mm, thp, migrate: handling migration of 64KB hugepages
[platform/kernel/linux-rpi.git] / mm / migrate.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Memory Migration functionality - linux/mm/migrate.c
4  *
5  * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6  *
7  * Page migration was first developed in the context of the memory hotplug
8  * project. The main authors of the migration code are:
9  *
10  * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
11  * Hirokazu Takahashi <taka@valinux.co.jp>
12  * Dave Hansen <haveblue@us.ibm.com>
13  * Christoph Lameter
14  */
15
16 #include <linux/migrate.h>
17 #include <linux/export.h>
18 #include <linux/swap.h>
19 #include <linux/swapops.h>
20 #include <linux/pagemap.h>
21 #include <linux/buffer_head.h>
22 #include <linux/mm_inline.h>
23 #include <linux/nsproxy.h>
24 #include <linux/pagevec.h>
25 #include <linux/ksm.h>
26 #include <linux/rmap.h>
27 #include <linux/topology.h>
28 #include <linux/cpu.h>
29 #include <linux/cpuset.h>
30 #include <linux/writeback.h>
31 #include <linux/mempolicy.h>
32 #include <linux/vmalloc.h>
33 #include <linux/security.h>
34 #include <linux/backing-dev.h>
35 #include <linux/compaction.h>
36 #include <linux/syscalls.h>
37 #include <linux/compat.h>
38 #include <linux/hugetlb.h>
39 #include <linux/hugetlb_cgroup.h>
40 #include <linux/gfp.h>
41 #include <linux/pagewalk.h>
42 #include <linux/pfn_t.h>
43 #include <linux/memremap.h>
44 #include <linux/userfaultfd_k.h>
45 #include <linux/balloon_compaction.h>
46 #include <linux/mmu_notifier.h>
47 #include <linux/page_idle.h>
48 #include <linux/page_owner.h>
49 #include <linux/sched/mm.h>
50 #include <linux/ptrace.h>
51 #include <linux/oom.h>
52
53 #include <asm/tlbflush.h>
54
55 #define CREATE_TRACE_POINTS
56 #include <trace/events/migrate.h>
57
58 #include "internal.h"
59
60 /*
61  * migrate_prep() needs to be called before we start compiling a list of pages
62  * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
63  * undesirable, use migrate_prep_local()
64  */
65 int migrate_prep(void)
66 {
67         /*
68          * Clear the LRU lists so pages can be isolated.
69          * Note that pages may be moved off the LRU after we have
70          * drained them. Those pages will fail to migrate like other
71          * pages that may be busy.
72          */
73         lru_add_drain_all();
74
75         return 0;
76 }
77
78 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
79 int migrate_prep_local(void)
80 {
81         lru_add_drain();
82
83         return 0;
84 }
85
86 int isolate_movable_page(struct page *page, isolate_mode_t mode)
87 {
88         struct address_space *mapping;
89
90         /*
91          * Avoid burning cycles with pages that are yet under __free_pages(),
92          * or just got freed under us.
93          *
94          * In case we 'win' a race for a movable page being freed under us and
95          * raise its refcount preventing __free_pages() from doing its job
96          * the put_page() at the end of this block will take care of
97          * release this page, thus avoiding a nasty leakage.
98          */
99         if (unlikely(!get_page_unless_zero(page)))
100                 goto out;
101
102         /*
103          * Check PageMovable before holding a PG_lock because page's owner
104          * assumes anybody doesn't touch PG_lock of newly allocated page
105          * so unconditionally grabbing the lock ruins page's owner side.
106          */
107         if (unlikely(!__PageMovable(page)))
108                 goto out_putpage;
109         /*
110          * As movable pages are not isolated from LRU lists, concurrent
111          * compaction threads can race against page migration functions
112          * as well as race against the releasing a page.
113          *
114          * In order to avoid having an already isolated movable page
115          * being (wrongly) re-isolated while it is under migration,
116          * or to avoid attempting to isolate pages being released,
117          * lets be sure we have the page lock
118          * before proceeding with the movable page isolation steps.
119          */
120         if (unlikely(!trylock_page(page)))
121                 goto out_putpage;
122
123         if (!PageMovable(page) || PageIsolated(page))
124                 goto out_no_isolated;
125
126         mapping = page_mapping(page);
127         VM_BUG_ON_PAGE(!mapping, page);
128
129         if (!mapping->a_ops->isolate_page(page, mode))
130                 goto out_no_isolated;
131
132         /* Driver shouldn't use PG_isolated bit of page->flags */
133         WARN_ON_ONCE(PageIsolated(page));
134         __SetPageIsolated(page);
135         unlock_page(page);
136
137         return 0;
138
139 out_no_isolated:
140         unlock_page(page);
141 out_putpage:
142         put_page(page);
143 out:
144         return -EBUSY;
145 }
146
147 /* It should be called on page which is PG_movable */
148 void putback_movable_page(struct page *page)
149 {
150         struct address_space *mapping;
151
152         VM_BUG_ON_PAGE(!PageLocked(page), page);
153         VM_BUG_ON_PAGE(!PageMovable(page), page);
154         VM_BUG_ON_PAGE(!PageIsolated(page), page);
155
156         mapping = page_mapping(page);
157         mapping->a_ops->putback_page(page);
158         __ClearPageIsolated(page);
159 }
160
161 /*
162  * Put previously isolated pages back onto the appropriate lists
163  * from where they were once taken off for compaction/migration.
164  *
165  * This function shall be used whenever the isolated pageset has been
166  * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
167  * and isolate_huge_page().
168  */
169 void putback_movable_pages(struct list_head *l)
170 {
171         struct page *page;
172         struct page *page2;
173
174         list_for_each_entry_safe(page, page2, l, lru) {
175                 if (unlikely(PageHuge(page))) {
176                         putback_active_hugepage(page);
177                         continue;
178                 }
179                 list_del(&page->lru);
180                 /*
181                  * We isolated non-lru movable page so here we can use
182                  * __PageMovable because LRU page's mapping cannot have
183                  * PAGE_MAPPING_MOVABLE.
184                  */
185                 if (unlikely(__PageMovable(page))) {
186                         VM_BUG_ON_PAGE(!PageIsolated(page), page);
187                         lock_page(page);
188                         if (PageMovable(page))
189                                 putback_movable_page(page);
190                         else
191                                 __ClearPageIsolated(page);
192                         unlock_page(page);
193                         put_page(page);
194                 } else {
195                         mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
196                                         page_is_file_lru(page), -thp_nr_pages(page));
197                         putback_lru_page(page);
198                 }
199         }
200 }
201
202 /*
203  * Restore a potential migration pte to a working pte entry
204  */
205 static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma,
206                                  unsigned long addr, void *old)
207 {
208         struct page_vma_mapped_walk pvmw = {
209                 .page = old,
210                 .vma = vma,
211                 .address = addr,
212                 .flags = PVMW_SYNC | PVMW_MIGRATION,
213         };
214         struct page *new;
215         pte_t pte;
216         swp_entry_t entry;
217
218         VM_BUG_ON_PAGE(PageTail(page), page);
219         while (page_vma_mapped_walk(&pvmw)) {
220                 if (PageKsm(page))
221                         new = page;
222                 else
223                         new = page - pvmw.page->index +
224                                 linear_page_index(vma, pvmw.address);
225
226 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
227                 /* PMD-mapped THP migration entry */
228                 if (!pvmw.pte) {
229                         VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
230                         remove_migration_pmd(&pvmw, new);
231                         continue;
232                 }
233 #ifdef CONFIG_FINEGRAINED_THP
234                 if (PageTransHuge(page) && pte_cont(*pvmw.pte)) {
235                         VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
236                         remove_migration_huge_pte(&pvmw, new);
237                         continue;
238                 }
239 #endif /* CONFIG_FINEGRAINED_THP */
240 #endif
241
242                 get_page(new);
243                 pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
244                 if (pte_swp_soft_dirty(*pvmw.pte))
245                         pte = pte_mksoft_dirty(pte);
246
247                 /*
248                  * Recheck VMA as permissions can change since migration started
249                  */
250                 entry = pte_to_swp_entry(*pvmw.pte);
251                 if (is_write_migration_entry(entry))
252                         pte = maybe_mkwrite(pte, vma);
253                 else if (pte_swp_uffd_wp(*pvmw.pte))
254                         pte = pte_mkuffd_wp(pte);
255
256                 if (unlikely(is_device_private_page(new))) {
257                         entry = make_device_private_entry(new, pte_write(pte));
258                         pte = swp_entry_to_pte(entry);
259                         if (pte_swp_soft_dirty(*pvmw.pte))
260                                 pte = pte_swp_mksoft_dirty(pte);
261                         if (pte_swp_uffd_wp(*pvmw.pte))
262                                 pte = pte_swp_mkuffd_wp(pte);
263                 }
264
265 #ifdef CONFIG_HUGETLB_PAGE
266                 if (PageHuge(new)) {
267                         pte = pte_mkhuge(pte);
268                         pte = arch_make_huge_pte(pte, vma, new, 0);
269                         set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
270                         if (PageAnon(new))
271                                 hugepage_add_anon_rmap(new, vma, pvmw.address);
272                         else
273                                 page_dup_rmap(new, true);
274                 } else
275 #endif
276                 {
277                         set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
278
279                         if (PageAnon(new))
280                                 page_add_anon_rmap(new, vma, pvmw.address, false);
281                         else
282                                 page_add_file_rmap(new, false);
283                 }
284                 if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
285                         mlock_vma_page(new);
286
287                 if (PageTransHuge(page) && PageMlocked(page))
288                         clear_page_mlock(page);
289
290                 /* No need to invalidate - it was non-present before */
291                 update_mmu_cache(vma, pvmw.address, pvmw.pte);
292         }
293
294         return true;
295 }
296
297 /*
298  * Get rid of all migration entries and replace them by
299  * references to the indicated page.
300  */
301 void remove_migration_ptes(struct page *old, struct page *new, bool locked)
302 {
303         struct rmap_walk_control rwc = {
304                 .rmap_one = remove_migration_pte,
305                 .arg = old,
306         };
307
308         if (locked)
309                 rmap_walk_locked(new, &rwc);
310         else
311                 rmap_walk(new, &rwc);
312 }
313
314 /*
315  * Something used the pte of a page under migration. We need to
316  * get to the page and wait until migration is finished.
317  * When we return from this function the fault will be retried.
318  */
319 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
320                                 spinlock_t *ptl)
321 {
322         pte_t pte;
323         swp_entry_t entry;
324         struct page *page;
325
326         spin_lock(ptl);
327         pte = *ptep;
328         if (!is_swap_pte(pte))
329                 goto out;
330
331         entry = pte_to_swp_entry(pte);
332         if (!is_migration_entry(entry))
333                 goto out;
334
335         page = migration_entry_to_page(entry);
336         page = compound_head(page);
337
338         /*
339          * Once page cache replacement of page migration started, page_count
340          * is zero; but we must not call put_and_wait_on_page_locked() without
341          * a ref. Use get_page_unless_zero(), and just fault again if it fails.
342          */
343         if (!get_page_unless_zero(page))
344                 goto out;
345         pte_unmap_unlock(ptep, ptl);
346         put_and_wait_on_page_locked(page);
347         return;
348 out:
349         pte_unmap_unlock(ptep, ptl);
350 }
351
352 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
353                                 unsigned long address)
354 {
355         spinlock_t *ptl = pte_lockptr(mm, pmd);
356         pte_t *ptep = pte_offset_map(pmd, address);
357         __migration_entry_wait(mm, ptep, ptl);
358 }
359
360 void migration_entry_wait_huge(struct vm_area_struct *vma,
361                 struct mm_struct *mm, pte_t *pte)
362 {
363         spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
364         __migration_entry_wait(mm, pte, ptl);
365 }
366
367 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
368 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
369 {
370         spinlock_t *ptl;
371         struct page *page;
372
373         ptl = pmd_lock(mm, pmd);
374         if (!is_pmd_migration_entry(*pmd))
375                 goto unlock;
376         page = migration_entry_to_page(pmd_to_swp_entry(*pmd));
377         if (!get_page_unless_zero(page))
378                 goto unlock;
379         spin_unlock(ptl);
380         put_and_wait_on_page_locked(page);
381         return;
382 unlock:
383         spin_unlock(ptl);
384 }
385 #endif
386
387 static int expected_page_refs(struct address_space *mapping, struct page *page)
388 {
389         int expected_count = 1;
390
391         /*
392          * Device private pages have an extra refcount as they are
393          * ZONE_DEVICE pages.
394          */
395         expected_count += is_device_private_page(page);
396         if (mapping)
397                 expected_count += thp_nr_pages(page) + page_has_private(page);
398
399         return expected_count;
400 }
401
402 /*
403  * Replace the page in the mapping.
