1 // SPDX-License-Identifier: GPL-2.0
3 * Memory Migration functionality - linux/mm/migrate.c
5 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
7 * Page migration was first developed in the context of the memory hotplug
8 * project. The main authors of the migration code are:
10 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
11 * Hirokazu Takahashi <taka@valinux.co.jp>
12 * Dave Hansen <haveblue@us.ibm.com>
16 #include <linux/migrate.h>
17 #include <linux/export.h>
18 #include <linux/swap.h>
19 #include <linux/swapops.h>
20 #include <linux/pagemap.h>
21 #include <linux/buffer_head.h>
22 #include <linux/mm_inline.h>
23 #include <linux/nsproxy.h>
24 #include <linux/ksm.h>
25 #include <linux/rmap.h>
26 #include <linux/topology.h>
27 #include <linux/cpu.h>
28 #include <linux/cpuset.h>
29 #include <linux/writeback.h>
30 #include <linux/mempolicy.h>
31 #include <linux/vmalloc.h>
32 #include <linux/security.h>
33 #include <linux/backing-dev.h>
34 #include <linux/compaction.h>
35 #include <linux/syscalls.h>
36 #include <linux/compat.h>
37 #include <linux/hugetlb.h>
38 #include <linux/hugetlb_cgroup.h>
39 #include <linux/gfp.h>
40 #include <linux/pfn_t.h>
41 #include <linux/memremap.h>
42 #include <linux/userfaultfd_k.h>
43 #include <linux/balloon_compaction.h>
44 #include <linux/page_idle.h>
45 #include <linux/page_owner.h>
46 #include <linux/sched/mm.h>
47 #include <linux/ptrace.h>
48 #include <linux/oom.h>
49 #include <linux/memory.h>
50 #include <linux/random.h>
51 #include <linux/sched/sysctl.h>
52 #include <linux/memory-tiers.h>
54 #include <asm/tlbflush.h>
56 #include <trace/events/migrate.h>
60 bool isolate_movable_page(struct page *page, isolate_mode_t mode)
62 struct folio *folio = folio_get_nontail_page(page);
63 const struct movable_operations *mops;
66 * Avoid burning cycles with pages that are yet under __free_pages(),
67 * or just got freed under us.
69 * In case we 'win' a race for a movable page being freed under us and
70 * raise its refcount preventing __free_pages() from doing its job
71 * the put_page() at the end of this block will take care of
72 * release this page, thus avoiding a nasty leakage.
77 if (unlikely(folio_test_slab(folio)))
79 /* Pairs with smp_wmb() in slab freeing, e.g. SLUB's __free_slab() */
82 * Check movable flag before taking the page lock because
83 * we use non-atomic bitops on newly allocated page flags so
84 * unconditionally grabbing the lock ruins page's owner side.
86 if (unlikely(!__folio_test_movable(folio)))
88 /* Pairs with smp_wmb() in slab allocation, e.g. SLUB's alloc_slab_page() */
90 if (unlikely(folio_test_slab(folio)))
94 * As movable pages are not isolated from LRU lists, concurrent
95 * compaction threads can race against page migration functions
96 * as well as race against the releasing a page.
98 * In order to avoid having an already isolated movable page
99 * being (wrongly) re-isolated while it is under migration,
100 * or to avoid attempting to isolate pages being released,
101 * lets be sure we have the page lock
102 * before proceeding with the movable page isolation steps.
104 if (unlikely(!folio_trylock(folio)))
107 if (!folio_test_movable(folio) || folio_test_isolated(folio))
108 goto out_no_isolated;
110 mops = folio_movable_ops(folio);
111 VM_BUG_ON_FOLIO(!mops, folio);
113 if (!mops->isolate_page(&folio->page, mode))
114 goto out_no_isolated;
116 /* Driver shouldn't use PG_isolated bit of page->flags */
117 WARN_ON_ONCE(folio_test_isolated(folio));
118 folio_set_isolated(folio);
131 static void putback_movable_folio(struct folio *folio)
133 const struct movable_operations *mops = folio_movable_ops(folio);
135 mops->putback_page(&folio->page);
136 folio_clear_isolated(folio);
140 * Put previously isolated pages back onto the appropriate lists
141 * from where they were once taken off for compaction/migration.
143 * This function shall be used whenever the isolated pageset has been
144 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
145 * and isolate_hugetlb().
147 void putback_movable_pages(struct list_head *l)
150 struct folio *folio2;
152 list_for_each_entry_safe(folio, folio2, l, lru) {
153 if (unlikely(folio_test_hugetlb(folio))) {
154 folio_putback_active_hugetlb(folio);
157 list_del(&folio->lru);
159 * We isolated non-lru movable folio so here we can use
160 * __PageMovable because LRU folio's mapping cannot have
161 * PAGE_MAPPING_MOVABLE.
163 if (unlikely(__folio_test_movable(folio))) {
164 VM_BUG_ON_FOLIO(!folio_test_isolated(folio), folio);
166 if (folio_test_movable(folio))
167 putback_movable_folio(folio);
169 folio_clear_isolated(folio);
173 node_stat_mod_folio(folio, NR_ISOLATED_ANON +
174 folio_is_file_lru(folio), -folio_nr_pages(folio));
175 folio_putback_lru(folio);
181 * Restore a potential migration pte to a working pte entry
183 static bool remove_migration_pte(struct folio *folio,
184 struct vm_area_struct *vma, unsigned long addr, void *old)
186 DEFINE_FOLIO_VMA_WALK(pvmw, old, vma, addr, PVMW_SYNC | PVMW_MIGRATION);
188 while (page_vma_mapped_walk(&pvmw)) {
189 rmap_t rmap_flags = RMAP_NONE;
194 unsigned long idx = 0;
196 /* pgoff is invalid for ksm pages, but they are never large */
197 if (folio_test_large(folio) && !folio_test_hugetlb(folio))
198 idx = linear_page_index(vma, pvmw.address) - pvmw.pgoff;
199 new = folio_page(folio, idx);
201 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
202 /* PMD-mapped THP migration entry */
204 VM_BUG_ON_FOLIO(folio_test_hugetlb(folio) ||
205 !folio_test_pmd_mappable(folio), folio);
206 remove_migration_pmd(&pvmw, new);
212 pte = mk_pte(new, READ_ONCE(vma->vm_page_prot));
213 old_pte = ptep_get(pvmw.pte);
214 if (pte_swp_soft_dirty(old_pte))
215 pte = pte_mksoft_dirty(pte);
217 entry = pte_to_swp_entry(old_pte);
218 if (!is_migration_entry_young(entry))
219 pte = pte_mkold(pte);
220 if (folio_test_dirty(folio) && is_migration_entry_dirty(entry))
221 pte = pte_mkdirty(pte);
222 if (is_writable_migration_entry(entry))
223 pte = pte_mkwrite(pte);
224 else if (pte_swp_uffd_wp(old_pte))
225 pte = pte_mkuffd_wp(pte);
227 if (folio_test_anon(folio) && !is_readable_migration_entry(entry))
228 rmap_flags |= RMAP_EXCLUSIVE;
230 if (unlikely(is_device_private_page(new))) {
232 entry = make_writable_device_private_entry(
235 entry = make_readable_device_private_entry(
237 pte = swp_entry_to_pte(entry);
238 if (pte_swp_soft_dirty(old_pte))
239 pte = pte_swp_mksoft_dirty(pte);
240 if (pte_swp_uffd_wp(old_pte))
241 pte = pte_swp_mkuffd_wp(pte);
244 #ifdef CONFIG_HUGETLB_PAGE
245 if (folio_test_hugetlb(folio)) {
246 unsigned int shift = huge_page_shift(hstate_vma(vma));
248 pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
249 if (folio_test_anon(folio))
250 hugepage_add_anon_rmap(new, vma, pvmw.address,
253 page_dup_file_rmap(new, true);
254 set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
258 if (folio_test_anon(folio))
259 page_add_anon_rmap(new, vma, pvmw.address,
262 page_add_file_rmap(new, vma, false);
263 set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
265 if (vma->vm_flags & VM_LOCKED)
268 trace_remove_migration_pte(pvmw.address, pte_val(pte),
269 compound_order(new));
271 /* No need to invalidate - it was non-present before */
272 update_mmu_cache(vma, pvmw.address, pvmw.pte);
279 * Get rid of all migration entries and replace them by
280 * references to the indicated page.
282 void remove_migration_ptes(struct folio *src, struct folio *dst, bool locked)
284 struct rmap_walk_control rwc = {
285 .rmap_one = remove_migration_pte,
290 rmap_walk_locked(dst, &rwc);
292 rmap_walk(dst, &rwc);
296 * Something used the pte of a page under migration. We need to
297 * get to the page and wait until migration is finished.
298 * When we return from this function the fault will be retried.
