Merge branch 'sched-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[platform/kernel/linux-rpi.git] / mm / migrate.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Memory Migration functionality - linux/mm/migrate.c
4  *
5  * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6  *
7  * Page migration was first developed in the context of the memory hotplug
8  * project. The main authors of the migration code are:
9  *
10  * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
11  * Hirokazu Takahashi <taka@valinux.co.jp>
12  * Dave Hansen <haveblue@us.ibm.com>
13  * Christoph Lameter
14  */
15
16 #include <linux/migrate.h>
17 #include <linux/export.h>
18 #include <linux/swap.h>
19 #include <linux/swapops.h>
20 #include <linux/pagemap.h>
21 #include <linux/buffer_head.h>
22 #include <linux/mm_inline.h>
23 #include <linux/nsproxy.h>
24 #include <linux/pagevec.h>
25 #include <linux/ksm.h>
26 #include <linux/rmap.h>
27 #include <linux/topology.h>
28 #include <linux/cpu.h>
29 #include <linux/cpuset.h>
30 #include <linux/writeback.h>
31 #include <linux/mempolicy.h>
32 #include <linux/vmalloc.h>
33 #include <linux/security.h>
34 #include <linux/backing-dev.h>
35 #include <linux/compaction.h>
36 #include <linux/syscalls.h>
37 #include <linux/compat.h>
38 #include <linux/hugetlb.h>
39 #include <linux/hugetlb_cgroup.h>
40 #include <linux/gfp.h>
41 #include <linux/pfn_t.h>
42 #include <linux/memremap.h>
43 #include <linux/userfaultfd_k.h>
44 #include <linux/balloon_compaction.h>
45 #include <linux/mmu_notifier.h>
46 #include <linux/page_idle.h>
47 #include <linux/page_owner.h>
48 #include <linux/sched/mm.h>
49 #include <linux/ptrace.h>
50
51 #include <asm/tlbflush.h>
52
53 #define CREATE_TRACE_POINTS
54 #include <trace/events/migrate.h>
55
56 #include "internal.h"
57
58 /*
59  * migrate_prep() needs to be called before we start compiling a list of pages
60  * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
61  * undesirable, use migrate_prep_local()
62  */
63 int migrate_prep(void)
64 {
65         /*
66          * Clear the LRU lists so pages can be isolated.
67          * Note that pages may be moved off the LRU after we have
68          * drained them. Those pages will fail to migrate like other
69          * pages that may be busy.
70          */
71         lru_add_drain_all();
72
73         return 0;
74 }
75
76 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
77 int migrate_prep_local(void)
78 {
79         lru_add_drain();
80
81         return 0;
82 }
83
84 int isolate_movable_page(struct page *page, isolate_mode_t mode)
85 {
86         struct address_space *mapping;
87
88         /*
89          * Avoid burning cycles with pages that are yet under __free_pages(),
90          * or just got freed under us.
91          *
92          * In case we 'win' a race for a movable page being freed under us and
93          * raise its refcount preventing __free_pages() from doing its job
94          * the put_page() at the end of this block will take care of
95          * release this page, thus avoiding a nasty leakage.
96          */
97         if (unlikely(!get_page_unless_zero(page)))
98                 goto out;
99
100         /*
101          * Check PageMovable before holding a PG_lock because page's owner
102          * assumes anybody doesn't touch PG_lock of newly allocated page
103          * so unconditionally grabbing the lock ruins page's owner side.
104          */
105         if (unlikely(!__PageMovable(page)))
106                 goto out_putpage;
107         /*
108          * As movable pages are not isolated from LRU lists, concurrent
109          * compaction threads can race against page migration functions
110          * as well as race against the releasing a page.
111          *
112          * In order to avoid having an already isolated movable page
113          * being (wrongly) re-isolated while it is under migration,
114          * or to avoid attempting to isolate pages being released,
115          * lets be sure we have the page lock
116          * before proceeding with the movable page isolation steps.
117          */
118         if (unlikely(!trylock_page(page)))
119                 goto out_putpage;
120
121         if (!PageMovable(page) || PageIsolated(page))
122                 goto out_no_isolated;
123
124         mapping = page_mapping(page);
125         VM_BUG_ON_PAGE(!mapping, page);
126
127         if (!mapping->a_ops->isolate_page(page, mode))
128                 goto out_no_isolated;
129
130         /* Driver shouldn't use PG_isolated bit of page->flags */
131         WARN_ON_ONCE(PageIsolated(page));
132         __SetPageIsolated(page);
133         unlock_page(page);
134
135         return 0;
136
137 out_no_isolated:
138         unlock_page(page);
139 out_putpage:
140         put_page(page);
141 out:
142         return -EBUSY;
143 }
144
145 /* It should be called on page which is PG_movable */
146 void putback_movable_page(struct page *page)
147 {
148         struct address_space *mapping;
149
150         VM_BUG_ON_PAGE(!PageLocked(page), page);
151         VM_BUG_ON_PAGE(!PageMovable(page), page);
152         VM_BUG_ON_PAGE(!PageIsolated(page), page);
153
154         mapping = page_mapping(page);
155         mapping->a_ops->putback_page(page);
156         __ClearPageIsolated(page);
157 }
158
159 /*
160  * Put previously isolated pages back onto the appropriate lists
161  * from where they were once taken off for compaction/migration.
162  *
163  * This function shall be used whenever the isolated pageset has been
164  * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
165  * and isolate_huge_page().
166  */
167 void putback_movable_pages(struct list_head *l)
168 {
169         struct page *page;
170         struct page *page2;
171
172         list_for_each_entry_safe(page, page2, l, lru) {
173                 if (unlikely(PageHuge(page))) {
174                         putback_active_hugepage(page);
175                         continue;
176                 }
177                 list_del(&page->lru);
178                 /*
179                  * We isolated non-lru movable page so here we can use
180                  * __PageMovable because LRU page's mapping cannot have
181                  * PAGE_MAPPING_MOVABLE.
182                  */
183                 if (unlikely(__PageMovable(page))) {
184                         VM_BUG_ON_PAGE(!PageIsolated(page), page);
185                         lock_page(page);
186                         if (PageMovable(page))
187                                 putback_movable_page(page);
188                         else
189                                 __ClearPageIsolated(page);
190                         unlock_page(page);
191                         put_page(page);
192                 } else {
193                         mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
194                                         page_is_file_cache(page), -hpage_nr_pages(page));
195                         putback_lru_page(page);
196                 }
197         }
198 }
199
200 /*
201  * Restore a potential migration pte to a working pte entry
202  */
203 static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma,
204                                  unsigned long addr, void *old)
205 {
206         struct page_vma_mapped_walk pvmw = {
207                 .page = old,
208                 .vma = vma,
209                 .address = addr,
210                 .flags = PVMW_SYNC | PVMW_MIGRATION,
211         };
212         struct page *new;
213         pte_t pte;
214         swp_entry_t entry;
215
216         VM_BUG_ON_PAGE(PageTail(page), page);
217         while (page_vma_mapped_walk(&pvmw)) {
218                 if (PageKsm(page))
219                         new = page;
220                 else
221                         new = page - pvmw.page->index +
222                                 linear_page_index(vma, pvmw.address);
223
224 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
225                 /* PMD-mapped THP migration entry */
226                 if (!pvmw.pte) {
227                         VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
228                         remove_migration_pmd(&pvmw, new);
229                         continue;
230                 }
231 #endif
232
233                 get_page(new);
234                 pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
235                 if (pte_swp_soft_dirty(*pvmw.pte))
236                         pte = pte_mksoft_dirty(pte);
237
238                 /*
239                  * Recheck VMA as permissions can change since migration started
240                  */
241                 entry = pte_to_swp_entry(*pvmw.pte);
242                 if (is_write_migration_entry(entry))
243                         pte = maybe_mkwrite(pte, vma);
244
245                 if (unlikely(is_zone_device_page(new))) {
246                         if (is_device_private_page(new)) {
247                                 entry = make_device_private_entry(new, pte_write(pte));
248                                 pte = swp_entry_to_pte(entry);
249                         }
250                 }
251
252 #ifdef CONFIG_HUGETLB_PAGE
253                 if (PageHuge(new)) {
254                         pte = pte_mkhuge(pte);
255                         pte = arch_make_huge_pte(pte, vma, new, 0);
256                         set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
257                         if (PageAnon(new))
258                                 hugepage_add_anon_rmap(new, vma, pvmw.address);
259                         else
260                                 page_dup_rmap(new, true);
261                 } else
262 #endif
263                 {
264                         set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
265
266                         if (PageAnon(new))
267                                 page_add_anon_rmap(new, vma, pvmw.address, false);
268                         else
269                                 page_add_file_rmap(new, false);
270                 }
271                 if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
272                         mlock_vma_page(new);
273
274                 if (PageTransHuge(page) && PageMlocked(page))
275                         clear_page_mlock(page);
276
277                 /* No need to invalidate - it was non-present before */
278                 update_mmu_cache(vma, pvmw.address, pvmw.pte);
279         }
280
281         return true;
282 }
283
284 /*
285  * Get rid of all migration entries and replace them by
286  * references to the indicated page.
287  */
288 void remove_migration_ptes(struct page *old, struct page *new, bool locked)
289 {
290         struct rmap_walk_control rwc = {
291                 .rmap_one = remove_migration_pte,
292                 .arg = old,
293         };
294
295         if (locked)
296                 rmap_walk_locked(new, &rwc);
297         else
298                 rmap_walk(new, &rwc);
299 }
300
301 /*
302  * Something used the pte of a page under migration. We need to
303  * get to the page and wait until migration is finished.
304  * When we return from this function the fault will be retried.
305  */
306 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
307                                 spinlock_t *ptl)
308 {
309         pte_t pte;
310         swp_entry_t entry;
311         struct page *page;
312
313         spin_lock(ptl);
314         pte = *ptep;
315         if (!is_swap_pte(pte))
316                 goto out;
317
318         entry = pte_to_swp_entry(pte);
319         if (!is_migration_entry(entry))
320                 goto out;
321
322         page = migration_entry_to_page(entry);
323
324         /*
325          * Once page cache replacement of page migration started, page_count
326          * is zero; but we must not call put_and_wait_on_page_locked() without
327          * a ref. Use get_page_unless_zero(), and just fault again if it fails.
328          */
329         if (!get_page_unless_zero(page))
330                 goto out;
331         pte_unmap_unlock(ptep, ptl);
332         put_and_wait_on_page_locked(page);
333         return;
334 out:
335         pte_unmap_unlock(ptep, ptl);
336 }
337
338 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
339                                 unsigned long address)
340 {
341         spinlock_t *ptl = pte_lockptr(mm, pmd);
342         pte_t *ptep = pte_offset_map(pmd, address);
343         __migration_entry_wait(mm, ptep, ptl);
344 }
345
346 void migration_entry_wait_huge(struct vm_area_struct *vma,
347                 struct mm_struct *mm, pte_t *pte)
348 {
349         spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
350         __migration_entry_wait(mm, pte, ptl);
351 }
352
353 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
354 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
355 {
356         spinlock_t *ptl;
357         struct page *page;
358
359         ptl = pmd_lock(mm, pmd);
360         if (!is_pmd_migration_entry(*pmd))
361                 goto unlock;
362         page = migration_entry_to_page(pmd_to_swp_entry(*pmd));
363         if (!get_page_unless_zero(page))
364                 goto unlock;
365         spin_unlock(ptl);
366         put_and_wait_on_page_locked(page);
367         return;
368 unlock:
369         spin_unlock(ptl);
370 }
371 #endif
372
373 static int expected_page_refs(struct address_space *mapping, struct page *page)
374 {
375         int expected_count = 1;
376
377         /*
378          * Device public or private pages have an extra refcount as they are
379          * ZONE_DEVICE pages.
380          */
381         expected_count += is_device_private_page(page);
382         if (mapping)
383                 expected_count += hpage_nr_pages(page) + page_has_private(page);
384
385         return expected_count;
386 }
387
388 /*
389  * Replace the page in the mapping.
