1 // SPDX-License-Identifier: GPL-2.0-only
3 * Simple NUMA memory policy for the Linux kernel.
5 * Copyright 2003,2004 Andi Kleen, SuSE Labs.
6 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
8 * NUMA policy allows the user to give hints in which node(s) memory should
11 * Support four policies per VMA and per process:
13 * The VMA policy has priority over the process policy for a page fault.
15 * interleave Allocate memory interleaved over a set of nodes,
16 * with normal fallback if it fails.
17 * For VMA based allocations this interleaves based on the
18 * offset into the backing object or offset into the mapping
19 * for anonymous memory. For process policy an process counter
22 * bind Only allocate memory on a specific set of nodes,
24 * FIXME: memory is allocated starting with the first node
25 * to the last. It would be better if bind would truly restrict
26 * the allocation to memory nodes instead
28 * preferred Try a specific node first before normal fallback.
29 * As a special case NUMA_NO_NODE here means do the allocation
30 * on the local CPU. This is normally identical to default,
31 * but useful to set in a VMA when you have a non default
34 * preferred many Try a set of nodes first before normal fallback. This is
35 * similar to preferred without the special case.
37 * default Allocate on the local node first, or when on a VMA
38 * use the process policy. This is what Linux always did
39 * in a NUMA aware kernel and still does by, ahem, default.
41 * The process policy is applied for most non interrupt memory allocations
42 * in that process' context. Interrupts ignore the policies and always
43 * try to allocate on the local CPU. The VMA policy is only applied for memory
44 * allocations for a VMA in the VM.
46 * Currently there are a few corner cases in swapping where the policy
47 * is not applied, but the majority should be handled. When process policy
48 * is used it is not remembered over swap outs/swap ins.
50 * Only the highest zone in the zone hierarchy gets policied. Allocations
51 * requesting a lower zone just use default policy. This implies that
52 * on systems with highmem kernel lowmem allocation don't get policied.
53 * Same with GFP_DMA allocations.
55 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
56 * all users and remembered even when nobody has memory mapped.
60 fix mmap readahead to honour policy and enable policy for any page cache
62 statistics for bigpages
63 global policy for page cache? currently it uses process policy. Requires
65 handle mremap for shared memory (currently ignored for the policy)
67 make bind policy root only? It can trigger oom much faster and the
68 kernel is not always grateful with that.
71 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
73 #include <linux/mempolicy.h>
74 #include <linux/pagewalk.h>
75 #include <linux/highmem.h>
76 #include <linux/hugetlb.h>
77 #include <linux/kernel.h>
78 #include <linux/sched.h>
79 #include <linux/sched/mm.h>
80 #include <linux/sched/numa_balancing.h>
81 #include <linux/sched/task.h>
82 #include <linux/nodemask.h>
83 #include <linux/cpuset.h>
84 #include <linux/slab.h>
85 #include <linux/string.h>
86 #include <linux/export.h>
87 #include <linux/nsproxy.h>
88 #include <linux/interrupt.h>
89 #include <linux/init.h>
90 #include <linux/compat.h>
91 #include <linux/ptrace.h>
92 #include <linux/swap.h>
93 #include <linux/seq_file.h>
94 #include <linux/proc_fs.h>
95 #include <linux/migrate.h>
96 #include <linux/ksm.h>
97 #include <linux/rmap.h>
98 #include <linux/security.h>
99 #include <linux/syscalls.h>
100 #include <linux/ctype.h>
101 #include <linux/mm_inline.h>
102 #include <linux/mmu_notifier.h>
103 #include <linux/printk.h>
104 #include <linux/swapops.h>
106 #include <asm/tlbflush.h>
108 #include <linux/uaccess.h>
110 #include "internal.h"
113 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */
114 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */
116 static struct kmem_cache *policy_cache;
117 static struct kmem_cache *sn_cache;
119 /* Highest zone. An specific allocation for a zone below that is not
121 enum zone_type policy_zone = 0;
124 * run-time system-wide default policy => local allocation
126 static struct mempolicy default_policy = {
127 .refcnt = ATOMIC_INIT(1), /* never free it */
131 static struct mempolicy preferred_node_policy[MAX_NUMNODES];
134 * numa_map_to_online_node - Find closest online node
135 * @node: Node id to start the search
137 * Lookup the next closest node by distance if @nid is not online.
139 * Return: this @node if it is online, otherwise the closest node by distance
141 int numa_map_to_online_node(int node)
143 int min_dist = INT_MAX, dist, n, min_node;
145 if (node == NUMA_NO_NODE || node_online(node))
149 for_each_online_node(n) {
150 dist = node_distance(node, n);
151 if (dist < min_dist) {
159 EXPORT_SYMBOL_GPL(numa_map_to_online_node);
161 struct mempolicy *get_task_policy(struct task_struct *p)
163 struct mempolicy *pol = p->mempolicy;
169 node = numa_node_id();
170 if (node != NUMA_NO_NODE) {
171 pol = &preferred_node_policy[node];
172 /* preferred_node_policy is not initialised early in boot */
177 return &default_policy;
180 static const struct mempolicy_operations {
181 int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
182 void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes);
183 } mpol_ops[MPOL_MAX];
185 static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
187 return pol->flags & MPOL_MODE_FLAGS;
190 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
191 const nodemask_t *rel)
194 nodes_fold(tmp, *orig, nodes_weight(*rel));
195 nodes_onto(*ret, tmp, *rel);
198 static int mpol_new_nodemask(struct mempolicy *pol, const nodemask_t *nodes)
200 if (nodes_empty(*nodes))
206 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
208 if (nodes_empty(*nodes))
211 nodes_clear(pol->nodes);
212 node_set(first_node(*nodes), pol->nodes);
217 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
218 * any, for the new policy. mpol_new() has already validated the nodes
219 * parameter with respect to the policy mode and flags.
221 * Must be called holding task's alloc_lock to protect task's mems_allowed
222 * and mempolicy. May also be called holding the mmap_lock for write.
224 static int mpol_set_nodemask(struct mempolicy *pol,
225 const nodemask_t *nodes, struct nodemask_scratch *nsc)
230 * Default (pol==NULL) resp. local memory policies are not a
231 * subject of any remapping. They also do not need any special
234 if (!pol || pol->mode == MPOL_LOCAL)
238 nodes_and(nsc->mask1,
239 cpuset_current_mems_allowed, node_states[N_MEMORY]);
243 if (pol->flags & MPOL_F_RELATIVE_NODES)
244 mpol_relative_nodemask(&nsc->mask2, nodes, &nsc->mask1);
246 nodes_and(nsc->mask2, *nodes, nsc->mask1);
248 if (mpol_store_user_nodemask(pol))
249 pol->w.user_nodemask = *nodes;
251 pol->w.cpuset_mems_allowed = cpuset_current_mems_allowed;
253 ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
258 * This function just creates a new policy, does some check and simple
259 * initialization. You must invoke mpol_set_nodemask() to set nodes.
261 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
264 struct mempolicy *policy;
266 pr_debug("setting mode %d flags %d nodes[0] %lx\n",
267 mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE);
269 if (mode == MPOL_DEFAULT) {
270 if (nodes && !nodes_empty(*nodes))
271 return ERR_PTR(-EINVAL);
277 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
278 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
279 * All other modes require a valid pointer to a non-empty nodemask.
281 if (mode == MPOL_PREFERRED) {
282 if (nodes_empty(*nodes)) {
283 if (((flags & MPOL_F_STATIC_NODES) ||
284 (flags & MPOL_F_RELATIVE_NODES)))
285 return ERR_PTR(-EINVAL);
289 } else if (mode == MPOL_LOCAL) {
290 if (!nodes_empty(*nodes) ||
291 (flags & MPOL_F_STATIC_NODES) ||
292 (flags & MPOL_F_RELATIVE_NODES))
293 return ERR_PTR(-EINVAL);
294 } else if (nodes_empty(*nodes))
295 return ERR_PTR(-EINVAL);
296 policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
298 return ERR_PTR(-ENOMEM);
299 atomic_set(&policy->refcnt, 1);
301 policy->flags = flags;
302 policy->home_node = NUMA_NO_NODE;
307 /* Slow path of a mpol destructor. */
308 void __mpol_put(struct mempolicy *p)
310 if (!atomic_dec_and_test(&p->refcnt))
312 kmem_cache_free(policy_cache, p);
315 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes)
319 static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes)
323 if (pol->flags & MPOL_F_STATIC_NODES)
324 nodes_and(tmp, pol->w.user_nodemask, *nodes);
325 else if (pol->flags & MPOL_F_RELATIVE_NODES)
326 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
328 nodes_remap(tmp, pol->nodes, pol->w.cpuset_mems_allowed,
330 pol->w.cpuset_mems_allowed = *nodes;
333 if (nodes_empty(tmp))
339 static void mpol_rebind_preferred(struct mempolicy *pol,
340 const nodemask_t *nodes)
342 pol->w.cpuset_mems_allowed = *nodes;
346 * mpol_rebind_policy - Migrate a policy to a different set of nodes
348 * Per-vma policies are protected by mmap_lock. Allocations using per-task
349 * policies are protected by task->mems_allowed_seq to prevent a premature
350 * OOM/allocation failure due to parallel nodemask modification.
