1 // SPDX-License-Identifier: GPL-2.0-only
3 * Simple NUMA memory policy for the Linux kernel.
5 * Copyright 2003,2004 Andi Kleen, SuSE Labs.
6 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
8 * NUMA policy allows the user to give hints in which node(s) memory should
11 * Support four policies per VMA and per process:
13 * The VMA policy has priority over the process policy for a page fault.
15 * interleave Allocate memory interleaved over a set of nodes,
16 * with normal fallback if it fails.
17 * For VMA based allocations this interleaves based on the
18 * offset into the backing object or offset into the mapping
19 * for anonymous memory. For process policy an process counter
22 * bind Only allocate memory on a specific set of nodes,
24 * FIXME: memory is allocated starting with the first node
25 * to the last. It would be better if bind would truly restrict
26 * the allocation to memory nodes instead
28 * preferred Try a specific node first before normal fallback.
29 * As a special case NUMA_NO_NODE here means do the allocation
30 * on the local CPU. This is normally identical to default,
31 * but useful to set in a VMA when you have a non default
34 * preferred many Try a set of nodes first before normal fallback. This is
35 * similar to preferred without the special case.
37 * default Allocate on the local node first, or when on a VMA
38 * use the process policy. This is what Linux always did
39 * in a NUMA aware kernel and still does by, ahem, default.
41 * The process policy is applied for most non interrupt memory allocations
42 * in that process' context. Interrupts ignore the policies and always
43 * try to allocate on the local CPU. The VMA policy is only applied for memory
44 * allocations for a VMA in the VM.
46 * Currently there are a few corner cases in swapping where the policy
47 * is not applied, but the majority should be handled. When process policy
48 * is used it is not remembered over swap outs/swap ins.
50 * Only the highest zone in the zone hierarchy gets policied. Allocations
51 * requesting a lower zone just use default policy. This implies that
52 * on systems with highmem kernel lowmem allocation don't get policied.
53 * Same with GFP_DMA allocations.
55 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
56 * all users and remembered even when nobody has memory mapped.
60 fix mmap readahead to honour policy and enable policy for any page cache
62 statistics for bigpages
63 global policy for page cache? currently it uses process policy. Requires
65 handle mremap for shared memory (currently ignored for the policy)
67 make bind policy root only? It can trigger oom much faster and the
68 kernel is not always grateful with that.
71 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
73 #include <linux/mempolicy.h>
74 #include <linux/pagewalk.h>
75 #include <linux/highmem.h>
76 #include <linux/hugetlb.h>
77 #include <linux/kernel.h>
78 #include <linux/sched.h>
79 #include <linux/sched/mm.h>
80 #include <linux/sched/numa_balancing.h>
81 #include <linux/sched/task.h>
82 #include <linux/nodemask.h>
83 #include <linux/cpuset.h>
84 #include <linux/slab.h>
85 #include <linux/string.h>
86 #include <linux/export.h>
87 #include <linux/nsproxy.h>
88 #include <linux/interrupt.h>
89 #include <linux/init.h>
90 #include <linux/compat.h>
91 #include <linux/ptrace.h>
92 #include <linux/swap.h>
93 #include <linux/seq_file.h>
94 #include <linux/proc_fs.h>
95 #include <linux/migrate.h>
96 #include <linux/ksm.h>
97 #include <linux/rmap.h>
98 #include <linux/security.h>
99 #include <linux/syscalls.h>
100 #include <linux/ctype.h>
101 #include <linux/mm_inline.h>
102 #include <linux/mmu_notifier.h>
103 #include <linux/printk.h>
104 #include <linux/swapops.h>
106 #include <asm/tlbflush.h>
107 #include <linux/uaccess.h>
109 #include "internal.h"
112 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */
113 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */
115 static struct kmem_cache *policy_cache;
116 static struct kmem_cache *sn_cache;
118 /* Highest zone. An specific allocation for a zone below that is not
120 enum zone_type policy_zone = 0;
123 * run-time system-wide default policy => local allocation
125 static struct mempolicy default_policy = {
126 .refcnt = ATOMIC_INIT(1), /* never free it */
130 static struct mempolicy preferred_node_policy[MAX_NUMNODES];
133 * numa_map_to_online_node - Find closest online node
134 * @node: Node id to start the search
136 * Lookup the next closest node by distance if @nid is not online.
138 int numa_map_to_online_node(int node)
140 int min_dist = INT_MAX, dist, n, min_node;
142 if (node == NUMA_NO_NODE || node_online(node))
146 for_each_online_node(n) {
147 dist = node_distance(node, n);
148 if (dist < min_dist) {
156 EXPORT_SYMBOL_GPL(numa_map_to_online_node);
158 struct mempolicy *get_task_policy(struct task_struct *p)
160 struct mempolicy *pol = p->mempolicy;
166 node = numa_node_id();
167 if (node != NUMA_NO_NODE) {
168 pol = &preferred_node_policy[node];
169 /* preferred_node_policy is not initialised early in boot */
174 return &default_policy;
177 static const struct mempolicy_operations {
178 int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
179 void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes);
180 } mpol_ops[MPOL_MAX];
182 static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
184 return pol->flags & MPOL_MODE_FLAGS;
187 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
188 const nodemask_t *rel)
191 nodes_fold(tmp, *orig, nodes_weight(*rel));
192 nodes_onto(*ret, tmp, *rel);
195 static int mpol_new_nodemask(struct mempolicy *pol, const nodemask_t *nodes)
197 if (nodes_empty(*nodes))
203 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
205 if (nodes_empty(*nodes))
208 nodes_clear(pol->nodes);
209 node_set(first_node(*nodes), pol->nodes);
214 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
215 * any, for the new policy. mpol_new() has already validated the nodes
216 * parameter with respect to the policy mode and flags.
218 * Must be called holding task's alloc_lock to protect task's mems_allowed
219 * and mempolicy. May also be called holding the mmap_lock for write.
221 static int mpol_set_nodemask(struct mempolicy *pol,
222 const nodemask_t *nodes, struct nodemask_scratch *nsc)
227 * Default (pol==NULL) resp. local memory policies are not a
228 * subject of any remapping. They also do not need any special
231 if (!pol || pol->mode == MPOL_LOCAL)
235 nodes_and(nsc->mask1,
236 cpuset_current_mems_allowed, node_states[N_MEMORY]);
240 if (pol->flags & MPOL_F_RELATIVE_NODES)
241 mpol_relative_nodemask(&nsc->mask2, nodes, &nsc->mask1);
243 nodes_and(nsc->mask2, *nodes, nsc->mask1);
245 if (mpol_store_user_nodemask(pol))
246 pol->w.user_nodemask = *nodes;
248 pol->w.cpuset_mems_allowed = cpuset_current_mems_allowed;
250 ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
255 * This function just creates a new policy, does some check and simple
256 * initialization. You must invoke mpol_set_nodemask() to set nodes.
258 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
261 struct mempolicy *policy;
263 pr_debug("setting mode %d flags %d nodes[0] %lx\n",
264 mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE);
266 if (mode == MPOL_DEFAULT) {
267 if (nodes && !nodes_empty(*nodes))
268 return ERR_PTR(-EINVAL);
274 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
275 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
276 * All other modes require a valid pointer to a non-empty nodemask.
278 if (mode == MPOL_PREFERRED) {
279 if (nodes_empty(*nodes)) {
280 if (((flags & MPOL_F_STATIC_NODES) ||
281 (flags & MPOL_F_RELATIVE_NODES)))
282 return ERR_PTR(-EINVAL);
286 } else if (mode == MPOL_LOCAL) {
287 if (!nodes_empty(*nodes) ||
288 (flags & MPOL_F_STATIC_NODES) ||
289 (flags & MPOL_F_RELATIVE_NODES))
290 return ERR_PTR(-EINVAL);
291 } else if (nodes_empty(*nodes))
292 return ERR_PTR(-EINVAL);
293 policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
295 return ERR_PTR(-ENOMEM);
296 atomic_set(&policy->refcnt, 1);
298 policy->flags = flags;
303 /* Slow path of a mpol destructor. */
304 void __mpol_put(struct mempolicy *p)
306 if (!atomic_dec_and_test(&p->refcnt))
308 kmem_cache_free(policy_cache, p);
311 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes)
315 static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes)
319 if (pol->flags & MPOL_F_STATIC_NODES)
320 nodes_and(tmp, pol->w.user_nodemask, *nodes);
321 else if (pol->flags & MPOL_F_RELATIVE_NODES)
322 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
324 nodes_remap(tmp, pol->nodes, pol->w.cpuset_mems_allowed,
326 pol->w.cpuset_mems_allowed = *nodes;
329 if (nodes_empty(tmp))
335 static void mpol_rebind_preferred(struct mempolicy *pol,
336 const nodemask_t *nodes)
338 pol->w.cpuset_mems_allowed = *nodes;
342 * mpol_rebind_policy - Migrate a policy to a different set of nodes
344 * Per-vma policies are protected by mmap_lock. Allocations using per-task
345 * policies are protected by task->mems_allowed_seq to prevent a premature
346 * OOM/allocation failure due to parallel nodemask modification.