390  *
391  * The number of remaining references must be:
392  * 1 for anonymous pages without a mapping
393  * 2 for pages with a mapping
394  * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
395  */
396 int migrate_page_move_mapping(struct address_space *mapping,
397                 struct page *newpage, struct page *page, int extra_count)
398 {
399         XA_STATE(xas, &mapping->i_pages, page_index(page));
400         struct zone *oldzone, *newzone;
401         int dirty;
402         int expected_count = expected_page_refs(mapping, page) + extra_count;
403
404         if (!mapping) {
405                 /* Anonymous page without mapping */
406                 if (page_count(page) != expected_count)
407                         return -EAGAIN;
408
409                 /* No turning back from here */
410                 newpage->index = page->index;
411                 newpage->mapping = page->mapping;
412                 if (PageSwapBacked(page))
413                         __SetPageSwapBacked(newpage);
414
415                 return MIGRATEPAGE_SUCCESS;
416         }
417
418         oldzone = page_zone(page);
419         newzone = page_zone(newpage);
420
421         xas_lock_irq(&xas);
422         if (page_count(page) != expected_count || xas_load(&xas) != page) {
423                 xas_unlock_irq(&xas);
424                 return -EAGAIN;
425         }
426
427         if (!page_ref_freeze(page, expected_count)) {
428                 xas_unlock_irq(&xas);
429                 return -EAGAIN;
430         }
431
432         /*
433          * Now we know that no one else is looking at the page:
434          * no turning back from here.
435          */
436         newpage->index = page->index;
437         newpage->mapping = page->mapping;
438         page_ref_add(newpage, hpage_nr_pages(page)); /* add cache reference */
439         if (PageSwapBacked(page)) {
440                 __SetPageSwapBacked(newpage);
441                 if (PageSwapCache(page)) {
442                         SetPageSwapCache(newpage);
443                         set_page_private(newpage, page_private(page));
444                 }
445         } else {
446                 VM_BUG_ON_PAGE(PageSwapCache(page), page);
447         }
448
449         /* Move dirty while page refs frozen and newpage not yet exposed */
450         dirty = PageDirty(page);
451         if (dirty) {
452                 ClearPageDirty(page);
453                 SetPageDirty(newpage);
454         }
455
456         xas_store(&xas, newpage);
457         if (PageTransHuge(page)) {
458                 int i;
459
460                 for (i = 1; i < HPAGE_PMD_NR; i++) {
461                         xas_next(&xas);
462                         xas_store(&xas, newpage + i);
463                 }
464         }
465
466         /*
467          * Drop cache reference from old page by unfreezing
468          * to one less reference.
469          * We know this isn't the last reference.
470          */
471         page_ref_unfreeze(page, expected_count - hpage_nr_pages(page));
472
473         xas_unlock(&xas);
474         /* Leave irq disabled to prevent preemption while updating stats */
475
476         /*
477          * If moved to a different zone then also account
478          * the page for that zone. Other VM counters will be
479          * taken care of when we establish references to the
480          * new page and drop references to the old page.
481          *
482          * Note that anonymous pages are accounted for
483          * via NR_FILE_PAGES and NR_ANON_MAPPED if they
484          * are mapped to swap space.
485          */
486         if (newzone != oldzone) {
487                 __dec_node_state(oldzone->zone_pgdat, NR_FILE_PAGES);
488                 __inc_node_state(newzone->zone_pgdat, NR_FILE_PAGES);
489                 if (PageSwapBacked(page) && !PageSwapCache(page)) {
490                         __dec_node_state(oldzone->zone_pgdat, NR_SHMEM);
491                         __inc_node_state(newzone->zone_pgdat, NR_SHMEM);
492                 }
493                 if (dirty && mapping_cap_account_dirty(mapping)) {
494                         __dec_node_state(oldzone->zone_pgdat, NR_FILE_DIRTY);
495                         __dec_zone_state(oldzone, NR_ZONE_WRITE_PENDING);
496                         __inc_node_state(newzone->zone_pgdat, NR_FILE_DIRTY);
497                         __inc_zone_state(newzone, NR_ZONE_WRITE_PENDING);
498                 }
499         }
500         local_irq_enable();
501
502         return MIGRATEPAGE_SUCCESS;
503 }
504 EXPORT_SYMBOL(migrate_page_move_mapping);
505
506 /*
507  * The expected number of remaining references is the same as that
508  * of migrate_page_move_mapping().
509  */
510 int migrate_huge_page_move_mapping(struct address_space *mapping,
511                                    struct page *newpage, struct page *page)
512 {
513         XA_STATE(xas, &mapping->i_pages, page_index(page));
514         int expected_count;
515
516         xas_lock_irq(&xas);
517         expected_count = 2 + page_has_private(page);
518         if (page_count(page) != expected_count || xas_load(&xas) != page) {
519                 xas_unlock_irq(&xas);
520                 return -EAGAIN;
521         }
522
523         if (!page_ref_freeze(page, expected_count)) {
524                 xas_unlock_irq(&xas);
525                 return -EAGAIN;
526         }
527
528         newpage->index = page->index;
529         newpage->mapping = page->mapping;
530
531         get_page(newpage);
532
533         xas_store(&xas, newpage);
534
535         page_ref_unfreeze(page, expected_count - 1);
536
537         xas_unlock_irq(&xas);
538
539         return MIGRATEPAGE_SUCCESS;
540 }
541
542 /*
543  * Gigantic pages are so large that we do not guarantee that page++ pointer
544  * arithmetic will work across the entire page.  We need something more
545  * specialized.
546  */
547 static void __copy_gigantic_page(struct page *dst, struct page *src,
548                                 int nr_pages)
549 {
550         int i;
551         struct page *dst_base = dst;
552         struct page *src_base = src;
553
554         for (i = 0; i < nr_pages; ) {
555                 cond_resched();
556                 copy_highpage(dst, src);
557
558                 i++;
559                 dst = mem_map_next(dst, dst_base, i);
560                 src = mem_map_next(src, src_base, i);
561         }
562 }
563
564 static void copy_huge_page(struct page *dst, struct page *src)
565 {
566         int i;
567         int nr_pages;
568
569         if (PageHuge(src)) {
570                 /* hugetlbfs page */
571                 struct hstate *h = page_hstate(src);
572                 nr_pages = pages_per_huge_page(h);
573
574                 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
575                         __copy_gigantic_page(dst, src, nr_pages);
576                         return;
577                 }
578         } else {
579                 /* thp page */
580                 BUG_ON(!PageTransHuge(src));
581                 nr_pages = hpage_nr_pages(src);
582         }
583
584         for (i = 0; i < nr_pages; i++) {
585                 cond_resched();
586                 copy_highpage(dst + i, src + i);
587         }
588 }
589
590 /*
591  * Copy the page to its new location
592  */
593 void migrate_page_states(struct page *newpage, struct page *page)
594 {
595         int cpupid;
596
597         if (PageError(page))
598                 SetPageError(newpage);
599         if (PageReferenced(page))
600                 SetPageReferenced(newpage);
601         if (PageUptodate(page))
602                 SetPageUptodate(newpage);
603         if (TestClearPageActive(page)) {
604                 VM_BUG_ON_PAGE(PageUnevictable(page), page);
605                 SetPageActive(newpage);
606         } else if (TestClearPageUnevictable(page))
607                 SetPageUnevictable(newpage);
608         if (PageWorkingset(page))
609                 SetPageWorkingset(newpage);
610         if (PageChecked(page))
611                 SetPageChecked(newpage);
612         if (PageMappedToDisk(page))
613                 SetPageMappedToDisk(newpage);
614
615         /* Move dirty on pages not done by migrate_page_move_mapping() */
616         if (PageDirty(page))
617                 SetPageDirty(newpage);
618
619         if (page_is_young(page))
620                 set_page_young(newpage);
621         if (page_is_idle(page))
622                 set_page_idle(newpage);
623
624         /*
625          * Copy NUMA information to the new page, to prevent over-eager
626          * future migrations of this same page.
627          */
628         cpupid = page_cpupid_xchg_last(page, -1);
629         page_cpupid_xchg_last(newpage, cpupid);
630
631         ksm_migrate_page(newpage, page);
632         /*
633          * Please do not reorder this without considering how mm/ksm.c's
634          * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
635          */
636         if (PageSwapCache(page))
637                 ClearPageSwapCache(page);
638         ClearPagePrivate(page);
639         set_page_private(page, 0);
640
641         /*
642          * If any waiters have accumulated on the new page then
643          * wake them up.
644          */
645         if (PageWriteback(newpage))
646                 end_page_writeback(newpage);
647
648         copy_page_owner(page, newpage);
649
650         mem_cgroup_migrate(page, newpage);
651 }
652 EXPORT_SYMBOL(migrate_page_states);
653
654 void migrate_page_copy(struct page *newpage, struct page *page)
655 {
656         if (PageHuge(page) || PageTransHuge(page))
657                 copy_huge_page(newpage, page);
658         else
659                 copy_highpage(newpage, page);
660
661         migrate_page_states(newpage, page);
662 }
663 EXPORT_SYMBOL(migrate_page_copy);
664
665 /************************************************************
666  *                    Migration functions
667  ***********************************************************/
668
669 /*
670  * Common logic to directly migrate a single LRU page suitable for
671  * pages that do not use PagePrivate/PagePrivate2.
672  *
673  * Pages are locked upon entry and exit.
674  */
675 int migrate_page(struct address_space *mapping,
676                 struct page *newpage, struct page *page,
677                 enum migrate_mode mode)
678 {
679         int rc;
680
681         BUG_ON(PageWriteback(page));    /* Writeback must be complete */
682
683         rc = migrate_page_move_mapping(mapping, newpage, page, 0);
684
685         if (rc != MIGRATEPAGE_SUCCESS)
686                 return rc;
687
688         if (mode != MIGRATE_SYNC_NO_COPY)
689                 migrate_page_copy(newpage, page);
690         else
691                 migrate_page_states(newpage, page);
692         return MIGRATEPAGE_SUCCESS;
693 }
694 EXPORT_SYMBOL(migrate_page);
695
696 #ifdef CONFIG_BLOCK
697 /* Returns true if all buffers are successfully locked */
698 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
699                                                         enum migrate_mode mode)
700 {
701         struct buffer_head *bh = head;
702
703         /* Simple case, sync compaction */
704         if (mode != MIGRATE_ASYNC) {
705                 do {
706                         lock_buffer(bh);
707                         bh = bh->b_this_page;
708
709                 } while (bh != head);
710
711                 return true;
712         }
713
714         /* async case, we cannot block on lock_buffer so use trylock_buffer */
715         do {
716                 if (!trylock_buffer(bh)) {
717                         /*
718                          * We failed to lock the buffer and cannot stall in
719                          * async migration. Release the taken locks
720                          */
721                         struct buffer_head *failed_bh = bh;
722                         bh = head;
723                         while (bh != failed_bh) {
724                                 unlock_buffer(bh);
725                                 bh = bh->b_this_page;
726                         }
727                         return false;
728                 }
729
730                 bh = bh->b_this_page;
731         } while (bh != head);
732         return true;
733 }
734
735 static int __buffer_migrate_page(struct address_space *mapping,
736                 struct page *newpage, struct page *page, enum migrate_mode mode,
737                 bool check_refs)
738 {
739         struct buffer_head *bh, *head;
740         int rc;
741         int expected_count;
742
743         if (!page_has_buffers(page))
744                 return migrate_page(mapping, newpage, page, mode);
745
746         /* Check whether page does not have extra refs before we do more work */
747         expected_count = expected_page_refs(mapping, page);
748         if (page_count(page) != expected_count)
749                 return -EAGAIN;
750
751         head = page_buffers(page);
752         if (!buffer_migrate_lock_buffers(head, mode))
753                 return -EAGAIN;
754
755         if (check_refs) {
756                 bool busy;
757                 bool invalidated = false;
758
759 recheck_buffers:
760                 busy = false;
761                 spin_lock(&mapping->private_lock);
762                 bh = head;
763                 do {
764                         if (atomic_read(&bh->b_count)) {
765                                 busy = true;
766                                 break;
767                         }
768                         bh = bh->b_this_page;
769                 } while (bh != head);
770                 spin_unlock(&mapping->private_lock);
771                 if (busy) {
772                         if (invalidated) {
773                                 rc = -EAGAIN;
774                                 goto unlock_buffers;
775                         }
776                         invalidate_bh_lrus();
777                         invalidated = true;
778                         goto recheck_buffers;
779                 }
780         }
781
782         rc = migrate_page_move_mapping(mapping, newpage, page, 0);
783         if (rc != MIGRATEPAGE_SUCCESS)
784                 goto unlock_buffers;
785
786         ClearPagePrivate(page);
787         set_page_private(newpage, page_private(page));
788         set_page_private(page, 0);
789         put_page(page);
790         get_page(newpage);
791
792         bh = head;
793         do {
794                 set_bh_page(bh, newpage, bh_offset(bh));
795                 bh = bh->b_this_page;
796
797         } while (bh != head);
798
799         SetPagePrivate(newpage);
800
801         if (mode != MIGRATE_SYNC_NO_COPY)
802                 migrate_page_copy(newpage, page);
803         else
804                 migrate_page_states(newpage, page);
805
806         rc = MIGRATEPAGE_SUCCESS;
807 unlock_buffers:
808         bh = head;
809         do {
810                 unlock_buffer(bh);
811                 bh = bh->b_this_page;
812
813         } while (bh != head);
814
815         return rc;
816 }
817
818 /*
819  * Migration function for pages with buffers. This function can only be used
820  * if the underlying filesystem guarantees that no other references to "page"
821  * exist. For example attached buffer heads are accessed only under page lock.