352 static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask)
354 if (!pol || pol->mode == MPOL_LOCAL)
356 if (!mpol_store_user_nodemask(pol) &&
357 nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
360 mpol_ops[pol->mode].rebind(pol, newmask);
364 * Wrapper for mpol_rebind_policy() that just requires task
365 * pointer, and updates task mempolicy.
367 * Called with task's alloc_lock held.
370 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new)
372 mpol_rebind_policy(tsk->mempolicy, new);
376 * Rebind each vma in mm to new nodemask.
378 * Call holding a reference to mm. Takes mm->mmap_lock during call.
381 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
383 struct vm_area_struct *vma;
384 VMA_ITERATOR(vmi, mm, 0);
387 for_each_vma(vmi, vma) {
388 vma_start_write(vma);
389 mpol_rebind_policy(vma->vm_policy, new);
391 mmap_write_unlock(mm);
394 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
396 .rebind = mpol_rebind_default,
398 [MPOL_INTERLEAVE] = {
399 .create = mpol_new_nodemask,
400 .rebind = mpol_rebind_nodemask,
403 .create = mpol_new_preferred,
404 .rebind = mpol_rebind_preferred,
407 .create = mpol_new_nodemask,
408 .rebind = mpol_rebind_nodemask,
411 .rebind = mpol_rebind_default,
413 [MPOL_PREFERRED_MANY] = {
414 .create = mpol_new_nodemask,
415 .rebind = mpol_rebind_preferred,
419 static int migrate_folio_add(struct folio *folio, struct list_head *foliolist,
420 unsigned long flags);
423 struct list_head *pagelist;
428 struct vm_area_struct *first;
433 * Check if the folio's nid is in qp->nmask.
435 * If MPOL_MF_INVERT is set in qp->flags, check if the nid is
436 * in the invert of qp->nmask.
438 static inline bool queue_folio_required(struct folio *folio,
439 struct queue_pages *qp)
441 int nid = folio_nid(folio);
442 unsigned long flags = qp->flags;
444 return node_isset(nid, *qp->nmask) == !(flags & MPOL_MF_INVERT);
448 * queue_folios_pmd() has three possible return values:
449 * 0 - folios are placed on the right node or queued successfully, or
450 * special page is met, i.e. zero page, or unmovable page is found
451 * but continue walking (indicated by queue_pages.has_unmovable).
452 * -EIO - is migration entry or only MPOL_MF_STRICT was specified and an
453 * existing folio was already on a node that does not follow the
456 static int queue_folios_pmd(pmd_t *pmd, spinlock_t *ptl, unsigned long addr,
457 unsigned long end, struct mm_walk *walk)
462 struct queue_pages *qp = walk->private;
465 if (unlikely(is_pmd_migration_entry(*pmd))) {
469 folio = pfn_folio(pmd_pfn(*pmd));
470 if (is_huge_zero_page(&folio->page)) {
471 walk->action = ACTION_CONTINUE;
474 if (!queue_folio_required(folio, qp))
478 /* go to folio migration */
479 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
480 if (!vma_migratable(walk->vma) ||
481 migrate_folio_add(folio, qp->pagelist, flags)) {
482 qp->has_unmovable = true;
493 * Scan through pages checking if pages follow certain conditions,
494 * and move them to the pagelist if they do.
496 * queue_folios_pte_range() has three possible return values:
497 * 0 - folios are placed on the right node or queued successfully, or
498 * special page is met, i.e. zero page, or unmovable page is found
499 * but continue walking (indicated by queue_pages.has_unmovable).
500 * -EIO - only MPOL_MF_STRICT was specified and an existing folio was already
501 * on a node that does not follow the policy.
503 static int queue_folios_pte_range(pmd_t *pmd, unsigned long addr,
504 unsigned long end, struct mm_walk *walk)
506 struct vm_area_struct *vma = walk->vma;
508 struct queue_pages *qp = walk->private;
509 unsigned long flags = qp->flags;
510 pte_t *pte, *mapped_pte;
514 ptl = pmd_trans_huge_lock(pmd, vma);
516 return queue_folios_pmd(pmd, ptl, addr, end, walk);
518 mapped_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
520 walk->action = ACTION_AGAIN;
523 for (; addr != end; pte++, addr += PAGE_SIZE) {
524 ptent = ptep_get(pte);
525 if (!pte_present(ptent))
527 folio = vm_normal_folio(vma, addr, ptent);
528 if (!folio || folio_is_zone_device(folio))
531 * vm_normal_folio() filters out zero pages, but there might
532 * still be reserved folios to skip, perhaps in a VDSO.
534 if (folio_test_reserved(folio))
536 if (!queue_folio_required(folio, qp))
538 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
540 * MPOL_MF_STRICT must be specified if we get here.
541 * Continue walking vmas due to MPOL_MF_MOVE* flags.
543 if (!vma_migratable(vma))
544 qp->has_unmovable = true;
547 * Do not abort immediately since there may be
548 * temporary off LRU pages in the range. Still
549 * need migrate other LRU pages.
551 if (migrate_folio_add(folio, qp->pagelist, flags))
552 qp->has_unmovable = true;
556 pte_unmap_unlock(mapped_pte, ptl);
559 return addr != end ? -EIO : 0;
562 static int queue_folios_hugetlb(pte_t *pte, unsigned long hmask,
563 unsigned long addr, unsigned long end,
564 struct mm_walk *walk)
567 #ifdef CONFIG_HUGETLB_PAGE
568 struct queue_pages *qp = walk->private;
569 unsigned long flags = (qp->flags & MPOL_MF_VALID);
574 ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte);
575 entry = huge_ptep_get(pte);
576 if (!pte_present(entry))
578 folio = pfn_folio(pte_pfn(entry));
579 if (!queue_folio_required(folio, qp))
582 if (flags == MPOL_MF_STRICT) {
584 * STRICT alone means only detecting misplaced folio and no
585 * need to further check other vma.
591 if (!vma_migratable(walk->vma)) {
593 * Must be STRICT with MOVE*, otherwise .test_walk() have
594 * stopped walking current vma.
595 * Detecting misplaced folio but allow migrating folios which
598 qp->has_unmovable = true;
603 * With MPOL_MF_MOVE, we try to migrate only unshared folios. If it
604 * is shared it is likely not worth migrating.
606 * To check if the folio is shared, ideally we want to make sure
607 * every page is mapped to the same process. Doing that is very
608 * expensive, so check the estimated mapcount of the folio instead.
610 if (flags & (MPOL_MF_MOVE_ALL) ||
611 (flags & MPOL_MF_MOVE && folio_estimated_sharers(folio) == 1 &&
612 !hugetlb_pmd_shared(pte))) {
613 if (!isolate_hugetlb(folio, qp->pagelist) &&
614 (flags & MPOL_MF_STRICT))
616 * Failed to isolate folio but allow migrating pages
617 * which have been queued.
619 qp->has_unmovable = true;
629 #ifdef CONFIG_NUMA_BALANCING
631 * This is used to mark a range of virtual addresses to be inaccessible.
632 * These are later cleared by a NUMA hinting fault. Depending on these
633 * faults, pages may be migrated for better NUMA placement.
635 * This is assuming that NUMA faults are handled using PROT_NONE. If
636 * an architecture makes a different choice, it will need further
637 * changes to the core.