300 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
301 unsigned long address)
308 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
312 pte = ptep_get(ptep);
315 if (!is_swap_pte(pte))
318 entry = pte_to_swp_entry(pte);
319 if (!is_migration_entry(entry))
322 migration_entry_wait_on_locked(entry, ptl);
328 #ifdef CONFIG_HUGETLB_PAGE
330 * The vma read lock must be held upon entry. Holding that lock prevents either
331 * the pte or the ptl from being freed.
333 * This function will release the vma lock before returning.
335 void migration_entry_wait_huge(struct vm_area_struct *vma, pte_t *ptep)
337 spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), vma->vm_mm, ptep);
340 hugetlb_vma_assert_locked(vma);
342 pte = huge_ptep_get(ptep);
344 if (unlikely(!is_hugetlb_entry_migration(pte))) {
346 hugetlb_vma_unlock_read(vma);
349 * If migration entry existed, safe to release vma lock
350 * here because the pgtable page won't be freed without the
351 * pgtable lock released. See comment right above pgtable
352 * lock release in migration_entry_wait_on_locked().
354 hugetlb_vma_unlock_read(vma);
355 migration_entry_wait_on_locked(pte_to_swp_entry(pte), ptl);
360 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
361 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
365 ptl = pmd_lock(mm, pmd);
366 if (!is_pmd_migration_entry(*pmd))
368 migration_entry_wait_on_locked(pmd_to_swp_entry(*pmd), ptl);
375 static int folio_expected_refs(struct address_space *mapping,
382 refs += folio_nr_pages(folio);
383 if (folio_test_private(folio))
390 * Replace the page in the mapping.
392 * The number of remaining references must be:
393 * 1 for anonymous pages without a mapping
394 * 2 for pages with a mapping
395 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
397 int folio_migrate_mapping(struct address_space *mapping,
398 struct folio *newfolio, struct folio *folio, int extra_count)
400 XA_STATE(xas, &mapping->i_pages, folio_index(folio));
401 struct zone *oldzone, *newzone;
403 int expected_count = folio_expected_refs(mapping, folio) + extra_count;
404 long nr = folio_nr_pages(folio);
407 /* Anonymous page without mapping */
408 if (folio_ref_count(folio) != expected_count)
411 /* No turning back from here */
412 newfolio->index = folio->index;
413 newfolio->mapping = folio->mapping;
414 if (folio_test_swapbacked(folio))
415 __folio_set_swapbacked(newfolio);
417 return MIGRATEPAGE_SUCCESS;
420 oldzone = folio_zone(folio);
421 newzone = folio_zone(newfolio);
424 if (!folio_ref_freeze(folio, expected_count)) {
425 xas_unlock_irq(&xas);
430 * Now we know that no one else is looking at the folio:
431 * no turning back from here.
433 newfolio->index = folio->index;
434 newfolio->mapping = folio->mapping;
435 folio_ref_add(newfolio, nr); /* add cache reference */
436 if (folio_test_swapbacked(folio)) {
437 __folio_set_swapbacked(newfolio);
438 if (folio_test_swapcache(folio)) {
439 folio_set_swapcache(newfolio);
440 newfolio->private = folio_get_private(folio);
443 VM_BUG_ON_FOLIO(folio_test_swapcache(folio), folio);
446 /* Move dirty while page refs frozen and newpage not yet exposed */
447 dirty = folio_test_dirty(folio);
449 folio_clear_dirty(folio);
450 folio_set_dirty(newfolio);
453 xas_store(&xas, newfolio);
456 * Drop cache reference from old page by unfreezing
457 * to one less reference.
458 * We know this isn't the last reference.
460 folio_ref_unfreeze(folio, expected_count - nr);
463 /* Leave irq disabled to prevent preemption while updating stats */
466 * If moved to a different zone then also account
467 * the page for that zone. Other VM counters will be
468 * taken care of when we establish references to the
469 * new page and drop references to the old page.
471 * Note that anonymous pages are accounted for
472 * via NR_FILE_PAGES and NR_ANON_MAPPED if they
473 * are mapped to swap space.
475 if (newzone != oldzone) {
476 struct lruvec *old_lruvec, *new_lruvec;
477 struct mem_cgroup *memcg;
479 memcg = folio_memcg(folio);
480 old_lruvec = mem_cgroup_lruvec(memcg, oldzone->zone_pgdat);
481 new_lruvec = mem_cgroup_lruvec(memcg, newzone->zone_pgdat);
483 __mod_lruvec_state(old_lruvec, NR_FILE_PAGES, -nr);
484 __mod_lruvec_state(new_lruvec, NR_FILE_PAGES, nr);
485 if (folio_test_swapbacked(folio) && !folio_test_swapcache(folio)) {
486 __mod_lruvec_state(old_lruvec, NR_SHMEM, -nr);
487 __mod_lruvec_state(new_lruvec, NR_SHMEM, nr);
489 if (folio_test_pmd_mappable(folio)) {
490 __mod_lruvec_state(old_lruvec, NR_SHMEM_THPS, -nr);
491 __mod_lruvec_state(new_lruvec, NR_SHMEM_THPS, nr);
495 if (folio_test_swapcache(folio)) {
496 __mod_lruvec_state(old_lruvec, NR_SWAPCACHE, -nr);
497 __mod_lruvec_state(new_lruvec, NR_SWAPCACHE, nr);
500 if (dirty && mapping_can_writeback(mapping)) {
501 __mod_lruvec_state(old_lruvec, NR_FILE_DIRTY, -nr);
502 __mod_zone_page_state(oldzone, NR_ZONE_WRITE_PENDING, -nr);
503 __mod_lruvec_state(new_lruvec, NR_FILE_DIRTY, nr);
504 __mod_zone_page_state(newzone, NR_ZONE_WRITE_PENDING, nr);
509 return MIGRATEPAGE_SUCCESS;
511 EXPORT_SYMBOL(folio_migrate_mapping);
514 * The expected number of remaining references is the same as that
515 * of folio_migrate_mapping().
517 int migrate_huge_page_move_mapping(struct address_space *mapping,
518 struct folio *dst, struct folio *src)
520 XA_STATE(xas, &mapping->i_pages, folio_index(src));
524 expected_count = 2 + folio_has_private(src);
525 if (!folio_ref_freeze(src, expected_count)) {
526 xas_unlock_irq(&xas);
530 dst->index = src->index;
531 dst->mapping = src->mapping;
535 xas_store(&xas, dst);
537 folio_ref_unfreeze(src, expected_count - 1);
539 xas_unlock_irq(&xas);
541 return MIGRATEPAGE_SUCCESS;
545 * Copy the flags and some other ancillary information
547 void folio_migrate_flags(struct folio *newfolio, struct folio *folio)
551 if (folio_test_error(folio))
552 folio_set_error(newfolio);
553 if (folio_test_referenced(folio))
554 folio_set_referenced(newfolio);
555 if (folio_test_uptodate(folio))
556 folio_mark_uptodate(newfolio);
557 if (folio_test_clear_active(folio)) {
558 VM_BUG_ON_FOLIO(folio_test_unevictable(folio), folio);
559 folio_set_active(newfolio);
560 } else if (folio_test_clear_unevictable(folio))
561 folio_set_unevictable(newfolio);
562 if (folio_test_workingset(folio))
563 folio_set_workingset(newfolio);
564 if (folio_test_checked(folio))
565 folio_set_checked(newfolio);
567 * PG_anon_exclusive (-> PG_mappedtodisk) is always migrated via
568 * migration entries. We can still have PG_anon_exclusive set on an
569 * effectively unmapped and unreferenced first sub-pages of an
570 * anonymous THP: we can simply copy it here via PG_mappedtodisk.
572 if (folio_test_mappedtodisk(folio))
573 folio_set_mappedtodisk(newfolio);
575 /* Move dirty on pages not done by folio_migrate_mapping() */
576 if (folio_test_dirty(folio))
577 folio_set_dirty(newfolio);
579 if (folio_test_young(folio))
580 folio_set_young(newfolio);
581 if (folio_test_idle(folio))
582 folio_set_idle(newfolio);
585 * Copy NUMA information to the new page, to prevent over-eager
586 * future migrations of this same page.
588 cpupid = page_cpupid_xchg_last(&folio->page, -1);
590 * For memory tiering mode, when migrate between slow and fast
591 * memory node, reset cpupid, because that is used to record
592 * page access time in slow memory node.
