030 case MIGRATEPAGE_SUCCESS:
1033 /* Permanent failure */
1039 rc = nr_failed + retry;
1042 current->flags &= ~PF_SWAPWRITE;
1047 int migrate_huge_page(struct page *hpage, new_page_t get_new_page,
1048 unsigned long private, bool offlining,
1049 enum migrate_mode mode)
1053 for (pass = 0; pass < 10; pass++) {
1054 rc = unmap_and_move_huge_page(get_new_page,
1055 private, hpage, pass > 2, offlining,
1064 case MIGRATEPAGE_SUCCESS:
1077 * Move a list of individual pages
1079 struct page_to_node {
1086 static struct page *new_page_node(struct page *p, unsigned long private,
1089 struct page_to_node *pm = (struct page_to_node *)private;
1091 while (pm->node != MAX_NUMNODES && pm->page != p)
1094 if (pm->node == MAX_NUMNODES)
1097 *result = &pm->status;
1099 return alloc_pages_exact_node(pm->node,
1100 GFP_HIGHUSER_MOVABLE | GFP_THISNODE, 0);
1104 * Move a set of pages as indicated in the pm array. The addr
1105 * field must be set to the virtual address of the page to be moved
1106 * and the node number must contain a valid target node.
1107 * The pm array ends with node = MAX_NUMNODES.
1109 static int do_move_page_to_node_array(struct mm_struct *mm,
1110 struct page_to_node *pm,
1114 struct page_to_node *pp;
1115 LIST_HEAD(pagelist);
1117 down_read(&mm->mmap_sem);
1120 * Build a list of pages to migrate
1122 for (pp = pm; pp->node != MAX_NUMNODES; pp++) {
1123 struct vm_area_struct *vma;
1127 vma = find_vma(mm, pp->addr);
1128 if (!vma || pp->addr < vma->vm_start || !vma_migratable(vma))
1131 page = follow_page(vma, pp->addr, FOLL_GET|FOLL_SPLIT);
1133 err = PTR_ERR(page);
1141 /* Use PageReserved to check for zero page */
1142 if (PageReserved(page) || PageKsm(page))
1146 err = page_to_nid(page);
1148 if (err == pp->node)
1150 * Node already in the right place
1155 if (page_mapcount(page) > 1 &&
1159 err = isolate_lru_page(page);
1161 list_add_tail(&page->lru, &pagelist);
1162 inc_zone_page_state(page, NR_ISOLATED_ANON +
1163 page_is_file_cache(page));
1167 * Either remove the duplicate refcount from
1168 * isolate_lru_page() or drop the page ref if it was
1177 if (!list_empty(&pagelist)) {
1178 err = migrate_pages(&pagelist, new_page_node,
1179 (unsigned long)pm, 0, MIGRATE_SYNC);
1181 putback_lru_pages(&pagelist);
1184 up_read(&mm->mmap_sem);
1189 * Migrate an array of page address onto an array of nodes and fill
1190 * the corresponding array of status.
1192 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1193 unsigned long nr_pages,
1194 const void __user * __user *pages,
1195 const int __user *nodes,
1196 int __user *status, int flags)
1198 struct page_to_node *pm;
1199 unsigned long chunk_nr_pages;
1200 unsigned long chunk_start;
1204 pm = (struct page_to_node *)__get_free_page(GFP_KERNEL);
1211 * Store a chunk of page_to_node array in a page,
1212 * but keep the last one as a marker
1214 chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1;
1216 for (chunk_start = 0;
1217 chunk_start < nr_pages;
1218 chunk_start += chunk_nr_pages) {
1221 if (chunk_start + chunk_nr_pages > nr_pages)
1222 chunk_nr_pages = nr_pages - chunk_start;
1224 /* fill the chunk pm with addrs and nodes from user-space */
1225 for (j = 0; j < chunk_nr_pages; j++) {
1226 const void __user *p;
1230 if (get_user(p, pages + j + chunk_start))
1232 pm[j].addr = (unsigned long) p;
1234 if (get_user(node, nodes + j + chunk_start))
1238 if (node < 0 || node >= MAX_NUMNODES)
1241 if (!node_state(node, N_MEMORY))
1245 if (!node_isset(node, task_nodes))
1251 /* End marker for this chunk */
1252 pm[chunk_nr_pages].node = MAX_NUMNODES;
1254 /* Migrate this chunk */
1255 err = do_move_page_to_node_array(mm, pm,
1256 flags & MPOL_MF_MOVE_ALL);
1260 /* Return status information */
1261 for (j = 0; j < chunk_nr_pages; j++)
1262 if (put_user(pm[j].status, status + j + chunk_start)) {
1270 free_page((unsigned long)pm);
1276 * Determine the nodes of an array of pages and store it in an array of status.
