1 // SPDX-License-Identifier: GPL-2.0
3 * Memory Migration functionality - linux/mm/migrate.c
5 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
7 * Page migration was first developed in the context of the memory hotplug
8 * project. The main authors of the migration code are:
10 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
11 * Hirokazu Takahashi <taka@valinux.co.jp>
12 * Dave Hansen <haveblue@us.ibm.com>
16 #include <linux/migrate.h>
17 #include <linux/export.h>
18 #include <linux/swap.h>
19 #include <linux/swapops.h>
20 #include <linux/pagemap.h>
21 #include <linux/buffer_head.h>
22 #include <linux/mm_inline.h>
23 #include <linux/nsproxy.h>
24 #include <linux/pagevec.h>
25 #include <linux/ksm.h>
26 #include <linux/rmap.h>
27 #include <linux/topology.h>
28 #include <linux/cpu.h>
29 #include <linux/cpuset.h>
30 #include <linux/writeback.h>
31 #include <linux/mempolicy.h>
32 #include <linux/vmalloc.h>
33 #include <linux/security.h>
34 #include <linux/backing-dev.h>
35 #include <linux/compaction.h>
36 #include <linux/syscalls.h>
37 #include <linux/compat.h>
38 #include <linux/hugetlb.h>
39 #include <linux/hugetlb_cgroup.h>
40 #include <linux/gfp.h>
41 #include <linux/pagewalk.h>
42 #include <linux/pfn_t.h>
43 #include <linux/memremap.h>
44 #include <linux/userfaultfd_k.h>
45 #include <linux/balloon_compaction.h>
46 #include <linux/mmu_notifier.h>
47 #include <linux/page_idle.h>
48 #include <linux/page_owner.h>
49 #include <linux/sched/mm.h>
50 #include <linux/ptrace.h>
51 #include <linux/oom.h>
53 #include <asm/tlbflush.h>
55 #define CREATE_TRACE_POINTS
56 #include <trace/events/migrate.h>
61 * migrate_prep() needs to be called before we start compiling a list of pages
62 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
63 * undesirable, use migrate_prep_local()
65 void migrate_prep(void)
68 * Clear the LRU lists so pages can be isolated.
69 * Note that pages may be moved off the LRU after we have
70 * drained them. Those pages will fail to migrate like other
71 * pages that may be busy.
76 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
77 void migrate_prep_local(void)
82 int isolate_movable_page(struct page *page, isolate_mode_t mode)
84 struct address_space *mapping;
87 * Avoid burning cycles with pages that are yet under __free_pages(),
88 * or just got freed under us.
90 * In case we 'win' a race for a movable page being freed under us and
91 * raise its refcount preventing __free_pages() from doing its job
92 * the put_page() at the end of this block will take care of
93 * release this page, thus avoiding a nasty leakage.
95 if (unlikely(!get_page_unless_zero(page)))
99 * Check PageMovable before holding a PG_lock because page's owner
100 * assumes anybody doesn't touch PG_lock of newly allocated page
101 * so unconditionally grabbing the lock ruins page's owner side.
103 if (unlikely(!__PageMovable(page)))
106 * As movable pages are not isolated from LRU lists, concurrent
107 * compaction threads can race against page migration functions
108 * as well as race against the releasing a page.
110 * In order to avoid having an already isolated movable page
111 * being (wrongly) re-isolated while it is under migration,
112 * or to avoid attempting to isolate pages being released,
113 * lets be sure we have the page lock
114 * before proceeding with the movable page isolation steps.
116 if (unlikely(!trylock_page(page)))
119 if (!PageMovable(page) || PageIsolated(page))
120 goto out_no_isolated;
122 mapping = page_mapping(page);
123 VM_BUG_ON_PAGE(!mapping, page);
125 if (!mapping->a_ops->isolate_page(page, mode))
126 goto out_no_isolated;
128 /* Driver shouldn't use PG_isolated bit of page->flags */
129 WARN_ON_ONCE(PageIsolated(page));
130 __SetPageIsolated(page);
143 /* It should be called on page which is PG_movable */
144 void putback_movable_page(struct page *page)
146 struct address_space *mapping;
148 VM_BUG_ON_PAGE(!PageLocked(page), page);
149 VM_BUG_ON_PAGE(!PageMovable(page), page);
150 VM_BUG_ON_PAGE(!PageIsolated(page), page);
152 mapping = page_mapping(page);
153 mapping->a_ops->putback_page(page);
154 __ClearPageIsolated(page);
158 * Put previously isolated pages back onto the appropriate lists
159 * from where they were once taken off for compaction/migration.
161 * This function shall be used whenever the isolated pageset has been
162 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
163 * and isolate_huge_page().
165 void putback_movable_pages(struct list_head *l)
170 list_for_each_entry_safe(page, page2, l, lru) {
171 if (unlikely(PageHuge(page))) {
172 putback_active_hugepage(page);
175 list_del(&page->lru);
177 * We isolated non-lru movable page so here we can use
178 * __PageMovable because LRU page's mapping cannot have
179 * PAGE_MAPPING_MOVABLE.
181 if (unlikely(__PageMovable(page))) {
182 VM_BUG_ON_PAGE(!PageIsolated(page), page);
184 if (PageMovable(page))
185 putback_movable_page(page);
187 __ClearPageIsolated(page);
191 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
192 page_is_file_lru(page), -thp_nr_pages(page));
193 putback_lru_page(page);
199 * Restore a potential migration pte to a working pte entry
201 static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma,
202 unsigned long addr, void *old)
204 struct page_vma_mapped_walk pvmw = {
208 .flags = PVMW_SYNC | PVMW_MIGRATION,
214 VM_BUG_ON_PAGE(PageTail(page), page);
215 while (page_vma_mapped_walk(&pvmw)) {
219 new = page - pvmw.page->index +
220 linear_page_index(vma, pvmw.address);
222 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
223 /* PMD-mapped THP migration entry */
225 VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
226 remove_migration_pmd(&pvmw, new);
232 pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
233 if (pte_swp_soft_dirty(*pvmw.pte))
234 pte = pte_mksoft_dirty(pte);
237 * Recheck VMA as permissions can change since migration started
239 entry = pte_to_swp_entry(*pvmw.pte);
240 if (is_write_migration_entry(entry))
241 pte = maybe_mkwrite(pte, vma);
242 else if (pte_swp_uffd_wp(*pvmw.pte))
243 pte = pte_mkuffd_wp(pte);
245 if (unlikely(is_device_private_page(new))) {
246 entry = make_device_private_entry(new, pte_write(pte));
247 pte = swp_entry_to_pte(entry);
248 if (pte_swp_soft_dirty(*pvmw.pte))
249 pte = pte_swp_mksoft_dirty(pte);
250 if (pte_swp_uffd_wp(*pvmw.pte))
251 pte = pte_swp_mkuffd_wp(pte);
254 #ifdef CONFIG_HUGETLB_PAGE
256 pte = pte_mkhuge(pte);
257 pte = arch_make_huge_pte(pte, vma, new, 0);
258 set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
260 hugepage_add_anon_rmap(new, vma, pvmw.address);
262 page_dup_rmap(new, true);
266 set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
269 page_add_anon_rmap(new, vma, pvmw.address, false);
271 page_add_file_rmap(new, false);
273 if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
276 if (PageTransHuge(page) && PageMlocked(page))
277 clear_page_mlock(page);
279 /* No need to invalidate - it was non-present before */
280 update_mmu_cache(vma, pvmw.address, pvmw.pte);
287 * Get rid of all migration entries and replace them by
288 * references to the indicated page.
290 void remove_migration_ptes(struct page *old, struct page *new, bool locked)
292 struct rmap_walk_control rwc = {
293 .rmap_one = remove_migration_pte,
298 rmap_walk_locked(new, &rwc);
300 rmap_walk(new, &rwc);
304 * Something used the pte of a page under migration. We need to
305 * get to the page and wait until migration is finished.
306 * When we return from this function the fault will be retried.
308 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
317 if (!is_swap_pte(pte))
320 entry = pte_to_swp_entry(pte);
321 if (!is_migration_entry(entry))
324 page = migration_entry_to_page(entry);
327 * Once page cache replacement of page migration started, page_count
328 * is zero; but we must not call put_and_wait_on_page_locked() without
329 * a ref. Use get_page_unless_zero(), and just fault again if it fails.
331 if (!get_page_unless_zero(page))
333 pte_unmap_unlock(ptep, ptl);
334 put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE);
337 pte_unmap_unlock(ptep, ptl);
340 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
341 unsigned long address)
343 spinlock_t *ptl = pte_lockptr(mm, pmd);
344 pte_t *ptep = pte_offset_map(pmd, address);
345 __migration_entry_wait(mm, ptep, ptl);
348 void migration_entry_wait_huge(struct vm_area_struct *vma,
349 struct mm_struct *mm, pte_t *pte)
351 spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
352 __migration_entry_wait(mm, pte, ptl);
355 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
356 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
361 ptl = pmd_lock(mm, pmd);
362 if (!is_pmd_migration_entry(*pmd))
364 page = migration_entry_to_page(pmd_to_swp_entry(*pmd));
365 if (!get_page_unless_zero(page))
368 put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE);
375 static int expected_page_refs(struct address_space *mapping, struct page *page)
377 int expected_count = 1;
380 * Device private pages have an extra refcount as they are
383 expected_count += is_device_private_page(page);
385 expected_count += thp_nr_pages(page) + page_has_private(page);
387 return expected_count;
391 * Replace the page in the mapping.