594 if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) {
595 bool f_toptier = node_is_toptier(page_to_nid(&folio->page));
596 bool t_toptier = node_is_toptier(page_to_nid(&newfolio->page));
598 if (f_toptier != t_toptier)
601 page_cpupid_xchg_last(&newfolio->page, cpupid);
603 folio_migrate_ksm(newfolio, folio);
605 * Please do not reorder this without considering how mm/ksm.c's
606 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
608 if (folio_test_swapcache(folio))
609 folio_clear_swapcache(folio);
610 folio_clear_private(folio);
612 /* page->private contains hugetlb specific flags */
613 if (!folio_test_hugetlb(folio))
614 folio->private = NULL;
617 * If any waiters have accumulated on the new page then
620 if (folio_test_writeback(newfolio))
621 folio_end_writeback(newfolio);
624 * PG_readahead shares the same bit with PG_reclaim. The above
625 * end_page_writeback() may clear PG_readahead mistakenly, so set the
628 if (folio_test_readahead(folio))
629 folio_set_readahead(newfolio);
631 folio_copy_owner(newfolio, folio);
633 if (!folio_test_hugetlb(folio))
634 mem_cgroup_migrate(folio, newfolio);
636 EXPORT_SYMBOL(folio_migrate_flags);
638 void folio_migrate_copy(struct folio *newfolio, struct folio *folio)
640 folio_copy(newfolio, folio);
641 folio_migrate_flags(newfolio, folio);
643 EXPORT_SYMBOL(folio_migrate_copy);
645 /************************************************************
646 * Migration functions
647 ***********************************************************/
649 int migrate_folio_extra(struct address_space *mapping, struct folio *dst,
650 struct folio *src, enum migrate_mode mode, int extra_count)
654 BUG_ON(folio_test_writeback(src)); /* Writeback must be complete */
656 rc = folio_migrate_mapping(mapping, dst, src, extra_count);
658 if (rc != MIGRATEPAGE_SUCCESS)
661 if (mode != MIGRATE_SYNC_NO_COPY)
662 folio_migrate_copy(dst, src);
664 folio_migrate_flags(dst, src);
665 return MIGRATEPAGE_SUCCESS;
669 * migrate_folio() - Simple folio migration.
670 * @mapping: The address_space containing the folio.
671 * @dst: The folio to migrate the data to.
672 * @src: The folio containing the current data.
673 * @mode: How to migrate the page.
675 * Common logic to directly migrate a single LRU folio suitable for
676 * folios that do not use PagePrivate/PagePrivate2.
678 * Folios are locked upon entry and exit.
680 int migrate_folio(struct address_space *mapping, struct folio *dst,
681 struct folio *src, enum migrate_mode mode)
683 return migrate_folio_extra(mapping, dst, src, mode, 0);
685 EXPORT_SYMBOL(migrate_folio);
688 /* Returns true if all buffers are successfully locked */
689 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
690 enum migrate_mode mode)
692 struct buffer_head *bh = head;
693 struct buffer_head *failed_bh;
696 if (!trylock_buffer(bh)) {
697 if (mode == MIGRATE_ASYNC)
699 if (mode == MIGRATE_SYNC_LIGHT && !buffer_uptodate(bh))
704 bh = bh->b_this_page;
705 } while (bh != head);
710 /* We failed to lock the buffer and cannot stall. */
713 while (bh != failed_bh) {
715 bh = bh->b_this_page;
721 static int __buffer_migrate_folio(struct address_space *mapping,
722 struct folio *dst, struct folio *src, enum migrate_mode mode,
725 struct buffer_head *bh, *head;
729 head = folio_buffers(src);
731 return migrate_folio(mapping, dst, src, mode);
733 /* Check whether page does not have extra refs before we do more work */
734 expected_count = folio_expected_refs(mapping, src);
735 if (folio_ref_count(src) != expected_count)
738 if (!buffer_migrate_lock_buffers(head, mode))
743 bool invalidated = false;
747 spin_lock(&mapping->private_lock);
750 if (atomic_read(&bh->b_count)) {
754 bh = bh->b_this_page;
755 } while (bh != head);
761 spin_unlock(&mapping->private_lock);
762 invalidate_bh_lrus();
764 goto recheck_buffers;
768 rc = folio_migrate_mapping(mapping, dst, src, 0);
769 if (rc != MIGRATEPAGE_SUCCESS)
772 folio_attach_private(dst, folio_detach_private(src));
776 set_bh_page(bh, &dst->page, bh_offset(bh));
777 bh = bh->b_this_page;
778 } while (bh != head);
780 if (mode != MIGRATE_SYNC_NO_COPY)
781 folio_migrate_copy(dst, src);
783 folio_migrate_flags(dst, src);
785 rc = MIGRATEPAGE_SUCCESS;
788 spin_unlock(&mapping->private_lock);
792 bh = bh->b_this_page;
793 } while (bh != head);
799 * buffer_migrate_folio() - Migration function for folios with buffers.
800 * @mapping: The address space containing @src.
801 * @dst: The folio to migrate to.
802 * @src: The folio to migrate from.
803 * @mode: How to migrate the folio.
805 * This function can only be used if the underlying filesystem guarantees
806 * that no other references to @src exist. For example attached buffer
807 * heads are accessed only under the folio lock. If your filesystem cannot
808 * provide this guarantee, buffer_migrate_folio_norefs() may be more
811 * Return: 0 on success or a negative errno on failure.
813 int buffer_migrate_folio(struct address_space *mapping,
814 struct folio *dst, struct folio *src, enum migrate_mode mode)
816 return __buffer_migrate_folio(mapping, dst, src, mode, false);
818 EXPORT_SYMBOL(buffer_migrate_folio);
821 * buffer_migrate_folio_norefs() - Migration function for folios with buffers.
822 * @mapping: The address space containing @src.
823 * @dst: The folio to migrate to.
824 * @src: The folio to migrate from.
825 * @mode: How to migrate the folio.
827 * Like buffer_migrate_folio() except that this variant is more careful
828 * and checks that there are also no buffer head references. This function
829 * is the right one for mappings where buffer heads are directly looked
830 * up and referenced (such as block device mappings).
832 * Return: 0 on success or a negative errno on failure.
834 int buffer_migrate_folio_norefs(struct address_space *mapping,
835 struct folio *dst, struct folio *src, enum migrate_mode mode)
837 return __buffer_migrate_folio(mapping, dst, src, mode, true);
839 EXPORT_SYMBOL_GPL(buffer_migrate_folio_norefs);
842 int filemap_migrate_folio(struct address_space *mapping,
843 struct folio *dst, struct folio *src, enum migrate_mode mode)
847 ret = folio_migrate_mapping(mapping, dst, src, 0);
848 if (ret != MIGRATEPAGE_SUCCESS)
851 if (folio_get_private(src))
852 folio_attach_private(dst, folio_detach_private(src));
854 if (mode != MIGRATE_SYNC_NO_COPY)
855 folio_migrate_copy(dst, src);
857 folio_migrate_flags(dst, src);
858 return MIGRATEPAGE_SUCCESS;
860 EXPORT_SYMBOL_GPL(filemap_migrate_folio);
863 * Writeback a folio to clean the dirty state
865 static int writeout(struct address_space *mapping, struct folio *folio)
867 struct writeback_control wbc = {
868 .sync_mode = WB_SYNC_NONE,
871 .range_end = LLONG_MAX,
876 if (!mapping->a_ops->writepage)
877 /* No write method for the address space */
880 if (!folio_clear_dirty_for_io(folio))
881 /* Someone else already triggered a write */
885 * A dirty folio may imply that the underlying filesystem has
886 * the folio on some queue. So the folio must be clean for
887 * migration. Writeout may mean we lose the lock and the
888 * folio state is no longer what we checked for earlier.
889 * At this point we know that the migration attempt cannot
892 remove_migration_ptes(folio, folio, false);
894 rc = mapping->a_ops->writepage(&folio->page, &wbc);
896 if (rc != AOP_WRITEPAGE_ACTIVATE)
897 /* unlocked. Relock */
900 return (rc < 0) ? -EIO : -EAGAIN;
904 * Default handling if a filesystem does not provide a migration function.
906 static int fallback_migrate_folio(struct address_space *mapping,
907 struct folio *dst, struct folio *src, enum migrate_mode mode)
909 if (folio_test_dirty(src)) {
910 /* Only writeback folios in full synchronous migration */
913 case MIGRATE_SYNC_NO_COPY:
918 return writeout(mapping, src);
922 * Buffers may be managed in a filesystem specific way.
923 * We must have no buffers or drop them.
925 if (folio_test_private(src) &&
926 !filemap_release_folio(src, GFP_KERNEL))
927 return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY;
929 return migrate_folio(mapping, dst, src, mode);
933 * Move a page to a newly allocated page
934 * The page is locked and all ptes have been successfully removed.
936 * The new page will have replaced the old page if this function
941 * MIGRATEPAGE_SUCCESS - success
943 static int move_to_new_folio(struct folio *dst, struct folio *src,
944 enum migrate_mode mode)
947 bool is_lru = !__PageMovable(&src->page);
949 VM_BUG_ON_FOLIO(!folio_test_locked(src), src);
950 VM_BUG_ON_FOLIO(!folio_test_locked(dst), dst);
952 if (likely(is_lru)) {
953 struct address_space *mapping = folio_mapping(src);
956 rc = migrate_folio(mapping, dst, src, mode);
957 else if (mapping->a_ops->migrate_folio)
959 * Most folios have a mapping and most filesystems
960 * provide a migrate_folio callback. Anonymous folios
961 * are part of swap space which also has its own
962 * migrate_folio callback. This is the most common path
963 * for page migration.