639 unsigned long change_prot_numa(struct vm_area_struct *vma,
640 unsigned long addr, unsigned long end)
642 struct mmu_gather tlb;
645 tlb_gather_mmu(&tlb, vma->vm_mm);
647 nr_updated = change_protection(&tlb, vma, addr, end, MM_CP_PROT_NUMA);
649 count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated);
651 tlb_finish_mmu(&tlb);
656 static unsigned long change_prot_numa(struct vm_area_struct *vma,
657 unsigned long addr, unsigned long end)
661 #endif /* CONFIG_NUMA_BALANCING */
663 static int queue_pages_test_walk(unsigned long start, unsigned long end,
664 struct mm_walk *walk)
666 struct vm_area_struct *next, *vma = walk->vma;
667 struct queue_pages *qp = walk->private;
668 unsigned long endvma = vma->vm_end;
669 unsigned long flags = qp->flags;
671 /* range check first */
672 VM_BUG_ON_VMA(!range_in_vma(vma, start, end), vma);
676 if (!(flags & MPOL_MF_DISCONTIG_OK) &&
677 (qp->start < vma->vm_start))
678 /* hole at head side of range */
681 next = find_vma(vma->vm_mm, vma->vm_end);
682 if (!(flags & MPOL_MF_DISCONTIG_OK) &&
683 ((vma->vm_end < qp->end) &&
684 (!next || vma->vm_end < next->vm_start)))
685 /* hole at middle or tail of range */
689 * Need check MPOL_MF_STRICT to return -EIO if possible
690 * regardless of vma_migratable
692 if (!vma_migratable(vma) &&
693 !(flags & MPOL_MF_STRICT))
699 if (flags & MPOL_MF_LAZY) {
700 /* Similar to task_numa_work, skip inaccessible VMAs */
701 if (!is_vm_hugetlb_page(vma) && vma_is_accessible(vma) &&
702 !(vma->vm_flags & VM_MIXEDMAP))
703 change_prot_numa(vma, start, endvma);
707 /* queue pages from current vma */
708 if (flags & MPOL_MF_VALID)
713 static const struct mm_walk_ops queue_pages_walk_ops = {
714 .hugetlb_entry = queue_folios_hugetlb,
715 .pmd_entry = queue_folios_pte_range,
716 .test_walk = queue_pages_test_walk,
717 .walk_lock = PGWALK_RDLOCK,
720 static const struct mm_walk_ops queue_pages_lock_vma_walk_ops = {
721 .hugetlb_entry = queue_folios_hugetlb,
722 .pmd_entry = queue_folios_pte_range,
723 .test_walk = queue_pages_test_walk,
724 .walk_lock = PGWALK_WRLOCK,
728 * Walk through page tables and collect pages to be migrated.
730 * If pages found in a given range are on a set of nodes (determined by
731 * @nodes and @flags,) it's isolated and queued to the pagelist which is
732 * passed via @private.
734 * queue_pages_range() has three possible return values:
735 * 1 - there is unmovable page, but MPOL_MF_MOVE* & MPOL_MF_STRICT were
737 * 0 - queue pages successfully or no misplaced page.
738 * errno - i.e. misplaced pages with MPOL_MF_STRICT specified (-EIO) or
739 * memory range specified by nodemask and maxnode points outside
740 * your accessible address space (-EFAULT)
743 queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end,
744 nodemask_t *nodes, unsigned long flags,
745 struct list_head *pagelist, bool lock_vma)
748 struct queue_pages qp = {
749 .pagelist = pagelist,
755 .has_unmovable = false,
757 const struct mm_walk_ops *ops = lock_vma ?
758 &queue_pages_lock_vma_walk_ops : &queue_pages_walk_ops;
760 err = walk_page_range(mm, start, end, ops, &qp);
762 if (qp.has_unmovable)
765 /* whole range in hole */
772 * Apply policy to a single VMA
773 * This must be called with the mmap_lock held for writing.
775 static int vma_replace_policy(struct vm_area_struct *vma,
776 struct mempolicy *pol)
779 struct mempolicy *old;
780 struct mempolicy *new;
782 vma_assert_write_locked(vma);
784 pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
785 vma->vm_start, vma->vm_end, vma->vm_pgoff,
786 vma->vm_ops, vma->vm_file,
787 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
793 if (vma->vm_ops && vma->vm_ops->set_policy) {
794 err = vma->vm_ops->set_policy(vma, new);
799 old = vma->vm_policy;
800 vma->vm_policy = new; /* protected by mmap_lock */
809 /* Split or merge the VMA (if required) and apply the new policy */
810 static int mbind_range(struct vma_iterator *vmi, struct vm_area_struct *vma,
811 struct vm_area_struct **prev, unsigned long start,
812 unsigned long end, struct mempolicy *new_pol)
814 struct vm_area_struct *merged;
815 unsigned long vmstart, vmend;
819 vmend = min(end, vma->vm_end);
820 if (start > vma->vm_start) {
824 vmstart = vma->vm_start;
827 if (mpol_equal(vma_policy(vma), new_pol)) {
832 pgoff = vma->vm_pgoff + ((vmstart - vma->vm_start) >> PAGE_SHIFT);
833 merged = vma_merge(vmi, vma->vm_mm, *prev, vmstart, vmend, vma->vm_flags,
834 vma->anon_vma, vma->vm_file, pgoff, new_pol,
835 vma->vm_userfaultfd_ctx, anon_vma_name(vma));
838 return vma_replace_policy(merged, new_pol);
841 if (vma->vm_start != vmstart) {
842 err = split_vma(vmi, vma, vmstart, 1);
847 if (vma->vm_end != vmend) {
848 err = split_vma(vmi, vma, vmend, 0);
854 return vma_replace_policy(vma, new_pol);
857 /* Set the process memory policy */
858 static long do_set_mempolicy(unsigned short mode, unsigned short flags,
861 struct mempolicy *new, *old;
862 NODEMASK_SCRATCH(scratch);
868 new = mpol_new(mode, flags, nodes);
875 ret = mpol_set_nodemask(new, nodes, scratch);
877 task_unlock(current);
882 old = current->mempolicy;
883 current->mempolicy = new;
884 if (new && new->mode == MPOL_INTERLEAVE)
885 current->il_prev = MAX_NUMNODES-1;
886 task_unlock(current);
890 NODEMASK_SCRATCH_FREE(scratch);
895 * Return nodemask for policy for get_mempolicy() query
897 * Called with task's alloc_lock held
899 static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
902 if (p == &default_policy)
907 case MPOL_INTERLEAVE:
909 case MPOL_PREFERRED_MANY:
913 /* return empty node mask for local allocation */
920 static int lookup_node(struct mm_struct *mm, unsigned long addr)
922 struct page *p = NULL;
925 ret = get_user_pages_fast(addr & PAGE_MASK, 1, 0, &p);
927 ret = page_to_nid(p);
933 /* Retrieve NUMA policy */
934 static long do_get_mempolicy(int *policy, nodemask_t *nmask,
935 unsigned long addr, unsigned long flags)
938 struct mm_struct *mm = current->mm;
939 struct vm_area_struct *vma = NULL;
940 struct mempolicy *pol = current->mempolicy, *pol_refcount = NULL;
943 ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
946 if (flags & MPOL_F_MEMS_ALLOWED) {
947 if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
949 *policy = 0; /* just so it's initialized */
951 *nmask = cpuset_current_mems_allowed;
952 task_unlock(current);
956 if (flags & MPOL_F_ADDR) {
958 * Do NOT fall back to task policy if the
959 * vma/shared policy at addr is NULL. We
960 * want to return MPOL_DEFAULT in this case.
963 vma = vma_lookup(mm, addr);
965 mmap_read_unlock(mm);
968 if (vma->vm_ops && vma->vm_ops->get_policy)
969 pol = vma->vm_ops->get_policy(vma, addr);
971 pol = vma->vm_policy;
976 pol = &default_policy; /* indicates default behavior */
978 if (flags & MPOL_F_NODE) {
979 if (flags & MPOL_F_ADDR) {
981 * Take a refcount on the mpol, because we are about to
982 * drop the mmap_lock, after which only "pol" remains
983 * valid, "vma" is stale.
988 mmap_read_unlock(mm);
989 err = lookup_node(mm, addr);
993 } else if (pol == current->mempolicy &&
994 pol->mode == MPOL_INTERLEAVE) {
995 *policy = next_node_in(current->il_prev, pol->nodes);
1001 *policy = pol == &default_policy ? MPOL_DEFAULT :
1004 * Internal mempolicy flags must be masked off before exposing
1005 * the policy to userspace.
1007 *policy |= (pol->flags & MPOL_MODE_FLAGS);
1012 if (mpol_store_user_nodemask(pol)) {
1013 *nmask = pol->w.user_nodemask;
1016 get_policy_nodemask(pol, nmask);
1017 task_unlock(current);
1024 mmap_read_unlock(mm);
1026 mpol_put(pol_refcount);
1030 #ifdef CONFIG_MIGRATION
1031 static int migrate_folio_add(struct folio *folio, struct list_head *foliolist,
1032 unsigned long flags)
1035 * We try to migrate only unshared folios. If it is shared it
1036 * is likely not worth migrating.
1038 * To check if the folio is shared, ideally we want to make sure
1039 * every page is mapped to the same process. Doing that is very
1040 * expensive, so check the estimated mapcount of the folio instead.
