2 * Memory Migration functionality - linux/mm/migration.c
4 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6 * Page migration was first developed in the context of the memory hotplug
7 * project. The main authors of the migration code are:
9 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
10 * Hirokazu Takahashi <taka@valinux.co.jp>
11 * Dave Hansen <haveblue@us.ibm.com>
15 #include <linux/migrate.h>
16 #include <linux/export.h>
17 #include <linux/swap.h>
18 #include <linux/swapops.h>
19 #include <linux/pagemap.h>
20 #include <linux/buffer_head.h>
21 #include <linux/mm_inline.h>
22 #include <linux/nsproxy.h>
23 #include <linux/pagevec.h>
24 #include <linux/ksm.h>
25 #include <linux/rmap.h>
26 #include <linux/topology.h>
27 #include <linux/cpu.h>
28 #include <linux/cpuset.h>
29 #include <linux/writeback.h>
30 #include <linux/mempolicy.h>
31 #include <linux/vmalloc.h>
32 #include <linux/security.h>
33 #include <linux/memcontrol.h>
34 #include <linux/syscalls.h>
35 #include <linux/hugetlb.h>
36 #include <linux/hugetlb_cgroup.h>
37 #include <linux/gfp.h>
38 #include <linux/balloon_compaction.h>
40 #include <asm/tlbflush.h>
42 #define CREATE_TRACE_POINTS
43 #include <trace/events/migrate.h>
48 * migrate_prep() needs to be called before we start compiling a list of pages
49 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
50 * undesirable, use migrate_prep_local()
52 int migrate_prep(void)
55 * Clear the LRU lists so pages can be isolated.
56 * Note that pages may be moved off the LRU after we have
57 * drained them. Those pages will fail to migrate like other
58 * pages that may be busy.
65 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
66 int migrate_prep_local(void)
74 * Add isolated pages on the list back to the LRU under page lock
75 * to avoid leaking evictable pages back onto unevictable list.
77 void putback_lru_pages(struct list_head *l)
82 list_for_each_entry_safe(page, page2, l, lru) {
84 dec_zone_page_state(page, NR_ISOLATED_ANON +
85 page_is_file_cache(page));
86 putback_lru_page(page);
91 * Put previously isolated pages back onto the appropriate lists
92 * from where they were once taken off for compaction/migration.
94 * This function shall be used instead of putback_lru_pages(),
95 * whenever the isolated pageset has been built by isolate_migratepages_range()
97 void putback_movable_pages(struct list_head *l)
102 list_for_each_entry_safe(page, page2, l, lru) {
103 list_del(&page->lru);
104 dec_zone_page_state(page, NR_ISOLATED_ANON +
105 page_is_file_cache(page));
106 if (unlikely(balloon_page_movable(page)))
107 balloon_page_putback(page);
109 putback_lru_page(page);
114 * Restore a potential migration pte to a working pte entry
116 static int remove_migration_pte(struct page *new, struct vm_area_struct *vma,
117 unsigned long addr, void *old)
119 struct mm_struct *mm = vma->vm_mm;
125 if (unlikely(PageHuge(new))) {
126 ptep = huge_pte_offset(mm, addr);
129 ptl = &mm->page_table_lock;
131 pmd = mm_find_pmd(mm, addr);
134 if (pmd_trans_huge(*pmd))
137 ptep = pte_offset_map(pmd, addr);
140 * Peek to check is_swap_pte() before taking ptlock? No, we
141 * can race mremap's move_ptes(), which skips anon_vma lock.
144 ptl = pte_lockptr(mm, pmd);
149 if (!is_swap_pte(pte))
152 entry = pte_to_swp_entry(pte);
154 if (!is_migration_entry(entry) ||
155 migration_entry_to_page(entry) != old)
159 pte = pte_mkold(mk_pte(new, vma->vm_page_prot));
160 if (is_write_migration_entry(entry))
161 pte = pte_mkwrite(pte);
162 #ifdef CONFIG_HUGETLB_PAGE
164 pte = pte_mkhuge(pte);
165 pte = arch_make_huge_pte(pte, vma, new, 0);
168 flush_dcache_page(new);
169 set_pte_at(mm, addr, ptep, pte);
173 hugepage_add_anon_rmap(new, vma, addr);
176 } else if (PageAnon(new))
177 page_add_anon_rmap(new, vma, addr);
179 page_add_file_rmap(new);
181 /* No need to invalidate - it was non-present before */
182 update_mmu_cache(vma, addr, ptep);
184 pte_unmap_unlock(ptep, ptl);
190 * Get rid of all migration entries and replace them by
191 * references to the indicated page.
193 static void remove_migration_ptes(struct page *old, struct page *new)
195 rmap_walk(new, remove_migration_pte, old);
199 * Something used the pte of a page under migration. We need to
200 * get to the page and wait until migration is finished.
201 * When we return from this function the fault will be retried.
203 static void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
212 if (!is_swap_pte(pte))
215 entry = pte_to_swp_entry(pte);
216 if (!is_migration_entry(entry))
219 page = migration_entry_to_page(entry);
222 * Once radix-tree replacement of page migration started, page_count
223 * *must* be zero. And, we don't want to call wait_on_page_locked()
224 * against a page without get_page().