965 rc = mapping->a_ops->migrate_folio(mapping, dst, src,
968 rc = fallback_migrate_folio(mapping, dst, src, mode);
970 const struct movable_operations *mops;
973 * In case of non-lru page, it could be released after
974 * isolation step. In that case, we shouldn't try migration.
976 VM_BUG_ON_FOLIO(!folio_test_isolated(src), src);
977 if (!folio_test_movable(src)) {
978 rc = MIGRATEPAGE_SUCCESS;
979 folio_clear_isolated(src);
983 mops = folio_movable_ops(src);
984 rc = mops->migrate_page(&dst->page, &src->page, mode);
985 WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
986 !folio_test_isolated(src));
990 * When successful, old pagecache src->mapping must be cleared before
991 * src is freed; but stats require that PageAnon be left as PageAnon.
993 if (rc == MIGRATEPAGE_SUCCESS) {
994 if (__PageMovable(&src->page)) {
995 VM_BUG_ON_FOLIO(!folio_test_isolated(src), src);
998 * We clear PG_movable under page_lock so any compactor
999 * cannot try to migrate this page.
1001 folio_clear_isolated(src);
1005 * Anonymous and movable src->mapping will be cleared by
1006 * free_pages_prepare so don't reset it here for keeping
1007 * the type to work PageAnon, for example.
1009 if (!folio_mapping_flags(src))
1010 src->mapping = NULL;
1012 if (likely(!folio_is_zone_device(dst)))
1013 flush_dcache_folio(dst);
1020 * To record some information during migration, we use some unused
1021 * fields (mapping and private) of struct folio of the newly allocated
1022 * destination folio. This is safe because nobody is using them
1025 union migration_ptr {
1026 struct anon_vma *anon_vma;
1027 struct address_space *mapping;
1029 static void __migrate_folio_record(struct folio *dst,
1030 unsigned long page_was_mapped,
1031 struct anon_vma *anon_vma)
1033 union migration_ptr ptr = { .anon_vma = anon_vma };
1034 dst->mapping = ptr.mapping;
1035 dst->private = (void *)page_was_mapped;
1038 static void __migrate_folio_extract(struct folio *dst,
1039 int *page_was_mappedp,
1040 struct anon_vma **anon_vmap)
1042 union migration_ptr ptr = { .mapping = dst->mapping };
1043 *anon_vmap = ptr.anon_vma;
1044 *page_was_mappedp = (unsigned long)dst->private;
1045 dst->mapping = NULL;
1046 dst->private = NULL;
1049 /* Restore the source folio to the original state upon failure */
1050 static void migrate_folio_undo_src(struct folio *src,
1051 int page_was_mapped,
1052 struct anon_vma *anon_vma,
1054 struct list_head *ret)
1056 if (page_was_mapped)
1057 remove_migration_ptes(src, src, false);
1058 /* Drop an anon_vma reference if we took one */
1060 put_anon_vma(anon_vma);
1064 list_move_tail(&src->lru, ret);
1067 /* Restore the destination folio to the original state upon failure */
1068 static void migrate_folio_undo_dst(struct folio *dst, bool locked,
1069 free_folio_t put_new_folio, unsigned long private)
1074 put_new_folio(dst, private);
1079 /* Cleanup src folio upon migration success */
1080 static void migrate_folio_done(struct folio *src,
1081 enum migrate_reason reason)
1084 * Compaction can migrate also non-LRU pages which are
1085 * not accounted to NR_ISOLATED_*. They can be recognized
1088 if (likely(!__folio_test_movable(src)))
1089 mod_node_page_state(folio_pgdat(src), NR_ISOLATED_ANON +
1090 folio_is_file_lru(src), -folio_nr_pages(src));
1092 if (reason != MR_MEMORY_FAILURE)
1093 /* We release the page in page_handle_poison. */
1097 /* Obtain the lock on page, remove all ptes. */
1098 static int migrate_folio_unmap(new_folio_t get_new_folio,
1099 free_folio_t put_new_folio, unsigned long private,
1100 struct folio *src, struct folio **dstp, enum migrate_mode mode,
1101 enum migrate_reason reason, struct list_head *ret)
1105 int page_was_mapped = 0;
1106 struct anon_vma *anon_vma = NULL;
1107 bool is_lru = !__PageMovable(&src->page);
1108 bool locked = false;
1109 bool dst_locked = false;
1111 if (folio_ref_count(src) == 1) {
1112 /* Folio was freed from under us. So we are done. */
1113 folio_clear_active(src);
1114 folio_clear_unevictable(src);
1115 /* free_pages_prepare() will clear PG_isolated. */
1116 list_del(&src->lru);
1117 migrate_folio_done(src, reason);
1118 return MIGRATEPAGE_SUCCESS;
1121 dst = get_new_folio(src, private);
1126 dst->private = NULL;
1128 if (!folio_trylock(src)) {
1129 if (mode == MIGRATE_ASYNC)
1133 * It's not safe for direct compaction to call lock_page.
1134 * For example, during page readahead pages are added locked
1135 * to the LRU. Later, when the IO completes the pages are
1136 * marked uptodate and unlocked. However, the queueing
1137 * could be merging multiple pages for one bio (e.g.
1138 * mpage_readahead). If an allocation happens for the
1139 * second or third page, the process can end up locking
1140 * the same page twice and deadlocking. Rather than
1141 * trying to be clever about what pages can be locked,
1142 * avoid the use of lock_page for direct compaction
1145 if (current->flags & PF_MEMALLOC)
1149 * In "light" mode, we can wait for transient locks (eg
1150 * inserting a page into the page table), but it's not
1151 * worth waiting for I/O.
1153 if (mode == MIGRATE_SYNC_LIGHT && !folio_test_uptodate(src))
1160 if (folio_test_writeback(src)) {
1162 * Only in the case of a full synchronous migration is it
1163 * necessary to wait for PageWriteback. In the async case,
1164 * the retry loop is too short and in the sync-light case,
1165 * the overhead of stalling is too much
1169 case MIGRATE_SYNC_NO_COPY:
1175 folio_wait_writeback(src);
1179 * By try_to_migrate(), src->mapcount goes down to 0 here. In this case,
1180 * we cannot notice that anon_vma is freed while we migrate a page.
1181 * This get_anon_vma() delays freeing anon_vma pointer until the end
1182 * of migration. File cache pages are no problem because of page_lock()
1183 * File Caches may use write_page() or lock_page() in migration, then,
1184 * just care Anon page here.
1186 * Only folio_get_anon_vma() understands the subtleties of
1187 * getting a hold on an anon_vma from outside one of its mms.
1188 * But if we cannot get anon_vma, then we won't need it anyway,
1189 * because that implies that the anon page is no longer mapped
1190 * (and cannot be remapped so long as we hold the page lock).
1192 if (folio_test_anon(src) && !folio_test_ksm(src))
1193 anon_vma = folio_get_anon_vma(src);
1196 * Block others from accessing the new page when we get around to
1197 * establishing additional references. We are usually the only one
1198 * holding a reference to dst at this point. We used to have a BUG
1199 * here if folio_trylock(dst) fails, but would like to allow for
1200 * cases where there might be a race with the previous use of dst.
1201 * This is much like races on refcount of oldpage: just don't BUG().
1203 if (unlikely(!folio_trylock(dst)))
1207 if (unlikely(!is_lru)) {
1208 __migrate_folio_record(dst, page_was_mapped, anon_vma);
1209 return MIGRATEPAGE_UNMAP;
1213 * Corner case handling:
1214 * 1. When a new swap-cache page is read into, it is added to the LRU
1215 * and treated as swapcache but it has no rmap yet.
1216 * Calling try_to_unmap() against a src->mapping==NULL page will
1217 * trigger a BUG. So handle it here.
1218 * 2. An orphaned page (see truncate_cleanup_page) might have
1219 * fs-private metadata. The page can be picked up due to memory
1220 * offlining. Everywhere else except page reclaim, the page is
1221 * invisible to the vm, so the page can not be migrated. So try to
1222 * free the metadata, so the page can be freed.
1224 if (!src->mapping) {
1225 if (folio_test_private(src)) {
1226 try_to_free_buffers(src);
1229 } else if (folio_mapped(src)) {
1230 /* Establish migration ptes */
1231 VM_BUG_ON_FOLIO(folio_test_anon(src) &&
1232 !folio_test_ksm(src) && !anon_vma, src);
1233 try_to_migrate(src, mode == MIGRATE_ASYNC ? TTU_BATCH_FLUSH : 0);
1234 page_was_mapped = 1;
1237 if (!folio_mapped(src)) {
1238 __migrate_folio_record(dst, page_was_mapped, anon_vma);
1239 return MIGRATEPAGE_UNMAP;
1244 * A folio that has not been unmapped will be restored to
1245 * right list unless we want to retry.
