1 // SPDX-License-Identifier: GPL-2.0
3 * Memory Migration functionality - linux/mm/migrate.c
5 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
7 * Page migration was first developed in the context of the memory hotplug
8 * project. The main authors of the migration code are:
10 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
11 * Hirokazu Takahashi <taka@valinux.co.jp>
12 * Dave Hansen <haveblue@us.ibm.com>
16 #include <linux/migrate.h>
17 #include <linux/export.h>
18 #include <linux/swap.h>
19 #include <linux/swapops.h>
20 #include <linux/pagemap.h>
21 #include <linux/buffer_head.h>
22 #include <linux/mm_inline.h>
23 #include <linux/nsproxy.h>
24 #include <linux/pagevec.h>
25 #include <linux/ksm.h>
26 #include <linux/rmap.h>
27 #include <linux/topology.h>
28 #include <linux/cpu.h>
29 #include <linux/cpuset.h>
30 #include <linux/writeback.h>
31 #include <linux/mempolicy.h>
32 #include <linux/vmalloc.h>
33 #include <linux/security.h>
34 #include <linux/backing-dev.h>
35 #include <linux/compaction.h>
36 #include <linux/syscalls.h>
37 #include <linux/compat.h>
38 #include <linux/hugetlb.h>
39 #include <linux/hugetlb_cgroup.h>
40 #include <linux/gfp.h>
41 #include <linux/pfn_t.h>
42 #include <linux/memremap.h>
43 #include <linux/userfaultfd_k.h>
44 #include <linux/balloon_compaction.h>
45 #include <linux/mmu_notifier.h>
46 #include <linux/page_idle.h>
47 #include <linux/page_owner.h>
48 #include <linux/sched/mm.h>
49 #include <linux/ptrace.h>
51 #include <asm/tlbflush.h>
53 #define CREATE_TRACE_POINTS
54 #include <trace/events/migrate.h>
59 * migrate_prep() needs to be called before we start compiling a list of pages
60 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
61 * undesirable, use migrate_prep_local()
63 int migrate_prep(void)
66 * Clear the LRU lists so pages can be isolated.
67 * Note that pages may be moved off the LRU after we have
68 * drained them. Those pages will fail to migrate like other
69 * pages that may be busy.
76 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
77 int migrate_prep_local(void)
84 int isolate_movable_page(struct page *page, isolate_mode_t mode)
86 struct address_space *mapping;
89 * Avoid burning cycles with pages that are yet under __free_pages(),
90 * or just got freed under us.
92 * In case we 'win' a race for a movable page being freed under us and
93 * raise its refcount preventing __free_pages() from doing its job
94 * the put_page() at the end of this block will take care of
95 * release this page, thus avoiding a nasty leakage.
97 if (unlikely(!get_page_unless_zero(page)))
101 * Check PageMovable before holding a PG_lock because page's owner
102 * assumes anybody doesn't touch PG_lock of newly allocated page
103 * so unconditionally grabbing the lock ruins page's owner side.
105 if (unlikely(!__PageMovable(page)))
108 * As movable pages are not isolated from LRU lists, concurrent
109 * compaction threads can race against page migration functions
110 * as well as race against the releasing a page.
112 * In order to avoid having an already isolated movable page
113 * being (wrongly) re-isolated while it is under migration,
114 * or to avoid attempting to isolate pages being released,
115 * lets be sure we have the page lock
116 * before proceeding with the movable page isolation steps.
118 if (unlikely(!trylock_page(page)))
121 if (!PageMovable(page) || PageIsolated(page))
122 goto out_no_isolated;
124 mapping = page_mapping(page);
125 VM_BUG_ON_PAGE(!mapping, page);
127 if (!mapping->a_ops->isolate_page(page, mode))
128 goto out_no_isolated;
130 /* Driver shouldn't use PG_isolated bit of page->flags */
131 WARN_ON_ONCE(PageIsolated(page));
132 __SetPageIsolated(page);
145 /* It should be called on page which is PG_movable */
146 void putback_movable_page(struct page *page)
148 struct address_space *mapping;
150 VM_BUG_ON_PAGE(!PageLocked(page), page);
151 VM_BUG_ON_PAGE(!PageMovable(page), page);
152 VM_BUG_ON_PAGE(!PageIsolated(page), page);
154 mapping = page_mapping(page);
155 mapping->a_ops->putback_page(page);
156 __ClearPageIsolated(page);
160 * Put previously isolated pages back onto the appropriate lists
161 * from where they were once taken off for compaction/migration.
163 * This function shall be used whenever the isolated pageset has been
164 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
165 * and isolate_huge_page().
167 void putback_movable_pages(struct list_head *l)
172 list_for_each_entry_safe(page, page2, l, lru) {
173 if (unlikely(PageHuge(page))) {
174 putback_active_hugepage(page);
177 list_del(&page->lru);
179 * We isolated non-lru movable page so here we can use
180 * __PageMovable because LRU page's mapping cannot have
181 * PAGE_MAPPING_MOVABLE.
183 if (unlikely(__PageMovable(page))) {
184 VM_BUG_ON_PAGE(!PageIsolated(page), page);
186 if (PageMovable(page))
187 putback_movable_page(page);
189 __ClearPageIsolated(page);
193 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
194 page_is_file_cache(page), -hpage_nr_pages(page));
195 putback_lru_page(page);
201 * Restore a potential migration pte to a working pte entry
203 static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma,
204 unsigned long addr, void *old)
206 struct page_vma_mapped_walk pvmw = {
210 .flags = PVMW_SYNC | PVMW_MIGRATION,
216 VM_BUG_ON_PAGE(PageTail(page), page);
217 while (page_vma_mapped_walk(&pvmw)) {
221 new = page - pvmw.page->index +
222 linear_page_index(vma, pvmw.address);
224 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
225 /* PMD-mapped THP migration entry */
227 VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
228 remove_migration_pmd(&pvmw, new);
234 pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
235 if (pte_swp_soft_dirty(*pvmw.pte))
236 pte = pte_mksoft_dirty(pte);
239 * Recheck VMA as permissions can change since migration started
241 entry = pte_to_swp_entry(*pvmw.pte);
242 if (is_write_migration_entry(entry))
243 pte = maybe_mkwrite(pte, vma);
245 if (unlikely(is_zone_device_page(new))) {
246 if (is_device_private_page(new)) {
247 entry = make_device_private_entry(new, pte_write(pte));
248 pte = swp_entry_to_pte(entry);
252 #ifdef CONFIG_HUGETLB_PAGE
254 pte = pte_mkhuge(pte);
255 pte = arch_make_huge_pte(pte, vma, new, 0);
256 set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
258 hugepage_add_anon_rmap(new, vma, pvmw.address);
260 page_dup_rmap(new, true);
264 set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
267 page_add_anon_rmap(new, vma, pvmw.address, false);
269 page_add_file_rmap(new, false);
271 if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
274 if (PageTransHuge(page) && PageMlocked(page))
275 clear_page_mlock(page);
277 /* No need to invalidate - it was non-present before */
278 update_mmu_cache(vma, pvmw.address, pvmw.pte);
285 * Get rid of all migration entries and replace them by
286 * references to the indicated page.
288 void remove_migration_ptes(struct page *old, struct page *new, bool locked)
290 struct rmap_walk_control rwc = {
291 .rmap_one = remove_migration_pte,
296 rmap_walk_locked(new, &rwc);
298 rmap_walk(new, &rwc);
302 * Something used the pte of a page under migration. We need to
303 * get to the page and wait until migration is finished.
304 * When we return from this function the fault will be retried.
306 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
315 if (!is_swap_pte(pte))
318 entry = pte_to_swp_entry(pte);
319 if (!is_migration_entry(entry))
322 page = migration_entry_to_page(entry);
325 * Once page cache replacement of page migration started, page_count
326 * is zero; but we must not call put_and_wait_on_page_locked() without
327 * a ref. Use get_page_unless_zero(), and just fault again if it fails.
329 if (!get_page_unless_zero(page))
331 pte_unmap_unlock(ptep, ptl);
332 put_and_wait_on_page_locked(page);
335 pte_unmap_unlock(ptep, ptl);
338 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
339 unsigned long address)
341 spinlock_t *ptl = pte_lockptr(mm, pmd);
342 pte_t *ptep = pte_offset_map(pmd, address);
343 __migration_entry_wait(mm, ptep, ptl);
346 void migration_entry_wait_huge(struct vm_area_struct *vma,
347 struct mm_struct *mm, pte_t *pte)
349 spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
350 __migration_entry_wait(mm, pte, ptl);
353 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
354 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
359 ptl = pmd_lock(mm, pmd);
360 if (!is_pmd_migration_entry(*pmd))
362 page = migration_entry_to_page(pmd_to_swp_entry(*pmd));
363 if (!get_page_unless_zero(page))
366 put_and_wait_on_page_locked(page);
373 static int expected_page_refs(struct address_space *mapping, struct page *page)
375 int expected_count = 1;
378 * Device public or private pages have an extra refcount as they are
381 expected_count += is_device_private_page(page);
383 expected_count += hpage_nr_pages(page) + page_has_private(page);
385 return expected_count;
389 * Replace the page in the mapping.