393 * The number of remaining references must be:
394 * 1 for anonymous pages without a mapping
395 * 2 for pages with a mapping
396 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
398 int migrate_page_move_mapping(struct address_space *mapping,
399 struct page *newpage, struct page *page, int extra_count)
401 XA_STATE(xas, &mapping->i_pages, page_index(page));
402 struct zone *oldzone, *newzone;
404 int expected_count = expected_page_refs(mapping, page) + extra_count;
405 int nr = thp_nr_pages(page);
408 /* Anonymous page without mapping */
409 if (page_count(page) != expected_count)
412 /* No turning back from here */
413 newpage->index = page->index;
414 newpage->mapping = page->mapping;
415 if (PageSwapBacked(page))
416 __SetPageSwapBacked(newpage);
418 return MIGRATEPAGE_SUCCESS;
421 oldzone = page_zone(page);
422 newzone = page_zone(newpage);
425 if (page_count(page) != expected_count || xas_load(&xas) != page) {
426 xas_unlock_irq(&xas);
430 if (!page_ref_freeze(page, expected_count)) {
431 xas_unlock_irq(&xas);
436 * Now we know that no one else is looking at the page:
437 * no turning back from here.
439 newpage->index = page->index;
440 newpage->mapping = page->mapping;
441 page_ref_add(newpage, nr); /* add cache reference */
442 if (PageSwapBacked(page)) {
443 __SetPageSwapBacked(newpage);
444 if (PageSwapCache(page)) {
445 SetPageSwapCache(newpage);
446 set_page_private(newpage, page_private(page));
449 VM_BUG_ON_PAGE(PageSwapCache(page), page);
452 /* Move dirty while page refs frozen and newpage not yet exposed */
453 dirty = PageDirty(page);
455 ClearPageDirty(page);
456 SetPageDirty(newpage);
459 xas_store(&xas, newpage);
460 if (PageTransHuge(page)) {
463 for (i = 1; i < nr; i++) {
465 xas_store(&xas, newpage);
470 * Drop cache reference from old page by unfreezing
471 * to one less reference.
472 * We know this isn't the last reference.
474 page_ref_unfreeze(page, expected_count - nr);
477 /* Leave irq disabled to prevent preemption while updating stats */
480 * If moved to a different zone then also account
481 * the page for that zone. Other VM counters will be
482 * taken care of when we establish references to the
483 * new page and drop references to the old page.
485 * Note that anonymous pages are accounted for
486 * via NR_FILE_PAGES and NR_ANON_MAPPED if they
487 * are mapped to swap space.
489 if (newzone != oldzone) {
490 struct lruvec *old_lruvec, *new_lruvec;
491 struct mem_cgroup *memcg;
493 memcg = page_memcg(page);
494 old_lruvec = mem_cgroup_lruvec(memcg, oldzone->zone_pgdat);
495 new_lruvec = mem_cgroup_lruvec(memcg, newzone->zone_pgdat);
497 __mod_lruvec_state(old_lruvec, NR_FILE_PAGES, -nr);
498 __mod_lruvec_state(new_lruvec, NR_FILE_PAGES, nr);
499 if (PageSwapBacked(page) && !PageSwapCache(page)) {
500 __mod_lruvec_state(old_lruvec, NR_SHMEM, -nr);
501 __mod_lruvec_state(new_lruvec, NR_SHMEM, nr);
504 if (PageSwapCache(page)) {
505 __mod_lruvec_state(old_lruvec, NR_SWAPCACHE, -nr);
506 __mod_lruvec_state(new_lruvec, NR_SWAPCACHE, nr);
509 if (dirty && mapping_can_writeback(mapping)) {
510 __mod_lruvec_state(old_lruvec, NR_FILE_DIRTY, -nr);
511 __mod_zone_page_state(oldzone, NR_ZONE_WRITE_PENDING, -nr);
512 __mod_lruvec_state(new_lruvec, NR_FILE_DIRTY, nr);
513 __mod_zone_page_state(newzone, NR_ZONE_WRITE_PENDING, nr);
518 return MIGRATEPAGE_SUCCESS;
520 EXPORT_SYMBOL(migrate_page_move_mapping);
523 * The expected number of remaining references is the same as that
524 * of migrate_page_move_mapping().
526 int migrate_huge_page_move_mapping(struct address_space *mapping,
527 struct page *newpage, struct page *page)
529 XA_STATE(xas, &mapping->i_pages, page_index(page));
533 expected_count = 2 + page_has_private(page);
534 if (page_count(page) != expected_count || xas_load(&xas) != page) {
535 xas_unlock_irq(&xas);
539 if (!page_ref_freeze(page, expected_count)) {
540 xas_unlock_irq(&xas);
544 newpage->index = page->index;
545 newpage->mapping = page->mapping;
549 xas_store(&xas, newpage);
551 page_ref_unfreeze(page, expected_count - 1);
553 xas_unlock_irq(&xas);
555 return MIGRATEPAGE_SUCCESS;
559 * Gigantic pages are so large that we do not guarantee that page++ pointer
560 * arithmetic will work across the entire page. We need something more
563 static void __copy_gigantic_page(struct page *dst, struct page *src,
567 struct page *dst_base = dst;
568 struct page *src_base = src;
570 for (i = 0; i < nr_pages; ) {
572 copy_highpage(dst, src);
575 dst = mem_map_next(dst, dst_base, i);
576 src = mem_map_next(src, src_base, i);
580 static void copy_huge_page(struct page *dst, struct page *src)
587 struct hstate *h = page_hstate(src);
588 nr_pages = pages_per_huge_page(h);
590 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
591 __copy_gigantic_page(dst, src, nr_pages);
596 BUG_ON(!PageTransHuge(src));
597 nr_pages = thp_nr_pages(src);
600 for (i = 0; i < nr_pages; i++) {
602 copy_highpage(dst + i, src + i);
607 * Copy the page to its new location
609 void migrate_page_states(struct page *newpage, struct page *page)
614 SetPageError(newpage);
615 if (PageReferenced(page))
616 SetPageReferenced(newpage);
617 if (PageUptodate(page))
618 SetPageUptodate(newpage);
619 if (TestClearPageActive(page)) {
620 VM_BUG_ON_PAGE(PageUnevictable(page), page);
621 SetPageActive(newpage);
622 } else if (TestClearPageUnevictable(page))
623 SetPageUnevictable(newpage);
624 if (PageWorkingset(page))
625 SetPageWorkingset(newpage);
626 if (PageChecked(page))
627 SetPageChecked(newpage);
628 if (PageMappedToDisk(page))
629 SetPageMappedToDisk(newpage);
631 /* Move dirty on pages not done by migrate_page_move_mapping() */
633 SetPageDirty(newpage);
635 if (page_is_young(page))
636 set_page_young(newpage);
637 if (page_is_idle(page))
638 set_page_idle(newpage);
641 * Copy NUMA information to the new page, to prevent over-eager
642 * future migrations of this same page.
644 cpupid = page_cpupid_xchg_last(page, -1);
645 page_cpupid_xchg_last(newpage, cpupid);
647 ksm_migrate_page(newpage, page);
649 * Please do not reorder this without considering how mm/ksm.c's
650 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
652 if (PageSwapCache(page))
653 ClearPageSwapCache(page);
654 ClearPagePrivate(page);
655 set_page_private(page, 0);
658 * If any waiters have accumulated on the new page then
661 if (PageWriteback(newpage))
662 end_page_writeback(newpage);
665 * PG_readahead shares the same bit with PG_reclaim. The above
666 * end_page_writeback() may clear PG_readahead mistakenly, so set the
669 if (PageReadahead(page))
670 SetPageReadahead(newpage);
672 copy_page_owner(page, newpage);
675 mem_cgroup_migrate(page, newpage);
677 EXPORT_SYMBOL(migrate_page_states);
679 void migrate_page_copy(struct page *newpage, struct page *page)
681 if (PageHuge(page) || PageTransHuge(page))
682 copy_huge_page(newpage, page);
684 copy_highpage(newpage, page);
686 migrate_page_states(newpage, page);
688 EXPORT_SYMBOL(migrate_page_copy);
690 /************************************************************
691 * Migration functions
692 ***********************************************************/
695 * Common logic to directly migrate a single LRU page suitable for
696 * pages that do not use PagePrivate/PagePrivate2.
698 * Pages are locked upon entry and exit.
700 int migrate_page(struct address_space *mapping,
701 struct page *newpage, struct page *page,
702 enum migrate_mode mode)
706 BUG_ON(PageWriteback(page)); /* Writeback must be complete */
708 rc = migrate_page_move_mapping(mapping, newpage, page, 0);
710 if (rc != MIGRATEPAGE_SUCCESS)
713 if (mode != MIGRATE_SYNC_NO_COPY)
714 migrate_page_copy(newpage, page);
716 migrate_page_states(newpage, page);
717 return MIGRATEPAGE_SUCCESS;
719 EXPORT_SYMBOL(migrate_page);
722 /* Returns true if all buffers are successfully locked */
723 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
724 enum migrate_mode mode)
726 struct buffer_head *bh = head;
728 /* Simple case, sync compaction */
729 if (mode != MIGRATE_ASYNC) {
732 bh = bh->b_this_page;
734 } while (bh != head);
739 /* async case, we cannot block on lock_buffer so use trylock_buffer */
741 if (!trylock_buffer(bh)) {
743 * We failed to lock the buffer and cannot stall in
744 * async migration. Release the taken locks
746 struct buffer_head *failed_bh = bh;
748 while (bh != failed_bh) {
750 bh = bh->b_this_page;
755 bh = bh->b_this_page;
756 } while (bh != head);
760 static int __buffer_migrate_page(struct address_space *mapping,
761 struct page *newpage, struct page *page, enum migrate_mode mode,
764 struct buffer_head *bh, *head;
768 if (!page_has_buffers(page))
769 return migrate_page(mapping, newpage, page, mode);
771 /* Check whether page does not have extra refs before we do more work */
772 expected_count = expected_page_refs(mapping, page);
773 if (page_count(page) != expected_count)
776 head = page_buffers(page);
777 if (!buffer_migrate_lock_buffers(head, mode))
782 bool invalidated = false;
786 spin_lock(&mapping->private_lock);
789 if (atomic_read(&bh->b_count)) {
793 bh = bh->b_this_page;
794 } while (bh != head);
800 spin_unlock(&mapping->private_lock);
801 invalidate_bh_lrus();
803 goto recheck_buffers;
807 rc = migrate_page_move_mapping(mapping, newpage, page, 0);
808 if (rc != MIGRATEPAGE_SUCCESS)
811 attach_page_private(newpage, detach_page_private(page));
815 set_bh_page(bh, newpage, bh_offset(bh));
816 bh = bh->b_this_page;
818 } while (bh != head);
820 if (mode != MIGRATE_SYNC_NO_COPY)
821 migrate_page_copy(newpage, page);
823 migrate_page_states(newpage, page);
825 rc = MIGRATEPAGE_SUCCESS;
828 spin_unlock(&mapping->private_lock);
832 bh = bh->b_this_page;
834 } while (bh != head);
840 * Migration function for pages with buffers. This function can only be used
841 * if the underlying filesystem guarantees that no other references to "page"
842 * exist. For example attached buffer heads are accessed only under page lock.
