1 // SPDX-License-Identifier: GPL-2.0
3 * Memory Migration functionality - linux/mm/migrate.c
5 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
7 * Page migration was first developed in the context of the memory hotplug
8 * project. The main authors of the migration code are:
10 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
11 * Hirokazu Takahashi <taka@valinux.co.jp>
12 * Dave Hansen <haveblue@us.ibm.com>
16 #include <linux/migrate.h>
17 #include <linux/export.h>
18 #include <linux/swap.h>
19 #include <linux/swapops.h>
20 #include <linux/pagemap.h>
21 #include <linux/buffer_head.h>
22 #include <linux/mm_inline.h>
23 #include <linux/nsproxy.h>
24 #include <linux/pagevec.h>
25 #include <linux/ksm.h>
26 #include <linux/rmap.h>
27 #include <linux/topology.h>
28 #include <linux/cpu.h>
29 #include <linux/cpuset.h>
30 #include <linux/writeback.h>
31 #include <linux/mempolicy.h>
32 #include <linux/vmalloc.h>
33 #include <linux/security.h>
34 #include <linux/backing-dev.h>
35 #include <linux/compaction.h>
36 #include <linux/syscalls.h>
37 #include <linux/compat.h>
38 #include <linux/hugetlb.h>
39 #include <linux/hugetlb_cgroup.h>
40 #include <linux/gfp.h>
41 #include <linux/pagewalk.h>
42 #include <linux/pfn_t.h>
43 #include <linux/memremap.h>
44 #include <linux/userfaultfd_k.h>
45 #include <linux/balloon_compaction.h>
46 #include <linux/mmu_notifier.h>
47 #include <linux/page_idle.h>
48 #include <linux/page_owner.h>
49 #include <linux/sched/mm.h>
50 #include <linux/ptrace.h>
51 #include <linux/oom.h>
53 #include <asm/tlbflush.h>
55 #define CREATE_TRACE_POINTS
56 #include <trace/events/migrate.h>
60 int isolate_movable_page(struct page *page, isolate_mode_t mode)
62 struct address_space *mapping;
65 * Avoid burning cycles with pages that are yet under __free_pages(),
66 * or just got freed under us.
68 * In case we 'win' a race for a movable page being freed under us and
69 * raise its refcount preventing __free_pages() from doing its job
70 * the put_page() at the end of this block will take care of
71 * release this page, thus avoiding a nasty leakage.
73 if (unlikely(!get_page_unless_zero(page)))
77 * Check PageMovable before holding a PG_lock because page's owner
78 * assumes anybody doesn't touch PG_lock of newly allocated page
79 * so unconditionally grabbing the lock ruins page's owner side.
81 if (unlikely(!__PageMovable(page)))
84 * As movable pages are not isolated from LRU lists, concurrent
85 * compaction threads can race against page migration functions
86 * as well as race against the releasing a page.
88 * In order to avoid having an already isolated movable page
89 * being (wrongly) re-isolated while it is under migration,
90 * or to avoid attempting to isolate pages being released,
91 * lets be sure we have the page lock
92 * before proceeding with the movable page isolation steps.
94 if (unlikely(!trylock_page(page)))
97 if (!PageMovable(page) || PageIsolated(page))
100 mapping = page_mapping(page);
101 VM_BUG_ON_PAGE(!mapping, page);
103 if (!mapping->a_ops->isolate_page(page, mode))
104 goto out_no_isolated;
106 /* Driver shouldn't use PG_isolated bit of page->flags */
107 WARN_ON_ONCE(PageIsolated(page));
108 __SetPageIsolated(page);
121 static void putback_movable_page(struct page *page)
123 struct address_space *mapping;
125 mapping = page_mapping(page);
126 mapping->a_ops->putback_page(page);
127 __ClearPageIsolated(page);
131 * Put previously isolated pages back onto the appropriate lists
132 * from where they were once taken off for compaction/migration.
134 * This function shall be used whenever the isolated pageset has been
135 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
136 * and isolate_huge_page().
138 void putback_movable_pages(struct list_head *l)
143 list_for_each_entry_safe(page, page2, l, lru) {
144 if (unlikely(PageHuge(page))) {
145 putback_active_hugepage(page);
148 list_del(&page->lru);
150 * We isolated non-lru movable page so here we can use
151 * __PageMovable because LRU page's mapping cannot have
152 * PAGE_MAPPING_MOVABLE.
154 if (unlikely(__PageMovable(page))) {
155 VM_BUG_ON_PAGE(!PageIsolated(page), page);
157 if (PageMovable(page))
158 putback_movable_page(page);
160 __ClearPageIsolated(page);
164 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
165 page_is_file_lru(page), -thp_nr_pages(page));
166 putback_lru_page(page);
172 * Restore a potential migration pte to a working pte entry
174 static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma,
175 unsigned long addr, void *old)
177 struct page_vma_mapped_walk pvmw = {
181 .flags = PVMW_SYNC | PVMW_MIGRATION,
187 VM_BUG_ON_PAGE(PageTail(page), page);
188 while (page_vma_mapped_walk(&pvmw)) {
192 new = page - pvmw.page->index +
193 linear_page_index(vma, pvmw.address);
195 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
196 /* PMD-mapped THP migration entry */
198 VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
199 remove_migration_pmd(&pvmw, new);
205 pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
206 if (pte_swp_soft_dirty(*pvmw.pte))
207 pte = pte_mksoft_dirty(pte);
210 * Recheck VMA as permissions can change since migration started
212 entry = pte_to_swp_entry(*pvmw.pte);
213 if (is_write_migration_entry(entry))
214 pte = maybe_mkwrite(pte, vma);
215 else if (pte_swp_uffd_wp(*pvmw.pte))
216 pte = pte_mkuffd_wp(pte);
218 if (unlikely(is_device_private_page(new))) {
219 entry = make_device_private_entry(new, pte_write(pte));
220 pte = swp_entry_to_pte(entry);
221 if (pte_swp_soft_dirty(*pvmw.pte))
222 pte = pte_swp_mksoft_dirty(pte);
223 if (pte_swp_uffd_wp(*pvmw.pte))
224 pte = pte_swp_mkuffd_wp(pte);
227 #ifdef CONFIG_HUGETLB_PAGE
229 pte = pte_mkhuge(pte);
230 pte = arch_make_huge_pte(pte, vma, new, 0);
231 set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
233 hugepage_add_anon_rmap(new, vma, pvmw.address);
235 page_dup_rmap(new, true);
239 set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
242 page_add_anon_rmap(new, vma, pvmw.address, false);
244 page_add_file_rmap(new, false);
246 if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
249 if (PageTransHuge(page) && PageMlocked(page))
250 clear_page_mlock(page);
252 /* No need to invalidate - it was non-present before */
253 update_mmu_cache(vma, pvmw.address, pvmw.pte);
260 * Get rid of all migration entries and replace them by
261 * references to the indicated page.
263 void remove_migration_ptes(struct page *old, struct page *new, bool locked)
265 struct rmap_walk_control rwc = {
266 .rmap_one = remove_migration_pte,
271 rmap_walk_locked(new, &rwc);
273 rmap_walk(new, &rwc);
277 * Something used the pte of a page under migration. We need to
278 * get to the page and wait until migration is finished.
279 * When we return from this function the fault will be retried.
281 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
290 if (!is_swap_pte(pte))
293 entry = pte_to_swp_entry(pte);
294 if (!is_migration_entry(entry))
297 page = migration_entry_to_page(entry);
300 * Once page cache replacement of page migration started, page_count
301 * is zero; but we must not call put_and_wait_on_page_locked() without
302 * a ref. Use get_page_unless_zero(), and just fault again if it fails.
304 if (!get_page_unless_zero(page))
306 pte_unmap_unlock(ptep, ptl);
307 put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE);
310 pte_unmap_unlock(ptep, ptl);
313 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
314 unsigned long address)
316 spinlock_t *ptl = pte_lockptr(mm, pmd);
317 pte_t *ptep = pte_offset_map(pmd, address);
318 __migration_entry_wait(mm, ptep, ptl);
321 void migration_entry_wait_huge(struct vm_area_struct *vma,
322 struct mm_struct *mm, pte_t *pte)
324 spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
325 __migration_entry_wait(mm, pte, ptl);
328 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
329 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
334 ptl = pmd_lock(mm, pmd);
335 if (!is_pmd_migration_entry(*pmd))
337 page = migration_entry_to_page(pmd_to_swp_entry(*pmd));
338 if (!get_page_unless_zero(page))
341 put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE);
348 static int expected_page_refs(struct address_space *mapping, struct page *page)
350 int expected_count = 1;
353 * Device private pages have an extra refcount as they are
356 expected_count += is_device_private_page(page);
358 expected_count += thp_nr_pages(page) + page_has_private(page);
360 return expected_count;
364 * Replace the page in the mapping.
366 * The number of remaining references must be:
367 * 1 for anonymous pages without a mapping
368 * 2 for pages with a mapping
369 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
371 int migrate_page_move_mapping(struct address_space *mapping,
372 struct page *newpage, struct page *page, int extra_count)
374 XA_STATE(xas, &mapping->i_pages, page_index(page));
375 struct zone *oldzone, *newzone;
377 int expected_count = expected_page_refs(mapping, page) + extra_count;
378 int nr = thp_nr_pages(page);
381 /* Anonymous page without mapping */
382 if (page_count(page) != expected_count)
385 /* No turning back from here */
386 newpage->index = page->index;
387 newpage->mapping = page->mapping;
388 if (PageSwapBacked(page))
389 __SetPageSwapBacked(newpage);
391 return MIGRATEPAGE_SUCCESS;
394 oldzone = page_zone(page);
395 newzone = page_zone(newpage);
398 if (page_count(page) != expected_count || xas_load(&xas) != page) {
399 xas_unlock_irq(&xas);
403 if (!page_ref_freeze(page, expected_count)) {
404 xas_unlock_irq(&xas);
409 * Now we know that no one else is looking at the page:
410 * no turning back from here.