1042 if ((flags & MPOL_MF_MOVE_ALL) || folio_estimated_sharers(folio) == 1) {
1043 if (folio_isolate_lru(folio)) {
1044 list_add_tail(&folio->lru, foliolist);
1045 node_stat_mod_folio(folio,
1046 NR_ISOLATED_ANON + folio_is_file_lru(folio),
1047 folio_nr_pages(folio));
1048 } else if (flags & MPOL_MF_STRICT) {
1050 * Non-movable folio may reach here. And, there may be
1051 * temporary off LRU folios or non-LRU movable folios.
1052 * Treat them as unmovable folios since they can't be
1053 * isolated, so they can't be moved at the moment. It
1054 * should return -EIO for this case too.
1064 * Migrate pages from one node to a target node.
1065 * Returns error or the number of pages not migrated.
1067 static int migrate_to_node(struct mm_struct *mm, int source, int dest,
1071 struct vm_area_struct *vma;
1072 LIST_HEAD(pagelist);
1074 struct migration_target_control mtc = {
1076 .gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE,
1080 node_set(source, nmask);
1083 * This does not "check" the range but isolates all pages that
1084 * need migration. Between passing in the full user address
1085 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail.
1087 vma = find_vma(mm, 0);
1088 VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)));
1089 queue_pages_range(mm, vma->vm_start, mm->task_size, &nmask,
1090 flags | MPOL_MF_DISCONTIG_OK, &pagelist, false);
1092 if (!list_empty(&pagelist)) {
1093 err = migrate_pages(&pagelist, alloc_migration_target, NULL,
1094 (unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL, NULL);
1096 putback_movable_pages(&pagelist);
1103 * Move pages between the two nodesets so as to preserve the physical
1104 * layout as much as possible.
1106 * Returns the number of page that could not be moved.
1108 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1109 const nodemask_t *to, int flags)
1115 lru_cache_disable();
1120 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
1121 * bit in 'to' is not also set in 'tmp'. Clear the found 'source'
1122 * bit in 'tmp', and return that <source, dest> pair for migration.
1123 * The pair of nodemasks 'to' and 'from' define the map.
1125 * If no pair of bits is found that way, fallback to picking some
1126 * pair of 'source' and 'dest' bits that are not the same. If the
1127 * 'source' and 'dest' bits are the same, this represents a node
1128 * that will be migrating to itself, so no pages need move.
1130 * If no bits are left in 'tmp', or if all remaining bits left
1131 * in 'tmp' correspond to the same bit in 'to', return false
1132 * (nothing left to migrate).
1134 * This lets us pick a pair of nodes to migrate between, such that
1135 * if possible the dest node is not already occupied by some other
1136 * source node, minimizing the risk of overloading the memory on a
1137 * node that would happen if we migrated incoming memory to a node
1138 * before migrating outgoing memory source that same node.
1140 * A single scan of tmp is sufficient. As we go, we remember the
1141 * most recent <s, d> pair that moved (s != d). If we find a pair
1142 * that not only moved, but what's better, moved to an empty slot
1143 * (d is not set in tmp), then we break out then, with that pair.
1144 * Otherwise when we finish scanning from_tmp, we at least have the
1145 * most recent <s, d> pair that moved. If we get all the way through
1146 * the scan of tmp without finding any node that moved, much less
1147 * moved to an empty node, then there is nothing left worth migrating.
1151 while (!nodes_empty(tmp)) {
1153 int source = NUMA_NO_NODE;
1156 for_each_node_mask(s, tmp) {
1159 * do_migrate_pages() tries to maintain the relative
1160 * node relationship of the pages established between
1161 * threads and memory areas.
1163 * However if the number of source nodes is not equal to
1164 * the number of destination nodes we can not preserve
1165 * this node relative relationship. In that case, skip
1166 * copying memory from a node that is in the destination
1169 * Example: [2,3,4] -> [3,4,5] moves everything.
1170 * [0-7] - > [3,4,5] moves only 0,1,2,6,7.
1173 if ((nodes_weight(*from) != nodes_weight(*to)) &&
1174 (node_isset(s, *to)))
1177 d = node_remap(s, *from, *to);
1181 source = s; /* Node moved. Memorize */
1184 /* dest not in remaining from nodes? */
1185 if (!node_isset(dest, tmp))
1188 if (source == NUMA_NO_NODE)
1191 node_clear(source, tmp);
1192 err = migrate_to_node(mm, source, dest, flags);
1198 mmap_read_unlock(mm);
1208 * Allocate a new page for page migration based on vma policy.
1209 * Start by assuming the page is mapped by the same vma as contains @start.
1210 * Search forward from there, if not. N.B., this assumes that the
1211 * list of pages handed to migrate_pages()--which is how we get here--
1212 * is in virtual address order.
1214 static struct folio *new_folio(struct folio *src, unsigned long start)
1216 struct vm_area_struct *vma;
1217 unsigned long address;
1218 VMA_ITERATOR(vmi, current->mm, start);
1219 gfp_t gfp = GFP_HIGHUSER_MOVABLE | __GFP_RETRY_MAYFAIL;
1221 for_each_vma(vmi, vma) {
1222 address = page_address_in_vma(&src->page, vma);
1223 if (address != -EFAULT)
1227 if (folio_test_hugetlb(src)) {
1228 return alloc_hugetlb_folio_vma(folio_hstate(src),
1232 if (folio_test_large(src))
1233 gfp = GFP_TRANSHUGE;
1236 * if !vma, vma_alloc_folio() will use task or system default policy
1238 return vma_alloc_folio(gfp, folio_order(src), vma, address,
1239 folio_test_large(src));
1243 static int migrate_folio_add(struct folio *folio, struct list_head *foliolist,
1244 unsigned long flags)
1249 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1250 const nodemask_t *to, int flags)
1255 static struct folio *new_folio(struct folio *src, unsigned long start)
1261 static long do_mbind(unsigned long start, unsigned long len,
1262 unsigned short mode, unsigned short mode_flags,
1263 nodemask_t *nmask, unsigned long flags)
1265 struct mm_struct *mm = current->mm;
1266 struct vm_area_struct *vma, *prev;
1267 struct vma_iterator vmi;
1268 struct mempolicy *new;
1272 LIST_HEAD(pagelist);
1274 if (flags & ~(unsigned long)MPOL_MF_VALID)
1276 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1279 if (start & ~PAGE_MASK)
1282 if (mode == MPOL_DEFAULT)
1283 flags &= ~MPOL_MF_STRICT;
1285 len = PAGE_ALIGN(len);
1293 new = mpol_new(mode, mode_flags, nmask);
1295 return PTR_ERR(new);
1297 if (flags & MPOL_MF_LAZY)
1298 new->flags |= MPOL_F_MOF;
1301 * If we are using the default policy then operation
1302 * on discontinuous address spaces is okay after all
1305 flags |= MPOL_MF_DISCONTIG_OK;
1307 pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1308 start, start + len, mode, mode_flags,
1309 nmask ? nodes_addr(*nmask)[0] : NUMA_NO_NODE);
1311 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
1313 lru_cache_disable();
1316 NODEMASK_SCRATCH(scratch);
1318 mmap_write_lock(mm);
1319 err = mpol_set_nodemask(new, nmask, scratch);
1321 mmap_write_unlock(mm);
1324 NODEMASK_SCRATCH_FREE(scratch);
1330 * Lock the VMAs before scanning for pages to migrate, to ensure we don't
1331 * miss a concurrently inserted page.
1333 ret = queue_pages_range(mm, start, end, nmask,
1334 flags | MPOL_MF_INVERT, &pagelist, true);
1341 vma_iter_init(&vmi, mm, start);
1342 prev = vma_prev(&vmi);
1343 for_each_vma_range(vmi, vma, end) {
1344 err = mbind_range(&vmi, vma, &prev, start, end, new);
1352 if (!list_empty(&pagelist)) {
1353 WARN_ON_ONCE(flags & MPOL_MF_LAZY);
1354 nr_failed = migrate_pages(&pagelist, new_folio, NULL,
1355 start, MIGRATE_SYNC, MR_MEMPOLICY_MBIND, NULL);
1357 putback_movable_pages(&pagelist);
1360 if (((ret > 0) || nr_failed) && (flags & MPOL_MF_STRICT))
1364 if (!list_empty(&pagelist))
1365 putback_movable_pages(&pagelist);
1368 mmap_write_unlock(mm);
1371 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
1377 * User space interface with variable sized bitmaps for nodelists.