391 * The number of remaining references must be:
392 * 1 for anonymous pages without a mapping
393 * 2 for pages with a mapping
394 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
396 int migrate_page_move_mapping(struct address_space *mapping,
397 struct page *newpage, struct page *page, int extra_count)
399 XA_STATE(xas, &mapping->i_pages, page_index(page));
400 struct zone *oldzone, *newzone;
402 int expected_count = expected_page_refs(mapping, page) + extra_count;
405 /* Anonymous page without mapping */
406 if (page_count(page) != expected_count)
409 /* No turning back from here */
410 newpage->index = page->index;
411 newpage->mapping = page->mapping;
412 if (PageSwapBacked(page))
413 __SetPageSwapBacked(newpage);
415 return MIGRATEPAGE_SUCCESS;
418 oldzone = page_zone(page);
419 newzone = page_zone(newpage);
422 if (page_count(page) != expected_count || xas_load(&xas) != page) {
423 xas_unlock_irq(&xas);
427 if (!page_ref_freeze(page, expected_count)) {
428 xas_unlock_irq(&xas);
433 * Now we know that no one else is looking at the page:
434 * no turning back from here.
436 newpage->index = page->index;
437 newpage->mapping = page->mapping;
438 page_ref_add(newpage, hpage_nr_pages(page)); /* add cache reference */
439 if (PageSwapBacked(page)) {
440 __SetPageSwapBacked(newpage);
441 if (PageSwapCache(page)) {
442 SetPageSwapCache(newpage);
443 set_page_private(newpage, page_private(page));
446 VM_BUG_ON_PAGE(PageSwapCache(page), page);
449 /* Move dirty while page refs frozen and newpage not yet exposed */
450 dirty = PageDirty(page);
452 ClearPageDirty(page);
453 SetPageDirty(newpage);
456 xas_store(&xas, newpage);
457 if (PageTransHuge(page)) {
460 for (i = 1; i < HPAGE_PMD_NR; i++) {
462 xas_store(&xas, newpage + i);
467 * Drop cache reference from old page by unfreezing
468 * to one less reference.
469 * We know this isn't the last reference.
471 page_ref_unfreeze(page, expected_count - hpage_nr_pages(page));
474 /* Leave irq disabled to prevent preemption while updating stats */
477 * If moved to a different zone then also account
478 * the page for that zone. Other VM counters will be
479 * taken care of when we establish references to the
480 * new page and drop references to the old page.
482 * Note that anonymous pages are accounted for
483 * via NR_FILE_PAGES and NR_ANON_MAPPED if they
484 * are mapped to swap space.
486 if (newzone != oldzone) {
487 __dec_node_state(oldzone->zone_pgdat, NR_FILE_PAGES);
488 __inc_node_state(newzone->zone_pgdat, NR_FILE_PAGES);
489 if (PageSwapBacked(page) && !PageSwapCache(page)) {
490 __dec_node_state(oldzone->zone_pgdat, NR_SHMEM);
491 __inc_node_state(newzone->zone_pgdat, NR_SHMEM);
493 if (dirty && mapping_cap_account_dirty(mapping)) {
494 __dec_node_state(oldzone->zone_pgdat, NR_FILE_DIRTY);
495 __dec_zone_state(oldzone, NR_ZONE_WRITE_PENDING);
496 __inc_node_state(newzone->zone_pgdat, NR_FILE_DIRTY);
497 __inc_zone_state(newzone, NR_ZONE_WRITE_PENDING);
502 return MIGRATEPAGE_SUCCESS;
504 EXPORT_SYMBOL(migrate_page_move_mapping);
507 * The expected number of remaining references is the same as that
508 * of migrate_page_move_mapping().
510 int migrate_huge_page_move_mapping(struct address_space *mapping,
511 struct page *newpage, struct page *page)
513 XA_STATE(xas, &mapping->i_pages, page_index(page));
517 expected_count = 2 + page_has_private(page);
518 if (page_count(page) != expected_count || xas_load(&xas) != page) {
519 xas_unlock_irq(&xas);
523 if (!page_ref_freeze(page, expected_count)) {
524 xas_unlock_irq(&xas);
528 newpage->index = page->index;
529 newpage->mapping = page->mapping;
533 xas_store(&xas, newpage);
535 page_ref_unfreeze(page, expected_count - 1);
537 xas_unlock_irq(&xas);
539 return MIGRATEPAGE_SUCCESS;
543 * Gigantic pages are so large that we do not guarantee that page++ pointer
544 * arithmetic will work across the entire page. We need something more
547 static void __copy_gigantic_page(struct page *dst, struct page *src,
551 struct page *dst_base = dst;
552 struct page *src_base = src;
554 for (i = 0; i < nr_pages; ) {
556 copy_highpage(dst, src);
559 dst = mem_map_next(dst, dst_base, i);
560 src = mem_map_next(src, src_base, i);
564 static void copy_huge_page(struct page *dst, struct page *src)
571 struct hstate *h = page_hstate(src);
572 nr_pages = pages_per_huge_page(h);
574 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
575 __copy_gigantic_page(dst, src, nr_pages);
580 BUG_ON(!PageTransHuge(src));
581 nr_pages = hpage_nr_pages(src);
584 for (i = 0; i < nr_pages; i++) {
586 copy_highpage(dst + i, src + i);
591 * Copy the page to its new location
593 void migrate_page_states(struct page *newpage, struct page *page)
598 SetPageError(newpage);
599 if (PageReferenced(page))
600 SetPageReferenced(newpage);
601 if (PageUptodate(page))
602 SetPageUptodate(newpage);
603 if (TestClearPageActive(page)) {
604 VM_BUG_ON_PAGE(PageUnevictable(page), page);
605 SetPageActive(newpage);
606 } else if (TestClearPageUnevictable(page))
607 SetPageUnevictable(newpage);
608 if (PageWorkingset(page))
609 SetPageWorkingset(newpage);
610 if (PageChecked(page))
611 SetPageChecked(newpage);
612 if (PageMappedToDisk(page))
613 SetPageMappedToDisk(newpage);
615 /* Move dirty on pages not done by migrate_page_move_mapping() */
617 SetPageDirty(newpage);
619 if (page_is_young(page))
620 set_page_young(newpage);
621 if (page_is_idle(page))
622 set_page_idle(newpage);
625 * Copy NUMA information to the new page, to prevent over-eager
626 * future migrations of this same page.
628 cpupid = page_cpupid_xchg_last(page, -1);
629 page_cpupid_xchg_last(newpage, cpupid);
631 ksm_migrate_page(newpage, page);
633 * Please do not reorder this without considering how mm/ksm.c's
634 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
636 if (PageSwapCache(page))
637 ClearPageSwapCache(page);
638 ClearPagePrivate(page);
639 set_page_private(page, 0);
642 * If any waiters have accumulated on the new page then
645 if (PageWriteback(newpage))
646 end_page_writeback(newpage);
648 copy_page_owner(page, newpage);
650 mem_cgroup_migrate(page, newpage);
652 EXPORT_SYMBOL(migrate_page_states);
654 void migrate_page_copy(struct page *newpage, struct page *page)
656 if (PageHuge(page) || PageTransHuge(page))
657 copy_huge_page(newpage, page);
659 copy_highpage(newpage, page);
661 migrate_page_states(newpage, page);
663 EXPORT_SYMBOL(migrate_page_copy);
665 /************************************************************
666 * Migration functions
667 ***********************************************************/
670 * Common logic to directly migrate a single LRU page suitable for
671 * pages that do not use PagePrivate/PagePrivate2.
673 * Pages are locked upon entry and exit.