225 * So, we use get_page_unless_zero(), here. Even failed, page fault
228 if (!get_page_unless_zero(page))
230 pte_unmap_unlock(ptep, ptl);
231 wait_on_page_locked(page);
235 pte_unmap_unlock(ptep, ptl);
238 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
239 unsigned long address)
241 spinlock_t *ptl = pte_lockptr(mm, pmd);
242 pte_t *ptep = pte_offset_map(pmd, address);
243 __migration_entry_wait(mm, ptep, ptl);
246 void migration_entry_wait_huge(struct mm_struct *mm, pte_t *pte)
248 spinlock_t *ptl = &(mm)->page_table_lock;
249 __migration_entry_wait(mm, pte, ptl);
253 /* Returns true if all buffers are successfully locked */
254 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
255 enum migrate_mode mode)
257 struct buffer_head *bh = head;
259 /* Simple case, sync compaction */
260 if (mode != MIGRATE_ASYNC) {
264 bh = bh->b_this_page;
266 } while (bh != head);
271 /* async case, we cannot block on lock_buffer so use trylock_buffer */
274 if (!trylock_buffer(bh)) {
276 * We failed to lock the buffer and cannot stall in
277 * async migration. Release the taken locks
279 struct buffer_head *failed_bh = bh;
282 while (bh != failed_bh) {
285 bh = bh->b_this_page;
290 bh = bh->b_this_page;
291 } while (bh != head);
295 static inline bool buffer_migrate_lock_buffers(struct buffer_head *head,
296 enum migrate_mode mode)
300 #endif /* CONFIG_BLOCK */
303 * Replace the page in the mapping.
305 * The number of remaining references must be:
306 * 1 for anonymous pages without a mapping
307 * 2 for pages with a mapping
308 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
310 static int migrate_page_move_mapping(struct address_space *mapping,
311 struct page *newpage, struct page *page,
312 struct buffer_head *head, enum migrate_mode mode)
314 int expected_count = 0;
318 /* Anonymous page without mapping */
319 if (page_count(page) != 1)
321 return MIGRATEPAGE_SUCCESS;
324 spin_lock_irq(&mapping->tree_lock);
326 pslot = radix_tree_lookup_slot(&mapping->page_tree,
329 expected_count = 2 + page_has_private(page);
330 if (page_count(page) != expected_count ||
331 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
332 spin_unlock_irq(&mapping->tree_lock);
336 if (!page_freeze_refs(page, expected_count)) {
337 spin_unlock_irq(&mapping->tree_lock);
342 * In the async migration case of moving a page with buffers, lock the
343 * buffers using trylock before the mapping is moved. If the mapping
344 * was moved, we later failed to lock the buffers and could not move
345 * the mapping back due to an elevated page count, we would have to
346 * block waiting on other references to be dropped.
348 if (mode == MIGRATE_ASYNC && head &&
349 !buffer_migrate_lock_buffers(head, mode)) {
350 page_unfreeze_refs(page, expected_count);
351 spin_unlock_irq(&mapping->tree_lock);
356 * Now we know that no one else is looking at the page.
358 get_page(newpage); /* add cache reference */
359 if (PageSwapCache(page)) {
360 SetPageSwapCache(newpage);
361 set_page_private(newpage, page_private(page));
364 radix_tree_replace_slot(pslot, newpage);
367 * Drop cache reference from old page by unfreezing
368 * to one less reference.
369 * We know this isn't the last reference.
371 page_unfreeze_refs(page, expected_count - 1);
374 * If moved to a different zone then also account
375 * the page for that zone. Other VM counters will be
376 * taken care of when we establish references to the
377 * new page and drop references to the old page.
379 * Note that anonymous pages are accounted for
380 * via NR_FILE_PAGES and NR_ANON_PAGES if they
381 * are mapped to swap space.
383 __dec_zone_page_state(page, NR_FILE_PAGES);
384 __inc_zone_page_state(newpage, NR_FILE_PAGES);
385 if (!PageSwapCache(page) && PageSwapBacked(page)) {
386 __dec_zone_page_state(page, NR_SHMEM);
387 __inc_zone_page_state(newpage, NR_SHMEM);
389 spin_unlock_irq(&mapping->tree_lock);
391 return MIGRATEPAGE_SUCCESS;
395 * The expected number of remaining references is the same as that
396 * of migrate_page_move_mapping().
398 int migrate_huge_page_move_mapping(struct address_space *mapping,
399 struct page *newpage, struct page *page)
405 if (page_count(page) != 1)
407 return MIGRATEPAGE_SUCCESS;
410 spin_lock_irq(&mapping->tree_lock);
412 pslot = radix_tree_lookup_slot(&mapping->page_tree,
415 expected_count = 2 + page_has_private(page);
416 if (page_count(page) != expected_count ||
417 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
418 spin_unlock_irq(&mapping->tree_lock);
422 if (!page_freeze_refs(page, expected_count)) {
423 spin_unlock_irq(&mapping->tree_lock);
429 radix_tree_replace_slot(pslot, newpage);
431 page_unfreeze_refs(page, expected_count - 1);
433 spin_unlock_irq(&mapping->tree_lock);
434 return MIGRATEPAGE_SUCCESS;
438 * Copy the page to its new location
440 void migrate_page_copy(struct page *newpage, struct page *page)
442 if (PageHuge(page) || PageTransHuge(page))
443 copy_huge_page(newpage, page);
445 copy_highpage(newpage, page);
448 SetPageError(newpage);
449 if (PageReferenced(page))
450 SetPageReferenced(newpage);
451 if (PageUptodate(page))
452 SetPageUptodate(newpage);
453 if (TestClearPageActive(page)) {
454 VM_BUG_ON(PageUnevictable(page));
455 SetPageActive(newpage);
456 } else if (TestClearPageUnevictable(page))
457 SetPageUnevictable(newpage);
458 if (PageChecked(page))
459 SetPageChecked(newpage);
460 if (PageMappedToDisk(page))
461 SetPageMappedToDisk(newpage);
463 if (PageDirty(page)) {
464 clear_page_dirty_for_io(page);
466 * Want to mark the page and the radix tree as dirty, and
467 * redo the accounting that clear_page_dirty_for_io undid,
468 * but we can't use set_page_dirty because that function
469 * is actually a signal that all of the page has become dirty.