1379 static int get_bitmap(unsigned long *mask, const unsigned long __user *nmask,
1380 unsigned long maxnode)
1382 unsigned long nlongs = BITS_TO_LONGS(maxnode);
1385 if (in_compat_syscall())
1386 ret = compat_get_bitmap(mask,
1387 (const compat_ulong_t __user *)nmask,
1390 ret = copy_from_user(mask, nmask,
1391 nlongs * sizeof(unsigned long));
1396 if (maxnode % BITS_PER_LONG)
1397 mask[nlongs - 1] &= (1UL << (maxnode % BITS_PER_LONG)) - 1;
1402 /* Copy a node mask from user space. */
1403 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1404 unsigned long maxnode)
1407 nodes_clear(*nodes);
1408 if (maxnode == 0 || !nmask)
1410 if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1414 * When the user specified more nodes than supported just check
1415 * if the non supported part is all zero, one word at a time,
1416 * starting at the end.
1418 while (maxnode > MAX_NUMNODES) {
1419 unsigned long bits = min_t(unsigned long, maxnode, BITS_PER_LONG);
1422 if (get_bitmap(&t, &nmask[(maxnode - 1) / BITS_PER_LONG], bits))
1425 if (maxnode - bits >= MAX_NUMNODES) {
1428 maxnode = MAX_NUMNODES;
1429 t &= ~((1UL << (MAX_NUMNODES % BITS_PER_LONG)) - 1);
1435 return get_bitmap(nodes_addr(*nodes), nmask, maxnode);
1438 /* Copy a kernel node mask to user space */
1439 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1442 unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1443 unsigned int nbytes = BITS_TO_LONGS(nr_node_ids) * sizeof(long);
1444 bool compat = in_compat_syscall();
1447 nbytes = BITS_TO_COMPAT_LONGS(nr_node_ids) * sizeof(compat_long_t);
1449 if (copy > nbytes) {
1450 if (copy > PAGE_SIZE)
1452 if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1455 maxnode = nr_node_ids;
1459 return compat_put_bitmap((compat_ulong_t __user *)mask,
1460 nodes_addr(*nodes), maxnode);
1462 return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1465 /* Basic parameter sanity check used by both mbind() and set_mempolicy() */
1466 static inline int sanitize_mpol_flags(int *mode, unsigned short *flags)
1468 *flags = *mode & MPOL_MODE_FLAGS;
1469 *mode &= ~MPOL_MODE_FLAGS;
1471 if ((unsigned int)(*mode) >= MPOL_MAX)
1473 if ((*flags & MPOL_F_STATIC_NODES) && (*flags & MPOL_F_RELATIVE_NODES))
1475 if (*flags & MPOL_F_NUMA_BALANCING) {
1476 if (*mode != MPOL_BIND)
1478 *flags |= (MPOL_F_MOF | MPOL_F_MORON);
1483 static long kernel_mbind(unsigned long start, unsigned long len,
1484 unsigned long mode, const unsigned long __user *nmask,
1485 unsigned long maxnode, unsigned int flags)
1487 unsigned short mode_flags;
1492 start = untagged_addr(start);
1493 err = sanitize_mpol_flags(&lmode, &mode_flags);
1497 err = get_nodes(&nodes, nmask, maxnode);
1501 return do_mbind(start, len, lmode, mode_flags, &nodes, flags);
1504 SYSCALL_DEFINE4(set_mempolicy_home_node, unsigned long, start, unsigned long, len,
1505 unsigned long, home_node, unsigned long, flags)
1507 struct mm_struct *mm = current->mm;
1508 struct vm_area_struct *vma, *prev;
1509 struct mempolicy *new, *old;
1512 VMA_ITERATOR(vmi, mm, start);
1514 start = untagged_addr(start);
1515 if (start & ~PAGE_MASK)
1518 * flags is used for future extension if any.
1524 * Check home_node is online to avoid accessing uninitialized
1527 if (home_node >= MAX_NUMNODES || !node_online(home_node))
1530 len = PAGE_ALIGN(len);
1537 mmap_write_lock(mm);
1538 prev = vma_prev(&vmi);
1539 for_each_vma_range(vmi, vma, end) {
1541 * If any vma in the range got policy other than MPOL_BIND
1542 * or MPOL_PREFERRED_MANY we return error. We don't reset
1543 * the home node for vmas we already updated before.
1545 old = vma_policy(vma);
1548 if (old->mode != MPOL_BIND && old->mode != MPOL_PREFERRED_MANY) {
1552 new = mpol_dup(old);
1558 vma_start_write(vma);
1559 new->home_node = home_node;
1560 err = mbind_range(&vmi, vma, &prev, start, end, new);
1565 mmap_write_unlock(mm);
1569 SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1570 unsigned long, mode, const unsigned long __user *, nmask,
1571 unsigned long, maxnode, unsigned int, flags)
1573 return kernel_mbind(start, len, mode, nmask, maxnode, flags);
1576 /* Set the process memory policy */
1577 static long kernel_set_mempolicy(int mode, const unsigned long __user *nmask,
1578 unsigned long maxnode)
1580 unsigned short mode_flags;
1585 err = sanitize_mpol_flags(&lmode, &mode_flags);
1589 err = get_nodes(&nodes, nmask, maxnode);
1593 return do_set_mempolicy(lmode, mode_flags, &nodes);
1596 SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask,
1597 unsigned long, maxnode)
1599 return kernel_set_mempolicy(mode, nmask, maxnode);
1602 static int kernel_migrate_pages(pid_t pid, unsigned long maxnode,
1603 const unsigned long __user *old_nodes,
1604 const unsigned long __user *new_nodes)
1606 struct mm_struct *mm = NULL;
1607 struct task_struct *task;
1608 nodemask_t task_nodes;
1612 NODEMASK_SCRATCH(scratch);
1617 old = &scratch->mask1;
1618 new = &scratch->mask2;
1620 err = get_nodes(old, old_nodes, maxnode);
1624 err = get_nodes(new, new_nodes, maxnode);
1628 /* Find the mm_struct */
1630 task = pid ? find_task_by_vpid(pid) : current;
1636 get_task_struct(task);
1641 * Check if this process has the right to modify the specified process.
1642 * Use the regular "ptrace_may_access()" checks.
1644 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1651 task_nodes = cpuset_mems_allowed(task);
1652 /* Is the user allowed to access the target nodes? */
1653 if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1658 task_nodes = cpuset_mems_allowed(current);
1659 nodes_and(*new, *new, task_nodes);
1660 if (nodes_empty(*new))
1663 err = security_task_movememory(task);
1667 mm = get_task_mm(task);
1668 put_task_struct(task);
1675 err = do_migrate_pages(mm, old, new,
1676 capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1680 NODEMASK_SCRATCH_FREE(scratch);
1685 put_task_struct(task);
1690 SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1691 const unsigned long __user *, old_nodes,
1692 const unsigned long __user *, new_nodes)
1694 return kernel_migrate_pages(pid, maxnode, old_nodes, new_nodes);
1698 /* Retrieve NUMA policy */
1699 static int kernel_get_mempolicy(int __user *policy,
1700 unsigned long __user *nmask,
1701 unsigned long maxnode,
1703 unsigned long flags)
1709 if (nmask != NULL && maxnode < nr_node_ids)
1712 addr = untagged_addr(addr);
1714 err = do_get_mempolicy(&pval, &nodes, addr, flags);
1719 if (policy && put_user(pval, policy))
1723 err = copy_nodes_to_user(nmask, maxnode, &nodes);
1728 SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1729 unsigned long __user *, nmask, unsigned long, maxnode,
1730 unsigned long, addr, unsigned long, flags)
1732 return kernel_get_mempolicy(policy, nmask, maxnode, addr, flags);
1735 bool vma_migratable(struct vm_area_struct *vma)
1737 if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1741 * DAX device mappings require predictable access latency, so avoid
1742 * incurring periodic faults.
1744 if (vma_is_dax(vma))
1747 if (is_vm_hugetlb_page(vma) &&
1748 !hugepage_migration_supported(hstate_vma(vma)))
1752 * Migration allocates pages in the highest zone. If we cannot
1753 * do so then migration (at least from node to node) is not
1757 gfp_zone(mapping_gfp_mask(vma->vm_file->f_mapping))
1763 struct mempolicy *__get_vma_policy(struct vm_area_struct *vma,
1766 struct mempolicy *pol = NULL;
1769 if (vma->vm_ops && vma->vm_ops->get_policy) {
1770 pol = vma->vm_ops->get_policy(vma, addr);
1771 } else if (vma->vm_policy) {
1772 pol = vma->vm_policy;
1775 * shmem_alloc_page() passes MPOL_F_SHARED policy with
1776 * a pseudo vma whose vma->vm_ops=NULL. Take a reference
1777 * count on these policies which will be dropped by
1778 * mpol_cond_put() later
1780 if (mpol_needs_cond_ref(pol))
1789 * get_vma_policy(@vma, @addr)
1790 * @vma: virtual memory area whose policy is sought
1791 * @addr: address in @vma for shared policy lookup
1793 * Returns effective policy for a VMA at specified address.