844 int buffer_migrate_page(struct address_space *mapping,
845 struct page *newpage, struct page *page, enum migrate_mode mode)
847 return __buffer_migrate_page(mapping, newpage, page, mode, false);
849 EXPORT_SYMBOL(buffer_migrate_page);
852 * Same as above except that this variant is more careful and checks that there
853 * are also no buffer head references. This function is the right one for
854 * mappings where buffer heads are directly looked up and referenced (such as
855 * block device mappings).
857 int buffer_migrate_page_norefs(struct address_space *mapping,
858 struct page *newpage, struct page *page, enum migrate_mode mode)
860 return __buffer_migrate_page(mapping, newpage, page, mode, true);
865 * Writeback a page to clean the dirty state
867 static int writeout(struct address_space *mapping, struct page *page)
869 struct writeback_control wbc = {
870 .sync_mode = WB_SYNC_NONE,
873 .range_end = LLONG_MAX,
878 if (!mapping->a_ops->writepage)
879 /* No write method for the address space */
882 if (!clear_page_dirty_for_io(page))
883 /* Someone else already triggered a write */
887 * A dirty page may imply that the underlying filesystem has
888 * the page on some queue. So the page must be clean for
889 * migration. Writeout may mean we loose the lock and the
890 * page state is no longer what we checked for earlier.
891 * At this point we know that the migration attempt cannot
894 remove_migration_ptes(page, page, false);
896 rc = mapping->a_ops->writepage(page, &wbc);
898 if (rc != AOP_WRITEPAGE_ACTIVATE)
899 /* unlocked. Relock */
902 return (rc < 0) ? -EIO : -EAGAIN;
906 * Default handling if a filesystem does not provide a migration function.
908 static int fallback_migrate_page(struct address_space *mapping,
909 struct page *newpage, struct page *page, enum migrate_mode mode)
911 if (PageDirty(page)) {
912 /* Only writeback pages in full synchronous migration */
915 case MIGRATE_SYNC_NO_COPY:
920 return writeout(mapping, page);
924 * Buffers may be managed in a filesystem specific way.
925 * We must have no buffers or drop them.
927 if (page_has_private(page) &&
928 !try_to_release_page(page, GFP_KERNEL))
929 return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY;
931 return migrate_page(mapping, newpage, page, mode);
935 * Move a page to a newly allocated page
936 * The page is locked and all ptes have been successfully removed.
938 * The new page will have replaced the old page if this function
943 * MIGRATEPAGE_SUCCESS - success
945 static int move_to_new_page(struct page *newpage, struct page *page,
946 enum migrate_mode mode)
948 struct address_space *mapping;
950 bool is_lru = !__PageMovable(page);
952 VM_BUG_ON_PAGE(!PageLocked(page), page);
953 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
955 mapping = page_mapping(page);
957 if (likely(is_lru)) {
959 rc = migrate_page(mapping, newpage, page, mode);
960 else if (mapping->a_ops->migratepage)
962 * Most pages have a mapping and most filesystems
963 * provide a migratepage callback. Anonymous pages
964 * are part of swap space which also has its own
965 * migratepage callback. This is the most common path
966 * for page migration.
968 rc = mapping->a_ops->migratepage(mapping, newpage,
971 rc = fallback_migrate_page(mapping, newpage,
975 * In case of non-lru page, it could be released after
976 * isolation step. In that case, we shouldn't try migration.
978 VM_BUG_ON_PAGE(!PageIsolated(page), page);
979 if (!PageMovable(page)) {
980 rc = MIGRATEPAGE_SUCCESS;
981 __ClearPageIsolated(page);
985 rc = mapping->a_ops->migratepage(mapping, newpage,
987 WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
988 !PageIsolated(page));
992 * When successful, old pagecache page->mapping must be cleared before
993 * page is freed; but stats require that PageAnon be left as PageAnon.
995 if (rc == MIGRATEPAGE_SUCCESS) {
996 if (__PageMovable(page)) {
997 VM_BUG_ON_PAGE(!PageIsolated(page), page);
1000 * We clear PG_movable under page_lock so any compactor
1001 * cannot try to migrate this page.
1003 __ClearPageIsolated(page);
1007 * Anonymous and movable page->mapping will be cleared by
1008 * free_pages_prepare so don't reset it here for keeping
1009 * the type to work PageAnon, for example.
1011 if (!PageMappingFlags(page))
1012 page->mapping = NULL;
1014 if (likely(!is_zone_device_page(newpage)))
1015 flush_dcache_page(newpage);
1022 static int __unmap_and_move(struct page *page, struct page *newpage,
1023 int force, enum migrate_mode mode)
1026 int page_was_mapped = 0;
1027 struct anon_vma *anon_vma = NULL;
1028 bool is_lru = !__PageMovable(page);
1030 if (!trylock_page(page)) {
1031 if (!force || mode == MIGRATE_ASYNC)
1035 * It's not safe for direct compaction to call lock_page.
1036 * For example, during page readahead pages are added locked
1037 * to the LRU. Later, when the IO completes the pages are
1038 * marked uptodate and unlocked. However, the queueing
1039 * could be merging multiple pages for one bio (e.g.
1040 * mpage_readahead). If an allocation happens for the
1041 * second or third page, the process can end up locking
1042 * the same page twice and deadlocking. Rather than
1043 * trying to be clever about what pages can be locked,
1044 * avoid the use of lock_page for direct compaction
1047 if (current->flags & PF_MEMALLOC)
1053 if (PageWriteback(page)) {
1055 * Only in the case of a full synchronous migration is it
1056 * necessary to wait for PageWriteback. In the async case,
1057 * the retry loop is too short and in the sync-light case,
1058 * the overhead of stalling is too much
1062 case MIGRATE_SYNC_NO_COPY:
1070 wait_on_page_writeback(page);
1074 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
1075 * we cannot notice that anon_vma is freed while we migrates a page.
1076 * This get_anon_vma() delays freeing anon_vma pointer until the end
1077 * of migration. File cache pages are no problem because of page_lock()
1078 * File Caches may use write_page() or lock_page() in migration, then,
1079 * just care Anon page here.
1081 * Only page_get_anon_vma() understands the subtleties of
1082 * getting a hold on an anon_vma from outside one of its mms.
1083 * But if we cannot get anon_vma, then we won't need it anyway,
1084 * because that implies that the anon page is no longer mapped
1085 * (and cannot be remapped so long as we hold the page lock).
1087 if (PageAnon(page) && !PageKsm(page))
1088 anon_vma = page_get_anon_vma(page);
1091 * Block others from accessing the new page when we get around to
1092 * establishing additional references. We are usually the only one
1093 * holding a reference to newpage at this point. We used to have a BUG
1094 * here if trylock_page(newpage) fails, but would like to allow for
1095 * cases where there might be a race with the previous use of newpage.
1096 * This is much like races on refcount of oldpage: just don't BUG().
1098 if (unlikely(!trylock_page(newpage)))
1101 if (unlikely(!is_lru)) {
1102 rc = move_to_new_page(newpage, page, mode);
1103 goto out_unlock_both;
1107 * Corner case handling:
1108 * 1. When a new swap-cache page is read into, it is added to the LRU
1109 * and treated as swapcache but it has no rmap yet.
1110 * Calling try_to_unmap() against a page->mapping==NULL page will
1111 * trigger a BUG. So handle it here.
1112 * 2. An orphaned page (see truncate_cleanup_page) might have
1113 * fs-private metadata. The page can be picked up due to memory
1114 * offlining. Everywhere else except page reclaim, the page is
1115 * invisible to the vm, so the page can not be migrated. So try to
1116 * free the metadata, so the page can be freed.
1118 if (!page->mapping) {
1119 VM_BUG_ON_PAGE(PageAnon(page), page);
1120 if (page_has_private(page)) {
1121 try_to_free_buffers(page);
1122 goto out_unlock_both;
1124 } else if (page_mapped(page)) {
1125 /* Establish migration ptes */
1126 VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1128 try_to_unmap(page, TTU_MIGRATION|TTU_IGNORE_MLOCK);
1129 page_was_mapped = 1;
1132 if (!page_mapped(page))
1133 rc = move_to_new_page(newpage, page, mode);
1135 if (page_was_mapped)
1136 remove_migration_ptes(page,
1137 rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
1140 unlock_page(newpage);
1142 /* Drop an anon_vma reference if we took one */
1144 put_anon_vma(anon_vma);
1148 * If migration is successful, decrease refcount of the newpage
1149 * which will not free the page because new page owner increased
1150 * refcounter. As well, if it is LRU page, add the page to LRU
1151 * list in here. Use the old state of the isolated source page to
1152 * determine if we migrated a LRU page. newpage was already unlocked
1153 * and possibly modified by its owner - don't rely on the page
1156 if (rc == MIGRATEPAGE_SUCCESS) {
1157 if (unlikely(!is_lru))
1160 putback_lru_page(newpage);
1167 * Obtain the lock on page, remove all ptes and migrate the page
1168 * to the newly allocated page in newpage.