404  *
405  * The number of remaining references must be:
406  * 1 for anonymous pages without a mapping
407  * 2 for pages with a mapping
408  * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
409  */
410 int migrate_page_move_mapping(struct address_space *mapping,
411                 struct page *newpage, struct page *page, int extra_count)
412 {
413         XA_STATE(xas, &mapping->i_pages, page_index(page));
414         struct zone *oldzone, *newzone;
415         int dirty;
416         int expected_count = expected_page_refs(mapping, page) + extra_count;
417         int nr = thp_nr_pages(page);
418
419         if (!mapping) {
420                 /* Anonymous page without mapping */
421                 if (page_count(page) != expected_count)
422                         return -EAGAIN;
423
424                 /* No turning back from here */
425                 newpage->index = page->index;
426                 newpage->mapping = page->mapping;
427                 if (PageSwapBacked(page))
428                         __SetPageSwapBacked(newpage);
429
430                 return MIGRATEPAGE_SUCCESS;
431         }
432
433         oldzone = page_zone(page);
434         newzone = page_zone(newpage);
435
436         xas_lock_irq(&xas);
437         if (page_count(page) != expected_count || xas_load(&xas) != page) {
438                 xas_unlock_irq(&xas);
439                 return -EAGAIN;
440         }
441
442         if (!page_ref_freeze(page, expected_count)) {
443                 xas_unlock_irq(&xas);
444                 return -EAGAIN;
445         }
446
447         /*
448          * Now we know that no one else is looking at the page:
449          * no turning back from here.
450          */
451         newpage->index = page->index;
452         newpage->mapping = page->mapping;
453         page_ref_add(newpage, nr); /* add cache reference */
454         if (PageSwapBacked(page)) {
455                 __SetPageSwapBacked(newpage);
456                 if (PageSwapCache(page)) {
457                         SetPageSwapCache(newpage);
458                         set_page_private(newpage, page_private(page));
459                 }
460         } else {
461                 VM_BUG_ON_PAGE(PageSwapCache(page), page);
462         }
463
464         /* Move dirty while page refs frozen and newpage not yet exposed */
465         dirty = PageDirty(page);
466         if (dirty) {
467                 ClearPageDirty(page);
468                 SetPageDirty(newpage);
469         }
470
471         xas_store(&xas, newpage);
472         if (PageTransHuge(page)) {
473                 int i;
474
475                 for (i = 1; i < nr; i++) {
476                         xas_next(&xas);
477                         xas_store(&xas, newpage);
478                 }
479         }
480
481         /*
482          * Drop cache reference from old page by unfreezing
483          * to one less reference.
484          * We know this isn't the last reference.
485          */
486         page_ref_unfreeze(page, expected_count - nr);
487
488         xas_unlock(&xas);
489         /* Leave irq disabled to prevent preemption while updating stats */
490
491         /*
492          * If moved to a different zone then also account
493          * the page for that zone. Other VM counters will be
494          * taken care of when we establish references to the
495          * new page and drop references to the old page.
496          *
497          * Note that anonymous pages are accounted for
498          * via NR_FILE_PAGES and NR_ANON_MAPPED if they
499          * are mapped to swap space.
500          */
501         if (newzone != oldzone) {
502                 struct lruvec *old_lruvec, *new_lruvec;
503                 struct mem_cgroup *memcg;
504
505                 memcg = page_memcg(page);
506                 old_lruvec = mem_cgroup_lruvec(memcg, oldzone->zone_pgdat);
507                 new_lruvec = mem_cgroup_lruvec(memcg, newzone->zone_pgdat);
508
509                 __mod_lruvec_state(old_lruvec, NR_FILE_PAGES, -nr);
510                 __mod_lruvec_state(new_lruvec, NR_FILE_PAGES, nr);
511                 if (PageSwapBacked(page) && !PageSwapCache(page)) {
512                         __mod_lruvec_state(old_lruvec, NR_SHMEM, -nr);
513                         __mod_lruvec_state(new_lruvec, NR_SHMEM, nr);
514                 }
515                 if (dirty && mapping_can_writeback(mapping)) {
516                         __mod_lruvec_state(old_lruvec, NR_FILE_DIRTY, -nr);
517                         __mod_zone_page_state(oldzone, NR_ZONE_WRITE_PENDING, -nr);
518                         __mod_lruvec_state(new_lruvec, NR_FILE_DIRTY, nr);
519                         __mod_zone_page_state(newzone, NR_ZONE_WRITE_PENDING, nr);
520                 }
521         }
522         local_irq_enable();
523
524         return MIGRATEPAGE_SUCCESS;
525 }
526 EXPORT_SYMBOL(migrate_page_move_mapping);
527
528 /*
529  * The expected number of remaining references is the same as that
530  * of migrate_page_move_mapping().
531  */
532 int migrate_huge_page_move_mapping(struct address_space *mapping,
533                                    struct page *newpage, struct page *page)
534 {
535         XA_STATE(xas, &mapping->i_pages, page_index(page));
536         int expected_count;
537
538         xas_lock_irq(&xas);
539         expected_count = 2 + page_has_private(page);
540         if (page_count(page) != expected_count || xas_load(&xas) != page) {
541                 xas_unlock_irq(&xas);
542                 return -EAGAIN;
543         }
544
545         if (!page_ref_freeze(page, expected_count)) {
546                 xas_unlock_irq(&xas);
547                 return -EAGAIN;
548         }
549
550         newpage->index = page->index;
551         newpage->mapping = page->mapping;
552
553         get_page(newpage);
554
555         xas_store(&xas, newpage);
556
557         page_ref_unfreeze(page, expected_count - 1);
558
559         xas_unlock_irq(&xas);
560
561         return MIGRATEPAGE_SUCCESS;
562 }
563
564 /*
565  * Gigantic pages are so large that we do not guarantee that page++ pointer
566  * arithmetic will work across the entire page.  We need something more
567  * specialized.
568  */
569 static void __copy_gigantic_page(struct page *dst, struct page *src,
570                                 int nr_pages)
571 {
572         int i;
573         struct page *dst_base = dst;
574         struct page *src_base = src;
575
576         for (i = 0; i < nr_pages; ) {
577                 cond_resched();
578                 copy_highpage(dst, src);
579
580                 i++;
581                 dst = mem_map_next(dst, dst_base, i);
582                 src = mem_map_next(src, src_base, i);
583         }
584 }
585
586 static void copy_huge_page(struct page *dst, struct page *src)
587 {
588         int i;
589         int nr_pages;
590
591         if (PageHuge(src)) {
592                 /* hugetlbfs page */
593                 struct hstate *h = page_hstate(src);
594                 nr_pages = pages_per_huge_page(h);
595
596                 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
597                         __copy_gigantic_page(dst, src, nr_pages);
598                         return;
599                 }
600         } else {
601                 /* thp page */
602                 BUG_ON(!PageTransHuge(src));
603                 nr_pages = thp_nr_pages(src);
604         }
605
606         for (i = 0; i < nr_pages; i++) {
607                 cond_resched();
608                 copy_highpage(dst + i, src + i);
609         }
610 }
611
612 /*
613  * Copy the page to its new location
614  */
615 void migrate_page_states(struct page *newpage, struct page *page)
616 {
617         int cpupid;
618
619         if (PageError(page))
620                 SetPageError(newpage);
621         if (PageReferenced(page))
622                 SetPageReferenced(newpage);
623         if (PageUptodate(page))
624                 SetPageUptodate(newpage);
625         if (TestClearPageActive(page)) {
626                 VM_BUG_ON_PAGE(PageUnevictable(page), page);
627                 SetPageActive(newpage);
628         } else if (TestClearPageUnevictable(page))
629                 SetPageUnevictable(newpage);
630         if (PageWorkingset(page))
631                 SetPageWorkingset(newpage);
632         if (PageChecked(page))
633                 SetPageChecked(newpage);
634         if (PageMappedToDisk(page))
635                 SetPageMappedToDisk(newpage);
636
637         /* Move dirty on pages not done by migrate_page_move_mapping() */
638         if (PageDirty(page))
639                 SetPageDirty(newpage);
640
641         if (page_is_young(page))
642                 set_page_young(newpage);
643         if (page_is_idle(page))
644                 set_page_idle(newpage);
645
646         /*
647          * Copy NUMA information to the new page, to prevent over-eager
648          * future migrations of this same page.
649          */
650         cpupid = page_cpupid_xchg_last(page, -1);
651         page_cpupid_xchg_last(newpage, cpupid);
652
653         ksm_migrate_page(newpage, page);
654         /*
655          * Please do not reorder this without considering how mm/ksm.c's
656          * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
657          */
658         if (PageSwapCache(page))
659                 ClearPageSwapCache(page);
660         ClearPagePrivate(page);
661         set_page_private(page, 0);
662
663         /*
664          * If any waiters have accumulated on the new page then
665          * wake them up.
666          */
667         if (PageWriteback(newpage))
668                 end_page_writeback(newpage);
669
670         /*
671          * PG_readahead shares the same bit with PG_reclaim.  The above
672          * end_page_writeback() may clear PG_readahead mistakenly, so set the
673          * bit after that.
674          */
675         if (PageReadahead(page))
676                 SetPageReadahead(newpage);
677
678         copy_page_owner(page, newpage);
679
680         if (!PageHuge(page))
681                 mem_cgroup_migrate(page, newpage);
682 }
683 EXPORT_SYMBOL(migrate_page_states);
684
685 void migrate_page_copy(struct page *newpage, struct page *page)
686 {
687         if (PageHuge(page) || PageTransHuge(page))
688                 copy_huge_page(newpage, page);
689         else
690                 copy_highpage(newpage, page);
691
692         migrate_page_states(newpage, page);
693 }
694 EXPORT_SYMBOL(migrate_page_copy);
695
696 /************************************************************
697  *                    Migration functions
698  ***********************************************************/
699
700 /*
701  * Common logic to directly migrate a single LRU page suitable for
702  * pages that do not use PagePrivate/PagePrivate2.
703  *
704  * Pages are locked upon entry and exit.
705  */
706 int migrate_page(struct address_space *mapping,
707                 struct page *newpage, struct page *page,
708                 enum migrate_mode mode)
709 {
710         int rc;
711
712         BUG_ON(PageWriteback(page));    /* Writeback must be complete */
713
714         rc = migrate_page_move_mapping(mapping, newpage, page, 0);
715
716         if (rc != MIGRATEPAGE_SUCCESS)
717                 return rc;
718
719         if (mode != MIGRATE_SYNC_NO_COPY)
720                 migrate_page_copy(newpage, page);
721         else
722                 migrate_page_states(newpage, page);
723         return MIGRATEPAGE_SUCCESS;
724 }
725 EXPORT_SYMBOL(migrate_page);
726
727 #ifdef CONFIG_BLOCK
728 /* Returns true if all buffers are successfully locked */
729 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
730                                                         enum migrate_mode mode)
731 {
732         struct buffer_head *bh = head;
733
734         /* Simple case, sync compaction */
735         if (mode != MIGRATE_ASYNC) {
736                 do {
737                         lock_buffer(bh);
738                         bh = bh->b_this_page;
739
740                 } while (bh != head);
741
742                 return true;
743         }
744
745         /* async case, we cannot block on lock_buffer so use trylock_buffer */
746         do {
747                 if (!trylock_buffer(bh)) {
748                         /*
749                          * We failed to lock the buffer and cannot stall in
750                          * async migration. Release the taken locks
751                          */
752                         struct buffer_head *failed_bh = bh;
753                         bh = head;
754                         while (bh != failed_bh) {
755                                 unlock_buffer(bh);
756                                 bh = bh->b_this_page;
757                         }
758                         return false;
759                 }
760
761                 bh = bh->b_this_page;
762         } while (bh != head);
763         return true;
764 }
765
766 static int __buffer_migrate_page(struct address_space *mapping,
767                 struct page *newpage, struct page *page, enum migrate_mode mode,
768                 bool check_refs)
769 {
770         struct buffer_head *bh, *head;
771         int rc;
772         int expected_count;
773
774         if (!page_has_buffers(page))
775                 return migrate_page(mapping, newpage, page, mode);
776
777         /* Check whether page does not have extra refs before we do more work */
778         expected_count = expected_page_refs(mapping, page);
779         if (page_count(page) != expected_count)
780                 return -EAGAIN;
781
782         head = page_buffers(page);
783         if (!buffer_migrate_lock_buffers(head, mode))
784                 return -EAGAIN;
785
786         if (check_refs) {
787                 bool busy;
788                 bool invalidated = false;
789
790 recheck_buffers:
791                 busy = false;
792                 spin_lock(&mapping->private_lock);
793                 bh = head;
794                 do {
795                         if (atomic_read(&bh->b_count)) {
796                                 busy = true;
797                                 break;
798                         }
799                         bh = bh->b_this_page;
800                 } while (bh != head);
801                 if (busy) {
802                         if (invalidated) {
803                                 rc = -EAGAIN;
804                                 goto unlock_buffers;
805                         }
806                         spin_unlock(&mapping->private_lock);
807                         invalidate_bh_lrus();
808                         invalidated = true;
809                         goto recheck_buffers;
810                 }
811         }
812
813         rc = migrate_page_move_mapping(mapping, newpage, page, 0);
814         if (rc != MIGRATEPAGE_SUCCESS)
815                 goto unlock_buffers;
816
817         attach_page_private(newpage, detach_page_private(page));
818
819         bh = head;
820         do {
821                 set_bh_page(bh, newpage, bh_offset(bh));
822                 bh = bh->b_this_page;
823
824         } while (bh != head);
825
826         if (mode != MIGRATE_SYNC_NO_COPY)
827                 migrate_page_copy(newpage, page);
828         else
829                 migrate_page_states(newpage, page);
830
831         rc = MIGRATEPAGE_SUCCESS;
832 unlock_buffers:
833         if (check_refs)
834                 spin_unlock(&mapping->private_lock);
835         bh = head;
836         do {
837                 unlock_buffer(bh);
838                 bh = bh->b_this_page;
839
840         } while (bh != head);
841
842         return rc;
843 }
844
845 /*
846  * Migration function for pages with buffers. This function can only be used
847  * if the underlying filesystem guarantees that no other references to "page"
848  * exist. For example attached buffer heads are accessed only under page lock.