412 newpage->index = page->index;
413 newpage->mapping = page->mapping;
414 page_ref_add(newpage, nr); /* add cache reference */
415 if (PageSwapBacked(page)) {
416 __SetPageSwapBacked(newpage);
417 if (PageSwapCache(page)) {
418 SetPageSwapCache(newpage);
419 set_page_private(newpage, page_private(page));
422 VM_BUG_ON_PAGE(PageSwapCache(page), page);
425 /* Move dirty while page refs frozen and newpage not yet exposed */
426 dirty = PageDirty(page);
428 ClearPageDirty(page);
429 SetPageDirty(newpage);
432 xas_store(&xas, newpage);
433 if (PageTransHuge(page)) {
436 for (i = 1; i < nr; i++) {
438 xas_store(&xas, newpage);
443 * Drop cache reference from old page by unfreezing
444 * to one less reference.
445 * We know this isn't the last reference.
447 page_ref_unfreeze(page, expected_count - nr);
450 /* Leave irq disabled to prevent preemption while updating stats */
453 * If moved to a different zone then also account
454 * the page for that zone. Other VM counters will be
455 * taken care of when we establish references to the
456 * new page and drop references to the old page.
458 * Note that anonymous pages are accounted for
459 * via NR_FILE_PAGES and NR_ANON_MAPPED if they
460 * are mapped to swap space.
462 if (newzone != oldzone) {
463 struct lruvec *old_lruvec, *new_lruvec;
464 struct mem_cgroup *memcg;
466 memcg = page_memcg(page);
467 old_lruvec = mem_cgroup_lruvec(memcg, oldzone->zone_pgdat);
468 new_lruvec = mem_cgroup_lruvec(memcg, newzone->zone_pgdat);
470 __mod_lruvec_state(old_lruvec, NR_FILE_PAGES, -nr);
471 __mod_lruvec_state(new_lruvec, NR_FILE_PAGES, nr);
472 if (PageSwapBacked(page) && !PageSwapCache(page)) {
473 __mod_lruvec_state(old_lruvec, NR_SHMEM, -nr);
474 __mod_lruvec_state(new_lruvec, NR_SHMEM, nr);
477 if (PageSwapCache(page)) {
478 __mod_lruvec_state(old_lruvec, NR_SWAPCACHE, -nr);
479 __mod_lruvec_state(new_lruvec, NR_SWAPCACHE, nr);
482 if (dirty && mapping_can_writeback(mapping)) {
483 __mod_lruvec_state(old_lruvec, NR_FILE_DIRTY, -nr);
484 __mod_zone_page_state(oldzone, NR_ZONE_WRITE_PENDING, -nr);
485 __mod_lruvec_state(new_lruvec, NR_FILE_DIRTY, nr);
486 __mod_zone_page_state(newzone, NR_ZONE_WRITE_PENDING, nr);
491 return MIGRATEPAGE_SUCCESS;
493 EXPORT_SYMBOL(migrate_page_move_mapping);
496 * The expected number of remaining references is the same as that
497 * of migrate_page_move_mapping().
499 int migrate_huge_page_move_mapping(struct address_space *mapping,
500 struct page *newpage, struct page *page)
502 XA_STATE(xas, &mapping->i_pages, page_index(page));
506 expected_count = 2 + page_has_private(page);
507 if (page_count(page) != expected_count || xas_load(&xas) != page) {
508 xas_unlock_irq(&xas);
512 if (!page_ref_freeze(page, expected_count)) {
513 xas_unlock_irq(&xas);
517 newpage->index = page->index;
518 newpage->mapping = page->mapping;
522 xas_store(&xas, newpage);
524 page_ref_unfreeze(page, expected_count - 1);
526 xas_unlock_irq(&xas);
528 return MIGRATEPAGE_SUCCESS;
532 * Gigantic pages are so large that we do not guarantee that page++ pointer
533 * arithmetic will work across the entire page. We need something more
536 static void __copy_gigantic_page(struct page *dst, struct page *src,
540 struct page *dst_base = dst;
541 struct page *src_base = src;
543 for (i = 0; i < nr_pages; ) {
545 copy_highpage(dst, src);
548 dst = mem_map_next(dst, dst_base, i);
549 src = mem_map_next(src, src_base, i);
553 static void copy_huge_page(struct page *dst, struct page *src)
560 struct hstate *h = page_hstate(src);
561 nr_pages = pages_per_huge_page(h);
563 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
564 __copy_gigantic_page(dst, src, nr_pages);
569 BUG_ON(!PageTransHuge(src));
570 nr_pages = thp_nr_pages(src);
573 for (i = 0; i < nr_pages; i++) {
575 copy_highpage(dst + i, src + i);
580 * Copy the page to its new location
582 void migrate_page_states(struct page *newpage, struct page *page)
587 SetPageError(newpage);
588 if (PageReferenced(page))
589 SetPageReferenced(newpage);
590 if (PageUptodate(page))
591 SetPageUptodate(newpage);
592 if (TestClearPageActive(page)) {
593 VM_BUG_ON_PAGE(PageUnevictable(page), page);
594 SetPageActive(newpage);
595 } else if (TestClearPageUnevictable(page))
596 SetPageUnevictable(newpage);
597 if (PageWorkingset(page))
598 SetPageWorkingset(newpage);
599 if (PageChecked(page))
600 SetPageChecked(newpage);
601 if (PageMappedToDisk(page))
602 SetPageMappedToDisk(newpage);
604 /* Move dirty on pages not done by migrate_page_move_mapping() */
606 SetPageDirty(newpage);
608 if (page_is_young(page))
609 set_page_young(newpage);
610 if (page_is_idle(page))
611 set_page_idle(newpage);
614 * Copy NUMA information to the new page, to prevent over-eager
615 * future migrations of this same page.
617 cpupid = page_cpupid_xchg_last(page, -1);
618 page_cpupid_xchg_last(newpage, cpupid);
620 ksm_migrate_page(newpage, page);
622 * Please do not reorder this without considering how mm/ksm.c's
623 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
625 if (PageSwapCache(page))
626 ClearPageSwapCache(page);
627 ClearPagePrivate(page);
628 set_page_private(page, 0);
631 * If any waiters have accumulated on the new page then
634 if (PageWriteback(newpage))
635 end_page_writeback(newpage);
638 * PG_readahead shares the same bit with PG_reclaim. The above
639 * end_page_writeback() may clear PG_readahead mistakenly, so set the
642 if (PageReadahead(page))
643 SetPageReadahead(newpage);
645 copy_page_owner(page, newpage);
648 mem_cgroup_migrate(page, newpage);
650 EXPORT_SYMBOL(migrate_page_states);
652 void migrate_page_copy(struct page *newpage, struct page *page)
654 if (PageHuge(page) || PageTransHuge(page))
655 copy_huge_page(newpage, page);
657 copy_highpage(newpage, page);
659 migrate_page_states(newpage, page);
661 EXPORT_SYMBOL(migrate_page_copy);
663 /************************************************************
664 * Migration functions
665 ***********************************************************/
668 * Common logic to directly migrate a single LRU page suitable for
669 * pages that do not use PagePrivate/PagePrivate2.
671 * Pages are locked upon entry and exit.
673 int migrate_page(struct address_space *mapping,
674 struct page *newpage, struct page *page,
675 enum migrate_mode mode)
679 BUG_ON(PageWriteback(page)); /* Writeback must be complete */
681 rc = migrate_page_move_mapping(mapping, newpage, page, 0);
683 if (rc != MIGRATEPAGE_SUCCESS)
686 if (mode != MIGRATE_SYNC_NO_COPY)
687 migrate_page_copy(newpage, page);
689 migrate_page_states(newpage, page);
690 return MIGRATEPAGE_SUCCESS;
692 EXPORT_SYMBOL(migrate_page);
695 /* Returns true if all buffers are successfully locked */
696 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
697 enum migrate_mode mode)
699 struct buffer_head *bh = head;
701 /* Simple case, sync compaction */
702 if (mode != MIGRATE_ASYNC) {
705 bh = bh->b_this_page;
707 } while (bh != head);
712 /* async case, we cannot block on lock_buffer so use trylock_buffer */
714 if (!trylock_buffer(bh)) {
716 * We failed to lock the buffer and cannot stall in
717 * async migration. Release the taken locks
719 struct buffer_head *failed_bh = bh;
721 while (bh != failed_bh) {
723 bh = bh->b_this_page;
728 bh = bh->b_this_page;
729 } while (bh != head);
733 static int __buffer_migrate_page(struct address_space *mapping,
734 struct page *newpage, struct page *page, enum migrate_mode mode,
737 struct buffer_head *bh, *head;
741 if (!page_has_buffers(page))
742 return migrate_page(mapping, newpage, page, mode);
744 /* Check whether page does not have extra refs before we do more work */
745 expected_count = expected_page_refs(mapping, page);
746 if (page_count(page) != expected_count)
749 head = page_buffers(page);
750 if (!buffer_migrate_lock_buffers(head, mode))
755 bool invalidated = false;
759 spin_lock(&mapping->private_lock);
762 if (atomic_read(&bh->b_count)) {
766 bh = bh->b_this_page;
767 } while (bh != head);
773 spin_unlock(&mapping->private_lock);
774 invalidate_bh_lrus();
776 goto recheck_buffers;
780 rc = migrate_page_move_mapping(mapping, newpage, page, 0);
781 if (rc != MIGRATEPAGE_SUCCESS)
784 attach_page_private(newpage, detach_page_private(page));
788 set_bh_page(bh, newpage, bh_offset(bh));
789 bh = bh->b_this_page;
791 } while (bh != head);
793 if (mode != MIGRATE_SYNC_NO_COPY)
794 migrate_page_copy(newpage, page);
796 migrate_page_states(newpage, page);
798 rc = MIGRATEPAGE_SUCCESS;
801 spin_unlock(&mapping->private_lock);
805 bh = bh->b_this_page;
807 } while (bh != head);
813 * Migration function for pages with buffers. This function can only be used
814 * if the underlying filesystem guarantees that no other references to "page"
815 * exist. For example attached buffer heads are accessed only under page lock.
