2 * Memory Migration functionality - linux/mm/migration.c
4 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6 * Page migration was first developed in the context of the memory hotplug
7 * project. The main authors of the migration code are:
9 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
10 * Hirokazu Takahashi <taka@valinux.co.jp>
11 * Dave Hansen <haveblue@us.ibm.com>
15 #include <linux/migrate.h>
16 #include <linux/export.h>
17 #include <linux/swap.h>
18 #include <linux/swapops.h>
19 #include <linux/pagemap.h>
20 #include <linux/buffer_head.h>
21 #include <linux/mm_inline.h>
22 #include <linux/nsproxy.h>
23 #include <linux/pagevec.h>
24 #include <linux/ksm.h>
25 #include <linux/rmap.h>
26 #include <linux/topology.h>
27 #include <linux/cpu.h>
28 #include <linux/cpuset.h>
29 #include <linux/writeback.h>
30 #include <linux/mempolicy.h>
31 #include <linux/vmalloc.h>
32 #include <linux/security.h>
33 #include <linux/memcontrol.h>
34 #include <linux/syscalls.h>
35 #include <linux/hugetlb.h>
36 #include <linux/hugetlb_cgroup.h>
37 #include <linux/gfp.h>
38 #include <linux/balloon_compaction.h>
39 #include <linux/mmu_notifier.h>
41 #include <asm/tlbflush.h>
43 #define CREATE_TRACE_POINTS
44 #include <trace/events/migrate.h>
49 * migrate_prep() needs to be called before we start compiling a list of pages
50 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
51 * undesirable, use migrate_prep_local()
53 int migrate_prep(void)
56 * Clear the LRU lists so pages can be isolated.
57 * Note that pages may be moved off the LRU after we have
58 * drained them. Those pages will fail to migrate like other
59 * pages that may be busy.
66 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
67 int migrate_prep_local(void)
75 * Put previously isolated pages back onto the appropriate lists
76 * from where they were once taken off for compaction/migration.
78 * This function shall be used whenever the isolated pageset has been
79 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
80 * and isolate_huge_page().
82 void putback_movable_pages(struct list_head *l)
87 list_for_each_entry_safe(page, page2, l, lru) {
88 if (unlikely(PageHuge(page))) {
89 putback_active_hugepage(page);
93 dec_zone_page_state(page, NR_ISOLATED_ANON +
94 page_is_file_cache(page));
95 if (unlikely(isolated_balloon_page(page)))
96 balloon_page_putback(page);
98 putback_lru_page(page);
103 * Restore a potential migration pte to a working pte entry
105 static int remove_migration_pte(struct page *new, struct vm_area_struct *vma,
106 unsigned long addr, void *old)
108 struct mm_struct *mm = vma->vm_mm;
114 if (unlikely(PageHuge(new))) {
115 ptep = huge_pte_offset(mm, addr);
118 ptl = huge_pte_lockptr(hstate_vma(vma), mm, ptep);
120 pmd = mm_find_pmd(mm, addr);
123 if (pmd_trans_huge(*pmd))
126 ptep = pte_offset_map(pmd, addr);
129 * Peek to check is_swap_pte() before taking ptlock? No, we
130 * can race mremap's move_ptes(), which skips anon_vma lock.
133 ptl = pte_lockptr(mm, pmd);
138 if (!is_swap_pte(pte))
141 entry = pte_to_swp_entry(pte);
143 if (!is_migration_entry(entry) ||
144 migration_entry_to_page(entry) != old)
148 pte = pte_mkold(mk_pte(new, vma->vm_page_prot));
149 if (pte_swp_soft_dirty(*ptep))
150 pte = pte_mksoft_dirty(pte);
152 /* Recheck VMA as permissions can change since migration started */
153 if (is_write_migration_entry(entry))
154 pte = maybe_mkwrite(pte, vma);
156 #ifdef CONFIG_HUGETLB_PAGE
158 pte = pte_mkhuge(pte);
159 pte = arch_make_huge_pte(pte, vma, new, 0);
162 flush_dcache_page(new);
163 set_pte_at(mm, addr, ptep, pte);
167 hugepage_add_anon_rmap(new, vma, addr);
170 } else if (PageAnon(new))
171 page_add_anon_rmap(new, vma, addr);
173 page_add_file_rmap(new);
175 /* No need to invalidate - it was non-present before */
176 update_mmu_cache(vma, addr, ptep);
178 pte_unmap_unlock(ptep, ptl);
184 * Congratulations to trinity for discovering this bug.
185 * mm/fremap.c's remap_file_pages() accepts any range within a single vma to
186 * convert that vma to VM_NONLINEAR; and generic_file_remap_pages() will then
187 * replace the specified range by file ptes throughout (maybe populated after).
188 * If page migration finds a page within that range, while it's still located
189 * by vma_interval_tree rather than lost to i_mmap_nonlinear list, no problem:
190 * zap_pte() clears the temporary migration entry before mmap_sem is dropped.
191 * But if the migrating page is in a part of the vma outside the range to be
192 * remapped, then it will not be cleared, and remove_migration_ptes() needs to
193 * deal with it. Fortunately, this part of the vma is of course still linear,
194 * so we just need to use linear location on the nonlinear list.
196 static int remove_linear_migration_ptes_from_nonlinear(struct page *page,
197 struct address_space *mapping, void *arg)
199 struct vm_area_struct *vma;
200 /* hugetlbfs does not support remap_pages, so no huge pgoff worries */
201 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
204 list_for_each_entry(vma,
205 &mapping->i_mmap_nonlinear, shared.nonlinear) {
207 addr = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
208 if (addr >= vma->vm_start && addr < vma->vm_end)
209 remove_migration_pte(page, vma, addr, arg);
215 * Get rid of all migration entries and replace them by
216 * references to the indicated page.
218 static void remove_migration_ptes(struct page *old, struct page *new)
220 struct rmap_walk_control rwc = {
221 .rmap_one = remove_migration_pte,
223 .file_nonlinear = remove_linear_migration_ptes_from_nonlinear,
226 rmap_walk(new, &rwc);
230 * Something used the pte of a page under migration. We need to
231 * get to the page and wait until migration is finished.
