Merge remote-tracking branch 'stable/linux-5.10.y' into rpi-5.10.y
[platform/kernel/linux-rpi.git] / mm / migrate.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Memory Migration functionality - linux/mm/migrate.c
4  *
5  * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6  *
7  * Page migration was first developed in the context of the memory hotplug
8  * project. The main authors of the migration code are:
9  *
10  * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
11  * Hirokazu Takahashi <taka@valinux.co.jp>
12  * Dave Hansen <haveblue@us.ibm.com>
13  * Christoph Lameter
14  */
15
16 #include <linux/migrate.h>
17 #include <linux/export.h>
18 #include <linux/swap.h>
19 #include <linux/swapops.h>
20 #include <linux/pagemap.h>
21 #include <linux/buffer_head.h>
22 #include <linux/mm_inline.h>
23 #include <linux/nsproxy.h>
24 #include <linux/pagevec.h>
25 #include <linux/ksm.h>
26 #include <linux/rmap.h>
27 #include <linux/topology.h>
28 #include <linux/cpu.h>
29 #include <linux/cpuset.h>
30 #include <linux/writeback.h>
31 #include <linux/mempolicy.h>
32 #include <linux/vmalloc.h>
33 #include <linux/security.h>
34 #include <linux/backing-dev.h>
35 #include <linux/compaction.h>
36 #include <linux/syscalls.h>
37 #include <linux/compat.h>
38 #include <linux/hugetlb.h>
39 #include <linux/hugetlb_cgroup.h>
40 #include <linux/gfp.h>
41 #include <linux/pagewalk.h>
42 #include <linux/pfn_t.h>
43 #include <linux/memremap.h>
44 #include <linux/userfaultfd_k.h>
45 #include <linux/balloon_compaction.h>
46 #include <linux/mmu_notifier.h>
47 #include <linux/page_idle.h>
48 #include <linux/page_owner.h>
49 #include <linux/sched/mm.h>
50 #include <linux/ptrace.h>
51 #include <linux/oom.h>
52
53 #include <asm/tlbflush.h>
54
55 #define CREATE_TRACE_POINTS
56 #include <trace/events/migrate.h>
57
58 #include "internal.h"
59
60 /*
61  * migrate_prep() needs to be called before we start compiling a list of pages
62  * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
63  * undesirable, use migrate_prep_local()
64  */
65 int migrate_prep(void)
66 {
67         /*
68          * Clear the LRU lists so pages can be isolated.
69          * Note that pages may be moved off the LRU after we have
70          * drained them. Those pages will fail to migrate like other
71          * pages that may be busy.
72          */
73         lru_add_drain_all();
74
75         return 0;
76 }
77
78 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
79 int migrate_prep_local(void)
80 {
81         lru_add_drain();
82
83         return 0;
84 }
85
86 int isolate_movable_page(struct page *page, isolate_mode_t mode)
87 {
88         struct address_space *mapping;
89
90         /*
91          * Avoid burning cycles with pages that are yet under __free_pages(),
92          * or just got freed under us.
93          *
94          * In case we 'win' a race for a movable page being freed under us and
95          * raise its refcount preventing __free_pages() from doing its job
96          * the put_page() at the end of this block will take care of
97          * release this page, thus avoiding a nasty leakage.
98          */
99         if (unlikely(!get_page_unless_zero(page)))
100                 goto out;
101
102         /*
103          * Check PageMovable before holding a PG_lock because page's owner
104          * assumes anybody doesn't touch PG_lock of newly allocated page
105          * so unconditionally grabbing the lock ruins page's owner side.
106          */
107         if (unlikely(!__PageMovable(page)))
108                 goto out_putpage;
109         /*
110          * As movable pages are not isolated from LRU lists, concurrent
111          * compaction threads can race against page migration functions
112          * as well as race against the releasing a page.
113          *
114          * In order to avoid having an already isolated movable page
115          * being (wrongly) re-isolated while it is under migration,
116          * or to avoid attempting to isolate pages being released,
117          * lets be sure we have the page lock
118          * before proceeding with the movable page isolation steps.
119          */
120         if (unlikely(!trylock_page(page)))
121                 goto out_putpage;
122
123         if (!PageMovable(page) || PageIsolated(page))
124                 goto out_no_isolated;
125
126         mapping = page_mapping(page);
127         VM_BUG_ON_PAGE(!mapping, page);
128
129         if (!mapping->a_ops->isolate_page(page, mode))
130                 goto out_no_isolated;
131
132         /* Driver shouldn't use PG_isolated bit of page->flags */
133         WARN_ON_ONCE(PageIsolated(page));
134         __SetPageIsolated(page);
135         unlock_page(page);
136
137         return 0;
138
139 out_no_isolated:
140         unlock_page(page);
141 out_putpage:
142         put_page(page);
143 out:
144         return -EBUSY;
145 }
146
147 /* It should be called on page which is PG_movable */
148 void putback_movable_page(struct page *page)
149 {
150         struct address_space *mapping;
151
152         VM_BUG_ON_PAGE(!PageLocked(page), page);
153         VM_BUG_ON_PAGE(!PageMovable(page), page);
154         VM_BUG_ON_PAGE(!PageIsolated(page), page);
155
156         mapping = page_mapping(page);
157         mapping->a_ops->putback_page(page);
158         __ClearPageIsolated(page);
159 }
160
161 /*
162  * Put previously isolated pages back onto the appropriate lists
163  * from where they were once taken off for compaction/migration.
164  *
165  * This function shall be used whenever the isolated pageset has been
166  * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
167  * and isolate_huge_page().
168  */
169 void putback_movable_pages(struct list_head *l)
170 {
171         struct page *page;
172         struct page *page2;
173
174         list_for_each_entry_safe(page, page2, l, lru) {
175                 if (unlikely(PageHuge(page))) {
176                         putback_active_hugepage(page);
177                         continue;
178                 }
179                 list_del(&page->lru);
180                 /*
181                  * We isolated non-lru movable page so here we can use
182                  * __PageMovable because LRU page's mapping cannot have
183                  * PAGE_MAPPING_MOVABLE.
184                  */
185                 if (unlikely(__PageMovable(page))) {
186                         VM_BUG_ON_PAGE(!PageIsolated(page), page);
187                         lock_page(page);
188                         if (PageMovable(page))
189                                 putback_movable_page(page);
190                         else
191                                 __ClearPageIsolated(page);
192                         unlock_page(page);
193                         put_page(page);
194                 } else {
195                         mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
196                                         page_is_file_lru(page), -thp_nr_pages(page));
197                         putback_lru_page(page);
198                 }
199         }
200 }
201
202 /*
203  * Restore a potential migration pte to a working pte entry
204  */
205 static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma,
206                                  unsigned long addr, void *old)
207 {
208         struct page_vma_mapped_walk pvmw = {
209                 .page = old,
210                 .vma = vma,
211                 .address = addr,
212                 .flags = PVMW_SYNC | PVMW_MIGRATION,
213         };
214         struct page *new;
215         pte_t pte;
216         swp_entry_t entry;
217
218         VM_BUG_ON_PAGE(PageTail(page), page);
219         while (page_vma_mapped_walk(&pvmw)) {
220                 if (PageKsm(page))
221                         new = page;
222                 else
223                         new = page - pvmw.page->index +
224                                 linear_page_index(vma, pvmw.address);
225
226 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
227                 /* PMD-mapped THP migration entry */
228                 if (!pvmw.pte) {
229                         VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
230                         remove_migration_pmd(&pvmw, new);
231                         continue;
232                 }
233 #endif
234
235                 get_page(new);
236                 pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
237                 if (pte_swp_soft_dirty(*pvmw.pte))
238                         pte = pte_mksoft_dirty(pte);
239
240                 /*
241                  * Recheck VMA as permissions can change since migration started
242                  */
243                 entry = pte_to_swp_entry(*pvmw.pte);
244                 if (is_write_migration_entry(entry))
245                         pte = maybe_mkwrite(pte, vma);
246                 else if (pte_swp_uffd_wp(*pvmw.pte))
247                         pte = pte_mkuffd_wp(pte);
248
249                 if (unlikely(is_device_private_page(new))) {
250                         entry = make_device_private_entry(new, pte_write(pte));
251                         pte = swp_entry_to_pte(entry);
252                         if (pte_swp_soft_dirty(*pvmw.pte))
253                                 pte = pte_swp_mksoft_dirty(pte);
254                         if (pte_swp_uffd_wp(*pvmw.pte))
255                                 pte = pte_swp_mkuffd_wp(pte);
256                 }
257
258 #ifdef CONFIG_HUGETLB_PAGE
259                 if (PageHuge(new)) {
260                         pte = pte_mkhuge(pte);
261                         pte = arch_make_huge_pte(pte, vma, new, 0);
262                         set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
263                         if (PageAnon(new))
264                                 hugepage_add_anon_rmap(new, vma, pvmw.address);
265                         else
266                                 page_dup_rmap(new, true);
267                 } else
268 #endif
269                 {
270                         set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
271
272                         if (PageAnon(new))
273                                 page_add_anon_rmap(new, vma, pvmw.address, false);
274                         else
275                                 page_add_file_rmap(new, false);
276                 }
277                 if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
278                         mlock_vma_page(new);
279
280                 if (PageTransHuge(page) && PageMlocked(page))
281                         clear_page_mlock(page);
282
283                 /* No need to invalidate - it was non-present before */
284                 update_mmu_cache(vma, pvmw.address, pvmw.pte);
285         }
286
287         return true;
288 }
289
290 /*
291  * Get rid of all migration entries and replace them by
292  * references to the indicated page.
293  */
294 void remove_migration_ptes(struct page *old, struct page *new, bool locked)
295 {
296         struct rmap_walk_control rwc = {
297                 .rmap_one = remove_migration_pte,
298                 .arg = old,
299         };
300
301         if (locked)
302                 rmap_walk_locked(new, &rwc);
303         else
304                 rmap_walk(new, &rwc);
305 }
306
307 /*
308  * Something used the pte of a page under migration. We need to
309  * get to the page and wait until migration is finished.
310  * When we return from this function the fault will be retried.
311  */
312 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
313                                 spinlock_t *ptl)
314 {
315         pte_t pte;
316         swp_entry_t entry;
317         struct page *page;
318
319         spin_lock(ptl);
320         pte = *ptep;
321         if (!is_swap_pte(pte))
322                 goto out;
323
324         entry = pte_to_swp_entry(pte);
325         if (!is_migration_entry(entry))
326                 goto out;
327
328         page = migration_entry_to_page(entry);
329
330         /*
331          * Once page cache replacement of page migration started, page_count
332          * is zero; but we must not call put_and_wait_on_page_locked() without
333          * a ref. Use get_page_unless_zero(), and just fault again if it fails.
334          */
335         if (!get_page_unless_zero(page))
336                 goto out;
337         pte_unmap_unlock(ptep, ptl);
338         put_and_wait_on_page_locked(page);
339         return;
340 out:
341         pte_unmap_unlock(ptep, ptl);
342 }
343
344 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
345                                 unsigned long address)
346 {
347         spinlock_t *ptl = pte_lockptr(mm, pmd);
348         pte_t *ptep = pte_offset_map(pmd, address);
349         __migration_entry_wait(mm, ptep, ptl);
350 }
351
352 void migration_entry_wait_huge(struct vm_area_struct *vma,
353                 struct mm_struct *mm, pte_t *pte)
354 {
355         spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
356         __migration_entry_wait(mm, pte, ptl);
357 }
358
359 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
360 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
361 {
362         spinlock_t *ptl;
363         struct page *page;
364
365         ptl = pmd_lock(mm, pmd);
366         if (!is_pmd_migration_entry(*pmd))
367                 goto unlock;
368         page = migration_entry_to_page(pmd_to_swp_entry(*pmd));
369         if (!get_page_unless_zero(page))
370                 goto unlock;
371         spin_unlock(ptl);
372         put_and_wait_on_page_locked(page);
373         return;
374 unlock:
375         spin_unlock(ptl);
376 }
377 #endif
378
379 static int expected_page_refs(struct address_space *mapping, struct page *page)
380 {
381         int expected_count = 1;
382
383         /*
384          * Device private pages have an extra refcount as they are
385          * ZONE_DEVICE pages.
386          */
387         expected_count += is_device_private_page(page);
388         if (mapping)
389                 expected_count += thp_nr_pages(page) + page_has_private(page);
390
391         return expected_count;
392 }
393
394 /*
395  * Replace the page in the mapping.