348 static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask)
352 if (!mpol_store_user_nodemask(pol) &&
353 nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
356 mpol_ops[pol->mode].rebind(pol, newmask);
360 * Wrapper for mpol_rebind_policy() that just requires task
361 * pointer, and updates task mempolicy.
363 * Called with task's alloc_lock held.
366 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new)
368 mpol_rebind_policy(tsk->mempolicy, new);
372 * Rebind each vma in mm to new nodemask.
374 * Call holding a reference to mm. Takes mm->mmap_lock during call.
377 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
379 struct vm_area_struct *vma;
382 for (vma = mm->mmap; vma; vma = vma->vm_next)
383 mpol_rebind_policy(vma->vm_policy, new);
384 mmap_write_unlock(mm);
387 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
389 .rebind = mpol_rebind_default,
391 [MPOL_INTERLEAVE] = {
392 .create = mpol_new_nodemask,
393 .rebind = mpol_rebind_nodemask,
396 .create = mpol_new_preferred,
397 .rebind = mpol_rebind_preferred,
400 .create = mpol_new_nodemask,
401 .rebind = mpol_rebind_nodemask,
404 .rebind = mpol_rebind_default,
406 [MPOL_PREFERRED_MANY] = {
407 .create = mpol_new_nodemask,
408 .rebind = mpol_rebind_preferred,
412 static int migrate_page_add(struct page *page, struct list_head *pagelist,
413 unsigned long flags);
416 struct list_head *pagelist;
421 struct vm_area_struct *first;
425 * Check if the page's nid is in qp->nmask.
427 * If MPOL_MF_INVERT is set in qp->flags, check if the nid is
428 * in the invert of qp->nmask.
430 static inline bool queue_pages_required(struct page *page,
431 struct queue_pages *qp)
433 int nid = page_to_nid(page);
434 unsigned long flags = qp->flags;
436 return node_isset(nid, *qp->nmask) == !(flags & MPOL_MF_INVERT);
440 * queue_pages_pmd() has four possible return values:
441 * 0 - pages are placed on the right node or queued successfully, or
442 * special page is met, i.e. huge zero page.
443 * 1 - there is unmovable page, and MPOL_MF_MOVE* & MPOL_MF_STRICT were
446 * -EIO - is migration entry or only MPOL_MF_STRICT was specified and an
447 * existing page was already on a node that does not follow the
450 static int queue_pages_pmd(pmd_t *pmd, spinlock_t *ptl, unsigned long addr,
451 unsigned long end, struct mm_walk *walk)
456 struct queue_pages *qp = walk->private;
459 if (unlikely(is_pmd_migration_entry(*pmd))) {
463 page = pmd_page(*pmd);
464 if (is_huge_zero_page(page)) {
466 walk->action = ACTION_CONTINUE;
469 if (!queue_pages_required(page, qp))
473 /* go to thp migration */
474 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
475 if (!vma_migratable(walk->vma) ||
476 migrate_page_add(page, qp->pagelist, flags)) {
489 * Scan through pages checking if pages follow certain conditions,
490 * and move them to the pagelist if they do.
492 * queue_pages_pte_range() has three possible return values:
493 * 0 - pages are placed on the right node or queued successfully, or
494 * special page is met, i.e. zero page.
495 * 1 - there is unmovable page, and MPOL_MF_MOVE* & MPOL_MF_STRICT were
497 * -EIO - only MPOL_MF_STRICT was specified and an existing page was already
498 * on a node that does not follow the policy.
500 static int queue_pages_pte_range(pmd_t *pmd, unsigned long addr,
501 unsigned long end, struct mm_walk *walk)
503 struct vm_area_struct *vma = walk->vma;
505 struct queue_pages *qp = walk->private;
506 unsigned long flags = qp->flags;
508 bool has_unmovable = false;
509 pte_t *pte, *mapped_pte;
512 ptl = pmd_trans_huge_lock(pmd, vma);
514 ret = queue_pages_pmd(pmd, ptl, addr, end, walk);
518 /* THP was split, fall through to pte walk */
520 if (pmd_trans_unstable(pmd))
523 mapped_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
524 for (; addr != end; pte++, addr += PAGE_SIZE) {
525 if (!pte_present(*pte))
527 page = vm_normal_page(vma, addr, *pte);
531 * vm_normal_page() filters out zero pages, but there might
532 * still be PageReserved pages to skip, perhaps in a VDSO.
534 if (PageReserved(page))
536 if (!queue_pages_required(page, qp))
538 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
539 /* MPOL_MF_STRICT must be specified if we get here */
540 if (!vma_migratable(vma)) {
541 has_unmovable = true;
546 * Do not abort immediately since there may be
547 * temporary off LRU pages in the range. Still
548 * need migrate other LRU pages.
550 if (migrate_page_add(page, qp->pagelist, flags))
551 has_unmovable = true;
555 pte_unmap_unlock(mapped_pte, ptl);
561 return addr != end ? -EIO : 0;
564 static int queue_pages_hugetlb(pte_t *pte, unsigned long hmask,
565 unsigned long addr, unsigned long end,
566 struct mm_walk *walk)
569 #ifdef CONFIG_HUGETLB_PAGE
570 struct queue_pages *qp = walk->private;
571 unsigned long flags = (qp->flags & MPOL_MF_VALID);
576 ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte);
577 entry = huge_ptep_get(pte);
578 if (!pte_present(entry))
580 page = pte_page(entry);
581 if (!queue_pages_required(page, qp))
584 if (flags == MPOL_MF_STRICT) {
586 * STRICT alone means only detecting misplaced page and no
587 * need to further check other vma.
593 if (!vma_migratable(walk->vma)) {
595 * Must be STRICT with MOVE*, otherwise .test_walk() have
596 * stopped walking current vma.
597 * Detecting misplaced page but allow migrating pages which
604 /* With MPOL_MF_MOVE, we migrate only unshared hugepage. */
605 if (flags & (MPOL_MF_MOVE_ALL) ||
606 (flags & MPOL_MF_MOVE && page_mapcount(page) == 1)) {
607 if (!isolate_huge_page(page, qp->pagelist) &&
608 (flags & MPOL_MF_STRICT))
610 * Failed to isolate page but allow migrating pages
611 * which have been queued.
623 #ifdef CONFIG_NUMA_BALANCING
625 * This is used to mark a range of virtual addresses to be inaccessible.
626 * These are later cleared by a NUMA hinting fault. Depending on these
627 * faults, pages may be migrated for better NUMA placement.
629 * This is assuming that NUMA faults are handled using PROT_NONE. If
630 * an architecture makes a different choice, it will need further
631 * changes to the core.
633 unsigned long change_prot_numa(struct vm_area_struct *vma,
634 unsigned long addr, unsigned long end)
638 nr_updated = change_protection(vma, addr, end, PAGE_NONE, MM_CP_PROT_NUMA);
640 count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated);
645 static unsigned long change_prot_numa(struct vm_area_struct *vma,
646 unsigned long addr, unsigned long end)
650 #endif /* CONFIG_NUMA_BALANCING */
652 static int queue_pages_test_walk(unsigned long start, unsigned long end,
653 struct mm_walk *walk)
655 struct vm_area_struct *vma = walk->vma;
656 struct queue_pages *qp = walk->private;
657 unsigned long endvma = vma->vm_end;
658 unsigned long flags = qp->flags;
660 /* range check first */
661 VM_BUG_ON_VMA(!range_in_vma(vma, start, end), vma);
665 if (!(flags & MPOL_MF_DISCONTIG_OK) &&
666 (qp->start < vma->vm_start))
667 /* hole at head side of range */
670 if (!(flags & MPOL_MF_DISCONTIG_OK) &&
671 ((vma->vm_end < qp->end) &&
672 (!vma->vm_next || vma->vm_end < vma->vm_next->vm_start)))
673 /* hole at middle or tail of range */
677 * Need check MPOL_MF_STRICT to return -EIO if possible
678 * regardless of vma_migratable
680 if (!vma_migratable(vma) &&
681 !(flags & MPOL_MF_STRICT))
687 if (flags & MPOL_MF_LAZY) {
688 /* Similar to task_numa_work, skip inaccessible VMAs */
689 if (!is_vm_hugetlb_page(vma) && vma_is_accessible(vma) &&
690 !(vma->vm_flags & VM_MIXEDMAP))
691 change_prot_numa(vma, start, endvma);
695 /* queue pages from current vma */
696 if (flags & MPOL_MF_VALID)
701 static const struct mm_walk_ops queue_pages_walk_ops = {
702 .hugetlb_entry = queue_pages_hugetlb,
703 .pmd_entry = queue_pages_pte_range,
704 .test_walk = queue_pages_test_walk,
708 * Walk through page tables and collect pages to be migrated.
710 * If pages found in a given range are on a set of nodes (determined by
711 * @nodes and @flags,) it's isolated and queued to the pagelist which is
712 * passed via @private.
714 * queue_pages_range() has three possible return values:
715 * 1 - there is unmovable page, but MPOL_MF_MOVE* & MPOL_MF_STRICT were
717 * 0 - queue pages successfully or no misplaced page.