1170 static int unmap_and_move(new_page_t get_new_page,
1171 free_page_t put_new_page,
1172 unsigned long private, struct page *page,
1173 int force, enum migrate_mode mode,
1174 enum migrate_reason reason,
1175 struct list_head *ret)
1177 int rc = MIGRATEPAGE_SUCCESS;
1178 struct page *newpage = NULL;
1180 if (!thp_migration_supported() && PageTransHuge(page))
1183 if (page_count(page) == 1) {
1184 /* page was freed from under us. So we are done. */
1185 ClearPageActive(page);
1186 ClearPageUnevictable(page);
1187 if (unlikely(__PageMovable(page))) {
1189 if (!PageMovable(page))
1190 __ClearPageIsolated(page);
1196 newpage = get_new_page(page, private);
1200 rc = __unmap_and_move(page, newpage, force, mode);
1201 if (rc == MIGRATEPAGE_SUCCESS)
1202 set_page_owner_migrate_reason(newpage, reason);
1205 if (rc != -EAGAIN) {
1207 * A page that has been migrated has all references
1208 * removed and will be freed. A page that has not been
1209 * migrated will have kept its references and be restored.
1211 list_del(&page->lru);
1215 * If migration is successful, releases reference grabbed during
1216 * isolation. Otherwise, restore the page to right list unless
1219 if (rc == MIGRATEPAGE_SUCCESS) {
1221 * Compaction can migrate also non-LRU pages which are
1222 * not accounted to NR_ISOLATED_*. They can be recognized
1225 if (likely(!__PageMovable(page)))
1226 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
1227 page_is_file_lru(page), -thp_nr_pages(page));
1229 if (reason != MR_MEMORY_FAILURE)
1231 * We release the page in page_handle_poison.
1236 list_add_tail(&page->lru, ret);
1239 put_new_page(newpage, private);
1248 * Counterpart of unmap_and_move_page() for hugepage migration.
1250 * This function doesn't wait the completion of hugepage I/O
1251 * because there is no race between I/O and migration for hugepage.
1252 * Note that currently hugepage I/O occurs only in direct I/O
1253 * where no lock is held and PG_writeback is irrelevant,
1254 * and writeback status of all subpages are counted in the reference
1255 * count of the head page (i.e. if all subpages of a 2MB hugepage are
1256 * under direct I/O, the reference of the head page is 512 and a bit more.)
1257 * This means that when we try to migrate hugepage whose subpages are
1258 * doing direct I/O, some references remain after try_to_unmap() and
1259 * hugepage migration fails without data corruption.
1261 * There is also no race when direct I/O is issued on the page under migration,
1262 * because then pte is replaced with migration swap entry and direct I/O code
1263 * will wait in the page fault for migration to complete.
1265 static int unmap_and_move_huge_page(new_page_t get_new_page,
1266 free_page_t put_new_page, unsigned long private,
1267 struct page *hpage, int force,
1268 enum migrate_mode mode, int reason,
1269 struct list_head *ret)
1272 int page_was_mapped = 0;
1273 struct page *new_hpage;
1274 struct anon_vma *anon_vma = NULL;
1275 struct address_space *mapping = NULL;
1278 * Migratability of hugepages depends on architectures and their size.
1279 * This check is necessary because some callers of hugepage migration
1280 * like soft offline and memory hotremove don't walk through page
1281 * tables or check whether the hugepage is pmd-based or not before
1282 * kicking migration.
1284 if (!hugepage_migration_supported(page_hstate(hpage))) {
1285 list_move_tail(&hpage->lru, ret);
1289 if (page_count(hpage) == 1) {
1290 /* page was freed from under us. So we are done. */
1291 putback_active_hugepage(hpage);
1292 return MIGRATEPAGE_SUCCESS;
1295 new_hpage = get_new_page(hpage, private);
1299 if (!trylock_page(hpage)) {
1304 case MIGRATE_SYNC_NO_COPY:
1313 * Check for pages which are in the process of being freed. Without
1314 * page_mapping() set, hugetlbfs specific move page routine will not
1315 * be called and we could leak usage counts for subpools.
1317 if (page_private(hpage) && !page_mapping(hpage)) {
1322 if (PageAnon(hpage))
1323 anon_vma = page_get_anon_vma(hpage);
1325 if (unlikely(!trylock_page(new_hpage)))
1328 if (page_mapped(hpage)) {
1329 bool mapping_locked = false;
1330 enum ttu_flags ttu = TTU_MIGRATION|TTU_IGNORE_MLOCK;
1332 if (!PageAnon(hpage)) {
1334 * In shared mappings, try_to_unmap could potentially
1335 * call huge_pmd_unshare. Because of this, take
1336 * semaphore in write mode here and set TTU_RMAP_LOCKED
1337 * to let lower levels know we have taken the lock.
1339 mapping = hugetlb_page_mapping_lock_write(hpage);
1340 if (unlikely(!mapping))
1341 goto unlock_put_anon;
1343 mapping_locked = true;
1344 ttu |= TTU_RMAP_LOCKED;
1347 try_to_unmap(hpage, ttu);
1348 page_was_mapped = 1;
1351 i_mmap_unlock_write(mapping);
1354 if (!page_mapped(hpage))
1355 rc = move_to_new_page(new_hpage, hpage, mode);
1357 if (page_was_mapped)
1358 remove_migration_ptes(hpage,
1359 rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false);
1362 unlock_page(new_hpage);
1366 put_anon_vma(anon_vma);
1368 if (rc == MIGRATEPAGE_SUCCESS) {
1369 move_hugetlb_state(hpage, new_hpage, reason);
1370 put_new_page = NULL;
1376 if (rc == MIGRATEPAGE_SUCCESS)
1377 putback_active_hugepage(hpage);
1378 else if (rc != -EAGAIN && rc != MIGRATEPAGE_SUCCESS)
1379 list_move_tail(&hpage->lru, ret);
1382 * If migration was not successful and there's a freeing callback, use
1383 * it. Otherwise, put_page() will drop the reference grabbed during
1387 put_new_page(new_hpage, private);
1389 putback_active_hugepage(new_hpage);
1394 static inline int try_split_thp(struct page *page, struct page **page2,
1395 struct list_head *from)
1400 rc = split_huge_page_to_list(page, from);
1403 list_safe_reset_next(page, *page2, lru);
1409 * migrate_pages - migrate the pages specified in a list, to the free pages
1410 * supplied as the target for the page migration
1412 * @from: The list of pages to be migrated.
1413 * @get_new_page: The function used to allocate free pages to be used
1414 * as the target of the page migration.
1415 * @put_new_page: The function used to free target pages if migration
1416 * fails, or NULL if no special handling is necessary.
1417 * @private: Private data to be passed on to get_new_page()
1418 * @mode: The migration mode that specifies the constraints for
1419 * page migration, if any.
1420 * @reason: The reason for page migration.
1422 * The function returns after 10 attempts or if no pages are movable any more
1423 * because the list has become empty or no retryable pages exist any more.
1424 * It is caller's responsibility to call putback_movable_pages() to return pages
1425 * to the LRU or free list only if ret != 0.
1427 * Returns the number of pages that were not migrated, or an error code.
1429 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1430 free_page_t put_new_page, unsigned long private,
1431 enum migrate_mode mode, int reason)
1436 int nr_succeeded = 0;
1437 int nr_thp_succeeded = 0;
1438 int nr_thp_failed = 0;
1439 int nr_thp_split = 0;
1441 bool is_thp = false;
1444 int swapwrite = current->flags & PF_SWAPWRITE;
1445 int rc, nr_subpages;
1446 LIST_HEAD(ret_pages);
1449 current->flags |= PF_SWAPWRITE;
1451 for (pass = 0; pass < 10 && (retry || thp_retry); pass++) {
1455 list_for_each_entry_safe(page, page2, from, lru) {
1458 * THP statistics is based on the source huge page.
1459 * Capture required information that might get lost
1462 is_thp = PageTransHuge(page) && !PageHuge(page);
1463 nr_subpages = thp_nr_pages(page);
1467 rc = unmap_and_move_huge_page(get_new_page,
1468 put_new_page, private, page,
1469 pass > 2, mode, reason,
1472 rc = unmap_and_move(get_new_page, put_new_page,
1473 private, page, pass > 2, mode,
1474 reason, &ret_pages);
1477 * Success: non hugetlb page will be freed, hugetlb
1478 * page will be put back
1479 * -EAGAIN: stay on the from list
1480 * -ENOMEM: stay on the from list
1481 * Other errno: put on ret_pages list then splice to
1486 * THP migration might be unsupported or the
1487 * allocation could've failed so we should
1488 * retry on the same page with the THP split
1491 * Head page is retried immediately and tail
1492 * pages are added to the tail of the list so
1493 * we encounter them after the rest of the list
1497 /* THP migration is unsupported */
1499 if (!try_split_thp(page, &page2, from)) {
1505 nr_failed += nr_subpages;
1509 /* Hugetlb migration is unsupported */
1514 * When memory is low, don't bother to try to migrate
1515 * other pages, just exit.
1518 if (!try_split_thp(page, &page2, from)) {
1524 nr_failed += nr_subpages;
1536 case MIGRATEPAGE_SUCCESS:
1539 nr_succeeded += nr_subpages;
1546 * Permanent failure (-EBUSY, etc.):
1547 * unlike -EAGAIN case, the failed page is
1548 * removed from migration page list and not
1549 * retried in the next outer loop.