817 int buffer_migrate_page(struct address_space *mapping,
818 struct page *newpage, struct page *page, enum migrate_mode mode)
820 return __buffer_migrate_page(mapping, newpage, page, mode, false);
822 EXPORT_SYMBOL(buffer_migrate_page);
825 * Same as above except that this variant is more careful and checks that there
826 * are also no buffer head references. This function is the right one for
827 * mappings where buffer heads are directly looked up and referenced (such as
828 * block device mappings).
830 int buffer_migrate_page_norefs(struct address_space *mapping,
831 struct page *newpage, struct page *page, enum migrate_mode mode)
833 return __buffer_migrate_page(mapping, newpage, page, mode, true);
838 * Writeback a page to clean the dirty state
840 static int writeout(struct address_space *mapping, struct page *page)
842 struct writeback_control wbc = {
843 .sync_mode = WB_SYNC_NONE,
846 .range_end = LLONG_MAX,
851 if (!mapping->a_ops->writepage)
852 /* No write method for the address space */
855 if (!clear_page_dirty_for_io(page))
856 /* Someone else already triggered a write */
860 * A dirty page may imply that the underlying filesystem has
861 * the page on some queue. So the page must be clean for
862 * migration. Writeout may mean we loose the lock and the
863 * page state is no longer what we checked for earlier.
864 * At this point we know that the migration attempt cannot
867 remove_migration_ptes(page, page, false);
869 rc = mapping->a_ops->writepage(page, &wbc);
871 if (rc != AOP_WRITEPAGE_ACTIVATE)
872 /* unlocked. Relock */
875 return (rc < 0) ? -EIO : -EAGAIN;
879 * Default handling if a filesystem does not provide a migration function.
881 static int fallback_migrate_page(struct address_space *mapping,
882 struct page *newpage, struct page *page, enum migrate_mode mode)
884 if (PageDirty(page)) {
885 /* Only writeback pages in full synchronous migration */
888 case MIGRATE_SYNC_NO_COPY:
893 return writeout(mapping, page);
897 * Buffers may be managed in a filesystem specific way.
898 * We must have no buffers or drop them.
900 if (page_has_private(page) &&
901 !try_to_release_page(page, GFP_KERNEL))
902 return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY;
904 return migrate_page(mapping, newpage, page, mode);
908 * Move a page to a newly allocated page
909 * The page is locked and all ptes have been successfully removed.
911 * The new page will have replaced the old page if this function
916 * MIGRATEPAGE_SUCCESS - success
918 static int move_to_new_page(struct page *newpage, struct page *page,
919 enum migrate_mode mode)
921 struct address_space *mapping;
923 bool is_lru = !__PageMovable(page);
925 VM_BUG_ON_PAGE(!PageLocked(page), page);
926 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
928 mapping = page_mapping(page);
930 if (likely(is_lru)) {
932 rc = migrate_page(mapping, newpage, page, mode);
933 else if (mapping->a_ops->migratepage)
935 * Most pages have a mapping and most filesystems
936 * provide a migratepage callback. Anonymous pages
937 * are part of swap space which also has its own
938 * migratepage callback. This is the most common path
939 * for page migration.
941 rc = mapping->a_ops->migratepage(mapping, newpage,
944 rc = fallback_migrate_page(mapping, newpage,
948 * In case of non-lru page, it could be released after
949 * isolation step. In that case, we shouldn't try migration.
951 VM_BUG_ON_PAGE(!PageIsolated(page), page);
952 if (!PageMovable(page)) {
953 rc = MIGRATEPAGE_SUCCESS;
954 __ClearPageIsolated(page);
958 rc = mapping->a_ops->migratepage(mapping, newpage,
960 WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
961 !PageIsolated(page));
965 * When successful, old pagecache page->mapping must be cleared before
966 * page is freed; but stats require that PageAnon be left as PageAnon.
968 if (rc == MIGRATEPAGE_SUCCESS) {
969 if (__PageMovable(page)) {
970 VM_BUG_ON_PAGE(!PageIsolated(page), page);
973 * We clear PG_movable under page_lock so any compactor
974 * cannot try to migrate this page.
976 __ClearPageIsolated(page);
980 * Anonymous and movable page->mapping will be cleared by
981 * free_pages_prepare so don't reset it here for keeping
982 * the type to work PageAnon, for example.
984 if (!PageMappingFlags(page))
985 page->mapping = NULL;
987 if (likely(!is_zone_device_page(newpage)))
988 flush_dcache_page(newpage);
995 static int __unmap_and_move(struct page *page, struct page *newpage,
996 int force, enum migrate_mode mode)
999 int page_was_mapped = 0;
1000 struct anon_vma *anon_vma = NULL;
1001 bool is_lru = !__PageMovable(page);
1003 if (!trylock_page(page)) {
1004 if (!force || mode == MIGRATE_ASYNC)
1008 * It's not safe for direct compaction to call lock_page.
1009 * For example, during page readahead pages are added locked
1010 * to the LRU. Later, when the IO completes the pages are
1011 * marked uptodate and unlocked. However, the queueing
1012 * could be merging multiple pages for one bio (e.g.
1013 * mpage_readahead). If an allocation happens for the
1014 * second or third page, the process can end up locking
1015 * the same page twice and deadlocking. Rather than
1016 * trying to be clever about what pages can be locked,
1017 * avoid the use of lock_page for direct compaction
1020 if (current->flags & PF_MEMALLOC)
1026 if (PageWriteback(page)) {
1028 * Only in the case of a full synchronous migration is it
1029 * necessary to wait for PageWriteback. In the async case,
1030 * the retry loop is too short and in the sync-light case,
1031 * the overhead of stalling is too much
1035 case MIGRATE_SYNC_NO_COPY:
1043 wait_on_page_writeback(page);
1047 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
1048 * we cannot notice that anon_vma is freed while we migrates a page.
1049 * This get_anon_vma() delays freeing anon_vma pointer until the end
1050 * of migration. File cache pages are no problem because of page_lock()
1051 * File Caches may use write_page() or lock_page() in migration, then,
1052 * just care Anon page here.
1054 * Only page_get_anon_vma() understands the subtleties of
1055 * getting a hold on an anon_vma from outside one of its mms.
1056 * But if we cannot get anon_vma, then we won't need it anyway,
1057 * because that implies that the anon page is no longer mapped
1058 * (and cannot be remapped so long as we hold the page lock).
1060 if (PageAnon(page) && !PageKsm(page))
1061 anon_vma = page_get_anon_vma(page);
1064 * Block others from accessing the new page when we get around to
1065 * establishing additional references. We are usually the only one
1066 * holding a reference to newpage at this point. We used to have a BUG
1067 * here if trylock_page(newpage) fails, but would like to allow for
1068 * cases where there might be a race with the previous use of newpage.
1069 * This is much like races on refcount of oldpage: just don't BUG().
1071 if (unlikely(!trylock_page(newpage)))
1074 if (unlikely(!is_lru)) {
1075 rc = move_to_new_page(newpage, page, mode);
1076 goto out_unlock_both;
1080 * Corner case handling:
1081 * 1. When a new swap-cache page is read into, it is added to the LRU
1082 * and treated as swapcache but it has no rmap yet.
1083 * Calling try_to_unmap() against a page->mapping==NULL page will
1084 * trigger a BUG. So handle it here.
1085 * 2. An orphaned page (see truncate_cleanup_page) might have
1086 * fs-private metadata. The page can be picked up due to memory
1087 * offlining. Everywhere else except page reclaim, the page is
1088 * invisible to the vm, so the page can not be migrated. So try to
1089 * free the metadata, so the page can be freed.
1091 if (!page->mapping) {
1092 VM_BUG_ON_PAGE(PageAnon(page), page);
1093 if (page_has_private(page)) {
1094 try_to_free_buffers(page);
1095 goto out_unlock_both;
1097 } else if (page_mapped(page)) {
1098 /* Establish migration ptes */
1099 VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1101 try_to_unmap(page, TTU_MIGRATION|TTU_IGNORE_MLOCK);
1102 page_was_mapped = 1;
1105 if (!page_mapped(page))
1106 rc = move_to_new_page(newpage, page, mode);
1108 if (page_was_mapped)
1109 remove_migration_ptes(page,
1110 rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
1113 unlock_page(newpage);
1115 /* Drop an anon_vma reference if we took one */
1117 put_anon_vma(anon_vma);
1121 * If migration is successful, decrease refcount of the newpage
1122 * which will not free the page because new page owner increased
1123 * refcounter. As well, if it is LRU page, add the page to LRU
1124 * list in here. Use the old state of the isolated source page to
1125 * determine if we migrated a LRU page. newpage was already unlocked
1126 * and possibly modified by its owner - don't rely on the page
1129 if (rc == MIGRATEPAGE_SUCCESS) {
1130 if (unlikely(!is_lru))
1133 putback_lru_page(newpage);
1140 * Obtain the lock on page, remove all ptes and migrate the page
1141 * to the newly allocated page in newpage.