470 * Whereas only part of our page may be dirty.
472 if (PageSwapBacked(page))
473 SetPageDirty(newpage);
475 __set_page_dirty_nobuffers(newpage);
478 mlock_migrate_page(newpage, page);
479 ksm_migrate_page(newpage, page);
481 * Please do not reorder this without considering how mm/ksm.c's
482 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
484 ClearPageSwapCache(page);
485 ClearPagePrivate(page);
486 set_page_private(page, 0);
489 * If any waiters have accumulated on the new page then
492 if (PageWriteback(newpage))
493 end_page_writeback(newpage);
496 /************************************************************
497 * Migration functions
498 ***********************************************************/
500 /* Always fail migration. Used for mappings that are not movable */
501 int fail_migrate_page(struct address_space *mapping,
502 struct page *newpage, struct page *page)
506 EXPORT_SYMBOL(fail_migrate_page);
509 * Common logic to directly migrate a single page suitable for
510 * pages that do not use PagePrivate/PagePrivate2.
512 * Pages are locked upon entry and exit.
514 int migrate_page(struct address_space *mapping,
515 struct page *newpage, struct page *page,
516 enum migrate_mode mode)
520 BUG_ON(PageWriteback(page)); /* Writeback must be complete */
522 rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode);
524 if (rc != MIGRATEPAGE_SUCCESS)
527 migrate_page_copy(newpage, page);
528 return MIGRATEPAGE_SUCCESS;
530 EXPORT_SYMBOL(migrate_page);
534 * Migration function for pages with buffers. This function can only be used
535 * if the underlying filesystem guarantees that no other references to "page"
538 int buffer_migrate_page(struct address_space *mapping,
539 struct page *newpage, struct page *page, enum migrate_mode mode)
541 struct buffer_head *bh, *head;
544 if (!page_has_buffers(page))
545 return migrate_page(mapping, newpage, page, mode);
547 head = page_buffers(page);
549 rc = migrate_page_move_mapping(mapping, newpage, page, head, mode);
551 if (rc != MIGRATEPAGE_SUCCESS)
555 * In the async case, migrate_page_move_mapping locked the buffers
556 * with an IRQ-safe spinlock held. In the sync case, the buffers
557 * need to be locked now
559 if (mode != MIGRATE_ASYNC)
560 BUG_ON(!buffer_migrate_lock_buffers(head, mode));
562 ClearPagePrivate(page);
563 set_page_private(newpage, page_private(page));
564 set_page_private(page, 0);
570 set_bh_page(bh, newpage, bh_offset(bh));
571 bh = bh->b_this_page;
573 } while (bh != head);
575 SetPagePrivate(newpage);
577 migrate_page_copy(newpage, page);
583 bh = bh->b_this_page;
585 } while (bh != head);
587 return MIGRATEPAGE_SUCCESS;
589 EXPORT_SYMBOL(buffer_migrate_page);
593 * Writeback a page to clean the dirty state
595 static int writeout(struct address_space *mapping, struct page *page)
597 struct writeback_control wbc = {
598 .sync_mode = WB_SYNC_NONE,
601 .range_end = LLONG_MAX,
606 if (!mapping->a_ops->writepage)
607 /* No write method for the address space */
610 if (!clear_page_dirty_for_io(page))
611 /* Someone else already triggered a write */
615 * A dirty page may imply that the underlying filesystem has
616 * the page on some queue. So the page must be clean for
617 * migration. Writeout may mean we loose the lock and the
618 * page state is no longer what we checked for earlier.
619 * At this point we know that the migration attempt cannot
622 remove_migration_ptes(page, page);
624 rc = mapping->a_ops->writepage(page, &wbc);
626 if (rc != AOP_WRITEPAGE_ACTIVATE)
627 /* unlocked. Relock */
630 return (rc < 0) ? -EIO : -EAGAIN;
634 * Default handling if a filesystem does not provide a migration function.
636 static int fallback_migrate_page(struct address_space *mapping,
637 struct page *newpage, struct page *page, enum migrate_mode mode)
639 if (PageDirty(page)) {
640 /* Only writeback pages in full synchronous migration */
641 if (mode != MIGRATE_SYNC)
643 return writeout(mapping, page);
647 * Buffers may be managed in a filesystem specific way.
648 * We must have no buffers or drop them.
650 if (page_has_private(page) &&
651 !try_to_release_page(page, GFP_KERNEL))
654 return migrate_page(mapping, newpage, page, mode);
658 * Move a page to a newly allocated page
659 * The page is locked and all ptes have been successfully removed.