1553 nr_failed += nr_subpages;
1561 nr_failed += retry + thp_retry;
1562 nr_thp_failed += thp_retry;
1566 * Put the permanent failure page back to migration list, they
1567 * will be put back to the right list by the caller.
1569 list_splice(&ret_pages, from);
1571 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1572 count_vm_events(PGMIGRATE_FAIL, nr_failed);
1573 count_vm_events(THP_MIGRATION_SUCCESS, nr_thp_succeeded);
1574 count_vm_events(THP_MIGRATION_FAIL, nr_thp_failed);
1575 count_vm_events(THP_MIGRATION_SPLIT, nr_thp_split);
1576 trace_mm_migrate_pages(nr_succeeded, nr_failed, nr_thp_succeeded,
1577 nr_thp_failed, nr_thp_split, mode, reason);
1580 current->flags &= ~PF_SWAPWRITE;
1585 struct page *alloc_migration_target(struct page *page, unsigned long private)
1587 struct migration_target_control *mtc;
1589 unsigned int order = 0;
1590 struct page *new_page = NULL;
1594 mtc = (struct migration_target_control *)private;
1595 gfp_mask = mtc->gfp_mask;
1597 if (nid == NUMA_NO_NODE)
1598 nid = page_to_nid(page);
1600 if (PageHuge(page)) {
1601 struct hstate *h = page_hstate(compound_head(page));
1603 gfp_mask = htlb_modify_alloc_mask(h, gfp_mask);
1604 return alloc_huge_page_nodemask(h, nid, mtc->nmask, gfp_mask);
1607 if (PageTransHuge(page)) {
1609 * clear __GFP_RECLAIM to make the migration callback
1610 * consistent with regular THP allocations.
1612 gfp_mask &= ~__GFP_RECLAIM;
1613 gfp_mask |= GFP_TRANSHUGE;
1614 order = HPAGE_PMD_ORDER;
1616 zidx = zone_idx(page_zone(page));
1617 if (is_highmem_idx(zidx) || zidx == ZONE_MOVABLE)
1618 gfp_mask |= __GFP_HIGHMEM;
1620 new_page = __alloc_pages_nodemask(gfp_mask, order, nid, mtc->nmask);
1622 if (new_page && PageTransHuge(new_page))
1623 prep_transhuge_page(new_page);
1630 static int store_status(int __user *status, int start, int value, int nr)
1633 if (put_user(value, status + start))
1641 static int do_move_pages_to_node(struct mm_struct *mm,
1642 struct list_head *pagelist, int node)
1645 struct migration_target_control mtc = {
1647 .gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE,
1650 err = migrate_pages(pagelist, alloc_migration_target, NULL,
1651 (unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL);
1653 putback_movable_pages(pagelist);
1658 * Resolves the given address to a struct page, isolates it from the LRU and
1659 * puts it to the given pagelist.
1661 * errno - if the page cannot be found/isolated
1662 * 0 - when it doesn't have to be migrated because it is already on the
1664 * 1 - when it has been queued
1666 static int add_page_for_migration(struct mm_struct *mm, unsigned long addr,
1667 int node, struct list_head *pagelist, bool migrate_all)
1669 struct vm_area_struct *vma;
1671 unsigned int follflags;
1676 vma = find_vma(mm, addr);
1677 if (!vma || addr < vma->vm_start || !vma_migratable(vma))
1680 /* FOLL_DUMP to ignore special (like zero) pages */
1681 follflags = FOLL_GET | FOLL_DUMP;
1682 page = follow_page(vma, addr, follflags);
1684 err = PTR_ERR(page);
1693 if (page_to_nid(page) == node)
1697 if (page_mapcount(page) > 1 && !migrate_all)
1700 if (PageHuge(page)) {
1701 if (PageHead(page)) {
1702 isolate_huge_page(page, pagelist);
1708 head = compound_head(page);
1709 err = isolate_lru_page(head);
1714 list_add_tail(&head->lru, pagelist);
1715 mod_node_page_state(page_pgdat(head),
1716 NR_ISOLATED_ANON + page_is_file_lru(head),
1717 thp_nr_pages(head));
1721 * Either remove the duplicate refcount from
1722 * isolate_lru_page() or drop the page ref if it was
1727 mmap_read_unlock(mm);
1731 static int move_pages_and_store_status(struct mm_struct *mm, int node,
1732 struct list_head *pagelist, int __user *status,
1733 int start, int i, unsigned long nr_pages)
1737 if (list_empty(pagelist))
1740 err = do_move_pages_to_node(mm, pagelist, node);
1743 * Positive err means the number of failed
1744 * pages to migrate. Since we are going to
1745 * abort and return the number of non-migrated
1746 * pages, so need to include the rest of the
1747 * nr_pages that have not been attempted as
1751 err += nr_pages - i - 1;
1754 return store_status(status, start, node, i - start);
1758 * Migrate an array of page address onto an array of nodes and fill
1759 * the corresponding array of status.
1761 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1762 unsigned long nr_pages,
1763 const void __user * __user *pages,
1764 const int __user *nodes,
1765 int __user *status, int flags)
1767 int current_node = NUMA_NO_NODE;
1768 LIST_HEAD(pagelist);
1774 for (i = start = 0; i < nr_pages; i++) {
1775 const void __user *p;
1780 if (get_user(p, pages + i))
1782 if (get_user(node, nodes + i))
1784 addr = (unsigned long)untagged_addr(p);
1787 if (node < 0 || node >= MAX_NUMNODES)
1789 if (!node_state(node, N_MEMORY))
1793 if (!node_isset(node, task_nodes))
1796 if (current_node == NUMA_NO_NODE) {
1797 current_node = node;
1799 } else if (node != current_node) {
1800 err = move_pages_and_store_status(mm, current_node,
1801 &pagelist, status, start, i, nr_pages);
1805 current_node = node;
1809 * Errors in the page lookup or isolation are not fatal and we simply
1810 * report them via status
1812 err = add_page_for_migration(mm, addr, current_node,
1813 &pagelist, flags & MPOL_MF_MOVE_ALL);
1816 /* The page is successfully queued for migration */
1821 * If the page is already on the target node (!err), store the
1822 * node, otherwise, store the err.
1824 err = store_status(status, i, err ? : current_node, 1);
1828 err = move_pages_and_store_status(mm, current_node, &pagelist,
1829 status, start, i, nr_pages);
1832 current_node = NUMA_NO_NODE;
1835 /* Make sure we do not overwrite the existing error */
1836 err1 = move_pages_and_store_status(mm, current_node, &pagelist,
1837 status, start, i, nr_pages);
1845 * Determine the nodes of an array of pages and store it in an array of status.
1847 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1848 const void __user **pages, int *status)
1854 for (i = 0; i < nr_pages; i++) {
1855 unsigned long addr = (unsigned long)(*pages);
1856 struct vm_area_struct *vma;
1860 vma = find_vma(mm, addr);
1861 if (!vma || addr < vma->vm_start)
1864 /* FOLL_DUMP to ignore special (like zero) pages */
1865 page = follow_page(vma, addr, FOLL_DUMP);
1867 err = PTR_ERR(page);
1871 err = page ? page_to_nid(page) : -ENOENT;
1879 mmap_read_unlock(mm);
1883 * Determine the nodes of a user array of pages and store it in
1884 * a user array of status.
1886 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1887 const void __user * __user *pages,
1890 #define DO_PAGES_STAT_CHUNK_NR 16
1891 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1892 int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1895 unsigned long chunk_nr;
1897 chunk_nr = nr_pages;
1898 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1899 chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1901 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1904 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1906 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1911 nr_pages -= chunk_nr;
1913 return nr_pages ? -EFAULT : 0;
1916 static struct mm_struct *find_mm_struct(pid_t pid, nodemask_t *mem_nodes)
1918 struct task_struct *task;
1919 struct mm_struct *mm;
1922 * There is no need to check if current process has the right to modify
1923 * the specified process when they are same.
1927 *mem_nodes = cpuset_mems_allowed(current);
1931 /* Find the mm_struct */
1933 task = find_task_by_vpid(pid);
1936 return ERR_PTR(-ESRCH);
1938 get_task_struct(task);
1941 * Check if this process has the right to modify the specified
1942 * process. Use the regular "ptrace_may_access()" checks.
1944 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1946 mm = ERR_PTR(-EPERM);
1951 mm = ERR_PTR(security_task_movememory(task));
1954 *mem_nodes = cpuset_mems_allowed(task);
1955 mm = get_task_mm(task);
1957 put_task_struct(task);
1959 mm = ERR_PTR(-EINVAL);
1964 * Move a list of pages in the address space of the currently executing
1967 static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
1968 const void __user * __user *pages,
1969 const int __user *nodes,
1970 int __user *status, int flags)
1972 struct mm_struct *mm;
1974 nodemask_t task_nodes;
1977 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1980 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1983 mm = find_mm_struct(pid, &task_nodes);
1988 err = do_pages_move(mm, task_nodes, nr_pages, pages,
1989 nodes, status, flags);
1991 err = do_pages_stat(mm, nr_pages, pages, status);
1997 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1998 const void __user * __user *, pages,
1999 const int __user *, nodes,
2000 int __user *, status, int, flags)
2002 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
2005 #ifdef CONFIG_COMPAT
2006 COMPAT_SYSCALL_DEFINE6(move_pages, pid_t, pid, compat_ulong_t, nr_pages,
2007 compat_uptr_t __user *, pages32,
2008 const int __user *, nodes,
2009 int __user *, status,
2012 const void __user * __user *pages;
2015 pages = compat_alloc_user_space(nr_pages * sizeof(void *));
2016 for (i = 0; i < nr_pages; i++) {
2019 if (get_user(p, pages32 + i) ||
2020 put_user(compat_ptr(p), pages + i))
2023 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
2025 #endif /* CONFIG_COMPAT */
2027 #ifdef CONFIG_NUMA_BALANCING
2029 * Returns true if this is a safe migration target node for misplaced NUMA
2030 * pages. Currently it only checks the watermarks which crude
2032 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
2033 unsigned long nr_migrate_pages)
2037 for (z = pgdat->nr_zones - 1; z >= 0; z--) {
2038 struct zone *zone = pgdat->node_zones + z;
2040 if (!populated_zone(zone))
2043 /* Avoid waking kswapd by allocating pages_to_migrate pages. */
2044 if (!zone_watermark_ok(zone, 0,
2045 high_wmark_pages(zone) +
2054 static struct page *alloc_misplaced_dst_page(struct page *page,
2057 int nid = (int) data;
2058 struct page *newpage;
2060 newpage = __alloc_pages_node(nid,
2061 (GFP_HIGHUSER_MOVABLE |
2062 __GFP_THISNODE | __GFP_NOMEMALLOC |
2063 __GFP_NORETRY | __GFP_NOWARN) &
2069 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
2073 VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
2075 /* Avoid migrating to a node that is nearly full */
2076 if (!migrate_balanced_pgdat(pgdat, compound_nr(page)))
2079 if (isolate_lru_page(page))
2083 * migrate_misplaced_transhuge_page() skips page migration's usual
2084 * check on page_count(), so we must do it here, now that the page
2085 * has been isolated: a GUP pin, or any other pin, prevents migration.