1143 static int unmap_and_move(new_page_t get_new_page,
1144 free_page_t put_new_page,
1145 unsigned long private, struct page *page,
1146 int force, enum migrate_mode mode,
1147 enum migrate_reason reason,
1148 struct list_head *ret)
1150 int rc = MIGRATEPAGE_SUCCESS;
1151 struct page *newpage = NULL;
1153 if (!thp_migration_supported() && PageTransHuge(page))
1156 if (page_count(page) == 1) {
1157 /* page was freed from under us. So we are done. */
1158 ClearPageActive(page);
1159 ClearPageUnevictable(page);
1160 if (unlikely(__PageMovable(page))) {
1162 if (!PageMovable(page))
1163 __ClearPageIsolated(page);
1169 newpage = get_new_page(page, private);
1173 rc = __unmap_and_move(page, newpage, force, mode);
1174 if (rc == MIGRATEPAGE_SUCCESS)
1175 set_page_owner_migrate_reason(newpage, reason);
1178 if (rc != -EAGAIN) {
1180 * A page that has been migrated has all references
1181 * removed and will be freed. A page that has not been
1182 * migrated will have kept its references and be restored.
1184 list_del(&page->lru);
1188 * If migration is successful, releases reference grabbed during
1189 * isolation. Otherwise, restore the page to right list unless
1192 if (rc == MIGRATEPAGE_SUCCESS) {
1194 * Compaction can migrate also non-LRU pages which are
1195 * not accounted to NR_ISOLATED_*. They can be recognized
1198 if (likely(!__PageMovable(page)))
1199 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
1200 page_is_file_lru(page), -thp_nr_pages(page));
1202 if (reason != MR_MEMORY_FAILURE)
1204 * We release the page in page_handle_poison.
1209 list_add_tail(&page->lru, ret);
1212 put_new_page(newpage, private);
1221 * Counterpart of unmap_and_move_page() for hugepage migration.
1223 * This function doesn't wait the completion of hugepage I/O
1224 * because there is no race between I/O and migration for hugepage.
1225 * Note that currently hugepage I/O occurs only in direct I/O
1226 * where no lock is held and PG_writeback is irrelevant,
1227 * and writeback status of all subpages are counted in the reference
1228 * count of the head page (i.e. if all subpages of a 2MB hugepage are
1229 * under direct I/O, the reference of the head page is 512 and a bit more.)
1230 * This means that when we try to migrate hugepage whose subpages are
1231 * doing direct I/O, some references remain after try_to_unmap() and
1232 * hugepage migration fails without data corruption.
1234 * There is also no race when direct I/O is issued on the page under migration,
1235 * because then pte is replaced with migration swap entry and direct I/O code
1236 * will wait in the page fault for migration to complete.
1238 static int unmap_and_move_huge_page(new_page_t get_new_page,
1239 free_page_t put_new_page, unsigned long private,
1240 struct page *hpage, int force,
1241 enum migrate_mode mode, int reason,
1242 struct list_head *ret)
1245 int page_was_mapped = 0;
1246 struct page *new_hpage;
1247 struct anon_vma *anon_vma = NULL;
1248 struct address_space *mapping = NULL;
1251 * Migratability of hugepages depends on architectures and their size.
1252 * This check is necessary because some callers of hugepage migration
1253 * like soft offline and memory hotremove don't walk through page
1254 * tables or check whether the hugepage is pmd-based or not before
1255 * kicking migration.
1257 if (!hugepage_migration_supported(page_hstate(hpage))) {
1258 list_move_tail(&hpage->lru, ret);
1262 if (page_count(hpage) == 1) {
1263 /* page was freed from under us. So we are done. */
1264 putback_active_hugepage(hpage);
1265 return MIGRATEPAGE_SUCCESS;
1268 new_hpage = get_new_page(hpage, private);
1272 if (!trylock_page(hpage)) {
1277 case MIGRATE_SYNC_NO_COPY:
1286 * Check for pages which are in the process of being freed. Without
1287 * page_mapping() set, hugetlbfs specific move page routine will not
1288 * be called and we could leak usage counts for subpools.
1290 if (page_private(hpage) && !page_mapping(hpage)) {
1295 if (PageAnon(hpage))
1296 anon_vma = page_get_anon_vma(hpage);
1298 if (unlikely(!trylock_page(new_hpage)))
1301 if (page_mapped(hpage)) {
1302 bool mapping_locked = false;
1303 enum ttu_flags ttu = TTU_MIGRATION|TTU_IGNORE_MLOCK;
1305 if (!PageAnon(hpage)) {
1307 * In shared mappings, try_to_unmap could potentially
1308 * call huge_pmd_unshare. Because of this, take
1309 * semaphore in write mode here and set TTU_RMAP_LOCKED
1310 * to let lower levels know we have taken the lock.
1312 mapping = hugetlb_page_mapping_lock_write(hpage);
1313 if (unlikely(!mapping))
1314 goto unlock_put_anon;
1316 mapping_locked = true;
1317 ttu |= TTU_RMAP_LOCKED;
1320 try_to_unmap(hpage, ttu);
1321 page_was_mapped = 1;
1324 i_mmap_unlock_write(mapping);
1327 if (!page_mapped(hpage))
1328 rc = move_to_new_page(new_hpage, hpage, mode);
1330 if (page_was_mapped)
1331 remove_migration_ptes(hpage,
1332 rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false);
1335 unlock_page(new_hpage);
1339 put_anon_vma(anon_vma);
1341 if (rc == MIGRATEPAGE_SUCCESS) {
1342 move_hugetlb_state(hpage, new_hpage, reason);
1343 put_new_page = NULL;
1349 if (rc == MIGRATEPAGE_SUCCESS)
1350 putback_active_hugepage(hpage);
1351 else if (rc != -EAGAIN)
1352 list_move_tail(&hpage->lru, ret);
1355 * If migration was not successful and there's a freeing callback, use
1356 * it. Otherwise, put_page() will drop the reference grabbed during
1360 put_new_page(new_hpage, private);
1362 putback_active_hugepage(new_hpage);
1367 static inline int try_split_thp(struct page *page, struct page **page2,
1368 struct list_head *from)
1373 rc = split_huge_page_to_list(page, from);
1376 list_safe_reset_next(page, *page2, lru);
1382 * migrate_pages - migrate the pages specified in a list, to the free pages
1383 * supplied as the target for the page migration
1385 * @from: The list of pages to be migrated.
1386 * @get_new_page: The function used to allocate free pages to be used
1387 * as the target of the page migration.
1388 * @put_new_page: The function used to free target pages if migration
1389 * fails, or NULL if no special handling is necessary.
1390 * @private: Private data to be passed on to get_new_page()
1391 * @mode: The migration mode that specifies the constraints for
1392 * page migration, if any.
1393 * @reason: The reason for page migration.
1395 * The function returns after 10 attempts or if no pages are movable any more
1396 * because the list has become empty or no retryable pages exist any more.
1397 * It is caller's responsibility to call putback_movable_pages() to return pages
1398 * to the LRU or free list only if ret != 0.
1400 * Returns the number of pages that were not migrated, or an error code.
1402 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1403 free_page_t put_new_page, unsigned long private,
1404 enum migrate_mode mode, int reason)
1409 int nr_succeeded = 0;
1410 int nr_thp_succeeded = 0;
1411 int nr_thp_failed = 0;
1412 int nr_thp_split = 0;
1414 bool is_thp = false;
1417 int swapwrite = current->flags & PF_SWAPWRITE;
1418 int rc, nr_subpages;
1419 LIST_HEAD(ret_pages);
1421 trace_mm_migrate_pages_start(mode, reason);
1424 current->flags |= PF_SWAPWRITE;
1426 for (pass = 0; pass < 10 && (retry || thp_retry); pass++) {
1430 list_for_each_entry_safe(page, page2, from, lru) {
1433 * THP statistics is based on the source huge page.
1434 * Capture required information that might get lost
1437 is_thp = PageTransHuge(page) && !PageHuge(page);
1438 nr_subpages = thp_nr_pages(page);
1442 rc = unmap_and_move_huge_page(get_new_page,
1443 put_new_page, private, page,
1444 pass > 2, mode, reason,
1447 rc = unmap_and_move(get_new_page, put_new_page,
1448 private, page, pass > 2, mode,
1449 reason, &ret_pages);
1452 * Success: non hugetlb page will be freed, hugetlb
1453 * page will be put back
1454 * -EAGAIN: stay on the from list
1455 * -ENOMEM: stay on the from list
1456 * Other errno: put on ret_pages list then splice to
1461 * THP migration might be unsupported or the
1462 * allocation could've failed so we should
1463 * retry on the same page with the THP split
1466 * Head page is retried immediately and tail
1467 * pages are added to the tail of the list so
1468 * we encounter them after the rest of the list
1472 /* THP migration is unsupported */
1474 if (!try_split_thp(page, &page2, from)) {
1480 nr_failed += nr_subpages;
1484 /* Hugetlb migration is unsupported */
1489 * When memory is low, don't bother to try to migrate
1490 * other pages, just exit.
1493 if (!try_split_thp(page, &page2, from)) {
1499 nr_failed += nr_subpages;
1511 case MIGRATEPAGE_SUCCESS:
1514 nr_succeeded += nr_subpages;
1521 * Permanent failure (-EBUSY, etc.):
1522 * unlike -EAGAIN case, the failed page is
1523 * removed from migration page list and not
1524 * retried in the next outer loop.
1528 nr_failed += nr_subpages;
1536 nr_failed += retry + thp_retry;
1537 nr_thp_failed += thp_retry;
1541 * Put the permanent failure page back to migration list, they
1542 * will be put back to the right list by the caller.