849  */
850 int buffer_migrate_page(struct address_space *mapping,
851                 struct page *newpage, struct page *page, enum migrate_mode mode)
852 {
853         return __buffer_migrate_page(mapping, newpage, page, mode, false);
854 }
855 EXPORT_SYMBOL(buffer_migrate_page);
856
857 /*
858  * Same as above except that this variant is more careful and checks that there
859  * are also no buffer head references. This function is the right one for
860  * mappings where buffer heads are directly looked up and referenced (such as
861  * block device mappings).
862  */
863 int buffer_migrate_page_norefs(struct address_space *mapping,
864                 struct page *newpage, struct page *page, enum migrate_mode mode)
865 {
866         return __buffer_migrate_page(mapping, newpage, page, mode, true);
867 }
868 #endif
869
870 /*
871  * Writeback a page to clean the dirty state
872  */
873 static int writeout(struct address_space *mapping, struct page *page)
874 {
875         struct writeback_control wbc = {
876                 .sync_mode = WB_SYNC_NONE,
877                 .nr_to_write = 1,
878                 .range_start = 0,
879                 .range_end = LLONG_MAX,
880                 .for_reclaim = 1
881         };
882         int rc;
883
884         if (!mapping->a_ops->writepage)
885                 /* No write method for the address space */
886                 return -EINVAL;
887
888         if (!clear_page_dirty_for_io(page))
889                 /* Someone else already triggered a write */
890                 return -EAGAIN;
891
892         /*
893          * A dirty page may imply that the underlying filesystem has
894          * the page on some queue. So the page must be clean for
895          * migration. Writeout may mean we loose the lock and the
896          * page state is no longer what we checked for earlier.
897          * At this point we know that the migration attempt cannot
898          * be successful.
899          */
900         remove_migration_ptes(page, page, false);
901
902         rc = mapping->a_ops->writepage(page, &wbc);
903
904         if (rc != AOP_WRITEPAGE_ACTIVATE)
905                 /* unlocked. Relock */
906                 lock_page(page);
907
908         return (rc < 0) ? -EIO : -EAGAIN;
909 }
910
911 /*
912  * Default handling if a filesystem does not provide a migration function.
913  */
914 static int fallback_migrate_page(struct address_space *mapping,
915         struct page *newpage, struct page *page, enum migrate_mode mode)
916 {
917         if (PageDirty(page)) {
918                 /* Only writeback pages in full synchronous migration */
919                 switch (mode) {
920                 case MIGRATE_SYNC:
921                 case MIGRATE_SYNC_NO_COPY:
922                         break;
923                 default:
924                         return -EBUSY;
925                 }
926                 return writeout(mapping, page);
927         }
928
929         /*
930          * Buffers may be managed in a filesystem specific way.
931          * We must have no buffers or drop them.
932          */
933         if (page_has_private(page) &&
934             !try_to_release_page(page, GFP_KERNEL))
935                 return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY;
936
937         return migrate_page(mapping, newpage, page, mode);
938 }
939
940 /*
941  * Move a page to a newly allocated page
942  * The page is locked and all ptes have been successfully removed.
943  *
944  * The new page will have replaced the old page if this function
945  * is successful.
946  *
947  * Return value:
948  *   < 0 - error code
949  *  MIGRATEPAGE_SUCCESS - success
950  */
951 static int move_to_new_page(struct page *newpage, struct page *page,
952                                 enum migrate_mode mode)
953 {
954         struct address_space *mapping;
955         int rc = -EAGAIN;
956         bool is_lru = !__PageMovable(page);
957
958         VM_BUG_ON_PAGE(!PageLocked(page), page);
959         VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
960
961         mapping = page_mapping(page);
962
963         if (likely(is_lru)) {
964                 if (!mapping)
965                         rc = migrate_page(mapping, newpage, page, mode);
966                 else if (mapping->a_ops->migratepage)
967                         /*
968                          * Most pages have a mapping and most filesystems
969                          * provide a migratepage callback. Anonymous pages
970                          * are part of swap space which also has its own
971                          * migratepage callback. This is the most common path
972                          * for page migration.
973                          */
974                         rc = mapping->a_ops->migratepage(mapping, newpage,
975                                                         page, mode);
976                 else
977                         rc = fallback_migrate_page(mapping, newpage,
978                                                         page, mode);
979         } else {
980                 /*
981                  * In case of non-lru page, it could be released after
982                  * isolation step. In that case, we shouldn't try migration.
983                  */
984                 VM_BUG_ON_PAGE(!PageIsolated(page), page);
985                 if (!PageMovable(page)) {
986                         rc = MIGRATEPAGE_SUCCESS;
987                         __ClearPageIsolated(page);
988                         goto out;
989                 }
990
991                 rc = mapping->a_ops->migratepage(mapping, newpage,
992                                                 page, mode);
993                 WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
994                         !PageIsolated(page));
995         }
996
997         /*
998          * When successful, old pagecache page->mapping must be cleared before
999          * page is freed; but stats require that PageAnon be left as PageAnon.
1000          */
1001         if (rc == MIGRATEPAGE_SUCCESS) {
1002                 if (__PageMovable(page)) {
1003                         VM_BUG_ON_PAGE(!PageIsolated(page), page);
1004
1005                         /*
1006                          * We clear PG_movable under page_lock so any compactor
1007                          * cannot try to migrate this page.
1008                          */
1009                         __ClearPageIsolated(page);
1010                 }
1011
1012                 /*
1013                  * Anonymous and movable page->mapping will be cleared by
1014                  * free_pages_prepare so don't reset it here for keeping
1015                  * the type to work PageAnon, for example.
1016                  */
1017                 if (!PageMappingFlags(page))
1018                         page->mapping = NULL;
1019
1020                 if (likely(!is_zone_device_page(newpage)))
1021                         flush_dcache_page(newpage);
1022
1023         }
1024 out:
1025         return rc;
1026 }
1027
1028 static int __unmap_and_move(struct page *page, struct page *newpage,
1029                                 int force, enum migrate_mode mode)
1030 {
1031         int rc = -EAGAIN;
1032         int page_was_mapped = 0;
1033         struct anon_vma *anon_vma = NULL;
1034         bool is_lru = !__PageMovable(page);
1035
1036         if (!trylock_page(page)) {
1037                 if (!force || mode == MIGRATE_ASYNC)
1038                         goto out;
1039
1040                 /*
1041                  * It's not safe for direct compaction to call lock_page.
1042                  * For example, during page readahead pages are added locked
1043                  * to the LRU. Later, when the IO completes the pages are
1044                  * marked uptodate and unlocked. However, the queueing
1045                  * could be merging multiple pages for one bio (e.g.
1046                  * mpage_readahead). If an allocation happens for the
1047                  * second or third page, the process can end up locking
1048                  * the same page twice and deadlocking. Rather than
1049                  * trying to be clever about what pages can be locked,
1050                  * avoid the use of lock_page for direct compaction
1051                  * altogether.
1052                  */
1053                 if (current->flags & PF_MEMALLOC)
1054                         goto out;
1055
1056                 lock_page(page);
1057         }
1058
1059         if (PageWriteback(page)) {
1060                 /*
1061                  * Only in the case of a full synchronous migration is it
1062                  * necessary to wait for PageWriteback. In the async case,
1063                  * the retry loop is too short and in the sync-light case,
1064                  * the overhead of stalling is too much
1065                  */
1066                 switch (mode) {
1067                 case MIGRATE_SYNC:
1068                 case MIGRATE_SYNC_NO_COPY:
1069                         break;
1070                 default:
1071                         rc = -EBUSY;
1072                         goto out_unlock;
1073                 }
1074                 if (!force)
1075                         goto out_unlock;
1076                 wait_on_page_writeback(page);
1077         }
1078
1079         /*
1080          * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
1081          * we cannot notice that anon_vma is freed while we migrates a page.
1082          * This get_anon_vma() delays freeing anon_vma pointer until the end
1083          * of migration. File cache pages are no problem because of page_lock()
1084          * File Caches may use write_page() or lock_page() in migration, then,
1085          * just care Anon page here.
1086          *
1087          * Only page_get_anon_vma() understands the subtleties of
1088          * getting a hold on an anon_vma from outside one of its mms.
1089          * But if we cannot get anon_vma, then we won't need it anyway,
1090          * because that implies that the anon page is no longer mapped
1091          * (and cannot be remapped so long as we hold the page lock).
1092          */
1093         if (PageAnon(page) && !PageKsm(page))
1094                 anon_vma = page_get_anon_vma(page);
1095
1096         /*
1097          * Block others from accessing the new page when we get around to
1098          * establishing additional references. We are usually the only one
1099          * holding a reference to newpage at this point. We used to have a BUG
1100          * here if trylock_page(newpage) fails, but would like to allow for
1101          * cases where there might be a race with the previous use of newpage.
1102          * This is much like races on refcount of oldpage: just don't BUG().
1103          */
1104         if (unlikely(!trylock_page(newpage)))
1105                 goto out_unlock;
1106
1107         if (unlikely(!is_lru)) {
1108                 rc = move_to_new_page(newpage, page, mode);
1109                 goto out_unlock_both;
1110         }
1111
1112         /*
1113          * Corner case handling:
1114          * 1. When a new swap-cache page is read into, it is added to the LRU
1115          * and treated as swapcache but it has no rmap yet.
1116          * Calling try_to_unmap() against a page->mapping==NULL page will
1117          * trigger a BUG.  So handle it here.
1118          * 2. An orphaned page (see truncate_complete_page) might have
1119          * fs-private metadata. The page can be picked up due to memory
1120          * offlining.  Everywhere else except page reclaim, the page is
1121          * invisible to the vm, so the page can not be migrated.  So try to
1122          * free the metadata, so the page can be freed.
1123          */
1124         if (!page->mapping) {
1125                 VM_BUG_ON_PAGE(PageAnon(page), page);
1126                 if (page_has_private(page)) {
1127                         try_to_free_buffers(page);
1128                         goto out_unlock_both;
1129                 }
1130         } else if (page_mapped(page)) {
1131                 /* Establish migration ptes */
1132                 VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1133                                 page);
1134                 try_to_unmap(page, TTU_MIGRATION|TTU_IGNORE_MLOCK);
1135                 page_was_mapped = 1;
1136         }
1137
1138         if (!page_mapped(page))
1139                 rc = move_to_new_page(newpage, page, mode);
1140
1141         if (page_was_mapped)
1142                 remove_migration_ptes(page,
1143                         rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
1144
1145 out_unlock_both:
1146         unlock_page(newpage);
1147 out_unlock:
1148         /* Drop an anon_vma reference if we took one */
1149         if (anon_vma)
1150                 put_anon_vma(anon_vma);
1151         unlock_page(page);
1152 out:
1153         /*
1154          * If migration is successful, decrease refcount of the newpage
1155          * which will not free the page because new page owner increased
1156          * refcounter. As well, if it is LRU page, add the page to LRU
1157          * list in here. Use the old state of the isolated source page to
1158          * determine if we migrated a LRU page. newpage was already unlocked
1159          * and possibly modified by its owner - don't rely on the page
1160          * state.
1161          */
1162         if (rc == MIGRATEPAGE_SUCCESS) {
1163                 if (unlikely(!is_lru))
1164                         put_page(newpage);
1165                 else
1166                         putback_lru_page(newpage);
1167         }
1168
1169         return rc;
1170 }
1171
1172 /*
1173  * Obtain the lock on page, remove all ptes and migrate the page
1174  * to the newly allocated page in newpage.
1175  */
1176 static int unmap_and_move(new_page_t get_new_page,
1177                                    free_page_t put_new_page,
1178                                    unsigned long private, struct page *page,
1179                                    int force, enum migrate_mode mode,
1180                                    enum migrate_reason reason)
1181 {
1182         int rc = MIGRATEPAGE_SUCCESS;
1183         struct page *newpage = NULL;
1184
1185         if (!thp_migration_supported() && PageTransHuge(page))
1186                 return -ENOMEM;
1187
1188         if (page_count(page) == 1) {
1189                 /* page was freed from under us. So we are done. */
1190                 ClearPageActive(page);
1191                 ClearPageUnevictable(page);
1192                 if (unlikely(__PageMovable(page))) {
1193                         lock_page(page);
1194                         if (!PageMovable(page))
1195                                 __ClearPageIsolated(page);
1196                         unlock_page(page);
1197                 }
1198                 goto out;
1199         }
1200
1201         newpage = get_new_page(page, private);
1202         if (!newpage)
1203                 return -ENOMEM;
1204
1205         rc = __unmap_and_move(page, newpage, force, mode);
1206         if (rc == MIGRATEPAGE_SUCCESS)
1207                 set_page_owner_migrate_reason(newpage, reason);
1208
1209 out:
1210         if (rc != -EAGAIN) {
1211                 /*
1212                  * A page that has been migrated has all references
1213                  * removed and will be freed. A page that has not been
1214                  * migrated will have kept its references and be restored.