2086 * The expected page count is 3: 1 for page's mapcount and 1 for the
2087 * caller's pin and 1 for the reference taken by isolate_lru_page().
2089 if (PageTransHuge(page) && page_count(page) != 3) {
2090 putback_lru_page(page);
2094 page_lru = page_is_file_lru(page);
2095 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
2096 thp_nr_pages(page));
2099 * Isolating the page has taken another reference, so the
2100 * caller's reference can be safely dropped without the page
2101 * disappearing underneath us during migration.
2107 bool pmd_trans_migrating(pmd_t pmd)
2109 struct page *page = pmd_page(pmd);
2110 return PageLocked(page);
2113 static inline bool is_shared_exec_page(struct vm_area_struct *vma,
2116 if (page_mapcount(page) != 1 &&
2117 (page_is_file_lru(page) || vma_is_shmem(vma)) &&
2118 (vma->vm_flags & VM_EXEC))
2125 * Attempt to migrate a misplaced page to the specified destination
2126 * node. Caller is expected to have an elevated reference count on
2127 * the page that will be dropped by this function before returning.
2129 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
2132 pg_data_t *pgdat = NODE_DATA(node);
2135 LIST_HEAD(migratepages);
2138 * Don't migrate file pages that are mapped in multiple processes
2139 * with execute permissions as they are probably shared libraries.
2141 if (is_shared_exec_page(vma, page))
2145 * Also do not migrate dirty pages as not all filesystems can move
2146 * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles.
2148 if (page_is_file_lru(page) && PageDirty(page))
2151 isolated = numamigrate_isolate_page(pgdat, page);
2155 list_add(&page->lru, &migratepages);
2156 nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
2157 NULL, node, MIGRATE_ASYNC,
2160 if (!list_empty(&migratepages)) {
2161 list_del(&page->lru);
2162 dec_node_page_state(page, NR_ISOLATED_ANON +
2163 page_is_file_lru(page));
2164 putback_lru_page(page);
2168 count_vm_numa_event(NUMA_PAGE_MIGRATE);
2169 BUG_ON(!list_empty(&migratepages));
2176 #endif /* CONFIG_NUMA_BALANCING */
2178 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
2180 * Migrates a THP to a given target node. page must be locked and is unlocked
2183 int migrate_misplaced_transhuge_page(struct mm_struct *mm,
2184 struct vm_area_struct *vma,
2185 pmd_t *pmd, pmd_t entry,
2186 unsigned long address,
2187 struct page *page, int node)
2190 pg_data_t *pgdat = NODE_DATA(node);
2192 struct page *new_page = NULL;
2193 int page_lru = page_is_file_lru(page);
2194 unsigned long start = address & HPAGE_PMD_MASK;
2196 if (is_shared_exec_page(vma, page))
2199 new_page = alloc_pages_node(node,
2200 (GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
2204 prep_transhuge_page(new_page);
2206 isolated = numamigrate_isolate_page(pgdat, page);
2212 /* Prepare a page as a migration target */
2213 __SetPageLocked(new_page);
2214 if (PageSwapBacked(page))
2215 __SetPageSwapBacked(new_page);
2217 /* anon mapping, we can simply copy page->mapping to the new page: */
2218 new_page->mapping = page->mapping;
2219 new_page->index = page->index;
2220 /* flush the cache before copying using the kernel virtual address */
2221 flush_cache_range(vma, start, start + HPAGE_PMD_SIZE);
2222 migrate_page_copy(new_page, page);
2223 WARN_ON(PageLRU(new_page));
2225 /* Recheck the target PMD */
2226 ptl = pmd_lock(mm, pmd);
2227 if (unlikely(!pmd_same(*pmd, entry) || !page_ref_freeze(page, 2))) {
2230 /* Reverse changes made by migrate_page_copy() */
2231 if (TestClearPageActive(new_page))
2232 SetPageActive(page);
2233 if (TestClearPageUnevictable(new_page))
2234 SetPageUnevictable(page);
2236 unlock_page(new_page);
2237 put_page(new_page); /* Free it */
2239 /* Retake the callers reference and putback on LRU */
2241 putback_lru_page(page);
2242 mod_node_page_state(page_pgdat(page),
2243 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
2248 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
2249 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
2252 * Overwrite the old entry under pagetable lock and establish
2253 * the new PTE. Any parallel GUP will either observe the old
2254 * page blocking on the page lock, block on the page table
2255 * lock or observe the new page. The SetPageUptodate on the
2256 * new page and page_add_new_anon_rmap guarantee the copy is
2257 * visible before the pagetable update.
2259 page_add_anon_rmap(new_page, vma, start, true);
2261 * At this point the pmd is numa/protnone (i.e. non present) and the TLB
2262 * has already been flushed globally. So no TLB can be currently
2263 * caching this non present pmd mapping. There's no need to clear the
2264 * pmd before doing set_pmd_at(), nor to flush the TLB after
2265 * set_pmd_at(). Clearing the pmd here would introduce a race
2266 * condition against MADV_DONTNEED, because MADV_DONTNEED only holds the
2267 * mmap_lock for reading. If the pmd is set to NULL at any given time,
2268 * MADV_DONTNEED won't wait on the pmd lock and it'll skip clearing this
2271 set_pmd_at(mm, start, pmd, entry);
2272 update_mmu_cache_pmd(vma, address, &entry);
2274 page_ref_unfreeze(page, 2);
2275 mlock_migrate_page(new_page, page);
2276 page_remove_rmap(page, true);
2277 set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED);
2281 /* Take an "isolate" reference and put new page on the LRU. */
2283 putback_lru_page(new_page);
2285 unlock_page(new_page);
2287 put_page(page); /* Drop the rmap reference */
2288 put_page(page); /* Drop the LRU isolation reference */
2290 count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
2291 count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
2293 mod_node_page_state(page_pgdat(page),
2294 NR_ISOLATED_ANON + page_lru,
2299 count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
2300 ptl = pmd_lock(mm, pmd);
2301 if (pmd_same(*pmd, entry)) {
2302 entry = pmd_modify(entry, vma->vm_page_prot);
2303 set_pmd_at(mm, start, pmd, entry);
2304 update_mmu_cache_pmd(vma, address, &entry);
2314 #endif /* CONFIG_NUMA_BALANCING */
2316 #endif /* CONFIG_NUMA */
2318 #ifdef CONFIG_DEVICE_PRIVATE
2319 static int migrate_vma_collect_hole(unsigned long start,
2321 __always_unused int depth,
2322 struct mm_walk *walk)
2324 struct migrate_vma *migrate = walk->private;
2327 /* Only allow populating anonymous memory. */
2328 if (!vma_is_anonymous(walk->vma)) {
2329 for (addr = start; addr < end; addr += PAGE_SIZE) {
2330 migrate->src[migrate->npages] = 0;
2331 migrate->dst[migrate->npages] = 0;
2337 for (addr = start; addr < end; addr += PAGE_SIZE) {
2338 migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE;
2339 migrate->dst[migrate->npages] = 0;
2347 static int migrate_vma_collect_skip(unsigned long start,
2349 struct mm_walk *walk)
2351 struct migrate_vma *migrate = walk->private;
2354 for (addr = start; addr < end; addr += PAGE_SIZE) {
2355 migrate->dst[migrate->npages] = 0;
2356 migrate->src[migrate->npages++] = 0;
2362 static int migrate_vma_collect_pmd(pmd_t *pmdp,
2363 unsigned long start,
2365 struct mm_walk *walk)
2367 struct migrate_vma *migrate = walk->private;
2368 struct vm_area_struct *vma = walk->vma;
2369 struct mm_struct *mm = vma->vm_mm;
2370 unsigned long addr = start, unmapped = 0;
2375 if (pmd_none(*pmdp))
2376 return migrate_vma_collect_hole(start, end, -1, walk);
2378 if (pmd_trans_huge(*pmdp)) {
2381 ptl = pmd_lock(mm, pmdp);
2382 if (unlikely(!pmd_trans_huge(*pmdp))) {
2387 page = pmd_page(*pmdp);
2388 if (is_huge_zero_page(page)) {
2390 split_huge_pmd(vma, pmdp, addr);
2391 if (pmd_trans_unstable(pmdp))
2392 return migrate_vma_collect_skip(start, end,
2399 if (unlikely(!trylock_page(page)))
2400 return migrate_vma_collect_skip(start, end,
2402 ret = split_huge_page(page);
2406 return migrate_vma_collect_skip(start, end,
2408 if (pmd_none(*pmdp))
2409 return migrate_vma_collect_hole(start, end, -1,
2414 if (unlikely(pmd_bad(*pmdp)))
2415 return migrate_vma_collect_skip(start, end, walk);
2417 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2418 arch_enter_lazy_mmu_mode();
2420 for (; addr < end; addr += PAGE_SIZE, ptep++) {
2421 unsigned long mpfn = 0, pfn;
2428 if (pte_none(pte)) {
2429 if (vma_is_anonymous(vma)) {
2430 mpfn = MIGRATE_PFN_MIGRATE;
2436 if (!pte_present(pte)) {
2438 * Only care about unaddressable device page special
2439 * page table entry. Other special swap entries are not
2440 * migratable, and we ignore regular swapped page.