1544 list_splice(&ret_pages, from);
1546 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1547 count_vm_events(PGMIGRATE_FAIL, nr_failed);
1548 count_vm_events(THP_MIGRATION_SUCCESS, nr_thp_succeeded);
1549 count_vm_events(THP_MIGRATION_FAIL, nr_thp_failed);
1550 count_vm_events(THP_MIGRATION_SPLIT, nr_thp_split);
1551 trace_mm_migrate_pages(nr_succeeded, nr_failed, nr_thp_succeeded,
1552 nr_thp_failed, nr_thp_split, mode, reason);
1555 current->flags &= ~PF_SWAPWRITE;
1560 struct page *alloc_migration_target(struct page *page, unsigned long private)
1562 struct migration_target_control *mtc;
1564 unsigned int order = 0;
1565 struct page *new_page = NULL;
1569 mtc = (struct migration_target_control *)private;
1570 gfp_mask = mtc->gfp_mask;
1572 if (nid == NUMA_NO_NODE)
1573 nid = page_to_nid(page);
1575 if (PageHuge(page)) {
1576 struct hstate *h = page_hstate(compound_head(page));
1578 gfp_mask = htlb_modify_alloc_mask(h, gfp_mask);
1579 return alloc_huge_page_nodemask(h, nid, mtc->nmask, gfp_mask);
1582 if (PageTransHuge(page)) {
1584 * clear __GFP_RECLAIM to make the migration callback
1585 * consistent with regular THP allocations.
1587 gfp_mask &= ~__GFP_RECLAIM;
1588 gfp_mask |= GFP_TRANSHUGE;
1589 order = HPAGE_PMD_ORDER;
1591 zidx = zone_idx(page_zone(page));
1592 if (is_highmem_idx(zidx) || zidx == ZONE_MOVABLE)
1593 gfp_mask |= __GFP_HIGHMEM;
1595 new_page = __alloc_pages(gfp_mask, order, nid, mtc->nmask);
1597 if (new_page && PageTransHuge(new_page))
1598 prep_transhuge_page(new_page);
1605 static int store_status(int __user *status, int start, int value, int nr)
1608 if (put_user(value, status + start))
1616 static int do_move_pages_to_node(struct mm_struct *mm,
1617 struct list_head *pagelist, int node)
1620 struct migration_target_control mtc = {
1622 .gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE,
1625 err = migrate_pages(pagelist, alloc_migration_target, NULL,
1626 (unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL);
1628 putback_movable_pages(pagelist);
1633 * Resolves the given address to a struct page, isolates it from the LRU and
1634 * puts it to the given pagelist.
1636 * errno - if the page cannot be found/isolated
1637 * 0 - when it doesn't have to be migrated because it is already on the
1639 * 1 - when it has been queued
1641 static int add_page_for_migration(struct mm_struct *mm, unsigned long addr,
1642 int node, struct list_head *pagelist, bool migrate_all)
1644 struct vm_area_struct *vma;
1646 unsigned int follflags;
1651 vma = find_vma(mm, addr);
1652 if (!vma || addr < vma->vm_start || !vma_migratable(vma))
1655 /* FOLL_DUMP to ignore special (like zero) pages */
1656 follflags = FOLL_GET | FOLL_DUMP;
1657 page = follow_page(vma, addr, follflags);
1659 err = PTR_ERR(page);
1668 if (page_to_nid(page) == node)
1672 if (page_mapcount(page) > 1 && !migrate_all)
1675 if (PageHuge(page)) {
1676 if (PageHead(page)) {
1677 isolate_huge_page(page, pagelist);
1683 head = compound_head(page);
1684 err = isolate_lru_page(head);
1689 list_add_tail(&head->lru, pagelist);
1690 mod_node_page_state(page_pgdat(head),
1691 NR_ISOLATED_ANON + page_is_file_lru(head),
1692 thp_nr_pages(head));
1696 * Either remove the duplicate refcount from
1697 * isolate_lru_page() or drop the page ref if it was
1702 mmap_read_unlock(mm);
1706 static int move_pages_and_store_status(struct mm_struct *mm, int node,
1707 struct list_head *pagelist, int __user *status,
1708 int start, int i, unsigned long nr_pages)
1712 if (list_empty(pagelist))
1715 err = do_move_pages_to_node(mm, pagelist, node);
1718 * Positive err means the number of failed
1719 * pages to migrate. Since we are going to
1720 * abort and return the number of non-migrated
1721 * pages, so need to include the rest of the
1722 * nr_pages that have not been attempted as
1726 err += nr_pages - i - 1;
1729 return store_status(status, start, node, i - start);
1733 * Migrate an array of page address onto an array of nodes and fill
1734 * the corresponding array of status.
1736 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1737 unsigned long nr_pages,
1738 const void __user * __user *pages,
1739 const int __user *nodes,
1740 int __user *status, int flags)
1742 int current_node = NUMA_NO_NODE;
1743 LIST_HEAD(pagelist);
1747 lru_cache_disable();
1749 for (i = start = 0; i < nr_pages; i++) {
1750 const void __user *p;
1755 if (get_user(p, pages + i))
1757 if (get_user(node, nodes + i))
1759 addr = (unsigned long)untagged_addr(p);
1762 if (node < 0 || node >= MAX_NUMNODES)
1764 if (!node_state(node, N_MEMORY))
1768 if (!node_isset(node, task_nodes))
1771 if (current_node == NUMA_NO_NODE) {
1772 current_node = node;
1774 } else if (node != current_node) {
1775 err = move_pages_and_store_status(mm, current_node,
1776 &pagelist, status, start, i, nr_pages);
1780 current_node = node;
1784 * Errors in the page lookup or isolation are not fatal and we simply
1785 * report them via status
1787 err = add_page_for_migration(mm, addr, current_node,
1788 &pagelist, flags & MPOL_MF_MOVE_ALL);
1791 /* The page is successfully queued for migration */
1796 * If the page is already on the target node (!err), store the
1797 * node, otherwise, store the err.
1799 err = store_status(status, i, err ? : current_node, 1);
1803 err = move_pages_and_store_status(mm, current_node, &pagelist,
1804 status, start, i, nr_pages);
1807 current_node = NUMA_NO_NODE;
1810 /* Make sure we do not overwrite the existing error */
1811 err1 = move_pages_and_store_status(mm, current_node, &pagelist,
1812 status, start, i, nr_pages);
1821 * Determine the nodes of an array of pages and store it in an array of status.
1823 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1824 const void __user **pages, int *status)
1830 for (i = 0; i < nr_pages; i++) {
1831 unsigned long addr = (unsigned long)(*pages);
1832 struct vm_area_struct *vma;
1836 vma = find_vma(mm, addr);
1837 if (!vma || addr < vma->vm_start)
1840 /* FOLL_DUMP to ignore special (like zero) pages */
1841 page = follow_page(vma, addr, FOLL_DUMP);
1843 err = PTR_ERR(page);
1847 err = page ? page_to_nid(page) : -ENOENT;
1855 mmap_read_unlock(mm);
1859 * Determine the nodes of a user array of pages and store it in
1860 * a user array of status.
1862 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1863 const void __user * __user *pages,
1866 #define DO_PAGES_STAT_CHUNK_NR 16
1867 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1868 int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1871 unsigned long chunk_nr;
1873 chunk_nr = nr_pages;
1874 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1875 chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1877 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1880 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1882 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1887 nr_pages -= chunk_nr;
1889 return nr_pages ? -EFAULT : 0;
1892 static struct mm_struct *find_mm_struct(pid_t pid, nodemask_t *mem_nodes)
1894 struct task_struct *task;
1895 struct mm_struct *mm;
1898 * There is no need to check if current process has the right to modify
1899 * the specified process when they are same.
1903 *mem_nodes = cpuset_mems_allowed(current);
1907 /* Find the mm_struct */
1909 task = find_task_by_vpid(pid);
1912 return ERR_PTR(-ESRCH);
1914 get_task_struct(task);
1917 * Check if this process has the right to modify the specified
1918 * process. Use the regular "ptrace_may_access()" checks.
1920 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1922 mm = ERR_PTR(-EPERM);
1927 mm = ERR_PTR(security_task_movememory(task));
1930 *mem_nodes = cpuset_mems_allowed(task);
1931 mm = get_task_mm(task);
1933 put_task_struct(task);
1935 mm = ERR_PTR(-EINVAL);
1940 * Move a list of pages in the address space of the currently executing
1943 static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
1944 const void __user * __user *pages,
1945 const int __user *nodes,
1946 int __user *status, int flags)
1948 struct mm_struct *mm;
1950 nodemask_t task_nodes;
1953 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1956 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1959 mm = find_mm_struct(pid, &task_nodes);
1964 err = do_pages_move(mm, task_nodes, nr_pages, pages,
1965 nodes, status, flags);
1967 err = do_pages_stat(mm, nr_pages, pages, status);
1973 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1974 const void __user * __user *, pages,
1975 const int __user *, nodes,
1976 int __user *, status, int, flags)
1978 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1981 #ifdef CONFIG_COMPAT
1982 COMPAT_SYSCALL_DEFINE6(move_pages, pid_t, pid, compat_ulong_t, nr_pages,
1983 compat_uptr_t __user *, pages32,
1984 const int __user *, nodes,
1985 int __user *, status,
1988 const void __user * __user *pages;
1991 pages = compat_alloc_user_space(nr_pages * sizeof(void *));
1992 for (i = 0; i < nr_pages; i++) {
1995 if (get_user(p, pages32 + i) ||
1996 put_user(compat_ptr(p), pages + i))
1999 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
2001 #endif /* CONFIG_COMPAT */
2003 #ifdef CONFIG_NUMA_BALANCING
2005 * Returns true if this is a safe migration target node for misplaced NUMA
2006 * pages. Currently it only checks the watermarks which crude
2008 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
2009 unsigned long nr_migrate_pages)
2013 for (z = pgdat->nr_zones - 1; z >= 0; z--) {
2014 struct zone *zone = pgdat->node_zones + z;
2016 if (!populated_zone(zone))
2019 /* Avoid waking kswapd by allocating pages_to_migrate pages. */
2020 if (!zone_watermark_ok(zone, 0,
2021 high_wmark_pages(zone) +
2030 static struct page *alloc_misplaced_dst_page(struct page *page,
2033 int nid = (int) data;
2034 struct page *newpage;
2036 newpage = __alloc_pages_node(nid,
2037 (GFP_HIGHUSER_MOVABLE |
2038 __GFP_THISNODE | __GFP_NOMEMALLOC |
2039 __GFP_NORETRY | __GFP_NOWARN) &
2045 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
2049 VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
2051 /* Avoid migrating to a node that is nearly full */
2052 if (!migrate_balanced_pgdat(pgdat, compound_nr(page)))
2055 if (isolate_lru_page(page))
2059 * migrate_misplaced_transhuge_page() skips page migration's usual
2060 * check on page_count(), so we must do it here, now that the page
2061 * has been isolated: a GUP pin, or any other pin, prevents migration.