718 * errno - i.e. misplaced pages with MPOL_MF_STRICT specified (-EIO) or
719 * memory range specified by nodemask and maxnode points outside
720 * your accessible address space (-EFAULT)
723 queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end,
724 nodemask_t *nodes, unsigned long flags,
725 struct list_head *pagelist)
728 struct queue_pages qp = {
729 .pagelist = pagelist,
737 err = walk_page_range(mm, start, end, &queue_pages_walk_ops, &qp);
740 /* whole range in hole */
747 * Apply policy to a single VMA
748 * This must be called with the mmap_lock held for writing.
750 static int vma_replace_policy(struct vm_area_struct *vma,
751 struct mempolicy *pol)
754 struct mempolicy *old;
755 struct mempolicy *new;
757 pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
758 vma->vm_start, vma->vm_end, vma->vm_pgoff,
759 vma->vm_ops, vma->vm_file,
760 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
766 if (vma->vm_ops && vma->vm_ops->set_policy) {
767 err = vma->vm_ops->set_policy(vma, new);
772 old = vma->vm_policy;
773 vma->vm_policy = new; /* protected by mmap_lock */
782 /* Step 2: apply policy to a range and do splits. */
783 static int mbind_range(struct mm_struct *mm, unsigned long start,
784 unsigned long end, struct mempolicy *new_pol)
786 struct vm_area_struct *next;
787 struct vm_area_struct *prev;
788 struct vm_area_struct *vma;
791 unsigned long vmstart;
794 vma = find_vma(mm, start);
798 if (start > vma->vm_start)
801 for (; vma && vma->vm_start < end; prev = vma, vma = next) {
803 vmstart = max(start, vma->vm_start);
804 vmend = min(end, vma->vm_end);
806 if (mpol_equal(vma_policy(vma), new_pol))
809 pgoff = vma->vm_pgoff +
810 ((vmstart - vma->vm_start) >> PAGE_SHIFT);
811 prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags,
812 vma->anon_vma, vma->vm_file, pgoff,
813 new_pol, vma->vm_userfaultfd_ctx);
817 if (mpol_equal(vma_policy(vma), new_pol))
819 /* vma_merge() joined vma && vma->next, case 8 */
822 if (vma->vm_start != vmstart) {
823 err = split_vma(vma->vm_mm, vma, vmstart, 1);
827 if (vma->vm_end != vmend) {
828 err = split_vma(vma->vm_mm, vma, vmend, 0);
833 err = vma_replace_policy(vma, new_pol);
842 /* Set the process memory policy */
843 static long do_set_mempolicy(unsigned short mode, unsigned short flags,
846 struct mempolicy *new, *old;
847 NODEMASK_SCRATCH(scratch);
853 new = mpol_new(mode, flags, nodes);
859 ret = mpol_set_nodemask(new, nodes, scratch);
865 old = current->mempolicy;
866 current->mempolicy = new;
867 if (new && new->mode == MPOL_INTERLEAVE)
868 current->il_prev = MAX_NUMNODES-1;
869 task_unlock(current);
873 NODEMASK_SCRATCH_FREE(scratch);
878 * Return nodemask for policy for get_mempolicy() query
880 * Called with task's alloc_lock held
882 static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
885 if (p == &default_policy)
890 case MPOL_INTERLEAVE:
892 case MPOL_PREFERRED_MANY:
896 /* return empty node mask for local allocation */
903 static int lookup_node(struct mm_struct *mm, unsigned long addr)
905 struct page *p = NULL;
909 err = get_user_pages_locked(addr & PAGE_MASK, 1, 0, &p, &locked);
911 err = page_to_nid(p);
915 mmap_read_unlock(mm);
919 /* Retrieve NUMA policy */
920 static long do_get_mempolicy(int *policy, nodemask_t *nmask,
921 unsigned long addr, unsigned long flags)
924 struct mm_struct *mm = current->mm;
925 struct vm_area_struct *vma = NULL;
926 struct mempolicy *pol = current->mempolicy, *pol_refcount = NULL;
929 ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
932 if (flags & MPOL_F_MEMS_ALLOWED) {
933 if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
935 *policy = 0; /* just so it's initialized */
937 *nmask = cpuset_current_mems_allowed;
938 task_unlock(current);
942 if (flags & MPOL_F_ADDR) {
944 * Do NOT fall back to task policy if the
945 * vma/shared policy at addr is NULL. We
946 * want to return MPOL_DEFAULT in this case.
949 vma = vma_lookup(mm, addr);
951 mmap_read_unlock(mm);
954 if (vma->vm_ops && vma->vm_ops->get_policy)
955 pol = vma->vm_ops->get_policy(vma, addr);
957 pol = vma->vm_policy;
962 pol = &default_policy; /* indicates default behavior */
964 if (flags & MPOL_F_NODE) {
965 if (flags & MPOL_F_ADDR) {
967 * Take a refcount on the mpol, lookup_node()
968 * will drop the mmap_lock, so after calling
969 * lookup_node() only "pol" remains valid, "vma"
975 err = lookup_node(mm, addr);
979 } else if (pol == current->mempolicy &&
980 pol->mode == MPOL_INTERLEAVE) {
981 *policy = next_node_in(current->il_prev, pol->nodes);
987 *policy = pol == &default_policy ? MPOL_DEFAULT :
990 * Internal mempolicy flags must be masked off before exposing
991 * the policy to userspace.
993 *policy |= (pol->flags & MPOL_MODE_FLAGS);
998 if (mpol_store_user_nodemask(pol)) {
999 *nmask = pol->w.user_nodemask;
1002 get_policy_nodemask(pol, nmask);
1003 task_unlock(current);
1010 mmap_read_unlock(mm);
1012 mpol_put(pol_refcount);
1016 #ifdef CONFIG_MIGRATION
1018 * page migration, thp tail pages can be passed.
1020 static int migrate_page_add(struct page *page, struct list_head *pagelist,
1021 unsigned long flags)
1023 struct page *head = compound_head(page);
1025 * Avoid migrating a page that is shared with others.
1027 if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(head) == 1) {
1028 if (!isolate_lru_page(head)) {
1029 list_add_tail(&head->lru, pagelist);
1030 mod_node_page_state(page_pgdat(head),
1031 NR_ISOLATED_ANON + page_is_file_lru(head),
1032 thp_nr_pages(head));
1033 } else if (flags & MPOL_MF_STRICT) {
1035 * Non-movable page may reach here. And, there may be
1036 * temporary off LRU pages or non-LRU movable pages.
1037 * Treat them as unmovable pages since they can't be
1038 * isolated, so they can't be moved at the moment. It
1039 * should return -EIO for this case too.
1049 * Migrate pages from one node to a target node.
1050 * Returns error or the number of pages not migrated.
1052 static int migrate_to_node(struct mm_struct *mm, int source, int dest,
1056 LIST_HEAD(pagelist);
1058 struct migration_target_control mtc = {
1060 .gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE,
1064 node_set(source, nmask);
1067 * This does not "check" the range but isolates all pages that
1068 * need migration. Between passing in the full user address
1069 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail.
1071 VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)));
1072 queue_pages_range(mm, mm->mmap->vm_start, mm->task_size, &nmask,
1073 flags | MPOL_MF_DISCONTIG_OK, &pagelist);
1075 if (!list_empty(&pagelist)) {
1076 err = migrate_pages(&pagelist, alloc_migration_target, NULL,
1077 (unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL, NULL);
1079 putback_movable_pages(&pagelist);
1086 * Move pages between the two nodesets so as to preserve the physical
1087 * layout as much as possible.
1089 * Returns the number of page that could not be moved.
1091 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1092 const nodemask_t *to, int flags)
1098 lru_cache_disable();
1103 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
1104 * bit in 'to' is not also set in 'tmp'. Clear the found 'source'
1105 * bit in 'tmp', and return that <source, dest> pair for migration.
1106 * The pair of nodemasks 'to' and 'from' define the map.
1108 * If no pair of bits is found that way, fallback to picking some
1109 * pair of 'source' and 'dest' bits that are not the same. If the
1110 * 'source' and 'dest' bits are the same, this represents a node
1111 * that will be migrating to itself, so no pages need move.
1113 * If no bits are left in 'tmp', or if all remaining bits left
1114 * in 'tmp' correspond to the same bit in 'to', return false
1115 * (nothing left to migrate).
1117 * This lets us pick a pair of nodes to migrate between, such that
1118 * if possible the dest node is not already occupied by some other
1119 * source node, minimizing the risk of overloading the memory on a
1120 * node that would happen if we migrated incoming memory to a node
1121 * before migrating outgoing memory source that same node.
1123 * A single scan of tmp is sufficient. As we go, we remember the
1124 * most recent <s, d> pair that moved (s != d). If we find a pair
1125 * that not only moved, but what's better, moved to an empty slot
1126 * (d is not set in tmp), then we break out then, with that pair.
1127 * Otherwise when we finish scanning from_tmp, we at least have the
1128 * most recent <s, d> pair that moved. If we get all the way through
1129 * the scan of tmp without finding any node that moved, much less
1130 * moved to an empty node, then there is nothing left worth migrating.