661 * The new page will have replaced the old page if this function
666 * MIGRATEPAGE_SUCCESS - success
668 static int move_to_new_page(struct page *newpage, struct page *page,
669 int remap_swapcache, enum migrate_mode mode)
671 struct address_space *mapping;
675 * Block others from accessing the page when we get around to
676 * establishing additional references. We are the only one
677 * holding a reference to the new page at this point.
679 if (!trylock_page(newpage))
682 /* Prepare mapping for the new page.*/
683 newpage->index = page->index;
684 newpage->mapping = page->mapping;
685 if (PageSwapBacked(page))
686 SetPageSwapBacked(newpage);
688 mapping = page_mapping(page);
690 rc = migrate_page(mapping, newpage, page, mode);
691 else if (mapping->a_ops->migratepage)
693 * Most pages have a mapping and most filesystems provide a
694 * migratepage callback. Anonymous pages are part of swap
695 * space which also has its own migratepage callback. This
696 * is the most common path for page migration.
698 rc = mapping->a_ops->migratepage(mapping,
699 newpage, page, mode);
701 rc = fallback_migrate_page(mapping, newpage, page, mode);
703 if (rc != MIGRATEPAGE_SUCCESS) {
704 newpage->mapping = NULL;
707 remove_migration_ptes(page, newpage);
708 page->mapping = NULL;
711 unlock_page(newpage);
716 static int __unmap_and_move(struct page *page, struct page *newpage,
717 int force, enum migrate_mode mode)
720 int remap_swapcache = 1;
721 struct mem_cgroup *mem;
722 struct anon_vma *anon_vma = NULL;
724 if (!trylock_page(page)) {
725 if (!force || mode == MIGRATE_ASYNC)
729 * It's not safe for direct compaction to call lock_page.
730 * For example, during page readahead pages are added locked
731 * to the LRU. Later, when the IO completes the pages are
732 * marked uptodate and unlocked. However, the queueing
733 * could be merging multiple pages for one bio (e.g.
734 * mpage_readpages). If an allocation happens for the
735 * second or third page, the process can end up locking
736 * the same page twice and deadlocking. Rather than
737 * trying to be clever about what pages can be locked,
738 * avoid the use of lock_page for direct compaction
741 if (current->flags & PF_MEMALLOC)
747 /* charge against new page */
748 mem_cgroup_prepare_migration(page, newpage, &mem);
750 if (PageWriteback(page)) {
752 * Only in the case of a full synchronous migration is it
753 * necessary to wait for PageWriteback. In the async case,
754 * the retry loop is too short and in the sync-light case,
755 * the overhead of stalling is too much
757 if (mode != MIGRATE_SYNC) {
763 wait_on_page_writeback(page);
766 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
767 * we cannot notice that anon_vma is freed while we migrates a page.
768 * This get_anon_vma() delays freeing anon_vma pointer until the end
769 * of migration. File cache pages are no problem because of page_lock()
770 * File Caches may use write_page() or lock_page() in migration, then,
771 * just care Anon page here.
773 if (PageAnon(page) && !PageKsm(page)) {
775 * Only page_lock_anon_vma_read() understands the subtleties of
776 * getting a hold on an anon_vma from outside one of its mms.
778 anon_vma = page_get_anon_vma(page);
783 } else if (PageSwapCache(page)) {
785 * We cannot be sure that the anon_vma of an unmapped
786 * swapcache page is safe to use because we don't
787 * know in advance if the VMA that this page belonged
788 * to still exists. If the VMA and others sharing the
789 * data have been freed, then the anon_vma could
790 * already be invalid.
792 * To avoid this possibility, swapcache pages get
793 * migrated but are not remapped when migration
802 if (unlikely(balloon_page_movable(page))) {
804 * A ballooned page does not need any special attention from
805 * physical to virtual reverse mapping procedures.
806 * Skip any attempt to unmap PTEs or to remap swap cache,
807 * in order to avoid burning cycles at rmap level, and perform
808 * the page migration right away (proteced by page lock).
810 rc = balloon_page_migrate(newpage, page, mode);
815 * Corner case handling:
816 * 1. When a new swap-cache page is read into, it is added to the LRU
817 * and treated as swapcache but it has no rmap yet.
818 * Calling try_to_unmap() against a page->mapping==NULL page will
819 * trigger a BUG. So handle it here.
820 * 2. An orphaned page (see truncate_complete_page) might have
821 * fs-private metadata. The page can be picked up due to memory
822 * offlining. Everywhere else except page reclaim, the page is
823 * invisible to the vm, so the page can not be migrated. So try to
824 * free the metadata, so the page can be freed.
826 if (!page->mapping) {
827 VM_BUG_ON(PageAnon(page));
828 if (page_has_private(page)) {
829 try_to_free_buffers(page);
835 /* Establish migration ptes or remove ptes */
836 try_to_unmap(page, TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
839 if (!page_mapped(page))
840 rc = move_to_new_page(newpage, page, remap_swapcache, mode);
842 if (rc && remap_swapcache)
843 remove_migration_ptes(page, page);
845 /* Drop an anon_vma reference if we took one */
847 put_anon_vma(anon_vma);
850 mem_cgroup_end_migration(mem, page, newpage,
851 (rc == MIGRATEPAGE_SUCCESS ||
852 rc == MIGRATEPAGE_BALLOON_SUCCESS));
859 * Obtain the lock on page, remove all ptes and migrate the page
860 * to the newly allocated page in newpage.