2062 * The expected page count is 3: 1 for page's mapcount and 1 for the
2063 * caller's pin and 1 for the reference taken by isolate_lru_page().
2065 if (PageTransHuge(page) && page_count(page) != 3) {
2066 putback_lru_page(page);
2070 page_lru = page_is_file_lru(page);
2071 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
2072 thp_nr_pages(page));
2075 * Isolating the page has taken another reference, so the
2076 * caller's reference can be safely dropped without the page
2077 * disappearing underneath us during migration.
2083 bool pmd_trans_migrating(pmd_t pmd)
2085 struct page *page = pmd_page(pmd);
2086 return PageLocked(page);
2090 * Attempt to migrate a misplaced page to the specified destination
2091 * node. Caller is expected to have an elevated reference count on
2092 * the page that will be dropped by this function before returning.
2094 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
2097 pg_data_t *pgdat = NODE_DATA(node);
2100 LIST_HEAD(migratepages);
2103 * Don't migrate file pages that are mapped in multiple processes
2104 * with execute permissions as they are probably shared libraries.
2106 if (page_mapcount(page) != 1 && page_is_file_lru(page) &&
2107 (vma->vm_flags & VM_EXEC))
2111 * Also do not migrate dirty pages as not all filesystems can move
2112 * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles.
2114 if (page_is_file_lru(page) && PageDirty(page))
2117 isolated = numamigrate_isolate_page(pgdat, page);
2121 list_add(&page->lru, &migratepages);
2122 nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
2123 NULL, node, MIGRATE_ASYNC,
2126 if (!list_empty(&migratepages)) {
2127 list_del(&page->lru);
2128 dec_node_page_state(page, NR_ISOLATED_ANON +
2129 page_is_file_lru(page));
2130 putback_lru_page(page);
2134 count_vm_numa_event(NUMA_PAGE_MIGRATE);
2135 BUG_ON(!list_empty(&migratepages));
2142 #endif /* CONFIG_NUMA_BALANCING */
2144 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
2146 * Migrates a THP to a given target node. page must be locked and is unlocked
2149 int migrate_misplaced_transhuge_page(struct mm_struct *mm,
2150 struct vm_area_struct *vma,
2151 pmd_t *pmd, pmd_t entry,
2152 unsigned long address,
2153 struct page *page, int node)
2156 pg_data_t *pgdat = NODE_DATA(node);
2158 struct page *new_page = NULL;
2159 int page_lru = page_is_file_lru(page);
2160 unsigned long start = address & HPAGE_PMD_MASK;
2162 new_page = alloc_pages_node(node,
2163 (GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
2167 prep_transhuge_page(new_page);
2169 isolated = numamigrate_isolate_page(pgdat, page);
2175 /* Prepare a page as a migration target */
2176 __SetPageLocked(new_page);
2177 if (PageSwapBacked(page))
2178 __SetPageSwapBacked(new_page);
2180 /* anon mapping, we can simply copy page->mapping to the new page: */
2181 new_page->mapping = page->mapping;
2182 new_page->index = page->index;
2183 /* flush the cache before copying using the kernel virtual address */
2184 flush_cache_range(vma, start, start + HPAGE_PMD_SIZE);
2185 migrate_page_copy(new_page, page);
2186 WARN_ON(PageLRU(new_page));
2188 /* Recheck the target PMD */
2189 ptl = pmd_lock(mm, pmd);
2190 if (unlikely(!pmd_same(*pmd, entry) || !page_ref_freeze(page, 2))) {
2193 /* Reverse changes made by migrate_page_copy() */
2194 if (TestClearPageActive(new_page))
2195 SetPageActive(page);
2196 if (TestClearPageUnevictable(new_page))
2197 SetPageUnevictable(page);
2199 unlock_page(new_page);
2200 put_page(new_page); /* Free it */
2202 /* Retake the callers reference and putback on LRU */
2204 putback_lru_page(page);
2205 mod_node_page_state(page_pgdat(page),
2206 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
2211 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
2212 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
2215 * Overwrite the old entry under pagetable lock and establish
2216 * the new PTE. Any parallel GUP will either observe the old
2217 * page blocking on the page lock, block on the page table
2218 * lock or observe the new page. The SetPageUptodate on the
2219 * new page and page_add_new_anon_rmap guarantee the copy is
2220 * visible before the pagetable update.
2222 page_add_anon_rmap(new_page, vma, start, true);
2224 * At this point the pmd is numa/protnone (i.e. non present) and the TLB
2225 * has already been flushed globally. So no TLB can be currently
2226 * caching this non present pmd mapping. There's no need to clear the
2227 * pmd before doing set_pmd_at(), nor to flush the TLB after
2228 * set_pmd_at(). Clearing the pmd here would introduce a race
2229 * condition against MADV_DONTNEED, because MADV_DONTNEED only holds the
2230 * mmap_lock for reading. If the pmd is set to NULL at any given time,
2231 * MADV_DONTNEED won't wait on the pmd lock and it'll skip clearing this
2234 set_pmd_at(mm, start, pmd, entry);
2235 update_mmu_cache_pmd(vma, address, &entry);
2237 page_ref_unfreeze(page, 2);
2238 mlock_migrate_page(new_page, page);
2239 page_remove_rmap(page, true);
2240 set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED);
2244 /* Take an "isolate" reference and put new page on the LRU. */
2246 putback_lru_page(new_page);
2248 unlock_page(new_page);
2250 put_page(page); /* Drop the rmap reference */
2251 put_page(page); /* Drop the LRU isolation reference */
2253 count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
2254 count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
2256 mod_node_page_state(page_pgdat(page),
2257 NR_ISOLATED_ANON + page_lru,
2262 count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
2263 ptl = pmd_lock(mm, pmd);
2264 if (pmd_same(*pmd, entry)) {
2265 entry = pmd_modify(entry, vma->vm_page_prot);
2266 set_pmd_at(mm, start, pmd, entry);
2267 update_mmu_cache_pmd(vma, address, &entry);
2276 #endif /* CONFIG_NUMA_BALANCING */
2278 #endif /* CONFIG_NUMA */
2280 #ifdef CONFIG_DEVICE_PRIVATE
2281 static int migrate_vma_collect_skip(unsigned long start,
2283 struct mm_walk *walk)
2285 struct migrate_vma *migrate = walk->private;
2288 for (addr = start; addr < end; addr += PAGE_SIZE) {
2289 migrate->dst[migrate->npages] = 0;
2290 migrate->src[migrate->npages++] = 0;
2296 static int migrate_vma_collect_hole(unsigned long start,
2298 __always_unused int depth,
2299 struct mm_walk *walk)
2301 struct migrate_vma *migrate = walk->private;
2304 /* Only allow populating anonymous memory. */
2305 if (!vma_is_anonymous(walk->vma))
2306 return migrate_vma_collect_skip(start, end, walk);
2308 for (addr = start; addr < end; addr += PAGE_SIZE) {
2309 migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE;
2310 migrate->dst[migrate->npages] = 0;
2318 static int migrate_vma_collect_pmd(pmd_t *pmdp,
2319 unsigned long start,
2321 struct mm_walk *walk)
2323 struct migrate_vma *migrate = walk->private;
2324 struct vm_area_struct *vma = walk->vma;
2325 struct mm_struct *mm = vma->vm_mm;
2326 unsigned long addr = start, unmapped = 0;
2331 if (pmd_none(*pmdp))
2332 return migrate_vma_collect_hole(start, end, -1, walk);
2334 if (pmd_trans_huge(*pmdp)) {
2337 ptl = pmd_lock(mm, pmdp);
2338 if (unlikely(!pmd_trans_huge(*pmdp))) {
2343 page = pmd_page(*pmdp);
2344 if (is_huge_zero_page(page)) {
2346 split_huge_pmd(vma, pmdp, addr);
2347 if (pmd_trans_unstable(pmdp))
2348 return migrate_vma_collect_skip(start, end,
2355 if (unlikely(!trylock_page(page)))
2356 return migrate_vma_collect_skip(start, end,
2358 ret = split_huge_page(page);
2362 return migrate_vma_collect_skip(start, end,
2364 if (pmd_none(*pmdp))
2365 return migrate_vma_collect_hole(start, end, -1,
2370 if (unlikely(pmd_bad(*pmdp)))
2371 return migrate_vma_collect_skip(start, end, walk);
2373 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2374 arch_enter_lazy_mmu_mode();
2376 for (; addr < end; addr += PAGE_SIZE, ptep++) {
2377 unsigned long mpfn = 0, pfn;
2384 if (pte_none(pte)) {
2385 if (vma_is_anonymous(vma)) {
2386 mpfn = MIGRATE_PFN_MIGRATE;
2392 if (!pte_present(pte)) {
2394 * Only care about unaddressable device page special
2395 * page table entry. Other special swap entries are not
2396 * migratable, and we ignore regular swapped page.