1134 while (!nodes_empty(tmp)) {
1136 int source = NUMA_NO_NODE;
1139 for_each_node_mask(s, tmp) {
1142 * do_migrate_pages() tries to maintain the relative
1143 * node relationship of the pages established between
1144 * threads and memory areas.
1146 * However if the number of source nodes is not equal to
1147 * the number of destination nodes we can not preserve
1148 * this node relative relationship. In that case, skip
1149 * copying memory from a node that is in the destination
1152 * Example: [2,3,4] -> [3,4,5] moves everything.
1153 * [0-7] - > [3,4,5] moves only 0,1,2,6,7.
1156 if ((nodes_weight(*from) != nodes_weight(*to)) &&
1157 (node_isset(s, *to)))
1160 d = node_remap(s, *from, *to);
1164 source = s; /* Node moved. Memorize */
1167 /* dest not in remaining from nodes? */
1168 if (!node_isset(dest, tmp))
1171 if (source == NUMA_NO_NODE)
1174 node_clear(source, tmp);
1175 err = migrate_to_node(mm, source, dest, flags);
1181 mmap_read_unlock(mm);
1191 * Allocate a new page for page migration based on vma policy.
1192 * Start by assuming the page is mapped by the same vma as contains @start.
1193 * Search forward from there, if not. N.B., this assumes that the
1194 * list of pages handed to migrate_pages()--which is how we get here--
1195 * is in virtual address order.
1197 static struct page *new_page(struct page *page, unsigned long start)
1199 struct vm_area_struct *vma;
1200 unsigned long address;
1202 vma = find_vma(current->mm, start);
1204 address = page_address_in_vma(page, vma);
1205 if (address != -EFAULT)
1210 if (PageHuge(page)) {
1211 return alloc_huge_page_vma(page_hstate(compound_head(page)),
1213 } else if (PageTransHuge(page)) {
1216 thp = alloc_hugepage_vma(GFP_TRANSHUGE, vma, address,
1220 prep_transhuge_page(thp);
1224 * if !vma, alloc_page_vma() will use task or system default policy
1226 return alloc_page_vma(GFP_HIGHUSER_MOVABLE | __GFP_RETRY_MAYFAIL,
1231 static int migrate_page_add(struct page *page, struct list_head *pagelist,
1232 unsigned long flags)
1237 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1238 const nodemask_t *to, int flags)
1243 static struct page *new_page(struct page *page, unsigned long start)
1249 static long do_mbind(unsigned long start, unsigned long len,
1250 unsigned short mode, unsigned short mode_flags,
1251 nodemask_t *nmask, unsigned long flags)
1253 struct mm_struct *mm = current->mm;
1254 struct mempolicy *new;
1258 LIST_HEAD(pagelist);
1260 if (flags & ~(unsigned long)MPOL_MF_VALID)
1262 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1265 if (start & ~PAGE_MASK)
1268 if (mode == MPOL_DEFAULT)
1269 flags &= ~MPOL_MF_STRICT;
1271 len = (len + PAGE_SIZE - 1) & PAGE_MASK;
1279 new = mpol_new(mode, mode_flags, nmask);
1281 return PTR_ERR(new);
1283 if (flags & MPOL_MF_LAZY)
1284 new->flags |= MPOL_F_MOF;
1287 * If we are using the default policy then operation
1288 * on discontinuous address spaces is okay after all
1291 flags |= MPOL_MF_DISCONTIG_OK;
1293 pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1294 start, start + len, mode, mode_flags,
1295 nmask ? nodes_addr(*nmask)[0] : NUMA_NO_NODE);
1297 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
1299 lru_cache_disable();
1302 NODEMASK_SCRATCH(scratch);
1304 mmap_write_lock(mm);
1305 err = mpol_set_nodemask(new, nmask, scratch);
1307 mmap_write_unlock(mm);
1310 NODEMASK_SCRATCH_FREE(scratch);
1315 ret = queue_pages_range(mm, start, end, nmask,
1316 flags | MPOL_MF_INVERT, &pagelist);
1323 err = mbind_range(mm, start, end, new);
1328 if (!list_empty(&pagelist)) {
1329 WARN_ON_ONCE(flags & MPOL_MF_LAZY);
1330 nr_failed = migrate_pages(&pagelist, new_page, NULL,
1331 start, MIGRATE_SYNC, MR_MEMPOLICY_MBIND, NULL);
1333 putback_movable_pages(&pagelist);
1336 if ((ret > 0) || (nr_failed && (flags & MPOL_MF_STRICT)))
1340 if (!list_empty(&pagelist))
1341 putback_movable_pages(&pagelist);
1344 mmap_write_unlock(mm);
1347 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
1353 * User space interface with variable sized bitmaps for nodelists.
1355 static int get_bitmap(unsigned long *mask, const unsigned long __user *nmask,
1356 unsigned long maxnode)
1358 unsigned long nlongs = BITS_TO_LONGS(maxnode);
1361 if (in_compat_syscall())
1362 ret = compat_get_bitmap(mask,
1363 (const compat_ulong_t __user *)nmask,
1366 ret = copy_from_user(mask, nmask,
1367 nlongs * sizeof(unsigned long));
1372 if (maxnode % BITS_PER_LONG)
1373 mask[nlongs - 1] &= (1UL << (maxnode % BITS_PER_LONG)) - 1;
1378 /* Copy a node mask from user space. */
1379 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1380 unsigned long maxnode)
1383 nodes_clear(*nodes);
1384 if (maxnode == 0 || !nmask)
1386 if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1390 * When the user specified more nodes than supported just check
1391 * if the non supported part is all zero, one word at a time,
1392 * starting at the end.
1394 while (maxnode > MAX_NUMNODES) {
1395 unsigned long bits = min_t(unsigned long, maxnode, BITS_PER_LONG);
1398 if (get_bitmap(&t, &nmask[maxnode / BITS_PER_LONG], bits))
1401 if (maxnode - bits >= MAX_NUMNODES) {
1404 maxnode = MAX_NUMNODES;
1405 t &= ~((1UL << (MAX_NUMNODES % BITS_PER_LONG)) - 1);
1411 return get_bitmap(nodes_addr(*nodes), nmask, maxnode);
1414 /* Copy a kernel node mask to user space */
1415 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1418 unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1419 unsigned int nbytes = BITS_TO_LONGS(nr_node_ids) * sizeof(long);
1420 bool compat = in_compat_syscall();
1423 nbytes = BITS_TO_COMPAT_LONGS(nr_node_ids) * sizeof(compat_long_t);
1425 if (copy > nbytes) {
1426 if (copy > PAGE_SIZE)
1428 if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1431 maxnode = nr_node_ids;
1435 return compat_put_bitmap((compat_ulong_t __user *)mask,
1436 nodes_addr(*nodes), maxnode);
1438 return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1441 /* Basic parameter sanity check used by both mbind() and set_mempolicy() */
1442 static inline int sanitize_mpol_flags(int *mode, unsigned short *flags)
1444 *flags = *mode & MPOL_MODE_FLAGS;
1445 *mode &= ~MPOL_MODE_FLAGS;
1447 if ((unsigned int)(*mode) >= MPOL_MAX)
1449 if ((*flags & MPOL_F_STATIC_NODES) && (*flags & MPOL_F_RELATIVE_NODES))
1451 if (*flags & MPOL_F_NUMA_BALANCING) {
1452 if (*mode != MPOL_BIND)
1454 *flags |= (MPOL_F_MOF | MPOL_F_MORON);
1459 static long kernel_mbind(unsigned long start, unsigned long len,
1460 unsigned long mode, const unsigned long __user *nmask,
1461 unsigned long maxnode, unsigned int flags)
1463 unsigned short mode_flags;
1468 start = untagged_addr(start);
1469 err = sanitize_mpol_flags(&lmode, &mode_flags);
1473 err = get_nodes(&nodes, nmask, maxnode);
1477 return do_mbind(start, len, lmode, mode_flags, &nodes, flags);
1480 SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1481 unsigned long, mode, const unsigned long __user *, nmask,
1482 unsigned long, maxnode, unsigned int, flags)
1484 return kernel_mbind(start, len, mode, nmask, maxnode, flags);
1487 /* Set the process memory policy */
1488 static long kernel_set_mempolicy(int mode, const unsigned long __user *nmask,
1489 unsigned long maxnode)
1491 unsigned short mode_flags;
1496 err = sanitize_mpol_flags(&lmode, &mode_flags);
1500 err = get_nodes(&nodes, nmask, maxnode);
1504 return do_set_mempolicy(lmode, mode_flags, &nodes);
1507 SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask,
1508 unsigned long, maxnode)
1510 return kernel_set_mempolicy(mode, nmask, maxnode);
1513 static int kernel_migrate_pages(pid_t pid, unsigned long maxnode,
1514 const unsigned long __user *old_nodes,
1515 const unsigned long __user *new_nodes)
1517 struct mm_struct *mm = NULL;
1518 struct task_struct *task;
1519 nodemask_t task_nodes;
1523 NODEMASK_SCRATCH(scratch);
1528 old = &scratch->mask1;
1529 new = &scratch->mask2;
1531 err = get_nodes(old, old_nodes, maxnode);
1535 err = get_nodes(new, new_nodes, maxnode);
1539 /* Find the mm_struct */
1541 task = pid ? find_task_by_vpid(pid) : current;
1547 get_task_struct(task);
1552 * Check if this process has the right to modify the specified process.