1794 * Falls back to current->mempolicy or system default policy, as necessary.
1795 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1796 * count--added by the get_policy() vm_op, as appropriate--to protect against
1797 * freeing by another task. It is the caller's responsibility to free the
1798 * extra reference for shared policies.
1800 static struct mempolicy *get_vma_policy(struct vm_area_struct *vma,
1803 struct mempolicy *pol = __get_vma_policy(vma, addr);
1806 pol = get_task_policy(current);
1811 bool vma_policy_mof(struct vm_area_struct *vma)
1813 struct mempolicy *pol;
1815 if (vma->vm_ops && vma->vm_ops->get_policy) {
1818 pol = vma->vm_ops->get_policy(vma, vma->vm_start);
1819 if (pol && (pol->flags & MPOL_F_MOF))
1826 pol = vma->vm_policy;
1828 pol = get_task_policy(current);
1830 return pol->flags & MPOL_F_MOF;
1833 bool apply_policy_zone(struct mempolicy *policy, enum zone_type zone)
1835 enum zone_type dynamic_policy_zone = policy_zone;
1837 BUG_ON(dynamic_policy_zone == ZONE_MOVABLE);
1840 * if policy->nodes has movable memory only,
1841 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only.
1843 * policy->nodes is intersect with node_states[N_MEMORY].
1844 * so if the following test fails, it implies
1845 * policy->nodes has movable memory only.
1847 if (!nodes_intersects(policy->nodes, node_states[N_HIGH_MEMORY]))
1848 dynamic_policy_zone = ZONE_MOVABLE;
1850 return zone >= dynamic_policy_zone;
1854 * Return a nodemask representing a mempolicy for filtering nodes for
1857 nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1859 int mode = policy->mode;
1861 /* Lower zones don't get a nodemask applied for MPOL_BIND */
1862 if (unlikely(mode == MPOL_BIND) &&
1863 apply_policy_zone(policy, gfp_zone(gfp)) &&
1864 cpuset_nodemask_valid_mems_allowed(&policy->nodes))
1865 return &policy->nodes;
1867 if (mode == MPOL_PREFERRED_MANY)
1868 return &policy->nodes;
1874 * Return the preferred node id for 'prefer' mempolicy, and return
1875 * the given id for all other policies.
1877 * policy_node() is always coupled with policy_nodemask(), which
1878 * secures the nodemask limit for 'bind' and 'prefer-many' policy.
1880 static int policy_node(gfp_t gfp, struct mempolicy *policy, int nd)
1882 if (policy->mode == MPOL_PREFERRED) {
1883 nd = first_node(policy->nodes);
1886 * __GFP_THISNODE shouldn't even be used with the bind policy
1887 * because we might easily break the expectation to stay on the
1888 * requested node and not break the policy.
1890 WARN_ON_ONCE(policy->mode == MPOL_BIND && (gfp & __GFP_THISNODE));
1893 if ((policy->mode == MPOL_BIND ||
1894 policy->mode == MPOL_PREFERRED_MANY) &&
1895 policy->home_node != NUMA_NO_NODE)
1896 return policy->home_node;
1901 /* Do dynamic interleaving for a process */
1902 static unsigned interleave_nodes(struct mempolicy *policy)
1905 struct task_struct *me = current;
1907 next = next_node_in(me->il_prev, policy->nodes);
1908 if (next < MAX_NUMNODES)
1914 * Depending on the memory policy provide a node from which to allocate the
1917 unsigned int mempolicy_slab_node(void)
1919 struct mempolicy *policy;
1920 int node = numa_mem_id();
1925 policy = current->mempolicy;
1929 switch (policy->mode) {
1930 case MPOL_PREFERRED:
1931 return first_node(policy->nodes);
1933 case MPOL_INTERLEAVE:
1934 return interleave_nodes(policy);
1937 case MPOL_PREFERRED_MANY:
1942 * Follow bind policy behavior and start allocation at the
1945 struct zonelist *zonelist;
1946 enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1947 zonelist = &NODE_DATA(node)->node_zonelists[ZONELIST_FALLBACK];
1948 z = first_zones_zonelist(zonelist, highest_zoneidx,
1950 return z->zone ? zone_to_nid(z->zone) : node;
1961 * Do static interleaving for a VMA with known offset @n. Returns the n'th
1962 * node in pol->nodes (starting from n=0), wrapping around if n exceeds the
1963 * number of present nodes.
1965 static unsigned offset_il_node(struct mempolicy *pol, unsigned long n)
1967 nodemask_t nodemask = pol->nodes;
1968 unsigned int target, nnodes;
1972 * The barrier will stabilize the nodemask in a register or on
1973 * the stack so that it will stop changing under the code.
1975 * Between first_node() and next_node(), pol->nodes could be changed
1976 * by other threads. So we put pol->nodes in a local stack.
1980 nnodes = nodes_weight(nodemask);
1982 return numa_node_id();
1983 target = (unsigned int)n % nnodes;
1984 nid = first_node(nodemask);
1985 for (i = 0; i < target; i++)
1986 nid = next_node(nid, nodemask);
1990 /* Determine a node number for interleave */
1991 static inline unsigned interleave_nid(struct mempolicy *pol,
1992 struct vm_area_struct *vma, unsigned long addr, int shift)
1998 * for small pages, there is no difference between
1999 * shift and PAGE_SHIFT, so the bit-shift is safe.
2000 * for huge pages, since vm_pgoff is in units of small
2001 * pages, we need to shift off the always 0 bits to get
2004 BUG_ON(shift < PAGE_SHIFT);
2005 off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
2006 off += (addr - vma->vm_start) >> shift;
2007 return offset_il_node(pol, off);
2009 return interleave_nodes(pol);
2012 #ifdef CONFIG_HUGETLBFS
2014 * huge_node(@vma, @addr, @gfp_flags, @mpol)
2015 * @vma: virtual memory area whose policy is sought
2016 * @addr: address in @vma for shared policy lookup and interleave policy
2017 * @gfp_flags: for requested zone
2018 * @mpol: pointer to mempolicy pointer for reference counted mempolicy
2019 * @nodemask: pointer to nodemask pointer for 'bind' and 'prefer-many' policy
2021 * Returns a nid suitable for a huge page allocation and a pointer
2022 * to the struct mempolicy for conditional unref after allocation.
2023 * If the effective policy is 'bind' or 'prefer-many', returns a pointer
2024 * to the mempolicy's @nodemask for filtering the zonelist.
2026 * Must be protected by read_mems_allowed_begin()
2028 int huge_node(struct vm_area_struct *vma, unsigned long addr, gfp_t gfp_flags,
2029 struct mempolicy **mpol, nodemask_t **nodemask)
2034 *mpol = get_vma_policy(vma, addr);
2036 mode = (*mpol)->mode;
2038 if (unlikely(mode == MPOL_INTERLEAVE)) {
2039 nid = interleave_nid(*mpol, vma, addr,
2040 huge_page_shift(hstate_vma(vma)));
2042 nid = policy_node(gfp_flags, *mpol, numa_node_id());
2043 if (mode == MPOL_BIND || mode == MPOL_PREFERRED_MANY)
2044 *nodemask = &(*mpol)->nodes;
2050 * init_nodemask_of_mempolicy
2052 * If the current task's mempolicy is "default" [NULL], return 'false'
2053 * to indicate default policy. Otherwise, extract the policy nodemask
2054 * for 'bind' or 'interleave' policy into the argument nodemask, or
2055 * initialize the argument nodemask to contain the single node for
2056 * 'preferred' or 'local' policy and return 'true' to indicate presence
2057 * of non-default mempolicy.
2059 * We don't bother with reference counting the mempolicy [mpol_get/put]
2060 * because the current task is examining it's own mempolicy and a task's
2061 * mempolicy is only ever changed by the task itself.
2063 * N.B., it is the caller's responsibility to free a returned nodemask.
2065 bool init_nodemask_of_mempolicy(nodemask_t *mask)
2067 struct mempolicy *mempolicy;
2069 if (!(mask && current->mempolicy))
2073 mempolicy = current->mempolicy;
2074 switch (mempolicy->mode) {
2075 case MPOL_PREFERRED:
2076 case MPOL_PREFERRED_MANY:
2078 case MPOL_INTERLEAVE:
2079 *mask = mempolicy->nodes;
2083 init_nodemask_of_node(mask, numa_node_id());
2089 task_unlock(current);
2096 * mempolicy_in_oom_domain
2098 * If tsk's mempolicy is "bind", check for intersection between mask and
2099 * the policy nodemask. Otherwise, return true for all other policies
2100 * including "interleave", as a tsk with "interleave" policy may have
2101 * memory allocated from all nodes in system.