822  */
823 int buffer_migrate_page(struct address_space *mapping,
824                 struct page *newpage, struct page *page, enum migrate_mode mode)
825 {
826         return __buffer_migrate_page(mapping, newpage, page, mode, false);
827 }
828 EXPORT_SYMBOL(buffer_migrate_page);
829
830 /*
831  * Same as above except that this variant is more careful and checks that there
832  * are also no buffer head references. This function is the right one for
833  * mappings where buffer heads are directly looked up and referenced (such as
834  * block device mappings).
835  */
836 int buffer_migrate_page_norefs(struct address_space *mapping,
837                 struct page *newpage, struct page *page, enum migrate_mode mode)
838 {
839         return __buffer_migrate_page(mapping, newpage, page, mode, true);
840 }
841 #endif
842
843 /*
844  * Writeback a page to clean the dirty state
845  */
846 static int writeout(struct address_space *mapping, struct page *page)
847 {
848         struct writeback_control wbc = {
849                 .sync_mode = WB_SYNC_NONE,
850                 .nr_to_write = 1,
851                 .range_start = 0,
852                 .range_end = LLONG_MAX,
853                 .for_reclaim = 1
854         };
855         int rc;
856
857         if (!mapping->a_ops->writepage)
858                 /* No write method for the address space */
859                 return -EINVAL;
860
861         if (!clear_page_dirty_for_io(page))
862                 /* Someone else already triggered a write */
863                 return -EAGAIN;
864
865         /*
866          * A dirty page may imply that the underlying filesystem has
867          * the page on some queue. So the page must be clean for
868          * migration. Writeout may mean we loose the lock and the
869          * page state is no longer what we checked for earlier.
870          * At this point we know that the migration attempt cannot
871          * be successful.
872          */
873         remove_migration_ptes(page, page, false);
874
875         rc = mapping->a_ops->writepage(page, &wbc);
876
877         if (rc != AOP_WRITEPAGE_ACTIVATE)
878                 /* unlocked. Relock */
879                 lock_page(page);
880
881         return (rc < 0) ? -EIO : -EAGAIN;
882 }
883
884 /*
885  * Default handling if a filesystem does not provide a migration function.
886  */
887 static int fallback_migrate_page(struct address_space *mapping,
888         struct page *newpage, struct page *page, enum migrate_mode mode)
889 {
890         if (PageDirty(page)) {
891                 /* Only writeback pages in full synchronous migration */
892                 switch (mode) {
893                 case MIGRATE_SYNC:
894                 case MIGRATE_SYNC_NO_COPY:
895                         break;
896                 default:
897                         return -EBUSY;
898                 }
899                 return writeout(mapping, page);
900         }
901
902         /*
903          * Buffers may be managed in a filesystem specific way.
904          * We must have no buffers or drop them.
905          */
906         if (page_has_private(page) &&
907             !try_to_release_page(page, GFP_KERNEL))
908                 return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY;
909
910         return migrate_page(mapping, newpage, page, mode);
911 }
912
913 /*
914  * Move a page to a newly allocated page
915  * The page is locked and all ptes have been successfully removed.
916  *
917  * The new page will have replaced the old page if this function
918  * is successful.
919  *
920  * Return value:
921  *   < 0 - error code
922  *  MIGRATEPAGE_SUCCESS - success
923  */
924 static int move_to_new_page(struct page *newpage, struct page *page,
925                                 enum migrate_mode mode)
926 {
927         struct address_space *mapping;
928         int rc = -EAGAIN;
929         bool is_lru = !__PageMovable(page);
930
931         VM_BUG_ON_PAGE(!PageLocked(page), page);
932         VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
933
934         mapping = page_mapping(page);
935
936         if (likely(is_lru)) {
937                 if (!mapping)
938                         rc = migrate_page(mapping, newpage, page, mode);
939                 else if (mapping->a_ops->migratepage)
940                         /*
941                          * Most pages have a mapping and most filesystems
942                          * provide a migratepage callback. Anonymous pages
943                          * are part of swap space which also has its own
944                          * migratepage callback. This is the most common path
945                          * for page migration.
946                          */
947                         rc = mapping->a_ops->migratepage(mapping, newpage,
948                                                         page, mode);
949                 else
950                         rc = fallback_migrate_page(mapping, newpage,
951                                                         page, mode);
952         } else {
953                 /*
954                  * In case of non-lru page, it could be released after
955                  * isolation step. In that case, we shouldn't try migration.
956                  */
957                 VM_BUG_ON_PAGE(!PageIsolated(page), page);
958                 if (!PageMovable(page)) {
959                         rc = MIGRATEPAGE_SUCCESS;
960                         __ClearPageIsolated(page);
961                         goto out;
962                 }
963
964                 rc = mapping->a_ops->migratepage(mapping, newpage,
965                                                 page, mode);
966                 WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
967                         !PageIsolated(page));
968         }
969
970         /*
971          * When successful, old pagecache page->mapping must be cleared before
972          * page is freed; but stats require that PageAnon be left as PageAnon.
973          */
974         if (rc == MIGRATEPAGE_SUCCESS) {
975                 if (__PageMovable(page)) {
976                         VM_BUG_ON_PAGE(!PageIsolated(page), page);
977
978                         /*
979                          * We clear PG_movable under page_lock so any compactor
980                          * cannot try to migrate this page.
981                          */
982                         __ClearPageIsolated(page);
983                 }
984
985                 /*
986                  * Anonymous and movable page->mapping will be cleard by
987                  * free_pages_prepare so don't reset it here for keeping
988                  * the type to work PageAnon, for example.
989                  */
990                 if (!PageMappingFlags(page))
991                         page->mapping = NULL;
992
993                 if (likely(!is_zone_device_page(newpage)))
994                         flush_dcache_page(newpage);
995
996         }
997 out:
998         return rc;
999 }
1000
1001 static int __unmap_and_move(struct page *page, struct page *newpage,
1002                                 int force, enum migrate_mode mode)
1003 {
1004         int rc = -EAGAIN;
1005         int page_was_mapped = 0;
1006         struct anon_vma *anon_vma = NULL;
1007         bool is_lru = !__PageMovable(page);
1008
1009         if (!trylock_page(page)) {
1010                 if (!force || mode == MIGRATE_ASYNC)
1011                         goto out;
1012
1013                 /*
1014                  * It's not safe for direct compaction to call lock_page.
1015                  * For example, during page readahead pages are added locked
1016                  * to the LRU. Later, when the IO completes the pages are
1017                  * marked uptodate and unlocked. However, the queueing
1018                  * could be merging multiple pages for one bio (e.g.
1019                  * mpage_readpages). If an allocation happens for the
1020                  * second or third page, the process can end up locking
1021                  * the same page twice and deadlocking. Rather than
1022                  * trying to be clever about what pages can be locked,
1023                  * avoid the use of lock_page for direct compaction
1024                  * altogether.
1025                  */
1026                 if (current->flags & PF_MEMALLOC)
1027                         goto out;
1028
1029                 lock_page(page);
1030         }
1031
1032         if (PageWriteback(page)) {
1033                 /*
1034                  * Only in the case of a full synchronous migration is it
1035                  * necessary to wait for PageWriteback. In the async case,
1036                  * the retry loop is too short and in the sync-light case,
1037                  * the overhead of stalling is too much
1038                  */
1039                 switch (mode) {
1040                 case MIGRATE_SYNC:
1041                 case MIGRATE_SYNC_NO_COPY:
1042                         break;
1043                 default:
1044                         rc = -EBUSY;
1045                         goto out_unlock;
1046                 }
1047                 if (!force)
1048                         goto out_unlock;
1049                 wait_on_page_writeback(page);
1050         }
1051
1052         /*
1053          * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
1054          * we cannot notice that anon_vma is freed while we migrates a page.
1055          * This get_anon_vma() delays freeing anon_vma pointer until the end
1056          * of migration. File cache pages are no problem because of page_lock()
1057          * File Caches may use write_page() or lock_page() in migration, then,
1058          * just care Anon page here.
1059          *
1060          * Only page_get_anon_vma() understands the subtleties of
1061          * getting a hold on an anon_vma from outside one of its mms.
1062          * But if we cannot get anon_vma, then we won't need it anyway,
1063          * because that implies that the anon page is no longer mapped
1064          * (and cannot be remapped so long as we hold the page lock).
1065          */
1066         if (PageAnon(page) && !PageKsm(page))
1067                 anon_vma = page_get_anon_vma(page);
1068
1069         /*
1070          * Block others from accessing the new page when we get around to
1071          * establishing additional references. We are usually the only one
1072          * holding a reference to newpage at this point. We used to have a BUG
1073          * here if trylock_page(newpage) fails, but would like to allow for
1074          * cases where there might be a race with the previous use of newpage.
1075          * This is much like races on refcount of oldpage: just don't BUG().
1076          */
1077         if (unlikely(!trylock_page(newpage)))
1078                 goto out_unlock;
1079
1080         if (unlikely(!is_lru)) {
1081                 rc = move_to_new_page(newpage, page, mode);
1082                 goto out_unlock_both;
1083         }
1084
1085         /*
1086          * Corner case handling:
1087          * 1. When a new swap-cache page is read into, it is added to the LRU
1088          * and treated as swapcache but it has no rmap yet.
1089          * Calling try_to_unmap() against a page->mapping==NULL page will
1090          * trigger a BUG.  So handle it here.
1091          * 2. An orphaned page (see truncate_complete_page) might have
1092          * fs-private metadata. The page can be picked up due to memory
1093          * offlining.  Everywhere else except page reclaim, the page is
1094          * invisible to the vm, so the page can not be migrated.  So try to
1095          * free the metadata, so the page can be freed.
1096          */
1097         if (!page->mapping) {
1098                 VM_BUG_ON_PAGE(PageAnon(page), page);
1099                 if (page_has_private(page)) {
1100                         try_to_free_buffers(page);
1101                         goto out_unlock_both;
1102                 }
1103         } else if (page_mapped(page)) {
1104                 /* Establish migration ptes */
1105                 VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1106                                 page);
1107                 try_to_unmap(page,
1108                         TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1109                 page_was_mapped = 1;
1110         }
1111
1112         if (!page_mapped(page))
1113                 rc = move_to_new_page(newpage, page, mode);
1114
1115         if (page_was_mapped)
1116                 remove_migration_ptes(page,
1117                         rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
1118
1119 out_unlock_both:
1120         unlock_page(newpage);
1121 out_unlock:
1122         /* Drop an anon_vma reference if we took one */
1123         if (anon_vma)
1124                 put_anon_vma(anon_vma);
1125         unlock_page(page);
1126 out:
1127         /*
1128          * If migration is successful, decrease refcount of the newpage
1129          * which will not free the page because new page owner increased
1130          * refcounter. As well, if it is LRU page, add the page to LRU
1131          * list in here. Use the old state of the isolated source page to
1132          * determine if we migrated a LRU page. newpage was already unlocked
1133          * and possibly modified by its owner - don't rely on the page
1134          * state.