675 int migrate_page(struct address_space *mapping,
676 struct page *newpage, struct page *page,
677 enum migrate_mode mode)
681 BUG_ON(PageWriteback(page)); /* Writeback must be complete */
683 rc = migrate_page_move_mapping(mapping, newpage, page, 0);
685 if (rc != MIGRATEPAGE_SUCCESS)
688 if (mode != MIGRATE_SYNC_NO_COPY)
689 migrate_page_copy(newpage, page);
691 migrate_page_states(newpage, page);
692 return MIGRATEPAGE_SUCCESS;
694 EXPORT_SYMBOL(migrate_page);
697 /* Returns true if all buffers are successfully locked */
698 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
699 enum migrate_mode mode)
701 struct buffer_head *bh = head;
703 /* Simple case, sync compaction */
704 if (mode != MIGRATE_ASYNC) {
707 bh = bh->b_this_page;
709 } while (bh != head);
714 /* async case, we cannot block on lock_buffer so use trylock_buffer */
716 if (!trylock_buffer(bh)) {
718 * We failed to lock the buffer and cannot stall in
719 * async migration. Release the taken locks
721 struct buffer_head *failed_bh = bh;
723 while (bh != failed_bh) {
725 bh = bh->b_this_page;
730 bh = bh->b_this_page;
731 } while (bh != head);
735 static int __buffer_migrate_page(struct address_space *mapping,
736 struct page *newpage, struct page *page, enum migrate_mode mode,
739 struct buffer_head *bh, *head;
743 if (!page_has_buffers(page))
744 return migrate_page(mapping, newpage, page, mode);
746 /* Check whether page does not have extra refs before we do more work */
747 expected_count = expected_page_refs(mapping, page);
748 if (page_count(page) != expected_count)
751 head = page_buffers(page);
752 if (!buffer_migrate_lock_buffers(head, mode))
757 bool invalidated = false;
761 spin_lock(&mapping->private_lock);
764 if (atomic_read(&bh->b_count)) {
768 bh = bh->b_this_page;
769 } while (bh != head);
770 spin_unlock(&mapping->private_lock);
776 invalidate_bh_lrus();
778 goto recheck_buffers;
782 rc = migrate_page_move_mapping(mapping, newpage, page, 0);
783 if (rc != MIGRATEPAGE_SUCCESS)
786 ClearPagePrivate(page);
787 set_page_private(newpage, page_private(page));
788 set_page_private(page, 0);
794 set_bh_page(bh, newpage, bh_offset(bh));
795 bh = bh->b_this_page;
797 } while (bh != head);
799 SetPagePrivate(newpage);
801 if (mode != MIGRATE_SYNC_NO_COPY)
802 migrate_page_copy(newpage, page);
804 migrate_page_states(newpage, page);
806 rc = MIGRATEPAGE_SUCCESS;
811 bh = bh->b_this_page;
813 } while (bh != head);
819 * Migration function for pages with buffers. This function can only be used
820 * if the underlying filesystem guarantees that no other references to "page"
821 * exist. For example attached buffer heads are accessed only under page lock.
823 int buffer_migrate_page(struct address_space *mapping,
824 struct page *newpage, struct page *page, enum migrate_mode mode)
826 return __buffer_migrate_page(mapping, newpage, page, mode, false);
828 EXPORT_SYMBOL(buffer_migrate_page);
831 * Same as above except that this variant is more careful and checks that there
832 * are also no buffer head references. This function is the right one for
833 * mappings where buffer heads are directly looked up and referenced (such as
834 * block device mappings).
836 int buffer_migrate_page_norefs(struct address_space *mapping,
837 struct page *newpage, struct page *page, enum migrate_mode mode)
839 return __buffer_migrate_page(mapping, newpage, page, mode, true);
844 * Writeback a page to clean the dirty state
846 static int writeout(struct address_space *mapping, struct page *page)
848 struct writeback_control wbc = {
849 .sync_mode = WB_SYNC_NONE,
852 .range_end = LLONG_MAX,
857 if (!mapping->a_ops->writepage)
858 /* No write method for the address space */
861 if (!clear_page_dirty_for_io(page))
862 /* Someone else already triggered a write */
866 * A dirty page may imply that the underlying filesystem has
867 * the page on some queue. So the page must be clean for
868 * migration. Writeout may mean we loose the lock and the
869 * page state is no longer what we checked for earlier.
870 * At this point we know that the migration attempt cannot
873 remove_migration_ptes(page, page, false);
875 rc = mapping->a_ops->writepage(page, &wbc);
877 if (rc != AOP_WRITEPAGE_ACTIVATE)
878 /* unlocked. Relock */
881 return (rc < 0) ? -EIO : -EAGAIN;
885 * Default handling if a filesystem does not provide a migration function.
887 static int fallback_migrate_page(struct address_space *mapping,
888 struct page *newpage, struct page *page, enum migrate_mode mode)
890 if (PageDirty(page)) {
891 /* Only writeback pages in full synchronous migration */
894 case MIGRATE_SYNC_NO_COPY:
899 return writeout(mapping, page);
903 * Buffers may be managed in a filesystem specific way.
904 * We must have no buffers or drop them.
906 if (page_has_private(page) &&
907 !try_to_release_page(page, GFP_KERNEL))
908 return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY;
910 return migrate_page(mapping, newpage, page, mode);
914 * Move a page to a newly allocated page
915 * The page is locked and all ptes have been successfully removed.
917 * The new page will have replaced the old page if this function
922 * MIGRATEPAGE_SUCCESS - success
924 static int move_to_new_page(struct page *newpage, struct page *page,
925 enum migrate_mode mode)
927 struct address_space *mapping;
929 bool is_lru = !__PageMovable(page);
931 VM_BUG_ON_PAGE(!PageLocked(page), page);
932 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
934 mapping = page_mapping(page);
936 if (likely(is_lru)) {
938 rc = migrate_page(mapping, newpage, page, mode);
939 else if (mapping->a_ops->migratepage)
941 * Most pages have a mapping and most filesystems
942 * provide a migratepage callback. Anonymous pages
943 * are part of swap space which also has its own
944 * migratepage callback. This is the most common path
945 * for page migration.
947 rc = mapping->a_ops->migratepage(mapping, newpage,
950 rc = fallback_migrate_page(mapping, newpage,
954 * In case of non-lru page, it could be released after
955 * isolation step. In that case, we shouldn't try migration.
957 VM_BUG_ON_PAGE(!PageIsolated(page), page);
958 if (!PageMovable(page)) {
959 rc = MIGRATEPAGE_SUCCESS;
960 __ClearPageIsolated(page);
964 rc = mapping->a_ops->migratepage(mapping, newpage,
966 WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
967 !PageIsolated(page));
971 * When successful, old pagecache page->mapping must be cleared before
972 * page is freed; but stats require that PageAnon be left as PageAnon.
974 if (rc == MIGRATEPAGE_SUCCESS) {
975 if (__PageMovable(page)) {
976 VM_BUG_ON_PAGE(!PageIsolated(page), page);
979 * We clear PG_movable under page_lock so any compactor
980 * cannot try to migrate this page.
982 __ClearPageIsolated(page);
986 * Anonymous and movable page->mapping will be cleard by
987 * free_pages_prepare so don't reset it here for keeping
988 * the type to work PageAnon, for example.
990 if (!PageMappingFlags(page))
991 page->mapping = NULL;
993 if (likely(!is_zone_device_page(newpage)))
994 flush_dcache_page(newpage);
1001 static int __unmap_and_move(struct page *page, struct page *newpage,
1002 int force, enum migrate_mode mode)
1005 int page_was_mapped = 0;
1006 struct anon_vma *anon_vma = NULL;
1007 bool is_lru = !__PageMovable(page);
1009 if (!trylock_page(page)) {
1010 if (!force || mode == MIGRATE_ASYNC)
1014 * It's not safe for direct compaction to call lock_page.
1015 * For example, during page readahead pages are added locked
1016 * to the LRU. Later, when the IO completes the pages are
1017 * marked uptodate and unlocked. However, the queueing
1018 * could be merging multiple pages for one bio (e.g.
1019 * mpage_readpages). If an allocation happens for the
1020 * second or third page, the process can end up locking
1021 * the same page twice and deadlocking. Rather than
1022 * trying to be clever about what pages can be locked,
1023 * avoid the use of lock_page for direct compaction
1026 if (current->flags & PF_MEMALLOC)
1032 if (PageWriteback(page)) {
1034 * Only in the case of a full synchronous migration is it
1035 * necessary to wait for PageWriteback. In the async case,
1036 * the retry loop is too short and in the sync-light case,
1037 * the overhead of stalling is too much
1041 case MIGRATE_SYNC_NO_COPY:
1049 wait_on_page_writeback(page);
1053 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
1054 * we cannot notice that anon_vma is freed while we migrates a page.
1055 * This get_anon_vma() delays freeing anon_vma pointer until the end
1056 * of migration. File cache pages are no problem because of page_lock()
1057 * File Caches may use write_page() or lock_page() in migration, then,
1058 * just care Anon page here.
1060 * Only page_get_anon_vma() understands the subtleties of
1061 * getting a hold on an anon_vma from outside one of its mms.
1062 * But if we cannot get anon_vma, then we won't need it anyway,
1063 * because that implies that the anon page is no longer mapped
1064 * (and cannot be remapped so long as we hold the page lock).
1066 if (PageAnon(page) && !PageKsm(page))
1067 anon_vma = page_get_anon_vma(page);
1070 * Block others from accessing the new page when we get around to
1071 * establishing additional references. We are usually the only one
1072 * holding a reference to newpage at this point. We used to have a BUG
1073 * here if trylock_page(newpage) fails, but would like to allow for
1074 * cases where there might be a race with the previous use of newpage.
1075 * This is much like races on refcount of oldpage: just don't BUG().