396  *
397  * The number of remaining references must be:
398  * 1 for anonymous pages without a mapping
399  * 2 for pages with a mapping
400  * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
401  */
402 int migrate_page_move_mapping(struct address_space *mapping,
403                 struct page *newpage, struct page *page, int extra_count)
404 {
405         XA_STATE(xas, &mapping->i_pages, page_index(page));
406         struct zone *oldzone, *newzone;
407         int dirty;
408         int expected_count = expected_page_refs(mapping, page) + extra_count;
409         int nr = thp_nr_pages(page);
410
411         if (!mapping) {
412                 /* Anonymous page without mapping */
413                 if (page_count(page) != expected_count)
414                         return -EAGAIN;
415
416                 /* No turning back from here */
417                 newpage->index = page->index;
418                 newpage->mapping = page->mapping;
419                 if (PageSwapBacked(page))
420                         __SetPageSwapBacked(newpage);
421
422                 return MIGRATEPAGE_SUCCESS;
423         }
424
425         oldzone = page_zone(page);
426         newzone = page_zone(newpage);
427
428         xas_lock_irq(&xas);
429         if (page_count(page) != expected_count || xas_load(&xas) != page) {
430                 xas_unlock_irq(&xas);
431                 return -EAGAIN;
432         }
433
434         if (!page_ref_freeze(page, expected_count)) {
435                 xas_unlock_irq(&xas);
436                 return -EAGAIN;
437         }
438
439         /*
440          * Now we know that no one else is looking at the page:
441          * no turning back from here.
442          */
443         newpage->index = page->index;
444         newpage->mapping = page->mapping;
445         page_ref_add(newpage, nr); /* add cache reference */
446         if (PageSwapBacked(page)) {
447                 __SetPageSwapBacked(newpage);
448                 if (PageSwapCache(page)) {
449                         SetPageSwapCache(newpage);
450                         set_page_private(newpage, page_private(page));
451                 }
452         } else {
453                 VM_BUG_ON_PAGE(PageSwapCache(page), page);
454         }
455
456         /* Move dirty while page refs frozen and newpage not yet exposed */
457         dirty = PageDirty(page);
458         if (dirty) {
459                 ClearPageDirty(page);
460                 SetPageDirty(newpage);
461         }
462
463         xas_store(&xas, newpage);
464         if (PageTransHuge(page)) {
465                 int i;
466
467                 for (i = 1; i < nr; i++) {
468                         xas_next(&xas);
469                         xas_store(&xas, newpage);
470                 }
471         }
472
473         /*
474          * Drop cache reference from old page by unfreezing
475          * to one less reference.
476          * We know this isn't the last reference.
477          */
478         page_ref_unfreeze(page, expected_count - nr);
479
480         xas_unlock(&xas);
481         /* Leave irq disabled to prevent preemption while updating stats */
482
483         /*
484          * If moved to a different zone then also account
485          * the page for that zone. Other VM counters will be
486          * taken care of when we establish references to the
487          * new page and drop references to the old page.
488          *
489          * Note that anonymous pages are accounted for
490          * via NR_FILE_PAGES and NR_ANON_MAPPED if they
491          * are mapped to swap space.
492          */
493         if (newzone != oldzone) {
494                 struct lruvec *old_lruvec, *new_lruvec;
495                 struct mem_cgroup *memcg;
496
497                 memcg = page_memcg(page);
498                 old_lruvec = mem_cgroup_lruvec(memcg, oldzone->zone_pgdat);
499                 new_lruvec = mem_cgroup_lruvec(memcg, newzone->zone_pgdat);
500
501                 __mod_lruvec_state(old_lruvec, NR_FILE_PAGES, -nr);
502                 __mod_lruvec_state(new_lruvec, NR_FILE_PAGES, nr);
503                 if (PageSwapBacked(page) && !PageSwapCache(page)) {
504                         __mod_lruvec_state(old_lruvec, NR_SHMEM, -nr);
505                         __mod_lruvec_state(new_lruvec, NR_SHMEM, nr);
506                 }
507                 if (dirty && mapping_can_writeback(mapping)) {
508                         __mod_lruvec_state(old_lruvec, NR_FILE_DIRTY, -nr);
509                         __mod_zone_page_state(oldzone, NR_ZONE_WRITE_PENDING, -nr);
510                         __mod_lruvec_state(new_lruvec, NR_FILE_DIRTY, nr);
511                         __mod_zone_page_state(newzone, NR_ZONE_WRITE_PENDING, nr);
512                 }
513         }
514         local_irq_enable();
515
516         return MIGRATEPAGE_SUCCESS;
517 }
518 EXPORT_SYMBOL(migrate_page_move_mapping);
519
520 /*
521  * The expected number of remaining references is the same as that
522  * of migrate_page_move_mapping().
523  */
524 int migrate_huge_page_move_mapping(struct address_space *mapping,
525                                    struct page *newpage, struct page *page)
526 {
527         XA_STATE(xas, &mapping->i_pages, page_index(page));
528         int expected_count;
529
530         xas_lock_irq(&xas);
531         expected_count = 2 + page_has_private(page);
532         if (page_count(page) != expected_count || xas_load(&xas) != page) {
533                 xas_unlock_irq(&xas);
534                 return -EAGAIN;
535         }
536
537         if (!page_ref_freeze(page, expected_count)) {
538                 xas_unlock_irq(&xas);
539                 return -EAGAIN;
540         }
541
542         newpage->index = page->index;
543         newpage->mapping = page->mapping;
544
545         get_page(newpage);
546
547         xas_store(&xas, newpage);
548
549         page_ref_unfreeze(page, expected_count - 1);
550
551         xas_unlock_irq(&xas);
552
553         return MIGRATEPAGE_SUCCESS;
554 }
555
556 /*
557  * Gigantic pages are so large that we do not guarantee that page++ pointer
558  * arithmetic will work across the entire page.  We need something more
559  * specialized.
560  */
561 static void __copy_gigantic_page(struct page *dst, struct page *src,
562                                 int nr_pages)
563 {
564         int i;
565         struct page *dst_base = dst;
566         struct page *src_base = src;
567
568         for (i = 0; i < nr_pages; ) {
569                 cond_resched();
570                 copy_highpage(dst, src);
571
572                 i++;
573                 dst = mem_map_next(dst, dst_base, i);
574                 src = mem_map_next(src, src_base, i);
575         }
576 }
577
578 static void copy_huge_page(struct page *dst, struct page *src)
579 {
580         int i;
581         int nr_pages;
582
583         if (PageHuge(src)) {
584                 /* hugetlbfs page */
585                 struct hstate *h = page_hstate(src);
586                 nr_pages = pages_per_huge_page(h);
587
588                 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
589                         __copy_gigantic_page(dst, src, nr_pages);
590                         return;
591                 }
592         } else {
593                 /* thp page */
594                 BUG_ON(!PageTransHuge(src));
595                 nr_pages = thp_nr_pages(src);
596         }
597
598         for (i = 0; i < nr_pages; i++) {
599                 cond_resched();
600                 copy_highpage(dst + i, src + i);
601         }
602 }
603
604 /*
605  * Copy the page to its new location
606  */
607 void migrate_page_states(struct page *newpage, struct page *page)
608 {
609         int cpupid;
610
611         if (PageError(page))
612                 SetPageError(newpage);
613         if (PageReferenced(page))
614                 SetPageReferenced(newpage);
615         if (PageUptodate(page))
616                 SetPageUptodate(newpage);
617         if (TestClearPageActive(page)) {
618                 VM_BUG_ON_PAGE(PageUnevictable(page), page);
619                 SetPageActive(newpage);
620         } else if (TestClearPageUnevictable(page))
621                 SetPageUnevictable(newpage);
622         if (PageWorkingset(page))
623                 SetPageWorkingset(newpage);
624         if (PageChecked(page))
625                 SetPageChecked(newpage);
626         if (PageMappedToDisk(page))
627                 SetPageMappedToDisk(newpage);
628
629         /* Move dirty on pages not done by migrate_page_move_mapping() */
630         if (PageDirty(page))
631                 SetPageDirty(newpage);
632
633         if (page_is_young(page))
634                 set_page_young(newpage);
635         if (page_is_idle(page))
636                 set_page_idle(newpage);
637
638         /*
639          * Copy NUMA information to the new page, to prevent over-eager
640          * future migrations of this same page.
641          */
642         cpupid = page_cpupid_xchg_last(page, -1);
643         page_cpupid_xchg_last(newpage, cpupid);
644
645         ksm_migrate_page(newpage, page);
646         /*
647          * Please do not reorder this without considering how mm/ksm.c's
648          * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
649          */
650         if (PageSwapCache(page))
651                 ClearPageSwapCache(page);
652         ClearPagePrivate(page);
653         set_page_private(page, 0);
654
655         /*
656          * If any waiters have accumulated on the new page then
657          * wake them up.
658          */
659         if (PageWriteback(newpage))
660                 end_page_writeback(newpage);
661
662         /*
663          * PG_readahead shares the same bit with PG_reclaim.  The above
664          * end_page_writeback() may clear PG_readahead mistakenly, so set the
665          * bit after that.
666          */
667         if (PageReadahead(page))
668                 SetPageReadahead(newpage);
669
670         copy_page_owner(page, newpage);
671
672         if (!PageHuge(page))
673                 mem_cgroup_migrate(page, newpage);
674 }
675 EXPORT_SYMBOL(migrate_page_states);
676
677 void migrate_page_copy(struct page *newpage, struct page *page)
678 {
679         if (PageHuge(page) || PageTransHuge(page))
680                 copy_huge_page(newpage, page);
681         else
682                 copy_highpage(newpage, page);
683
684         migrate_page_states(newpage, page);
685 }
686 EXPORT_SYMBOL(migrate_page_copy);
687
688 /************************************************************
689  *                    Migration functions
690  ***********************************************************/
691
692 /*
693  * Common logic to directly migrate a single LRU page suitable for
694  * pages that do not use PagePrivate/PagePrivate2.
695  *
696  * Pages are locked upon entry and exit.
697  */
698 int migrate_page(struct address_space *mapping,
699                 struct page *newpage, struct page *page,
700                 enum migrate_mode mode)
701 {
702         int rc;
703
704         BUG_ON(PageWriteback(page));    /* Writeback must be complete */
705
706         rc = migrate_page_move_mapping(mapping, newpage, page, 0);
707
708         if (rc != MIGRATEPAGE_SUCCESS)
709                 return rc;
710
711         if (mode != MIGRATE_SYNC_NO_COPY)
712                 migrate_page_copy(newpage, page);
713         else
714                 migrate_page_states(newpage, page);
715         return MIGRATEPAGE_SUCCESS;
716 }
717 EXPORT_SYMBOL(migrate_page);
718
719 #ifdef CONFIG_BLOCK
720 /* Returns true if all buffers are successfully locked */
721 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
722                                                         enum migrate_mode mode)
723 {
724         struct buffer_head *bh = head;
725
726         /* Simple case, sync compaction */
727         if (mode != MIGRATE_ASYNC) {
728                 do {
729                         lock_buffer(bh);
730                         bh = bh->b_this_page;
731
732                 } while (bh != head);
733
734                 return true;
735         }
736
737         /* async case, we cannot block on lock_buffer so use trylock_buffer */
738         do {
739                 if (!trylock_buffer(bh)) {
740                         /*
741                          * We failed to lock the buffer and cannot stall in
742                          * async migration. Release the taken locks
743                          */
744                         struct buffer_head *failed_bh = bh;
745                         bh = head;
746                         while (bh != failed_bh) {
747                                 unlock_buffer(bh);
748                                 bh = bh->b_this_page;
749                         }
750                         return false;
751                 }
752
753                 bh = bh->b_this_page;
754         } while (bh != head);
755         return true;
756 }
757
758 static int __buffer_migrate_page(struct address_space *mapping,
759                 struct page *newpage, struct page *page, enum migrate_mode mode,
760                 bool check_refs)
761 {
762         struct buffer_head *bh, *head;
763         int rc;
764         int expected_count;
765
766         if (!page_has_buffers(page))
767                 return migrate_page(mapping, newpage, page, mode);
768
769         /* Check whether page does not have extra refs before we do more work */
770         expected_count = expected_page_refs(mapping, page);
771         if (page_count(page) != expected_count)
772                 return -EAGAIN;
773
774         head = page_buffers(page);
775         if (!buffer_migrate_lock_buffers(head, mode))
776                 return -EAGAIN;
777
778         if (check_refs) {
779                 bool busy;
780                 bool invalidated = false;
781
782 recheck_buffers:
783                 busy = false;
784                 spin_lock(&mapping->private_lock);
785                 bh = head;
786                 do {
787                         if (atomic_read(&bh->b_count)) {
788                                 busy = true;
789                                 break;
790                         }
791                         bh = bh->b_this_page;
792                 } while (bh != head);
793                 if (busy) {
794                         if (invalidated) {
795                                 rc = -EAGAIN;
796                                 goto unlock_buffers;
797                         }
798                         spin_unlock(&mapping->private_lock);
799                         invalidate_bh_lrus();
800                         invalidated = true;
801                         goto recheck_buffers;
802                 }
803         }
804
805         rc = migrate_page_move_mapping(mapping, newpage, page, 0);
806         if (rc != MIGRATEPAGE_SUCCESS)
807                 goto unlock_buffers;
808
809         attach_page_private(newpage, detach_page_private(page));
810
811         bh = head;
812         do {
813                 set_bh_page(bh, newpage, bh_offset(bh));
814                 bh = bh->b_this_page;
815
816         } while (bh != head);
817
818         if (mode != MIGRATE_SYNC_NO_COPY)
819                 migrate_page_copy(newpage, page);
820         else
821                 migrate_page_states(newpage, page);
822
823         rc = MIGRATEPAGE_SUCCESS;
824 unlock_buffers:
825         if (check_refs)
826                 spin_unlock(&mapping->private_lock);
827         bh = head;
828         do {
829                 unlock_buffer(bh);
830                 bh = bh->b_this_page;
831
832         } while (bh != head);
833
834         return rc;
835 }
836
837 /*
838  * Migration function for pages with buffers. This function can only be used
839  * if the underlying filesystem guarantees that no other references to "page"
840  * exist. For example attached buffer heads are accessed only under page lock.