232 * When we return from this function the fault will be retried.
234 static void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
243 if (!is_swap_pte(pte))
246 entry = pte_to_swp_entry(pte);
247 if (!is_migration_entry(entry))
250 page = migration_entry_to_page(entry);
253 * Once radix-tree replacement of page migration started, page_count
254 * *must* be zero. And, we don't want to call wait_on_page_locked()
255 * against a page without get_page().
256 * So, we use get_page_unless_zero(), here. Even failed, page fault
259 if (!get_page_unless_zero(page))
261 pte_unmap_unlock(ptep, ptl);
262 wait_on_page_locked(page);
266 pte_unmap_unlock(ptep, ptl);
269 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
270 unsigned long address)
272 spinlock_t *ptl = pte_lockptr(mm, pmd);
273 pte_t *ptep = pte_offset_map(pmd, address);
274 __migration_entry_wait(mm, ptep, ptl);
277 void migration_entry_wait_huge(struct vm_area_struct *vma,
278 struct mm_struct *mm, pte_t *pte)
280 spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
281 __migration_entry_wait(mm, pte, ptl);
285 /* Returns true if all buffers are successfully locked */
286 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
287 enum migrate_mode mode)
289 struct buffer_head *bh = head;
291 /* Simple case, sync compaction */
292 if (mode != MIGRATE_ASYNC) {
296 bh = bh->b_this_page;
298 } while (bh != head);
303 /* async case, we cannot block on lock_buffer so use trylock_buffer */
306 if (!trylock_buffer(bh)) {
308 * We failed to lock the buffer and cannot stall in
309 * async migration. Release the taken locks
311 struct buffer_head *failed_bh = bh;
314 while (bh != failed_bh) {
317 bh = bh->b_this_page;
322 bh = bh->b_this_page;
323 } while (bh != head);
327 static inline bool buffer_migrate_lock_buffers(struct buffer_head *head,
328 enum migrate_mode mode)
332 #endif /* CONFIG_BLOCK */
335 * Replace the page in the mapping.
337 * The number of remaining references must be:
338 * 1 for anonymous pages without a mapping
339 * 2 for pages with a mapping
340 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
342 int migrate_page_move_mapping(struct address_space *mapping,
343 struct page *newpage, struct page *page,
344 struct buffer_head *head, enum migrate_mode mode,
347 int expected_count = 1 + extra_count;
351 /* Anonymous page without mapping */
352 if (page_count(page) != expected_count)
354 return MIGRATEPAGE_SUCCESS;
357 spin_lock_irq(&mapping->tree_lock);
359 pslot = radix_tree_lookup_slot(&mapping->page_tree,
362 expected_count += 1 + page_has_private(page);
363 if (page_count(page) != expected_count ||
364 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
365 spin_unlock_irq(&mapping->tree_lock);
369 if (!page_freeze_refs(page, expected_count)) {
370 spin_unlock_irq(&mapping->tree_lock);
375 * In the async migration case of moving a page with buffers, lock the
376 * buffers using trylock before the mapping is moved. If the mapping
377 * was moved, we later failed to lock the buffers and could not move
378 * the mapping back due to an elevated page count, we would have to
379 * block waiting on other references to be dropped.
381 if (mode == MIGRATE_ASYNC && head &&
382 !buffer_migrate_lock_buffers(head, mode)) {
383 page_unfreeze_refs(page, expected_count);
384 spin_unlock_irq(&mapping->tree_lock);
389 * Now we know that no one else is looking at the page.
391 get_page(newpage); /* add cache reference */
392 if (PageSwapCache(page)) {
393 SetPageSwapCache(newpage);
394 set_page_private(newpage, page_private(page));
397 radix_tree_replace_slot(pslot, newpage);
400 * Drop cache reference from old page by unfreezing
401 * to one less reference.
402 * We know this isn't the last reference.
404 page_unfreeze_refs(page, expected_count - 1);
407 * If moved to a different zone then also account
408 * the page for that zone. Other VM counters will be
409 * taken care of when we establish references to the
410 * new page and drop references to the old page.
412 * Note that anonymous pages are accounted for
413 * via NR_FILE_PAGES and NR_ANON_PAGES if they
414 * are mapped to swap space.
416 __dec_zone_page_state(page, NR_FILE_PAGES);
417 __inc_zone_page_state(newpage, NR_FILE_PAGES);
418 if (!PageSwapCache(page) && PageSwapBacked(page)) {
419 __dec_zone_page_state(page, NR_SHMEM);
420 __inc_zone_page_state(newpage, NR_SHMEM);
422 spin_unlock_irq(&mapping->tree_lock);
424 return MIGRATEPAGE_SUCCESS;
428 * The expected number of remaining references is the same as that
429 * of migrate_page_move_mapping().