2398 entry = pte_to_swp_entry(pte);
2399 if (!is_device_private_entry(entry))
2402 page = device_private_entry_to_page(entry);
2403 if (!(migrate->flags &
2404 MIGRATE_VMA_SELECT_DEVICE_PRIVATE) ||
2405 page->pgmap->owner != migrate->pgmap_owner)
2408 mpfn = migrate_pfn(page_to_pfn(page)) |
2409 MIGRATE_PFN_MIGRATE;
2410 if (is_write_device_private_entry(entry))
2411 mpfn |= MIGRATE_PFN_WRITE;
2413 if (!(migrate->flags & MIGRATE_VMA_SELECT_SYSTEM))
2416 if (is_zero_pfn(pfn)) {
2417 mpfn = MIGRATE_PFN_MIGRATE;
2421 page = vm_normal_page(migrate->vma, addr, pte);
2422 mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
2423 mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
2426 /* FIXME support THP */
2427 if (!page || !page->mapping || PageTransCompound(page)) {
2433 * By getting a reference on the page we pin it and that blocks
2434 * any kind of migration. Side effect is that it "freezes" the
2437 * We drop this reference after isolating the page from the lru
2438 * for non device page (device page are not on the lru and thus
2439 * can't be dropped from it).
2445 * Optimize for the common case where page is only mapped once
2446 * in one process. If we can lock the page, then we can safely
2447 * set up a special migration page table entry now.
2449 if (trylock_page(page)) {
2452 mpfn |= MIGRATE_PFN_LOCKED;
2453 ptep_get_and_clear(mm, addr, ptep);
2455 /* Setup special migration page table entry */
2456 entry = make_migration_entry(page, mpfn &
2458 swp_pte = swp_entry_to_pte(entry);
2459 if (pte_present(pte)) {
2460 if (pte_soft_dirty(pte))
2461 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2462 if (pte_uffd_wp(pte))
2463 swp_pte = pte_swp_mkuffd_wp(swp_pte);
2465 if (pte_swp_soft_dirty(pte))
2466 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2467 if (pte_swp_uffd_wp(pte))
2468 swp_pte = pte_swp_mkuffd_wp(swp_pte);
2470 set_pte_at(mm, addr, ptep, swp_pte);
2473 * This is like regular unmap: we remove the rmap and
2474 * drop page refcount. Page won't be freed, as we took
2475 * a reference just above.
2477 page_remove_rmap(page, false);
2480 if (pte_present(pte))
2485 migrate->dst[migrate->npages] = 0;
2486 migrate->src[migrate->npages++] = mpfn;
2488 arch_leave_lazy_mmu_mode();
2489 pte_unmap_unlock(ptep - 1, ptl);
2491 /* Only flush the TLB if we actually modified any entries */
2493 flush_tlb_range(walk->vma, start, end);
2498 static const struct mm_walk_ops migrate_vma_walk_ops = {
2499 .pmd_entry = migrate_vma_collect_pmd,
2500 .pte_hole = migrate_vma_collect_hole,
2504 * migrate_vma_collect() - collect pages over a range of virtual addresses
2505 * @migrate: migrate struct containing all migration information
2507 * This will walk the CPU page table. For each virtual address backed by a
2508 * valid page, it updates the src array and takes a reference on the page, in
2509 * order to pin the page until we lock it and unmap it.
2511 static void migrate_vma_collect(struct migrate_vma *migrate)
2513 struct mmu_notifier_range range;
2516 * Note that the pgmap_owner is passed to the mmu notifier callback so
2517 * that the registered device driver can skip invalidating device
2518 * private page mappings that won't be migrated.
2520 mmu_notifier_range_init_migrate(&range, 0, migrate->vma,
2521 migrate->vma->vm_mm, migrate->start, migrate->end,
2522 migrate->pgmap_owner);
2523 mmu_notifier_invalidate_range_start(&range);
2525 walk_page_range(migrate->vma->vm_mm, migrate->start, migrate->end,
2526 &migrate_vma_walk_ops, migrate);
2528 mmu_notifier_invalidate_range_end(&range);
2529 migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
2533 * migrate_vma_check_page() - check if page is pinned or not
2534 * @page: struct page to check
2536 * Pinned pages cannot be migrated. This is the same test as in
2537 * migrate_page_move_mapping(), except that here we allow migration of a
2540 static bool migrate_vma_check_page(struct page *page)
2543 * One extra ref because caller holds an extra reference, either from
2544 * isolate_lru_page() for a regular page, or migrate_vma_collect() for
2550 * FIXME support THP (transparent huge page), it is bit more complex to
2551 * check them than regular pages, because they can be mapped with a pmd
2552 * or with a pte (split pte mapping).
2554 if (PageCompound(page))
2557 /* Page from ZONE_DEVICE have one extra reference */
2558 if (is_zone_device_page(page)) {
2560 * Private page can never be pin as they have no valid pte and
2561 * GUP will fail for those. Yet if there is a pending migration
2562 * a thread might try to wait on the pte migration entry and
2563 * will bump the page reference count. Sadly there is no way to
2564 * differentiate a regular pin from migration wait. Hence to
2565 * avoid 2 racing thread trying to migrate back to CPU to enter
2566 * infinite loop (one stopping migration because the other is
2567 * waiting on pte migration entry). We always return true here.
2569 * FIXME proper solution is to rework migration_entry_wait() so
2570 * it does not need to take a reference on page.
2572 return is_device_private_page(page);
2575 /* For file back page */
2576 if (page_mapping(page))
2577 extra += 1 + page_has_private(page);
2579 if ((page_count(page) - extra) > page_mapcount(page))
2586 * migrate_vma_prepare() - lock pages and isolate them from the lru
2587 * @migrate: migrate struct containing all migration information
2589 * This locks pages that have been collected by migrate_vma_collect(). Once each
2590 * page is locked it is isolated from the lru (for non-device pages). Finally,
2591 * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be
2592 * migrated by concurrent kernel threads.
2594 static void migrate_vma_prepare(struct migrate_vma *migrate)
2596 const unsigned long npages = migrate->npages;
2597 const unsigned long start = migrate->start;
2598 unsigned long addr, i, restore = 0;
2599 bool allow_drain = true;
2603 for (i = 0; (i < npages) && migrate->cpages; i++) {
2604 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2610 if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) {
2612 * Because we are migrating several pages there can be
2613 * a deadlock between 2 concurrent migration where each
2614 * are waiting on each other page lock.
2616 * Make migrate_vma() a best effort thing and backoff
2617 * for any page we can not lock right away.
2619 if (!trylock_page(page)) {
2620 migrate->src[i] = 0;
2626 migrate->src[i] |= MIGRATE_PFN_LOCKED;
2629 /* ZONE_DEVICE pages are not on LRU */
2630 if (!is_zone_device_page(page)) {
2631 if (!PageLRU(page) && allow_drain) {
2632 /* Drain CPU's pagevec */
2633 lru_add_drain_all();
2634 allow_drain = false;
2637 if (isolate_lru_page(page)) {
2639 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2643 migrate->src[i] = 0;
2651 /* Drop the reference we took in collect */
2655 if (!migrate_vma_check_page(page)) {
2657 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2661 if (!is_zone_device_page(page)) {
2663 putback_lru_page(page);
2666 migrate->src[i] = 0;
2670 if (!is_zone_device_page(page))
2671 putback_lru_page(page);
2678 for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) {
2679 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2681 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2684 remove_migration_pte(page, migrate->vma, addr, page);
2686 migrate->src[i] = 0;
2694 * migrate_vma_unmap() - replace page mapping with special migration pte entry
2695 * @migrate: migrate struct containing all migration information
2697 * Replace page mapping (CPU page table pte) with a special migration pte entry
2698 * and check again if it has been pinned. Pinned pages are restored because we
2699 * cannot migrate them.
2701 * This is the last step before we call the device driver callback to allocate
2702 * destination memory and copy contents of original page over to new page.
2704 static void migrate_vma_unmap(struct migrate_vma *migrate)
2706 int flags = TTU_MIGRATION | TTU_IGNORE_MLOCK;
2707 const unsigned long npages = migrate->npages;
2708 const unsigned long start = migrate->start;
2709 unsigned long addr, i, restore = 0;
2711 for (i = 0; i < npages; i++) {
2712 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2714 if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2717 if (page_mapped(page)) {
2718 try_to_unmap(page, flags);
2719 if (page_mapped(page))
2723 if (migrate_vma_check_page(page))
2727 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2732 for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) {
2733 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2735 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2738 remove_migration_ptes(page, page, false);
2740 migrate->src[i] = 0;
2744 if (is_zone_device_page(page))
2747 putback_lru_page(page);
2752 * migrate_vma_setup() - prepare to migrate a range of memory
2753 * @args: contains the vma, start, and pfns arrays for the migration
2755 * Returns: negative errno on failures, 0 when 0 or more pages were migrated
2758 * Prepare to migrate a range of memory virtual address range by collecting all
2759 * the pages backing each virtual address in the range, saving them inside the
2760 * src array. Then lock those pages and unmap them. Once the pages are locked
2761 * and unmapped, check whether each page is pinned or not. Pages that aren't
2762 * pinned have the MIGRATE_PFN_MIGRATE flag set (by this function) in the
2763 * corresponding src array entry. Then restores any pages that are pinned, by
2764 * remapping and unlocking those pages.