841  */
842 int buffer_migrate_page(struct address_space *mapping,
843                 struct page *newpage, struct page *page, enum migrate_mode mode)
844 {
845         return __buffer_migrate_page(mapping, newpage, page, mode, false);
846 }
847 EXPORT_SYMBOL(buffer_migrate_page);
848
849 /*
850  * Same as above except that this variant is more careful and checks that there
851  * are also no buffer head references. This function is the right one for
852  * mappings where buffer heads are directly looked up and referenced (such as
853  * block device mappings).
854  */
855 int buffer_migrate_page_norefs(struct address_space *mapping,
856                 struct page *newpage, struct page *page, enum migrate_mode mode)
857 {
858         return __buffer_migrate_page(mapping, newpage, page, mode, true);
859 }
860 #endif
861
862 /*
863  * Writeback a page to clean the dirty state
864  */
865 static int writeout(struct address_space *mapping, struct page *page)
866 {
867         struct writeback_control wbc = {
868                 .sync_mode = WB_SYNC_NONE,
869                 .nr_to_write = 1,
870                 .range_start = 0,
871                 .range_end = LLONG_MAX,
872                 .for_reclaim = 1
873         };
874         int rc;
875
876         if (!mapping->a_ops->writepage)
877                 /* No write method for the address space */
878                 return -EINVAL;
879
880         if (!clear_page_dirty_for_io(page))
881                 /* Someone else already triggered a write */
882                 return -EAGAIN;
883
884         /*
885          * A dirty page may imply that the underlying filesystem has
886          * the page on some queue. So the page must be clean for
887          * migration. Writeout may mean we loose the lock and the
888          * page state is no longer what we checked for earlier.
889          * At this point we know that the migration attempt cannot
890          * be successful.
891          */
892         remove_migration_ptes(page, page, false);
893
894         rc = mapping->a_ops->writepage(page, &wbc);
895
896         if (rc != AOP_WRITEPAGE_ACTIVATE)
897                 /* unlocked. Relock */
898                 lock_page(page);
899
900         return (rc < 0) ? -EIO : -EAGAIN;
901 }
902
903 /*
904  * Default handling if a filesystem does not provide a migration function.
905  */
906 static int fallback_migrate_page(struct address_space *mapping,
907         struct page *newpage, struct page *page, enum migrate_mode mode)
908 {
909         if (PageDirty(page)) {
910                 /* Only writeback pages in full synchronous migration */
911                 switch (mode) {
912                 case MIGRATE_SYNC:
913                 case MIGRATE_SYNC_NO_COPY:
914                         break;
915                 default:
916                         return -EBUSY;
917                 }
918                 return writeout(mapping, page);
919         }
920
921         /*
922          * Buffers may be managed in a filesystem specific way.
923          * We must have no buffers or drop them.
924          */
925         if (page_has_private(page) &&
926             !try_to_release_page(page, GFP_KERNEL))
927                 return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY;
928
929         return migrate_page(mapping, newpage, page, mode);
930 }
931
932 /*
933  * Move a page to a newly allocated page
934  * The page is locked and all ptes have been successfully removed.
935  *
936  * The new page will have replaced the old page if this function
937  * is successful.
938  *
939  * Return value:
940  *   < 0 - error code
941  *  MIGRATEPAGE_SUCCESS - success
942  */
943 static int move_to_new_page(struct page *newpage, struct page *page,
944                                 enum migrate_mode mode)
945 {
946         struct address_space *mapping;
947         int rc = -EAGAIN;
948         bool is_lru = !__PageMovable(page);
949
950         VM_BUG_ON_PAGE(!PageLocked(page), page);
951         VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
952
953         mapping = page_mapping(page);
954
955         if (likely(is_lru)) {
956                 if (!mapping)
957                         rc = migrate_page(mapping, newpage, page, mode);
958                 else if (mapping->a_ops->migratepage)
959                         /*
960                          * Most pages have a mapping and most filesystems
961                          * provide a migratepage callback. Anonymous pages
962                          * are part of swap space which also has its own
963                          * migratepage callback. This is the most common path
964                          * for page migration.
965                          */
966                         rc = mapping->a_ops->migratepage(mapping, newpage,
967                                                         page, mode);
968                 else
969                         rc = fallback_migrate_page(mapping, newpage,
970                                                         page, mode);
971         } else {
972                 /*
973                  * In case of non-lru page, it could be released after
974                  * isolation step. In that case, we shouldn't try migration.
975                  */
976                 VM_BUG_ON_PAGE(!PageIsolated(page), page);
977                 if (!PageMovable(page)) {
978                         rc = MIGRATEPAGE_SUCCESS;
979                         __ClearPageIsolated(page);
980                         goto out;
981                 }
982
983                 rc = mapping->a_ops->migratepage(mapping, newpage,
984                                                 page, mode);
985                 WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
986                         !PageIsolated(page));
987         }
988
989         /*
990          * When successful, old pagecache page->mapping must be cleared before
991          * page is freed; but stats require that PageAnon be left as PageAnon.
992          */
993         if (rc == MIGRATEPAGE_SUCCESS) {
994                 if (__PageMovable(page)) {
995                         VM_BUG_ON_PAGE(!PageIsolated(page), page);
996
997                         /*
998                          * We clear PG_movable under page_lock so any compactor
999                          * cannot try to migrate this page.
1000                          */
1001                         __ClearPageIsolated(page);
1002                 }
1003
1004                 /*
1005                  * Anonymous and movable page->mapping will be cleared by
1006                  * free_pages_prepare so don't reset it here for keeping
1007                  * the type to work PageAnon, for example.
1008                  */
1009                 if (!PageMappingFlags(page))
1010                         page->mapping = NULL;
1011
1012                 if (likely(!is_zone_device_page(newpage)))
1013                         flush_dcache_page(newpage);
1014
1015         }
1016 out:
1017         return rc;
1018 }
1019
1020 static int __unmap_and_move(struct page *page, struct page *newpage,
1021                                 int force, enum migrate_mode mode)
1022 {
1023         int rc = -EAGAIN;
1024         int page_was_mapped = 0;
1025         struct anon_vma *anon_vma = NULL;
1026         bool is_lru = !__PageMovable(page);
1027
1028         if (!trylock_page(page)) {
1029                 if (!force || mode == MIGRATE_ASYNC)
1030                         goto out;
1031
1032                 /*
1033                  * It's not safe for direct compaction to call lock_page.
1034                  * For example, during page readahead pages are added locked
1035                  * to the LRU. Later, when the IO completes the pages are
1036                  * marked uptodate and unlocked. However, the queueing
1037                  * could be merging multiple pages for one bio (e.g.
1038                  * mpage_readahead). If an allocation happens for the
1039                  * second or third page, the process can end up locking
1040                  * the same page twice and deadlocking. Rather than
1041                  * trying to be clever about what pages can be locked,
1042                  * avoid the use of lock_page for direct compaction
1043                  * altogether.
1044                  */
1045                 if (current->flags & PF_MEMALLOC)
1046                         goto out;
1047
1048                 lock_page(page);
1049         }
1050
1051         if (PageWriteback(page)) {
1052                 /*
1053                  * Only in the case of a full synchronous migration is it
1054                  * necessary to wait for PageWriteback. In the async case,
1055                  * the retry loop is too short and in the sync-light case,
1056                  * the overhead of stalling is too much
1057                  */
1058                 switch (mode) {
1059                 case MIGRATE_SYNC:
1060                 case MIGRATE_SYNC_NO_COPY:
1061                         break;
1062                 default:
1063                         rc = -EBUSY;
1064                         goto out_unlock;
1065                 }
1066                 if (!force)
1067                         goto out_unlock;
1068                 wait_on_page_writeback(page);
1069         }
1070
1071         /*
1072          * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
1073          * we cannot notice that anon_vma is freed while we migrates a page.
1074          * This get_anon_vma() delays freeing anon_vma pointer until the end
1075          * of migration. File cache pages are no problem because of page_lock()
1076          * File Caches may use write_page() or lock_page() in migration, then,
1077          * just care Anon page here.
1078          *
1079          * Only page_get_anon_vma() understands the subtleties of
1080          * getting a hold on an anon_vma from outside one of its mms.
1081          * But if we cannot get anon_vma, then we won't need it anyway,
1082          * because that implies that the anon page is no longer mapped
1083          * (and cannot be remapped so long as we hold the page lock).
1084          */
1085         if (PageAnon(page) && !PageKsm(page))
1086                 anon_vma = page_get_anon_vma(page);
1087
1088         /*
1089          * Block others from accessing the new page when we get around to
1090          * establishing additional references. We are usually the only one
1091          * holding a reference to newpage at this point. We used to have a BUG
1092          * here if trylock_page(newpage) fails, but would like to allow for
1093          * cases where there might be a race with the previous use of newpage.
1094          * This is much like races on refcount of oldpage: just don't BUG().
1095          */
1096         if (unlikely(!trylock_page(newpage)))
1097                 goto out_unlock;
1098
1099         if (unlikely(!is_lru)) {
1100                 rc = move_to_new_page(newpage, page, mode);
1101                 goto out_unlock_both;
1102         }
1103
1104         /*
1105          * Corner case handling:
1106          * 1. When a new swap-cache page is read into, it is added to the LRU
1107          * and treated as swapcache but it has no rmap yet.
1108          * Calling try_to_unmap() against a page->mapping==NULL page will
1109          * trigger a BUG.  So handle it here.
1110          * 2. An orphaned page (see truncate_complete_page) might have
1111          * fs-private metadata. The page can be picked up due to memory
1112          * offlining.  Everywhere else except page reclaim, the page is
1113          * invisible to the vm, so the page can not be migrated.  So try to
1114          * free the metadata, so the page can be freed.
1115          */
1116         if (!page->mapping) {
1117                 VM_BUG_ON_PAGE(PageAnon(page), page);
1118                 if (page_has_private(page)) {
1119                         try_to_free_buffers(page);
1120                         goto out_unlock_both;
1121                 }
1122         } else if (page_mapped(page)) {
1123                 /* Establish migration ptes */
1124                 VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1125                                 page);
1126                 try_to_unmap(page, TTU_MIGRATION|TTU_IGNORE_MLOCK);
1127                 page_was_mapped = 1;
1128         }
1129
1130         if (!page_mapped(page))
1131                 rc = move_to_new_page(newpage, page, mode);
1132
1133         if (page_was_mapped)
1134                 remove_migration_ptes(page,
1135                         rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
1136
1137 out_unlock_both:
1138         unlock_page(newpage);
1139 out_unlock:
1140         /* Drop an anon_vma reference if we took one */
1141         if (anon_vma)
1142                 put_anon_vma(anon_vma);
1143         unlock_page(page);
1144 out:
1145         /*
1146          * If migration is successful, decrease refcount of the newpage
1147          * which will not free the page because new page owner increased
1148          * refcounter. As well, if it is LRU page, add the page to LRU
1149          * list in here. Use the old state of the isolated source page to
1150          * determine if we migrated a LRU page. newpage was already unlocked
1151          * and possibly modified by its owner - don't rely on the page
1152          * state.
1153          */
1154         if (rc == MIGRATEPAGE_SUCCESS) {
1155                 if (unlikely(!is_lru))
1156                         put_page(newpage);
1157                 else
1158                         putback_lru_page(newpage);
1159         }
1160
1161         return rc;
1162 }
1163
1164 /*
1165  * Obtain the lock on page, remove all ptes and migrate the page
1166  * to the newly allocated page in newpage.
1167  */
1168 static int unmap_and_move(new_page_t get_new_page,
1169                                    free_page_t put_new_page,
1170                                    unsigned long private, struct page *page,
1171                                    int force, enum migrate_mode mode,
1172                                    enum migrate_reason reason)
1173 {
1174         int rc = MIGRATEPAGE_SUCCESS;
1175         struct page *newpage = NULL;
1176
1177         if (!thp_migration_supported() && PageTransHuge(page))
1178                 return -ENOMEM;
1179
1180         if (page_count(page) == 1) {
1181                 /* page was freed from under us. So we are done. */
1182                 ClearPageActive(page);
1183                 ClearPageUnevictable(page);
1184                 if (unlikely(__PageMovable(page))) {
1185                         lock_page(page);
1186                         if (!PageMovable(page))
1187                                 __ClearPageIsolated(page);
1188                         unlock_page(page);
1189                 }
1190                 goto out;
1191         }
1192
1193         newpage = get_new_page(page, private);
1194         if (!newpage)
1195                 return -ENOMEM;
1196
1197         rc = __unmap_and_move(page, newpage, force, mode);
1198         if (rc == MIGRATEPAGE_SUCCESS)
1199                 set_page_owner_migrate_reason(newpage, reason);
1200
1201 out:
1202         if (rc != -EAGAIN) {
1203                 /*
1204                  * A page that has been migrated has all references
1205                  * removed and will be freed. A page that has not been
1206                  * migrated will have kept its references and be restored.