1215                  */
1216                 list_del(&page->lru);
1217
1218                 /*
1219                  * Compaction can migrate also non-LRU pages which are
1220                  * not accounted to NR_ISOLATED_*. They can be recognized
1221                  * as __PageMovable
1222                  */
1223                 if (likely(!__PageMovable(page)))
1224                         mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
1225                                         page_is_file_lru(page), -thp_nr_pages(page));
1226         }
1227
1228         /*
1229          * If migration is successful, releases reference grabbed during
1230          * isolation. Otherwise, restore the page to right list unless
1231          * we want to retry.
1232          */
1233         if (rc == MIGRATEPAGE_SUCCESS) {
1234                 if (reason != MR_MEMORY_FAILURE)
1235                         /*
1236                          * We release the page in page_handle_poison.
1237                          */
1238                         put_page(page);
1239         } else {
1240                 if (rc != -EAGAIN) {
1241                         if (likely(!__PageMovable(page))) {
1242                                 putback_lru_page(page);
1243                                 goto put_new;
1244                         }
1245
1246                         lock_page(page);
1247                         if (PageMovable(page))
1248                                 putback_movable_page(page);
1249                         else
1250                                 __ClearPageIsolated(page);
1251                         unlock_page(page);
1252                         put_page(page);
1253                 }
1254 put_new:
1255                 if (put_new_page)
1256                         put_new_page(newpage, private);
1257                 else
1258                         put_page(newpage);
1259         }
1260
1261         return rc;
1262 }
1263
1264 /*
1265  * Counterpart of unmap_and_move_page() for hugepage migration.
1266  *
1267  * This function doesn't wait the completion of hugepage I/O
1268  * because there is no race between I/O and migration for hugepage.
1269  * Note that currently hugepage I/O occurs only in direct I/O
1270  * where no lock is held and PG_writeback is irrelevant,
1271  * and writeback status of all subpages are counted in the reference
1272  * count of the head page (i.e. if all subpages of a 2MB hugepage are
1273  * under direct I/O, the reference of the head page is 512 and a bit more.)
1274  * This means that when we try to migrate hugepage whose subpages are
1275  * doing direct I/O, some references remain after try_to_unmap() and
1276  * hugepage migration fails without data corruption.
1277  *
1278  * There is also no race when direct I/O is issued on the page under migration,
1279  * because then pte is replaced with migration swap entry and direct I/O code
1280  * will wait in the page fault for migration to complete.
1281  */
1282 static int unmap_and_move_huge_page(new_page_t get_new_page,
1283                                 free_page_t put_new_page, unsigned long private,
1284                                 struct page *hpage, int force,
1285                                 enum migrate_mode mode, int reason)
1286 {
1287         int rc = -EAGAIN;
1288         int page_was_mapped = 0;
1289         struct page *new_hpage;
1290         struct anon_vma *anon_vma = NULL;
1291         struct address_space *mapping = NULL;
1292
1293         /*
1294          * Migratability of hugepages depends on architectures and their size.
1295          * This check is necessary because some callers of hugepage migration
1296          * like soft offline and memory hotremove don't walk through page
1297          * tables or check whether the hugepage is pmd-based or not before
1298          * kicking migration.
1299          */
1300         if (!hugepage_migration_supported(page_hstate(hpage))) {
1301                 putback_active_hugepage(hpage);
1302                 return -ENOSYS;
1303         }
1304
1305         new_hpage = get_new_page(hpage, private);
1306         if (!new_hpage)
1307                 return -ENOMEM;
1308
1309         if (!trylock_page(hpage)) {
1310                 if (!force)
1311                         goto out;
1312                 switch (mode) {
1313                 case MIGRATE_SYNC:
1314                 case MIGRATE_SYNC_NO_COPY:
1315                         break;
1316                 default:
1317                         goto out;
1318                 }
1319                 lock_page(hpage);
1320         }
1321
1322         /*
1323          * Check for pages which are in the process of being freed.  Without
1324          * page_mapping() set, hugetlbfs specific move page routine will not
1325          * be called and we could leak usage counts for subpools.
1326          */
1327         if (page_private(hpage) && !page_mapping(hpage)) {
1328                 rc = -EBUSY;
1329                 goto out_unlock;
1330         }
1331
1332         if (PageAnon(hpage))
1333                 anon_vma = page_get_anon_vma(hpage);
1334
1335         if (unlikely(!trylock_page(new_hpage)))
1336                 goto put_anon;
1337
1338         if (page_mapped(hpage)) {
1339                 bool mapping_locked = false;
1340                 enum ttu_flags ttu = TTU_MIGRATION|TTU_IGNORE_MLOCK;
1341
1342                 if (!PageAnon(hpage)) {
1343                         /*
1344                          * In shared mappings, try_to_unmap could potentially
1345                          * call huge_pmd_unshare.  Because of this, take
1346                          * semaphore in write mode here and set TTU_RMAP_LOCKED
1347                          * to let lower levels know we have taken the lock.
1348                          */
1349                         mapping = hugetlb_page_mapping_lock_write(hpage);
1350                         if (unlikely(!mapping))
1351                                 goto unlock_put_anon;
1352
1353                         mapping_locked = true;
1354                         ttu |= TTU_RMAP_LOCKED;
1355                 }
1356
1357                 try_to_unmap(hpage, ttu);
1358                 page_was_mapped = 1;
1359
1360                 if (mapping_locked)
1361                         i_mmap_unlock_write(mapping);
1362         }
1363
1364         if (!page_mapped(hpage))
1365                 rc = move_to_new_page(new_hpage, hpage, mode);
1366
1367         if (page_was_mapped)
1368                 remove_migration_ptes(hpage,
1369                         rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false);
1370
1371 unlock_put_anon:
1372         unlock_page(new_hpage);
1373
1374 put_anon:
1375         if (anon_vma)
1376                 put_anon_vma(anon_vma);
1377
1378         if (rc == MIGRATEPAGE_SUCCESS) {
1379                 move_hugetlb_state(hpage, new_hpage, reason);
1380                 put_new_page = NULL;
1381         }
1382
1383 out_unlock:
1384         unlock_page(hpage);
1385 out:
1386         if (rc != -EAGAIN)
1387                 putback_active_hugepage(hpage);
1388
1389         /*
1390          * If migration was not successful and there's a freeing callback, use
1391          * it.  Otherwise, put_page() will drop the reference grabbed during
1392          * isolation.
1393          */
1394         if (put_new_page)
1395                 put_new_page(new_hpage, private);
1396         else
1397                 putback_active_hugepage(new_hpage);
1398
1399         return rc;
1400 }
1401
1402 /*
1403  * migrate_pages - migrate the pages specified in a list, to the free pages
1404  *                 supplied as the target for the page migration
1405  *
1406  * @from:               The list of pages to be migrated.
1407  * @get_new_page:       The function used to allocate free pages to be used
1408  *                      as the target of the page migration.
1409  * @put_new_page:       The function used to free target pages if migration
1410  *                      fails, or NULL if no special handling is necessary.
1411  * @private:            Private data to be passed on to get_new_page()
1412  * @mode:               The migration mode that specifies the constraints for
1413  *                      page migration, if any.
1414  * @reason:             The reason for page migration.
1415  *
1416  * The function returns after 10 attempts or if no pages are movable any more
1417  * because the list has become empty or no retryable pages exist any more.
1418  * The caller should call putback_movable_pages() to return pages to the LRU
1419  * or free list only if ret != 0.
1420  *
1421  * Returns the number of pages that were not migrated, or an error code.
1422  */
1423 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1424                 free_page_t put_new_page, unsigned long private,
1425                 enum migrate_mode mode, int reason)
1426 {
1427         int retry = 1;
1428         int thp_retry = 1;
1429         int nr_failed = 0;
1430         int nr_succeeded = 0;
1431         int nr_thp_succeeded = 0;
1432         int nr_thp_failed = 0;
1433         int nr_thp_split = 0;
1434         int pass = 0;
1435         bool is_thp = false;
1436         struct page *page;
1437         struct page *page2;
1438         int swapwrite = current->flags & PF_SWAPWRITE;
1439         int rc, nr_subpages;
1440
1441         trace_mm_migrate_pages_start(mode, reason);
1442
1443         if (!swapwrite)
1444                 current->flags |= PF_SWAPWRITE;
1445
1446         for (pass = 0; pass < 10 && (retry || thp_retry); pass++) {
1447                 retry = 0;
1448                 thp_retry = 0;
1449
1450                 list_for_each_entry_safe(page, page2, from, lru) {
1451 retry:
1452                         /*
1453                          * THP statistics is based on the source huge page.
1454                          * Capture required information that might get lost
1455                          * during migration.
1456                          */
1457                         is_thp = PageTransHuge(page) && !PageHuge(page);
1458                         nr_subpages = thp_nr_pages(page);
1459                         cond_resched();
1460
1461                         if (PageHuge(page))
1462                                 rc = unmap_and_move_huge_page(get_new_page,
1463                                                 put_new_page, private, page,
1464                                                 pass > 2, mode, reason);
1465                         else
1466                                 rc = unmap_and_move(get_new_page, put_new_page,
1467                                                 private, page, pass > 2, mode,
1468                                                 reason);
1469
1470                         switch(rc) {
1471                         case -ENOMEM:
1472                                 /*
1473                                  * THP migration might be unsupported or the
1474                                  * allocation could've failed so we should
1475                                  * retry on the same page with the THP split
1476                                  * to base pages.
1477                                  *
1478                                  * Head page is retried immediately and tail
1479                                  * pages are added to the tail of the list so
1480                                  * we encounter them after the rest of the list
1481                                  * is processed.
1482                                  */
1483                                 if (is_thp) {
1484                                         lock_page(page);
1485                                         rc = split_huge_page_to_list(page, from);
1486                                         unlock_page(page);
1487                                         if (!rc) {
1488                                                 list_safe_reset_next(page, page2, lru);
1489                                                 nr_thp_split++;
1490                                                 goto retry;
1491                                         }
1492
1493                                         nr_thp_failed++;
1494                                         nr_failed += nr_subpages;
1495                                         goto out;
1496                                 }
1497                                 nr_failed++;
1498                                 goto out;
1499                         case -EAGAIN:
1500                                 if (is_thp) {
1501                                         thp_retry++;
1502                                         break;
1503                                 }
1504                                 retry++;
1505                                 break;
1506                         case MIGRATEPAGE_SUCCESS:
1507                                 if (is_thp) {
1508                                         nr_thp_succeeded++;
1509                                         nr_succeeded += nr_subpages;
1510                                         break;
1511                                 }
1512                                 nr_succeeded++;
1513                                 break;
1514                         default:
1515                                 /*
1516                                  * Permanent failure (-EBUSY, -ENOSYS, etc.):
1517                                  * unlike -EAGAIN case, the failed page is
1518                                  * removed from migration page list and not
1519                                  * retried in the next outer loop.
1520                                  */
1521                                 if (is_thp) {
1522                                         nr_thp_failed++;
1523                                         nr_failed += nr_subpages;
1524                                         break;
1525                                 }
1526                                 nr_failed++;
1527                                 break;
1528                         }
1529                 }
1530         }
1531         nr_failed += retry + thp_retry;
1532         nr_thp_failed += thp_retry;
1533         rc = nr_failed;
1534 out:
1535         count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1536         count_vm_events(PGMIGRATE_FAIL, nr_failed);
1537         count_vm_events(THP_MIGRATION_SUCCESS, nr_thp_succeeded);
1538         count_vm_events(THP_MIGRATION_FAIL, nr_thp_failed);
1539         count_vm_events(THP_MIGRATION_SPLIT, nr_thp_split);
1540         trace_mm_migrate_pages(nr_succeeded, nr_failed, nr_thp_succeeded,
1541                                nr_thp_failed, nr_thp_split, mode, reason);
1542
1543         if (!swapwrite)
1544                 current->flags &= ~PF_SWAPWRITE;
1545
1546         return rc;
1547 }
1548
1549 struct page *alloc_migration_target(struct page *page, unsigned long private)
1550 {
1551         struct migration_target_control *mtc;
1552         gfp_t gfp_mask;
1553         unsigned int order = 0;
1554         struct page *new_page = NULL;
1555         int nid;
1556         int zidx;
1557
1558         mtc = (struct migration_target_control *)private;
1559         gfp_mask = mtc->gfp_mask;
1560         nid = mtc->nid;
1561         if (nid == NUMA_NO_NODE)
1562                 nid = page_to_nid(page);
1563
1564         if (PageHuge(page)) {
1565                 struct hstate *h = page_hstate(compound_head(page));
1566
1567                 gfp_mask = htlb_modify_alloc_mask(h, gfp_mask);
1568                 return alloc_huge_page_nodemask(h, nid, mtc->nmask, gfp_mask);
1569         }
1570
1571         if (PageTransHuge(page)) {
1572                 /*
1573                  * clear __GFP_RECLAIM to make the migration callback
1574                  * consistent with regular THP allocations.