2442 entry = pte_to_swp_entry(pte);
2443 if (!is_device_private_entry(entry))
2446 page = device_private_entry_to_page(entry);
2447 if (!(migrate->flags &
2448 MIGRATE_VMA_SELECT_DEVICE_PRIVATE) ||
2449 page->pgmap->owner != migrate->pgmap_owner)
2452 mpfn = migrate_pfn(page_to_pfn(page)) |
2453 MIGRATE_PFN_MIGRATE;
2454 if (is_write_device_private_entry(entry))
2455 mpfn |= MIGRATE_PFN_WRITE;
2457 if (!(migrate->flags & MIGRATE_VMA_SELECT_SYSTEM))
2460 if (is_zero_pfn(pfn)) {
2461 mpfn = MIGRATE_PFN_MIGRATE;
2465 page = vm_normal_page(migrate->vma, addr, pte);
2466 mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
2467 mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
2470 /* FIXME support THP */
2471 if (!page || !page->mapping || PageTransCompound(page)) {
2477 * By getting a reference on the page we pin it and that blocks
2478 * any kind of migration. Side effect is that it "freezes" the
2481 * We drop this reference after isolating the page from the lru
2482 * for non device page (device page are not on the lru and thus
2483 * can't be dropped from it).
2489 * Optimize for the common case where page is only mapped once
2490 * in one process. If we can lock the page, then we can safely
2491 * set up a special migration page table entry now.
2493 if (trylock_page(page)) {
2496 mpfn |= MIGRATE_PFN_LOCKED;
2497 ptep_get_and_clear(mm, addr, ptep);
2499 /* Setup special migration page table entry */
2500 entry = make_migration_entry(page, mpfn &
2502 swp_pte = swp_entry_to_pte(entry);
2503 if (pte_present(pte)) {
2504 if (pte_soft_dirty(pte))
2505 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2506 if (pte_uffd_wp(pte))
2507 swp_pte = pte_swp_mkuffd_wp(swp_pte);
2509 if (pte_swp_soft_dirty(pte))
2510 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2511 if (pte_swp_uffd_wp(pte))
2512 swp_pte = pte_swp_mkuffd_wp(swp_pte);
2514 set_pte_at(mm, addr, ptep, swp_pte);
2517 * This is like regular unmap: we remove the rmap and
2518 * drop page refcount. Page won't be freed, as we took
2519 * a reference just above.
2521 page_remove_rmap(page, false);
2524 if (pte_present(pte))
2529 migrate->dst[migrate->npages] = 0;
2530 migrate->src[migrate->npages++] = mpfn;
2532 arch_leave_lazy_mmu_mode();
2533 pte_unmap_unlock(ptep - 1, ptl);
2535 /* Only flush the TLB if we actually modified any entries */
2537 flush_tlb_range(walk->vma, start, end);
2542 static const struct mm_walk_ops migrate_vma_walk_ops = {
2543 .pmd_entry = migrate_vma_collect_pmd,
2544 .pte_hole = migrate_vma_collect_hole,
2548 * migrate_vma_collect() - collect pages over a range of virtual addresses
2549 * @migrate: migrate struct containing all migration information
2551 * This will walk the CPU page table. For each virtual address backed by a
2552 * valid page, it updates the src array and takes a reference on the page, in
2553 * order to pin the page until we lock it and unmap it.
2555 static void migrate_vma_collect(struct migrate_vma *migrate)
2557 struct mmu_notifier_range range;
2560 * Note that the pgmap_owner is passed to the mmu notifier callback so
2561 * that the registered device driver can skip invalidating device
2562 * private page mappings that won't be migrated.
2564 mmu_notifier_range_init_migrate(&range, 0, migrate->vma,
2565 migrate->vma->vm_mm, migrate->start, migrate->end,
2566 migrate->pgmap_owner);
2567 mmu_notifier_invalidate_range_start(&range);
2569 walk_page_range(migrate->vma->vm_mm, migrate->start, migrate->end,
2570 &migrate_vma_walk_ops, migrate);
2572 mmu_notifier_invalidate_range_end(&range);
2573 migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
2577 * migrate_vma_check_page() - check if page is pinned or not
2578 * @page: struct page to check
2580 * Pinned pages cannot be migrated. This is the same test as in
2581 * migrate_page_move_mapping(), except that here we allow migration of a
2584 static bool migrate_vma_check_page(struct page *page)
2587 * One extra ref because caller holds an extra reference, either from
2588 * isolate_lru_page() for a regular page, or migrate_vma_collect() for
2594 * FIXME support THP (transparent huge page), it is bit more complex to
2595 * check them than regular pages, because they can be mapped with a pmd
2596 * or with a pte (split pte mapping).
2598 if (PageCompound(page))
2601 /* Page from ZONE_DEVICE have one extra reference */
2602 if (is_zone_device_page(page)) {
2604 * Private page can never be pin as they have no valid pte and
2605 * GUP will fail for those. Yet if there is a pending migration
2606 * a thread might try to wait on the pte migration entry and
2607 * will bump the page reference count. Sadly there is no way to
2608 * differentiate a regular pin from migration wait. Hence to
2609 * avoid 2 racing thread trying to migrate back to CPU to enter
2610 * infinite loop (one stopping migration because the other is
2611 * waiting on pte migration entry). We always return true here.
2613 * FIXME proper solution is to rework migration_entry_wait() so
2614 * it does not need to take a reference on page.
2616 return is_device_private_page(page);
2619 /* For file back page */
2620 if (page_mapping(page))
2621 extra += 1 + page_has_private(page);
2623 if ((page_count(page) - extra) > page_mapcount(page))
2630 * migrate_vma_prepare() - lock pages and isolate them from the lru
2631 * @migrate: migrate struct containing all migration information
2633 * This locks pages that have been collected by migrate_vma_collect(). Once each
2634 * page is locked it is isolated from the lru (for non-device pages). Finally,
2635 * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be
2636 * migrated by concurrent kernel threads.
2638 static void migrate_vma_prepare(struct migrate_vma *migrate)
2640 const unsigned long npages = migrate->npages;
2641 const unsigned long start = migrate->start;
2642 unsigned long addr, i, restore = 0;
2643 bool allow_drain = true;
2647 for (i = 0; (i < npages) && migrate->cpages; i++) {
2648 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2654 if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) {
2656 * Because we are migrating several pages there can be
2657 * a deadlock between 2 concurrent migration where each
2658 * are waiting on each other page lock.
2660 * Make migrate_vma() a best effort thing and backoff
2661 * for any page we can not lock right away.
2663 if (!trylock_page(page)) {
2664 migrate->src[i] = 0;
2670 migrate->src[i] |= MIGRATE_PFN_LOCKED;
2673 /* ZONE_DEVICE pages are not on LRU */
2674 if (!is_zone_device_page(page)) {
2675 if (!PageLRU(page) && allow_drain) {
2676 /* Drain CPU's pagevec */
2677 lru_add_drain_all();
2678 allow_drain = false;
2681 if (isolate_lru_page(page)) {
2683 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2687 migrate->src[i] = 0;
2695 /* Drop the reference we took in collect */
2699 if (!migrate_vma_check_page(page)) {
2701 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2705 if (!is_zone_device_page(page)) {
2707 putback_lru_page(page);
2710 migrate->src[i] = 0;
2714 if (!is_zone_device_page(page))
2715 putback_lru_page(page);
2722 for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) {
2723 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2725 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2728 remove_migration_pte(page, migrate->vma, addr, page);
2730 migrate->src[i] = 0;
2738 * migrate_vma_unmap() - replace page mapping with special migration pte entry
2739 * @migrate: migrate struct containing all migration information
2741 * Replace page mapping (CPU page table pte) with a special migration pte entry
2742 * and check again if it has been pinned. Pinned pages are restored because we
2743 * cannot migrate them.
2745 * This is the last step before we call the device driver callback to allocate
2746 * destination memory and copy contents of original page over to new page.
2748 static void migrate_vma_unmap(struct migrate_vma *migrate)
2750 int flags = TTU_MIGRATION | TTU_IGNORE_MLOCK;
2751 const unsigned long npages = migrate->npages;
2752 const unsigned long start = migrate->start;
2753 unsigned long addr, i, restore = 0;
2755 for (i = 0; i < npages; i++) {
2756 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2758 if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2761 if (page_mapped(page)) {
2762 try_to_unmap(page, flags);
2763 if (page_mapped(page))
2767 if (migrate_vma_check_page(page))
2771 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2776 for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) {
2777 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2779 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2782 remove_migration_ptes(page, page, false);
2784 migrate->src[i] = 0;
2788 if (is_zone_device_page(page))
2791 putback_lru_page(page);
2796 * migrate_vma_setup() - prepare to migrate a range of memory
2797 * @args: contains the vma, start, and pfns arrays for the migration
2799 * Returns: negative errno on failures, 0 when 0 or more pages were migrated
2802 * Prepare to migrate a range of memory virtual address range by collecting all
2803 * the pages backing each virtual address in the range, saving them inside the
2804 * src array. Then lock those pages and unmap them. Once the pages are locked
2805 * and unmapped, check whether each page is pinned or not. Pages that aren't
2806 * pinned have the MIGRATE_PFN_MIGRATE flag set (by this function) in the
2807 * corresponding src array entry. Then restores any pages that are pinned, by
2808 * remapping and unlocking those pages.