1553 * Use the regular "ptrace_may_access()" checks.
1555 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1562 task_nodes = cpuset_mems_allowed(task);
1563 /* Is the user allowed to access the target nodes? */
1564 if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1569 task_nodes = cpuset_mems_allowed(current);
1570 nodes_and(*new, *new, task_nodes);
1571 if (nodes_empty(*new))
1574 err = security_task_movememory(task);
1578 mm = get_task_mm(task);
1579 put_task_struct(task);
1586 err = do_migrate_pages(mm, old, new,
1587 capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1591 NODEMASK_SCRATCH_FREE(scratch);
1596 put_task_struct(task);
1601 SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1602 const unsigned long __user *, old_nodes,
1603 const unsigned long __user *, new_nodes)
1605 return kernel_migrate_pages(pid, maxnode, old_nodes, new_nodes);
1609 /* Retrieve NUMA policy */
1610 static int kernel_get_mempolicy(int __user *policy,
1611 unsigned long __user *nmask,
1612 unsigned long maxnode,
1614 unsigned long flags)
1620 if (nmask != NULL && maxnode < nr_node_ids)
1623 addr = untagged_addr(addr);
1625 err = do_get_mempolicy(&pval, &nodes, addr, flags);
1630 if (policy && put_user(pval, policy))
1634 err = copy_nodes_to_user(nmask, maxnode, &nodes);
1639 SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1640 unsigned long __user *, nmask, unsigned long, maxnode,
1641 unsigned long, addr, unsigned long, flags)
1643 return kernel_get_mempolicy(policy, nmask, maxnode, addr, flags);
1646 bool vma_migratable(struct vm_area_struct *vma)
1648 if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1652 * DAX device mappings require predictable access latency, so avoid
1653 * incurring periodic faults.
1655 if (vma_is_dax(vma))
1658 if (is_vm_hugetlb_page(vma) &&
1659 !hugepage_migration_supported(hstate_vma(vma)))
1663 * Migration allocates pages in the highest zone. If we cannot
1664 * do so then migration (at least from node to node) is not
1668 gfp_zone(mapping_gfp_mask(vma->vm_file->f_mapping))
1674 struct mempolicy *__get_vma_policy(struct vm_area_struct *vma,
1677 struct mempolicy *pol = NULL;
1680 if (vma->vm_ops && vma->vm_ops->get_policy) {
1681 pol = vma->vm_ops->get_policy(vma, addr);
1682 } else if (vma->vm_policy) {
1683 pol = vma->vm_policy;
1686 * shmem_alloc_page() passes MPOL_F_SHARED policy with
1687 * a pseudo vma whose vma->vm_ops=NULL. Take a reference
1688 * count on these policies which will be dropped by
1689 * mpol_cond_put() later
1691 if (mpol_needs_cond_ref(pol))
1700 * get_vma_policy(@vma, @addr)
1701 * @vma: virtual memory area whose policy is sought
1702 * @addr: address in @vma for shared policy lookup
1704 * Returns effective policy for a VMA at specified address.
1705 * Falls back to current->mempolicy or system default policy, as necessary.
1706 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1707 * count--added by the get_policy() vm_op, as appropriate--to protect against
1708 * freeing by another task. It is the caller's responsibility to free the
1709 * extra reference for shared policies.
1711 static struct mempolicy *get_vma_policy(struct vm_area_struct *vma,
1714 struct mempolicy *pol = __get_vma_policy(vma, addr);
1717 pol = get_task_policy(current);
1722 bool vma_policy_mof(struct vm_area_struct *vma)
1724 struct mempolicy *pol;
1726 if (vma->vm_ops && vma->vm_ops->get_policy) {
1729 pol = vma->vm_ops->get_policy(vma, vma->vm_start);
1730 if (pol && (pol->flags & MPOL_F_MOF))
1737 pol = vma->vm_policy;
1739 pol = get_task_policy(current);
1741 return pol->flags & MPOL_F_MOF;
1744 static int apply_policy_zone(struct mempolicy *policy, enum zone_type zone)
1746 enum zone_type dynamic_policy_zone = policy_zone;
1748 BUG_ON(dynamic_policy_zone == ZONE_MOVABLE);
1751 * if policy->nodes has movable memory only,
1752 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only.
1754 * policy->nodes is intersect with node_states[N_MEMORY].
1755 * so if the following test fails, it implies
1756 * policy->nodes has movable memory only.
1758 if (!nodes_intersects(policy->nodes, node_states[N_HIGH_MEMORY]))
1759 dynamic_policy_zone = ZONE_MOVABLE;
1761 return zone >= dynamic_policy_zone;
1765 * Return a nodemask representing a mempolicy for filtering nodes for
1768 nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1770 int mode = policy->mode;
1772 /* Lower zones don't get a nodemask applied for MPOL_BIND */
1773 if (unlikely(mode == MPOL_BIND) &&
1774 apply_policy_zone(policy, gfp_zone(gfp)) &&
1775 cpuset_nodemask_valid_mems_allowed(&policy->nodes))
1776 return &policy->nodes;
1778 if (mode == MPOL_PREFERRED_MANY)
1779 return &policy->nodes;
1785 * Return the preferred node id for 'prefer' mempolicy, and return
1786 * the given id for all other policies.
1788 * policy_node() is always coupled with policy_nodemask(), which
1789 * secures the nodemask limit for 'bind' and 'prefer-many' policy.
1791 static int policy_node(gfp_t gfp, struct mempolicy *policy, int nd)
1793 if (policy->mode == MPOL_PREFERRED) {
1794 nd = first_node(policy->nodes);
1797 * __GFP_THISNODE shouldn't even be used with the bind policy
1798 * because we might easily break the expectation to stay on the
1799 * requested node and not break the policy.
1801 WARN_ON_ONCE(policy->mode == MPOL_BIND && (gfp & __GFP_THISNODE));
1807 /* Do dynamic interleaving for a process */
1808 static unsigned interleave_nodes(struct mempolicy *policy)
1811 struct task_struct *me = current;
1813 next = next_node_in(me->il_prev, policy->nodes);
1814 if (next < MAX_NUMNODES)
1820 * Depending on the memory policy provide a node from which to allocate the
1823 unsigned int mempolicy_slab_node(void)
1825 struct mempolicy *policy;
1826 int node = numa_mem_id();
1831 policy = current->mempolicy;
1835 switch (policy->mode) {
1836 case MPOL_PREFERRED:
1837 return first_node(policy->nodes);
1839 case MPOL_INTERLEAVE:
1840 return interleave_nodes(policy);
1843 case MPOL_PREFERRED_MANY:
1848 * Follow bind policy behavior and start allocation at the
1851 struct zonelist *zonelist;
1852 enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1853 zonelist = &NODE_DATA(node)->node_zonelists[ZONELIST_FALLBACK];
1854 z = first_zones_zonelist(zonelist, highest_zoneidx,
1856 return z->zone ? zone_to_nid(z->zone) : node;
1867 * Do static interleaving for a VMA with known offset @n. Returns the n'th
1868 * node in pol->nodes (starting from n=0), wrapping around if n exceeds the
1869 * number of present nodes.
1871 static unsigned offset_il_node(struct mempolicy *pol, unsigned long n)
1873 nodemask_t nodemask = pol->nodes;
1874 unsigned int target, nnodes;
1878 * The barrier will stabilize the nodemask in a register or on
1879 * the stack so that it will stop changing under the code.
1881 * Between first_node() and next_node(), pol->nodes could be changed
1882 * by other threads. So we put pol->nodes in a local stack.
1886 nnodes = nodes_weight(nodemask);
1888 return numa_node_id();
1889 target = (unsigned int)n % nnodes;
1890 nid = first_node(nodemask);
1891 for (i = 0; i < target; i++)
1892 nid = next_node(nid, nodemask);
1896 /* Determine a node number for interleave */
1897 static inline unsigned interleave_nid(struct mempolicy *pol,
1898 struct vm_area_struct *vma, unsigned long addr, int shift)
1904 * for small pages, there is no difference between
1905 * shift and PAGE_SHIFT, so the bit-shift is safe.
1906 * for huge pages, since vm_pgoff is in units of small
1907 * pages, we need to shift off the always 0 bits to get
1910 BUG_ON(shift < PAGE_SHIFT);
1911 off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
1912 off += (addr - vma->vm_start) >> shift;
1913 return offset_il_node(pol, off);
1915 return interleave_nodes(pol);
1918 #ifdef CONFIG_HUGETLBFS
1920 * huge_node(@vma, @addr, @gfp_flags, @mpol)
1921 * @vma: virtual memory area whose policy is sought
1922 * @addr: address in @vma for shared policy lookup and interleave policy
1923 * @gfp_flags: for requested zone
1924 * @mpol: pointer to mempolicy pointer for reference counted mempolicy
1925 * @nodemask: pointer to nodemask pointer for 'bind' and 'prefer-many' policy
1927 * Returns a nid suitable for a huge page allocation and a pointer
1928 * to the struct mempolicy for conditional unref after allocation.