1250 migrate_folio_undo_src(src, page_was_mapped, anon_vma, locked, ret);
1251 migrate_folio_undo_dst(dst, dst_locked, put_new_folio, private);
1256 /* Migrate the folio to the newly allocated folio in dst. */
1257 static int migrate_folio_move(free_folio_t put_new_folio, unsigned long private,
1258 struct folio *src, struct folio *dst,
1259 enum migrate_mode mode, enum migrate_reason reason,
1260 struct list_head *ret)
1263 int page_was_mapped = 0;
1264 struct anon_vma *anon_vma = NULL;
1265 bool is_lru = !__PageMovable(&src->page);
1266 struct list_head *prev;
1268 __migrate_folio_extract(dst, &page_was_mapped, &anon_vma);
1269 prev = dst->lru.prev;
1270 list_del(&dst->lru);
1272 rc = move_to_new_folio(dst, src, mode);
1276 if (unlikely(!is_lru))
1277 goto out_unlock_both;
1280 * When successful, push dst to LRU immediately: so that if it
1281 * turns out to be an mlocked page, remove_migration_ptes() will
1282 * automatically build up the correct dst->mlock_count for it.
1284 * We would like to do something similar for the old page, when
1285 * unsuccessful, and other cases when a page has been temporarily
1286 * isolated from the unevictable LRU: but this case is the easiest.
1289 if (page_was_mapped)
1292 if (page_was_mapped)
1293 remove_migration_ptes(src, dst, false);
1297 set_page_owner_migrate_reason(&dst->page, reason);
1299 * If migration is successful, decrease refcount of dst,
1300 * which will not free the page because new page owner increased
1306 * A folio that has been migrated has all references removed
1307 * and will be freed.
1309 list_del(&src->lru);
1310 /* Drop an anon_vma reference if we took one */
1312 put_anon_vma(anon_vma);
1314 migrate_folio_done(src, reason);
1319 * A folio that has not been migrated will be restored to
1320 * right list unless we want to retry.
1322 if (rc == -EAGAIN) {
1323 list_add(&dst->lru, prev);
1324 __migrate_folio_record(dst, page_was_mapped, anon_vma);
1328 migrate_folio_undo_src(src, page_was_mapped, anon_vma, true, ret);
1329 migrate_folio_undo_dst(dst, true, put_new_folio, private);
1335 * Counterpart of unmap_and_move_page() for hugepage migration.
1337 * This function doesn't wait the completion of hugepage I/O
1338 * because there is no race between I/O and migration for hugepage.
1339 * Note that currently hugepage I/O occurs only in direct I/O
1340 * where no lock is held and PG_writeback is irrelevant,
1341 * and writeback status of all subpages are counted in the reference
1342 * count of the head page (i.e. if all subpages of a 2MB hugepage are
1343 * under direct I/O, the reference of the head page is 512 and a bit more.)
1344 * This means that when we try to migrate hugepage whose subpages are
1345 * doing direct I/O, some references remain after try_to_unmap() and
1346 * hugepage migration fails without data corruption.
1348 * There is also no race when direct I/O is issued on the page under migration,
1349 * because then pte is replaced with migration swap entry and direct I/O code
1350 * will wait in the page fault for migration to complete.
1352 static int unmap_and_move_huge_page(new_folio_t get_new_folio,
1353 free_folio_t put_new_folio, unsigned long private,
1354 struct folio *src, int force, enum migrate_mode mode,
1355 int reason, struct list_head *ret)
1359 int page_was_mapped = 0;
1360 struct anon_vma *anon_vma = NULL;
1361 struct address_space *mapping = NULL;
1363 if (folio_ref_count(src) == 1) {
1364 /* page was freed from under us. So we are done. */
1365 folio_putback_active_hugetlb(src);
1366 return MIGRATEPAGE_SUCCESS;
1369 dst = get_new_folio(src, private);
1373 if (!folio_trylock(src)) {
1378 case MIGRATE_SYNC_NO_COPY:
1387 * Check for pages which are in the process of being freed. Without
1388 * folio_mapping() set, hugetlbfs specific move page routine will not
1389 * be called and we could leak usage counts for subpools.
1391 if (hugetlb_folio_subpool(src) && !folio_mapping(src)) {
1396 if (folio_test_anon(src))
1397 anon_vma = folio_get_anon_vma(src);
1399 if (unlikely(!folio_trylock(dst)))
1402 if (folio_mapped(src)) {
1403 enum ttu_flags ttu = 0;
1405 if (!folio_test_anon(src)) {
1407 * In shared mappings, try_to_unmap could potentially
1408 * call huge_pmd_unshare. Because of this, take
1409 * semaphore in write mode here and set TTU_RMAP_LOCKED
1410 * to let lower levels know we have taken the lock.
1412 mapping = hugetlb_page_mapping_lock_write(&src->page);
1413 if (unlikely(!mapping))
1414 goto unlock_put_anon;
1416 ttu = TTU_RMAP_LOCKED;
1419 try_to_migrate(src, ttu);
1420 page_was_mapped = 1;
1422 if (ttu & TTU_RMAP_LOCKED)
1423 i_mmap_unlock_write(mapping);
1426 if (!folio_mapped(src))
1427 rc = move_to_new_folio(dst, src, mode);
1429 if (page_was_mapped)
1430 remove_migration_ptes(src,
1431 rc == MIGRATEPAGE_SUCCESS ? dst : src, false);
1438 put_anon_vma(anon_vma);
1440 if (rc == MIGRATEPAGE_SUCCESS) {
1441 move_hugetlb_state(src, dst, reason);
1442 put_new_folio = NULL;
1448 if (rc == MIGRATEPAGE_SUCCESS)
1449 folio_putback_active_hugetlb(src);
1450 else if (rc != -EAGAIN)
1451 list_move_tail(&src->lru, ret);
1454 * If migration was not successful and there's a freeing callback, use
1455 * it. Otherwise, put_page() will drop the reference grabbed during
1459 put_new_folio(dst, private);
1461 folio_putback_active_hugetlb(dst);
1466 static inline int try_split_folio(struct folio *folio, struct list_head *split_folios)
1471 rc = split_folio_to_list(folio, split_folios);
1472 folio_unlock(folio);
1474 list_move_tail(&folio->lru, split_folios);
1479 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1480 #define NR_MAX_BATCHED_MIGRATION HPAGE_PMD_NR
1482 #define NR_MAX_BATCHED_MIGRATION 512
1484 #define NR_MAX_MIGRATE_PAGES_RETRY 10
1485 #define NR_MAX_MIGRATE_ASYNC_RETRY 3
1486 #define NR_MAX_MIGRATE_SYNC_RETRY \
1487 (NR_MAX_MIGRATE_PAGES_RETRY - NR_MAX_MIGRATE_ASYNC_RETRY)
1489 struct migrate_pages_stats {
1490 int nr_succeeded; /* Normal and large folios migrated successfully, in
1491 units of base pages */
1492 int nr_failed_pages; /* Normal and large folios failed to be migrated, in
1493 units of base pages. Untried folios aren't counted */
1494 int nr_thp_succeeded; /* THP migrated successfully */
1495 int nr_thp_failed; /* THP failed to be migrated */
1496 int nr_thp_split; /* THP split before migrating */
1500 * Returns the number of hugetlb folios that were not migrated, or an error code
1501 * after NR_MAX_MIGRATE_PAGES_RETRY attempts or if no hugetlb folios are movable
1502 * any more because the list has become empty or no retryable hugetlb folios
1503 * exist any more. It is caller's responsibility to call putback_movable_pages()
1506 static int migrate_hugetlbs(struct list_head *from, new_folio_t get_new_folio,
1507 free_folio_t put_new_folio, unsigned long private,
1508 enum migrate_mode mode, int reason,
1509 struct migrate_pages_stats *stats,
1510 struct list_head *ret_folios)
1514 int nr_retry_pages = 0;
1516 struct folio *folio, *folio2;
1519 for (pass = 0; pass < NR_MAX_MIGRATE_PAGES_RETRY && retry; pass++) {
1523 list_for_each_entry_safe(folio, folio2, from, lru) {
1524 if (!folio_test_hugetlb(folio))
1527 nr_pages = folio_nr_pages(folio);
1532 * Migratability of hugepages depends on architectures and
1533 * their size. This check is necessary because some callers
1534 * of hugepage migration like soft offline and memory
1535 * hotremove don't walk through page tables or check whether
1536 * the hugepage is pmd-based or not before kicking migration.