1207                  */
1208                 list_del(&page->lru);
1209
1210                 /*
1211                  * Compaction can migrate also non-LRU pages which are
1212                  * not accounted to NR_ISOLATED_*. They can be recognized
1213                  * as __PageMovable
1214                  */
1215                 if (likely(!__PageMovable(page)))
1216                         mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
1217                                         page_is_file_lru(page), -thp_nr_pages(page));
1218         }
1219
1220         /*
1221          * If migration is successful, releases reference grabbed during
1222          * isolation. Otherwise, restore the page to right list unless
1223          * we want to retry.
1224          */
1225         if (rc == MIGRATEPAGE_SUCCESS) {
1226                 if (reason != MR_MEMORY_FAILURE)
1227                         /*
1228                          * We release the page in page_handle_poison.
1229                          */
1230                         put_page(page);
1231         } else {
1232                 if (rc != -EAGAIN) {
1233                         if (likely(!__PageMovable(page))) {
1234                                 putback_lru_page(page);
1235                                 goto put_new;
1236                         }
1237
1238                         lock_page(page);
1239                         if (PageMovable(page))
1240                                 putback_movable_page(page);
1241                         else
1242                                 __ClearPageIsolated(page);
1243                         unlock_page(page);
1244                         put_page(page);
1245                 }
1246 put_new:
1247                 if (put_new_page)
1248                         put_new_page(newpage, private);
1249                 else
1250                         put_page(newpage);
1251         }
1252
1253         return rc;
1254 }
1255
1256 /*
1257  * Counterpart of unmap_and_move_page() for hugepage migration.
1258  *
1259  * This function doesn't wait the completion of hugepage I/O
1260  * because there is no race between I/O and migration for hugepage.
1261  * Note that currently hugepage I/O occurs only in direct I/O
1262  * where no lock is held and PG_writeback is irrelevant,
1263  * and writeback status of all subpages are counted in the reference
1264  * count of the head page (i.e. if all subpages of a 2MB hugepage are
1265  * under direct I/O, the reference of the head page is 512 and a bit more.)
1266  * This means that when we try to migrate hugepage whose subpages are
1267  * doing direct I/O, some references remain after try_to_unmap() and
1268  * hugepage migration fails without data corruption.
1269  *
1270  * There is also no race when direct I/O is issued on the page under migration,
1271  * because then pte is replaced with migration swap entry and direct I/O code
1272  * will wait in the page fault for migration to complete.
1273  */
1274 static int unmap_and_move_huge_page(new_page_t get_new_page,
1275                                 free_page_t put_new_page, unsigned long private,
1276                                 struct page *hpage, int force,
1277                                 enum migrate_mode mode, int reason)
1278 {
1279         int rc = -EAGAIN;
1280         int page_was_mapped = 0;
1281         struct page *new_hpage;
1282         struct anon_vma *anon_vma = NULL;
1283         struct address_space *mapping = NULL;
1284
1285         /*
1286          * Migratability of hugepages depends on architectures and their size.
1287          * This check is necessary because some callers of hugepage migration
1288          * like soft offline and memory hotremove don't walk through page
1289          * tables or check whether the hugepage is pmd-based or not before
1290          * kicking migration.
1291          */
1292         if (!hugepage_migration_supported(page_hstate(hpage))) {
1293                 putback_active_hugepage(hpage);
1294                 return -ENOSYS;
1295         }
1296
1297         new_hpage = get_new_page(hpage, private);
1298         if (!new_hpage)
1299                 return -ENOMEM;
1300
1301         if (!trylock_page(hpage)) {
1302                 if (!force)
1303                         goto out;
1304                 switch (mode) {
1305                 case MIGRATE_SYNC:
1306                 case MIGRATE_SYNC_NO_COPY:
1307                         break;
1308                 default:
1309                         goto out;
1310                 }
1311                 lock_page(hpage);
1312         }
1313
1314         /*
1315          * Check for pages which are in the process of being freed.  Without
1316          * page_mapping() set, hugetlbfs specific move page routine will not
1317          * be called and we could leak usage counts for subpools.
1318          */
1319         if (page_private(hpage) && !page_mapping(hpage)) {
1320                 rc = -EBUSY;
1321                 goto out_unlock;
1322         }
1323
1324         if (PageAnon(hpage))
1325                 anon_vma = page_get_anon_vma(hpage);
1326
1327         if (unlikely(!trylock_page(new_hpage)))
1328                 goto put_anon;
1329
1330         if (page_mapped(hpage)) {
1331                 bool mapping_locked = false;
1332                 enum ttu_flags ttu = TTU_MIGRATION|TTU_IGNORE_MLOCK;
1333
1334                 if (!PageAnon(hpage)) {
1335                         /*
1336                          * In shared mappings, try_to_unmap could potentially
1337                          * call huge_pmd_unshare.  Because of this, take
1338                          * semaphore in write mode here and set TTU_RMAP_LOCKED
1339                          * to let lower levels know we have taken the lock.
1340                          */
1341                         mapping = hugetlb_page_mapping_lock_write(hpage);
1342                         if (unlikely(!mapping))
1343                                 goto unlock_put_anon;
1344
1345                         mapping_locked = true;
1346                         ttu |= TTU_RMAP_LOCKED;
1347                 }
1348
1349                 try_to_unmap(hpage, ttu);
1350                 page_was_mapped = 1;
1351
1352                 if (mapping_locked)
1353                         i_mmap_unlock_write(mapping);
1354         }
1355
1356         if (!page_mapped(hpage))
1357                 rc = move_to_new_page(new_hpage, hpage, mode);
1358
1359         if (page_was_mapped)
1360                 remove_migration_ptes(hpage,
1361                         rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false);
1362
1363 unlock_put_anon:
1364         unlock_page(new_hpage);
1365
1366 put_anon:
1367         if (anon_vma)
1368                 put_anon_vma(anon_vma);
1369
1370         if (rc == MIGRATEPAGE_SUCCESS) {
1371                 move_hugetlb_state(hpage, new_hpage, reason);
1372                 put_new_page = NULL;
1373         }
1374
1375 out_unlock:
1376         unlock_page(hpage);
1377 out:
1378         if (rc != -EAGAIN)
1379                 putback_active_hugepage(hpage);
1380
1381         /*
1382          * If migration was not successful and there's a freeing callback, use
1383          * it.  Otherwise, put_page() will drop the reference grabbed during
1384          * isolation.
1385          */
1386         if (put_new_page)
1387                 put_new_page(new_hpage, private);
1388         else
1389                 putback_active_hugepage(new_hpage);
1390
1391         return rc;
1392 }
1393
1394 /*
1395  * migrate_pages - migrate the pages specified in a list, to the free pages
1396  *                 supplied as the target for the page migration
1397  *
1398  * @from:               The list of pages to be migrated.
1399  * @get_new_page:       The function used to allocate free pages to be used
1400  *                      as the target of the page migration.
1401  * @put_new_page:       The function used to free target pages if migration
1402  *                      fails, or NULL if no special handling is necessary.
1403  * @private:            Private data to be passed on to get_new_page()
1404  * @mode:               The migration mode that specifies the constraints for
1405  *                      page migration, if any.
1406  * @reason:             The reason for page migration.
1407  *
1408  * The function returns after 10 attempts or if no pages are movable any more
1409  * because the list has become empty or no retryable pages exist any more.
1410  * The caller should call putback_movable_pages() to return pages to the LRU
1411  * or free list only if ret != 0.
1412  *
1413  * Returns the number of pages that were not migrated, or an error code.
1414  */
1415 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1416                 free_page_t put_new_page, unsigned long private,
1417                 enum migrate_mode mode, int reason)
1418 {
1419         int retry = 1;
1420         int thp_retry = 1;
1421         int nr_failed = 0;
1422         int nr_succeeded = 0;
1423         int nr_thp_succeeded = 0;
1424         int nr_thp_failed = 0;
1425         int nr_thp_split = 0;
1426         int pass = 0;
1427         bool is_thp = false;
1428         struct page *page;
1429         struct page *page2;
1430         int swapwrite = current->flags & PF_SWAPWRITE;
1431         int rc, nr_subpages;
1432
1433         if (!swapwrite)
1434                 current->flags |= PF_SWAPWRITE;
1435
1436         for (pass = 0; pass < 10 && (retry || thp_retry); pass++) {
1437                 retry = 0;
1438                 thp_retry = 0;
1439
1440                 list_for_each_entry_safe(page, page2, from, lru) {
1441 retry:
1442                         /*
1443                          * THP statistics is based on the source huge page.
1444                          * Capture required information that might get lost
1445                          * during migration.
1446                          */
1447                         is_thp = PageTransHuge(page) && !PageHuge(page);
1448                         nr_subpages = thp_nr_pages(page);
1449                         cond_resched();
1450
1451                         if (PageHuge(page))
1452                                 rc = unmap_and_move_huge_page(get_new_page,
1453                                                 put_new_page, private, page,
1454                                                 pass > 2, mode, reason);
1455                         else
1456                                 rc = unmap_and_move(get_new_page, put_new_page,
1457                                                 private, page, pass > 2, mode,
1458                                                 reason);
1459
1460                         switch(rc) {
1461                         case -ENOMEM:
1462                                 /*
1463                                  * THP migration might be unsupported or the
1464                                  * allocation could've failed so we should
1465                                  * retry on the same page with the THP split
1466                                  * to base pages.
1467                                  *
1468                                  * Head page is retried immediately and tail
1469                                  * pages are added to the tail of the list so
1470                                  * we encounter them after the rest of the list
1471                                  * is processed.
1472                                  */
1473                                 if (is_thp) {
1474                                         lock_page(page);
1475                                         rc = split_huge_page_to_list(page, from);
1476                                         unlock_page(page);
1477                                         if (!rc) {
1478                                                 list_safe_reset_next(page, page2, lru);
1479                                                 nr_thp_split++;
1480                                                 goto retry;
1481                                         }
1482
1483                                         nr_thp_failed++;
1484                                         nr_failed += nr_subpages;
1485                                         goto out;
1486                                 }
1487                                 nr_failed++;
1488                                 goto out;
1489                         case -EAGAIN:
1490                                 if (is_thp) {
1491                                         thp_retry++;
1492                                         break;
1493                                 }
1494                                 retry++;
1495                                 break;
1496                         case MIGRATEPAGE_SUCCESS:
1497                                 if (is_thp) {
1498                                         nr_thp_succeeded++;
1499                                         nr_succeeded += nr_subpages;
1500                                         break;
1501                                 }
1502                                 nr_succeeded++;
1503                                 break;
1504                         default:
1505                                 /*
1506                                  * Permanent failure (-EBUSY, -ENOSYS, etc.):
1507                                  * unlike -EAGAIN case, the failed page is
1508                                  * removed from migration page list and not
1509                                  * retried in the next outer loop.
1510                                  */
1511                                 if (is_thp) {
1512                                         nr_thp_failed++;
1513                                         nr_failed += nr_subpages;
1514                                         break;
1515                                 }
1516                                 nr_failed++;
1517                                 break;
1518                         }
1519                 }
1520         }
1521         nr_failed += retry + thp_retry;
1522         nr_thp_failed += thp_retry;
1523         rc = nr_failed;
1524 out:
1525         count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1526         count_vm_events(PGMIGRATE_FAIL, nr_failed);
1527         count_vm_events(THP_MIGRATION_SUCCESS, nr_thp_succeeded);
1528         count_vm_events(THP_MIGRATION_FAIL, nr_thp_failed);
1529         count_vm_events(THP_MIGRATION_SPLIT, nr_thp_split);
1530         trace_mm_migrate_pages(nr_succeeded, nr_failed, nr_thp_succeeded,
1531                                nr_thp_failed, nr_thp_split, mode, reason);
1532
1533         if (!swapwrite)
1534                 current->flags &= ~PF_SWAPWRITE;
1535
1536         return rc;
1537 }
1538
1539 struct page *alloc_migration_target(struct page *page, unsigned long private)
1540 {
1541         struct migration_target_control *mtc;
1542         gfp_t gfp_mask;
1543         unsigned int order = 0;
1544         struct page *new_page = NULL;
1545         int nid;
1546         int zidx;
1547
1548         mtc = (struct migration_target_control *)private;
1549         gfp_mask = mtc->gfp_mask;
1550         nid = mtc->nid;
1551         if (nid == NUMA_NO_NODE)
1552                 nid = page_to_nid(page);
1553
1554         if (PageHuge(page)) {
1555                 struct hstate *h = page_hstate(compound_head(page));
1556
1557                 gfp_mask = htlb_modify_alloc_mask(h, gfp_mask);
1558                 return alloc_huge_page_nodemask(h, nid, mtc->nmask, gfp_mask);
1559         }
1560
1561         if (PageTransHuge(page)) {
1562                 /*
1563                  * clear __GFP_RECLAIM to make the migration callback
1564                  * consistent with regular THP allocations.