1135          */
1136         if (rc == MIGRATEPAGE_SUCCESS) {
1137                 if (unlikely(!is_lru))
1138                         put_page(newpage);
1139                 else
1140                         putback_lru_page(newpage);
1141         }
1142
1143         return rc;
1144 }
1145
1146 /*
1147  * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move().  Work
1148  * around it.
1149  */
1150 #if defined(CONFIG_ARM) && \
1151         defined(GCC_VERSION) && GCC_VERSION < 40900 && GCC_VERSION >= 40700
1152 #define ICE_noinline noinline
1153 #else
1154 #define ICE_noinline
1155 #endif
1156
1157 /*
1158  * Obtain the lock on page, remove all ptes and migrate the page
1159  * to the newly allocated page in newpage.
1160  */
1161 static ICE_noinline int unmap_and_move(new_page_t get_new_page,
1162                                    free_page_t put_new_page,
1163                                    unsigned long private, struct page *page,
1164                                    int force, enum migrate_mode mode,
1165                                    enum migrate_reason reason)
1166 {
1167         int rc = MIGRATEPAGE_SUCCESS;
1168         struct page *newpage;
1169
1170         if (!thp_migration_supported() && PageTransHuge(page))
1171                 return -ENOMEM;
1172
1173         newpage = get_new_page(page, private);
1174         if (!newpage)
1175                 return -ENOMEM;
1176
1177         if (page_count(page) == 1) {
1178                 /* page was freed from under us. So we are done. */
1179                 ClearPageActive(page);
1180                 ClearPageUnevictable(page);
1181                 if (unlikely(__PageMovable(page))) {
1182                         lock_page(page);
1183                         if (!PageMovable(page))
1184                                 __ClearPageIsolated(page);
1185                         unlock_page(page);
1186                 }
1187                 if (put_new_page)
1188                         put_new_page(newpage, private);
1189                 else
1190                         put_page(newpage);
1191                 goto out;
1192         }
1193
1194         rc = __unmap_and_move(page, newpage, force, mode);
1195         if (rc == MIGRATEPAGE_SUCCESS)
1196                 set_page_owner_migrate_reason(newpage, reason);
1197
1198 out:
1199         if (rc != -EAGAIN) {
1200                 /*
1201                  * A page that has been migrated has all references
1202                  * removed and will be freed. A page that has not been
1203                  * migrated will have kepts its references and be
1204                  * restored.
1205                  */
1206                 list_del(&page->lru);
1207
1208                 /*
1209                  * Compaction can migrate also non-LRU pages which are
1210                  * not accounted to NR_ISOLATED_*. They can be recognized
1211                  * as __PageMovable
1212                  */
1213                 if (likely(!__PageMovable(page)))
1214                         mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
1215                                         page_is_file_cache(page), -hpage_nr_pages(page));
1216         }
1217
1218         /*
1219          * If migration is successful, releases reference grabbed during
1220          * isolation. Otherwise, restore the page to right list unless
1221          * we want to retry.
1222          */
1223         if (rc == MIGRATEPAGE_SUCCESS) {
1224                 put_page(page);
1225                 if (reason == MR_MEMORY_FAILURE) {
1226                         /*
1227                          * Set PG_HWPoison on just freed page
1228                          * intentionally. Although it's rather weird,
1229                          * it's how HWPoison flag works at the moment.
1230                          */
1231                         if (set_hwpoison_free_buddy_page(page))
1232                                 num_poisoned_pages_inc();
1233                 }
1234         } else {
1235                 if (rc != -EAGAIN) {
1236                         if (likely(!__PageMovable(page))) {
1237                                 putback_lru_page(page);
1238                                 goto put_new;
1239                         }
1240
1241                         lock_page(page);
1242                         if (PageMovable(page))
1243                                 putback_movable_page(page);
1244                         else
1245                                 __ClearPageIsolated(page);
1246                         unlock_page(page);
1247                         put_page(page);
1248                 }
1249 put_new:
1250                 if (put_new_page)
1251                         put_new_page(newpage, private);
1252                 else
1253                         put_page(newpage);
1254         }
1255
1256         return rc;
1257 }
1258
1259 /*
1260  * Counterpart of unmap_and_move_page() for hugepage migration.
1261  *
1262  * This function doesn't wait the completion of hugepage I/O
1263  * because there is no race between I/O and migration for hugepage.
1264  * Note that currently hugepage I/O occurs only in direct I/O
1265  * where no lock is held and PG_writeback is irrelevant,
1266  * and writeback status of all subpages are counted in the reference
1267  * count of the head page (i.e. if all subpages of a 2MB hugepage are
1268  * under direct I/O, the reference of the head page is 512 and a bit more.)
1269  * This means that when we try to migrate hugepage whose subpages are
1270  * doing direct I/O, some references remain after try_to_unmap() and
1271  * hugepage migration fails without data corruption.
1272  *
1273  * There is also no race when direct I/O is issued on the page under migration,
1274  * because then pte is replaced with migration swap entry and direct I/O code
1275  * will wait in the page fault for migration to complete.
1276  */
1277 static int unmap_and_move_huge_page(new_page_t get_new_page,
1278                                 free_page_t put_new_page, unsigned long private,
1279                                 struct page *hpage, int force,
1280                                 enum migrate_mode mode, int reason)
1281 {
1282         int rc = -EAGAIN;
1283         int page_was_mapped = 0;
1284         struct page *new_hpage;
1285         struct anon_vma *anon_vma = NULL;
1286
1287         /*
1288          * Migratability of hugepages depends on architectures and their size.
1289          * This check is necessary because some callers of hugepage migration
1290          * like soft offline and memory hotremove don't walk through page
1291          * tables or check whether the hugepage is pmd-based or not before
1292          * kicking migration.
1293          */
1294         if (!hugepage_migration_supported(page_hstate(hpage))) {
1295                 putback_active_hugepage(hpage);
1296                 return -ENOSYS;
1297         }
1298
1299         new_hpage = get_new_page(hpage, private);
1300         if (!new_hpage)
1301                 return -ENOMEM;
1302
1303         if (!trylock_page(hpage)) {
1304                 if (!force)
1305                         goto out;
1306                 switch (mode) {
1307                 case MIGRATE_SYNC:
1308                 case MIGRATE_SYNC_NO_COPY:
1309                         break;
1310                 default:
1311                         goto out;
1312                 }
1313                 lock_page(hpage);
1314         }
1315
1316         /*
1317          * Check for pages which are in the process of being freed.  Without
1318          * page_mapping() set, hugetlbfs specific move page routine will not
1319          * be called and we could leak usage counts for subpools.
1320          */
1321         if (page_private(hpage) && !page_mapping(hpage)) {
1322                 rc = -EBUSY;
1323                 goto out_unlock;
1324         }
1325
1326         if (PageAnon(hpage))
1327                 anon_vma = page_get_anon_vma(hpage);
1328
1329         if (unlikely(!trylock_page(new_hpage)))
1330                 goto put_anon;
1331
1332         if (page_mapped(hpage)) {
1333                 try_to_unmap(hpage,
1334                         TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1335                 page_was_mapped = 1;
1336         }
1337
1338         if (!page_mapped(hpage))
1339                 rc = move_to_new_page(new_hpage, hpage, mode);
1340
1341         if (page_was_mapped)
1342                 remove_migration_ptes(hpage,
1343                         rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false);
1344
1345         unlock_page(new_hpage);
1346
1347 put_anon:
1348         if (anon_vma)
1349                 put_anon_vma(anon_vma);
1350
1351         if (rc == MIGRATEPAGE_SUCCESS) {
1352                 move_hugetlb_state(hpage, new_hpage, reason);
1353                 put_new_page = NULL;
1354         }
1355
1356 out_unlock:
1357         unlock_page(hpage);
1358 out:
1359         if (rc != -EAGAIN)
1360                 putback_active_hugepage(hpage);
1361
1362         /*
1363          * If migration was not successful and there's a freeing callback, use
1364          * it.  Otherwise, put_page() will drop the reference grabbed during
1365          * isolation.
1366          */
1367         if (put_new_page)
1368                 put_new_page(new_hpage, private);
1369         else
1370                 putback_active_hugepage(new_hpage);
1371
1372         return rc;
1373 }
1374
1375 /*
1376  * migrate_pages - migrate the pages specified in a list, to the free pages
1377  *                 supplied as the target for the page migration
1378  *
1379  * @from:               The list of pages to be migrated.
1380  * @get_new_page:       The function used to allocate free pages to be used
1381  *                      as the target of the page migration.
1382  * @put_new_page:       The function used to free target pages if migration
1383  *                      fails, or NULL if no special handling is necessary.
1384  * @private:            Private data to be passed on to get_new_page()
1385  * @mode:               The migration mode that specifies the constraints for
1386  *                      page migration, if any.
1387  * @reason:             The reason for page migration.
1388  *
1389  * The function returns after 10 attempts or if no pages are movable any more
1390  * because the list has become empty or no retryable pages exist any more.
1391  * The caller should call putback_movable_pages() to return pages to the LRU
1392  * or free list only if ret != 0.
1393  *
1394  * Returns the number of pages that were not migrated, or an error code.
1395  */
1396 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1397                 free_page_t put_new_page, unsigned long private,
1398                 enum migrate_mode mode, int reason)
1399 {
1400         int retry = 1;
1401         int nr_failed = 0;
1402         int nr_succeeded = 0;
1403         int pass = 0;
1404         struct page *page;
1405         struct page *page2;
1406         int swapwrite = current->flags & PF_SWAPWRITE;
1407         int rc;
1408
1409         if (!swapwrite)
1410                 current->flags |= PF_SWAPWRITE;
1411
1412         for(pass = 0; pass < 10 && retry; pass++) {
1413                 retry = 0;
1414
1415                 list_for_each_entry_safe(page, page2, from, lru) {
1416 retry:
1417                         cond_resched();
1418
1419                         if (PageHuge(page))
1420                                 rc = unmap_and_move_huge_page(get_new_page,
1421                                                 put_new_page, private, page,
1422                                                 pass > 2, mode, reason);
1423                         else
1424                                 rc = unmap_and_move(get_new_page, put_new_page,
1425                                                 private, page, pass > 2, mode,
1426                                                 reason);
1427
1428                         switch(rc) {
1429                         case -ENOMEM:
1430                                 /*
1431                                  * THP migration might be unsupported or the
1432                                  * allocation could've failed so we should
1433                                  * retry on the same page with the THP split
1434                                  * to base pages.
1435                                  *
1436                                  * Head page is retried immediately and tail
1437                                  * pages are added to the tail of the list so
1438                                  * we encounter them after the rest of the list
1439                                  * is processed.
1440                                  */
1441                                 if (PageTransHuge(page) && !PageHuge(page)) {
1442                                         lock_page(page);
1443                                         rc = split_huge_page_to_list(page, from);
1444                                         unlock_page(page);
1445                                         if (!rc) {
1446                                                 list_safe_reset_next(page, page2, lru);
1447                                                 goto retry;
1448                                         }
1449                                 }
1450                                 nr_failed++;
1451                                 goto out;
1452                         case -EAGAIN:
1453                                 retry++;
1454                                 break;
1455                         case MIGRATEPAGE_SUCCESS:
1456                                 nr_succeeded++;
1457                                 break;
1458                         default:
1459                                 /*
1460                                  * Permanent failure (-EBUSY, -ENOSYS, etc.):
1461                                  * unlike -EAGAIN case, the failed page is
1462                                  * removed from migration page list and not
1463                                  * retried in the next outer loop.
1464                                  */
1465                                 nr_failed++;
1466                                 break;
1467                         }
1468                 }
1469         }
1470         nr_failed += retry;
1471         rc = nr_failed;
1472 out:
1473         if (nr_succeeded)
1474                 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1475         if (nr_failed)
1476                 count_vm_events(PGMIGRATE_FAIL, nr_failed);
1477         trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);
1478
1479         if (!swapwrite)
1480                 current->flags &= ~PF_SWAPWRITE;
1481
1482         return rc;
1483 }
1484
1485 #ifdef CONFIG_NUMA
1486
1487 static int store_status(int __user *status, int start, int value, int nr)
1488 {
1489         while (nr-- > 0) {
1490                 if (put_user(value, status + start))
1491                         return -EFAULT;
1492                 start++;
1493         }
1494
1495         return 0;
1496 }
1497
1498 static int do_move_pages_to_node(struct mm_struct *mm,
1499                 struct list_head *pagelist, int node)
1500 {
1501         int err;
1502
1503         if (list_empty(pagelist))
1504                 return 0;
1505
1506         err = migrate_pages(pagelist, alloc_new_node_page, NULL, node,
1507                         MIGRATE_SYNC, MR_SYSCALL);
1508         if (err)
1509                 putback_movable_pages(pagelist);
1510         return err;
1511 }
1512
1513 /*
1514  * Resolves the given address to a struct page, isolates it from the LRU and
1515  * puts it to the given pagelist.