1538 if (!hugepage_migration_supported(folio_hstate(folio))) {
1540 stats->nr_failed_pages += nr_pages;
1541 list_move_tail(&folio->lru, ret_folios);
1545 rc = unmap_and_move_huge_page(get_new_folio,
1546 put_new_folio, private,
1547 folio, pass > 2, mode,
1548 reason, ret_folios);
1551 * Success: hugetlb folio will be put back
1552 * -EAGAIN: stay on the from list
1553 * -ENOMEM: stay on the from list
1554 * Other errno: put on ret_folios list
1559 * When memory is low, don't bother to try to migrate
1560 * other folios, just exit.
1562 stats->nr_failed_pages += nr_pages + nr_retry_pages;
1566 nr_retry_pages += nr_pages;
1568 case MIGRATEPAGE_SUCCESS:
1569 stats->nr_succeeded += nr_pages;
1573 * Permanent failure (-EBUSY, etc.):
1574 * unlike -EAGAIN case, the failed folio is
1575 * removed from migration folio list and not
1576 * retried in the next outer loop.
1579 stats->nr_failed_pages += nr_pages;
1585 * nr_failed is number of hugetlb folios failed to be migrated. After
1586 * NR_MAX_MIGRATE_PAGES_RETRY attempts, give up and count retried hugetlb
1590 stats->nr_failed_pages += nr_retry_pages;
1596 * migrate_pages_batch() first unmaps folios in the from list as many as
1597 * possible, then move the unmapped folios.
1599 * We only batch migration if mode == MIGRATE_ASYNC to avoid to wait a
1600 * lock or bit when we have locked more than one folio. Which may cause
1601 * deadlock (e.g., for loop device). So, if mode != MIGRATE_ASYNC, the
1602 * length of the from list must be <= 1.
1604 static int migrate_pages_batch(struct list_head *from,
1605 new_folio_t get_new_folio, free_folio_t put_new_folio,
1606 unsigned long private, enum migrate_mode mode, int reason,
1607 struct list_head *ret_folios, struct list_head *split_folios,
1608 struct migrate_pages_stats *stats, int nr_pass)
1613 int nr_retry_pages = 0;
1615 bool is_thp = false;
1616 struct folio *folio, *folio2, *dst = NULL, *dst2;
1617 int rc, rc_saved = 0, nr_pages;
1618 LIST_HEAD(unmap_folios);
1619 LIST_HEAD(dst_folios);
1620 bool nosplit = (reason == MR_NUMA_MISPLACED);
1622 VM_WARN_ON_ONCE(mode != MIGRATE_ASYNC &&
1623 !list_empty(from) && !list_is_singular(from));
1625 for (pass = 0; pass < nr_pass && retry; pass++) {
1630 list_for_each_entry_safe(folio, folio2, from, lru) {
1631 is_thp = folio_test_large(folio) && folio_test_pmd_mappable(folio);
1632 nr_pages = folio_nr_pages(folio);
1637 * Large folio migration might be unsupported or
1638 * the allocation might be failed so we should retry
1639 * on the same folio with the large folio split
1642 * Split folios are put in split_folios, and
1643 * we will migrate them after the rest of the
1644 * list is processed.
1646 if (!thp_migration_supported() && is_thp) {
1648 stats->nr_thp_failed++;
1649 if (!try_split_folio(folio, split_folios)) {
1650 stats->nr_thp_split++;
1653 stats->nr_failed_pages += nr_pages;
1654 list_move_tail(&folio->lru, ret_folios);
1658 rc = migrate_folio_unmap(get_new_folio, put_new_folio,
1659 private, folio, &dst, mode, reason,
1663 * Success: folio will be freed
1664 * Unmap: folio will be put on unmap_folios list,
1665 * dst folio put on dst_folios list
1666 * -EAGAIN: stay on the from list
1667 * -ENOMEM: stay on the from list
1668 * Other errno: put on ret_folios list
1673 * When memory is low, don't bother to try to migrate
1674 * other folios, move unmapped folios, then exit.
1677 stats->nr_thp_failed += is_thp;
1678 /* Large folio NUMA faulting doesn't split to retry. */
1679 if (folio_test_large(folio) && !nosplit) {
1680 int ret = try_split_folio(folio, split_folios);
1683 stats->nr_thp_split += is_thp;
1685 } else if (reason == MR_LONGTERM_PIN &&
1688 * Try again to split large folio to
1689 * mitigate the failure of longterm pinning.
1692 thp_retry += is_thp;
1693 nr_retry_pages += nr_pages;
1694 /* Undo duplicated failure counting. */
1696 stats->nr_thp_failed -= is_thp;
1701 stats->nr_failed_pages += nr_pages + nr_retry_pages;
1702 /* nr_failed isn't updated for not used */
1703 stats->nr_thp_failed += thp_retry;
1705 if (list_empty(&unmap_folios))
1711 thp_retry += is_thp;
1712 nr_retry_pages += nr_pages;
1714 case MIGRATEPAGE_SUCCESS:
1715 stats->nr_succeeded += nr_pages;
1716 stats->nr_thp_succeeded += is_thp;
1718 case MIGRATEPAGE_UNMAP:
1719 list_move_tail(&folio->lru, &unmap_folios);
1720 list_add_tail(&dst->lru, &dst_folios);
1724 * Permanent failure (-EBUSY, etc.):
1725 * unlike -EAGAIN case, the failed folio is
1726 * removed from migration folio list and not
1727 * retried in the next outer loop.
1730 stats->nr_thp_failed += is_thp;
1731 stats->nr_failed_pages += nr_pages;
1737 stats->nr_thp_failed += thp_retry;
1738 stats->nr_failed_pages += nr_retry_pages;
1740 /* Flush TLBs for all unmapped folios */
1741 try_to_unmap_flush();
1744 for (pass = 0; pass < nr_pass && retry; pass++) {
1749 dst = list_first_entry(&dst_folios, struct folio, lru);
1750 dst2 = list_next_entry(dst, lru);
1751 list_for_each_entry_safe(folio, folio2, &unmap_folios, lru) {
1752 is_thp = folio_test_large(folio) && folio_test_pmd_mappable(folio);
1753 nr_pages = folio_nr_pages(folio);
1757 rc = migrate_folio_move(put_new_folio, private,
1759 reason, ret_folios);
1762 * Success: folio will be freed
1763 * -EAGAIN: stay on the unmap_folios list
1764 * Other errno: put on ret_folios list
1769 thp_retry += is_thp;
1770 nr_retry_pages += nr_pages;
1772 case MIGRATEPAGE_SUCCESS:
1773 stats->nr_succeeded += nr_pages;
1774 stats->nr_thp_succeeded += is_thp;
1778 stats->nr_thp_failed += is_thp;
1779 stats->nr_failed_pages += nr_pages;
1783 dst2 = list_next_entry(dst, lru);
1787 stats->nr_thp_failed += thp_retry;
1788 stats->nr_failed_pages += nr_retry_pages;
1790 rc = rc_saved ? : nr_failed;
1792 /* Cleanup remaining folios */
1793 dst = list_first_entry(&dst_folios, struct folio, lru);
1794 dst2 = list_next_entry(dst, lru);
1795 list_for_each_entry_safe(folio, folio2, &unmap_folios, lru) {
1796 int page_was_mapped = 0;
1797 struct anon_vma *anon_vma = NULL;
1799 __migrate_folio_extract(dst, &page_was_mapped, &anon_vma);
1800 migrate_folio_undo_src(folio, page_was_mapped, anon_vma,
1802 list_del(&dst->lru);
1803 migrate_folio_undo_dst(dst, true, put_new_folio, private);
1805 dst2 = list_next_entry(dst, lru);
1811 static int migrate_pages_sync(struct list_head *from, new_folio_t get_new_folio,
1812 free_folio_t put_new_folio, unsigned long private,
1813 enum migrate_mode mode, int reason,
1814 struct list_head *ret_folios, struct list_head *split_folios,
1815 struct migrate_pages_stats *stats)
1817 int rc, nr_failed = 0;
1819 struct migrate_pages_stats astats;
1821 memset(&astats, 0, sizeof(astats));
1822 /* Try to migrate in batch with MIGRATE_ASYNC mode firstly */
1823 rc = migrate_pages_batch(from, get_new_folio, put_new_folio, private, MIGRATE_ASYNC,
1824 reason, &folios, split_folios, &astats,
1825 NR_MAX_MIGRATE_ASYNC_RETRY);
1826 stats->nr_succeeded += astats.nr_succeeded;
1827 stats->nr_thp_succeeded += astats.nr_thp_succeeded;
1828 stats->nr_thp_split += astats.nr_thp_split;
1830 stats->nr_failed_pages += astats.nr_failed_pages;
1831 stats->nr_thp_failed += astats.nr_thp_failed;
1832 list_splice_tail(&folios, ret_folios);
1835 stats->nr_thp_failed += astats.nr_thp_split;
1836 nr_failed += astats.nr_thp_split;
1838 * Fall back to migrate all failed folios one by one synchronously. All
1839 * failed folios except split THPs will be retried, so their failure
1842 list_splice_tail_init(&folios, from);
1843 while (!list_empty(from)) {
1844 list_move(from->next, &folios);
1845 rc = migrate_pages_batch(&folios, get_new_folio, put_new_folio,
1846 private, mode, reason, ret_folios,
1847 split_folios, stats, NR_MAX_MIGRATE_SYNC_RETRY);
1848 list_splice_tail_init(&folios, ret_folios);
1858 * migrate_pages - migrate the folios specified in a list, to the free folios
1859 * supplied as the target for the page migration
1861 * @from: The list of folios to be migrated.