1575                  */
1576                 gfp_mask &= ~__GFP_RECLAIM;
1577                 gfp_mask |= GFP_TRANSHUGE;
1578                 order = HPAGE_PMD_ORDER;
1579         }
1580         zidx = zone_idx(page_zone(page));
1581         if (is_highmem_idx(zidx) || zidx == ZONE_MOVABLE)
1582                 gfp_mask |= __GFP_HIGHMEM;
1583
1584         new_page = __alloc_pages_nodemask(gfp_mask, order, nid, mtc->nmask);
1585
1586         if (new_page && PageTransHuge(new_page))
1587                 prep_transhuge_page(new_page);
1588
1589         return new_page;
1590 }
1591
1592 #ifdef CONFIG_NUMA
1593
1594 static int store_status(int __user *status, int start, int value, int nr)
1595 {
1596         while (nr-- > 0) {
1597                 if (put_user(value, status + start))
1598                         return -EFAULT;
1599                 start++;
1600         }
1601
1602         return 0;
1603 }
1604
1605 static int do_move_pages_to_node(struct mm_struct *mm,
1606                 struct list_head *pagelist, int node)
1607 {
1608         int err;
1609         struct migration_target_control mtc = {
1610                 .nid = node,
1611                 .gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE,
1612         };
1613
1614         err = migrate_pages(pagelist, alloc_migration_target, NULL,
1615                         (unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL);
1616         if (err)
1617                 putback_movable_pages(pagelist);
1618         return err;
1619 }
1620
1621 /*
1622  * Resolves the given address to a struct page, isolates it from the LRU and
1623  * puts it to the given pagelist.
1624  * Returns:
1625  *     errno - if the page cannot be found/isolated
1626  *     0 - when it doesn't have to be migrated because it is already on the
1627  *         target node
1628  *     1 - when it has been queued
1629  */
1630 static int add_page_for_migration(struct mm_struct *mm, unsigned long addr,
1631                 int node, struct list_head *pagelist, bool migrate_all)
1632 {
1633         struct vm_area_struct *vma;
1634         struct page *page;
1635         unsigned int follflags;
1636         int err;
1637
1638         mmap_read_lock(mm);
1639         err = -EFAULT;
1640         vma = find_vma(mm, addr);
1641         if (!vma || addr < vma->vm_start || !vma_migratable(vma))
1642                 goto out;
1643
1644         /* FOLL_DUMP to ignore special (like zero) pages */
1645         follflags = FOLL_GET | FOLL_DUMP;
1646         page = follow_page(vma, addr, follflags);
1647
1648         err = PTR_ERR(page);
1649         if (IS_ERR(page))
1650                 goto out;
1651
1652         err = -ENOENT;
1653         if (!page)
1654                 goto out;
1655
1656         err = 0;
1657         if (page_to_nid(page) == node)
1658                 goto out_putpage;
1659
1660         err = -EACCES;
1661         if (page_mapcount(page) > 1 && !migrate_all)
1662                 goto out_putpage;
1663
1664         if (PageHuge(page)) {
1665                 if (PageHead(page)) {
1666                         isolate_huge_page(page, pagelist);
1667                         err = 1;
1668                 }
1669         } else {
1670                 struct page *head;
1671
1672                 head = compound_head(page);
1673                 err = isolate_lru_page(head);
1674                 if (err)
1675                         goto out_putpage;
1676
1677                 err = 1;
1678                 list_add_tail(&head->lru, pagelist);
1679                 mod_node_page_state(page_pgdat(head),
1680                         NR_ISOLATED_ANON + page_is_file_lru(head),
1681                         thp_nr_pages(head));
1682         }
1683 out_putpage:
1684         /*
1685          * Either remove the duplicate refcount from
1686          * isolate_lru_page() or drop the page ref if it was
1687          * not isolated.
1688          */
1689         put_page(page);
1690 out:
1691         mmap_read_unlock(mm);
1692         return err;
1693 }
1694
1695 static int move_pages_and_store_status(struct mm_struct *mm, int node,
1696                 struct list_head *pagelist, int __user *status,
1697                 int start, int i, unsigned long nr_pages)
1698 {
1699         int err;
1700
1701         if (list_empty(pagelist))
1702                 return 0;
1703
1704         err = do_move_pages_to_node(mm, pagelist, node);
1705         if (err) {
1706                 /*
1707                  * Positive err means the number of failed
1708                  * pages to migrate.  Since we are going to
1709                  * abort and return the number of non-migrated
1710                  * pages, so need to incude the rest of the
1711                  * nr_pages that have not been attempted as
1712                  * well.
1713                  */
1714                 if (err > 0)
1715                         err += nr_pages - i - 1;
1716                 return err;
1717         }
1718         return store_status(status, start, node, i - start);
1719 }
1720
1721 /*
1722  * Migrate an array of page address onto an array of nodes and fill
1723  * the corresponding array of status.
1724  */
1725 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1726                          unsigned long nr_pages,
1727                          const void __user * __user *pages,
1728                          const int __user *nodes,
1729                          int __user *status, int flags)
1730 {
1731         int current_node = NUMA_NO_NODE;
1732         LIST_HEAD(pagelist);
1733         int start, i;
1734         int err = 0, err1;
1735
1736         migrate_prep();
1737
1738         for (i = start = 0; i < nr_pages; i++) {
1739                 const void __user *p;
1740                 unsigned long addr;
1741                 int node;
1742
1743                 err = -EFAULT;
1744                 if (get_user(p, pages + i))
1745                         goto out_flush;
1746                 if (get_user(node, nodes + i))
1747                         goto out_flush;
1748                 addr = (unsigned long)untagged_addr(p);
1749
1750                 err = -ENODEV;
1751                 if (node < 0 || node >= MAX_NUMNODES)
1752                         goto out_flush;
1753                 if (!node_state(node, N_MEMORY))
1754                         goto out_flush;
1755
1756                 err = -EACCES;
1757                 if (!node_isset(node, task_nodes))
1758                         goto out_flush;
1759
1760                 if (current_node == NUMA_NO_NODE) {
1761                         current_node = node;
1762                         start = i;
1763                 } else if (node != current_node) {
1764                         err = move_pages_and_store_status(mm, current_node,
1765                                         &pagelist, status, start, i, nr_pages);
1766                         if (err)
1767                                 goto out;
1768                         start = i;
1769                         current_node = node;
1770                 }
1771
1772                 /*
1773                  * Errors in the page lookup or isolation are not fatal and we simply
1774                  * report them via status
1775                  */
1776                 err = add_page_for_migration(mm, addr, current_node,
1777                                 &pagelist, flags & MPOL_MF_MOVE_ALL);
1778
1779                 if (err > 0) {
1780                         /* The page is successfully queued for migration */
1781                         continue;
1782                 }
1783
1784                 /*
1785                  * If the page is already on the target node (!err), store the
1786                  * node, otherwise, store the err.
1787                  */
1788                 err = store_status(status, i, err ? : current_node, 1);
1789                 if (err)
1790                         goto out_flush;
1791
1792                 err = move_pages_and_store_status(mm, current_node, &pagelist,
1793                                 status, start, i, nr_pages);
1794                 if (err)
1795                         goto out;
1796                 current_node = NUMA_NO_NODE;
1797         }
1798 out_flush:
1799         /* Make sure we do not overwrite the existing error */
1800         err1 = move_pages_and_store_status(mm, current_node, &pagelist,
1801                                 status, start, i, nr_pages);
1802         if (err >= 0)
1803                 err = err1;
1804 out:
1805         return err;
1806 }
1807
1808 /*
1809  * Determine the nodes of an array of pages and store it in an array of status.
1810  */
1811 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1812                                 const void __user **pages, int *status)
1813 {
1814         unsigned long i;
1815
1816         mmap_read_lock(mm);
1817
1818         for (i = 0; i < nr_pages; i++) {
1819                 unsigned long addr = (unsigned long)(*pages);
1820                 struct vm_area_struct *vma;
1821                 struct page *page;
1822                 int err = -EFAULT;
1823
1824                 vma = find_vma(mm, addr);
1825                 if (!vma || addr < vma->vm_start)
1826                         goto set_status;
1827
1828                 /* FOLL_DUMP to ignore special (like zero) pages */
1829                 page = follow_page(vma, addr, FOLL_DUMP);
1830
1831                 err = PTR_ERR(page);
1832                 if (IS_ERR(page))
1833                         goto set_status;
1834
1835                 err = page ? page_to_nid(page) : -ENOENT;
1836 set_status:
1837                 *status = err;
1838
1839                 pages++;
1840                 status++;
1841         }
1842
1843         mmap_read_unlock(mm);
1844 }
1845
1846 /*
1847  * Determine the nodes of a user array of pages and store it in
1848  * a user array of status.
1849  */
1850 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1851                          const void __user * __user *pages,
1852                          int __user *status)
1853 {
1854 #define DO_PAGES_STAT_CHUNK_NR 16
1855         const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1856         int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1857
1858         while (nr_pages) {
1859                 unsigned long chunk_nr;
1860
1861                 chunk_nr = nr_pages;
1862                 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1863                         chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1864
1865                 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1866                         break;
1867
1868                 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1869
1870                 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1871                         break;
1872
1873                 pages += chunk_nr;
1874                 status += chunk_nr;
1875                 nr_pages -= chunk_nr;
1876         }
1877         return nr_pages ? -EFAULT : 0;
1878 }
1879
1880 static struct mm_struct *find_mm_struct(pid_t pid, nodemask_t *mem_nodes)
1881 {
1882         struct task_struct *task;
1883         struct mm_struct *mm;
1884
1885         /*
1886          * There is no need to check if current process has the right to modify
1887          * the specified process when they are same.
1888          */
1889         if (!pid) {
1890                 mmget(current->mm);
1891                 *mem_nodes = cpuset_mems_allowed(current);
1892                 return current->mm;
1893         }
1894
1895         /* Find the mm_struct */
1896         rcu_read_lock();
1897         task = find_task_by_vpid(pid);
1898         if (!task) {
1899                 rcu_read_unlock();
1900                 return ERR_PTR(-ESRCH);
1901         }
1902         get_task_struct(task);
1903
1904         /*
1905          * Check if this process has the right to modify the specified
1906          * process. Use the regular "ptrace_may_access()" checks.
1907          */
1908         if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1909                 rcu_read_unlock();
1910                 mm = ERR_PTR(-EPERM);
1911                 goto out;
1912         }
1913         rcu_read_unlock();
1914
1915         mm = ERR_PTR(security_task_movememory(task));
1916         if (IS_ERR(mm))
1917                 goto out;
1918         *mem_nodes = cpuset_mems_allowed(task);
1919         mm = get_task_mm(task);
1920 out:
1921         put_task_struct(task);
1922         if (!mm)
1923                 mm = ERR_PTR(-EINVAL);
1924         return mm;
1925 }
1926
1927 /*
1928  * Move a list of pages in the address space of the currently executing
1929  * process.
1930  */
1931 static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
1932                              const void __user * __user *pages,
1933                              const int __user *nodes,
1934                              int __user *status, int flags)
1935 {
1936         struct mm_struct *mm;
1937         int err;
1938         nodemask_t task_nodes;
1939
1940         /* Check flags */
1941         if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1942                 return -EINVAL;
1943
1944         if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1945                 return -EPERM;
1946
1947         mm = find_mm_struct(pid, &task_nodes);
1948         if (IS_ERR(mm))
1949                 return PTR_ERR(mm);
1950
1951         if (nodes)
1952                 err = do_pages_move(mm, task_nodes, nr_pages, pages,
1953                                     nodes, status, flags);
1954         else
1955                 err = do_pages_stat(mm, nr_pages, pages, status);
1956
1957         mmput(mm);
1958         return err;
1959 }
1960
1961 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1962                 const void __user * __user *, pages,
1963                 const int __user *, nodes,
1964                 int __user *, status, int, flags)
1965 {
1966         return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1967 }
1968
1969 #ifdef CONFIG_COMPAT
1970 COMPAT_SYSCALL_DEFINE6(move_pages, pid_t, pid, compat_ulong_t, nr_pages,
1971                        compat_uptr_t __user *, pages32,
1972                        const int __user *, nodes,
1973                        int __user *, status,
1974                        int, flags)
1975 {
1976         const void __user * __user *pages;
1977         int i;
1978
1979         pages = compat_alloc_user_space(nr_pages * sizeof(void *));
1980         for (i = 0; i < nr_pages; i++) {
1981                 compat_uptr_t p;
1982
1983                 if (get_user(p, pages32 + i) ||
1984                         put_user(compat_ptr(p), pages + i))
1985                         return -EFAULT;
1986         }
1987         return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1988 }
1989 #endif /* CONFIG_COMPAT */
1990
1991 #ifdef CONFIG_NUMA_BALANCING
1992 /*
1993  * Returns true if this is a safe migration target node for misplaced NUMA
1994  * pages. Currently it only checks the watermarks which crude
1995  */
1996 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1997                                    unsigned long nr_migrate_pages)
1998 {
1999         int z;
2000
2001         for (z = pgdat->nr_zones - 1; z >= 0; z--) {
2002                 struct zone *zone = pgdat->node_zones + z;
2003
2004                 if (!populated_zone(zone))
2005                         continue;
2006
2007                 /* Avoid waking kswapd by allocating pages_to_migrate pages. */
2008                 if (!zone_watermark_ok(zone, 0,
2009                                        high_wmark_pages(zone) +
2010                                        nr_migrate_pages,
2011                                        ZONE_MOVABLE, 0))
2012                         continue;
2013                 return true;
2014         }
2015         return false;
2016 }
2017
2018 static struct page *alloc_misplaced_dst_page(struct page *page,
2019                                            unsigned long data)
2020 {
2021         int nid = (int) data;
2022         struct page *newpage;
2023
2024         newpage = __alloc_pages_node(nid,
2025                                          (GFP_HIGHUSER_MOVABLE |
2026                                           __GFP_THISNODE | __GFP_NOMEMALLOC |
2027                                           __GFP_NORETRY | __GFP_NOWARN) &
2028                                          ~__GFP_RECLAIM, 0);
2029
2030         return newpage;
2031 }
2032
2033 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
2034 {
2035         int page_lru;
2036
2037         VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
2038
2039         /* Avoid migrating to a node that is nearly full */
2040         if (!migrate_balanced_pgdat(pgdat, compound_nr(page)))
2041                 return 0;
2042
2043         if (isolate_lru_page(page))
2044                 return 0;
2045
2046         /*
2047          * migrate_misplaced_transhuge_page() skips page migration's usual
2048          * check on page_count(), so we must do it here, now that the page
2049          * has been isolated: a GUP pin, or any other pin, prevents migration.