431 int migrate_huge_page_move_mapping(struct address_space *mapping,
432 struct page *newpage, struct page *page)
438 if (page_count(page) != 1)
440 return MIGRATEPAGE_SUCCESS;
443 spin_lock_irq(&mapping->tree_lock);
445 pslot = radix_tree_lookup_slot(&mapping->page_tree,
448 expected_count = 2 + page_has_private(page);
449 if (page_count(page) != expected_count ||
450 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
451 spin_unlock_irq(&mapping->tree_lock);
455 if (!page_freeze_refs(page, expected_count)) {
456 spin_unlock_irq(&mapping->tree_lock);
462 radix_tree_replace_slot(pslot, newpage);
464 page_unfreeze_refs(page, expected_count - 1);
466 spin_unlock_irq(&mapping->tree_lock);
467 return MIGRATEPAGE_SUCCESS;
471 * Gigantic pages are so large that we do not guarantee that page++ pointer
472 * arithmetic will work across the entire page. We need something more
475 static void __copy_gigantic_page(struct page *dst, struct page *src,
479 struct page *dst_base = dst;
480 struct page *src_base = src;
482 for (i = 0; i < nr_pages; ) {
484 copy_highpage(dst, src);
487 dst = mem_map_next(dst, dst_base, i);
488 src = mem_map_next(src, src_base, i);
492 static void copy_huge_page(struct page *dst, struct page *src)
499 struct hstate *h = page_hstate(src);
500 nr_pages = pages_per_huge_page(h);
502 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
503 __copy_gigantic_page(dst, src, nr_pages);
508 BUG_ON(!PageTransHuge(src));
509 nr_pages = hpage_nr_pages(src);
512 for (i = 0; i < nr_pages; i++) {
514 copy_highpage(dst + i, src + i);
519 * Copy the page to its new location
521 void migrate_page_copy(struct page *newpage, struct page *page)
525 if (PageHuge(page) || PageTransHuge(page))
526 copy_huge_page(newpage, page);
528 copy_highpage(newpage, page);
531 SetPageError(newpage);
532 if (PageReferenced(page))
533 SetPageReferenced(newpage);
534 if (PageUptodate(page))
535 SetPageUptodate(newpage);
536 if (TestClearPageActive(page)) {
537 VM_BUG_ON_PAGE(PageUnevictable(page), page);
538 SetPageActive(newpage);
539 } else if (TestClearPageUnevictable(page))
540 SetPageUnevictable(newpage);
541 if (PageChecked(page))
542 SetPageChecked(newpage);
543 if (PageMappedToDisk(page))
544 SetPageMappedToDisk(newpage);
546 if (PageDirty(page)) {
547 clear_page_dirty_for_io(page);
549 * Want to mark the page and the radix tree as dirty, and
550 * redo the accounting that clear_page_dirty_for_io undid,
551 * but we can't use set_page_dirty because that function
552 * is actually a signal that all of the page has become dirty.
553 * Whereas only part of our page may be dirty.
555 if (PageSwapBacked(page))
556 SetPageDirty(newpage);
558 __set_page_dirty_nobuffers(newpage);
562 * Copy NUMA information to the new page, to prevent over-eager
563 * future migrations of this same page.
565 cpupid = page_cpupid_xchg_last(page, -1);
566 page_cpupid_xchg_last(newpage, cpupid);
568 mlock_migrate_page(newpage, page);
569 ksm_migrate_page(newpage, page);
571 * Please do not reorder this without considering how mm/ksm.c's
572 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
574 ClearPageSwapCache(page);
575 ClearPagePrivate(page);
576 set_page_private(page, 0);
579 * If any waiters have accumulated on the new page then
582 if (PageWriteback(newpage))
583 end_page_writeback(newpage);
586 /************************************************************
587 * Migration functions
588 ***********************************************************/
591 * Common logic to directly migrate a single page suitable for
592 * pages that do not use PagePrivate/PagePrivate2.
594 * Pages are locked upon entry and exit.
596 int migrate_page(struct address_space *mapping,
597 struct page *newpage, struct page *page,
598 enum migrate_mode mode)
602 BUG_ON(PageWriteback(page)); /* Writeback must be complete */
604 rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0);
606 if (rc != MIGRATEPAGE_SUCCESS)
609 migrate_page_copy(newpage, page);
610 return MIGRATEPAGE_SUCCESS;
612 EXPORT_SYMBOL(migrate_page);
616 * Migration function for pages with buffers. This function can only be used
617 * if the underlying filesystem guarantees that no other references to "page"
620 int buffer_migrate_page(struct address_space *mapping,
621 struct page *newpage, struct page *page, enum migrate_mode mode)
623 struct buffer_head *bh, *head;
626 if (!page_has_buffers(page))
627 return migrate_page(mapping, newpage, page, mode);
629 head = page_buffers(page);
631 rc = migrate_page_move_mapping(mapping, newpage, page, head, mode, 0);
633 if (rc != MIGRATEPAGE_SUCCESS)
637 * In the async case, migrate_page_move_mapping locked the buffers
638 * with an IRQ-safe spinlock held. In the sync case, the buffers
639 * need to be locked now
641 if (mode != MIGRATE_ASYNC)
642 BUG_ON(!buffer_migrate_lock_buffers(head, mode));
644 ClearPagePrivate(page);
645 set_page_private(newpage, page_private(page));
646 set_page_private(page, 0);
652 set_bh_page(bh, newpage, bh_offset(bh));
653 bh = bh->b_this_page;
655 } while (bh != head);
657 SetPagePrivate(newpage);
659 migrate_page_copy(newpage, page);
665 bh = bh->b_this_page;
667 } while (bh != head);
669 return MIGRATEPAGE_SUCCESS;
671 EXPORT_SYMBOL(buffer_migrate_page);
675 * Writeback a page to clean the dirty state
677 static int writeout(struct address_space *mapping, struct page *page)
679 struct writeback_control wbc = {
680 .sync_mode = WB_SYNC_NONE,
683 .range_end = LLONG_MAX,
688 if (!mapping->a_ops->writepage)
689 /* No write method for the address space */
692 if (!clear_page_dirty_for_io(page))
693 /* Someone else already triggered a write */
697 * A dirty page may imply that the underlying filesystem has
698 * the page on some queue. So the page must be clean for
699 * migration. Writeout may mean we loose the lock and the
700 * page state is no longer what we checked for earlier.
701 * At this point we know that the migration attempt cannot
704 remove_migration_ptes(page, page);
706 rc = mapping->a_ops->writepage(page, &wbc);
708 if (rc != AOP_WRITEPAGE_ACTIVATE)
709 /* unlocked. Relock */
712 return (rc < 0) ? -EIO : -EAGAIN;
716 * Default handling if a filesystem does not provide a migration function.
718 static int fallback_migrate_page(struct address_space *mapping,
719 struct page *newpage, struct page *page, enum migrate_mode mode)
721 if (PageDirty(page)) {
722 /* Only writeback pages in full synchronous migration */
723 if (mode != MIGRATE_SYNC)
725 return writeout(mapping, page);
729 * Buffers may be managed in a filesystem specific way.
730 * We must have no buffers or drop them.