1278 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1279 const void __user **pages, int *status)
1283 down_read(&mm->mmap_sem);
1285 for (i = 0; i < nr_pages; i++) {
1286 unsigned long addr = (unsigned long)(*pages);
1287 struct vm_area_struct *vma;
1291 vma = find_vma(mm, addr);
1292 if (!vma || addr < vma->vm_start)
1295 page = follow_page(vma, addr, 0);
1297 err = PTR_ERR(page);
1302 /* Use PageReserved to check for zero page */
1303 if (!page || PageReserved(page) || PageKsm(page))
1306 err = page_to_nid(page);
1314 up_read(&mm->mmap_sem);
1318 * Determine the nodes of a user array of pages and store it in
1319 * a user array of status.
1321 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1322 const void __user * __user *pages,
1325 #define DO_PAGES_STAT_CHUNK_NR 16
1326 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1327 int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1330 unsigned long chunk_nr;
1332 chunk_nr = nr_pages;
1333 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1334 chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1336 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1339 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1341 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1346 nr_pages -= chunk_nr;
1348 return nr_pages ? -EFAULT : 0;
1352 * Move a list of pages in the address space of the currently executing
1355 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1356 const void __user * __user *, pages,
1357 const int __user *, nodes,
1358 int __user *, status, int, flags)
1360 const struct cred *cred = current_cred(), *tcred;
1361 struct task_struct *task;
1362 struct mm_struct *mm;
1364 nodemask_t task_nodes;
1367 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1370 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1373 /* Find the mm_struct */
1375 task = pid ? find_task_by_vpid(pid) : current;
1380 get_task_struct(task);
1383 * Check if this process has the right to modify the specified
1384 * process. The right exists if the process has administrative
1385 * capabilities, superuser privileges or the same
1386 * userid as the target process.
1388 tcred = __task_cred(task);
1389 if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) &&
1390 !uid_eq(cred->uid, tcred->suid) && !uid_eq(cred->uid, tcred->uid) &&
1391 !capable(CAP_SYS_NICE)) {
1398 err = security_task_movememory(task);
1402 task_nodes = cpuset_mems_allowed(task);
1403 mm = get_task_mm(task);
1404 put_task_struct(task);
1410 err = do_pages_move(mm, task_nodes, nr_pages, pages,
1411 nodes, status, flags);
1413 err = do_pages_stat(mm, nr_pages, pages, status);
1419 put_task_struct(task);
1424 * Call migration functions in the vma_ops that may prepare
1425 * memory in a vm for migration. migration functions may perform
1426 * the migration for vmas that do not have an underlying page struct.
1428 int migrate_vmas(struct mm_struct *mm, const nodemask_t *to,
1429 const nodemask_t *from, unsigned long flags)
1431 struct vm_area_struct *vma;
1434 for (vma = mm->mmap; vma && !err; vma = vma->vm_next) {
1435 if (vma->vm_ops && vma->vm_ops->migrate) {
1436 err = vma->vm_ops->migrate(vma, to, from, flags);