1565                  */
1566                 gfp_mask &= ~__GFP_RECLAIM;
1567                 gfp_mask |= GFP_TRANSHUGE;
1568                 order = HPAGE_PMD_ORDER;
1569         }
1570         zidx = zone_idx(page_zone(page));
1571         if (is_highmem_idx(zidx) || zidx == ZONE_MOVABLE)
1572                 gfp_mask |= __GFP_HIGHMEM;
1573
1574         new_page = __alloc_pages_nodemask(gfp_mask, order, nid, mtc->nmask);
1575
1576         if (new_page && PageTransHuge(new_page))
1577                 prep_transhuge_page(new_page);
1578
1579         return new_page;
1580 }
1581
1582 #ifdef CONFIG_NUMA
1583
1584 static int store_status(int __user *status, int start, int value, int nr)
1585 {
1586         while (nr-- > 0) {
1587                 if (put_user(value, status + start))
1588                         return -EFAULT;
1589                 start++;
1590         }
1591
1592         return 0;
1593 }
1594
1595 static int do_move_pages_to_node(struct mm_struct *mm,
1596                 struct list_head *pagelist, int node)
1597 {
1598         int err;
1599         struct migration_target_control mtc = {
1600                 .nid = node,
1601                 .gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE,
1602         };
1603
1604         err = migrate_pages(pagelist, alloc_migration_target, NULL,
1605                         (unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL);
1606         if (err)
1607                 putback_movable_pages(pagelist);
1608         return err;
1609 }
1610
1611 /*
1612  * Resolves the given address to a struct page, isolates it from the LRU and
1613  * puts it to the given pagelist.
1614  * Returns:
1615  *     errno - if the page cannot be found/isolated
1616  *     0 - when it doesn't have to be migrated because it is already on the
1617  *         target node
1618  *     1 - when it has been queued
1619  */
1620 static int add_page_for_migration(struct mm_struct *mm, unsigned long addr,
1621                 int node, struct list_head *pagelist, bool migrate_all)
1622 {
1623         struct vm_area_struct *vma;
1624         struct page *page;
1625         unsigned int follflags;
1626         int err;
1627
1628         mmap_read_lock(mm);
1629         err = -EFAULT;
1630         vma = find_vma(mm, addr);
1631         if (!vma || addr < vma->vm_start || !vma_migratable(vma))
1632                 goto out;
1633
1634         /* FOLL_DUMP to ignore special (like zero) pages */
1635         follflags = FOLL_GET | FOLL_DUMP;
1636         page = follow_page(vma, addr, follflags);
1637
1638         err = PTR_ERR(page);
1639         if (IS_ERR(page))
1640                 goto out;
1641
1642         err = -ENOENT;
1643         if (!page)
1644                 goto out;
1645
1646         err = 0;
1647         if (page_to_nid(page) == node)
1648                 goto out_putpage;
1649
1650         err = -EACCES;
1651         if (page_mapcount(page) > 1 && !migrate_all)
1652                 goto out_putpage;
1653
1654         if (PageHuge(page)) {
1655                 if (PageHead(page)) {
1656                         isolate_huge_page(page, pagelist);
1657                         err = 1;
1658                 }
1659         } else {
1660                 struct page *head;
1661
1662                 head = compound_head(page);
1663                 err = isolate_lru_page(head);
1664                 if (err)
1665                         goto out_putpage;
1666
1667                 err = 1;
1668                 list_add_tail(&head->lru, pagelist);
1669                 mod_node_page_state(page_pgdat(head),
1670                         NR_ISOLATED_ANON + page_is_file_lru(head),
1671                         thp_nr_pages(head));
1672         }
1673 out_putpage:
1674         /*
1675          * Either remove the duplicate refcount from
1676          * isolate_lru_page() or drop the page ref if it was
1677          * not isolated.
1678          */
1679         put_page(page);
1680 out:
1681         mmap_read_unlock(mm);
1682         return err;
1683 }
1684
1685 static int move_pages_and_store_status(struct mm_struct *mm, int node,
1686                 struct list_head *pagelist, int __user *status,
1687                 int start, int i, unsigned long nr_pages)
1688 {
1689         int err;
1690
1691         if (list_empty(pagelist))
1692                 return 0;
1693
1694         err = do_move_pages_to_node(mm, pagelist, node);
1695         if (err) {
1696                 /*
1697                  * Positive err means the number of failed
1698                  * pages to migrate.  Since we are going to
1699                  * abort and return the number of non-migrated
1700                  * pages, so need to incude the rest of the
1701                  * nr_pages that have not been attempted as
1702                  * well.
1703                  */
1704                 if (err > 0)
1705                         err += nr_pages - i - 1;
1706                 return err;
1707         }
1708         return store_status(status, start, node, i - start);
1709 }
1710
1711 /*
1712  * Migrate an array of page address onto an array of nodes and fill
1713  * the corresponding array of status.
1714  */
1715 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1716                          unsigned long nr_pages,
1717                          const void __user * __user *pages,
1718                          const int __user *nodes,
1719                          int __user *status, int flags)
1720 {
1721         int current_node = NUMA_NO_NODE;
1722         LIST_HEAD(pagelist);
1723         int start, i;
1724         int err = 0, err1;
1725
1726         migrate_prep();
1727
1728         for (i = start = 0; i < nr_pages; i++) {
1729                 const void __user *p;
1730                 unsigned long addr;
1731                 int node;
1732
1733                 err = -EFAULT;
1734                 if (get_user(p, pages + i))
1735                         goto out_flush;
1736                 if (get_user(node, nodes + i))
1737                         goto out_flush;
1738                 addr = (unsigned long)untagged_addr(p);
1739
1740                 err = -ENODEV;
1741                 if (node < 0 || node >= MAX_NUMNODES)
1742                         goto out_flush;
1743                 if (!node_state(node, N_MEMORY))
1744                         goto out_flush;
1745
1746                 err = -EACCES;
1747                 if (!node_isset(node, task_nodes))
1748                         goto out_flush;
1749
1750                 if (current_node == NUMA_NO_NODE) {
1751                         current_node = node;
1752                         start = i;
1753                 } else if (node != current_node) {
1754                         err = move_pages_and_store_status(mm, current_node,
1755                                         &pagelist, status, start, i, nr_pages);
1756                         if (err)
1757                                 goto out;
1758                         start = i;
1759                         current_node = node;
1760                 }
1761
1762                 /*
1763                  * Errors in the page lookup or isolation are not fatal and we simply
1764                  * report them via status
1765                  */
1766                 err = add_page_for_migration(mm, addr, current_node,
1767                                 &pagelist, flags & MPOL_MF_MOVE_ALL);
1768
1769                 if (err > 0) {
1770                         /* The page is successfully queued for migration */
1771                         continue;
1772                 }
1773
1774                 /*
1775                  * If the page is already on the target node (!err), store the
1776                  * node, otherwise, store the err.
1777                  */
1778                 err = store_status(status, i, err ? : current_node, 1);
1779                 if (err)
1780                         goto out_flush;
1781
1782                 err = move_pages_and_store_status(mm, current_node, &pagelist,
1783                                 status, start, i, nr_pages);
1784                 if (err)
1785                         goto out;
1786                 current_node = NUMA_NO_NODE;
1787         }
1788 out_flush:
1789         /* Make sure we do not overwrite the existing error */
1790         err1 = move_pages_and_store_status(mm, current_node, &pagelist,
1791                                 status, start, i, nr_pages);
1792         if (err >= 0)
1793                 err = err1;
1794 out:
1795         return err;
1796 }
1797
1798 /*
1799  * Determine the nodes of an array of pages and store it in an array of status.
1800  */
1801 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1802                                 const void __user **pages, int *status)
1803 {
1804         unsigned long i;
1805
1806         mmap_read_lock(mm);
1807
1808         for (i = 0; i < nr_pages; i++) {
1809                 unsigned long addr = (unsigned long)(*pages);
1810                 struct vm_area_struct *vma;
1811                 struct page *page;
1812                 int err = -EFAULT;
1813
1814                 vma = find_vma(mm, addr);
1815                 if (!vma || addr < vma->vm_start)
1816                         goto set_status;
1817
1818                 /* FOLL_DUMP to ignore special (like zero) pages */
1819                 page = follow_page(vma, addr, FOLL_DUMP);
1820
1821                 err = PTR_ERR(page);
1822                 if (IS_ERR(page))
1823                         goto set_status;
1824
1825                 err = page ? page_to_nid(page) : -ENOENT;
1826 set_status:
1827                 *status = err;
1828
1829                 pages++;
1830                 status++;
1831         }
1832
1833         mmap_read_unlock(mm);
1834 }
1835
1836 /*
1837  * Determine the nodes of a user array of pages and store it in
1838  * a user array of status.
1839  */
1840 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1841                          const void __user * __user *pages,
1842                          int __user *status)
1843 {
1844 #define DO_PAGES_STAT_CHUNK_NR 16
1845         const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1846         int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1847
1848         while (nr_pages) {
1849                 unsigned long chunk_nr;
1850
1851                 chunk_nr = nr_pages;
1852                 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1853                         chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1854
1855                 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1856                         break;
1857
1858                 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1859
1860                 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1861                         break;
1862
1863                 pages += chunk_nr;
1864                 status += chunk_nr;
1865                 nr_pages -= chunk_nr;
1866         }
1867         return nr_pages ? -EFAULT : 0;
1868 }
1869
1870 static struct mm_struct *find_mm_struct(pid_t pid, nodemask_t *mem_nodes)
1871 {
1872         struct task_struct *task;
1873         struct mm_struct *mm;
1874
1875         /*
1876          * There is no need to check if current process has the right to modify
1877          * the specified process when they are same.
1878          */
1879         if (!pid) {
1880                 mmget(current->mm);
1881                 *mem_nodes = cpuset_mems_allowed(current);
1882                 return current->mm;
1883         }
1884
1885         /* Find the mm_struct */
1886         rcu_read_lock();
1887         task = find_task_by_vpid(pid);
1888         if (!task) {
1889                 rcu_read_unlock();
1890                 return ERR_PTR(-ESRCH);
1891         }
1892         get_task_struct(task);
1893
1894         /*
1895          * Check if this process has the right to modify the specified
1896          * process. Use the regular "ptrace_may_access()" checks.
1897          */
1898         if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1899                 rcu_read_unlock();
1900                 mm = ERR_PTR(-EPERM);
1901                 goto out;
1902         }
1903         rcu_read_unlock();
1904
1905         mm = ERR_PTR(security_task_movememory(task));
1906         if (IS_ERR(mm))
1907                 goto out;
1908         *mem_nodes = cpuset_mems_allowed(task);
1909         mm = get_task_mm(task);
1910 out:
1911         put_task_struct(task);
1912         if (!mm)
1913                 mm = ERR_PTR(-EINVAL);
1914         return mm;
1915 }
1916
1917 /*
1918  * Move a list of pages in the address space of the currently executing
1919  * process.
1920  */
1921 static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
1922                              const void __user * __user *pages,
1923                              const int __user *nodes,
1924                              int __user *status, int flags)
1925 {
1926         struct mm_struct *mm;
1927         int err;
1928         nodemask_t task_nodes;
1929
1930         /* Check flags */
1931         if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1932                 return -EINVAL;
1933
1934         if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1935                 return -EPERM;
1936
1937         mm = find_mm_struct(pid, &task_nodes);
1938         if (IS_ERR(mm))
1939                 return PTR_ERR(mm);
1940
1941         if (nodes)
1942                 err = do_pages_move(mm, task_nodes, nr_pages, pages,
1943                                     nodes, status, flags);
1944         else
1945                 err = do_pages_stat(mm, nr_pages, pages, status);
1946
1947         mmput(mm);
1948         return err;
1949 }
1950
1951 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1952                 const void __user * __user *, pages,
1953                 const int __user *, nodes,
1954                 int __user *, status, int, flags)
1955 {
1956         return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1957 }
1958
1959 #ifdef CONFIG_COMPAT
1960 COMPAT_SYSCALL_DEFINE6(move_pages, pid_t, pid, compat_ulong_t, nr_pages,
1961                        compat_uptr_t __user *, pages32,
1962                        const int __user *, nodes,
1963                        int __user *, status,
1964                        int, flags)
1965 {
1966         const void __user * __user *pages;
1967         int i;
1968
1969         pages = compat_alloc_user_space(nr_pages * sizeof(void *));
1970         for (i = 0; i < nr_pages; i++) {
1971                 compat_uptr_t p;
1972
1973                 if (get_user(p, pages32 + i) ||
1974                         put_user(compat_ptr(p), pages + i))
1975                         return -EFAULT;
1976         }
1977         return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1978 }
1979 #endif /* CONFIG_COMPAT */
1980
1981 #ifdef CONFIG_NUMA_BALANCING
1982 /*
1983  * Returns true if this is a safe migration target node for misplaced NUMA
1984  * pages. Currently it only checks the watermarks which crude
1985  */
1986 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1987                                    unsigned long nr_migrate_pages)
1988 {
1989         int z;
1990
1991         for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1992                 struct zone *zone = pgdat->node_zones + z;
1993
1994                 if (!populated_zone(zone))
1995                         continue;
1996
1997                 /* Avoid waking kswapd by allocating pages_to_migrate pages. */
1998                 if (!zone_watermark_ok(zone, 0,
1999                                        high_wmark_pages(zone) +
2000                                        nr_migrate_pages,
2001                                        ZONE_MOVABLE, 0))
2002                         continue;
2003                 return true;
2004         }
2005         return false;
2006 }
2007
2008 static struct page *alloc_misplaced_dst_page(struct page *page,
2009                                            unsigned long data)
2010 {
2011         int nid = (int) data;
2012         struct page *newpage;
2013
2014         newpage = __alloc_pages_node(nid,
2015                                          (GFP_HIGHUSER_MOVABLE |
2016                                           __GFP_THISNODE | __GFP_NOMEMALLOC |
2017                                           __GFP_NORETRY | __GFP_NOWARN) &
2018                                          ~__GFP_RECLAIM, 0);
2019
2020         return newpage;
2021 }
2022
2023 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
2024 {
2025         int page_lru;
2026
2027         VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
2028
2029         /* Avoid migrating to a node that is nearly full */
2030         if (!migrate_balanced_pgdat(pgdat, compound_nr(page)))
2031                 return 0;
2032
2033         if (isolate_lru_page(page))
2034                 return 0;
2035
2036         /*
2037          * migrate_misplaced_transhuge_page() skips page migration's usual
2038          * check on page_count(), so we must do it here, now that the page
2039          * has been isolated: a GUP pin, or any other pin, prevents migration.