1077 if (unlikely(!trylock_page(newpage)))
1080 if (unlikely(!is_lru)) {
1081 rc = move_to_new_page(newpage, page, mode);
1082 goto out_unlock_both;
1086 * Corner case handling:
1087 * 1. When a new swap-cache page is read into, it is added to the LRU
1088 * and treated as swapcache but it has no rmap yet.
1089 * Calling try_to_unmap() against a page->mapping==NULL page will
1090 * trigger a BUG. So handle it here.
1091 * 2. An orphaned page (see truncate_complete_page) might have
1092 * fs-private metadata. The page can be picked up due to memory
1093 * offlining. Everywhere else except page reclaim, the page is
1094 * invisible to the vm, so the page can not be migrated. So try to
1095 * free the metadata, so the page can be freed.
1097 if (!page->mapping) {
1098 VM_BUG_ON_PAGE(PageAnon(page), page);
1099 if (page_has_private(page)) {
1100 try_to_free_buffers(page);
1101 goto out_unlock_both;
1103 } else if (page_mapped(page)) {
1104 /* Establish migration ptes */
1105 VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1108 TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1109 page_was_mapped = 1;
1112 if (!page_mapped(page))
1113 rc = move_to_new_page(newpage, page, mode);
1115 if (page_was_mapped)
1116 remove_migration_ptes(page,
1117 rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
1120 unlock_page(newpage);
1122 /* Drop an anon_vma reference if we took one */
1124 put_anon_vma(anon_vma);
1128 * If migration is successful, decrease refcount of the newpage
1129 * which will not free the page because new page owner increased
1130 * refcounter. As well, if it is LRU page, add the page to LRU
1131 * list in here. Use the old state of the isolated source page to
1132 * determine if we migrated a LRU page. newpage was already unlocked
1133 * and possibly modified by its owner - don't rely on the page
1136 if (rc == MIGRATEPAGE_SUCCESS) {
1137 if (unlikely(!is_lru))
1140 putback_lru_page(newpage);
1147 * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move(). Work
1150 #if defined(CONFIG_ARM) && \
1151 defined(GCC_VERSION) && GCC_VERSION < 40900 && GCC_VERSION >= 40700
1152 #define ICE_noinline noinline
1154 #define ICE_noinline
1158 * Obtain the lock on page, remove all ptes and migrate the page
1159 * to the newly allocated page in newpage.
1161 static ICE_noinline int unmap_and_move(new_page_t get_new_page,
1162 free_page_t put_new_page,
1163 unsigned long private, struct page *page,
1164 int force, enum migrate_mode mode,
1165 enum migrate_reason reason)
1167 int rc = MIGRATEPAGE_SUCCESS;
1168 struct page *newpage;
1170 if (!thp_migration_supported() && PageTransHuge(page))
1173 newpage = get_new_page(page, private);
1177 if (page_count(page) == 1) {
1178 /* page was freed from under us. So we are done. */
1179 ClearPageActive(page);
1180 ClearPageUnevictable(page);
1181 if (unlikely(__PageMovable(page))) {
1183 if (!PageMovable(page))
1184 __ClearPageIsolated(page);
1188 put_new_page(newpage, private);
1194 rc = __unmap_and_move(page, newpage, force, mode);
1195 if (rc == MIGRATEPAGE_SUCCESS)
1196 set_page_owner_migrate_reason(newpage, reason);
1199 if (rc != -EAGAIN) {
1201 * A page that has been migrated has all references
1202 * removed and will be freed. A page that has not been
1203 * migrated will have kepts its references and be
1206 list_del(&page->lru);
1209 * Compaction can migrate also non-LRU pages which are
1210 * not accounted to NR_ISOLATED_*. They can be recognized
1213 if (likely(!__PageMovable(page)))
1214 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
1215 page_is_file_cache(page), -hpage_nr_pages(page));
1219 * If migration is successful, releases reference grabbed during
1220 * isolation. Otherwise, restore the page to right list unless
1223 if (rc == MIGRATEPAGE_SUCCESS) {
1225 if (reason == MR_MEMORY_FAILURE) {
1227 * Set PG_HWPoison on just freed page
1228 * intentionally. Although it's rather weird,
1229 * it's how HWPoison flag works at the moment.
1231 if (set_hwpoison_free_buddy_page(page))
1232 num_poisoned_pages_inc();
1235 if (rc != -EAGAIN) {
1236 if (likely(!__PageMovable(page))) {
1237 putback_lru_page(page);
1242 if (PageMovable(page))
1243 putback_movable_page(page);
1245 __ClearPageIsolated(page);
1251 put_new_page(newpage, private);
1260 * Counterpart of unmap_and_move_page() for hugepage migration.
1262 * This function doesn't wait the completion of hugepage I/O
1263 * because there is no race between I/O and migration for hugepage.
1264 * Note that currently hugepage I/O occurs only in direct I/O
1265 * where no lock is held and PG_writeback is irrelevant,
1266 * and writeback status of all subpages are counted in the reference
1267 * count of the head page (i.e. if all subpages of a 2MB hugepage are
1268 * under direct I/O, the reference of the head page is 512 and a bit more.)
1269 * This means that when we try to migrate hugepage whose subpages are
1270 * doing direct I/O, some references remain after try_to_unmap() and
1271 * hugepage migration fails without data corruption.
1273 * There is also no race when direct I/O is issued on the page under migration,
1274 * because then pte is replaced with migration swap entry and direct I/O code
1275 * will wait in the page fault for migration to complete.
1277 static int unmap_and_move_huge_page(new_page_t get_new_page,
1278 free_page_t put_new_page, unsigned long private,
1279 struct page *hpage, int force,
1280 enum migrate_mode mode, int reason)
1283 int page_was_mapped = 0;
1284 struct page *new_hpage;
1285 struct anon_vma *anon_vma = NULL;
1288 * Migratability of hugepages depends on architectures and their size.
1289 * This check is necessary because some callers of hugepage migration
1290 * like soft offline and memory hotremove don't walk through page
1291 * tables or check whether the hugepage is pmd-based or not before
1292 * kicking migration.
1294 if (!hugepage_migration_supported(page_hstate(hpage))) {
1295 putback_active_hugepage(hpage);
1299 new_hpage = get_new_page(hpage, private);
1303 if (!trylock_page(hpage)) {
1308 case MIGRATE_SYNC_NO_COPY:
1317 * Check for pages which are in the process of being freed. Without
1318 * page_mapping() set, hugetlbfs specific move page routine will not
1319 * be called and we could leak usage counts for subpools.
1321 if (page_private(hpage) && !page_mapping(hpage)) {
1326 if (PageAnon(hpage))
1327 anon_vma = page_get_anon_vma(hpage);
1329 if (unlikely(!trylock_page(new_hpage)))
1332 if (page_mapped(hpage)) {
1334 TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1335 page_was_mapped = 1;
1338 if (!page_mapped(hpage))
1339 rc = move_to_new_page(new_hpage, hpage, mode);
1341 if (page_was_mapped)
1342 remove_migration_ptes(hpage,
1343 rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false);
1345 unlock_page(new_hpage);
1349 put_anon_vma(anon_vma);
1351 if (rc == MIGRATEPAGE_SUCCESS) {
1352 move_hugetlb_state(hpage, new_hpage, reason);
1353 put_new_page = NULL;
1360 putback_active_hugepage(hpage);
1363 * If migration was not successful and there's a freeing callback, use
1364 * it. Otherwise, put_page() will drop the reference grabbed during
1368 put_new_page(new_hpage, private);
1370 putback_active_hugepage(new_hpage);
1376 * migrate_pages - migrate the pages specified in a list, to the free pages
1377 * supplied as the target for the page migration
1379 * @from: The list of pages to be migrated.
1380 * @get_new_page: The function used to allocate free pages to be used
1381 * as the target of the page migration.
1382 * @put_new_page: The function used to free target pages if migration
1383 * fails, or NULL if no special handling is necessary.
1384 * @private: Private data to be passed on to get_new_page()
1385 * @mode: The migration mode that specifies the constraints for
1386 * page migration, if any.
1387 * @reason: The reason for page migration.
1389 * The function returns after 10 attempts or if no pages are movable any more
1390 * because the list has become empty or no retryable pages exist any more.
1391 * The caller should call putback_movable_pages() to return pages to the LRU
1392 * or free list only if ret != 0.
1394 * Returns the number of pages that were not migrated, or an error code.