862 static int unmap_and_move(new_page_t get_new_page, unsigned long private,
863 struct page *page, int force, enum migrate_mode mode)
867 struct page *newpage = get_new_page(page, private, &result);
872 if (page_count(page) == 1) {
873 /* page was freed from under us. So we are done. */
877 if (unlikely(PageTransHuge(page)))
878 if (unlikely(split_huge_page(page)))
881 rc = __unmap_and_move(page, newpage, force, mode);
883 if (unlikely(rc == MIGRATEPAGE_BALLOON_SUCCESS)) {
885 * A ballooned page has been migrated already.
886 * Now, it's the time to wrap-up counters,
887 * handle the page back to Buddy and return.
889 dec_zone_page_state(page, NR_ISOLATED_ANON +
890 page_is_file_cache(page));
891 balloon_page_free(page);
892 return MIGRATEPAGE_SUCCESS;
897 * A page that has been migrated has all references
898 * removed and will be freed. A page that has not been
899 * migrated will have kepts its references and be
902 list_del(&page->lru);
903 dec_zone_page_state(page, NR_ISOLATED_ANON +
904 page_is_file_cache(page));
905 putback_lru_page(page);
908 * Move the new page to the LRU. If migration was not successful
909 * then this will free the page.
911 putback_lru_page(newpage);
916 *result = page_to_nid(newpage);
922 * Counterpart of unmap_and_move_page() for hugepage migration.
924 * This function doesn't wait the completion of hugepage I/O
925 * because there is no race between I/O and migration for hugepage.
926 * Note that currently hugepage I/O occurs only in direct I/O
927 * where no lock is held and PG_writeback is irrelevant,
928 * and writeback status of all subpages are counted in the reference
929 * count of the head page (i.e. if all subpages of a 2MB hugepage are
930 * under direct I/O, the reference of the head page is 512 and a bit more.)
931 * This means that when we try to migrate hugepage whose subpages are
932 * doing direct I/O, some references remain after try_to_unmap() and
933 * hugepage migration fails without data corruption.
935 * There is also no race when direct I/O is issued on the page under migration,
936 * because then pte is replaced with migration swap entry and direct I/O code
937 * will wait in the page fault for migration to complete.
939 static int unmap_and_move_huge_page(new_page_t get_new_page,
940 unsigned long private, struct page *hpage,
941 int force, enum migrate_mode mode)
945 struct page *new_hpage = get_new_page(hpage, private, &result);
946 struct anon_vma *anon_vma = NULL;
953 if (!trylock_page(hpage)) {
954 if (!force || mode != MIGRATE_SYNC)
960 anon_vma = page_get_anon_vma(hpage);
962 try_to_unmap(hpage, TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
964 if (!page_mapped(hpage))
965 rc = move_to_new_page(new_hpage, hpage, 1, mode);
968 remove_migration_ptes(hpage, hpage);
971 put_anon_vma(anon_vma);
974 hugetlb_cgroup_migrate(hpage, new_hpage);
983 *result = page_to_nid(new_hpage);
989 * migrate_pages - migrate the pages specified in a list, to the free pages
990 * supplied as the target for the page migration
992 * @from: The list of pages to be migrated.
993 * @get_new_page: The function used to allocate free pages to be used
994 * as the target of the page migration.
995 * @private: Private data to be passed on to get_new_page()
996 * @mode: The migration mode that specifies the constraints for
997 * page migration, if any.
998 * @reason: The reason for page migration.
1000 * The function returns after 10 attempts or if no pages are movable any more
1001 * because the list has become empty or no retryable pages exist any more.
1002 * The caller should call putback_lru_pages() to return pages to the LRU
1003 * or free list only if ret != 0.
1005 * Returns the number of pages that were not migrated, or an error code.
1007 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1008 unsigned long private, enum migrate_mode mode, int reason)
1012 int nr_succeeded = 0;
1016 int swapwrite = current->flags & PF_SWAPWRITE;
1020 current->flags |= PF_SWAPWRITE;
1022 for(pass = 0; pass < 10 && retry; pass++) {
1025 list_for_each_entry_safe(page, page2, from, lru) {
1028 rc = unmap_and_move(get_new_page, private,
1029 page, pass > 2, mode);
1037 case MIGRATEPAGE_SUCCESS:
1041 /* Permanent failure */
1047 rc = nr_failed + retry;
1050 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1052 count_vm_events(PGMIGRATE_FAIL, nr_failed);
1053 trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);
1056 current->flags &= ~PF_SWAPWRITE;
1061 int migrate_huge_page(struct page *hpage, new_page_t get_new_page,
1062 unsigned long private, enum migrate_mode mode)
1066 for (pass = 0; pass < 10; pass++) {
1067 rc = unmap_and_move_huge_page(get_new_page, private,
1068 hpage, pass > 2, mode);
1076 case MIGRATEPAGE_SUCCESS:
1089 * Move a list of individual pages
1091 struct page_to_node {
1098 static struct page *new_page_node(struct page *p, unsigned long private,
1101 struct page_to_node *pm = (struct page_to_node *)private;
1103 while (pm->node != MAX_NUMNODES && pm->page != p)
1106 if (pm->node == MAX_NUMNODES)
1109 *result = &pm->status;
1111 return alloc_pages_exact_node(pm->node,
1112 GFP_HIGHUSER_MOVABLE | GFP_THISNODE, 0);
1116 * Move a set of pages as indicated in the pm array. The addr
1117 * field must be set to the virtual address of the page to be moved
1118 * and the node number must contain a valid target node.