2040          * The expected page count is 3: 1 for page's mapcount and 1 for the
2041          * caller's pin and 1 for the reference taken by isolate_lru_page().
2042          */
2043         if (PageTransHuge(page) && page_count(page) != 3) {
2044                 putback_lru_page(page);
2045                 return 0;
2046         }
2047
2048         page_lru = page_is_file_lru(page);
2049         mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
2050                                 thp_nr_pages(page));
2051
2052         /*
2053          * Isolating the page has taken another reference, so the
2054          * caller's reference can be safely dropped without the page
2055          * disappearing underneath us during migration.
2056          */
2057         put_page(page);
2058         return 1;
2059 }
2060
2061 bool pmd_trans_migrating(pmd_t pmd)
2062 {
2063         struct page *page = pmd_page(pmd);
2064         return PageLocked(page);
2065 }
2066
2067 /*
2068  * Attempt to migrate a misplaced page to the specified destination
2069  * node. Caller is expected to have an elevated reference count on
2070  * the page that will be dropped by this function before returning.
2071  */
2072 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
2073                            int node)
2074 {
2075         pg_data_t *pgdat = NODE_DATA(node);
2076         int isolated;
2077         int nr_remaining;
2078         LIST_HEAD(migratepages);
2079
2080         /*
2081          * Don't migrate file pages that are mapped in multiple processes
2082          * with execute permissions as they are probably shared libraries.
2083          */
2084         if (page_mapcount(page) != 1 && page_is_file_lru(page) &&
2085             (vma->vm_flags & VM_EXEC))
2086                 goto out;
2087
2088         /*
2089          * Also do not migrate dirty pages as not all filesystems can move
2090          * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles.
2091          */
2092         if (page_is_file_lru(page) && PageDirty(page))
2093                 goto out;
2094
2095         isolated = numamigrate_isolate_page(pgdat, page);
2096         if (!isolated)
2097                 goto out;
2098
2099         list_add(&page->lru, &migratepages);
2100         nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
2101                                      NULL, node, MIGRATE_ASYNC,
2102                                      MR_NUMA_MISPLACED);
2103         if (nr_remaining) {
2104                 if (!list_empty(&migratepages)) {
2105                         list_del(&page->lru);
2106                         dec_node_page_state(page, NR_ISOLATED_ANON +
2107                                         page_is_file_lru(page));
2108                         putback_lru_page(page);
2109                 }
2110                 isolated = 0;
2111         } else
2112                 count_vm_numa_event(NUMA_PAGE_MIGRATE);
2113         BUG_ON(!list_empty(&migratepages));
2114         return isolated;
2115
2116 out:
2117         put_page(page);
2118         return 0;
2119 }
2120 #endif /* CONFIG_NUMA_BALANCING */
2121
2122 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
2123 /*
2124  * Migrates a THP to a given target node. page must be locked and is unlocked
2125  * before returning.
2126  */
2127 int migrate_misplaced_transhuge_page(struct mm_struct *mm,
2128                                 struct vm_area_struct *vma,
2129                                 pmd_t *pmd, pmd_t entry,
2130                                 unsigned long address,
2131                                 struct page *page, int node)
2132 {
2133         spinlock_t *ptl;
2134         pg_data_t *pgdat = NODE_DATA(node);
2135         int isolated = 0;
2136         struct page *new_page = NULL;
2137         int page_lru = page_is_file_lru(page);
2138         unsigned long start = address & HPAGE_PMD_MASK;
2139
2140         new_page = alloc_pages_node(node,
2141                 (GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
2142                 HPAGE_PMD_ORDER);
2143         if (!new_page)
2144                 goto out_fail;
2145         prep_transhuge_page(new_page);
2146
2147         isolated = numamigrate_isolate_page(pgdat, page);
2148         if (!isolated) {
2149                 put_page(new_page);
2150                 goto out_fail;
2151         }
2152
2153         /* Prepare a page as a migration target */
2154         __SetPageLocked(new_page);
2155         if (PageSwapBacked(page))
2156                 __SetPageSwapBacked(new_page);
2157
2158         /* anon mapping, we can simply copy page->mapping to the new page: */
2159         new_page->mapping = page->mapping;
2160         new_page->index = page->index;
2161         /* flush the cache before copying using the kernel virtual address */
2162         flush_cache_range(vma, start, start + HPAGE_PMD_SIZE);
2163         migrate_page_copy(new_page, page);
2164         WARN_ON(PageLRU(new_page));
2165
2166         /* Recheck the target PMD */
2167         ptl = pmd_lock(mm, pmd);
2168         if (unlikely(!pmd_same(*pmd, entry) || !page_ref_freeze(page, 2))) {
2169                 spin_unlock(ptl);
2170
2171                 /* Reverse changes made by migrate_page_copy() */
2172                 if (TestClearPageActive(new_page))
2173                         SetPageActive(page);
2174                 if (TestClearPageUnevictable(new_page))
2175                         SetPageUnevictable(page);
2176
2177                 unlock_page(new_page);
2178                 put_page(new_page);             /* Free it */
2179
2180                 /* Retake the callers reference and putback on LRU */
2181                 get_page(page);
2182                 putback_lru_page(page);
2183                 mod_node_page_state(page_pgdat(page),
2184                          NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
2185
2186                 goto out_unlock;
2187         }
2188
2189         entry = mk_huge_pmd(new_page, vma->vm_page_prot);
2190         entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
2191
2192         /*
2193          * Overwrite the old entry under pagetable lock and establish
2194          * the new PTE. Any parallel GUP will either observe the old
2195          * page blocking on the page lock, block on the page table
2196          * lock or observe the new page. The SetPageUptodate on the
2197          * new page and page_add_new_anon_rmap guarantee the copy is
2198          * visible before the pagetable update.
2199          */
2200         page_add_anon_rmap(new_page, vma, start, true);
2201         /*
2202          * At this point the pmd is numa/protnone (i.e. non present) and the TLB
2203          * has already been flushed globally.  So no TLB can be currently
2204          * caching this non present pmd mapping.  There's no need to clear the
2205          * pmd before doing set_pmd_at(), nor to flush the TLB after
2206          * set_pmd_at().  Clearing the pmd here would introduce a race
2207          * condition against MADV_DONTNEED, because MADV_DONTNEED only holds the
2208          * mmap_lock for reading.  If the pmd is set to NULL at any given time,
2209          * MADV_DONTNEED won't wait on the pmd lock and it'll skip clearing this
2210          * pmd.
2211          */
2212         set_pmd_at(mm, start, pmd, entry);
2213         update_mmu_cache_pmd(vma, address, &entry);
2214
2215         page_ref_unfreeze(page, 2);
2216         mlock_migrate_page(new_page, page);
2217         page_remove_rmap(page, true);
2218         set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED);
2219
2220         spin_unlock(ptl);
2221
2222         /* Take an "isolate" reference and put new page on the LRU. */
2223         get_page(new_page);
2224         putback_lru_page(new_page);
2225
2226         unlock_page(new_page);
2227         unlock_page(page);
2228         put_page(page);                 /* Drop the rmap reference */
2229         put_page(page);                 /* Drop the LRU isolation reference */
2230
2231         count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
2232         count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
2233
2234         mod_node_page_state(page_pgdat(page),
2235                         NR_ISOLATED_ANON + page_lru,
2236                         -HPAGE_PMD_NR);
2237         return isolated;
2238
2239 out_fail:
2240         count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
2241         ptl = pmd_lock(mm, pmd);
2242         if (pmd_same(*pmd, entry)) {
2243                 entry = pmd_modify(entry, vma->vm_page_prot);
2244                 set_pmd_at(mm, start, pmd, entry);
2245                 update_mmu_cache_pmd(vma, address, &entry);
2246         }
2247         spin_unlock(ptl);
2248
2249 out_unlock:
2250         unlock_page(page);
2251         put_page(page);
2252         return 0;
2253 }
2254 #endif /* CONFIG_NUMA_BALANCING */
2255
2256 #endif /* CONFIG_NUMA */
2257
2258 #ifdef CONFIG_DEVICE_PRIVATE
2259 static int migrate_vma_collect_hole(unsigned long start,
2260                                     unsigned long end,
2261                                     __always_unused int depth,
2262                                     struct mm_walk *walk)
2263 {
2264         struct migrate_vma *migrate = walk->private;
2265         unsigned long addr;
2266
2267         /* Only allow populating anonymous memory. */
2268         if (!vma_is_anonymous(walk->vma)) {
2269                 for (addr = start; addr < end; addr += PAGE_SIZE) {
2270                         migrate->src[migrate->npages] = 0;
2271                         migrate->dst[migrate->npages] = 0;
2272                         migrate->npages++;
2273                 }
2274                 return 0;
2275         }
2276
2277         for (addr = start; addr < end; addr += PAGE_SIZE) {
2278                 migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE;
2279                 migrate->dst[migrate->npages] = 0;
2280                 migrate->npages++;
2281                 migrate->cpages++;
2282         }
2283
2284         return 0;
2285 }
2286
2287 static int migrate_vma_collect_skip(unsigned long start,
2288                                     unsigned long end,
2289                                     struct mm_walk *walk)
2290 {
2291         struct migrate_vma *migrate = walk->private;
2292         unsigned long addr;
2293
2294         for (addr = start; addr < end; addr += PAGE_SIZE) {
2295                 migrate->dst[migrate->npages] = 0;
2296                 migrate->src[migrate->npages++] = 0;
2297         }
2298
2299         return 0;
2300 }
2301
2302 static int migrate_vma_collect_pmd(pmd_t *pmdp,
2303                                    unsigned long start,
2304                                    unsigned long end,
2305                                    struct mm_walk *walk)
2306 {
2307         struct migrate_vma *migrate = walk->private;
2308         struct vm_area_struct *vma = walk->vma;
2309         struct mm_struct *mm = vma->vm_mm;
2310         unsigned long addr = start, unmapped = 0;
2311         spinlock_t *ptl;
2312         pte_t *ptep;
2313
2314 again:
2315         if (pmd_none(*pmdp))
2316                 return migrate_vma_collect_hole(start, end, -1, walk);
2317
2318         if (pmd_trans_huge(*pmdp)) {
2319                 struct page *page;
2320
2321                 ptl = pmd_lock(mm, pmdp);
2322                 if (unlikely(!pmd_trans_huge(*pmdp))) {
2323                         spin_unlock(ptl);
2324                         goto again;
2325                 }
2326
2327                 page = pmd_page(*pmdp);
2328                 if (is_huge_zero_page(page)) {
2329                         spin_unlock(ptl);
2330                         split_huge_pmd(vma, pmdp, addr);
2331                         if (pmd_trans_unstable(pmdp))
2332                                 return migrate_vma_collect_skip(start, end,
2333                                                                 walk);
2334                 } else {
2335                         int ret;
2336
2337                         get_page(page);
2338                         spin_unlock(ptl);
2339                         if (unlikely(!trylock_page(page)))
2340                                 return migrate_vma_collect_skip(start, end,
2341                                                                 walk);
2342                         ret = split_huge_page(page);
2343                         unlock_page(page);
2344                         put_page(page);
2345                         if (ret)
2346                                 return migrate_vma_collect_skip(start, end,
2347                                                                 walk);
2348                         if (pmd_none(*pmdp))
2349                                 return migrate_vma_collect_hole(start, end, -1,
2350                                                                 walk);
2351                 }
2352         }
2353
2354         if (unlikely(pmd_bad(*pmdp)))
2355                 return migrate_vma_collect_skip(start, end, walk);
2356
2357         ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2358         arch_enter_lazy_mmu_mode();
2359
2360         for (; addr < end; addr += PAGE_SIZE, ptep++) {
2361                 unsigned long mpfn = 0, pfn;
2362                 struct page *page;
2363                 swp_entry_t entry;
2364                 pte_t pte;
2365
2366                 pte = *ptep;
2367
2368                 if (pte_none(pte)) {
2369                         if (vma_is_anonymous(vma)) {
2370                                 mpfn = MIGRATE_PFN_MIGRATE;
2371                                 migrate->cpages++;
2372                         }
2373                         goto next;
2374                 }
2375
2376                 if (!pte_present(pte)) {
2377                         /*
2378                          * Only care about unaddressable device page special
2379                          * page table entry. Other special swap entries are not
2380                          * migratable, and we ignore regular swapped page.