732 if (page_has_private(page) &&
733 !try_to_release_page(page, GFP_KERNEL))
736 return migrate_page(mapping, newpage, page, mode);
740 * Move a page to a newly allocated page
741 * The page is locked and all ptes have been successfully removed.
743 * The new page will have replaced the old page if this function
748 * MIGRATEPAGE_SUCCESS - success
750 static int move_to_new_page(struct page *newpage, struct page *page,
751 int remap_swapcache, enum migrate_mode mode)
753 struct address_space *mapping;
757 * Block others from accessing the page when we get around to
758 * establishing additional references. We are the only one
759 * holding a reference to the new page at this point.
761 if (!trylock_page(newpage))
764 /* Prepare mapping for the new page.*/
765 newpage->index = page->index;
766 newpage->mapping = page->mapping;
767 if (PageSwapBacked(page))
768 SetPageSwapBacked(newpage);
770 mapping = page_mapping(page);
772 rc = migrate_page(mapping, newpage, page, mode);
773 else if (mapping->a_ops->migratepage)
775 * Most pages have a mapping and most filesystems provide a
776 * migratepage callback. Anonymous pages are part of swap
777 * space which also has its own migratepage callback. This
778 * is the most common path for page migration.
780 rc = mapping->a_ops->migratepage(mapping,
781 newpage, page, mode);
783 rc = fallback_migrate_page(mapping, newpage, page, mode);
785 if (rc != MIGRATEPAGE_SUCCESS) {
786 newpage->mapping = NULL;
789 remove_migration_ptes(page, newpage);
790 page->mapping = NULL;
793 unlock_page(newpage);
798 static int __unmap_and_move(struct page *page, struct page *newpage,
799 int force, enum migrate_mode mode)
802 int remap_swapcache = 1;
803 struct mem_cgroup *mem;
804 struct anon_vma *anon_vma = NULL;
806 if (!trylock_page(page)) {
807 if (!force || mode == MIGRATE_ASYNC)
811 * It's not safe for direct compaction to call lock_page.
812 * For example, during page readahead pages are added locked
813 * to the LRU. Later, when the IO completes the pages are
814 * marked uptodate and unlocked. However, the queueing
815 * could be merging multiple pages for one bio (e.g.
816 * mpage_readpages). If an allocation happens for the
817 * second or third page, the process can end up locking
818 * the same page twice and deadlocking. Rather than
819 * trying to be clever about what pages can be locked,
820 * avoid the use of lock_page for direct compaction
823 if (current->flags & PF_MEMALLOC)
829 /* charge against new page */
830 mem_cgroup_prepare_migration(page, newpage, &mem);
832 if (PageWriteback(page)) {
834 * Only in the case of a full synchronous migration is it
835 * necessary to wait for PageWriteback. In the async case,
836 * the retry loop is too short and in the sync-light case,
837 * the overhead of stalling is too much
839 if (mode != MIGRATE_SYNC) {
845 wait_on_page_writeback(page);
848 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
849 * we cannot notice that anon_vma is freed while we migrates a page.
850 * This get_anon_vma() delays freeing anon_vma pointer until the end
851 * of migration. File cache pages are no problem because of page_lock()
852 * File Caches may use write_page() or lock_page() in migration, then,
853 * just care Anon page here.
855 if (PageAnon(page) && !PageKsm(page)) {
857 * Only page_lock_anon_vma_read() understands the subtleties of
858 * getting a hold on an anon_vma from outside one of its mms.
860 anon_vma = page_get_anon_vma(page);
865 } else if (PageSwapCache(page)) {
867 * We cannot be sure that the anon_vma of an unmapped
868 * swapcache page is safe to use because we don't
869 * know in advance if the VMA that this page belonged
870 * to still exists. If the VMA and others sharing the
871 * data have been freed, then the anon_vma could
872 * already be invalid.
874 * To avoid this possibility, swapcache pages get
875 * migrated but are not remapped when migration
884 if (unlikely(balloon_page_movable(page))) {
886 * A ballooned page does not need any special attention from
887 * physical to virtual reverse mapping procedures.
888 * Skip any attempt to unmap PTEs or to remap swap cache,
889 * in order to avoid burning cycles at rmap level, and perform
890 * the page migration right away (proteced by page lock).
892 rc = balloon_page_migrate(newpage, page, mode);
897 * Corner case handling:
898 * 1. When a new swap-cache page is read into, it is added to the LRU
899 * and treated as swapcache but it has no rmap yet.
900 * Calling try_to_unmap() against a page->mapping==NULL page will
901 * trigger a BUG. So handle it here.
902 * 2. An orphaned page (see truncate_complete_page) might have
903 * fs-private metadata. The page can be picked up due to memory
904 * offlining. Everywhere else except page reclaim, the page is
905 * invisible to the vm, so the page can not be migrated. So try to
906 * free the metadata, so the page can be freed.
908 if (!page->mapping) {
909 VM_BUG_ON_PAGE(PageAnon(page), page);
910 if (page_has_private(page)) {
911 try_to_free_buffers(page);
917 /* Establish migration ptes or remove ptes */
918 try_to_unmap(page, TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
921 if (!page_mapped(page))
922 rc = move_to_new_page(newpage, page, remap_swapcache, mode);
924 if (rc && remap_swapcache)
925 remove_migration_ptes(page, page);
927 /* Drop an anon_vma reference if we took one */
929 put_anon_vma(anon_vma);
932 mem_cgroup_end_migration(mem, page, newpage,
933 (rc == MIGRATEPAGE_SUCCESS ||
934 rc == MIGRATEPAGE_BALLOON_SUCCESS));
941 * Obtain the lock on page, remove all ptes and migrate the page
942 * to the newly allocated page in newpage.
944 static int unmap_and_move(new_page_t get_new_page, free_page_t put_new_page,
945 unsigned long private, struct page *page, int force,
946 enum migrate_mode mode)
950 struct page *newpage = get_new_page(page, private, &result);
955 if (page_count(page) == 1) {
956 /* page was freed from under us. So we are done. */
960 if (unlikely(PageTransHuge(page)))
961 if (unlikely(split_huge_page(page)))
964 rc = __unmap_and_move(page, newpage, force, mode);
966 if (unlikely(rc == MIGRATEPAGE_BALLOON_SUCCESS)) {
968 * A ballooned page has been migrated already.