1516  * Returns -errno if the page cannot be found/isolated or 0 when it has been
1517  * queued or the page doesn't need to be migrated because it is already on
1518  * the target node
1519  */
1520 static int add_page_for_migration(struct mm_struct *mm, unsigned long addr,
1521                 int node, struct list_head *pagelist, bool migrate_all)
1522 {
1523         struct vm_area_struct *vma;
1524         struct page *page;
1525         unsigned int follflags;
1526         int err;
1527
1528         down_read(&mm->mmap_sem);
1529         err = -EFAULT;
1530         vma = find_vma(mm, addr);
1531         if (!vma || addr < vma->vm_start || !vma_migratable(vma))
1532                 goto out;
1533
1534         /* FOLL_DUMP to ignore special (like zero) pages */
1535         follflags = FOLL_GET | FOLL_DUMP;
1536         page = follow_page(vma, addr, follflags);
1537
1538         err = PTR_ERR(page);
1539         if (IS_ERR(page))
1540                 goto out;
1541
1542         err = -ENOENT;
1543         if (!page)
1544                 goto out;
1545
1546         err = 0;
1547         if (page_to_nid(page) == node)
1548                 goto out_putpage;
1549
1550         err = -EACCES;
1551         if (page_mapcount(page) > 1 && !migrate_all)
1552                 goto out_putpage;
1553
1554         if (PageHuge(page)) {
1555                 if (PageHead(page)) {
1556                         isolate_huge_page(page, pagelist);
1557                         err = 0;
1558                 }
1559         } else {
1560                 struct page *head;
1561
1562                 head = compound_head(page);
1563                 err = isolate_lru_page(head);
1564                 if (err)
1565                         goto out_putpage;
1566
1567                 err = 0;
1568                 list_add_tail(&head->lru, pagelist);
1569                 mod_node_page_state(page_pgdat(head),
1570                         NR_ISOLATED_ANON + page_is_file_cache(head),
1571                         hpage_nr_pages(head));
1572         }
1573 out_putpage:
1574         /*
1575          * Either remove the duplicate refcount from
1576          * isolate_lru_page() or drop the page ref if it was
1577          * not isolated.
1578          */
1579         put_page(page);
1580 out:
1581         up_read(&mm->mmap_sem);
1582         return err;
1583 }
1584
1585 /*
1586  * Migrate an array of page address onto an array of nodes and fill
1587  * the corresponding array of status.
1588  */
1589 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1590                          unsigned long nr_pages,
1591                          const void __user * __user *pages,
1592                          const int __user *nodes,
1593                          int __user *status, int flags)
1594 {
1595         int current_node = NUMA_NO_NODE;
1596         LIST_HEAD(pagelist);
1597         int start, i;
1598         int err = 0, err1;
1599
1600         migrate_prep();
1601
1602         for (i = start = 0; i < nr_pages; i++) {
1603                 const void __user *p;
1604                 unsigned long addr;
1605                 int node;
1606
1607                 err = -EFAULT;
1608                 if (get_user(p, pages + i))
1609                         goto out_flush;
1610                 if (get_user(node, nodes + i))
1611                         goto out_flush;
1612                 addr = (unsigned long)p;
1613
1614                 err = -ENODEV;
1615                 if (node < 0 || node >= MAX_NUMNODES)
1616                         goto out_flush;
1617                 if (!node_state(node, N_MEMORY))
1618                         goto out_flush;
1619
1620                 err = -EACCES;
1621                 if (!node_isset(node, task_nodes))
1622                         goto out_flush;
1623
1624                 if (current_node == NUMA_NO_NODE) {
1625                         current_node = node;
1626                         start = i;
1627                 } else if (node != current_node) {
1628                         err = do_move_pages_to_node(mm, &pagelist, current_node);
1629                         if (err)
1630                                 goto out;
1631                         err = store_status(status, start, current_node, i - start);
1632                         if (err)
1633                                 goto out;
1634                         start = i;
1635                         current_node = node;
1636                 }
1637
1638                 /*
1639                  * Errors in the page lookup or isolation are not fatal and we simply
1640                  * report them via status
1641                  */
1642                 err = add_page_for_migration(mm, addr, current_node,
1643                                 &pagelist, flags & MPOL_MF_MOVE_ALL);
1644                 if (!err)
1645                         continue;
1646
1647                 err = store_status(status, i, err, 1);
1648                 if (err)
1649                         goto out_flush;
1650
1651                 err = do_move_pages_to_node(mm, &pagelist, current_node);
1652                 if (err)
1653                         goto out;
1654                 if (i > start) {
1655                         err = store_status(status, start, current_node, i - start);
1656                         if (err)
1657                                 goto out;
1658                 }
1659                 current_node = NUMA_NO_NODE;
1660         }
1661 out_flush:
1662         if (list_empty(&pagelist))
1663                 return err;
1664
1665         /* Make sure we do not overwrite the existing error */
1666         err1 = do_move_pages_to_node(mm, &pagelist, current_node);
1667         if (!err1)
1668                 err1 = store_status(status, start, current_node, i - start);
1669         if (!err)
1670                 err = err1;
1671 out:
1672         return err;
1673 }
1674
1675 /*
1676  * Determine the nodes of an array of pages and store it in an array of status.
1677  */
1678 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1679                                 const void __user **pages, int *status)
1680 {
1681         unsigned long i;
1682
1683         down_read(&mm->mmap_sem);
1684
1685         for (i = 0; i < nr_pages; i++) {
1686                 unsigned long addr = (unsigned long)(*pages);
1687                 struct vm_area_struct *vma;
1688                 struct page *page;
1689                 int err = -EFAULT;
1690
1691                 vma = find_vma(mm, addr);
1692                 if (!vma || addr < vma->vm_start)
1693                         goto set_status;
1694
1695                 /* FOLL_DUMP to ignore special (like zero) pages */
1696                 page = follow_page(vma, addr, FOLL_DUMP);
1697
1698                 err = PTR_ERR(page);
1699                 if (IS_ERR(page))
1700                         goto set_status;
1701
1702                 err = page ? page_to_nid(page) : -ENOENT;
1703 set_status:
1704                 *status = err;
1705
1706                 pages++;
1707                 status++;
1708         }
1709
1710         up_read(&mm->mmap_sem);
1711 }
1712
1713 /*
1714  * Determine the nodes of a user array of pages and store it in
1715  * a user array of status.
1716  */
1717 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1718                          const void __user * __user *pages,
1719                          int __user *status)
1720 {
1721 #define DO_PAGES_STAT_CHUNK_NR 16
1722         const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1723         int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1724
1725         while (nr_pages) {
1726                 unsigned long chunk_nr;
1727
1728                 chunk_nr = nr_pages;
1729                 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1730                         chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1731
1732                 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1733                         break;
1734
1735                 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1736
1737                 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1738                         break;
1739
1740                 pages += chunk_nr;
1741                 status += chunk_nr;
1742                 nr_pages -= chunk_nr;
1743         }
1744         return nr_pages ? -EFAULT : 0;
1745 }
1746
1747 /*
1748  * Move a list of pages in the address space of the currently executing
1749  * process.
1750  */
1751 static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
1752                              const void __user * __user *pages,
1753                              const int __user *nodes,
1754                              int __user *status, int flags)
1755 {
1756         struct task_struct *task;
1757         struct mm_struct *mm;
1758         int err;
1759         nodemask_t task_nodes;
1760
1761         /* Check flags */
1762         if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1763                 return -EINVAL;
1764
1765         if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1766                 return -EPERM;
1767
1768         /* Find the mm_struct */
1769         rcu_read_lock();
1770         task = pid ? find_task_by_vpid(pid) : current;
1771         if (!task) {
1772                 rcu_read_unlock();
1773                 return -ESRCH;
1774         }
1775         get_task_struct(task);
1776
1777         /*
1778          * Check if this process has the right to modify the specified
1779          * process. Use the regular "ptrace_may_access()" checks.
1780          */
1781         if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1782                 rcu_read_unlock();
1783                 err = -EPERM;
1784                 goto out;
1785         }
1786         rcu_read_unlock();
1787
1788         err = security_task_movememory(task);
1789         if (err)
1790                 goto out;
1791
1792         task_nodes = cpuset_mems_allowed(task);
1793         mm = get_task_mm(task);
1794         put_task_struct(task);
1795
1796         if (!mm)
1797                 return -EINVAL;
1798
1799         if (nodes)
1800                 err = do_pages_move(mm, task_nodes, nr_pages, pages,
1801                                     nodes, status, flags);
1802         else
1803                 err = do_pages_stat(mm, nr_pages, pages, status);
1804
1805         mmput(mm);
1806         return err;
1807
1808 out:
1809         put_task_struct(task);
1810         return err;
1811 }
1812
1813 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1814                 const void __user * __user *, pages,
1815                 const int __user *, nodes,
1816                 int __user *, status, int, flags)
1817 {
1818         return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1819 }
1820
1821 #ifdef CONFIG_COMPAT
1822 COMPAT_SYSCALL_DEFINE6(move_pages, pid_t, pid, compat_ulong_t, nr_pages,
1823                        compat_uptr_t __user *, pages32,
1824                        const int __user *, nodes,
1825                        int __user *, status,
1826                        int, flags)
1827 {
1828         const void __user * __user *pages;
1829         int i;
1830
1831         pages = compat_alloc_user_space(nr_pages * sizeof(void *));
1832         for (i = 0; i < nr_pages; i++) {
1833                 compat_uptr_t p;
1834
1835                 if (get_user(p, pages32 + i) ||
1836                         put_user(compat_ptr(p), pages + i))
1837                         return -EFAULT;
1838         }
1839         return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1840 }
1841 #endif /* CONFIG_COMPAT */
1842
1843 #ifdef CONFIG_NUMA_BALANCING
1844 /*
1845  * Returns true if this is a safe migration target node for misplaced NUMA
1846  * pages. Currently it only checks the watermarks which crude
1847  */
1848 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1849                                    unsigned long nr_migrate_pages)
1850 {
1851         int z;
1852
1853         for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1854                 struct zone *zone = pgdat->node_zones + z;
1855
1856                 if (!populated_zone(zone))
1857                         continue;
1858
1859                 /* Avoid waking kswapd by allocating pages_to_migrate pages. */
1860                 if (!zone_watermark_ok(zone, 0,
1861                                        high_wmark_pages(zone) +
1862                                        nr_migrate_pages,
1863                                        0, 0))
1864                         continue;
1865                 return true;
1866         }
1867         return false;
1868 }
1869
1870 static struct page *alloc_misplaced_dst_page(struct page *page,
1871                                            unsigned long data)
1872 {
1873         int nid = (int) data;
1874         struct page *newpage;
1875
1876         newpage = __alloc_pages_node(nid,
1877                                          (GFP_HIGHUSER_MOVABLE |
1878                                           __GFP_THISNODE | __GFP_NOMEMALLOC |
1879                                           __GFP_NORETRY | __GFP_NOWARN) &
1880                                          ~__GFP_RECLAIM, 0);
1881
1882         return newpage;
1883 }
1884
1885 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
1886 {
1887         int page_lru;
1888
1889         VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
1890
1891         /* Avoid migrating to a node that is nearly full */
1892         if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page)))
1893                 return 0;
1894
1895         if (isolate_lru_page(page))
1896                 return 0;
1897
1898         /*
1899          * migrate_misplaced_transhuge_page() skips page migration's usual
1900          * check on page_count(), so we must do it here, now that the page
1901          * has been isolated: a GUP pin, or any other pin, prevents migration.
1902          * The expected page count is 3: 1 for page's mapcount and 1 for the
1903          * caller's pin and 1 for the reference taken by isolate_lru_page().