1929 * If the effective policy is 'bind' or 'prefer-many', returns a pointer
1930 * to the mempolicy's @nodemask for filtering the zonelist.
1932 * Must be protected by read_mems_allowed_begin()
1934 int huge_node(struct vm_area_struct *vma, unsigned long addr, gfp_t gfp_flags,
1935 struct mempolicy **mpol, nodemask_t **nodemask)
1940 *mpol = get_vma_policy(vma, addr);
1942 mode = (*mpol)->mode;
1944 if (unlikely(mode == MPOL_INTERLEAVE)) {
1945 nid = interleave_nid(*mpol, vma, addr,
1946 huge_page_shift(hstate_vma(vma)));
1948 nid = policy_node(gfp_flags, *mpol, numa_node_id());
1949 if (mode == MPOL_BIND || mode == MPOL_PREFERRED_MANY)
1950 *nodemask = &(*mpol)->nodes;
1956 * init_nodemask_of_mempolicy
1958 * If the current task's mempolicy is "default" [NULL], return 'false'
1959 * to indicate default policy. Otherwise, extract the policy nodemask
1960 * for 'bind' or 'interleave' policy into the argument nodemask, or
1961 * initialize the argument nodemask to contain the single node for
1962 * 'preferred' or 'local' policy and return 'true' to indicate presence
1963 * of non-default mempolicy.
1965 * We don't bother with reference counting the mempolicy [mpol_get/put]
1966 * because the current task is examining it's own mempolicy and a task's
1967 * mempolicy is only ever changed by the task itself.
1969 * N.B., it is the caller's responsibility to free a returned nodemask.
1971 bool init_nodemask_of_mempolicy(nodemask_t *mask)
1973 struct mempolicy *mempolicy;
1975 if (!(mask && current->mempolicy))
1979 mempolicy = current->mempolicy;
1980 switch (mempolicy->mode) {
1981 case MPOL_PREFERRED:
1982 case MPOL_PREFERRED_MANY:
1984 case MPOL_INTERLEAVE:
1985 *mask = mempolicy->nodes;
1989 init_nodemask_of_node(mask, numa_node_id());
1995 task_unlock(current);
2002 * mempolicy_in_oom_domain
2004 * If tsk's mempolicy is "bind", check for intersection between mask and
2005 * the policy nodemask. Otherwise, return true for all other policies
2006 * including "interleave", as a tsk with "interleave" policy may have
2007 * memory allocated from all nodes in system.
2009 * Takes task_lock(tsk) to prevent freeing of its mempolicy.
2011 bool mempolicy_in_oom_domain(struct task_struct *tsk,
2012 const nodemask_t *mask)
2014 struct mempolicy *mempolicy;
2021 mempolicy = tsk->mempolicy;
2022 if (mempolicy && mempolicy->mode == MPOL_BIND)
2023 ret = nodes_intersects(mempolicy->nodes, *mask);
2029 /* Allocate a page in interleaved policy.
2030 Own path because it needs to do special accounting. */
2031 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
2036 page = __alloc_pages(gfp, order, nid, NULL);
2037 /* skip NUMA_INTERLEAVE_HIT counter update if numa stats is disabled */
2038 if (!static_branch_likely(&vm_numa_stat_key))
2040 if (page && page_to_nid(page) == nid) {
2042 __count_numa_event(page_zone(page), NUMA_INTERLEAVE_HIT);
2048 static struct page *alloc_pages_preferred_many(gfp_t gfp, unsigned int order,
2049 int nid, struct mempolicy *pol)
2052 gfp_t preferred_gfp;
2055 * This is a two pass approach. The first pass will only try the
2056 * preferred nodes but skip the direct reclaim and allow the
2057 * allocation to fail, while the second pass will try all the
2060 preferred_gfp = gfp | __GFP_NOWARN;
2061 preferred_gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2062 page = __alloc_pages(preferred_gfp, order, nid, &pol->nodes);
2064 page = __alloc_pages(gfp, order, numa_node_id(), NULL);
2070 * alloc_pages_vma - Allocate a page for a VMA.
2072 * @order: Order of the GFP allocation.
2073 * @vma: Pointer to VMA or NULL if not available.
2074 * @addr: Virtual address of the allocation. Must be inside @vma.
2075 * @node: Which node to prefer for allocation (modulo policy).
2076 * @hugepage: For hugepages try only the preferred node if possible.
2078 * Allocate a page for a specific address in @vma, using the appropriate
2079 * NUMA policy. When @vma is not NULL the caller must hold the mmap_lock
2080 * of the mm_struct of the VMA to prevent it from going away. Should be
2081 * used for all allocations for pages that will be mapped into user space.
2083 * Return: The page on success or NULL if allocation fails.
2085 struct page *alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma,
2086 unsigned long addr, int node, bool hugepage)
2088 struct mempolicy *pol;
2093 pol = get_vma_policy(vma, addr);
2095 if (pol->mode == MPOL_INTERLEAVE) {
2098 nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order);
2100 page = alloc_page_interleave(gfp, order, nid);
2104 if (pol->mode == MPOL_PREFERRED_MANY) {
2105 page = alloc_pages_preferred_many(gfp, order, node, pol);
2110 if (unlikely(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && hugepage)) {
2111 int hpage_node = node;
2114 * For hugepage allocation and non-interleave policy which
2115 * allows the current node (or other explicitly preferred
2116 * node) we only try to allocate from the current/preferred
2117 * node and don't fall back to other nodes, as the cost of
2118 * remote accesses would likely offset THP benefits.
2120 * If the policy is interleave or does not allow the current
2121 * node in its nodemask, we allocate the standard way.
2123 if (pol->mode == MPOL_PREFERRED)
2124 hpage_node = first_node(pol->nodes);
2126 nmask = policy_nodemask(gfp, pol);
2127 if (!nmask || node_isset(hpage_node, *nmask)) {
2130 * First, try to allocate THP only on local node, but
2131 * don't reclaim unnecessarily, just compact.
2133 page = __alloc_pages_node(hpage_node,
2134 gfp | __GFP_THISNODE | __GFP_NORETRY, order);
2137 * If hugepage allocations are configured to always
2138 * synchronous compact or the vma has been madvised
2139 * to prefer hugepage backing, retry allowing remote
2140 * memory with both reclaim and compact as well.
2142 if (!page && (gfp & __GFP_DIRECT_RECLAIM))
2143 page = __alloc_pages_node(hpage_node,
2150 nmask = policy_nodemask(gfp, pol);
2151 preferred_nid = policy_node(gfp, pol, node);
2152 page = __alloc_pages(gfp, order, preferred_nid, nmask);
2157 EXPORT_SYMBOL(alloc_pages_vma);
2160 * alloc_pages - Allocate pages.
2162 * @order: Power of two of number of pages to allocate.
2164 * Allocate 1 << @order contiguous pages. The physical address of the
2165 * first page is naturally aligned (eg an order-3 allocation will be aligned
2166 * to a multiple of 8 * PAGE_SIZE bytes). The NUMA policy of the current
2167 * process is honoured when in process context.
2169 * Context: Can be called from any context, providing the appropriate GFP
2171 * Return: The page on success or NULL if allocation fails.
2173 struct page *alloc_pages(gfp_t gfp, unsigned order)
2175 struct mempolicy *pol = &default_policy;
2178 if (!in_interrupt() && !(gfp & __GFP_THISNODE))
2179 pol = get_task_policy(current);
2182 * No reference counting needed for current->mempolicy
2183 * nor system default_policy
2185 if (pol->mode == MPOL_INTERLEAVE)
2186 page = alloc_page_interleave(gfp, order, interleave_nodes(pol));
2187 else if (pol->mode == MPOL_PREFERRED_MANY)
2188 page = alloc_pages_preferred_many(gfp, order,
2189 numa_node_id(), pol);
2191 page = __alloc_pages(gfp, order,
2192 policy_node(gfp, pol, numa_node_id()),
2193 policy_nodemask(gfp, pol));
2197 EXPORT_SYMBOL(alloc_pages);
2199 int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst)
2201 struct mempolicy *pol = mpol_dup(vma_policy(src));
2204 return PTR_ERR(pol);
2205 dst->vm_policy = pol;
2210 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
2211 * rebinds the mempolicy its copying by calling mpol_rebind_policy()
2212 * with the mems_allowed returned by cpuset_mems_allowed(). This
2213 * keeps mempolicies cpuset relative after its cpuset moves. See
2214 * further kernel/cpuset.c update_nodemask().
2216 * current's mempolicy may be rebinded by the other task(the task that changes
2217 * cpuset's mems), so we needn't do rebind work for current task.