969 * Now, it's the time to wrap-up counters,
970 * handle the page back to Buddy and return.
972 dec_zone_page_state(page, NR_ISOLATED_ANON +
973 page_is_file_cache(page));
974 balloon_page_free(page);
975 return MIGRATEPAGE_SUCCESS;
980 * A page that has been migrated has all references
981 * removed and will be freed. A page that has not been
982 * migrated will have kepts its references and be
985 list_del(&page->lru);
986 dec_zone_page_state(page, NR_ISOLATED_ANON +
987 page_is_file_cache(page));
988 putback_lru_page(page);
992 * If migration was not successful and there's a freeing callback, use
993 * it. Otherwise, putback_lru_page() will drop the reference grabbed
996 if (rc != MIGRATEPAGE_SUCCESS && put_new_page) {
997 ClearPageSwapBacked(newpage);
998 put_new_page(newpage, private);
1000 putback_lru_page(newpage);
1006 *result = page_to_nid(newpage);
1012 * Counterpart of unmap_and_move_page() for hugepage migration.
1014 * This function doesn't wait the completion of hugepage I/O
1015 * because there is no race between I/O and migration for hugepage.
1016 * Note that currently hugepage I/O occurs only in direct I/O
1017 * where no lock is held and PG_writeback is irrelevant,
1018 * and writeback status of all subpages are counted in the reference
1019 * count of the head page (i.e. if all subpages of a 2MB hugepage are
1020 * under direct I/O, the reference of the head page is 512 and a bit more.)
1021 * This means that when we try to migrate hugepage whose subpages are
1022 * doing direct I/O, some references remain after try_to_unmap() and
1023 * hugepage migration fails without data corruption.
1025 * There is also no race when direct I/O is issued on the page under migration,
1026 * because then pte is replaced with migration swap entry and direct I/O code
1027 * will wait in the page fault for migration to complete.
1029 static int unmap_and_move_huge_page(new_page_t get_new_page,
1030 free_page_t put_new_page, unsigned long private,
1031 struct page *hpage, int force,
1032 enum migrate_mode mode)
1036 struct page *new_hpage;
1037 struct anon_vma *anon_vma = NULL;
1040 * Movability of hugepages depends on architectures and hugepage size.
1041 * This check is necessary because some callers of hugepage migration
1042 * like soft offline and memory hotremove don't walk through page
1043 * tables or check whether the hugepage is pmd-based or not before
1044 * kicking migration.
1046 if (!hugepage_migration_support(page_hstate(hpage))) {
1047 putback_active_hugepage(hpage);
1051 new_hpage = get_new_page(hpage, private, &result);
1057 if (!trylock_page(hpage)) {
1058 if (!force || mode != MIGRATE_SYNC)
1063 if (PageAnon(hpage))
1064 anon_vma = page_get_anon_vma(hpage);
1066 try_to_unmap(hpage, TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1068 if (!page_mapped(hpage))
1069 rc = move_to_new_page(new_hpage, hpage, 1, mode);
1071 if (rc != MIGRATEPAGE_SUCCESS)
1072 remove_migration_ptes(hpage, hpage);
1075 put_anon_vma(anon_vma);
1077 if (rc == MIGRATEPAGE_SUCCESS)
1078 hugetlb_cgroup_migrate(hpage, new_hpage);
1083 putback_active_hugepage(hpage);
1086 * If migration was not successful and there's a freeing callback, use
1087 * it. Otherwise, put_page() will drop the reference grabbed during
1090 if (rc != MIGRATEPAGE_SUCCESS && put_new_page)
1091 put_new_page(new_hpage, private);
1093 put_page(new_hpage);
1099 *result = page_to_nid(new_hpage);
1105 * migrate_pages - migrate the pages specified in a list, to the free pages
1106 * supplied as the target for the page migration
1108 * @from: The list of pages to be migrated.
1109 * @get_new_page: The function used to allocate free pages to be used
1110 * as the target of the page migration.
1111 * @put_new_page: The function used to free target pages if migration
1112 * fails, or NULL if no special handling is necessary.
1113 * @private: Private data to be passed on to get_new_page()
1114 * @mode: The migration mode that specifies the constraints for
1115 * page migration, if any.
1116 * @reason: The reason for page migration.
1118 * The function returns after 10 attempts or if no pages are movable any more
1119 * because the list has become empty or no retryable pages exist any more.
1120 * The caller should call putback_lru_pages() to return pages to the LRU
1121 * or free list only if ret != 0.
1123 * Returns the number of pages that were not migrated, or an error code.
1125 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1126 free_page_t put_new_page, unsigned long private,
1127 enum migrate_mode mode, int reason)
1131 int nr_succeeded = 0;
1135 int swapwrite = current->flags & PF_SWAPWRITE;
1139 current->flags |= PF_SWAPWRITE;
1141 for(pass = 0; pass < 10 && retry; pass++) {
1144 list_for_each_entry_safe(page, page2, from, lru) {
1148 rc = unmap_and_move_huge_page(get_new_page,
1149 put_new_page, private, page,
1152 rc = unmap_and_move(get_new_page, put_new_page,
1153 private, page, pass > 2, mode);
1161 case MIGRATEPAGE_SUCCESS:
1166 * Permanent failure (-EBUSY, -ENOSYS, etc.):
1167 * unlike -EAGAIN case, the failed page is
1168 * removed from migration page list and not
1169 * retried in the next outer loop.