2050          * The expected page count is 3: 1 for page's mapcount and 1 for the
2051          * caller's pin and 1 for the reference taken by isolate_lru_page().
2052          */
2053         if (PageTransHuge(page) && page_count(page) != 3) {
2054                 putback_lru_page(page);
2055                 return 0;
2056         }
2057
2058         page_lru = page_is_file_lru(page);
2059         mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
2060                                 thp_nr_pages(page));
2061
2062         /*
2063          * Isolating the page has taken another reference, so the
2064          * caller's reference can be safely dropped without the page
2065          * disappearing underneath us during migration.
2066          */
2067         put_page(page);
2068         return 1;
2069 }
2070
2071 bool pmd_trans_migrating(pmd_t pmd)
2072 {
2073         struct page *page = pmd_page(pmd);
2074         return PageLocked(page);
2075 }
2076
2077 /*
2078  * Attempt to migrate a misplaced page to the specified destination
2079  * node. Caller is expected to have an elevated reference count on
2080  * the page that will be dropped by this function before returning.
2081  */
2082 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
2083                            int node)
2084 {
2085         pg_data_t *pgdat = NODE_DATA(node);
2086         int isolated;
2087         int nr_remaining;
2088         LIST_HEAD(migratepages);
2089
2090         /*
2091          * Don't migrate file pages that are mapped in multiple processes
2092          * with execute permissions as they are probably shared libraries.
2093          */
2094         if (page_mapcount(page) != 1 && page_is_file_lru(page) &&
2095             (vma->vm_flags & VM_EXEC))
2096                 goto out;
2097
2098         /*
2099          * Also do not migrate dirty pages as not all filesystems can move
2100          * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles.
2101          */
2102         if (page_is_file_lru(page) && PageDirty(page))
2103                 goto out;
2104
2105         isolated = numamigrate_isolate_page(pgdat, page);
2106         if (!isolated)
2107                 goto out;
2108
2109         list_add(&page->lru, &migratepages);
2110         nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
2111                                      NULL, node, MIGRATE_ASYNC,
2112                                      MR_NUMA_MISPLACED);
2113         if (nr_remaining) {
2114                 if (!list_empty(&migratepages)) {
2115                         list_del(&page->lru);
2116                         dec_node_page_state(page, NR_ISOLATED_ANON +
2117                                         page_is_file_lru(page));
2118                         putback_lru_page(page);
2119                 }
2120                 isolated = 0;
2121         } else
2122                 count_vm_numa_event(NUMA_PAGE_MIGRATE);
2123         BUG_ON(!list_empty(&migratepages));
2124         return isolated;
2125
2126 out:
2127         put_page(page);
2128         return 0;
2129 }
2130 #endif /* CONFIG_NUMA_BALANCING */
2131
2132 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
2133 /*
2134  * Migrates a THP to a given target node. page must be locked and is unlocked
2135  * before returning.
2136  */
2137 int migrate_misplaced_transhuge_page(struct mm_struct *mm,
2138                                 struct vm_area_struct *vma,
2139                                 pmd_t *pmd, pmd_t entry,
2140                                 unsigned long address,
2141                                 struct page *page, int node)
2142 {
2143         spinlock_t *ptl;
2144         pg_data_t *pgdat = NODE_DATA(node);
2145         int isolated = 0;
2146         struct page *new_page = NULL;
2147         int page_lru = page_is_file_lru(page);
2148         unsigned long start = address & HPAGE_PMD_MASK;
2149
2150         new_page = alloc_pages_node(node,
2151                 (GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
2152                 HPAGE_PMD_ORDER);
2153         if (!new_page)
2154                 goto out_fail;
2155         prep_transhuge_page(new_page);
2156
2157         isolated = numamigrate_isolate_page(pgdat, page);
2158         if (!isolated) {
2159                 put_page(new_page);
2160                 goto out_fail;
2161         }
2162
2163         /* Prepare a page as a migration target */
2164         __SetPageLocked(new_page);
2165         if (PageSwapBacked(page))
2166                 __SetPageSwapBacked(new_page);
2167
2168         /* anon mapping, we can simply copy page->mapping to the new page: */
2169         new_page->mapping = page->mapping;
2170         new_page->index = page->index;
2171         /* flush the cache before copying using the kernel virtual address */
2172         flush_cache_range(vma, start, start + HPAGE_PMD_SIZE);
2173         migrate_page_copy(new_page, page);
2174         WARN_ON(PageLRU(new_page));
2175
2176         /* Recheck the target PMD */
2177         ptl = pmd_lock(mm, pmd);
2178         if (unlikely(!pmd_same(*pmd, entry) || !page_ref_freeze(page, 2))) {
2179                 spin_unlock(ptl);
2180
2181                 /* Reverse changes made by migrate_page_copy() */
2182                 if (TestClearPageActive(new_page))
2183                         SetPageActive(page);
2184                 if (TestClearPageUnevictable(new_page))
2185                         SetPageUnevictable(page);
2186
2187                 unlock_page(new_page);
2188                 put_page(new_page);             /* Free it */
2189
2190                 /* Retake the callers reference and putback on LRU */
2191                 get_page(page);
2192                 putback_lru_page(page);
2193                 mod_node_page_state(page_pgdat(page),
2194                          NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
2195
2196                 goto out_unlock;
2197         }
2198
2199         entry = mk_huge_pmd(new_page, vma->vm_page_prot);
2200         entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
2201
2202         /*
2203          * Overwrite the old entry under pagetable lock and establish
2204          * the new PTE. Any parallel GUP will either observe the old
2205          * page blocking on the page lock, block on the page table
2206          * lock or observe the new page. The SetPageUptodate on the
2207          * new page and page_add_new_anon_rmap guarantee the copy is
2208          * visible before the pagetable update.
2209          */
2210         page_add_anon_rmap(new_page, vma, start, true);
2211         /*
2212          * At this point the pmd is numa/protnone (i.e. non present) and the TLB
2213          * has already been flushed globally.  So no TLB can be currently
2214          * caching this non present pmd mapping.  There's no need to clear the
2215          * pmd before doing set_pmd_at(), nor to flush the TLB after
2216          * set_pmd_at().  Clearing the pmd here would introduce a race
2217          * condition against MADV_DONTNEED, because MADV_DONTNEED only holds the
2218          * mmap_lock for reading.  If the pmd is set to NULL at any given time,
2219          * MADV_DONTNEED won't wait on the pmd lock and it'll skip clearing this
2220          * pmd.
2221          */
2222         set_pmd_at(mm, start, pmd, entry);
2223         update_mmu_cache_pmd(vma, address, &entry);
2224
2225         page_ref_unfreeze(page, 2);
2226         mlock_migrate_page(new_page, page);
2227         page_remove_rmap(page, true);
2228         set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED);
2229
2230         spin_unlock(ptl);
2231
2232         /* Take an "isolate" reference and put new page on the LRU. */
2233         get_page(new_page);
2234         putback_lru_page(new_page);
2235
2236         unlock_page(new_page);
2237         unlock_page(page);
2238         put_page(page);                 /* Drop the rmap reference */
2239         put_page(page);                 /* Drop the LRU isolation reference */
2240
2241         count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
2242         count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
2243
2244         mod_node_page_state(page_pgdat(page),
2245                         NR_ISOLATED_ANON + page_lru,
2246                         -HPAGE_PMD_NR);
2247         return isolated;
2248
2249 out_fail:
2250         count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
2251         ptl = pmd_lock(mm, pmd);
2252         if (pmd_same(*pmd, entry)) {
2253                 entry = pmd_modify(entry, vma->vm_page_prot);
2254                 set_pmd_at(mm, start, pmd, entry);
2255                 update_mmu_cache_pmd(vma, address, &entry);
2256         }
2257         spin_unlock(ptl);
2258
2259 out_unlock:
2260         unlock_page(page);
2261         put_page(page);
2262         return 0;
2263 }
2264 #endif /* CONFIG_NUMA_BALANCING */
2265
2266 #endif /* CONFIG_NUMA */
2267
2268 #ifdef CONFIG_DEVICE_PRIVATE
2269 static int migrate_vma_collect_hole(unsigned long start,
2270                                     unsigned long end,
2271                                     __always_unused int depth,
2272                                     struct mm_walk *walk)
2273 {
2274         struct migrate_vma *migrate = walk->private;
2275         unsigned long addr;
2276
2277         /* Only allow populating anonymous memory. */
2278         if (!vma_is_anonymous(walk->vma)) {
2279                 for (addr = start; addr < end; addr += PAGE_SIZE) {
2280                         migrate->src[migrate->npages] = 0;
2281                         migrate->dst[migrate->npages] = 0;
2282                         migrate->npages++;
2283                 }
2284                 return 0;
2285         }
2286
2287         for (addr = start; addr < end; addr += PAGE_SIZE) {
2288                 migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE;
2289                 migrate->dst[migrate->npages] = 0;
2290                 migrate->npages++;
2291                 migrate->cpages++;
2292         }
2293
2294         return 0;
2295 }
2296
2297 static int migrate_vma_collect_skip(unsigned long start,
2298                                     unsigned long end,
2299                                     struct mm_walk *walk)
2300 {
2301         struct migrate_vma *migrate = walk->private;
2302         unsigned long addr;
2303
2304         for (addr = start; addr < end; addr += PAGE_SIZE) {
2305                 migrate->dst[migrate->npages] = 0;
2306                 migrate->src[migrate->npages++] = 0;
2307         }
2308
2309         return 0;
2310 }
2311
2312 static int migrate_vma_collect_pmd(pmd_t *pmdp,
2313                                    unsigned long start,
2314                                    unsigned long end,
2315                                    struct mm_walk *walk)
2316 {
2317         struct migrate_vma *migrate = walk->private;
2318         struct vm_area_struct *vma = walk->vma;
2319         struct mm_struct *mm = vma->vm_mm;
2320         unsigned long addr = start, unmapped = 0;
2321         spinlock_t *ptl;
2322         pte_t *ptep;
2323
2324 again:
2325         if (pmd_none(*pmdp))
2326                 return migrate_vma_collect_hole(start, end, -1, walk);
2327
2328         if (pmd_trans_huge(*pmdp)) {
2329                 struct page *page;
2330
2331                 ptl = pmd_lock(mm, pmdp);
2332                 if (unlikely(!pmd_trans_huge(*pmdp))) {
2333                         spin_unlock(ptl);
2334                         goto again;
2335                 }
2336
2337                 page = pmd_page(*pmdp);
2338                 if (is_huge_zero_page(page)) {
2339                         spin_unlock(ptl);
2340                         split_huge_pmd(vma, pmdp, addr);
2341                         if (pmd_trans_unstable(pmdp))
2342                                 return migrate_vma_collect_skip(start, end,
2343                                                                 walk);
2344                 } else {
2345                         int ret;
2346
2347                         get_page(page);
2348                         spin_unlock(ptl);
2349                         if (unlikely(!trylock_page(page)))
2350                                 return migrate_vma_collect_skip(start, end,
2351                                                                 walk);
2352                         ret = split_huge_page(page);
2353                         unlock_page(page);
2354                         put_page(page);
2355                         if (ret)
2356                                 return migrate_vma_collect_skip(start, end,
2357                                                                 walk);
2358                         if (pmd_none(*pmdp))
2359                                 return migrate_vma_collect_hole(start, end, -1,
2360                                                                 walk);
2361                 }
2362         }
2363
2364         if (unlikely(pmd_bad(*pmdp)))
2365                 return migrate_vma_collect_skip(start, end, walk);
2366
2367         ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2368         arch_enter_lazy_mmu_mode();
2369
2370         for (; addr < end; addr += PAGE_SIZE, ptep++) {
2371                 unsigned long mpfn = 0, pfn;
2372                 struct page *page;
2373                 swp_entry_t entry;
2374                 pte_t pte;
2375
2376                 pte = *ptep;
2377
2378                 if (pte_none(pte)) {
2379                         if (vma_is_anonymous(vma)) {
2380                                 mpfn = MIGRATE_PFN_MIGRATE;
2381                                 migrate->cpages++;
2382                         }
2383                         goto next;
2384                 }
2385
2386                 if (!pte_present(pte)) {
2387                         /*
2388                          * Only care about unaddressable device page special
2389                          * page table entry. Other special swap entries are not
2390                          * migratable, and we ignore regular swapped page.