1119 * The pm array ends with node = MAX_NUMNODES.
1121 static int do_move_page_to_node_array(struct mm_struct *mm,
1122 struct page_to_node *pm,
1126 struct page_to_node *pp;
1127 LIST_HEAD(pagelist);
1129 down_read(&mm->mmap_sem);
1132 * Build a list of pages to migrate
1134 for (pp = pm; pp->node != MAX_NUMNODES; pp++) {
1135 struct vm_area_struct *vma;
1139 vma = find_vma(mm, pp->addr);
1140 if (!vma || pp->addr < vma->vm_start || !vma_migratable(vma))
1143 page = follow_page(vma, pp->addr, FOLL_GET|FOLL_SPLIT);
1145 err = PTR_ERR(page);
1153 /* Use PageReserved to check for zero page */
1154 if (PageReserved(page))
1158 err = page_to_nid(page);
1160 if (err == pp->node)
1162 * Node already in the right place
1167 if (page_mapcount(page) > 1 &&
1171 err = isolate_lru_page(page);
1173 list_add_tail(&page->lru, &pagelist);
1174 inc_zone_page_state(page, NR_ISOLATED_ANON +
1175 page_is_file_cache(page));
1179 * Either remove the duplicate refcount from
1180 * isolate_lru_page() or drop the page ref if it was
1189 if (!list_empty(&pagelist)) {
1190 err = migrate_pages(&pagelist, new_page_node,
1191 (unsigned long)pm, MIGRATE_SYNC, MR_SYSCALL);
1193 putback_lru_pages(&pagelist);
1196 up_read(&mm->mmap_sem);
1201 * Migrate an array of page address onto an array of nodes and fill
1202 * the corresponding array of status.
1204 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1205 unsigned long nr_pages,
1206 const void __user * __user *pages,
1207 const int __user *nodes,
1208 int __user *status, int flags)
1210 struct page_to_node *pm;
1211 unsigned long chunk_nr_pages;
1212 unsigned long chunk_start;
1216 pm = (struct page_to_node *)__get_free_page(GFP_KERNEL);
1223 * Store a chunk of page_to_node array in a page,
1224 * but keep the last one as a marker
1226 chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1;
1228 for (chunk_start = 0;
1229 chunk_start < nr_pages;
1230 chunk_start += chunk_nr_pages) {
1233 if (chunk_start + chunk_nr_pages > nr_pages)
1234 chunk_nr_pages = nr_pages - chunk_start;
1236 /* fill the chunk pm with addrs and nodes from user-space */
1237 for (j = 0; j < chunk_nr_pages; j++) {
1238 const void __user *p;
1242 if (get_user(p, pages + j + chunk_start))
1244 pm[j].addr = (unsigned long) p;
1246 if (get_user(node, nodes + j + chunk_start))
1250 if (node < 0 || node >= MAX_NUMNODES)
1253 if (!node_state(node, N_MEMORY))
1257 if (!node_isset(node, task_nodes))
1263 /* End marker for this chunk */
1264 pm[chunk_nr_pages].node = MAX_NUMNODES;
1266 /* Migrate this chunk */
1267 err = do_move_page_to_node_array(mm, pm,
1268 flags & MPOL_MF_MOVE_ALL);
1272 /* Return status information */
1273 for (j = 0; j < chunk_nr_pages; j++)
1274 if (put_user(pm[j].status, status + j + chunk_start)) {
1282 free_page((unsigned long)pm);
1288 * Determine the nodes of an array of pages and store it in an array of status.
1290 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1291 const void __user **pages, int *status)
1295 down_read(&mm->mmap_sem);
1297 for (i = 0; i < nr_pages; i++) {
1298 unsigned long addr = (unsigned long)(*pages);
1299 struct vm_area_struct *vma;
1303 vma = find_vma(mm, addr);
1304 if (!vma || addr < vma->vm_start)
1307 page = follow_page(vma, addr, 0);
1309 err = PTR_ERR(page);
1314 /* Use PageReserved to check for zero page */
1315 if (!page || PageReserved(page))
1318 err = page_to_nid(page);
1326 up_read(&mm->mmap_sem);
1330 * Determine the nodes of a user array of pages and store it in
1331 * a user array of status.
1333 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1334 const void __user * __user *pages,
1337 #define DO_PAGES_STAT_CHUNK_NR 16
1338 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1339 int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1342 unsigned long chunk_nr;
1344 chunk_nr = nr_pages;
1345 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1346 chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1348 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1351 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1353 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1358 nr_pages -= chunk_nr;
1360 return nr_pages ? -EFAULT : 0;
1364 * Move a list of pages in the address space of the currently executing
1367 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1368 const void __user * __user *, pages,
1369 const int __user *, nodes,
1370 int __user *, status, int, flags)
1372 const struct cred *cred = current_cred(), *tcred;
1373 struct task_struct *task;
1374 struct mm_struct *mm;
1376 nodemask_t task_nodes;
1379 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1382 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1385 /* Find the mm_struct */
1387 task = pid ? find_task_by_vpid(pid) : current;
1392 get_task_struct(task);
1395 * Check if this process has the right to modify the specified
1396 * process. The right exists if the process has administrative
1397 * capabilities, superuser privileges or the same
1398 * userid as the target process.