1176 rc = nr_failed + retry;
1179 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1181 count_vm_events(PGMIGRATE_FAIL, nr_failed);
1182 trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);
1185 current->flags &= ~PF_SWAPWRITE;
1192 * Move a list of individual pages
1194 struct page_to_node {
1201 static struct page *new_page_node(struct page *p, unsigned long private,
1204 struct page_to_node *pm = (struct page_to_node *)private;
1206 while (pm->node != MAX_NUMNODES && pm->page != p)
1209 if (pm->node == MAX_NUMNODES)
1212 *result = &pm->status;
1215 return alloc_huge_page_node(page_hstate(compound_head(p)),
1218 return alloc_pages_exact_node(pm->node,
1219 GFP_HIGHUSER_MOVABLE | __GFP_THISNODE, 0);
1223 * Move a set of pages as indicated in the pm array. The addr
1224 * field must be set to the virtual address of the page to be moved
1225 * and the node number must contain a valid target node.
1226 * The pm array ends with node = MAX_NUMNODES.
1228 static int do_move_page_to_node_array(struct mm_struct *mm,
1229 struct page_to_node *pm,
1233 struct page_to_node *pp;
1234 LIST_HEAD(pagelist);
1236 down_read(&mm->mmap_sem);
1239 * Build a list of pages to migrate
1241 for (pp = pm; pp->node != MAX_NUMNODES; pp++) {
1242 struct vm_area_struct *vma;
1246 vma = find_vma(mm, pp->addr);
1247 if (!vma || pp->addr < vma->vm_start || !vma_migratable(vma))
1250 page = follow_page(vma, pp->addr, FOLL_GET|FOLL_SPLIT);
1252 err = PTR_ERR(page);
1260 /* Use PageReserved to check for zero page */
1261 if (PageReserved(page))
1265 err = page_to_nid(page);
1267 if (err == pp->node)
1269 * Node already in the right place
1274 if (page_mapcount(page) > 1 &&
1278 if (PageHuge(page)) {
1279 isolate_huge_page(page, &pagelist);
1283 err = isolate_lru_page(page);
1285 list_add_tail(&page->lru, &pagelist);
1286 inc_zone_page_state(page, NR_ISOLATED_ANON +
1287 page_is_file_cache(page));
1291 * Either remove the duplicate refcount from
1292 * isolate_lru_page() or drop the page ref if it was
1301 if (!list_empty(&pagelist)) {
1302 err = migrate_pages(&pagelist, new_page_node, NULL,
1303 (unsigned long)pm, MIGRATE_SYNC, MR_SYSCALL);
1305 putback_movable_pages(&pagelist);
1308 up_read(&mm->mmap_sem);
1313 * Migrate an array of page address onto an array of nodes and fill
1314 * the corresponding array of status.
1316 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1317 unsigned long nr_pages,
1318 const void __user * __user *pages,
1319 const int __user *nodes,
1320 int __user *status, int flags)
1322 struct page_to_node *pm;
1323 unsigned long chunk_nr_pages;
1324 unsigned long chunk_start;
1328 pm = (struct page_to_node *)__get_free_page(GFP_KERNEL);
1335 * Store a chunk of page_to_node array in a page,
1336 * but keep the last one as a marker
1338 chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1;
1340 for (chunk_start = 0;
1341 chunk_start < nr_pages;
1342 chunk_start += chunk_nr_pages) {
1345 if (chunk_start + chunk_nr_pages > nr_pages)
1346 chunk_nr_pages = nr_pages - chunk_start;
1348 /* fill the chunk pm with addrs and nodes from user-space */
1349 for (j = 0; j < chunk_nr_pages; j++) {
1350 const void __user *p;
1354 if (get_user(p, pages + j + chunk_start))
1356 pm[j].addr = (unsigned long) p;
1358 if (get_user(node, nodes + j + chunk_start))
1362 if (node < 0 || node >= MAX_NUMNODES)
1365 if (!node_state(node, N_MEMORY))
1369 if (!node_isset(node, task_nodes))
1375 /* End marker for this chunk */
1376 pm[chunk_nr_pages].node = MAX_NUMNODES;
1378 /* Migrate this chunk */
1379 err = do_move_page_to_node_array(mm, pm,
1380 flags & MPOL_MF_MOVE_ALL);
1384 /* Return status information */
1385 for (j = 0; j < chunk_nr_pages; j++)
1386 if (put_user(pm[j].status, status + j + chunk_start)) {
1394 free_page((unsigned long)pm);
1400 * Determine the nodes of an array of pages and store it in an array of status.
1402 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1403 const void __user **pages, int *status)
1407 down_read(&mm->mmap_sem);
1409 for (i = 0; i < nr_pages; i++) {
1410 unsigned long addr = (unsigned long)(*pages);
1411 struct vm_area_struct *vma;
1415 vma = find_vma(mm, addr);
1416 if (!vma || addr < vma->vm_start)
1419 page = follow_page(vma, addr, 0);
1421 err = PTR_ERR(page);
1426 /* Use PageReserved to check for zero page */
1427 if (!page || PageReserved(page))
1430 err = page_to_nid(page);
1438 up_read(&mm->mmap_sem);
1442 * Determine the nodes of a user array of pages and store it in
1443 * a user array of status.
1445 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1446 const void __user * __user *pages,
1449 #define DO_PAGES_STAT_CHUNK_NR 16
1450 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1451 int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1454 unsigned long chunk_nr;
1456 chunk_nr = nr_pages;
1457 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1458 chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1460 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1463 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1465 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1470 nr_pages -= chunk_nr;
1472 return nr_pages ? -EFAULT : 0;
1476 * Move a list of pages in the address space of the currently executing
1479 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1480 const void __user * __user *, pages,
1481 const int __user *, nodes,
1482 int __user *, status, int, flags)
1484 const struct cred *cred = current_cred(), *tcred;
1485 struct task_struct *task;
1486 struct mm_struct *mm;
1488 nodemask_t task_nodes;
1491 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1494 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1497 /* Find the mm_struct */
1499 task = pid ? find_task_by_vpid(pid) : current;
1504 get_task_struct(task);
1507 * Check if this process has the right to modify the specified
1508 * process. The right exists if the process has administrative
1509 * capabilities, superuser privileges or the same
1510 * userid as the target process.