2103 * Takes task_lock(tsk) to prevent freeing of its mempolicy.
2105 bool mempolicy_in_oom_domain(struct task_struct *tsk,
2106 const nodemask_t *mask)
2108 struct mempolicy *mempolicy;
2115 mempolicy = tsk->mempolicy;
2116 if (mempolicy && mempolicy->mode == MPOL_BIND)
2117 ret = nodes_intersects(mempolicy->nodes, *mask);
2123 /* Allocate a page in interleaved policy.
2124 Own path because it needs to do special accounting. */
2125 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
2130 page = __alloc_pages(gfp, order, nid, NULL);
2131 /* skip NUMA_INTERLEAVE_HIT counter update if numa stats is disabled */
2132 if (!static_branch_likely(&vm_numa_stat_key))
2134 if (page && page_to_nid(page) == nid) {
2136 __count_numa_event(page_zone(page), NUMA_INTERLEAVE_HIT);
2142 static struct page *alloc_pages_preferred_many(gfp_t gfp, unsigned int order,
2143 int nid, struct mempolicy *pol)
2146 gfp_t preferred_gfp;
2149 * This is a two pass approach. The first pass will only try the
2150 * preferred nodes but skip the direct reclaim and allow the
2151 * allocation to fail, while the second pass will try all the
2154 preferred_gfp = gfp | __GFP_NOWARN;
2155 preferred_gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2156 page = __alloc_pages(preferred_gfp, order, nid, &pol->nodes);
2158 page = __alloc_pages(gfp, order, nid, NULL);
2164 * vma_alloc_folio - Allocate a folio for a VMA.
2166 * @order: Order of the folio.
2167 * @vma: Pointer to VMA or NULL if not available.
2168 * @addr: Virtual address of the allocation. Must be inside @vma.
2169 * @hugepage: For hugepages try only the preferred node if possible.
2171 * Allocate a folio for a specific address in @vma, using the appropriate
2172 * NUMA policy. When @vma is not NULL the caller must hold the mmap_lock
2173 * of the mm_struct of the VMA to prevent it from going away. Should be
2174 * used for all allocations for folios that will be mapped into user space.
2176 * Return: The folio on success or NULL if allocation fails.
2178 struct folio *vma_alloc_folio(gfp_t gfp, int order, struct vm_area_struct *vma,
2179 unsigned long addr, bool hugepage)
2181 struct mempolicy *pol;
2182 int node = numa_node_id();
2183 struct folio *folio;
2187 pol = get_vma_policy(vma, addr);
2189 if (pol->mode == MPOL_INTERLEAVE) {
2193 nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order);
2196 page = alloc_page_interleave(gfp, order, nid);
2197 folio = (struct folio *)page;
2198 if (folio && order > 1)
2199 folio_prep_large_rmappable(folio);
2203 if (pol->mode == MPOL_PREFERRED_MANY) {
2206 node = policy_node(gfp, pol, node);
2208 page = alloc_pages_preferred_many(gfp, order, node, pol);
2210 folio = (struct folio *)page;
2211 if (folio && order > 1)
2212 folio_prep_large_rmappable(folio);
2216 if (unlikely(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && hugepage)) {
2217 int hpage_node = node;
2220 * For hugepage allocation and non-interleave policy which
2221 * allows the current node (or other explicitly preferred
2222 * node) we only try to allocate from the current/preferred
2223 * node and don't fall back to other nodes, as the cost of
2224 * remote accesses would likely offset THP benefits.
2226 * If the policy is interleave or does not allow the current
2227 * node in its nodemask, we allocate the standard way.
2229 if (pol->mode == MPOL_PREFERRED)
2230 hpage_node = first_node(pol->nodes);
2232 nmask = policy_nodemask(gfp, pol);
2233 if (!nmask || node_isset(hpage_node, *nmask)) {
2236 * First, try to allocate THP only on local node, but
2237 * don't reclaim unnecessarily, just compact.
2239 folio = __folio_alloc_node(gfp | __GFP_THISNODE |
2240 __GFP_NORETRY, order, hpage_node);
2243 * If hugepage allocations are configured to always
2244 * synchronous compact or the vma has been madvised
2245 * to prefer hugepage backing, retry allowing remote
2246 * memory with both reclaim and compact as well.
2248 if (!folio && (gfp & __GFP_DIRECT_RECLAIM))
2249 folio = __folio_alloc(gfp, order, hpage_node,
2256 nmask = policy_nodemask(gfp, pol);
2257 preferred_nid = policy_node(gfp, pol, node);
2258 folio = __folio_alloc(gfp, order, preferred_nid, nmask);
2263 EXPORT_SYMBOL(vma_alloc_folio);
2266 * alloc_pages - Allocate pages.
2268 * @order: Power of two of number of pages to allocate.
2270 * Allocate 1 << @order contiguous pages. The physical address of the
2271 * first page is naturally aligned (eg an order-3 allocation will be aligned
2272 * to a multiple of 8 * PAGE_SIZE bytes). The NUMA policy of the current
2273 * process is honoured when in process context.
2275 * Context: Can be called from any context, providing the appropriate GFP
2277 * Return: The page on success or NULL if allocation fails.
2279 struct page *alloc_pages(gfp_t gfp, unsigned order)
2281 struct mempolicy *pol = &default_policy;
2284 if (!in_interrupt() && !(gfp & __GFP_THISNODE))
2285 pol = get_task_policy(current);
2288 * No reference counting needed for current->mempolicy
2289 * nor system default_policy
2291 if (pol->mode == MPOL_INTERLEAVE)
2292 page = alloc_page_interleave(gfp, order, interleave_nodes(pol));
2293 else if (pol->mode == MPOL_PREFERRED_MANY)
2294 page = alloc_pages_preferred_many(gfp, order,
2295 policy_node(gfp, pol, numa_node_id()), pol);
2297 page = __alloc_pages(gfp, order,
2298 policy_node(gfp, pol, numa_node_id()),
2299 policy_nodemask(gfp, pol));
2303 EXPORT_SYMBOL(alloc_pages);
2305 struct folio *folio_alloc(gfp_t gfp, unsigned order)
2307 struct page *page = alloc_pages(gfp | __GFP_COMP, order);
2308 struct folio *folio = (struct folio *)page;
2310 if (folio && order > 1)
2311 folio_prep_large_rmappable(folio);
2314 EXPORT_SYMBOL(folio_alloc);
2316 static unsigned long alloc_pages_bulk_array_interleave(gfp_t gfp,
2317 struct mempolicy *pol, unsigned long nr_pages,
2318 struct page **page_array)
2321 unsigned long nr_pages_per_node;
2324 unsigned long nr_allocated;
2325 unsigned long total_allocated = 0;
2327 nodes = nodes_weight(pol->nodes);
2328 nr_pages_per_node = nr_pages / nodes;
2329 delta = nr_pages - nodes * nr_pages_per_node;
2331 for (i = 0; i < nodes; i++) {
2333 nr_allocated = __alloc_pages_bulk(gfp,
2334 interleave_nodes(pol), NULL,
2335 nr_pages_per_node + 1, NULL,
2339 nr_allocated = __alloc_pages_bulk(gfp,
2340 interleave_nodes(pol), NULL,
2341 nr_pages_per_node, NULL, page_array);
2344 page_array += nr_allocated;
2345 total_allocated += nr_allocated;
2348 return total_allocated;
2351 static unsigned long alloc_pages_bulk_array_preferred_many(gfp_t gfp, int nid,
2352 struct mempolicy *pol, unsigned long nr_pages,
2353 struct page **page_array)
2355 gfp_t preferred_gfp;
2356 unsigned long nr_allocated = 0;
2358 preferred_gfp = gfp | __GFP_NOWARN;
2359 preferred_gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2361 nr_allocated = __alloc_pages_bulk(preferred_gfp, nid, &pol->nodes,
2362 nr_pages, NULL, page_array);
2364 if (nr_allocated < nr_pages)
2365 nr_allocated += __alloc_pages_bulk(gfp, numa_node_id(), NULL,
2366 nr_pages - nr_allocated, NULL,
2367 page_array + nr_allocated);
2368 return nr_allocated;
2371 /* alloc pages bulk and mempolicy should be considered at the
2372 * same time in some situation such as vmalloc.