1862 * @get_new_folio: The function used to allocate free folios to be used
1863 * as the target of the folio migration.
1864 * @put_new_folio: The function used to free target folios if migration
1865 * fails, or NULL if no special handling is necessary.
1866 * @private: Private data to be passed on to get_new_folio()
1867 * @mode: The migration mode that specifies the constraints for
1868 * folio migration, if any.
1869 * @reason: The reason for folio migration.
1870 * @ret_succeeded: Set to the number of folios migrated successfully if
1871 * the caller passes a non-NULL pointer.
1873 * The function returns after NR_MAX_MIGRATE_PAGES_RETRY attempts or if no folios
1874 * are movable any more because the list has become empty or no retryable folios
1875 * exist any more. It is caller's responsibility to call putback_movable_pages()
1878 * Returns the number of {normal folio, large folio, hugetlb} that were not
1879 * migrated, or an error code. The number of large folio splits will be
1880 * considered as the number of non-migrated large folio, no matter how many
1881 * split folios of the large folio are migrated successfully.
1883 int migrate_pages(struct list_head *from, new_folio_t get_new_folio,
1884 free_folio_t put_new_folio, unsigned long private,
1885 enum migrate_mode mode, int reason, unsigned int *ret_succeeded)
1889 struct folio *folio, *folio2;
1891 LIST_HEAD(ret_folios);
1892 LIST_HEAD(split_folios);
1893 struct migrate_pages_stats stats;
1895 trace_mm_migrate_pages_start(mode, reason);
1897 memset(&stats, 0, sizeof(stats));
1899 rc_gather = migrate_hugetlbs(from, get_new_folio, put_new_folio, private,
1900 mode, reason, &stats, &ret_folios);
1906 list_for_each_entry_safe(folio, folio2, from, lru) {
1907 /* Retried hugetlb folios will be kept in list */
1908 if (folio_test_hugetlb(folio)) {
1909 list_move_tail(&folio->lru, &ret_folios);
1913 nr_pages += folio_nr_pages(folio);
1914 if (nr_pages >= NR_MAX_BATCHED_MIGRATION)
1917 if (nr_pages >= NR_MAX_BATCHED_MIGRATION)
1918 list_cut_before(&folios, from, &folio2->lru);
1920 list_splice_init(from, &folios);
1921 if (mode == MIGRATE_ASYNC)
1922 rc = migrate_pages_batch(&folios, get_new_folio, put_new_folio,
1923 private, mode, reason, &ret_folios,
1924 &split_folios, &stats,
1925 NR_MAX_MIGRATE_PAGES_RETRY);
1927 rc = migrate_pages_sync(&folios, get_new_folio, put_new_folio,
1928 private, mode, reason, &ret_folios,
1929 &split_folios, &stats);
1930 list_splice_tail_init(&folios, &ret_folios);
1933 list_splice_tail(&split_folios, &ret_folios);
1936 if (!list_empty(&split_folios)) {
1938 * Failure isn't counted since all split folios of a large folio
1939 * is counted as 1 failure already. And, we only try to migrate
1940 * with minimal effort, force MIGRATE_ASYNC mode and retry once.
1942 migrate_pages_batch(&split_folios, get_new_folio,
1943 put_new_folio, private, MIGRATE_ASYNC, reason,
1944 &ret_folios, NULL, &stats, 1);
1945 list_splice_tail_init(&split_folios, &ret_folios);
1948 if (!list_empty(from))
1952 * Put the permanent failure folio back to migration list, they
1953 * will be put back to the right list by the caller.
1955 list_splice(&ret_folios, from);
1958 * Return 0 in case all split folios of fail-to-migrate large folios
1959 * are migrated successfully.
1961 if (list_empty(from))
1964 count_vm_events(PGMIGRATE_SUCCESS, stats.nr_succeeded);
1965 count_vm_events(PGMIGRATE_FAIL, stats.nr_failed_pages);
1966 count_vm_events(THP_MIGRATION_SUCCESS, stats.nr_thp_succeeded);
1967 count_vm_events(THP_MIGRATION_FAIL, stats.nr_thp_failed);
1968 count_vm_events(THP_MIGRATION_SPLIT, stats.nr_thp_split);
1969 trace_mm_migrate_pages(stats.nr_succeeded, stats.nr_failed_pages,
1970 stats.nr_thp_succeeded, stats.nr_thp_failed,
1971 stats.nr_thp_split, mode, reason);
1974 *ret_succeeded = stats.nr_succeeded;
1979 struct folio *alloc_migration_target(struct folio *src, unsigned long private)
1981 struct migration_target_control *mtc;
1983 unsigned int order = 0;
1987 mtc = (struct migration_target_control *)private;
1988 gfp_mask = mtc->gfp_mask;
1990 if (nid == NUMA_NO_NODE)
1991 nid = folio_nid(src);
1993 if (folio_test_hugetlb(src)) {
1994 struct hstate *h = folio_hstate(src);
1996 gfp_mask = htlb_modify_alloc_mask(h, gfp_mask);
1997 return alloc_hugetlb_folio_nodemask(h, nid,
1998 mtc->nmask, gfp_mask);
2001 if (folio_test_large(src)) {
2003 * clear __GFP_RECLAIM to make the migration callback
2004 * consistent with regular THP allocations.
2006 gfp_mask &= ~__GFP_RECLAIM;
2007 gfp_mask |= GFP_TRANSHUGE;
2008 order = folio_order(src);
2010 zidx = zone_idx(folio_zone(src));
2011 if (is_highmem_idx(zidx) || zidx == ZONE_MOVABLE)
2012 gfp_mask |= __GFP_HIGHMEM;
2014 return __folio_alloc(gfp_mask, order, nid, mtc->nmask);
2019 static int store_status(int __user *status, int start, int value, int nr)
2022 if (put_user(value, status + start))
2030 static int do_move_pages_to_node(struct mm_struct *mm,
2031 struct list_head *pagelist, int node)
2034 struct migration_target_control mtc = {
2036 .gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE,
2039 err = migrate_pages(pagelist, alloc_migration_target, NULL,
2040 (unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL, NULL);
2042 putback_movable_pages(pagelist);
2047 * Resolves the given address to a struct page, isolates it from the LRU and
2048 * puts it to the given pagelist.
2050 * errno - if the page cannot be found/isolated
2051 * 0 - when it doesn't have to be migrated because it is already on the
2053 * 1 - when it has been queued
2055 static int add_page_for_migration(struct mm_struct *mm, const void __user *p,
2056 int node, struct list_head *pagelist, bool migrate_all)
2058 struct vm_area_struct *vma;
2065 addr = (unsigned long)untagged_addr_remote(mm, p);
2068 vma = vma_lookup(mm, addr);
2069 if (!vma || !vma_migratable(vma))
2072 /* FOLL_DUMP to ignore special (like zero) pages */
2073 page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP);
2075 err = PTR_ERR(page);
2083 if (is_zone_device_page(page))
2087 if (page_to_nid(page) == node)
2091 if (page_mapcount(page) > 1 && !migrate_all)
2094 if (PageHuge(page)) {
2095 if (PageHead(page)) {
2096 isolated = isolate_hugetlb(page_folio(page), pagelist);
2097 err = isolated ? 1 : -EBUSY;
2102 head = compound_head(page);
2103 isolated = isolate_lru_page(head);
2110 list_add_tail(&head->lru, pagelist);
2111 mod_node_page_state(page_pgdat(head),
2112 NR_ISOLATED_ANON + page_is_file_lru(head),
2113 thp_nr_pages(head));
2117 * Either remove the duplicate refcount from
2118 * isolate_lru_page() or drop the page ref if it was
2123 mmap_read_unlock(mm);
2127 static int move_pages_and_store_status(struct mm_struct *mm, int node,
2128 struct list_head *pagelist, int __user *status,
2129 int start, int i, unsigned long nr_pages)
2133 if (list_empty(pagelist))
2136 err = do_move_pages_to_node(mm, pagelist, node);
2139 * Positive err means the number of failed
2140 * pages to migrate. Since we are going to
2141 * abort and return the number of non-migrated
2142 * pages, so need to include the rest of the
2143 * nr_pages that have not been attempted as
2147 err += nr_pages - i;
2150 return store_status(status, start, node, i - start);
2154 * Migrate an array of page address onto an array of nodes and fill
2155 * the corresponding array of status.