1512 tcred = __task_cred(task);
1513 if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) &&
1514 !uid_eq(cred->uid, tcred->suid) && !uid_eq(cred->uid, tcred->uid) &&
1515 !capable(CAP_SYS_NICE)) {
1522 err = security_task_movememory(task);
1526 task_nodes = cpuset_mems_allowed(task);
1527 mm = get_task_mm(task);
1528 put_task_struct(task);
1534 err = do_pages_move(mm, task_nodes, nr_pages, pages,
1535 nodes, status, flags);
1537 err = do_pages_stat(mm, nr_pages, pages, status);
1543 put_task_struct(task);
1548 * Call migration functions in the vma_ops that may prepare
1549 * memory in a vm for migration. migration functions may perform
1550 * the migration for vmas that do not have an underlying page struct.
1552 int migrate_vmas(struct mm_struct *mm, const nodemask_t *to,
1553 const nodemask_t *from, unsigned long flags)
1555 struct vm_area_struct *vma;
1558 for (vma = mm->mmap; vma && !err; vma = vma->vm_next) {
1559 if (vma->vm_ops && vma->vm_ops->migrate) {
1560 err = vma->vm_ops->migrate(vma, to, from, flags);
1568 #ifdef CONFIG_NUMA_BALANCING
1570 * Returns true if this is a safe migration target node for misplaced NUMA
1571 * pages. Currently it only checks the watermarks which crude
1573 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1574 unsigned long nr_migrate_pages)
1577 for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1578 struct zone *zone = pgdat->node_zones + z;
1580 if (!populated_zone(zone))
1583 if (!zone_reclaimable(zone))
1586 /* Avoid waking kswapd by allocating pages_to_migrate pages. */
1587 if (!zone_watermark_ok(zone, 0,
1588 high_wmark_pages(zone) +
1597 static struct page *alloc_misplaced_dst_page(struct page *page,
1601 int nid = (int) data;
1602 struct page *newpage;
1604 newpage = alloc_pages_exact_node(nid,
1605 (GFP_HIGHUSER_MOVABLE |
1606 __GFP_THISNODE | __GFP_NOMEMALLOC |
1607 __GFP_NORETRY | __GFP_NOWARN) &
1614 * page migration rate limiting control.
1615 * Do not migrate more than @pages_to_migrate in a @migrate_interval_millisecs
1616 * window of time. Default here says do not migrate more than 1280M per second.
1617 * If a node is rate-limited then PTE NUMA updates are also rate-limited. However
1618 * as it is faults that reset the window, pte updates will happen unconditionally
1619 * if there has not been a fault since @pteupdate_interval_millisecs after the
1620 * throttle window closed.
1622 static unsigned int migrate_interval_millisecs __read_mostly = 100;
1623 static unsigned int pteupdate_interval_millisecs __read_mostly = 1000;
1624 static unsigned int ratelimit_pages __read_mostly = 128 << (20 - PAGE_SHIFT);
1626 /* Returns true if NUMA migration is currently rate limited */
1627 bool migrate_ratelimited(int node)
1629 pg_data_t *pgdat = NODE_DATA(node);
1631 if (time_after(jiffies, pgdat->numabalancing_migrate_next_window +
1632 msecs_to_jiffies(pteupdate_interval_millisecs)))
1635 if (pgdat->numabalancing_migrate_nr_pages < ratelimit_pages)
1641 /* Returns true if the node is migrate rate-limited after the update */
1642 static bool numamigrate_update_ratelimit(pg_data_t *pgdat,
1643 unsigned long nr_pages)
1646 * Rate-limit the amount of data that is being migrated to a node.
1647 * Optimal placement is no good if the memory bus is saturated and
1648 * all the time is being spent migrating!
1650 if (time_after(jiffies, pgdat->numabalancing_migrate_next_window)) {
1651 spin_lock(&pgdat->numabalancing_migrate_lock);
1652 pgdat->numabalancing_migrate_nr_pages = 0;
1653 pgdat->numabalancing_migrate_next_window = jiffies +
1654 msecs_to_jiffies(migrate_interval_millisecs);
1655 spin_unlock(&pgdat->numabalancing_migrate_lock);
1657 if (pgdat->numabalancing_migrate_nr_pages > ratelimit_pages) {
1658 trace_mm_numa_migrate_ratelimit(current, pgdat->node_id,
1664 * This is an unlocked non-atomic update so errors are possible.
1665 * The consequences are failing to migrate when we potentiall should
1666 * have which is not severe enough to warrant locking. If it is ever
1667 * a problem, it can be converted to a per-cpu counter.
1669 pgdat->numabalancing_migrate_nr_pages += nr_pages;
1673 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
1677 VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
1679 /* Avoid migrating to a node that is nearly full */
1680 if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page)))
1683 if (isolate_lru_page(page))
1687 * migrate_misplaced_transhuge_page() skips page migration's usual
1688 * check on page_count(), so we must do it here, now that the page
1689 * has been isolated: a GUP pin, or any other pin, prevents migration.
1690 * The expected page count is 3: 1 for page's mapcount and 1 for the
1691 * caller's pin and 1 for the reference taken by isolate_lru_page().
1693 if (PageTransHuge(page) && page_count(page) != 3) {
1694 putback_lru_page(page);
1698 page_lru = page_is_file_cache(page);
1699 mod_zone_page_state(page_zone(page), NR_ISOLATED_ANON + page_lru,
1700 hpage_nr_pages(page));
1703 * Isolating the page has taken another reference, so the
1704 * caller's reference can be safely dropped without the page
1705 * disappearing underneath us during migration.
1711 bool pmd_trans_migrating(pmd_t pmd)
1713 struct page *page = pmd_page(pmd);
1714 return PageLocked(page);
1717 void wait_migrate_huge_page(struct anon_vma *anon_vma, pmd_t *pmd)
1719 struct page *page = pmd_page(*pmd);
1720 wait_on_page_locked(page);
1724 * Attempt to migrate a misplaced page to the specified destination
1725 * node. Caller is expected to have an elevated reference count on
1726 * the page that will be dropped by this function before returning.