1396 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1397 free_page_t put_new_page, unsigned long private,
1398 enum migrate_mode mode, int reason)
1402 int nr_succeeded = 0;
1406 int swapwrite = current->flags & PF_SWAPWRITE;
1410 current->flags |= PF_SWAPWRITE;
1412 for(pass = 0; pass < 10 && retry; pass++) {
1415 list_for_each_entry_safe(page, page2, from, lru) {
1420 rc = unmap_and_move_huge_page(get_new_page,
1421 put_new_page, private, page,
1422 pass > 2, mode, reason);
1424 rc = unmap_and_move(get_new_page, put_new_page,
1425 private, page, pass > 2, mode,
1431 * THP migration might be unsupported or the
1432 * allocation could've failed so we should
1433 * retry on the same page with the THP split
1436 * Head page is retried immediately and tail
1437 * pages are added to the tail of the list so
1438 * we encounter them after the rest of the list
1441 if (PageTransHuge(page) && !PageHuge(page)) {
1443 rc = split_huge_page_to_list(page, from);
1446 list_safe_reset_next(page, page2, lru);
1455 case MIGRATEPAGE_SUCCESS:
1460 * Permanent failure (-EBUSY, -ENOSYS, etc.):
1461 * unlike -EAGAIN case, the failed page is
1462 * removed from migration page list and not
1463 * retried in the next outer loop.
1474 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1476 count_vm_events(PGMIGRATE_FAIL, nr_failed);
1477 trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);
1480 current->flags &= ~PF_SWAPWRITE;
1487 static int store_status(int __user *status, int start, int value, int nr)
1490 if (put_user(value, status + start))
1498 static int do_move_pages_to_node(struct mm_struct *mm,
1499 struct list_head *pagelist, int node)
1503 if (list_empty(pagelist))
1506 err = migrate_pages(pagelist, alloc_new_node_page, NULL, node,
1507 MIGRATE_SYNC, MR_SYSCALL);
1509 putback_movable_pages(pagelist);
1514 * Resolves the given address to a struct page, isolates it from the LRU and
1515 * puts it to the given pagelist.
1516 * Returns -errno if the page cannot be found/isolated or 0 when it has been
1517 * queued or the page doesn't need to be migrated because it is already on
1520 static int add_page_for_migration(struct mm_struct *mm, unsigned long addr,
1521 int node, struct list_head *pagelist, bool migrate_all)
1523 struct vm_area_struct *vma;
1525 unsigned int follflags;
1528 down_read(&mm->mmap_sem);
1530 vma = find_vma(mm, addr);
1531 if (!vma || addr < vma->vm_start || !vma_migratable(vma))
1534 /* FOLL_DUMP to ignore special (like zero) pages */
1535 follflags = FOLL_GET | FOLL_DUMP;
1536 page = follow_page(vma, addr, follflags);
1538 err = PTR_ERR(page);
1547 if (page_to_nid(page) == node)
1551 if (page_mapcount(page) > 1 && !migrate_all)
1554 if (PageHuge(page)) {
1555 if (PageHead(page)) {
1556 isolate_huge_page(page, pagelist);
1562 head = compound_head(page);
1563 err = isolate_lru_page(head);
1568 list_add_tail(&head->lru, pagelist);
1569 mod_node_page_state(page_pgdat(head),
1570 NR_ISOLATED_ANON + page_is_file_cache(head),
1571 hpage_nr_pages(head));
1575 * Either remove the duplicate refcount from
1576 * isolate_lru_page() or drop the page ref if it was
1581 up_read(&mm->mmap_sem);
1586 * Migrate an array of page address onto an array of nodes and fill
1587 * the corresponding array of status.
1589 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1590 unsigned long nr_pages,
1591 const void __user * __user *pages,
1592 const int __user *nodes,
1593 int __user *status, int flags)
1595 int current_node = NUMA_NO_NODE;
1596 LIST_HEAD(pagelist);
1602 for (i = start = 0; i < nr_pages; i++) {
1603 const void __user *p;
1608 if (get_user(p, pages + i))
1610 if (get_user(node, nodes + i))
1612 addr = (unsigned long)p;
1615 if (node < 0 || node >= MAX_NUMNODES)
1617 if (!node_state(node, N_MEMORY))
1621 if (!node_isset(node, task_nodes))
1624 if (current_node == NUMA_NO_NODE) {
1625 current_node = node;
1627 } else if (node != current_node) {
1628 err = do_move_pages_to_node(mm, &pagelist, current_node);
1631 err = store_status(status, start, current_node, i - start);
1635 current_node = node;
1639 * Errors in the page lookup or isolation are not fatal and we simply
1640 * report them via status
1642 err = add_page_for_migration(mm, addr, current_node,
1643 &pagelist, flags & MPOL_MF_MOVE_ALL);
1647 err = store_status(status, i, err, 1);
1651 err = do_move_pages_to_node(mm, &pagelist, current_node);
1655 err = store_status(status, start, current_node, i - start);
1659 current_node = NUMA_NO_NODE;
1662 if (list_empty(&pagelist))
1665 /* Make sure we do not overwrite the existing error */
1666 err1 = do_move_pages_to_node(mm, &pagelist, current_node);
1668 err1 = store_status(status, start, current_node, i - start);
1676 * Determine the nodes of an array of pages and store it in an array of status.
1678 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1679 const void __user **pages, int *status)
1683 down_read(&mm->mmap_sem);
1685 for (i = 0; i < nr_pages; i++) {
1686 unsigned long addr = (unsigned long)(*pages);
1687 struct vm_area_struct *vma;
1691 vma = find_vma(mm, addr);
1692 if (!vma || addr < vma->vm_start)
1695 /* FOLL_DUMP to ignore special (like zero) pages */
1696 page = follow_page(vma, addr, FOLL_DUMP);
1698 err = PTR_ERR(page);
1702 err = page ? page_to_nid(page) : -ENOENT;
1710 up_read(&mm->mmap_sem);
1714 * Determine the nodes of a user array of pages and store it in
1715 * a user array of status.
1717 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1718 const void __user * __user *pages,
1721 #define DO_PAGES_STAT_CHUNK_NR 16
1722 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1723 int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1726 unsigned long chunk_nr;
1728 chunk_nr = nr_pages;
1729 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1730 chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1732 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1735 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1737 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1742 nr_pages -= chunk_nr;
1744 return nr_pages ? -EFAULT : 0;
1748 * Move a list of pages in the address space of the currently executing
1751 static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
1752 const void __user * __user *pages,
1753 const int __user *nodes,
1754 int __user *status, int flags)
1756 struct task_struct *task;
1757 struct mm_struct *mm;
1759 nodemask_t task_nodes;
1762 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1765 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1768 /* Find the mm_struct */
1770 task = pid ? find_task_by_vpid(pid) : current;
1775 get_task_struct(task);
1778 * Check if this process has the right to modify the specified
1779 * process. Use the regular "ptrace_may_access()" checks.
1781 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1788 err = security_task_movememory(task);
1792 task_nodes = cpuset_mems_allowed(task);
1793 mm = get_task_mm(task);
1794 put_task_struct(task);
1800 err = do_pages_move(mm, task_nodes, nr_pages, pages,
1801 nodes, status, flags);
1803 err = do_pages_stat(mm, nr_pages, pages, status);
1809 put_task_struct(task);
1813 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1814 const void __user * __user *, pages,
1815 const int __user *, nodes,
1816 int __user *, status, int, flags)
1818 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1821 #ifdef CONFIG_COMPAT
1822 COMPAT_SYSCALL_DEFINE6(move_pages, pid_t, pid, compat_ulong_t, nr_pages,
1823 compat_uptr_t __user *, pages32,
1824 const int __user *, nodes,
1825 int __user *, status,
1828 const void __user * __user *pages;
1831 pages = compat_alloc_user_space(nr_pages * sizeof(void *));
1832 for (i = 0; i < nr_pages; i++) {
1835 if (get_user(p, pages32 + i) ||
1836 put_user(compat_ptr(p), pages + i))
1839 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1841 #endif /* CONFIG_COMPAT */
1843 #ifdef CONFIG_NUMA_BALANCING
1845 * Returns true if this is a safe migration target node for misplaced NUMA
1846 * pages. Currently it only checks the watermarks which crude
1848 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1849 unsigned long nr_migrate_pages)
1853 for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1854 struct zone *zone = pgdat->node_zones + z;
1856 if (!populated_zone(zone))
1859 /* Avoid waking kswapd by allocating pages_to_migrate pages. */
1860 if (!zone_watermark_ok(zone, 0,
1861 high_wmark_pages(zone) +
1870 static struct page *alloc_misplaced_dst_page(struct page *page,
1873 int nid = (int) data;
1874 struct page *newpage;
1876 newpage = __alloc_pages_node(nid,
1877 (GFP_HIGHUSER_MOVABLE |
1878 __GFP_THISNODE | __GFP_NOMEMALLOC |
1879 __GFP_NORETRY | __GFP_NOWARN) &
1885 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
1889 VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
1891 /* Avoid migrating to a node that is nearly full */
1892 if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page)))
1895 if (isolate_lru_page(page))
1899 * migrate_misplaced_transhuge_page() skips page migration's usual
1900 * check on page_count(), so we must do it here, now that the page
1901 * has been isolated: a GUP pin, or any other pin, prevents migration.