2381                          */
2382                         entry = pte_to_swp_entry(pte);
2383                         if (!is_device_private_entry(entry))
2384                                 goto next;
2385
2386                         page = device_private_entry_to_page(entry);
2387                         if (!(migrate->flags &
2388                                 MIGRATE_VMA_SELECT_DEVICE_PRIVATE) ||
2389                             page->pgmap->owner != migrate->pgmap_owner)
2390                                 goto next;
2391
2392                         mpfn = migrate_pfn(page_to_pfn(page)) |
2393                                         MIGRATE_PFN_MIGRATE;
2394                         if (is_write_device_private_entry(entry))
2395                                 mpfn |= MIGRATE_PFN_WRITE;
2396                 } else {
2397                         if (!(migrate->flags & MIGRATE_VMA_SELECT_SYSTEM))
2398                                 goto next;
2399                         pfn = pte_pfn(pte);
2400                         if (is_zero_pfn(pfn)) {
2401                                 mpfn = MIGRATE_PFN_MIGRATE;
2402                                 migrate->cpages++;
2403                                 goto next;
2404                         }
2405                         page = vm_normal_page(migrate->vma, addr, pte);
2406                         mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
2407                         mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
2408                 }
2409
2410                 /* FIXME support THP */
2411                 if (!page || !page->mapping || PageTransCompound(page)) {
2412                         mpfn = 0;
2413                         goto next;
2414                 }
2415
2416                 /*
2417                  * By getting a reference on the page we pin it and that blocks
2418                  * any kind of migration. Side effect is that it "freezes" the
2419                  * pte.
2420                  *
2421                  * We drop this reference after isolating the page from the lru
2422                  * for non device page (device page are not on the lru and thus
2423                  * can't be dropped from it).
2424                  */
2425                 get_page(page);
2426                 migrate->cpages++;
2427
2428                 /*
2429                  * Optimize for the common case where page is only mapped once
2430                  * in one process. If we can lock the page, then we can safely
2431                  * set up a special migration page table entry now.
2432                  */
2433                 if (trylock_page(page)) {
2434                         pte_t swp_pte;
2435
2436                         mpfn |= MIGRATE_PFN_LOCKED;
2437                         ptep_get_and_clear(mm, addr, ptep);
2438
2439                         /* Setup special migration page table entry */
2440                         entry = make_migration_entry(page, mpfn &
2441                                                      MIGRATE_PFN_WRITE);
2442                         swp_pte = swp_entry_to_pte(entry);
2443                         if (pte_present(pte)) {
2444                                 if (pte_soft_dirty(pte))
2445                                         swp_pte = pte_swp_mksoft_dirty(swp_pte);
2446                                 if (pte_uffd_wp(pte))
2447                                         swp_pte = pte_swp_mkuffd_wp(swp_pte);
2448                         } else {
2449                                 if (pte_swp_soft_dirty(pte))
2450                                         swp_pte = pte_swp_mksoft_dirty(swp_pte);
2451                                 if (pte_swp_uffd_wp(pte))
2452                                         swp_pte = pte_swp_mkuffd_wp(swp_pte);
2453                         }
2454                         set_pte_at(mm, addr, ptep, swp_pte);
2455
2456                         /*
2457                          * This is like regular unmap: we remove the rmap and
2458                          * drop page refcount. Page won't be freed, as we took
2459                          * a reference just above.
2460                          */
2461                         page_remove_rmap(page, false);
2462                         put_page(page);
2463
2464                         if (pte_present(pte))
2465                                 unmapped++;
2466                 }
2467
2468 next:
2469                 migrate->dst[migrate->npages] = 0;
2470                 migrate->src[migrate->npages++] = mpfn;
2471         }
2472         arch_leave_lazy_mmu_mode();
2473         pte_unmap_unlock(ptep - 1, ptl);
2474
2475         /* Only flush the TLB if we actually modified any entries */
2476         if (unmapped)
2477                 flush_tlb_range(walk->vma, start, end);
2478
2479         return 0;
2480 }
2481
2482 static const struct mm_walk_ops migrate_vma_walk_ops = {
2483         .pmd_entry              = migrate_vma_collect_pmd,
2484         .pte_hole               = migrate_vma_collect_hole,
2485 };
2486
2487 /*
2488  * migrate_vma_collect() - collect pages over a range of virtual addresses
2489  * @migrate: migrate struct containing all migration information
2490  *
2491  * This will walk the CPU page table. For each virtual address backed by a
2492  * valid page, it updates the src array and takes a reference on the page, in
2493  * order to pin the page until we lock it and unmap it.
2494  */
2495 static void migrate_vma_collect(struct migrate_vma *migrate)
2496 {
2497         struct mmu_notifier_range range;
2498
2499         /*
2500          * Note that the pgmap_owner is passed to the mmu notifier callback so
2501          * that the registered device driver can skip invalidating device
2502          * private page mappings that won't be migrated.
2503          */
2504         mmu_notifier_range_init_migrate(&range, 0, migrate->vma,
2505                 migrate->vma->vm_mm, migrate->start, migrate->end,
2506                 migrate->pgmap_owner);
2507         mmu_notifier_invalidate_range_start(&range);
2508
2509         walk_page_range(migrate->vma->vm_mm, migrate->start, migrate->end,
2510                         &migrate_vma_walk_ops, migrate);
2511
2512         mmu_notifier_invalidate_range_end(&range);
2513         migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
2514 }
2515
2516 /*
2517  * migrate_vma_check_page() - check if page is pinned or not
2518  * @page: struct page to check
2519  *
2520  * Pinned pages cannot be migrated. This is the same test as in
2521  * migrate_page_move_mapping(), except that here we allow migration of a
2522  * ZONE_DEVICE page.
2523  */
2524 static bool migrate_vma_check_page(struct page *page)
2525 {
2526         /*
2527          * One extra ref because caller holds an extra reference, either from
2528          * isolate_lru_page() for a regular page, or migrate_vma_collect() for
2529          * a device page.
2530          */
2531         int extra = 1;
2532
2533         /*
2534          * FIXME support THP (transparent huge page), it is bit more complex to
2535          * check them than regular pages, because they can be mapped with a pmd
2536          * or with a pte (split pte mapping).
2537          */
2538         if (PageCompound(page))
2539                 return false;
2540
2541         /* Page from ZONE_DEVICE have one extra reference */
2542         if (is_zone_device_page(page)) {
2543                 /*
2544                  * Private page can never be pin as they have no valid pte and
2545                  * GUP will fail for those. Yet if there is a pending migration
2546                  * a thread might try to wait on the pte migration entry and
2547                  * will bump the page reference count. Sadly there is no way to
2548                  * differentiate a regular pin from migration wait. Hence to
2549                  * avoid 2 racing thread trying to migrate back to CPU to enter
2550                  * infinite loop (one stoping migration because the other is
2551                  * waiting on pte migration entry). We always return true here.
2552                  *
2553                  * FIXME proper solution is to rework migration_entry_wait() so
2554                  * it does not need to take a reference on page.
2555                  */
2556                 return is_device_private_page(page);
2557         }
2558
2559         /* For file back page */
2560         if (page_mapping(page))
2561                 extra += 1 + page_has_private(page);
2562
2563         if ((page_count(page) - extra) > page_mapcount(page))
2564                 return false;
2565
2566         return true;
2567 }
2568
2569 /*
2570  * migrate_vma_prepare() - lock pages and isolate them from the lru
2571  * @migrate: migrate struct containing all migration information
2572  *
2573  * This locks pages that have been collected by migrate_vma_collect(). Once each
2574  * page is locked it is isolated from the lru (for non-device pages). Finally,
2575  * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be
2576  * migrated by concurrent kernel threads.
2577  */
2578 static void migrate_vma_prepare(struct migrate_vma *migrate)
2579 {
2580         const unsigned long npages = migrate->npages;
2581         const unsigned long start = migrate->start;
2582         unsigned long addr, i, restore = 0;
2583         bool allow_drain = true;
2584
2585         lru_add_drain();
2586
2587         for (i = 0; (i < npages) && migrate->cpages; i++) {
2588                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2589                 bool remap = true;
2590
2591                 if (!page)
2592                         continue;
2593
2594                 if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) {
2595                         /*
2596                          * Because we are migrating several pages there can be
2597                          * a deadlock between 2 concurrent migration where each
2598                          * are waiting on each other page lock.
2599                          *
2600                          * Make migrate_vma() a best effort thing and backoff
2601                          * for any page we can not lock right away.
2602                          */
2603                         if (!trylock_page(page)) {
2604                                 migrate->src[i] = 0;
2605                                 migrate->cpages--;
2606                                 put_page(page);
2607                                 continue;
2608                         }
2609                         remap = false;
2610                         migrate->src[i] |= MIGRATE_PFN_LOCKED;
2611                 }
2612
2613                 /* ZONE_DEVICE pages are not on LRU */
2614                 if (!is_zone_device_page(page)) {
2615                         if (!PageLRU(page) && allow_drain) {
2616                                 /* Drain CPU's pagevec */
2617                                 lru_add_drain_all();
2618                                 allow_drain = false;
2619                         }
2620
2621                         if (isolate_lru_page(page)) {
2622                                 if (remap) {
2623                                         migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2624                                         migrate->cpages--;
2625                                         restore++;
2626                                 } else {
2627                                         migrate->src[i] = 0;
2628                                         unlock_page(page);
2629                                         migrate->cpages--;
2630                                         put_page(page);
2631                                 }
2632                                 continue;
2633                         }
2634
2635                         /* Drop the reference we took in collect */
2636                         put_page(page);
2637                 }
2638
2639                 if (!migrate_vma_check_page(page)) {
2640                         if (remap) {
2641                                 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2642                                 migrate->cpages--;
2643                                 restore++;
2644
2645                                 if (!is_zone_device_page(page)) {
2646                                         get_page(page);
2647                                         putback_lru_page(page);
2648                                 }
2649                         } else {
2650                                 migrate->src[i] = 0;
2651                                 unlock_page(page);
2652                                 migrate->cpages--;
2653
2654                                 if (!is_zone_device_page(page))
2655                                         putback_lru_page(page);
2656                                 else
2657                                         put_page(page);
2658                         }
2659                 }
2660         }
2661
2662         for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) {
2663                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2664
2665                 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2666                         continue;
2667
2668                 remove_migration_pte(page, migrate->vma, addr, page);
2669
2670                 migrate->src[i] = 0;
2671                 unlock_page(page);
2672                 put_page(page);
2673                 restore--;
2674         }
2675 }
2676
2677 /*
2678  * migrate_vma_unmap() - replace page mapping with special migration pte entry
2679  * @migrate: migrate struct containing all migration information
2680  *
2681  * Replace page mapping (CPU page table pte) with a special migration pte entry
2682  * and check again if it has been pinned. Pinned pages are restored because we
2683  * cannot migrate them.
2684  *
2685  * This is the last step before we call the device driver callback to allocate
2686  * destination memory and copy contents of original page over to new page.
2687  */
2688 static void migrate_vma_unmap(struct migrate_vma *migrate)
2689 {
2690         int flags = TTU_MIGRATION | TTU_IGNORE_MLOCK;
2691         const unsigned long npages = migrate->npages;
2692         const unsigned long start = migrate->start;
2693         unsigned long addr, i, restore = 0;
2694
2695         for (i = 0; i < npages; i++) {
2696                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2697
2698                 if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2699                         continue;
2700
2701                 if (page_mapped(page)) {
2702                         try_to_unmap(page, flags);
2703                         if (page_mapped(page))
2704                                 goto restore;
2705                 }
2706
2707                 if (migrate_vma_check_page(page))
2708                         continue;
2709
2710 restore:
2711                 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2712                 migrate->cpages--;
2713                 restore++;
2714         }
2715
2716         for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) {
2717                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2718
2719                 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2720                         continue;
2721
2722                 remove_migration_ptes(page, page, false);
2723
2724                 migrate->src[i] = 0;
2725                 unlock_page(page);
2726                 restore--;
2727
2728                 if (is_zone_device_page(page))
2729                         put_page(page);
2730                 else
2731                         putback_lru_page(page);
2732         }
2733 }
2734
2735 /**
2736  * migrate_vma_setup() - prepare to migrate a range of memory
2737  * @args: contains the vma, start, and pfns arrays for the migration
2738  *
2739  * Returns: negative errno on failures, 0 when 0 or more pages were migrated
2740  * without an error.
2741  *
2742  * Prepare to migrate a range of memory virtual address range by collecting all
2743  * the pages backing each virtual address in the range, saving them inside the
2744  * src array.  Then lock those pages and unmap them. Once the pages are locked
2745  * and unmapped, check whether each page is pinned or not.  Pages that aren't
2746  * pinned have the MIGRATE_PFN_MIGRATE flag set (by this function) in the
2747  * corresponding src array entry.  Then restores any pages that are pinned, by
2748  * remapping and unlocking those pages.