2220 /* Slow path of a mempolicy duplicate */
2221 struct mempolicy *__mpol_dup(struct mempolicy *old)
2223 struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2226 return ERR_PTR(-ENOMEM);
2228 /* task's mempolicy is protected by alloc_lock */
2229 if (old == current->mempolicy) {
2232 task_unlock(current);
2236 if (current_cpuset_is_being_rebound()) {
2237 nodemask_t mems = cpuset_mems_allowed(current);
2238 mpol_rebind_policy(new, &mems);
2240 atomic_set(&new->refcnt, 1);
2244 /* Slow path of a mempolicy comparison */
2245 bool __mpol_equal(struct mempolicy *a, struct mempolicy *b)
2249 if (a->mode != b->mode)
2251 if (a->flags != b->flags)
2253 if (mpol_store_user_nodemask(a))
2254 if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
2259 case MPOL_INTERLEAVE:
2260 case MPOL_PREFERRED:
2261 case MPOL_PREFERRED_MANY:
2262 return !!nodes_equal(a->nodes, b->nodes);
2272 * Shared memory backing store policy support.
2274 * Remember policies even when nobody has shared memory mapped.
2275 * The policies are kept in Red-Black tree linked from the inode.
2276 * They are protected by the sp->lock rwlock, which should be held
2277 * for any accesses to the tree.
2281 * lookup first element intersecting start-end. Caller holds sp->lock for
2282 * reading or for writing
2284 static struct sp_node *
2285 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
2287 struct rb_node *n = sp->root.rb_node;
2290 struct sp_node *p = rb_entry(n, struct sp_node, nd);
2292 if (start >= p->end)
2294 else if (end <= p->start)
2302 struct sp_node *w = NULL;
2303 struct rb_node *prev = rb_prev(n);
2306 w = rb_entry(prev, struct sp_node, nd);
2307 if (w->end <= start)
2311 return rb_entry(n, struct sp_node, nd);
2315 * Insert a new shared policy into the list. Caller holds sp->lock for
2318 static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2320 struct rb_node **p = &sp->root.rb_node;
2321 struct rb_node *parent = NULL;
2326 nd = rb_entry(parent, struct sp_node, nd);
2327 if (new->start < nd->start)
2329 else if (new->end > nd->end)
2330 p = &(*p)->rb_right;
2334 rb_link_node(&new->nd, parent, p);
2335 rb_insert_color(&new->nd, &sp->root);
2336 pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
2337 new->policy ? new->policy->mode : 0);
2340 /* Find shared policy intersecting idx */
2342 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
2344 struct mempolicy *pol = NULL;
2347 if (!sp->root.rb_node)
2349 read_lock(&sp->lock);
2350 sn = sp_lookup(sp, idx, idx+1);
2352 mpol_get(sn->policy);
2355 read_unlock(&sp->lock);
2359 static void sp_free(struct sp_node *n)
2361 mpol_put(n->policy);
2362 kmem_cache_free(sn_cache, n);
2366 * mpol_misplaced - check whether current page node is valid in policy
2368 * @page: page to be checked
2369 * @vma: vm area where page mapped
2370 * @addr: virtual address where page mapped
2372 * Lookup current policy node id for vma,addr and "compare to" page's
2373 * node id. Policy determination "mimics" alloc_page_vma().
2374 * Called from fault path where we know the vma and faulting address.
2376 * Return: NUMA_NO_NODE if the page is in a node that is valid for this
2377 * policy, or a suitable node ID to allocate a replacement page from.
2379 int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr)
2381 struct mempolicy *pol;
2383 int curnid = page_to_nid(page);
2384 unsigned long pgoff;
2385 int thiscpu = raw_smp_processor_id();
2386 int thisnid = cpu_to_node(thiscpu);
2387 int polnid = NUMA_NO_NODE;
2388 int ret = NUMA_NO_NODE;
2390 pol = get_vma_policy(vma, addr);
2391 if (!(pol->flags & MPOL_F_MOF))
2394 switch (pol->mode) {
2395 case MPOL_INTERLEAVE:
2396 pgoff = vma->vm_pgoff;
2397 pgoff += (addr - vma->vm_start) >> PAGE_SHIFT;
2398 polnid = offset_il_node(pol, pgoff);
2401 case MPOL_PREFERRED:
2402 if (node_isset(curnid, pol->nodes))
2404 polnid = first_node(pol->nodes);
2408 polnid = numa_node_id();
2412 /* Optimize placement among multiple nodes via NUMA balancing */
2413 if (pol->flags & MPOL_F_MORON) {
2414 if (node_isset(thisnid, pol->nodes))
2420 case MPOL_PREFERRED_MANY:
2422 * use current page if in policy nodemask,
2423 * else select nearest allowed node, if any.
2424 * If no allowed nodes, use current [!misplaced].
2426 if (node_isset(curnid, pol->nodes))
2428 z = first_zones_zonelist(
2429 node_zonelist(numa_node_id(), GFP_HIGHUSER),
2430 gfp_zone(GFP_HIGHUSER),
2432 polnid = zone_to_nid(z->zone);
2439 /* Migrate the page towards the node whose CPU is referencing it */
2440 if (pol->flags & MPOL_F_MORON) {
2443 if (!should_numa_migrate_memory(current, page, curnid, thiscpu))
2447 if (curnid != polnid)
2456 * Drop the (possibly final) reference to task->mempolicy. It needs to be
2457 * dropped after task->mempolicy is set to NULL so that any allocation done as
2458 * part of its kmem_cache_free(), such as by KASAN, doesn't reference a freed
2461 void mpol_put_task_policy(struct task_struct *task)
2463 struct mempolicy *pol;
2466 pol = task->mempolicy;
2467 task->mempolicy = NULL;
2472 static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2474 pr_debug("deleting %lx-l%lx\n", n->start, n->end);
2475 rb_erase(&n->nd, &sp->root);
2479 static void sp_node_init(struct sp_node *node, unsigned long start,
2480 unsigned long end, struct mempolicy *pol)
2482 node->start = start;
2487 static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2488 struct mempolicy *pol)
2491 struct mempolicy *newpol;
2493 n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2497 newpol = mpol_dup(pol);
2498 if (IS_ERR(newpol)) {
2499 kmem_cache_free(sn_cache, n);
2502 newpol->flags |= MPOL_F_SHARED;
2503 sp_node_init(n, start, end, newpol);
2508 /* Replace a policy range. */
2509 static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
2510 unsigned long end, struct sp_node *new)
2513 struct sp_node *n_new = NULL;
2514 struct mempolicy *mpol_new = NULL;
2518 write_lock(&sp->lock);
2519 n = sp_lookup(sp, start, end);
2520 /* Take care of old policies in the same range. */
2521 while (n && n->start < end) {
2522 struct rb_node *next = rb_next(&n->nd);
2523 if (n->start >= start) {
2529 /* Old policy spanning whole new range. */
2534 *mpol_new = *n->policy;
2535 atomic_set(&mpol_new->refcnt, 1);
2536 sp_node_init(n_new, end, n->end, mpol_new);
2538 sp_insert(sp, n_new);
2547 n = rb_entry(next, struct sp_node, nd);
2551 write_unlock(&sp->lock);
2558 kmem_cache_free(sn_cache, n_new);
2563 write_unlock(&sp->lock);
2565 n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2568 mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2575 * mpol_shared_policy_init - initialize shared policy for inode
2576 * @sp: pointer to inode shared policy
2577 * @mpol: struct mempolicy to install
2579 * Install non-NULL @mpol in inode's shared policy rb-tree.
2580 * On entry, the current task has a reference on a non-NULL @mpol.
2581 * This must be released on exit.
2582 * This is called at get_inode() calls and we can use GFP_KERNEL.