1902 * The expected page count is 3: 1 for page's mapcount and 1 for the
1903 * caller's pin and 1 for the reference taken by isolate_lru_page().
1905 if (PageTransHuge(page) && page_count(page) != 3) {
1906 putback_lru_page(page);
1910 page_lru = page_is_file_cache(page);
1911 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
1912 hpage_nr_pages(page));
1915 * Isolating the page has taken another reference, so the
1916 * caller's reference can be safely dropped without the page
1917 * disappearing underneath us during migration.
1923 bool pmd_trans_migrating(pmd_t pmd)
1925 struct page *page = pmd_page(pmd);
1926 return PageLocked(page);
1930 * Attempt to migrate a misplaced page to the specified destination
1931 * node. Caller is expected to have an elevated reference count on
1932 * the page that will be dropped by this function before returning.
1934 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
1937 pg_data_t *pgdat = NODE_DATA(node);
1940 LIST_HEAD(migratepages);
1943 * Don't migrate file pages that are mapped in multiple processes
1944 * with execute permissions as they are probably shared libraries.
1946 if (page_mapcount(page) != 1 && page_is_file_cache(page) &&
1947 (vma->vm_flags & VM_EXEC))
1951 * Also do not migrate dirty pages as not all filesystems can move
1952 * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles.
1954 if (page_is_file_cache(page) && PageDirty(page))
1957 isolated = numamigrate_isolate_page(pgdat, page);
1961 list_add(&page->lru, &migratepages);
1962 nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
1963 NULL, node, MIGRATE_ASYNC,
1966 if (!list_empty(&migratepages)) {
1967 list_del(&page->lru);
1968 dec_node_page_state(page, NR_ISOLATED_ANON +
1969 page_is_file_cache(page));
1970 putback_lru_page(page);
1974 count_vm_numa_event(NUMA_PAGE_MIGRATE);
1975 BUG_ON(!list_empty(&migratepages));
1982 #endif /* CONFIG_NUMA_BALANCING */
1984 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1986 * Migrates a THP to a given target node. page must be locked and is unlocked
1989 int migrate_misplaced_transhuge_page(struct mm_struct *mm,
1990 struct vm_area_struct *vma,
1991 pmd_t *pmd, pmd_t entry,
1992 unsigned long address,
1993 struct page *page, int node)
1996 pg_data_t *pgdat = NODE_DATA(node);
1998 struct page *new_page = NULL;
1999 int page_lru = page_is_file_cache(page);
2000 unsigned long start = address & HPAGE_PMD_MASK;
2002 new_page = alloc_pages_node(node,
2003 (GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
2007 prep_transhuge_page(new_page);
2009 isolated = numamigrate_isolate_page(pgdat, page);
2015 /* Prepare a page as a migration target */
2016 __SetPageLocked(new_page);
2017 if (PageSwapBacked(page))
2018 __SetPageSwapBacked(new_page);
2020 /* anon mapping, we can simply copy page->mapping to the new page: */
2021 new_page->mapping = page->mapping;
2022 new_page->index = page->index;
2023 /* flush the cache before copying using the kernel virtual address */
2024 flush_cache_range(vma, start, start + HPAGE_PMD_SIZE);
2025 migrate_page_copy(new_page, page);
2026 WARN_ON(PageLRU(new_page));
2028 /* Recheck the target PMD */
2029 ptl = pmd_lock(mm, pmd);
2030 if (unlikely(!pmd_same(*pmd, entry) || !page_ref_freeze(page, 2))) {
2033 /* Reverse changes made by migrate_page_copy() */
2034 if (TestClearPageActive(new_page))
2035 SetPageActive(page);
2036 if (TestClearPageUnevictable(new_page))
2037 SetPageUnevictable(page);
2039 unlock_page(new_page);
2040 put_page(new_page); /* Free it */
2042 /* Retake the callers reference and putback on LRU */
2044 putback_lru_page(page);
2045 mod_node_page_state(page_pgdat(page),
2046 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
2051 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
2052 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
2055 * Overwrite the old entry under pagetable lock and establish
2056 * the new PTE. Any parallel GUP will either observe the old
2057 * page blocking on the page lock, block on the page table
2058 * lock or observe the new page. The SetPageUptodate on the
2059 * new page and page_add_new_anon_rmap guarantee the copy is
2060 * visible before the pagetable update.
2062 page_add_anon_rmap(new_page, vma, start, true);
2064 * At this point the pmd is numa/protnone (i.e. non present) and the TLB
2065 * has already been flushed globally. So no TLB can be currently
2066 * caching this non present pmd mapping. There's no need to clear the
2067 * pmd before doing set_pmd_at(), nor to flush the TLB after
2068 * set_pmd_at(). Clearing the pmd here would introduce a race
2069 * condition against MADV_DONTNEED, because MADV_DONTNEED only holds the
2070 * mmap_sem for reading. If the pmd is set to NULL at any given time,
2071 * MADV_DONTNEED won't wait on the pmd lock and it'll skip clearing this
2074 set_pmd_at(mm, start, pmd, entry);
2075 update_mmu_cache_pmd(vma, address, &entry);
2077 page_ref_unfreeze(page, 2);
2078 mlock_migrate_page(new_page, page);
2079 page_remove_rmap(page, true);
2080 set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED);
2084 /* Take an "isolate" reference and put new page on the LRU. */
2086 putback_lru_page(new_page);
2088 unlock_page(new_page);
2090 put_page(page); /* Drop the rmap reference */
2091 put_page(page); /* Drop the LRU isolation reference */
2093 count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
2094 count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
2096 mod_node_page_state(page_pgdat(page),
2097 NR_ISOLATED_ANON + page_lru,
2102 count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
2103 ptl = pmd_lock(mm, pmd);
2104 if (pmd_same(*pmd, entry)) {
2105 entry = pmd_modify(entry, vma->vm_page_prot);
2106 set_pmd_at(mm, start, pmd, entry);
2107 update_mmu_cache_pmd(vma, address, &entry);
2116 #endif /* CONFIG_NUMA_BALANCING */
2118 #endif /* CONFIG_NUMA */
2120 #if defined(CONFIG_MIGRATE_VMA_HELPER)
2121 struct migrate_vma {
2122 struct vm_area_struct *vma;
2125 unsigned long cpages;
2126 unsigned long npages;
2127 unsigned long start;
2131 static int migrate_vma_collect_hole(unsigned long start,
2133 struct mm_walk *walk)
2135 struct migrate_vma *migrate = walk->private;
2138 for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) {
2139 migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE;
2140 migrate->dst[migrate->npages] = 0;
2148 static int migrate_vma_collect_skip(unsigned long start,
2150 struct mm_walk *walk)
2152 struct migrate_vma *migrate = walk->private;
2155 for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) {
2156 migrate->dst[migrate->npages] = 0;
2157 migrate->src[migrate->npages++] = 0;
2163 static int migrate_vma_collect_pmd(pmd_t *pmdp,
2164 unsigned long start,
2166 struct mm_walk *walk)
2168 struct migrate_vma *migrate = walk->private;
2169 struct vm_area_struct *vma = walk->vma;
2170 struct mm_struct *mm = vma->vm_mm;
2171 unsigned long addr = start, unmapped = 0;
2176 if (pmd_none(*pmdp))
2177 return migrate_vma_collect_hole(start, end, walk);
2179 if (pmd_trans_huge(*pmdp)) {
2182 ptl = pmd_lock(mm, pmdp);
2183 if (unlikely(!pmd_trans_huge(*pmdp))) {
2188 page = pmd_page(*pmdp);
2189 if (is_huge_zero_page(page)) {
2191 split_huge_pmd(vma, pmdp, addr);
2192 if (pmd_trans_unstable(pmdp))
2193 return migrate_vma_collect_skip(start, end,
2200 if (unlikely(!trylock_page(page)))
2201 return migrate_vma_collect_skip(start, end,
2203 ret = split_huge_page(page);
2207 return migrate_vma_collect_skip(start, end,
2209 if (pmd_none(*pmdp))
2210 return migrate_vma_collect_hole(start, end,
2215 if (unlikely(pmd_bad(*pmdp)))
2216 return migrate_vma_collect_skip(start, end, walk);
2218 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2219 arch_enter_lazy_mmu_mode();
2221 for (; addr < end; addr += PAGE_SIZE, ptep++) {
2222 unsigned long mpfn, pfn;
2230 if (pte_none(pte)) {
2231 mpfn = MIGRATE_PFN_MIGRATE;
2237 if (!pte_present(pte)) {
2241 * Only care about unaddressable device page special
2242 * page table entry. Other special swap entries are not
2243 * migratable, and we ignore regular swapped page.