2391                          */
2392                         entry = pte_to_swp_entry(pte);
2393                         if (!is_device_private_entry(entry))
2394                                 goto next;
2395
2396                         page = device_private_entry_to_page(entry);
2397                         if (!(migrate->flags &
2398                                 MIGRATE_VMA_SELECT_DEVICE_PRIVATE) ||
2399                             page->pgmap->owner != migrate->pgmap_owner)
2400                                 goto next;
2401
2402                         mpfn = migrate_pfn(page_to_pfn(page)) |
2403                                         MIGRATE_PFN_MIGRATE;
2404                         if (is_write_device_private_entry(entry))
2405                                 mpfn |= MIGRATE_PFN_WRITE;
2406                 } else {
2407                         if (!(migrate->flags & MIGRATE_VMA_SELECT_SYSTEM))
2408                                 goto next;
2409                         pfn = pte_pfn(pte);
2410                         if (is_zero_pfn(pfn)) {
2411                                 mpfn = MIGRATE_PFN_MIGRATE;
2412                                 migrate->cpages++;
2413                                 goto next;
2414                         }
2415                         page = vm_normal_page(migrate->vma, addr, pte);
2416                         mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
2417                         mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
2418                 }
2419
2420                 /* FIXME support THP */
2421                 if (!page || !page->mapping || PageTransCompound(page)) {
2422                         mpfn = 0;
2423                         goto next;
2424                 }
2425
2426                 /*
2427                  * By getting a reference on the page we pin it and that blocks
2428                  * any kind of migration. Side effect is that it "freezes" the
2429                  * pte.
2430                  *
2431                  * We drop this reference after isolating the page from the lru
2432                  * for non device page (device page are not on the lru and thus
2433                  * can't be dropped from it).
2434                  */
2435                 get_page(page);
2436                 migrate->cpages++;
2437
2438                 /*
2439                  * Optimize for the common case where page is only mapped once
2440                  * in one process. If we can lock the page, then we can safely
2441                  * set up a special migration page table entry now.
2442                  */
2443                 if (trylock_page(page)) {
2444                         pte_t swp_pte;
2445
2446                         mpfn |= MIGRATE_PFN_LOCKED;
2447                         ptep_get_and_clear(mm, addr, ptep);
2448
2449                         /* Setup special migration page table entry */
2450                         entry = make_migration_entry(page, mpfn &
2451                                                      MIGRATE_PFN_WRITE);
2452                         swp_pte = swp_entry_to_pte(entry);
2453                         if (pte_present(pte)) {
2454                                 if (pte_soft_dirty(pte))
2455                                         swp_pte = pte_swp_mksoft_dirty(swp_pte);
2456                                 if (pte_uffd_wp(pte))
2457                                         swp_pte = pte_swp_mkuffd_wp(swp_pte);
2458                         } else {
2459                                 if (pte_swp_soft_dirty(pte))
2460                                         swp_pte = pte_swp_mksoft_dirty(swp_pte);
2461                                 if (pte_swp_uffd_wp(pte))
2462                                         swp_pte = pte_swp_mkuffd_wp(swp_pte);
2463                         }
2464                         set_pte_at(mm, addr, ptep, swp_pte);
2465
2466                         /*
2467                          * This is like regular unmap: we remove the rmap and
2468                          * drop page refcount. Page won't be freed, as we took
2469                          * a reference just above.
2470                          */
2471                         page_remove_rmap(page, false);
2472                         put_page(page);
2473
2474                         if (pte_present(pte))
2475                                 unmapped++;
2476                 }
2477
2478 next:
2479                 migrate->dst[migrate->npages] = 0;
2480                 migrate->src[migrate->npages++] = mpfn;
2481         }
2482         arch_leave_lazy_mmu_mode();
2483         pte_unmap_unlock(ptep - 1, ptl);
2484
2485         /* Only flush the TLB if we actually modified any entries */
2486         if (unmapped)
2487                 flush_tlb_range(walk->vma, start, end);
2488
2489         return 0;
2490 }
2491
2492 static const struct mm_walk_ops migrate_vma_walk_ops = {
2493         .pmd_entry              = migrate_vma_collect_pmd,
2494         .pte_hole               = migrate_vma_collect_hole,
2495 };
2496
2497 /*
2498  * migrate_vma_collect() - collect pages over a range of virtual addresses
2499  * @migrate: migrate struct containing all migration information
2500  *
2501  * This will walk the CPU page table. For each virtual address backed by a
2502  * valid page, it updates the src array and takes a reference on the page, in
2503  * order to pin the page until we lock it and unmap it.
2504  */
2505 static void migrate_vma_collect(struct migrate_vma *migrate)
2506 {
2507         struct mmu_notifier_range range;
2508
2509         /*
2510          * Note that the pgmap_owner is passed to the mmu notifier callback so
2511          * that the registered device driver can skip invalidating device
2512          * private page mappings that won't be migrated.
2513          */
2514         mmu_notifier_range_init_migrate(&range, 0, migrate->vma,
2515                 migrate->vma->vm_mm, migrate->start, migrate->end,
2516                 migrate->pgmap_owner);
2517         mmu_notifier_invalidate_range_start(&range);
2518
2519         walk_page_range(migrate->vma->vm_mm, migrate->start, migrate->end,
2520                         &migrate_vma_walk_ops, migrate);
2521
2522         mmu_notifier_invalidate_range_end(&range);
2523         migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
2524 }
2525
2526 /*
2527  * migrate_vma_check_page() - check if page is pinned or not
2528  * @page: struct page to check
2529  *
2530  * Pinned pages cannot be migrated. This is the same test as in
2531  * migrate_page_move_mapping(), except that here we allow migration of a
2532  * ZONE_DEVICE page.
2533  */
2534 static bool migrate_vma_check_page(struct page *page)
2535 {
2536         /*
2537          * One extra ref because caller holds an extra reference, either from
2538          * isolate_lru_page() for a regular page, or migrate_vma_collect() for
2539          * a device page.
2540          */
2541         int extra = 1;
2542
2543         /*
2544          * FIXME support THP (transparent huge page), it is bit more complex to
2545          * check them than regular pages, because they can be mapped with a pmd
2546          * or with a pte (split pte mapping).
2547          */
2548         if (PageCompound(page))
2549                 return false;
2550
2551         /* Page from ZONE_DEVICE have one extra reference */
2552         if (is_zone_device_page(page)) {
2553                 /*
2554                  * Private page can never be pin as they have no valid pte and
2555                  * GUP will fail for those. Yet if there is a pending migration
2556                  * a thread might try to wait on the pte migration entry and
2557                  * will bump the page reference count. Sadly there is no way to
2558                  * differentiate a regular pin from migration wait. Hence to
2559                  * avoid 2 racing thread trying to migrate back to CPU to enter
2560                  * infinite loop (one stoping migration because the other is
2561                  * waiting on pte migration entry). We always return true here.
2562                  *
2563                  * FIXME proper solution is to rework migration_entry_wait() so
2564                  * it does not need to take a reference on page.
2565                  */
2566                 return is_device_private_page(page);
2567         }
2568
2569         /* For file back page */
2570         if (page_mapping(page))
2571                 extra += 1 + page_has_private(page);
2572
2573         if ((page_count(page) - extra) > page_mapcount(page))
2574                 return false;
2575
2576         return true;
2577 }
2578
2579 /*
2580  * migrate_vma_prepare() - lock pages and isolate them from the lru
2581  * @migrate: migrate struct containing all migration information
2582  *
2583  * This locks pages that have been collected by migrate_vma_collect(). Once each
2584  * page is locked it is isolated from the lru (for non-device pages). Finally,
2585  * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be
2586  * migrated by concurrent kernel threads.
2587  */
2588 static void migrate_vma_prepare(struct migrate_vma *migrate)
2589 {
2590         const unsigned long npages = migrate->npages;
2591         const unsigned long start = migrate->start;
2592         unsigned long addr, i, restore = 0;
2593         bool allow_drain = true;
2594
2595         lru_add_drain();
2596
2597         for (i = 0; (i < npages) && migrate->cpages; i++) {
2598                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2599                 bool remap = true;
2600
2601                 if (!page)
2602                         continue;
2603
2604                 if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) {
2605                         /*
2606                          * Because we are migrating several pages there can be
2607                          * a deadlock between 2 concurrent migration where each
2608                          * are waiting on each other page lock.
2609                          *
2610                          * Make migrate_vma() a best effort thing and backoff
2611                          * for any page we can not lock right away.
2612                          */
2613                         if (!trylock_page(page)) {
2614                                 migrate->src[i] = 0;
2615                                 migrate->cpages--;
2616                                 put_page(page);
2617                                 continue;
2618                         }
2619                         remap = false;
2620                         migrate->src[i] |= MIGRATE_PFN_LOCKED;
2621                 }
2622
2623                 /* ZONE_DEVICE pages are not on LRU */
2624                 if (!is_zone_device_page(page)) {
2625                         if (!PageLRU(page) && allow_drain) {
2626                                 /* Drain CPU's pagevec */
2627                                 lru_add_drain_all();
2628                                 allow_drain = false;
2629                         }
2630
2631                         if (isolate_lru_page(page)) {
2632                                 if (remap) {
2633                                         migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2634                                         migrate->cpages--;
2635                                         restore++;
2636                                 } else {
2637                                         migrate->src[i] = 0;
2638                                         unlock_page(page);
2639                                         migrate->cpages--;
2640                                         put_page(page);
2641                                 }
2642                                 continue;
2643                         }
2644
2645                         /* Drop the reference we took in collect */
2646                         put_page(page);
2647                 }
2648
2649                 if (!migrate_vma_check_page(page)) {
2650                         if (remap) {
2651                                 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2652                                 migrate->cpages--;
2653                                 restore++;
2654
2655                                 if (!is_zone_device_page(page)) {
2656                                         get_page(page);
2657                                         putback_lru_page(page);
2658                                 }
2659                         } else {
2660                                 migrate->src[i] = 0;
2661                                 unlock_page(page);
2662                                 migrate->cpages--;
2663
2664                                 if (!is_zone_device_page(page))
2665                                         putback_lru_page(page);
2666                                 else
2667                                         put_page(page);
2668                         }
2669                 }
2670         }
2671
2672         for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) {
2673                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2674
2675                 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2676                         continue;
2677
2678                 remove_migration_pte(page, migrate->vma, addr, page);
2679
2680                 migrate->src[i] = 0;
2681                 unlock_page(page);
2682                 put_page(page);
2683                 restore--;
2684         }
2685 }
2686
2687 /*
2688  * migrate_vma_unmap() - replace page mapping with special migration pte entry
2689  * @migrate: migrate struct containing all migration information
2690  *
2691  * Replace page mapping (CPU page table pte) with a special migration pte entry
2692  * and check again if it has been pinned. Pinned pages are restored because we
2693  * cannot migrate them.
2694  *
2695  * This is the last step before we call the device driver callback to allocate
2696  * destination memory and copy contents of original page over to new page.
2697  */
2698 static void migrate_vma_unmap(struct migrate_vma *migrate)
2699 {
2700         int flags = TTU_MIGRATION | TTU_IGNORE_MLOCK;
2701         const unsigned long npages = migrate->npages;
2702         const unsigned long start = migrate->start;
2703         unsigned long addr, i, restore = 0;
2704
2705         for (i = 0; i < npages; i++) {
2706                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2707
2708                 if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2709                         continue;
2710
2711                 if (page_mapped(page)) {
2712                         try_to_unmap(page, flags);
2713                         if (page_mapped(page))
2714                                 goto restore;
2715                 }
2716
2717                 if (migrate_vma_check_page(page))
2718                         continue;
2719
2720 restore:
2721                 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2722                 migrate->cpages--;
2723                 restore++;
2724         }
2725
2726         for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) {
2727                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2728
2729                 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2730                         continue;
2731
2732                 remove_migration_ptes(page, page, false);
2733
2734                 migrate->src[i] = 0;
2735                 unlock_page(page);
2736                 restore--;
2737
2738                 if (is_zone_device_page(page))
2739                         put_page(page);
2740                 else
2741                         putback_lru_page(page);
2742         }
2743 }
2744
2745 /**
2746  * migrate_vma_setup() - prepare to migrate a range of memory
2747  * @args: contains the vma, start, and pfns arrays for the migration
2748  *
2749  * Returns: negative errno on failures, 0 when 0 or more pages were migrated
2750  * without an error.
2751  *
2752  * Prepare to migrate a range of memory virtual address range by collecting all
2753  * the pages backing each virtual address in the range, saving them inside the
2754  * src array.  Then lock those pages and unmap them. Once the pages are locked
2755  * and unmapped, check whether each page is pinned or not.  Pages that aren't
2756  * pinned have the MIGRATE_PFN_MIGRATE flag set (by this function) in the
2757  * corresponding src array entry.  Then restores any pages that are pinned, by
2758  * remapping and unlocking those pages.