2766 * The caller should then allocate destination memory and copy source memory to
2767 * it for all those entries (ie with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE
2768 * flag set). Once these are allocated and copied, the caller must update each
2769 * corresponding entry in the dst array with the pfn value of the destination
2770 * page and with the MIGRATE_PFN_VALID and MIGRATE_PFN_LOCKED flags set
2771 * (destination pages must have their struct pages locked, via lock_page()).
2773 * Note that the caller does not have to migrate all the pages that are marked
2774 * with MIGRATE_PFN_MIGRATE flag in src array unless this is a migration from
2775 * device memory to system memory. If the caller cannot migrate a device page
2776 * back to system memory, then it must return VM_FAULT_SIGBUS, which has severe
2777 * consequences for the userspace process, so it must be avoided if at all
2780 * For empty entries inside CPU page table (pte_none() or pmd_none() is true) we
2781 * do set MIGRATE_PFN_MIGRATE flag inside the corresponding source array thus
2782 * allowing the caller to allocate device memory for those unbacked virtual
2783 * addresses. For this the caller simply has to allocate device memory and
2784 * properly set the destination entry like for regular migration. Note that
2785 * this can still fail, and thus inside the device driver you must check if the
2786 * migration was successful for those entries after calling migrate_vma_pages(),
2787 * just like for regular migration.
2789 * After that, the callers must call migrate_vma_pages() to go over each entry
2790 * in the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
2791 * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
2792 * then migrate_vma_pages() to migrate struct page information from the source
2793 * struct page to the destination struct page. If it fails to migrate the
2794 * struct page information, then it clears the MIGRATE_PFN_MIGRATE flag in the
2797 * At this point all successfully migrated pages have an entry in the src
2798 * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
2799 * array entry with MIGRATE_PFN_VALID flag set.
2801 * Once migrate_vma_pages() returns the caller may inspect which pages were
2802 * successfully migrated, and which were not. Successfully migrated pages will
2803 * have the MIGRATE_PFN_MIGRATE flag set for their src array entry.
2805 * It is safe to update device page table after migrate_vma_pages() because
2806 * both destination and source page are still locked, and the mmap_lock is held
2807 * in read mode (hence no one can unmap the range being migrated).
2809 * Once the caller is done cleaning up things and updating its page table (if it
2810 * chose to do so, this is not an obligation) it finally calls
2811 * migrate_vma_finalize() to update the CPU page table to point to new pages
2812 * for successfully migrated pages or otherwise restore the CPU page table to
2813 * point to the original source pages.
2815 int migrate_vma_setup(struct migrate_vma *args)
2817 long nr_pages = (args->end - args->start) >> PAGE_SHIFT;
2819 args->start &= PAGE_MASK;
2820 args->end &= PAGE_MASK;
2821 if (!args->vma || is_vm_hugetlb_page(args->vma) ||
2822 (args->vma->vm_flags & VM_SPECIAL) || vma_is_dax(args->vma))
2826 if (args->start < args->vma->vm_start ||
2827 args->start >= args->vma->vm_end)
2829 if (args->end <= args->vma->vm_start || args->end > args->vma->vm_end)
2831 if (!args->src || !args->dst)
2834 memset(args->src, 0, sizeof(*args->src) * nr_pages);
2838 migrate_vma_collect(args);
2841 migrate_vma_prepare(args);
2843 migrate_vma_unmap(args);
2846 * At this point pages are locked and unmapped, and thus they have
2847 * stable content and can safely be copied to destination memory that
2848 * is allocated by the drivers.
2853 EXPORT_SYMBOL(migrate_vma_setup);
2856 * This code closely matches the code in:
2857 * __handle_mm_fault()
2858 * handle_pte_fault()
2859 * do_anonymous_page()
2860 * to map in an anonymous zero page but the struct page will be a ZONE_DEVICE
2863 static void migrate_vma_insert_page(struct migrate_vma *migrate,
2868 struct vm_area_struct *vma = migrate->vma;
2869 struct mm_struct *mm = vma->vm_mm;
2879 /* Only allow populating anonymous memory */
2880 if (!vma_is_anonymous(vma))
2883 pgdp = pgd_offset(mm, addr);
2884 p4dp = p4d_alloc(mm, pgdp, addr);
2887 pudp = pud_alloc(mm, p4dp, addr);
2890 pmdp = pmd_alloc(mm, pudp, addr);
2894 if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp))
2898 * Use pte_alloc() instead of pte_alloc_map(). We can't run
2899 * pte_offset_map() on pmds where a huge pmd might be created
2900 * from a different thread.
2902 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
2903 * parallel threads are excluded by other means.
2905 * Here we only have mmap_read_lock(mm).
2907 if (pte_alloc(mm, pmdp))
2910 /* See the comment in pte_alloc_one_map() */
2911 if (unlikely(pmd_trans_unstable(pmdp)))
2914 if (unlikely(anon_vma_prepare(vma)))
2916 if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL))
2920 * The memory barrier inside __SetPageUptodate makes sure that
2921 * preceding stores to the page contents become visible before
2922 * the set_pte_at() write.
2924 __SetPageUptodate(page);
2926 if (is_zone_device_page(page)) {
2927 if (is_device_private_page(page)) {
2928 swp_entry_t swp_entry;
2930 swp_entry = make_device_private_entry(page, vma->vm_flags & VM_WRITE);
2931 entry = swp_entry_to_pte(swp_entry);
2934 * For now we only support migrating to un-addressable
2937 pr_warn_once("Unsupported ZONE_DEVICE page type.\n");
2941 entry = mk_pte(page, vma->vm_page_prot);
2942 if (vma->vm_flags & VM_WRITE)
2943 entry = pte_mkwrite(pte_mkdirty(entry));
2946 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2948 if (check_stable_address_space(mm))
2951 if (pte_present(*ptep)) {
2952 unsigned long pfn = pte_pfn(*ptep);
2954 if (!is_zero_pfn(pfn))
2957 } else if (!pte_none(*ptep))
2961 * Check for userfaultfd but do not deliver the fault. Instead,
2964 if (userfaultfd_missing(vma))
2967 inc_mm_counter(mm, MM_ANONPAGES);
2968 page_add_new_anon_rmap(page, vma, addr, false);
2969 if (!is_zone_device_page(page))
2970 lru_cache_add_inactive_or_unevictable(page, vma);
2974 flush_cache_page(vma, addr, pte_pfn(*ptep));
2975 ptep_clear_flush_notify(vma, addr, ptep);
2976 set_pte_at_notify(mm, addr, ptep, entry);
2977 update_mmu_cache(vma, addr, ptep);
2979 /* No need to invalidate - it was non-present before */
2980 set_pte_at(mm, addr, ptep, entry);
2981 update_mmu_cache(vma, addr, ptep);
2984 pte_unmap_unlock(ptep, ptl);
2985 *src = MIGRATE_PFN_MIGRATE;
2989 pte_unmap_unlock(ptep, ptl);
2991 *src &= ~MIGRATE_PFN_MIGRATE;
2995 * migrate_vma_pages() - migrate meta-data from src page to dst page
2996 * @migrate: migrate struct containing all migration information
2998 * This migrates struct page meta-data from source struct page to destination
2999 * struct page. This effectively finishes the migration from source page to the
3002 void migrate_vma_pages(struct migrate_vma *migrate)
3004 const unsigned long npages = migrate->npages;
3005 const unsigned long start = migrate->start;
3006 struct mmu_notifier_range range;
3007 unsigned long addr, i;
3008 bool notified = false;
3010 for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) {
3011 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
3012 struct page *page = migrate_pfn_to_page(migrate->src[i]);
3013 struct address_space *mapping;
3017 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
3022 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE))
3027 mmu_notifier_range_init_migrate(&range, 0,
3028 migrate->vma, migrate->vma->vm_mm,
3030 migrate->pgmap_owner);
3031 mmu_notifier_invalidate_range_start(&range);
3033 migrate_vma_insert_page(migrate, addr, newpage,
3038 mapping = page_mapping(page);
3040 if (is_zone_device_page(newpage)) {
3041 if (is_device_private_page(newpage)) {
3043 * For now only support private anonymous when
3044 * migrating to un-addressable device memory.
3047 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
3052 * Other types of ZONE_DEVICE page are not
3055 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
3060 r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY);
3061 if (r != MIGRATEPAGE_SUCCESS)
3062 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
3066 * No need to double call mmu_notifier->invalidate_range() callback as
3067 * the above ptep_clear_flush_notify() inside migrate_vma_insert_page()
3068 * did already call it.
3071 mmu_notifier_invalidate_range_only_end(&range);
3073 EXPORT_SYMBOL(migrate_vma_pages);
3076 * migrate_vma_finalize() - restore CPU page table entry
3077 * @migrate: migrate struct containing all migration information
3079 * This replaces the special migration pte entry with either a mapping to the
3080 * new page if migration was successful for that page, or to the original page
3083 * This also unlocks the pages and puts them back on the lru, or drops the extra
3084 * refcount, for device pages.
3086 void migrate_vma_finalize(struct migrate_vma *migrate)
3088 const unsigned long npages = migrate->npages;
3091 for (i = 0; i < npages; i++) {
3092 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
3093 struct page *page = migrate_pfn_to_page(migrate->src[i]);
3097 unlock_page(newpage);
3103 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) {
3105 unlock_page(newpage);
3111 remove_migration_ptes(page, newpage, false);
3114 if (is_zone_device_page(page))
3117 putback_lru_page(page);
3119 if (newpage != page) {
3120 unlock_page(newpage);
3121 if (is_zone_device_page(newpage))
3124 putback_lru_page(newpage);
3128 EXPORT_SYMBOL(migrate_vma_finalize);
3129 #endif /* CONFIG_DEVICE_PRIVATE */