1904          */
1905         if (PageTransHuge(page) && page_count(page) != 3) {
1906                 putback_lru_page(page);
1907                 return 0;
1908         }
1909
1910         page_lru = page_is_file_cache(page);
1911         mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
1912                                 hpage_nr_pages(page));
1913
1914         /*
1915          * Isolating the page has taken another reference, so the
1916          * caller's reference can be safely dropped without the page
1917          * disappearing underneath us during migration.
1918          */
1919         put_page(page);
1920         return 1;
1921 }
1922
1923 bool pmd_trans_migrating(pmd_t pmd)
1924 {
1925         struct page *page = pmd_page(pmd);
1926         return PageLocked(page);
1927 }
1928
1929 /*
1930  * Attempt to migrate a misplaced page to the specified destination
1931  * node. Caller is expected to have an elevated reference count on
1932  * the page that will be dropped by this function before returning.
1933  */
1934 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
1935                            int node)
1936 {
1937         pg_data_t *pgdat = NODE_DATA(node);
1938         int isolated;
1939         int nr_remaining;
1940         LIST_HEAD(migratepages);
1941
1942         /*
1943          * Don't migrate file pages that are mapped in multiple processes
1944          * with execute permissions as they are probably shared libraries.
1945          */
1946         if (page_mapcount(page) != 1 && page_is_file_cache(page) &&
1947             (vma->vm_flags & VM_EXEC))
1948                 goto out;
1949
1950         /*
1951          * Also do not migrate dirty pages as not all filesystems can move
1952          * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles.
1953          */
1954         if (page_is_file_cache(page) && PageDirty(page))
1955                 goto out;
1956
1957         isolated = numamigrate_isolate_page(pgdat, page);
1958         if (!isolated)
1959                 goto out;
1960
1961         list_add(&page->lru, &migratepages);
1962         nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
1963                                      NULL, node, MIGRATE_ASYNC,
1964                                      MR_NUMA_MISPLACED);
1965         if (nr_remaining) {
1966                 if (!list_empty(&migratepages)) {
1967                         list_del(&page->lru);
1968                         dec_node_page_state(page, NR_ISOLATED_ANON +
1969                                         page_is_file_cache(page));
1970                         putback_lru_page(page);
1971                 }
1972                 isolated = 0;
1973         } else
1974                 count_vm_numa_event(NUMA_PAGE_MIGRATE);
1975         BUG_ON(!list_empty(&migratepages));
1976         return isolated;
1977
1978 out:
1979         put_page(page);
1980         return 0;
1981 }
1982 #endif /* CONFIG_NUMA_BALANCING */
1983
1984 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1985 /*
1986  * Migrates a THP to a given target node. page must be locked and is unlocked
1987  * before returning.
1988  */
1989 int migrate_misplaced_transhuge_page(struct mm_struct *mm,
1990                                 struct vm_area_struct *vma,
1991                                 pmd_t *pmd, pmd_t entry,
1992                                 unsigned long address,
1993                                 struct page *page, int node)
1994 {
1995         spinlock_t *ptl;
1996         pg_data_t *pgdat = NODE_DATA(node);
1997         int isolated = 0;
1998         struct page *new_page = NULL;
1999         int page_lru = page_is_file_cache(page);
2000         unsigned long start = address & HPAGE_PMD_MASK;
2001
2002         new_page = alloc_pages_node(node,
2003                 (GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
2004                 HPAGE_PMD_ORDER);
2005         if (!new_page)
2006                 goto out_fail;
2007         prep_transhuge_page(new_page);
2008
2009         isolated = numamigrate_isolate_page(pgdat, page);
2010         if (!isolated) {
2011                 put_page(new_page);
2012                 goto out_fail;
2013         }
2014
2015         /* Prepare a page as a migration target */
2016         __SetPageLocked(new_page);
2017         if (PageSwapBacked(page))
2018                 __SetPageSwapBacked(new_page);
2019
2020         /* anon mapping, we can simply copy page->mapping to the new page: */
2021         new_page->mapping = page->mapping;
2022         new_page->index = page->index;
2023         /* flush the cache before copying using the kernel virtual address */
2024         flush_cache_range(vma, start, start + HPAGE_PMD_SIZE);
2025         migrate_page_copy(new_page, page);
2026         WARN_ON(PageLRU(new_page));
2027
2028         /* Recheck the target PMD */
2029         ptl = pmd_lock(mm, pmd);
2030         if (unlikely(!pmd_same(*pmd, entry) || !page_ref_freeze(page, 2))) {
2031                 spin_unlock(ptl);
2032
2033                 /* Reverse changes made by migrate_page_copy() */
2034                 if (TestClearPageActive(new_page))
2035                         SetPageActive(page);
2036                 if (TestClearPageUnevictable(new_page))
2037                         SetPageUnevictable(page);
2038
2039                 unlock_page(new_page);
2040                 put_page(new_page);             /* Free it */
2041
2042                 /* Retake the callers reference and putback on LRU */
2043                 get_page(page);
2044                 putback_lru_page(page);
2045                 mod_node_page_state(page_pgdat(page),
2046                          NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
2047
2048                 goto out_unlock;
2049         }
2050
2051         entry = mk_huge_pmd(new_page, vma->vm_page_prot);
2052         entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
2053
2054         /*
2055          * Overwrite the old entry under pagetable lock and establish
2056          * the new PTE. Any parallel GUP will either observe the old
2057          * page blocking on the page lock, block on the page table
2058          * lock or observe the new page. The SetPageUptodate on the
2059          * new page and page_add_new_anon_rmap guarantee the copy is
2060          * visible before the pagetable update.
2061          */
2062         page_add_anon_rmap(new_page, vma, start, true);
2063         /*
2064          * At this point the pmd is numa/protnone (i.e. non present) and the TLB
2065          * has already been flushed globally.  So no TLB can be currently
2066          * caching this non present pmd mapping.  There's no need to clear the
2067          * pmd before doing set_pmd_at(), nor to flush the TLB after
2068          * set_pmd_at().  Clearing the pmd here would introduce a race
2069          * condition against MADV_DONTNEED, because MADV_DONTNEED only holds the
2070          * mmap_sem for reading.  If the pmd is set to NULL at any given time,
2071          * MADV_DONTNEED won't wait on the pmd lock and it'll skip clearing this
2072          * pmd.
2073          */
2074         set_pmd_at(mm, start, pmd, entry);
2075         update_mmu_cache_pmd(vma, address, &entry);
2076
2077         page_ref_unfreeze(page, 2);
2078         mlock_migrate_page(new_page, page);
2079         page_remove_rmap(page, true);
2080         set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED);
2081
2082         spin_unlock(ptl);
2083
2084         /* Take an "isolate" reference and put new page on the LRU. */
2085         get_page(new_page);
2086         putback_lru_page(new_page);
2087
2088         unlock_page(new_page);
2089         unlock_page(page);
2090         put_page(page);                 /* Drop the rmap reference */
2091         put_page(page);                 /* Drop the LRU isolation reference */
2092
2093         count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
2094         count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
2095
2096         mod_node_page_state(page_pgdat(page),
2097                         NR_ISOLATED_ANON + page_lru,
2098                         -HPAGE_PMD_NR);
2099         return isolated;
2100
2101 out_fail:
2102         count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
2103         ptl = pmd_lock(mm, pmd);
2104         if (pmd_same(*pmd, entry)) {
2105                 entry = pmd_modify(entry, vma->vm_page_prot);
2106                 set_pmd_at(mm, start, pmd, entry);
2107                 update_mmu_cache_pmd(vma, address, &entry);
2108         }
2109         spin_unlock(ptl);
2110
2111 out_unlock:
2112         unlock_page(page);
2113         put_page(page);
2114         return 0;
2115 }
2116 #endif /* CONFIG_NUMA_BALANCING */
2117
2118 #endif /* CONFIG_NUMA */
2119
2120 #if defined(CONFIG_MIGRATE_VMA_HELPER)
2121 struct migrate_vma {
2122         struct vm_area_struct   *vma;
2123         unsigned long           *dst;
2124         unsigned long           *src;
2125         unsigned long           cpages;
2126         unsigned long           npages;
2127         unsigned long           start;
2128         unsigned long           end;
2129 };
2130
2131 static int migrate_vma_collect_hole(unsigned long start,
2132                                     unsigned long end,
2133                                     struct mm_walk *walk)
2134 {
2135         struct migrate_vma *migrate = walk->private;
2136         unsigned long addr;
2137
2138         for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) {
2139                 migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE;
2140                 migrate->dst[migrate->npages] = 0;
2141                 migrate->npages++;
2142                 migrate->cpages++;
2143         }
2144
2145         return 0;
2146 }
2147
2148 static int migrate_vma_collect_skip(unsigned long start,
2149                                     unsigned long end,
2150                                     struct mm_walk *walk)
2151 {
2152         struct migrate_vma *migrate = walk->private;
2153         unsigned long addr;
2154
2155         for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) {
2156                 migrate->dst[migrate->npages] = 0;
2157                 migrate->src[migrate->npages++] = 0;
2158         }
2159
2160         return 0;
2161 }
2162
2163 static int migrate_vma_collect_pmd(pmd_t *pmdp,
2164                                    unsigned long start,
2165                                    unsigned long end,
2166                                    struct mm_walk *walk)
2167 {
2168         struct migrate_vma *migrate = walk->private;
2169         struct vm_area_struct *vma = walk->vma;
2170         struct mm_struct *mm = vma->vm_mm;
2171         unsigned long addr = start, unmapped = 0;
2172         spinlock_t *ptl;
2173         pte_t *ptep;
2174
2175 again:
2176         if (pmd_none(*pmdp))
2177                 return migrate_vma_collect_hole(start, end, walk);
2178
2179         if (pmd_trans_huge(*pmdp)) {
2180                 struct page *page;
2181
2182                 ptl = pmd_lock(mm, pmdp);
2183                 if (unlikely(!pmd_trans_huge(*pmdp))) {
2184                         spin_unlock(ptl);
2185                         goto again;
2186                 }
2187
2188                 page = pmd_page(*pmdp);
2189                 if (is_huge_zero_page(page)) {
2190                         spin_unlock(ptl);
2191                         split_huge_pmd(vma, pmdp, addr);
2192                         if (pmd_trans_unstable(pmdp))
2193                                 return migrate_vma_collect_skip(start, end,
2194                                                                 walk);
2195                 } else {
2196                         int ret;
2197
2198                         get_page(page);
2199                         spin_unlock(ptl);
2200                         if (unlikely(!trylock_page(page)))
2201                                 return migrate_vma_collect_skip(start, end,
2202                                                                 walk);
2203                         ret = split_huge_page(page);
2204                         unlock_page(page);
2205                         put_page(page);
2206                         if (ret)
2207                                 return migrate_vma_collect_skip(start, end,
2208                                                                 walk);
2209                         if (pmd_none(*pmdp))
2210                                 return migrate_vma_collect_hole(start, end,
2211                                                                 walk);
2212                 }
2213         }
2214
2215         if (unlikely(pmd_bad(*pmdp)))
2216                 return migrate_vma_collect_skip(start, end, walk);
2217
2218         ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2219         arch_enter_lazy_mmu_mode();
2220
2221         for (; addr < end; addr += PAGE_SIZE, ptep++) {
2222                 unsigned long mpfn, pfn;
2223                 struct page *page;
2224                 swp_entry_t entry;
2225                 pte_t pte;
2226
2227                 pte = *ptep;
2228                 pfn = pte_pfn(pte);
2229
2230                 if (pte_none(pte)) {
2231                         mpfn = MIGRATE_PFN_MIGRATE;
2232                         migrate->cpages++;
2233                         pfn = 0;
2234                         goto next;
2235                 }
2236
2237                 if (!pte_present(pte)) {
2238                         mpfn = pfn = 0;
2239
2240                         /*
2241                          * Only care about unaddressable device page special
2242                          * page table entry. Other special swap entries are not
2243                          * migratable, and we ignore regular swapped page.