2157 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
2158 unsigned long nr_pages,
2159 const void __user * __user *pages,
2160 const int __user *nodes,
2161 int __user *status, int flags)
2163 int current_node = NUMA_NO_NODE;
2164 LIST_HEAD(pagelist);
2168 lru_cache_disable();
2170 for (i = start = 0; i < nr_pages; i++) {
2171 const void __user *p;
2175 if (get_user(p, pages + i))
2177 if (get_user(node, nodes + i))
2181 if (node < 0 || node >= MAX_NUMNODES)
2183 if (!node_state(node, N_MEMORY))
2187 if (!node_isset(node, task_nodes))
2190 if (current_node == NUMA_NO_NODE) {
2191 current_node = node;
2193 } else if (node != current_node) {
2194 err = move_pages_and_store_status(mm, current_node,
2195 &pagelist, status, start, i, nr_pages);
2199 current_node = node;
2203 * Errors in the page lookup or isolation are not fatal and we simply
2204 * report them via status
2206 err = add_page_for_migration(mm, p, current_node, &pagelist,
2207 flags & MPOL_MF_MOVE_ALL);
2210 /* The page is successfully queued for migration */
2215 * The move_pages() man page does not have an -EEXIST choice, so
2216 * use -EFAULT instead.
2222 * If the page is already on the target node (!err), store the
2223 * node, otherwise, store the err.
2225 err = store_status(status, i, err ? : current_node, 1);
2229 err = move_pages_and_store_status(mm, current_node, &pagelist,
2230 status, start, i, nr_pages);
2232 /* We have accounted for page i */
2237 current_node = NUMA_NO_NODE;
2240 /* Make sure we do not overwrite the existing error */
2241 err1 = move_pages_and_store_status(mm, current_node, &pagelist,
2242 status, start, i, nr_pages);
2251 * Determine the nodes of an array of pages and store it in an array of status.
2253 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
2254 const void __user **pages, int *status)
2260 for (i = 0; i < nr_pages; i++) {
2261 unsigned long addr = (unsigned long)(*pages);
2262 struct vm_area_struct *vma;
2266 vma = vma_lookup(mm, addr);
2270 /* FOLL_DUMP to ignore special (like zero) pages */
2271 page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP);
2273 err = PTR_ERR(page);
2281 if (!is_zone_device_page(page))
2282 err = page_to_nid(page);
2292 mmap_read_unlock(mm);
2295 static int get_compat_pages_array(const void __user *chunk_pages[],
2296 const void __user * __user *pages,
2297 unsigned long chunk_nr)
2299 compat_uptr_t __user *pages32 = (compat_uptr_t __user *)pages;
2303 for (i = 0; i < chunk_nr; i++) {
2304 if (get_user(p, pages32 + i))
2306 chunk_pages[i] = compat_ptr(p);
2313 * Determine the nodes of a user array of pages and store it in
2314 * a user array of status.
2316 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
2317 const void __user * __user *pages,
2320 #define DO_PAGES_STAT_CHUNK_NR 16UL
2321 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
2322 int chunk_status[DO_PAGES_STAT_CHUNK_NR];
2325 unsigned long chunk_nr = min(nr_pages, DO_PAGES_STAT_CHUNK_NR);
2327 if (in_compat_syscall()) {
2328 if (get_compat_pages_array(chunk_pages, pages,
2332 if (copy_from_user(chunk_pages, pages,
2333 chunk_nr * sizeof(*chunk_pages)))
2337 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
2339 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
2344 nr_pages -= chunk_nr;
2346 return nr_pages ? -EFAULT : 0;
2349 static struct mm_struct *find_mm_struct(pid_t pid, nodemask_t *mem_nodes)
2351 struct task_struct *task;
2352 struct mm_struct *mm;
2355 * There is no need to check if current process has the right to modify
2356 * the specified process when they are same.
2360 *mem_nodes = cpuset_mems_allowed(current);
2364 /* Find the mm_struct */
2366 task = find_task_by_vpid(pid);
2369 return ERR_PTR(-ESRCH);
2371 get_task_struct(task);
2374 * Check if this process has the right to modify the specified
2375 * process. Use the regular "ptrace_may_access()" checks.
2377 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
2379 mm = ERR_PTR(-EPERM);
2384 mm = ERR_PTR(security_task_movememory(task));
2387 *mem_nodes = cpuset_mems_allowed(task);
2388 mm = get_task_mm(task);
2390 put_task_struct(task);
2392 mm = ERR_PTR(-EINVAL);
2397 * Move a list of pages in the address space of the currently executing
2400 static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
2401 const void __user * __user *pages,
2402 const int __user *nodes,
2403 int __user *status, int flags)
2405 struct mm_struct *mm;
2407 nodemask_t task_nodes;
2410 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
2413 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
2416 mm = find_mm_struct(pid, &task_nodes);
2421 err = do_pages_move(mm, task_nodes, nr_pages, pages,
2422 nodes, status, flags);
2424 err = do_pages_stat(mm, nr_pages, pages, status);
2430 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
2431 const void __user * __user *, pages,
2432 const int __user *, nodes,
2433 int __user *, status, int, flags)
2435 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
2438 #ifdef CONFIG_NUMA_BALANCING
2440 * Returns true if this is a safe migration target node for misplaced NUMA
2441 * pages. Currently it only checks the watermarks which is crude.
2443 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
2444 unsigned long nr_migrate_pages)
2448 for (z = pgdat->nr_zones - 1; z >= 0; z--) {
2449 struct zone *zone = pgdat->node_zones + z;
2451 if (!managed_zone(zone))
2454 /* Avoid waking kswapd by allocating pages_to_migrate pages. */
2455 if (!zone_watermark_ok(zone, 0,
2456 high_wmark_pages(zone) +
2465 static struct folio *alloc_misplaced_dst_folio(struct folio *src,
2468 int nid = (int) data;
2469 int order = folio_order(src);
2470 gfp_t gfp = __GFP_THISNODE;
2473 gfp |= GFP_TRANSHUGE_LIGHT;
2475 gfp |= GFP_HIGHUSER_MOVABLE | __GFP_NOMEMALLOC | __GFP_NORETRY |
2477 gfp &= ~__GFP_RECLAIM;
2479 return __folio_alloc_node(gfp, order, nid);
2482 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
2484 int nr_pages = thp_nr_pages(page);
2485 int order = compound_order(page);
2487 VM_BUG_ON_PAGE(order && !PageTransHuge(page), page);
2489 /* Do not migrate THP mapped by multiple processes */
2490 if (PageTransHuge(page) && total_mapcount(page) > 1)
2493 /* Avoid migrating to a node that is nearly full */
2494 if (!migrate_balanced_pgdat(pgdat, nr_pages)) {
2497 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING))
2499 for (z = pgdat->nr_zones - 1; z >= 0; z--) {
2500 if (managed_zone(pgdat->node_zones + z))
2503 wakeup_kswapd(pgdat->node_zones + z, 0, order, ZONE_MOVABLE);
2507 if (!isolate_lru_page(page))
2510 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_is_file_lru(page),
2514 * Isolating the page has taken another reference, so the
2515 * caller's reference can be safely dropped without the page
2516 * disappearing underneath us during migration.
2523 * Attempt to migrate a misplaced page to the specified destination
2524 * node. Caller is expected to have an elevated reference count on
2525 * the page that will be dropped by this function before returning.
2527 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
2530 pg_data_t *pgdat = NODE_DATA(node);
2533 unsigned int nr_succeeded;
2534 LIST_HEAD(migratepages);
2535 int nr_pages = thp_nr_pages(page);
2538 * Don't migrate file pages that are mapped in multiple processes
2539 * with execute permissions as they are probably shared libraries.
2541 if (page_mapcount(page) != 1 && page_is_file_lru(page) &&
2542 (vma->vm_flags & VM_EXEC))
2546 * Also do not migrate dirty pages as not all filesystems can move
2547 * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles.
2549 if (page_is_file_lru(page) && PageDirty(page))
2552 isolated = numamigrate_isolate_page(pgdat, page);
2556 list_add(&page->lru, &migratepages);
2557 nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_folio,
2558 NULL, node, MIGRATE_ASYNC,
2559 MR_NUMA_MISPLACED, &nr_succeeded);
2561 if (!list_empty(&migratepages)) {
2562 list_del(&page->lru);
2563 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
2564 page_is_file_lru(page), -nr_pages);
2565 putback_lru_page(page);
2570 count_vm_numa_events(NUMA_PAGE_MIGRATE, nr_succeeded);
2571 if (!node_is_toptier(page_to_nid(page)) && node_is_toptier(node))
2572 mod_node_page_state(pgdat, PGPROMOTE_SUCCESS,
2575 BUG_ON(!list_empty(&migratepages));
2582 #endif /* CONFIG_NUMA_BALANCING */
2583 #endif /* CONFIG_NUMA */