2810 * The caller should then allocate destination memory and copy source memory to
2811 * it for all those entries (ie with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE
2812 * flag set). Once these are allocated and copied, the caller must update each
2813 * corresponding entry in the dst array with the pfn value of the destination
2814 * page and with the MIGRATE_PFN_VALID and MIGRATE_PFN_LOCKED flags set
2815 * (destination pages must have their struct pages locked, via lock_page()).
2817 * Note that the caller does not have to migrate all the pages that are marked
2818 * with MIGRATE_PFN_MIGRATE flag in src array unless this is a migration from
2819 * device memory to system memory. If the caller cannot migrate a device page
2820 * back to system memory, then it must return VM_FAULT_SIGBUS, which has severe
2821 * consequences for the userspace process, so it must be avoided if at all
2824 * For empty entries inside CPU page table (pte_none() or pmd_none() is true) we
2825 * do set MIGRATE_PFN_MIGRATE flag inside the corresponding source array thus
2826 * allowing the caller to allocate device memory for those unback virtual
2827 * address. For this the caller simply has to allocate device memory and
2828 * properly set the destination entry like for regular migration. Note that
2829 * this can still fails and thus inside the device driver must check if the
2830 * migration was successful for those entries after calling migrate_vma_pages()
2831 * just like for regular migration.
2833 * After that, the callers must call migrate_vma_pages() to go over each entry
2834 * in the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
2835 * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
2836 * then migrate_vma_pages() to migrate struct page information from the source
2837 * struct page to the destination struct page. If it fails to migrate the
2838 * struct page information, then it clears the MIGRATE_PFN_MIGRATE flag in the
2841 * At this point all successfully migrated pages have an entry in the src
2842 * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
2843 * array entry with MIGRATE_PFN_VALID flag set.
2845 * Once migrate_vma_pages() returns the caller may inspect which pages were
2846 * successfully migrated, and which were not. Successfully migrated pages will
2847 * have the MIGRATE_PFN_MIGRATE flag set for their src array entry.
2849 * It is safe to update device page table after migrate_vma_pages() because
2850 * both destination and source page are still locked, and the mmap_lock is held
2851 * in read mode (hence no one can unmap the range being migrated).
2853 * Once the caller is done cleaning up things and updating its page table (if it
2854 * chose to do so, this is not an obligation) it finally calls
2855 * migrate_vma_finalize() to update the CPU page table to point to new pages
2856 * for successfully migrated pages or otherwise restore the CPU page table to
2857 * point to the original source pages.
2859 int migrate_vma_setup(struct migrate_vma *args)
2861 long nr_pages = (args->end - args->start) >> PAGE_SHIFT;
2863 args->start &= PAGE_MASK;
2864 args->end &= PAGE_MASK;
2865 if (!args->vma || is_vm_hugetlb_page(args->vma) ||
2866 (args->vma->vm_flags & VM_SPECIAL) || vma_is_dax(args->vma))
2870 if (args->start < args->vma->vm_start ||
2871 args->start >= args->vma->vm_end)
2873 if (args->end <= args->vma->vm_start || args->end > args->vma->vm_end)
2875 if (!args->src || !args->dst)
2878 memset(args->src, 0, sizeof(*args->src) * nr_pages);
2882 migrate_vma_collect(args);
2885 migrate_vma_prepare(args);
2887 migrate_vma_unmap(args);
2890 * At this point pages are locked and unmapped, and thus they have
2891 * stable content and can safely be copied to destination memory that
2892 * is allocated by the drivers.
2897 EXPORT_SYMBOL(migrate_vma_setup);
2900 * This code closely matches the code in:
2901 * __handle_mm_fault()
2902 * handle_pte_fault()
2903 * do_anonymous_page()
2904 * to map in an anonymous zero page but the struct page will be a ZONE_DEVICE
2907 static void migrate_vma_insert_page(struct migrate_vma *migrate,
2912 struct vm_area_struct *vma = migrate->vma;
2913 struct mm_struct *mm = vma->vm_mm;
2923 /* Only allow populating anonymous memory */
2924 if (!vma_is_anonymous(vma))
2927 pgdp = pgd_offset(mm, addr);
2928 p4dp = p4d_alloc(mm, pgdp, addr);
2931 pudp = pud_alloc(mm, p4dp, addr);
2934 pmdp = pmd_alloc(mm, pudp, addr);
2938 if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp))
2942 * Use pte_alloc() instead of pte_alloc_map(). We can't run
2943 * pte_offset_map() on pmds where a huge pmd might be created
2944 * from a different thread.
2946 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
2947 * parallel threads are excluded by other means.
2949 * Here we only have mmap_read_lock(mm).
2951 if (pte_alloc(mm, pmdp))
2954 /* See the comment in pte_alloc_one_map() */
2955 if (unlikely(pmd_trans_unstable(pmdp)))
2958 if (unlikely(anon_vma_prepare(vma)))
2960 if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL))
2964 * The memory barrier inside __SetPageUptodate makes sure that
2965 * preceding stores to the page contents become visible before
2966 * the set_pte_at() write.
2968 __SetPageUptodate(page);
2970 if (is_zone_device_page(page)) {
2971 if (is_device_private_page(page)) {
2972 swp_entry_t swp_entry;
2974 swp_entry = make_device_private_entry(page, vma->vm_flags & VM_WRITE);
2975 entry = swp_entry_to_pte(swp_entry);
2978 entry = mk_pte(page, vma->vm_page_prot);
2979 if (vma->vm_flags & VM_WRITE)
2980 entry = pte_mkwrite(pte_mkdirty(entry));
2983 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2985 if (check_stable_address_space(mm))
2988 if (pte_present(*ptep)) {
2989 unsigned long pfn = pte_pfn(*ptep);
2991 if (!is_zero_pfn(pfn))
2994 } else if (!pte_none(*ptep))
2998 * Check for userfaultfd but do not deliver the fault. Instead,
3001 if (userfaultfd_missing(vma))
3004 inc_mm_counter(mm, MM_ANONPAGES);
3005 page_add_new_anon_rmap(page, vma, addr, false);
3006 if (!is_zone_device_page(page))
3007 lru_cache_add_inactive_or_unevictable(page, vma);
3011 flush_cache_page(vma, addr, pte_pfn(*ptep));
3012 ptep_clear_flush_notify(vma, addr, ptep);
3013 set_pte_at_notify(mm, addr, ptep, entry);
3014 update_mmu_cache(vma, addr, ptep);
3016 /* No need to invalidate - it was non-present before */
3017 set_pte_at(mm, addr, ptep, entry);
3018 update_mmu_cache(vma, addr, ptep);
3021 pte_unmap_unlock(ptep, ptl);
3022 *src = MIGRATE_PFN_MIGRATE;
3026 pte_unmap_unlock(ptep, ptl);
3028 *src &= ~MIGRATE_PFN_MIGRATE;
3032 * migrate_vma_pages() - migrate meta-data from src page to dst page
3033 * @migrate: migrate struct containing all migration information
3035 * This migrates struct page meta-data from source struct page to destination
3036 * struct page. This effectively finishes the migration from source page to the
3039 void migrate_vma_pages(struct migrate_vma *migrate)
3041 const unsigned long npages = migrate->npages;
3042 const unsigned long start = migrate->start;
3043 struct mmu_notifier_range range;
3044 unsigned long addr, i;
3045 bool notified = false;
3047 for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) {
3048 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
3049 struct page *page = migrate_pfn_to_page(migrate->src[i]);
3050 struct address_space *mapping;
3054 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
3059 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE))
3064 mmu_notifier_range_init_migrate(&range, 0,
3065 migrate->vma, migrate->vma->vm_mm,
3067 migrate->pgmap_owner);
3068 mmu_notifier_invalidate_range_start(&range);
3070 migrate_vma_insert_page(migrate, addr, newpage,
3075 mapping = page_mapping(page);
3077 if (is_zone_device_page(newpage)) {
3078 if (is_device_private_page(newpage)) {
3080 * For now only support private anonymous when
3081 * migrating to un-addressable device memory.
3084 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
3089 * Other types of ZONE_DEVICE page are not
3092 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
3097 r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY);
3098 if (r != MIGRATEPAGE_SUCCESS)
3099 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
3103 * No need to double call mmu_notifier->invalidate_range() callback as
3104 * the above ptep_clear_flush_notify() inside migrate_vma_insert_page()
3105 * did already call it.
3108 mmu_notifier_invalidate_range_only_end(&range);
3110 EXPORT_SYMBOL(migrate_vma_pages);
3113 * migrate_vma_finalize() - restore CPU page table entry
3114 * @migrate: migrate struct containing all migration information
3116 * This replaces the special migration pte entry with either a mapping to the
3117 * new page if migration was successful for that page, or to the original page
3120 * This also unlocks the pages and puts them back on the lru, or drops the extra
3121 * refcount, for device pages.
3123 void migrate_vma_finalize(struct migrate_vma *migrate)
3125 const unsigned long npages = migrate->npages;
3128 for (i = 0; i < npages; i++) {
3129 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
3130 struct page *page = migrate_pfn_to_page(migrate->src[i]);
3134 unlock_page(newpage);
3140 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) {
3142 unlock_page(newpage);
3148 remove_migration_ptes(page, newpage, false);
3151 if (is_zone_device_page(page))
3154 putback_lru_page(page);
3156 if (newpage != page) {
3157 unlock_page(newpage);
3158 if (is_zone_device_page(newpage))
3161 putback_lru_page(newpage);
3165 EXPORT_SYMBOL(migrate_vma_finalize);
3166 #endif /* CONFIG_DEVICE_PRIVATE */