1400 tcred = __task_cred(task);
1401 if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) &&
1402 !uid_eq(cred->uid, tcred->suid) && !uid_eq(cred->uid, tcred->uid) &&
1403 !capable(CAP_SYS_NICE)) {
1410 err = security_task_movememory(task);
1414 task_nodes = cpuset_mems_allowed(task);
1415 mm = get_task_mm(task);
1416 put_task_struct(task);
1422 err = do_pages_move(mm, task_nodes, nr_pages, pages,
1423 nodes, status, flags);
1425 err = do_pages_stat(mm, nr_pages, pages, status);
1431 put_task_struct(task);
1436 * Call migration functions in the vma_ops that may prepare
1437 * memory in a vm for migration. migration functions may perform
1438 * the migration for vmas that do not have an underlying page struct.
1440 int migrate_vmas(struct mm_struct *mm, const nodemask_t *to,
1441 const nodemask_t *from, unsigned long flags)
1443 struct vm_area_struct *vma;
1446 for (vma = mm->mmap; vma && !err; vma = vma->vm_next) {
1447 if (vma->vm_ops && vma->vm_ops->migrate) {
1448 err = vma->vm_ops->migrate(vma, to, from, flags);
1456 #ifdef CONFIG_NUMA_BALANCING
1458 * Returns true if this is a safe migration target node for misplaced NUMA
1459 * pages. Currently it only checks the watermarks which crude
1461 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1462 unsigned long nr_migrate_pages)
1465 for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1466 struct zone *zone = pgdat->node_zones + z;
1468 if (!populated_zone(zone))
1471 if (zone->all_unreclaimable)
1474 /* Avoid waking kswapd by allocating pages_to_migrate pages. */
1475 if (!zone_watermark_ok(zone, 0,
1476 high_wmark_pages(zone) +
1485 static struct page *alloc_misplaced_dst_page(struct page *page,
1489 int nid = (int) data;
1490 struct page *newpage;
1492 newpage = alloc_pages_exact_node(nid,
1493 (GFP_HIGHUSER_MOVABLE | GFP_THISNODE |
1494 __GFP_NOMEMALLOC | __GFP_NORETRY |
1498 page_nid_xchg_last(newpage, page_nid_last(page));
1504 * page migration rate limiting control.
1505 * Do not migrate more than @pages_to_migrate in a @migrate_interval_millisecs
1506 * window of time. Default here says do not migrate more than 1280M per second.
1507 * If a node is rate-limited then PTE NUMA updates are also rate-limited. However
1508 * as it is faults that reset the window, pte updates will happen unconditionally
1509 * if there has not been a fault since @pteupdate_interval_millisecs after the
1510 * throttle window closed.
1512 static unsigned int migrate_interval_millisecs __read_mostly = 100;
1513 static unsigned int pteupdate_interval_millisecs __read_mostly = 1000;
1514 static unsigned int ratelimit_pages __read_mostly = 128 << (20 - PAGE_SHIFT);
1516 /* Returns true if NUMA migration is currently rate limited */
1517 bool migrate_ratelimited(int node)
1519 pg_data_t *pgdat = NODE_DATA(node);
1521 if (time_after(jiffies, pgdat->numabalancing_migrate_next_window +
1522 msecs_to_jiffies(pteupdate_interval_millisecs)))
1525 if (pgdat->numabalancing_migrate_nr_pages < ratelimit_pages)
1531 /* Returns true if the node is migrate rate-limited after the update */
1532 bool numamigrate_update_ratelimit(pg_data_t *pgdat, unsigned long nr_pages)
1534 bool rate_limited = false;
1537 * Rate-limit the amount of data that is being migrated to a node.
1538 * Optimal placement is no good if the memory bus is saturated and
1539 * all the time is being spent migrating!
1541 spin_lock(&pgdat->numabalancing_migrate_lock);
1542 if (time_after(jiffies, pgdat->numabalancing_migrate_next_window)) {
1543 pgdat->numabalancing_migrate_nr_pages = 0;
1544 pgdat->numabalancing_migrate_next_window = jiffies +
1545 msecs_to_jiffies(migrate_interval_millisecs);
1547 if (pgdat->numabalancing_migrate_nr_pages > ratelimit_pages)
1548 rate_limited = true;
1550 pgdat->numabalancing_migrate_nr_pages += nr_pages;
1551 spin_unlock(&pgdat->numabalancing_migrate_lock);
1553 return rate_limited;
1556 int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
1560 VM_BUG_ON(compound_order(page) && !PageTransHuge(page));
1562 /* Avoid migrating to a node that is nearly full */
1563 if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page)))
1566 if (isolate_lru_page(page))
1570 * migrate_misplaced_transhuge_page() skips page migration's usual
1571 * check on page_count(), so we must do it here, now that the page
1572 * has been isolated: a GUP pin, or any other pin, prevents migration.
1573 * The expected page count is 3: 1 for page's mapcount and 1 for the
1574 * caller's pin and 1 for the reference taken by isolate_lru_page().