2244                          */
2245                         entry = pte_to_swp_entry(pte);
2246                         if (!is_device_private_entry(entry))
2247                                 goto next;
2248
2249                         page = device_private_entry_to_page(entry);
2250                         mpfn = migrate_pfn(page_to_pfn(page))|
2251                                 MIGRATE_PFN_DEVICE | MIGRATE_PFN_MIGRATE;
2252                         if (is_write_device_private_entry(entry))
2253                                 mpfn |= MIGRATE_PFN_WRITE;
2254                 } else {
2255                         if (is_zero_pfn(pfn)) {
2256                                 mpfn = MIGRATE_PFN_MIGRATE;
2257                                 migrate->cpages++;
2258                                 pfn = 0;
2259                                 goto next;
2260                         }
2261                         page = vm_normal_page(migrate->vma, addr, pte);
2262                         mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
2263                         mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
2264                 }
2265
2266                 /* FIXME support THP */
2267                 if (!page || !page->mapping || PageTransCompound(page)) {
2268                         mpfn = pfn = 0;
2269                         goto next;
2270                 }
2271                 pfn = page_to_pfn(page);
2272
2273                 /*
2274                  * By getting a reference on the page we pin it and that blocks
2275                  * any kind of migration. Side effect is that it "freezes" the
2276                  * pte.
2277                  *
2278                  * We drop this reference after isolating the page from the lru
2279                  * for non device page (device page are not on the lru and thus
2280                  * can't be dropped from it).
2281                  */
2282                 get_page(page);
2283                 migrate->cpages++;
2284
2285                 /*
2286                  * Optimize for the common case where page is only mapped once
2287                  * in one process. If we can lock the page, then we can safely
2288                  * set up a special migration page table entry now.
2289                  */
2290                 if (trylock_page(page)) {
2291                         pte_t swp_pte;
2292
2293                         mpfn |= MIGRATE_PFN_LOCKED;
2294                         ptep_get_and_clear(mm, addr, ptep);
2295
2296                         /* Setup special migration page table entry */
2297                         entry = make_migration_entry(page, mpfn &
2298                                                      MIGRATE_PFN_WRITE);
2299                         swp_pte = swp_entry_to_pte(entry);
2300                         if (pte_soft_dirty(pte))
2301                                 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2302                         set_pte_at(mm, addr, ptep, swp_pte);
2303
2304                         /*
2305                          * This is like regular unmap: we remove the rmap and
2306                          * drop page refcount. Page won't be freed, as we took
2307                          * a reference just above.
2308                          */
2309                         page_remove_rmap(page, false);
2310                         put_page(page);
2311
2312                         if (pte_present(pte))
2313                                 unmapped++;
2314                 }
2315
2316 next:
2317                 migrate->dst[migrate->npages] = 0;
2318                 migrate->src[migrate->npages++] = mpfn;
2319         }
2320         arch_leave_lazy_mmu_mode();
2321         pte_unmap_unlock(ptep - 1, ptl);
2322
2323         /* Only flush the TLB if we actually modified any entries */
2324         if (unmapped)
2325                 flush_tlb_range(walk->vma, start, end);
2326
2327         return 0;
2328 }
2329
2330 /*
2331  * migrate_vma_collect() - collect pages over a range of virtual addresses
2332  * @migrate: migrate struct containing all migration information
2333  *
2334  * This will walk the CPU page table. For each virtual address backed by a
2335  * valid page, it updates the src array and takes a reference on the page, in
2336  * order to pin the page until we lock it and unmap it.
2337  */
2338 static void migrate_vma_collect(struct migrate_vma *migrate)
2339 {
2340         struct mmu_notifier_range range;
2341         struct mm_walk mm_walk;
2342
2343         mm_walk.pmd_entry = migrate_vma_collect_pmd;
2344         mm_walk.pte_entry = NULL;
2345         mm_walk.pte_hole = migrate_vma_collect_hole;
2346         mm_walk.hugetlb_entry = NULL;
2347         mm_walk.test_walk = NULL;
2348         mm_walk.vma = migrate->vma;
2349         mm_walk.mm = migrate->vma->vm_mm;
2350         mm_walk.private = migrate;
2351
2352         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, NULL, mm_walk.mm,
2353                                 migrate->start,
2354                                 migrate->end);
2355         mmu_notifier_invalidate_range_start(&range);
2356         walk_page_range(migrate->start, migrate->end, &mm_walk);
2357         mmu_notifier_invalidate_range_end(&range);
2358
2359         migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
2360 }
2361
2362 /*
2363  * migrate_vma_check_page() - check if page is pinned or not
2364  * @page: struct page to check
2365  *
2366  * Pinned pages cannot be migrated. This is the same test as in
2367  * migrate_page_move_mapping(), except that here we allow migration of a
2368  * ZONE_DEVICE page.
2369  */
2370 static bool migrate_vma_check_page(struct page *page)
2371 {
2372         /*
2373          * One extra ref because caller holds an extra reference, either from
2374          * isolate_lru_page() for a regular page, or migrate_vma_collect() for
2375          * a device page.
2376          */
2377         int extra = 1;
2378
2379         /*
2380          * FIXME support THP (transparent huge page), it is bit more complex to
2381          * check them than regular pages, because they can be mapped with a pmd
2382          * or with a pte (split pte mapping).
2383          */
2384         if (PageCompound(page))
2385                 return false;
2386
2387         /* Page from ZONE_DEVICE have one extra reference */
2388         if (is_zone_device_page(page)) {
2389                 /*
2390                  * Private page can never be pin as they have no valid pte and
2391                  * GUP will fail for those. Yet if there is a pending migration
2392                  * a thread might try to wait on the pte migration entry and
2393                  * will bump the page reference count. Sadly there is no way to
2394                  * differentiate a regular pin from migration wait. Hence to
2395                  * avoid 2 racing thread trying to migrate back to CPU to enter
2396                  * infinite loop (one stoping migration because the other is
2397                  * waiting on pte migration entry). We always return true here.
2398                  *
2399                  * FIXME proper solution is to rework migration_entry_wait() so
2400                  * it does not need to take a reference on page.
2401                  */
2402                 return is_device_private_page(page);
2403         }
2404
2405         /* For file back page */
2406         if (page_mapping(page))
2407                 extra += 1 + page_has_private(page);
2408
2409         if ((page_count(page) - extra) > page_mapcount(page))
2410                 return false;
2411
2412         return true;
2413 }
2414
2415 /*
2416  * migrate_vma_prepare() - lock pages and isolate them from the lru
2417  * @migrate: migrate struct containing all migration information
2418  *
2419  * This locks pages that have been collected by migrate_vma_collect(). Once each
2420  * page is locked it is isolated from the lru (for non-device pages). Finally,
2421  * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be
2422  * migrated by concurrent kernel threads.
2423  */
2424 static void migrate_vma_prepare(struct migrate_vma *migrate)
2425 {
2426         const unsigned long npages = migrate->npages;
2427         const unsigned long start = migrate->start;
2428         unsigned long addr, i, restore = 0;
2429         bool allow_drain = true;
2430
2431         lru_add_drain();
2432
2433         for (i = 0; (i < npages) && migrate->cpages; i++) {
2434                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2435                 bool remap = true;
2436
2437                 if (!page)
2438                         continue;
2439
2440                 if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) {
2441                         /*
2442                          * Because we are migrating several pages there can be
2443                          * a deadlock between 2 concurrent migration where each
2444                          * are waiting on each other page lock.
2445                          *
2446                          * Make migrate_vma() a best effort thing and backoff
2447                          * for any page we can not lock right away.
2448                          */
2449                         if (!trylock_page(page)) {
2450                                 migrate->src[i] = 0;
2451                                 migrate->cpages--;
2452                                 put_page(page);
2453                                 continue;
2454                         }
2455                         remap = false;
2456                         migrate->src[i] |= MIGRATE_PFN_LOCKED;
2457                 }
2458
2459                 /* ZONE_DEVICE pages are not on LRU */
2460                 if (!is_zone_device_page(page)) {
2461                         if (!PageLRU(page) && allow_drain) {
2462                                 /* Drain CPU's pagevec */
2463                                 lru_add_drain_all();
2464                                 allow_drain = false;
2465                         }
2466
2467                         if (isolate_lru_page(page)) {
2468                                 if (remap) {
2469                                         migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2470                                         migrate->cpages--;
2471                                         restore++;
2472                                 } else {
2473                                         migrate->src[i] = 0;
2474                                         unlock_page(page);
2475                                         migrate->cpages--;
2476                                         put_page(page);
2477                                 }
2478                                 continue;
2479                         }
2480
2481                         /* Drop the reference we took in collect */
2482                         put_page(page);
2483                 }
2484
2485                 if (!migrate_vma_check_page(page)) {
2486                         if (remap) {
2487                                 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2488                                 migrate->cpages--;
2489                                 restore++;
2490
2491                                 if (!is_zone_device_page(page)) {
2492                                         get_page(page);
2493                                         putback_lru_page(page);
2494                                 }
2495                         } else {
2496                                 migrate->src[i] = 0;
2497                                 unlock_page(page);
2498                                 migrate->cpages--;
2499
2500                                 if (!is_zone_device_page(page))
2501                                         putback_lru_page(page);
2502                                 else
2503                                         put_page(page);
2504                         }
2505                 }
2506         }
2507
2508         for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) {
2509                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2510
2511                 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2512                         continue;
2513
2514                 remove_migration_pte(page, migrate->vma, addr, page);
2515
2516                 migrate->src[i] = 0;
2517                 unlock_page(page);
2518                 put_page(page);
2519                 restore--;
2520         }
2521 }
2522
2523 /*
2524  * migrate_vma_unmap() - replace page mapping with special migration pte entry
2525  * @migrate: migrate struct containing all migration information
2526  *
2527  * Replace page mapping (CPU page table pte) with a special migration pte entry
2528  * and check again if it has been pinned. Pinned pages are restored because we
2529  * cannot migrate them.
2530  *
2531  * This is the last step before we call the device driver callback to allocate
2532  * destination memory and copy contents of original page over to new page.
2533  */
2534 static void migrate_vma_unmap(struct migrate_vma *migrate)
2535 {
2536         int flags = TTU_MIGRATION | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
2537         const unsigned long npages = migrate->npages;
2538         const unsigned long start = migrate->start;
2539         unsigned long addr, i, restore = 0;
2540
2541         for (i = 0; i < npages; i++) {
2542                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2543
2544                 if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2545                         continue;
2546
2547                 if (page_mapped(page)) {
2548                         try_to_unmap(page, flags);
2549                         if (page_mapped(page))
2550                                 goto restore;
2551                 }
2552
2553                 if (migrate_vma_check_page(page))
2554                         continue;
2555
2556 restore:
2557                 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2558                 migrate->cpages--;
2559                 restore++;
2560         }
2561
2562         for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) {
2563                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2564
2565                 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2566                         continue;
2567
2568                 remove_migration_ptes(page, page, false);
2569
2570                 migrate->src[i] = 0;
2571                 unlock_page(page);
2572                 restore--;
2573
2574                 if (is_zone_device_page(page))
2575                         put_page(page);
2576                 else
2577                         putback_lru_page(page);
2578         }
2579 }
2580
2581 static void migrate_vma_insert_page(struct migrate_vma *migrate,
2582                                     unsigned long addr,
2583                                     struct page *page,
2584                                     unsigned long *src,
2585                                     unsigned long *dst)
2586 {
2587         struct vm_area_struct *vma = migrate->vma;
2588         struct mm_struct *mm = vma->vm_mm;
2589         struct mem_cgroup *memcg;
2590         bool flush = false;
2591         spinlock_t *ptl;
2592         pte_t entry;
2593         pgd_t *pgdp;
2594         p4d_t *p4dp;
2595         pud_t *pudp;
2596         pmd_t *pmdp;
2597         pte_t *ptep;
2598
2599         /* Only allow populating anonymous memory */
2600         if (!vma_is_anonymous(vma))
2601                 goto abort;
2602
2603         pgdp = pgd_offset(mm, addr);
2604         p4dp = p4d_alloc(mm, pgdp, addr);
2605         if (!p4dp)
2606                 goto abort;
2607         pudp = pud_alloc(mm, p4dp, addr);
2608         if (!pudp)
2609                 goto abort;
2610         pmdp = pmd_alloc(mm, pudp, addr);
2611         if (!pmdp)
2612                 goto abort;
2613
2614         if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp))
2615                 goto abort;
2616
2617         /*
2618          * Use pte_alloc() instead of pte_alloc_map().  We can't run
2619          * pte_offset_map() on pmds where a huge pmd might be created
2620          * from a different thread.