2584 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2588 sp->root = RB_ROOT; /* empty tree == default mempolicy */
2589 rwlock_init(&sp->lock);
2592 struct vm_area_struct pvma;
2593 struct mempolicy *new;
2594 NODEMASK_SCRATCH(scratch);
2598 /* contextualize the tmpfs mount point mempolicy */
2599 new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2601 goto free_scratch; /* no valid nodemask intersection */
2604 ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch);
2605 task_unlock(current);
2609 /* Create pseudo-vma that contains just the policy */
2610 vma_init(&pvma, NULL);
2611 pvma.vm_end = TASK_SIZE; /* policy covers entire file */
2612 mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
2615 mpol_put(new); /* drop initial ref */
2617 NODEMASK_SCRATCH_FREE(scratch);
2619 mpol_put(mpol); /* drop our incoming ref on sb mpol */
2623 int mpol_set_shared_policy(struct shared_policy *info,
2624 struct vm_area_struct *vma, struct mempolicy *npol)
2627 struct sp_node *new = NULL;
2628 unsigned long sz = vma_pages(vma);
2630 pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2632 sz, npol ? npol->mode : -1,
2633 npol ? npol->flags : -1,
2634 npol ? nodes_addr(npol->nodes)[0] : NUMA_NO_NODE);
2637 new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
2641 err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
2647 /* Free a backing policy store on inode delete. */
2648 void mpol_free_shared_policy(struct shared_policy *p)
2651 struct rb_node *next;
2653 if (!p->root.rb_node)
2655 write_lock(&p->lock);
2656 next = rb_first(&p->root);
2658 n = rb_entry(next, struct sp_node, nd);
2659 next = rb_next(&n->nd);
2662 write_unlock(&p->lock);
2665 #ifdef CONFIG_NUMA_BALANCING
2666 static int __initdata numabalancing_override;
2668 static void __init check_numabalancing_enable(void)
2670 bool numabalancing_default = false;
2672 if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED))
2673 numabalancing_default = true;
2675 /* Parsed by setup_numabalancing. override == 1 enables, -1 disables */
2676 if (numabalancing_override)
2677 set_numabalancing_state(numabalancing_override == 1);
2679 if (num_online_nodes() > 1 && !numabalancing_override) {
2680 pr_info("%s automatic NUMA balancing. Configure with numa_balancing= or the kernel.numa_balancing sysctl\n",
2681 numabalancing_default ? "Enabling" : "Disabling");
2682 set_numabalancing_state(numabalancing_default);
2686 static int __init setup_numabalancing(char *str)
2692 if (!strcmp(str, "enable")) {
2693 numabalancing_override = 1;
2695 } else if (!strcmp(str, "disable")) {
2696 numabalancing_override = -1;
2701 pr_warn("Unable to parse numa_balancing=\n");
2705 __setup("numa_balancing=", setup_numabalancing);
2707 static inline void __init check_numabalancing_enable(void)
2710 #endif /* CONFIG_NUMA_BALANCING */
2712 /* assumes fs == KERNEL_DS */
2713 void __init numa_policy_init(void)
2715 nodemask_t interleave_nodes;
2716 unsigned long largest = 0;
2717 int nid, prefer = 0;
2719 policy_cache = kmem_cache_create("numa_policy",
2720 sizeof(struct mempolicy),
2721 0, SLAB_PANIC, NULL);
2723 sn_cache = kmem_cache_create("shared_policy_node",
2724 sizeof(struct sp_node),
2725 0, SLAB_PANIC, NULL);
2727 for_each_node(nid) {
2728 preferred_node_policy[nid] = (struct mempolicy) {
2729 .refcnt = ATOMIC_INIT(1),
2730 .mode = MPOL_PREFERRED,
2731 .flags = MPOL_F_MOF | MPOL_F_MORON,
2732 .nodes = nodemask_of_node(nid),
2737 * Set interleaving policy for system init. Interleaving is only
2738 * enabled across suitably sized nodes (default is >= 16MB), or
2739 * fall back to the largest node if they're all smaller.
2741 nodes_clear(interleave_nodes);
2742 for_each_node_state(nid, N_MEMORY) {
2743 unsigned long total_pages = node_present_pages(nid);
2745 /* Preserve the largest node */
2746 if (largest < total_pages) {
2747 largest = total_pages;
2751 /* Interleave this node? */
2752 if ((total_pages << PAGE_SHIFT) >= (16 << 20))
2753 node_set(nid, interleave_nodes);
2756 /* All too small, use the largest */
2757 if (unlikely(nodes_empty(interleave_nodes)))
2758 node_set(prefer, interleave_nodes);
2760 if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
2761 pr_err("%s: interleaving failed\n", __func__);
2763 check_numabalancing_enable();
2766 /* Reset policy of current process to default */
2767 void numa_default_policy(void)
2769 do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
2773 * Parse and format mempolicy from/to strings
2776 static const char * const policy_modes[] =
2778 [MPOL_DEFAULT] = "default",
2779 [MPOL_PREFERRED] = "prefer",
2780 [MPOL_BIND] = "bind",
2781 [MPOL_INTERLEAVE] = "interleave",
2782 [MPOL_LOCAL] = "local",
2783 [MPOL_PREFERRED_MANY] = "prefer (many)",
2789 * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option.
2790 * @str: string containing mempolicy to parse
2791 * @mpol: pointer to struct mempolicy pointer, returned on success.
2794 * <mode>[=<flags>][:<nodelist>]
2796 * On success, returns 0, else 1
2798 int mpol_parse_str(char *str, struct mempolicy **mpol)
2800 struct mempolicy *new = NULL;
2801 unsigned short mode_flags;
2803 char *nodelist = strchr(str, ':');
2804 char *flags = strchr(str, '=');
2808 *flags++ = '\0'; /* terminate mode string */
2811 /* NUL-terminate mode or flags string */
2813 if (nodelist_parse(nodelist, nodes))
2815 if (!nodes_subset(nodes, node_states[N_MEMORY]))
2820 mode = match_string(policy_modes, MPOL_MAX, str);
2825 case MPOL_PREFERRED:
2827 * Insist on a nodelist of one node only, although later
2828 * we use first_node(nodes) to grab a single node, so here
2829 * nodelist (or nodes) cannot be empty.
2832 char *rest = nodelist;
2833 while (isdigit(*rest))
2837 if (nodes_empty(nodes))
2841 case MPOL_INTERLEAVE:
2843 * Default to online nodes with memory if no nodelist
2846 nodes = node_states[N_MEMORY];
2850 * Don't allow a nodelist; mpol_new() checks flags
2857 * Insist on a empty nodelist
2862 case MPOL_PREFERRED_MANY:
2865 * Insist on a nodelist
2874 * Currently, we only support two mutually exclusive
2877 if (!strcmp(flags, "static"))
2878 mode_flags |= MPOL_F_STATIC_NODES;
2879 else if (!strcmp(flags, "relative"))
2880 mode_flags |= MPOL_F_RELATIVE_NODES;
2885 new = mpol_new(mode, mode_flags, &nodes);
2890 * Save nodes for mpol_to_str() to show the tmpfs mount options
2891 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo.
2893 if (mode != MPOL_PREFERRED) {
2895 } else if (nodelist) {
2896 nodes_clear(new->nodes);
2897 node_set(first_node(nodes), new->nodes);
2899 new->mode = MPOL_LOCAL;
2903 * Save nodes for contextualization: this will be used to "clone"
2904 * the mempolicy in a specific context [cpuset] at a later time.
2906 new->w.user_nodemask = nodes;
2911 /* Restore string for error message */
2920 #endif /* CONFIG_TMPFS */
2923 * mpol_to_str - format a mempolicy structure for printing
2924 * @buffer: to contain formatted mempolicy string
2925 * @maxlen: length of @buffer
2926 * @pol: pointer to mempolicy to be formatted
2928 * Convert @pol into a string. If @buffer is too short, truncate the string.
2929 * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the
2930 * longest flag, "relative", and to display at least a few node ids.
2932 void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
2935 nodemask_t nodes = NODE_MASK_NONE;
2936 unsigned short mode = MPOL_DEFAULT;
2937 unsigned short flags = 0;
2939 if (pol && pol != &default_policy && !(pol->flags & MPOL_F_MORON)) {
2948 case MPOL_PREFERRED:
2949 case MPOL_PREFERRED_MANY:
2951 case MPOL_INTERLEAVE:
2956 snprintf(p, maxlen, "unknown");
2960 p += snprintf(p, maxlen, "%s", policy_modes[mode]);
2962 if (flags & MPOL_MODE_FLAGS) {
2963 p += snprintf(p, buffer + maxlen - p, "=");
2966 * Currently, the only defined flags are mutually exclusive
2968 if (flags & MPOL_F_STATIC_NODES)
2969 p += snprintf(p, buffer + maxlen - p, "static");
2970 else if (flags & MPOL_F_RELATIVE_NODES)
2971 p += snprintf(p, buffer + maxlen - p, "relative");
2974 if (!nodes_empty(nodes))
2975 p += scnprintf(p, buffer + maxlen - p, ":%*pbl",
2976 nodemask_pr_args(&nodes));
2979 bool numa_demotion_enabled = false;
2982 static ssize_t numa_demotion_enabled_show(struct kobject *kobj,
2983 struct kobj_attribute *attr, char *buf)
2985 return sysfs_emit(buf, "%s\n",
2986 numa_demotion_enabled? "true" : "false");
2989 static ssize_t numa_demotion_enabled_store(struct kobject *kobj,
2990 struct kobj_attribute *attr,
2991 const char *buf, size_t count)
2993 if (!strncmp(buf, "true", 4) || !strncmp(buf, "1", 1))
2994 numa_demotion_enabled = true;
2995 else if (!strncmp(buf, "false", 5) || !strncmp(buf, "0", 1))
2996 numa_demotion_enabled = false;
3003 static struct kobj_attribute numa_demotion_enabled_attr =
3004 __ATTR(demotion_enabled, 0644, numa_demotion_enabled_show,
3005 numa_demotion_enabled_store);
3007 static struct attribute *numa_attrs[] = {
3008 &numa_demotion_enabled_attr.attr,
3012 static const struct attribute_group numa_attr_group = {
3013 .attrs = numa_attrs,
3016 static int __init numa_init_sysfs(void)
3019 struct kobject *numa_kobj;
3021 numa_kobj = kobject_create_and_add("numa", mm_kobj);
3023 pr_err("failed to create numa kobject\n");
3026 err = sysfs_create_group(numa_kobj, &numa_attr_group);
3028 pr_err("failed to register numa group\n");
3034 kobject_put(numa_kobj);
3037 subsys_initcall(numa_init_sysfs);