2245 entry = pte_to_swp_entry(pte);
2246 if (!is_device_private_entry(entry))
2249 page = device_private_entry_to_page(entry);
2250 mpfn = migrate_pfn(page_to_pfn(page))|
2251 MIGRATE_PFN_DEVICE | MIGRATE_PFN_MIGRATE;
2252 if (is_write_device_private_entry(entry))
2253 mpfn |= MIGRATE_PFN_WRITE;
2255 if (is_zero_pfn(pfn)) {
2256 mpfn = MIGRATE_PFN_MIGRATE;
2261 page = vm_normal_page(migrate->vma, addr, pte);
2262 mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
2263 mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
2266 /* FIXME support THP */
2267 if (!page || !page->mapping || PageTransCompound(page)) {
2271 pfn = page_to_pfn(page);
2274 * By getting a reference on the page we pin it and that blocks
2275 * any kind of migration. Side effect is that it "freezes" the
2278 * We drop this reference after isolating the page from the lru
2279 * for non device page (device page are not on the lru and thus
2280 * can't be dropped from it).
2286 * Optimize for the common case where page is only mapped once
2287 * in one process. If we can lock the page, then we can safely
2288 * set up a special migration page table entry now.
2290 if (trylock_page(page)) {
2293 mpfn |= MIGRATE_PFN_LOCKED;
2294 ptep_get_and_clear(mm, addr, ptep);
2296 /* Setup special migration page table entry */
2297 entry = make_migration_entry(page, mpfn &
2299 swp_pte = swp_entry_to_pte(entry);
2300 if (pte_soft_dirty(pte))
2301 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2302 set_pte_at(mm, addr, ptep, swp_pte);
2305 * This is like regular unmap: we remove the rmap and
2306 * drop page refcount. Page won't be freed, as we took
2307 * a reference just above.
2309 page_remove_rmap(page, false);
2312 if (pte_present(pte))
2317 migrate->dst[migrate->npages] = 0;
2318 migrate->src[migrate->npages++] = mpfn;
2320 arch_leave_lazy_mmu_mode();
2321 pte_unmap_unlock(ptep - 1, ptl);
2323 /* Only flush the TLB if we actually modified any entries */
2325 flush_tlb_range(walk->vma, start, end);
2331 * migrate_vma_collect() - collect pages over a range of virtual addresses
2332 * @migrate: migrate struct containing all migration information
2334 * This will walk the CPU page table. For each virtual address backed by a
2335 * valid page, it updates the src array and takes a reference on the page, in
2336 * order to pin the page until we lock it and unmap it.
2338 static void migrate_vma_collect(struct migrate_vma *migrate)
2340 struct mmu_notifier_range range;
2341 struct mm_walk mm_walk;
2343 mm_walk.pmd_entry = migrate_vma_collect_pmd;
2344 mm_walk.pte_entry = NULL;
2345 mm_walk.pte_hole = migrate_vma_collect_hole;
2346 mm_walk.hugetlb_entry = NULL;
2347 mm_walk.test_walk = NULL;
2348 mm_walk.vma = migrate->vma;
2349 mm_walk.mm = migrate->vma->vm_mm;
2350 mm_walk.private = migrate;
2352 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, NULL, mm_walk.mm,
2355 mmu_notifier_invalidate_range_start(&range);
2356 walk_page_range(migrate->start, migrate->end, &mm_walk);
2357 mmu_notifier_invalidate_range_end(&range);
2359 migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
2363 * migrate_vma_check_page() - check if page is pinned or not
2364 * @page: struct page to check
2366 * Pinned pages cannot be migrated. This is the same test as in
2367 * migrate_page_move_mapping(), except that here we allow migration of a
2370 static bool migrate_vma_check_page(struct page *page)
2373 * One extra ref because caller holds an extra reference, either from
2374 * isolate_lru_page() for a regular page, or migrate_vma_collect() for
2380 * FIXME support THP (transparent huge page), it is bit more complex to
2381 * check them than regular pages, because they can be mapped with a pmd
2382 * or with a pte (split pte mapping).
2384 if (PageCompound(page))
2387 /* Page from ZONE_DEVICE have one extra reference */
2388 if (is_zone_device_page(page)) {
2390 * Private page can never be pin as they have no valid pte and
2391 * GUP will fail for those. Yet if there is a pending migration
2392 * a thread might try to wait on the pte migration entry and
2393 * will bump the page reference count. Sadly there is no way to
2394 * differentiate a regular pin from migration wait. Hence to
2395 * avoid 2 racing thread trying to migrate back to CPU to enter
2396 * infinite loop (one stoping migration because the other is
2397 * waiting on pte migration entry). We always return true here.
2399 * FIXME proper solution is to rework migration_entry_wait() so
2400 * it does not need to take a reference on page.
2402 return is_device_private_page(page);
2405 /* For file back page */
2406 if (page_mapping(page))
2407 extra += 1 + page_has_private(page);
2409 if ((page_count(page) - extra) > page_mapcount(page))
2416 * migrate_vma_prepare() - lock pages and isolate them from the lru
2417 * @migrate: migrate struct containing all migration information
2419 * This locks pages that have been collected by migrate_vma_collect(). Once each
2420 * page is locked it is isolated from the lru (for non-device pages). Finally,
2421 * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be
2422 * migrated by concurrent kernel threads.
2424 static void migrate_vma_prepare(struct migrate_vma *migrate)
2426 const unsigned long npages = migrate->npages;
2427 const unsigned long start = migrate->start;
2428 unsigned long addr, i, restore = 0;
2429 bool allow_drain = true;
2433 for (i = 0; (i < npages) && migrate->cpages; i++) {
2434 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2440 if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) {
2442 * Because we are migrating several pages there can be
2443 * a deadlock between 2 concurrent migration where each
2444 * are waiting on each other page lock.
2446 * Make migrate_vma() a best effort thing and backoff
2447 * for any page we can not lock right away.
2449 if (!trylock_page(page)) {
2450 migrate->src[i] = 0;
2456 migrate->src[i] |= MIGRATE_PFN_LOCKED;
2459 /* ZONE_DEVICE pages are not on LRU */
2460 if (!is_zone_device_page(page)) {
2461 if (!PageLRU(page) && allow_drain) {
2462 /* Drain CPU's pagevec */
2463 lru_add_drain_all();
2464 allow_drain = false;
2467 if (isolate_lru_page(page)) {
2469 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2473 migrate->src[i] = 0;
2481 /* Drop the reference we took in collect */
2485 if (!migrate_vma_check_page(page)) {
2487 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2491 if (!is_zone_device_page(page)) {
2493 putback_lru_page(page);
2496 migrate->src[i] = 0;
2500 if (!is_zone_device_page(page))
2501 putback_lru_page(page);
2508 for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) {
2509 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2511 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2514 remove_migration_pte(page, migrate->vma, addr, page);
2516 migrate->src[i] = 0;
2524 * migrate_vma_unmap() - replace page mapping with special migration pte entry
2525 * @migrate: migrate struct containing all migration information
2527 * Replace page mapping (CPU page table pte) with a special migration pte entry
2528 * and check again if it has been pinned. Pinned pages are restored because we
2529 * cannot migrate them.
2531 * This is the last step before we call the device driver callback to allocate
2532 * destination memory and copy contents of original page over to new page.
2534 static void migrate_vma_unmap(struct migrate_vma *migrate)
2536 int flags = TTU_MIGRATION | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
2537 const unsigned long npages = migrate->npages;
2538 const unsigned long start = migrate->start;
2539 unsigned long addr, i, restore = 0;
2541 for (i = 0; i < npages; i++) {
2542 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2544 if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2547 if (page_mapped(page)) {
2548 try_to_unmap(page, flags);
2549 if (page_mapped(page))
2553 if (migrate_vma_check_page(page))
2557 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2562 for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) {
2563 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2565 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2568 remove_migration_ptes(page, page, false);
2570 migrate->src[i] = 0;
2574 if (is_zone_device_page(page))
2577 putback_lru_page(page);
2581 static void migrate_vma_insert_page(struct migrate_vma *migrate,
2587 struct vm_area_struct *vma = migrate->vma;
2588 struct mm_struct *mm = vma->vm_mm;
2589 struct mem_cgroup *memcg;
2599 /* Only allow populating anonymous memory */
2600 if (!vma_is_anonymous(vma))
2603 pgdp = pgd_offset(mm, addr);
2604 p4dp = p4d_alloc(mm, pgdp, addr);
2607 pudp = pud_alloc(mm, p4dp, addr);
2610 pmdp = pmd_alloc(mm, pudp, addr);
2614 if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp))
2618 * Use pte_alloc() instead of pte_alloc_map(). We can't run
2619 * pte_offset_map() on pmds where a huge pmd might be created
2620 * from a different thread.
2622 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
2623 * parallel threads are excluded by other means.
2625 * Here we only have down_read(mmap_sem).