2621          *
2622          * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
2623          * parallel threads are excluded by other means.
2624          *
2625          * Here we only have down_read(mmap_sem).
2626          */
2627         if (pte_alloc(mm, pmdp))
2628                 goto abort;
2629
2630         /* See the comment in pte_alloc_one_map() */
2631         if (unlikely(pmd_trans_unstable(pmdp)))
2632                 goto abort;
2633
2634         if (unlikely(anon_vma_prepare(vma)))
2635                 goto abort;
2636         if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg, false))
2637                 goto abort;
2638
2639         /*
2640          * The memory barrier inside __SetPageUptodate makes sure that
2641          * preceding stores to the page contents become visible before
2642          * the set_pte_at() write.
2643          */
2644         __SetPageUptodate(page);
2645
2646         if (is_zone_device_page(page)) {
2647                 if (is_device_private_page(page)) {
2648                         swp_entry_t swp_entry;
2649
2650                         swp_entry = make_device_private_entry(page, vma->vm_flags & VM_WRITE);
2651                         entry = swp_entry_to_pte(swp_entry);
2652                 }
2653         } else {
2654                 entry = mk_pte(page, vma->vm_page_prot);
2655                 if (vma->vm_flags & VM_WRITE)
2656                         entry = pte_mkwrite(pte_mkdirty(entry));
2657         }
2658
2659         ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2660
2661         if (pte_present(*ptep)) {
2662                 unsigned long pfn = pte_pfn(*ptep);
2663
2664                 if (!is_zero_pfn(pfn)) {
2665                         pte_unmap_unlock(ptep, ptl);
2666                         mem_cgroup_cancel_charge(page, memcg, false);
2667                         goto abort;
2668                 }
2669                 flush = true;
2670         } else if (!pte_none(*ptep)) {
2671                 pte_unmap_unlock(ptep, ptl);
2672                 mem_cgroup_cancel_charge(page, memcg, false);
2673                 goto abort;
2674         }
2675
2676         /*
2677          * Check for usefaultfd but do not deliver the fault. Instead,
2678          * just back off.
2679          */
2680         if (userfaultfd_missing(vma)) {
2681                 pte_unmap_unlock(ptep, ptl);
2682                 mem_cgroup_cancel_charge(page, memcg, false);
2683                 goto abort;
2684         }
2685
2686         inc_mm_counter(mm, MM_ANONPAGES);
2687         page_add_new_anon_rmap(page, vma, addr, false);
2688         mem_cgroup_commit_charge(page, memcg, false, false);
2689         if (!is_zone_device_page(page))
2690                 lru_cache_add_active_or_unevictable(page, vma);
2691         get_page(page);
2692
2693         if (flush) {
2694                 flush_cache_page(vma, addr, pte_pfn(*ptep));
2695                 ptep_clear_flush_notify(vma, addr, ptep);
2696                 set_pte_at_notify(mm, addr, ptep, entry);
2697                 update_mmu_cache(vma, addr, ptep);
2698         } else {
2699                 /* No need to invalidate - it was non-present before */
2700                 set_pte_at(mm, addr, ptep, entry);
2701                 update_mmu_cache(vma, addr, ptep);
2702         }
2703
2704         pte_unmap_unlock(ptep, ptl);
2705         *src = MIGRATE_PFN_MIGRATE;
2706         return;
2707
2708 abort:
2709         *src &= ~MIGRATE_PFN_MIGRATE;
2710 }
2711
2712 /*
2713  * migrate_vma_pages() - migrate meta-data from src page to dst page
2714  * @migrate: migrate struct containing all migration information
2715  *
2716  * This migrates struct page meta-data from source struct page to destination
2717  * struct page. This effectively finishes the migration from source page to the
2718  * destination page.
2719  */
2720 static void migrate_vma_pages(struct migrate_vma *migrate)
2721 {
2722         const unsigned long npages = migrate->npages;
2723         const unsigned long start = migrate->start;
2724         struct mmu_notifier_range range;
2725         unsigned long addr, i;
2726         bool notified = false;
2727
2728         for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) {
2729                 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2730                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2731                 struct address_space *mapping;
2732                 int r;
2733
2734                 if (!newpage) {
2735                         migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2736                         continue;
2737                 }
2738
2739                 if (!page) {
2740                         if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE)) {
2741                                 continue;
2742                         }
2743                         if (!notified) {
2744                                 notified = true;
2745
2746                                 mmu_notifier_range_init(&range,
2747                                                         MMU_NOTIFY_CLEAR, 0,
2748                                                         NULL,
2749                                                         migrate->vma->vm_mm,
2750                                                         addr, migrate->end);
2751                                 mmu_notifier_invalidate_range_start(&range);
2752                         }
2753                         migrate_vma_insert_page(migrate, addr, newpage,
2754                                                 &migrate->src[i],
2755                                                 &migrate->dst[i]);
2756                         continue;
2757                 }
2758
2759                 mapping = page_mapping(page);
2760
2761                 if (is_zone_device_page(newpage)) {
2762                         if (is_device_private_page(newpage)) {
2763                                 /*
2764                                  * For now only support private anonymous when
2765                                  * migrating to un-addressable device memory.
2766                                  */
2767                                 if (mapping) {
2768                                         migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2769                                         continue;
2770                                 }
2771                         } else {
2772                                 /*
2773                                  * Other types of ZONE_DEVICE page are not
2774                                  * supported.
2775                                  */
2776                                 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2777                                 continue;
2778                         }
2779                 }
2780
2781                 r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY);
2782                 if (r != MIGRATEPAGE_SUCCESS)
2783                         migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2784         }
2785
2786         /*
2787          * No need to double call mmu_notifier->invalidate_range() callback as
2788          * the above ptep_clear_flush_notify() inside migrate_vma_insert_page()
2789          * did already call it.
2790          */
2791         if (notified)
2792                 mmu_notifier_invalidate_range_only_end(&range);
2793 }
2794
2795 /*
2796  * migrate_vma_finalize() - restore CPU page table entry
2797  * @migrate: migrate struct containing all migration information
2798  *
2799  * This replaces the special migration pte entry with either a mapping to the
2800  * new page if migration was successful for that page, or to the original page
2801  * otherwise.
2802  *
2803  * This also unlocks the pages and puts them back on the lru, or drops the extra
2804  * refcount, for device pages.
2805  */
2806 static void migrate_vma_finalize(struct migrate_vma *migrate)
2807 {
2808         const unsigned long npages = migrate->npages;
2809         unsigned long i;
2810
2811         for (i = 0; i < npages; i++) {
2812                 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2813                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2814
2815                 if (!page) {
2816                         if (newpage) {
2817                                 unlock_page(newpage);
2818                                 put_page(newpage);
2819                         }
2820                         continue;
2821                 }
2822
2823                 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) {
2824                         if (newpage) {
2825                                 unlock_page(newpage);
2826                                 put_page(newpage);
2827                         }
2828                         newpage = page;
2829                 }
2830
2831                 remove_migration_ptes(page, newpage, false);
2832                 unlock_page(page);
2833                 migrate->cpages--;
2834
2835                 if (is_zone_device_page(page))
2836                         put_page(page);
2837                 else
2838                         putback_lru_page(page);
2839
2840                 if (newpage != page) {
2841                         unlock_page(newpage);
2842                         if (is_zone_device_page(newpage))
2843                                 put_page(newpage);
2844                         else
2845                                 putback_lru_page(newpage);
2846                 }
2847         }
2848 }
2849
2850 /*
2851  * migrate_vma() - migrate a range of memory inside vma
2852  *
2853  * @ops: migration callback for allocating destination memory and copying
2854  * @vma: virtual memory area containing the range to be migrated
2855  * @start: start address of the range to migrate (inclusive)
2856  * @end: end address of the range to migrate (exclusive)
2857  * @src: array of hmm_pfn_t containing source pfns
2858  * @dst: array of hmm_pfn_t containing destination pfns
2859  * @private: pointer passed back to each of the callback
2860  * Returns: 0 on success, error code otherwise
2861  *
2862  * This function tries to migrate a range of memory virtual address range, using
2863  * callbacks to allocate and copy memory from source to destination. First it
2864  * collects all the pages backing each virtual address in the range, saving this
2865  * inside the src array. Then it locks those pages and unmaps them. Once the pages
2866  * are locked and unmapped, it checks whether each page is pinned or not. Pages
2867  * that aren't pinned have the MIGRATE_PFN_MIGRATE flag set (by this function)
2868  * in the corresponding src array entry. It then restores any pages that are
2869  * pinned, by remapping and unlocking those pages.
2870  *
2871  * At this point it calls the alloc_and_copy() callback. For documentation on
2872  * what is expected from that callback, see struct migrate_vma_ops comments in
2873  * include/linux/migrate.h
2874  *
2875  * After the alloc_and_copy() callback, this function goes over each entry in
2876  * the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
2877  * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
2878  * then the function tries to migrate struct page information from the source
2879  * struct page to the destination struct page. If it fails to migrate the struct
2880  * page information, then it clears the MIGRATE_PFN_MIGRATE flag in the src
2881  * array.
2882  *
2883  * At this point all successfully migrated pages have an entry in the src
2884  * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
2885  * array entry with MIGRATE_PFN_VALID flag set.
2886  *
2887  * It then calls the finalize_and_map() callback. See comments for "struct
2888  * migrate_vma_ops", in include/linux/migrate.h for details about
2889  * finalize_and_map() behavior.
2890  *
2891  * After the finalize_and_map() callback, for successfully migrated pages, this
2892  * function updates the CPU page table to point to new pages, otherwise it
2893  * restores the CPU page table to point to the original source pages.
2894  *
2895  * Function returns 0 after the above steps, even if no pages were migrated
2896  * (The function only returns an error if any of the arguments are invalid.)
2897  *
2898  * Both src and dst array must be big enough for (end - start) >> PAGE_SHIFT
2899  * unsigned long entries.
2900  */
2901 int migrate_vma(const struct migrate_vma_ops *ops,
2902                 struct vm_area_struct *vma,
2903                 unsigned long start,
2904                 unsigned long end,
2905                 unsigned long *src,
2906                 unsigned long *dst,
2907                 void *private)
2908 {
2909         struct migrate_vma migrate;
2910
2911         /* Sanity check the arguments */
2912         start &= PAGE_MASK;
2913         end &= PAGE_MASK;
2914         if (!vma || is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_SPECIAL) ||
2915                         vma_is_dax(vma))
2916                 return -EINVAL;
2917         if (start < vma->vm_start || start >= vma->vm_end)
2918                 return -EINVAL;
2919         if (end <= vma->vm_start || end > vma->vm_end)
2920                 return -EINVAL;
2921         if (!ops || !src || !dst || start >= end)
2922                 return -EINVAL;
2923
2924         memset(src, 0, sizeof(*src) * ((end - start) >> PAGE_SHIFT));
2925         migrate.src = src;
2926         migrate.dst = dst;
2927         migrate.start = start;
2928         migrate.npages = 0;
2929         migrate.cpages = 0;
2930         migrate.end = end;
2931         migrate.vma = vma;
2932
2933         /* Collect, and try to unmap source pages */
2934         migrate_vma_collect(&migrate);
2935         if (!migrate.cpages)
2936                 return 0;
2937
2938         /* Lock and isolate page */
2939         migrate_vma_prepare(&migrate);
2940         if (!migrate.cpages)
2941                 return 0;
2942
2943         /* Unmap pages */
2944         migrate_vma_unmap(&migrate);
2945         if (!migrate.cpages)
2946                 return 0;
2947
2948         /*
2949          * At this point pages are locked and unmapped, and thus they have
2950          * stable content and can safely be copied to destination memory that
2951          * is allocated by the callback.
2952          *
2953          * Note that migration can fail in migrate_vma_struct_page() for each
2954          * individual page.
2955          */
2956         ops->alloc_and_copy(vma, src, dst, start, end, private);
2957
2958         /* This does the real migration of struct page */
2959         migrate_vma_pages(&migrate);
2960
2961         ops->finalize_and_map(vma, src, dst, start, end, private);
2962
2963         /* Unlock and remap pages */
2964         migrate_vma_finalize(&migrate);
2965
2966         return 0;
2967 }
2968 EXPORT_SYMBOL(migrate_vma);
2969 #endif /* defined(MIGRATE_VMA_HELPER) */