1576 if (PageTransHuge(page) && page_count(page) != 3) {
1577 putback_lru_page(page);
1581 page_lru = page_is_file_cache(page);
1582 mod_zone_page_state(page_zone(page), NR_ISOLATED_ANON + page_lru,
1583 hpage_nr_pages(page));
1586 * Isolating the page has taken another reference, so the
1587 * caller's reference can be safely dropped without the page
1588 * disappearing underneath us during migration.
1595 * Attempt to migrate a misplaced page to the specified destination
1596 * node. Caller is expected to have an elevated reference count on
1597 * the page that will be dropped by this function before returning.
1599 int migrate_misplaced_page(struct page *page, int node)
1601 pg_data_t *pgdat = NODE_DATA(node);
1604 LIST_HEAD(migratepages);
1607 * Don't migrate pages that are mapped in multiple processes.
1608 * TODO: Handle false sharing detection instead of this hammer
1610 if (page_mapcount(page) != 1)
1614 * Rate-limit the amount of data that is being migrated to a node.
1615 * Optimal placement is no good if the memory bus is saturated and
1616 * all the time is being spent migrating!
1618 if (numamigrate_update_ratelimit(pgdat, 1))
1621 isolated = numamigrate_isolate_page(pgdat, page);
1625 list_add(&page->lru, &migratepages);
1626 nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
1627 node, MIGRATE_ASYNC, MR_NUMA_MISPLACED);
1629 putback_lru_pages(&migratepages);
1632 count_vm_numa_event(NUMA_PAGE_MIGRATE);
1633 BUG_ON(!list_empty(&migratepages));
1640 #endif /* CONFIG_NUMA_BALANCING */
1642 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1644 * Migrates a THP to a given target node. page must be locked and is unlocked
1647 int migrate_misplaced_transhuge_page(struct mm_struct *mm,
1648 struct vm_area_struct *vma,
1649 pmd_t *pmd, pmd_t entry,
1650 unsigned long address,
1651 struct page *page, int node)
1653 unsigned long haddr = address & HPAGE_PMD_MASK;
1654 pg_data_t *pgdat = NODE_DATA(node);
1656 struct page *new_page = NULL;
1657 struct mem_cgroup *memcg = NULL;
1658 int page_lru = page_is_file_cache(page);
1661 * Don't migrate pages that are mapped in multiple processes.
1662 * TODO: Handle false sharing detection instead of this hammer
1664 if (page_mapcount(page) != 1)
1668 * Rate-limit the amount of data that is being migrated to a node.
1669 * Optimal placement is no good if the memory bus is saturated and
1670 * all the time is being spent migrating!
1672 if (numamigrate_update_ratelimit(pgdat, HPAGE_PMD_NR))
1675 new_page = alloc_pages_node(node,
1676 (GFP_TRANSHUGE | GFP_THISNODE) & ~__GFP_WAIT, HPAGE_PMD_ORDER);
1680 page_nid_xchg_last(new_page, page_nid_last(page));
1682 isolated = numamigrate_isolate_page(pgdat, page);
1688 /* Prepare a page as a migration target */
1689 __set_page_locked(new_page);
1690 SetPageSwapBacked(new_page);
1692 /* anon mapping, we can simply copy page->mapping to the new page: */
1693 new_page->mapping = page->mapping;
1694 new_page->index = page->index;
1695 migrate_page_copy(new_page, page);
1696 WARN_ON(PageLRU(new_page));
1698 /* Recheck the target PMD */
1699 spin_lock(&mm->page_table_lock);
1700 if (unlikely(!pmd_same(*pmd, entry))) {
1701 spin_unlock(&mm->page_table_lock);
1703 /* Reverse changes made by migrate_page_copy() */
1704 if (TestClearPageActive(new_page))
1705 SetPageActive(page);
1706 if (TestClearPageUnevictable(new_page))
1707 SetPageUnevictable(page);
1708 mlock_migrate_page(page, new_page);
1710 unlock_page(new_page);
1711 put_page(new_page); /* Free it */
1714 putback_lru_page(page);
1716 count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
1722 * Traditional migration needs to prepare the memcg charge
1723 * transaction early to prevent the old page from being
1724 * uncharged when installing migration entries. Here we can
1725 * save the potential rollback and start the charge transfer
1726 * only when migration is already known to end successfully.
1728 mem_cgroup_prepare_migration(page, new_page, &memcg);
1730 entry = mk_pmd(new_page, vma->vm_page_prot);
1731 entry = pmd_mknonnuma(entry);
1732 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1733 entry = pmd_mkhuge(entry);
1735 page_add_new_anon_rmap(new_page, vma, haddr);
1737 set_pmd_at(mm, haddr, pmd, entry);
1738 update_mmu_cache_pmd(vma, address, &entry);
1739 page_remove_rmap(page);
1741 * Finish the charge transaction under the page table lock to
1742 * prevent split_huge_page() from dividing up the charge
1743 * before it's fully transferred to the new page.
1745 mem_cgroup_end_migration(memcg, page, new_page, true);
1746 spin_unlock(&mm->page_table_lock);
1748 unlock_page(new_page);
1750 put_page(page); /* Drop the rmap reference */
1751 put_page(page); /* Drop the LRU isolation reference */
1753 count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
1754 count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
1757 mod_zone_page_state(page_zone(page),
1758 NR_ISOLATED_ANON + page_lru,
1763 count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
1769 #endif /* CONFIG_NUMA_BALANCING */
1771 #endif /* CONFIG_NUMA */