2627 if (pte_alloc(mm, pmdp))
2630 /* See the comment in pte_alloc_one_map() */
2631 if (unlikely(pmd_trans_unstable(pmdp)))
2634 if (unlikely(anon_vma_prepare(vma)))
2636 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg, false))
2640 * The memory barrier inside __SetPageUptodate makes sure that
2641 * preceding stores to the page contents become visible before
2642 * the set_pte_at() write.
2644 __SetPageUptodate(page);
2646 if (is_zone_device_page(page)) {
2647 if (is_device_private_page(page)) {
2648 swp_entry_t swp_entry;
2650 swp_entry = make_device_private_entry(page, vma->vm_flags & VM_WRITE);
2651 entry = swp_entry_to_pte(swp_entry);
2654 entry = mk_pte(page, vma->vm_page_prot);
2655 if (vma->vm_flags & VM_WRITE)
2656 entry = pte_mkwrite(pte_mkdirty(entry));
2659 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2661 if (pte_present(*ptep)) {
2662 unsigned long pfn = pte_pfn(*ptep);
2664 if (!is_zero_pfn(pfn)) {
2665 pte_unmap_unlock(ptep, ptl);
2666 mem_cgroup_cancel_charge(page, memcg, false);
2670 } else if (!pte_none(*ptep)) {
2671 pte_unmap_unlock(ptep, ptl);
2672 mem_cgroup_cancel_charge(page, memcg, false);
2677 * Check for usefaultfd but do not deliver the fault. Instead,
2680 if (userfaultfd_missing(vma)) {
2681 pte_unmap_unlock(ptep, ptl);
2682 mem_cgroup_cancel_charge(page, memcg, false);
2686 inc_mm_counter(mm, MM_ANONPAGES);
2687 page_add_new_anon_rmap(page, vma, addr, false);
2688 mem_cgroup_commit_charge(page, memcg, false, false);
2689 if (!is_zone_device_page(page))
2690 lru_cache_add_active_or_unevictable(page, vma);
2694 flush_cache_page(vma, addr, pte_pfn(*ptep));
2695 ptep_clear_flush_notify(vma, addr, ptep);
2696 set_pte_at_notify(mm, addr, ptep, entry);
2697 update_mmu_cache(vma, addr, ptep);
2699 /* No need to invalidate - it was non-present before */
2700 set_pte_at(mm, addr, ptep, entry);
2701 update_mmu_cache(vma, addr, ptep);
2704 pte_unmap_unlock(ptep, ptl);
2705 *src = MIGRATE_PFN_MIGRATE;
2709 *src &= ~MIGRATE_PFN_MIGRATE;
2713 * migrate_vma_pages() - migrate meta-data from src page to dst page
2714 * @migrate: migrate struct containing all migration information
2716 * This migrates struct page meta-data from source struct page to destination
2717 * struct page. This effectively finishes the migration from source page to the
2720 static void migrate_vma_pages(struct migrate_vma *migrate)
2722 const unsigned long npages = migrate->npages;
2723 const unsigned long start = migrate->start;
2724 struct mmu_notifier_range range;
2725 unsigned long addr, i;
2726 bool notified = false;
2728 for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) {
2729 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2730 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2731 struct address_space *mapping;
2735 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2740 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE)) {
2746 mmu_notifier_range_init(&range,
2747 MMU_NOTIFY_CLEAR, 0,
2749 migrate->vma->vm_mm,
2750 addr, migrate->end);
2751 mmu_notifier_invalidate_range_start(&range);
2753 migrate_vma_insert_page(migrate, addr, newpage,
2759 mapping = page_mapping(page);
2761 if (is_zone_device_page(newpage)) {
2762 if (is_device_private_page(newpage)) {
2764 * For now only support private anonymous when
2765 * migrating to un-addressable device memory.
2768 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2773 * Other types of ZONE_DEVICE page are not
2776 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2781 r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY);
2782 if (r != MIGRATEPAGE_SUCCESS)
2783 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2787 * No need to double call mmu_notifier->invalidate_range() callback as
2788 * the above ptep_clear_flush_notify() inside migrate_vma_insert_page()
2789 * did already call it.
2792 mmu_notifier_invalidate_range_only_end(&range);
2796 * migrate_vma_finalize() - restore CPU page table entry
2797 * @migrate: migrate struct containing all migration information
2799 * This replaces the special migration pte entry with either a mapping to the
2800 * new page if migration was successful for that page, or to the original page
2803 * This also unlocks the pages and puts them back on the lru, or drops the extra
2804 * refcount, for device pages.
2806 static void migrate_vma_finalize(struct migrate_vma *migrate)
2808 const unsigned long npages = migrate->npages;
2811 for (i = 0; i < npages; i++) {
2812 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2813 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2817 unlock_page(newpage);
2823 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) {
2825 unlock_page(newpage);
2831 remove_migration_ptes(page, newpage, false);
2835 if (is_zone_device_page(page))
2838 putback_lru_page(page);
2840 if (newpage != page) {
2841 unlock_page(newpage);
2842 if (is_zone_device_page(newpage))
2845 putback_lru_page(newpage);
2851 * migrate_vma() - migrate a range of memory inside vma
2853 * @ops: migration callback for allocating destination memory and copying
2854 * @vma: virtual memory area containing the range to be migrated
2855 * @start: start address of the range to migrate (inclusive)
2856 * @end: end address of the range to migrate (exclusive)
2857 * @src: array of hmm_pfn_t containing source pfns
2858 * @dst: array of hmm_pfn_t containing destination pfns
2859 * @private: pointer passed back to each of the callback
2860 * Returns: 0 on success, error code otherwise
2862 * This function tries to migrate a range of memory virtual address range, using
2863 * callbacks to allocate and copy memory from source to destination. First it
2864 * collects all the pages backing each virtual address in the range, saving this
2865 * inside the src array. Then it locks those pages and unmaps them. Once the pages
2866 * are locked and unmapped, it checks whether each page is pinned or not. Pages
2867 * that aren't pinned have the MIGRATE_PFN_MIGRATE flag set (by this function)
2868 * in the corresponding src array entry. It then restores any pages that are
2869 * pinned, by remapping and unlocking those pages.
2871 * At this point it calls the alloc_and_copy() callback. For documentation on
2872 * what is expected from that callback, see struct migrate_vma_ops comments in
2873 * include/linux/migrate.h
2875 * After the alloc_and_copy() callback, this function goes over each entry in
2876 * the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
2877 * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
2878 * then the function tries to migrate struct page information from the source
2879 * struct page to the destination struct page. If it fails to migrate the struct
2880 * page information, then it clears the MIGRATE_PFN_MIGRATE flag in the src
2883 * At this point all successfully migrated pages have an entry in the src
2884 * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
2885 * array entry with MIGRATE_PFN_VALID flag set.
2887 * It then calls the finalize_and_map() callback. See comments for "struct
2888 * migrate_vma_ops", in include/linux/migrate.h for details about
2889 * finalize_and_map() behavior.
2891 * After the finalize_and_map() callback, for successfully migrated pages, this
2892 * function updates the CPU page table to point to new pages, otherwise it
2893 * restores the CPU page table to point to the original source pages.
2895 * Function returns 0 after the above steps, even if no pages were migrated
2896 * (The function only returns an error if any of the arguments are invalid.)
2898 * Both src and dst array must be big enough for (end - start) >> PAGE_SHIFT
2899 * unsigned long entries.
2901 int migrate_vma(const struct migrate_vma_ops *ops,
2902 struct vm_area_struct *vma,
2903 unsigned long start,
2909 struct migrate_vma migrate;
2911 /* Sanity check the arguments */
2914 if (!vma || is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_SPECIAL) ||
2917 if (start < vma->vm_start || start >= vma->vm_end)
2919 if (end <= vma->vm_start || end > vma->vm_end)
2921 if (!ops || !src || !dst || start >= end)
2924 memset(src, 0, sizeof(*src) * ((end - start) >> PAGE_SHIFT));
2927 migrate.start = start;
2933 /* Collect, and try to unmap source pages */
2934 migrate_vma_collect(&migrate);
2935 if (!migrate.cpages)
2938 /* Lock and isolate page */
2939 migrate_vma_prepare(&migrate);
2940 if (!migrate.cpages)
2944 migrate_vma_unmap(&migrate);
2945 if (!migrate.cpages)
2949 * At this point pages are locked and unmapped, and thus they have
2950 * stable content and can safely be copied to destination memory that
2951 * is allocated by the callback.
2953 * Note that migration can fail in migrate_vma_struct_page() for each
2956 ops->alloc_and_copy(vma, src, dst, start, end, private);
2958 /* This does the real migration of struct page */
2959 migrate_vma_pages(&migrate);
2961 ops->finalize_and_map(vma, src, dst, start, end, private);
2963 /* Unlock and remap pages */
2964 migrate_vma_finalize(&migrate);
2968 EXPORT_SYMBOL(migrate_vma);
2969 #endif /* defined(MIGRATE_VMA_HELPER) */