1728 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
1731 pg_data_t *pgdat = NODE_DATA(node);
1734 LIST_HEAD(migratepages);
1737 * Don't migrate file pages that are mapped in multiple processes
1738 * with execute permissions as they are probably shared libraries.
1740 if (page_mapcount(page) != 1 && page_is_file_cache(page) &&
1741 (vma->vm_flags & VM_EXEC))
1745 * Rate-limit the amount of data that is being migrated to a node.
1746 * Optimal placement is no good if the memory bus is saturated and
1747 * all the time is being spent migrating!
1749 if (numamigrate_update_ratelimit(pgdat, 1))
1752 isolated = numamigrate_isolate_page(pgdat, page);
1756 list_add(&page->lru, &migratepages);
1757 nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
1758 NULL, node, MIGRATE_ASYNC,
1761 if (!list_empty(&migratepages)) {
1762 list_del(&page->lru);
1763 dec_zone_page_state(page, NR_ISOLATED_ANON +
1764 page_is_file_cache(page));
1765 putback_lru_page(page);
1769 count_vm_numa_event(NUMA_PAGE_MIGRATE);
1770 BUG_ON(!list_empty(&migratepages));
1777 #endif /* CONFIG_NUMA_BALANCING */
1779 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1781 * Migrates a THP to a given target node. page must be locked and is unlocked
1784 int migrate_misplaced_transhuge_page(struct mm_struct *mm,
1785 struct vm_area_struct *vma,
1786 pmd_t *pmd, pmd_t entry,
1787 unsigned long address,
1788 struct page *page, int node)
1791 pg_data_t *pgdat = NODE_DATA(node);
1793 struct page *new_page = NULL;
1794 struct mem_cgroup *memcg = NULL;
1795 int page_lru = page_is_file_cache(page);
1796 unsigned long mmun_start = address & HPAGE_PMD_MASK;
1797 unsigned long mmun_end = mmun_start + HPAGE_PMD_SIZE;
1801 * Rate-limit the amount of data that is being migrated to a node.
1802 * Optimal placement is no good if the memory bus is saturated and
1803 * all the time is being spent migrating!
1805 if (numamigrate_update_ratelimit(pgdat, HPAGE_PMD_NR))
1808 new_page = alloc_pages_node(node,
1809 (GFP_TRANSHUGE | __GFP_THISNODE) & ~__GFP_WAIT,
1814 isolated = numamigrate_isolate_page(pgdat, page);
1820 if (mm_tlb_flush_pending(mm))
1821 flush_tlb_range(vma, mmun_start, mmun_end);
1823 /* Prepare a page as a migration target */
1824 __set_page_locked(new_page);
1825 SetPageSwapBacked(new_page);
1827 /* anon mapping, we can simply copy page->mapping to the new page: */
1828 new_page->mapping = page->mapping;
1829 new_page->index = page->index;
1830 migrate_page_copy(new_page, page);
1831 WARN_ON(PageLRU(new_page));
1833 /* Recheck the target PMD */
1834 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1835 ptl = pmd_lock(mm, pmd);
1836 if (unlikely(!pmd_same(*pmd, entry) || page_count(page) != 2)) {
1839 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1841 /* Reverse changes made by migrate_page_copy() */
1842 if (TestClearPageActive(new_page))
1843 SetPageActive(page);
1844 if (TestClearPageUnevictable(new_page))
1845 SetPageUnevictable(page);
1846 mlock_migrate_page(page, new_page);
1848 unlock_page(new_page);
1849 put_page(new_page); /* Free it */
1851 /* Retake the callers reference and putback on LRU */
1853 putback_lru_page(page);
1854 mod_zone_page_state(page_zone(page),
1855 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
1861 * Traditional migration needs to prepare the memcg charge
1862 * transaction early to prevent the old page from being
1863 * uncharged when installing migration entries. Here we can
1864 * save the potential rollback and start the charge transfer
1865 * only when migration is already known to end successfully.
1867 mem_cgroup_prepare_migration(page, new_page, &memcg);
1870 entry = mk_pmd(new_page, vma->vm_page_prot);
1871 entry = pmd_mkhuge(entry);
1872 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1875 * Clear the old entry under pagetable lock and establish the new PTE.
1876 * Any parallel GUP will either observe the old page blocking on the
1877 * page lock, block on the page table lock or observe the new page.
1878 * The SetPageUptodate on the new page and page_add_new_anon_rmap
1879 * guarantee the copy is visible before the pagetable update.
1881 flush_cache_range(vma, mmun_start, mmun_end);
1882 page_add_new_anon_rmap(new_page, vma, mmun_start);
1883 pmdp_clear_flush(vma, mmun_start, pmd);
1884 set_pmd_at(mm, mmun_start, pmd, entry);
1885 flush_tlb_range(vma, mmun_start, mmun_end);
1886 update_mmu_cache_pmd(vma, address, &entry);
1888 if (page_count(page) != 2) {
1889 set_pmd_at(mm, mmun_start, pmd, orig_entry);
1890 flush_tlb_range(vma, mmun_start, mmun_end);
1891 update_mmu_cache_pmd(vma, address, &entry);
1892 page_remove_rmap(new_page);
1896 page_remove_rmap(page);
1899 * Finish the charge transaction under the page table lock to
1900 * prevent split_huge_page() from dividing up the charge
1901 * before it's fully transferred to the new page.
1903 mem_cgroup_end_migration(memcg, page, new_page, true);
1905 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1907 unlock_page(new_page);
1909 put_page(page); /* Drop the rmap reference */
1910 put_page(page); /* Drop the LRU isolation reference */
1912 count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
1913 count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
1915 mod_zone_page_state(page_zone(page),
1916 NR_ISOLATED_ANON + page_lru,
1921 count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
1923 ptl = pmd_lock(mm, pmd);
1924 if (pmd_same(*pmd, entry)) {
1925 entry = pmd_mknonnuma(entry);
1926 set_pmd_at(mm, mmun_start, pmd, entry);
1927 update_mmu_cache_pmd(vma, address, &entry);
1936 #endif /* CONFIG_NUMA_BALANCING */
1938 #endif /* CONFIG_NUMA */