2759  *
2760  * The caller should then allocate destination memory and copy source memory to
2761  * it for all those entries (ie with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE
2762  * flag set).  Once these are allocated and copied, the caller must update each
2763  * corresponding entry in the dst array with the pfn value of the destination
2764  * page and with the MIGRATE_PFN_VALID and MIGRATE_PFN_LOCKED flags set
2765  * (destination pages must have their struct pages locked, via lock_page()).
2766  *
2767  * Note that the caller does not have to migrate all the pages that are marked
2768  * with MIGRATE_PFN_MIGRATE flag in src array unless this is a migration from
2769  * device memory to system memory.  If the caller cannot migrate a device page
2770  * back to system memory, then it must return VM_FAULT_SIGBUS, which has severe
2771  * consequences for the userspace process, so it must be avoided if at all
2772  * possible.
2773  *
2774  * For empty entries inside CPU page table (pte_none() or pmd_none() is true) we
2775  * do set MIGRATE_PFN_MIGRATE flag inside the corresponding source array thus
2776  * allowing the caller to allocate device memory for those unback virtual
2777  * address.  For this the caller simply has to allocate device memory and
2778  * properly set the destination entry like for regular migration.  Note that
2779  * this can still fails and thus inside the device driver must check if the
2780  * migration was successful for those entries after calling migrate_vma_pages()
2781  * just like for regular migration.
2782  *
2783  * After that, the callers must call migrate_vma_pages() to go over each entry
2784  * in the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
2785  * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
2786  * then migrate_vma_pages() to migrate struct page information from the source
2787  * struct page to the destination struct page.  If it fails to migrate the
2788  * struct page information, then it clears the MIGRATE_PFN_MIGRATE flag in the
2789  * src array.
2790  *
2791  * At this point all successfully migrated pages have an entry in the src
2792  * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
2793  * array entry with MIGRATE_PFN_VALID flag set.
2794  *
2795  * Once migrate_vma_pages() returns the caller may inspect which pages were
2796  * successfully migrated, and which were not.  Successfully migrated pages will
2797  * have the MIGRATE_PFN_MIGRATE flag set for their src array entry.
2798  *
2799  * It is safe to update device page table after migrate_vma_pages() because
2800  * both destination and source page are still locked, and the mmap_lock is held
2801  * in read mode (hence no one can unmap the range being migrated).
2802  *
2803  * Once the caller is done cleaning up things and updating its page table (if it
2804  * chose to do so, this is not an obligation) it finally calls
2805  * migrate_vma_finalize() to update the CPU page table to point to new pages
2806  * for successfully migrated pages or otherwise restore the CPU page table to
2807  * point to the original source pages.
2808  */
2809 int migrate_vma_setup(struct migrate_vma *args)
2810 {
2811         long nr_pages = (args->end - args->start) >> PAGE_SHIFT;
2812
2813         args->start &= PAGE_MASK;
2814         args->end &= PAGE_MASK;
2815         if (!args->vma || is_vm_hugetlb_page(args->vma) ||
2816             (args->vma->vm_flags & VM_SPECIAL) || vma_is_dax(args->vma))
2817                 return -EINVAL;
2818         if (nr_pages <= 0)
2819                 return -EINVAL;
2820         if (args->start < args->vma->vm_start ||
2821             args->start >= args->vma->vm_end)
2822                 return -EINVAL;
2823         if (args->end <= args->vma->vm_start || args->end > args->vma->vm_end)
2824                 return -EINVAL;
2825         if (!args->src || !args->dst)
2826                 return -EINVAL;
2827
2828         memset(args->src, 0, sizeof(*args->src) * nr_pages);
2829         args->cpages = 0;
2830         args->npages = 0;
2831
2832         migrate_vma_collect(args);
2833
2834         if (args->cpages)
2835                 migrate_vma_prepare(args);
2836         if (args->cpages)
2837                 migrate_vma_unmap(args);
2838
2839         /*
2840          * At this point pages are locked and unmapped, and thus they have
2841          * stable content and can safely be copied to destination memory that
2842          * is allocated by the drivers.
2843          */
2844         return 0;
2845
2846 }
2847 EXPORT_SYMBOL(migrate_vma_setup);
2848
2849 /*
2850  * This code closely matches the code in:
2851  *   __handle_mm_fault()
2852  *     handle_pte_fault()
2853  *       do_anonymous_page()
2854  * to map in an anonymous zero page but the struct page will be a ZONE_DEVICE
2855  * private page.
2856  */
2857 static void migrate_vma_insert_page(struct migrate_vma *migrate,
2858                                     unsigned long addr,
2859                                     struct page *page,
2860                                     unsigned long *src,
2861                                     unsigned long *dst)
2862 {
2863         struct vm_area_struct *vma = migrate->vma;
2864         struct mm_struct *mm = vma->vm_mm;
2865         bool flush = false;
2866         spinlock_t *ptl;
2867         pte_t entry;
2868         pgd_t *pgdp;
2869         p4d_t *p4dp;
2870         pud_t *pudp;
2871         pmd_t *pmdp;
2872         pte_t *ptep;
2873
2874         /* Only allow populating anonymous memory */
2875         if (!vma_is_anonymous(vma))
2876                 goto abort;
2877
2878         pgdp = pgd_offset(mm, addr);
2879         p4dp = p4d_alloc(mm, pgdp, addr);
2880         if (!p4dp)
2881                 goto abort;
2882         pudp = pud_alloc(mm, p4dp, addr);
2883         if (!pudp)
2884                 goto abort;
2885         pmdp = pmd_alloc(mm, pudp, addr);
2886         if (!pmdp)
2887                 goto abort;
2888
2889         if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp))
2890                 goto abort;
2891
2892         /*
2893          * Use pte_alloc() instead of pte_alloc_map().  We can't run
2894          * pte_offset_map() on pmds where a huge pmd might be created
2895          * from a different thread.
2896          *
2897          * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
2898          * parallel threads are excluded by other means.
2899          *
2900          * Here we only have mmap_read_lock(mm).
2901          */
2902         if (pte_alloc(mm, pmdp))
2903                 goto abort;
2904
2905         /* See the comment in pte_alloc_one_map() */
2906         if (unlikely(pmd_trans_unstable(pmdp)))
2907                 goto abort;
2908
2909         if (unlikely(anon_vma_prepare(vma)))
2910                 goto abort;
2911         if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL))
2912                 goto abort;
2913
2914         /*
2915          * The memory barrier inside __SetPageUptodate makes sure that
2916          * preceding stores to the page contents become visible before
2917          * the set_pte_at() write.
2918          */
2919         __SetPageUptodate(page);
2920
2921         if (is_zone_device_page(page)) {
2922                 if (is_device_private_page(page)) {
2923                         swp_entry_t swp_entry;
2924
2925                         swp_entry = make_device_private_entry(page, vma->vm_flags & VM_WRITE);
2926                         entry = swp_entry_to_pte(swp_entry);
2927                 } else {
2928                         /*
2929                          * For now we only support migrating to un-addressable
2930                          * device memory.
2931                          */
2932                         pr_warn_once("Unsupported ZONE_DEVICE page type.\n");
2933                         goto abort;
2934                 }
2935         } else {
2936                 entry = mk_pte(page, vma->vm_page_prot);
2937                 if (vma->vm_flags & VM_WRITE)
2938                         entry = pte_mkwrite(pte_mkdirty(entry));
2939         }
2940
2941         ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2942
2943         if (check_stable_address_space(mm))
2944                 goto unlock_abort;
2945
2946         if (pte_present(*ptep)) {
2947                 unsigned long pfn = pte_pfn(*ptep);
2948
2949                 if (!is_zero_pfn(pfn))
2950                         goto unlock_abort;
2951                 flush = true;
2952         } else if (!pte_none(*ptep))
2953                 goto unlock_abort;
2954
2955         /*
2956          * Check for userfaultfd but do not deliver the fault. Instead,
2957          * just back off.
2958          */
2959         if (userfaultfd_missing(vma))
2960                 goto unlock_abort;
2961
2962         inc_mm_counter(mm, MM_ANONPAGES);
2963         page_add_new_anon_rmap(page, vma, addr, false);
2964         if (!is_zone_device_page(page))
2965                 lru_cache_add_inactive_or_unevictable(page, vma);
2966         get_page(page);
2967
2968         if (flush) {
2969                 flush_cache_page(vma, addr, pte_pfn(*ptep));
2970                 ptep_clear_flush_notify(vma, addr, ptep);
2971                 set_pte_at_notify(mm, addr, ptep, entry);
2972                 update_mmu_cache(vma, addr, ptep);
2973         } else {
2974                 /* No need to invalidate - it was non-present before */
2975                 set_pte_at(mm, addr, ptep, entry);
2976                 update_mmu_cache(vma, addr, ptep);
2977         }
2978
2979         pte_unmap_unlock(ptep, ptl);
2980         *src = MIGRATE_PFN_MIGRATE;
2981         return;
2982
2983 unlock_abort:
2984         pte_unmap_unlock(ptep, ptl);
2985 abort:
2986         *src &= ~MIGRATE_PFN_MIGRATE;
2987 }
2988
2989 /**
2990  * migrate_vma_pages() - migrate meta-data from src page to dst page
2991  * @migrate: migrate struct containing all migration information
2992  *
2993  * This migrates struct page meta-data from source struct page to destination
2994  * struct page. This effectively finishes the migration from source page to the
2995  * destination page.
2996  */
2997 void migrate_vma_pages(struct migrate_vma *migrate)
2998 {
2999         const unsigned long npages = migrate->npages;
3000         const unsigned long start = migrate->start;
3001         struct mmu_notifier_range range;
3002         unsigned long addr, i;
3003         bool notified = false;
3004
3005         for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) {
3006                 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
3007                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
3008                 struct address_space *mapping;
3009                 int r;
3010
3011                 if (!newpage) {
3012                         migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
3013                         continue;
3014                 }
3015
3016                 if (!page) {
3017                         if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE))
3018                                 continue;
3019                         if (!notified) {
3020                                 notified = true;
3021
3022                                 mmu_notifier_range_init(&range,
3023                                                         MMU_NOTIFY_CLEAR, 0,
3024                                                         NULL,
3025                                                         migrate->vma->vm_mm,
3026                                                         addr, migrate->end);
3027                                 mmu_notifier_invalidate_range_start(&range);
3028                         }
3029                         migrate_vma_insert_page(migrate, addr, newpage,
3030                                                 &migrate->src[i],
3031                                                 &migrate->dst[i]);
3032                         continue;
3033                 }
3034
3035                 mapping = page_mapping(page);
3036
3037                 if (is_zone_device_page(newpage)) {
3038                         if (is_device_private_page(newpage)) {
3039                                 /*
3040                                  * For now only support private anonymous when
3041                                  * migrating to un-addressable device memory.
3042                                  */
3043                                 if (mapping) {
3044                                         migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
3045                                         continue;
3046                                 }
3047                         } else {
3048                                 /*
3049                                  * Other types of ZONE_DEVICE page are not
3050                                  * supported.
3051                                  */
3052                                 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
3053                                 continue;
3054                         }
3055                 }
3056
3057                 r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY);
3058                 if (r != MIGRATEPAGE_SUCCESS)
3059                         migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
3060         }
3061
3062         /*
3063          * No need to double call mmu_notifier->invalidate_range() callback as
3064          * the above ptep_clear_flush_notify() inside migrate_vma_insert_page()
3065          * did already call it.
3066          */
3067         if (notified)
3068                 mmu_notifier_invalidate_range_only_end(&range);
3069 }
3070 EXPORT_SYMBOL(migrate_vma_pages);
3071
3072 /**
3073  * migrate_vma_finalize() - restore CPU page table entry
3074  * @migrate: migrate struct containing all migration information
3075  *
3076  * This replaces the special migration pte entry with either a mapping to the
3077  * new page if migration was successful for that page, or to the original page
3078  * otherwise.
3079  *
3080  * This also unlocks the pages and puts them back on the lru, or drops the extra
3081  * refcount, for device pages.
3082  */
3083 void migrate_vma_finalize(struct migrate_vma *migrate)
3084 {
3085         const unsigned long npages = migrate->npages;
3086         unsigned long i;
3087
3088         for (i = 0; i < npages; i++) {
3089                 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
3090                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
3091
3092                 if (!page) {
3093                         if (newpage) {
3094                                 unlock_page(newpage);
3095                                 put_page(newpage);
3096                         }
3097                         continue;
3098                 }
3099
3100                 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) {
3101                         if (newpage) {
3102                                 unlock_page(newpage);
3103                                 put_page(newpage);
3104                         }
3105                         newpage = page;
3106                 }
3107
3108                 remove_migration_ptes(page, newpage, false);
3109                 unlock_page(page);
3110
3111                 if (is_zone_device_page(page))
3112                         put_page(page);
3113                 else
3114                         putback_lru_page(page);
3115
3116                 if (newpage != page) {
3117                         unlock_page(newpage);
3118                         if (is_zone_device_page(newpage))
3119                                 put_page(newpage);
3120                         else
3121                                 putback_lru_page(newpage);
3122                 }
3123         }
3124 }
3125 EXPORT_SYMBOL(migrate_vma_finalize);
3126 #endif /* CONFIG_DEVICE_PRIVATE */