2749  *
2750  * The caller should then allocate destination memory and copy source memory to
2751  * it for all those entries (ie with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE
2752  * flag set).  Once these are allocated and copied, the caller must update each
2753  * corresponding entry in the dst array with the pfn value of the destination
2754  * page and with the MIGRATE_PFN_VALID and MIGRATE_PFN_LOCKED flags set
2755  * (destination pages must have their struct pages locked, via lock_page()).
2756  *
2757  * Note that the caller does not have to migrate all the pages that are marked
2758  * with MIGRATE_PFN_MIGRATE flag in src array unless this is a migration from
2759  * device memory to system memory.  If the caller cannot migrate a device page
2760  * back to system memory, then it must return VM_FAULT_SIGBUS, which has severe
2761  * consequences for the userspace process, so it must be avoided if at all
2762  * possible.
2763  *
2764  * For empty entries inside CPU page table (pte_none() or pmd_none() is true) we
2765  * do set MIGRATE_PFN_MIGRATE flag inside the corresponding source array thus
2766  * allowing the caller to allocate device memory for those unback virtual
2767  * address.  For this the caller simply has to allocate device memory and
2768  * properly set the destination entry like for regular migration.  Note that
2769  * this can still fails and thus inside the device driver must check if the
2770  * migration was successful for those entries after calling migrate_vma_pages()
2771  * just like for regular migration.
2772  *
2773  * After that, the callers must call migrate_vma_pages() to go over each entry
2774  * in the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
2775  * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
2776  * then migrate_vma_pages() to migrate struct page information from the source
2777  * struct page to the destination struct page.  If it fails to migrate the
2778  * struct page information, then it clears the MIGRATE_PFN_MIGRATE flag in the
2779  * src array.
2780  *
2781  * At this point all successfully migrated pages have an entry in the src
2782  * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
2783  * array entry with MIGRATE_PFN_VALID flag set.
2784  *
2785  * Once migrate_vma_pages() returns the caller may inspect which pages were
2786  * successfully migrated, and which were not.  Successfully migrated pages will
2787  * have the MIGRATE_PFN_MIGRATE flag set for their src array entry.
2788  *
2789  * It is safe to update device page table after migrate_vma_pages() because
2790  * both destination and source page are still locked, and the mmap_lock is held
2791  * in read mode (hence no one can unmap the range being migrated).
2792  *
2793  * Once the caller is done cleaning up things and updating its page table (if it
2794  * chose to do so, this is not an obligation) it finally calls
2795  * migrate_vma_finalize() to update the CPU page table to point to new pages
2796  * for successfully migrated pages or otherwise restore the CPU page table to
2797  * point to the original source pages.
2798  */
2799 int migrate_vma_setup(struct migrate_vma *args)
2800 {
2801         long nr_pages = (args->end - args->start) >> PAGE_SHIFT;
2802
2803         args->start &= PAGE_MASK;
2804         args->end &= PAGE_MASK;
2805         if (!args->vma || is_vm_hugetlb_page(args->vma) ||
2806             (args->vma->vm_flags & VM_SPECIAL) || vma_is_dax(args->vma))
2807                 return -EINVAL;
2808         if (nr_pages <= 0)
2809                 return -EINVAL;
2810         if (args->start < args->vma->vm_start ||
2811             args->start >= args->vma->vm_end)
2812                 return -EINVAL;
2813         if (args->end <= args->vma->vm_start || args->end > args->vma->vm_end)
2814                 return -EINVAL;
2815         if (!args->src || !args->dst)
2816                 return -EINVAL;
2817
2818         memset(args->src, 0, sizeof(*args->src) * nr_pages);
2819         args->cpages = 0;
2820         args->npages = 0;
2821
2822         migrate_vma_collect(args);
2823
2824         if (args->cpages)
2825                 migrate_vma_prepare(args);
2826         if (args->cpages)
2827                 migrate_vma_unmap(args);
2828
2829         /*
2830          * At this point pages are locked and unmapped, and thus they have
2831          * stable content and can safely be copied to destination memory that
2832          * is allocated by the drivers.
2833          */
2834         return 0;
2835
2836 }
2837 EXPORT_SYMBOL(migrate_vma_setup);
2838
2839 /*
2840  * This code closely matches the code in:
2841  *   __handle_mm_fault()
2842  *     handle_pte_fault()
2843  *       do_anonymous_page()
2844  * to map in an anonymous zero page but the struct page will be a ZONE_DEVICE
2845  * private page.
2846  */
2847 static void migrate_vma_insert_page(struct migrate_vma *migrate,
2848                                     unsigned long addr,
2849                                     struct page *page,
2850                                     unsigned long *src,
2851                                     unsigned long *dst)
2852 {
2853         struct vm_area_struct *vma = migrate->vma;
2854         struct mm_struct *mm = vma->vm_mm;
2855         bool flush = false;
2856         spinlock_t *ptl;
2857         pte_t entry;
2858         pgd_t *pgdp;
2859         p4d_t *p4dp;
2860         pud_t *pudp;
2861         pmd_t *pmdp;
2862         pte_t *ptep;
2863
2864         /* Only allow populating anonymous memory */
2865         if (!vma_is_anonymous(vma))
2866                 goto abort;
2867
2868         pgdp = pgd_offset(mm, addr);
2869         p4dp = p4d_alloc(mm, pgdp, addr);
2870         if (!p4dp)
2871                 goto abort;
2872         pudp = pud_alloc(mm, p4dp, addr);
2873         if (!pudp)
2874                 goto abort;
2875         pmdp = pmd_alloc(mm, pudp, addr);
2876         if (!pmdp)
2877                 goto abort;
2878
2879         if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp))
2880                 goto abort;
2881
2882         /*
2883          * Use pte_alloc() instead of pte_alloc_map().  We can't run
2884          * pte_offset_map() on pmds where a huge pmd might be created
2885          * from a different thread.
2886          *
2887          * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
2888          * parallel threads are excluded by other means.
2889          *
2890          * Here we only have mmap_read_lock(mm).
2891          */
2892         if (pte_alloc(mm, pmdp))
2893                 goto abort;
2894
2895         /* See the comment in pte_alloc_one_map() */
2896         if (unlikely(pmd_trans_unstable(pmdp)))
2897                 goto abort;
2898
2899         if (unlikely(anon_vma_prepare(vma)))
2900                 goto abort;
2901         if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL))
2902                 goto abort;
2903
2904         /*
2905          * The memory barrier inside __SetPageUptodate makes sure that
2906          * preceding stores to the page contents become visible before
2907          * the set_pte_at() write.
2908          */
2909         __SetPageUptodate(page);
2910
2911         if (is_zone_device_page(page)) {
2912                 if (is_device_private_page(page)) {
2913                         swp_entry_t swp_entry;
2914
2915                         swp_entry = make_device_private_entry(page, vma->vm_flags & VM_WRITE);
2916                         entry = swp_entry_to_pte(swp_entry);
2917                 }
2918         } else {
2919                 entry = mk_pte(page, vma->vm_page_prot);
2920                 if (vma->vm_flags & VM_WRITE)
2921                         entry = pte_mkwrite(pte_mkdirty(entry));
2922         }
2923
2924         ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2925
2926         if (check_stable_address_space(mm))
2927                 goto unlock_abort;
2928
2929         if (pte_present(*ptep)) {
2930                 unsigned long pfn = pte_pfn(*ptep);
2931
2932                 if (!is_zero_pfn(pfn))
2933                         goto unlock_abort;
2934                 flush = true;
2935         } else if (!pte_none(*ptep))
2936                 goto unlock_abort;
2937
2938         /*
2939          * Check for userfaultfd but do not deliver the fault. Instead,
2940          * just back off.
2941          */
2942         if (userfaultfd_missing(vma))
2943                 goto unlock_abort;
2944
2945         inc_mm_counter(mm, MM_ANONPAGES);
2946         page_add_new_anon_rmap(page, vma, addr, false);
2947         if (!is_zone_device_page(page))
2948                 lru_cache_add_inactive_or_unevictable(page, vma);
2949         get_page(page);
2950
2951         if (flush) {
2952                 flush_cache_page(vma, addr, pte_pfn(*ptep));
2953                 ptep_clear_flush_notify(vma, addr, ptep);
2954                 set_pte_at_notify(mm, addr, ptep, entry);
2955                 update_mmu_cache(vma, addr, ptep);
2956         } else {
2957                 /* No need to invalidate - it was non-present before */
2958                 set_pte_at(mm, addr, ptep, entry);
2959                 update_mmu_cache(vma, addr, ptep);
2960         }
2961
2962         pte_unmap_unlock(ptep, ptl);
2963         *src = MIGRATE_PFN_MIGRATE;
2964         return;
2965
2966 unlock_abort:
2967         pte_unmap_unlock(ptep, ptl);
2968 abort:
2969         *src &= ~MIGRATE_PFN_MIGRATE;
2970 }
2971
2972 /**
2973  * migrate_vma_pages() - migrate meta-data from src page to dst page
2974  * @migrate: migrate struct containing all migration information
2975  *
2976  * This migrates struct page meta-data from source struct page to destination
2977  * struct page. This effectively finishes the migration from source page to the
2978  * destination page.
2979  */
2980 void migrate_vma_pages(struct migrate_vma *migrate)
2981 {
2982         const unsigned long npages = migrate->npages;
2983         const unsigned long start = migrate->start;
2984         struct mmu_notifier_range range;
2985         unsigned long addr, i;
2986         bool notified = false;
2987
2988         for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) {
2989                 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2990                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2991                 struct address_space *mapping;
2992                 int r;
2993
2994                 if (!newpage) {
2995                         migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2996                         continue;
2997                 }
2998
2999                 if (!page) {
3000                         if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE))
3001                                 continue;
3002                         if (!notified) {
3003                                 notified = true;
3004
3005                                 mmu_notifier_range_init(&range,
3006                                                         MMU_NOTIFY_CLEAR, 0,
3007                                                         NULL,
3008                                                         migrate->vma->vm_mm,
3009                                                         addr, migrate->end);
3010                                 mmu_notifier_invalidate_range_start(&range);
3011                         }
3012                         migrate_vma_insert_page(migrate, addr, newpage,
3013                                                 &migrate->src[i],
3014                                                 &migrate->dst[i]);
3015                         continue;
3016                 }
3017
3018                 mapping = page_mapping(page);
3019
3020                 if (is_zone_device_page(newpage)) {
3021                         if (is_device_private_page(newpage)) {
3022                                 /*
3023                                  * For now only support private anonymous when
3024                                  * migrating to un-addressable device memory.
3025                                  */
3026                                 if (mapping) {
3027                                         migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
3028                                         continue;
3029                                 }
3030                         } else {
3031                                 /*
3032                                  * Other types of ZONE_DEVICE page are not
3033                                  * supported.
3034                                  */
3035                                 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
3036                                 continue;
3037                         }
3038                 }
3039
3040                 r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY);
3041                 if (r != MIGRATEPAGE_SUCCESS)
3042                         migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
3043         }
3044
3045         /*
3046          * No need to double call mmu_notifier->invalidate_range() callback as
3047          * the above ptep_clear_flush_notify() inside migrate_vma_insert_page()
3048          * did already call it.
3049          */
3050         if (notified)
3051                 mmu_notifier_invalidate_range_only_end(&range);
3052 }
3053 EXPORT_SYMBOL(migrate_vma_pages);
3054
3055 /**
3056  * migrate_vma_finalize() - restore CPU page table entry
3057  * @migrate: migrate struct containing all migration information
3058  *
3059  * This replaces the special migration pte entry with either a mapping to the
3060  * new page if migration was successful for that page, or to the original page
3061  * otherwise.
3062  *
3063  * This also unlocks the pages and puts them back on the lru, or drops the extra
3064  * refcount, for device pages.
3065  */
3066 void migrate_vma_finalize(struct migrate_vma *migrate)
3067 {
3068         const unsigned long npages = migrate->npages;
3069         unsigned long i;
3070
3071         for (i = 0; i < npages; i++) {
3072                 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
3073                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
3074
3075                 if (!page) {
3076                         if (newpage) {
3077                                 unlock_page(newpage);
3078                                 put_page(newpage);
3079                         }
3080                         continue;
3081                 }
3082
3083                 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) {
3084                         if (newpage) {
3085                                 unlock_page(newpage);
3086                                 put_page(newpage);
3087                         }
3088                         newpage = page;
3089                 }
3090
3091                 remove_migration_ptes(page, newpage, false);
3092                 unlock_page(page);
3093
3094                 if (is_zone_device_page(page))
3095                         put_page(page);
3096                 else
3097                         putback_lru_page(page);
3098
3099                 if (newpage != page) {
3100                         unlock_page(newpage);
3101                         if (is_zone_device_page(newpage))
3102                                 put_page(newpage);
3103                         else
3104                                 putback_lru_page(newpage);
3105                 }
3106         }
3107 }
3108 EXPORT_SYMBOL(migrate_vma_finalize);
3109 #endif /* CONFIG_DEVICE_PRIVATE */