2374 * It can accelerate memory allocation especially interleaving
2377 unsigned long alloc_pages_bulk_array_mempolicy(gfp_t gfp,
2378 unsigned long nr_pages, struct page **page_array)
2380 struct mempolicy *pol = &default_policy;
2382 if (!in_interrupt() && !(gfp & __GFP_THISNODE))
2383 pol = get_task_policy(current);
2385 if (pol->mode == MPOL_INTERLEAVE)
2386 return alloc_pages_bulk_array_interleave(gfp, pol,
2387 nr_pages, page_array);
2389 if (pol->mode == MPOL_PREFERRED_MANY)
2390 return alloc_pages_bulk_array_preferred_many(gfp,
2391 numa_node_id(), pol, nr_pages, page_array);
2393 return __alloc_pages_bulk(gfp, policy_node(gfp, pol, numa_node_id()),
2394 policy_nodemask(gfp, pol), nr_pages, NULL,
2398 int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst)
2400 struct mempolicy *pol = mpol_dup(vma_policy(src));
2403 return PTR_ERR(pol);
2404 dst->vm_policy = pol;
2409 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
2410 * rebinds the mempolicy its copying by calling mpol_rebind_policy()
2411 * with the mems_allowed returned by cpuset_mems_allowed(). This
2412 * keeps mempolicies cpuset relative after its cpuset moves. See
2413 * further kernel/cpuset.c update_nodemask().
2415 * current's mempolicy may be rebinded by the other task(the task that changes
2416 * cpuset's mems), so we needn't do rebind work for current task.
2419 /* Slow path of a mempolicy duplicate */
2420 struct mempolicy *__mpol_dup(struct mempolicy *old)
2422 struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2425 return ERR_PTR(-ENOMEM);
2427 /* task's mempolicy is protected by alloc_lock */
2428 if (old == current->mempolicy) {
2431 task_unlock(current);
2435 if (current_cpuset_is_being_rebound()) {
2436 nodemask_t mems = cpuset_mems_allowed(current);
2437 mpol_rebind_policy(new, &mems);
2439 atomic_set(&new->refcnt, 1);
2443 /* Slow path of a mempolicy comparison */
2444 bool __mpol_equal(struct mempolicy *a, struct mempolicy *b)
2448 if (a->mode != b->mode)
2450 if (a->flags != b->flags)
2452 if (a->home_node != b->home_node)
2454 if (mpol_store_user_nodemask(a))
2455 if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
2460 case MPOL_INTERLEAVE:
2461 case MPOL_PREFERRED:
2462 case MPOL_PREFERRED_MANY:
2463 return !!nodes_equal(a->nodes, b->nodes);
2473 * Shared memory backing store policy support.
2475 * Remember policies even when nobody has shared memory mapped.
2476 * The policies are kept in Red-Black tree linked from the inode.
2477 * They are protected by the sp->lock rwlock, which should be held
2478 * for any accesses to the tree.
2482 * lookup first element intersecting start-end. Caller holds sp->lock for
2483 * reading or for writing
2485 static struct sp_node *
2486 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
2488 struct rb_node *n = sp->root.rb_node;
2491 struct sp_node *p = rb_entry(n, struct sp_node, nd);
2493 if (start >= p->end)
2495 else if (end <= p->start)
2503 struct sp_node *w = NULL;
2504 struct rb_node *prev = rb_prev(n);
2507 w = rb_entry(prev, struct sp_node, nd);
2508 if (w->end <= start)
2512 return rb_entry(n, struct sp_node, nd);
2516 * Insert a new shared policy into the list. Caller holds sp->lock for
2519 static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2521 struct rb_node **p = &sp->root.rb_node;
2522 struct rb_node *parent = NULL;
2527 nd = rb_entry(parent, struct sp_node, nd);
2528 if (new->start < nd->start)
2530 else if (new->end > nd->end)
2531 p = &(*p)->rb_right;
2535 rb_link_node(&new->nd, parent, p);
2536 rb_insert_color(&new->nd, &sp->root);
2537 pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
2538 new->policy ? new->policy->mode : 0);
2541 /* Find shared policy intersecting idx */
2543 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
2545 struct mempolicy *pol = NULL;
2548 if (!sp->root.rb_node)
2550 read_lock(&sp->lock);
2551 sn = sp_lookup(sp, idx, idx+1);
2553 mpol_get(sn->policy);
2556 read_unlock(&sp->lock);
2560 static void sp_free(struct sp_node *n)
2562 mpol_put(n->policy);
2563 kmem_cache_free(sn_cache, n);
2567 * mpol_misplaced - check whether current page node is valid in policy
2569 * @page: page to be checked
2570 * @vma: vm area where page mapped
2571 * @addr: virtual address where page mapped
2573 * Lookup current policy node id for vma,addr and "compare to" page's
2574 * node id. Policy determination "mimics" alloc_page_vma().
2575 * Called from fault path where we know the vma and faulting address.
2577 * Return: NUMA_NO_NODE if the page is in a node that is valid for this
2578 * policy, or a suitable node ID to allocate a replacement page from.
2580 int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr)
2582 struct mempolicy *pol;
2584 int curnid = page_to_nid(page);
2585 unsigned long pgoff;
2586 int thiscpu = raw_smp_processor_id();
2587 int thisnid = cpu_to_node(thiscpu);
2588 int polnid = NUMA_NO_NODE;
2589 int ret = NUMA_NO_NODE;
2591 pol = get_vma_policy(vma, addr);
2592 if (!(pol->flags & MPOL_F_MOF))
2595 switch (pol->mode) {
2596 case MPOL_INTERLEAVE:
2597 pgoff = vma->vm_pgoff;
2598 pgoff += (addr - vma->vm_start) >> PAGE_SHIFT;
2599 polnid = offset_il_node(pol, pgoff);
2602 case MPOL_PREFERRED:
2603 if (node_isset(curnid, pol->nodes))
2605 polnid = first_node(pol->nodes);
2609 polnid = numa_node_id();
2613 /* Optimize placement among multiple nodes via NUMA balancing */
2614 if (pol->flags & MPOL_F_MORON) {
2615 if (node_isset(thisnid, pol->nodes))
2621 case MPOL_PREFERRED_MANY:
2623 * use current page if in policy nodemask,
2624 * else select nearest allowed node, if any.
2625 * If no allowed nodes, use current [!misplaced].
2627 if (node_isset(curnid, pol->nodes))
2629 z = first_zones_zonelist(
2630 node_zonelist(numa_node_id(), GFP_HIGHUSER),
2631 gfp_zone(GFP_HIGHUSER),
2633 polnid = zone_to_nid(z->zone);
2640 /* Migrate the page towards the node whose CPU is referencing it */
2641 if (pol->flags & MPOL_F_MORON) {
2644 if (!should_numa_migrate_memory(current, page, curnid, thiscpu))
2648 if (curnid != polnid)
2657 * Drop the (possibly final) reference to task->mempolicy. It needs to be
2658 * dropped after task->mempolicy is set to NULL so that any allocation done as
2659 * part of its kmem_cache_free(), such as by KASAN, doesn't reference a freed
2662 void mpol_put_task_policy(struct task_struct *task)
2664 struct mempolicy *pol;
2667 pol = task->mempolicy;
2668 task->mempolicy = NULL;
2673 static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2675 pr_debug("deleting %lx-l%lx\n", n->start, n->end);
2676 rb_erase(&n->nd, &sp->root);
2680 static void sp_node_init(struct sp_node *node, unsigned long start,
2681 unsigned long end, struct mempolicy *pol)
2683 node->start = start;
2688 static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2689 struct mempolicy *pol)
2692 struct mempolicy *newpol;
2694 n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2698 newpol = mpol_dup(pol);
2699 if (IS_ERR(newpol)) {
2700 kmem_cache_free(sn_cache, n);
2703 newpol->flags |= MPOL_F_SHARED;
2704 sp_node_init(n, start, end, newpol);
2709 /* Replace a policy range. */
2710 static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
2711 unsigned long end, struct sp_node *new)
2714 struct sp_node *n_new = NULL;
2715 struct mempolicy *mpol_new = NULL;
2719 write_lock(&sp->lock);
2720 n = sp_lookup(sp, start, end);
2721 /* Take care of old policies in the same range. */
2722 while (n && n->start < end) {
2723 struct rb_node *next = rb_next(&n->nd);
2724 if (n->start >= start) {
2730 /* Old policy spanning whole new range. */
2735 *mpol_new = *n->policy;
2736 atomic_set(&mpol_new->refcnt, 1);
2737 sp_node_init(n_new, end, n->end, mpol_new);
2739 sp_insert(sp, n_new);
2748 n = rb_entry(next, struct sp_node, nd);
2752 write_unlock(&sp->lock);
2759 kmem_cache_free(sn_cache, n_new);
2764 write_unlock(&sp->lock);
2766 n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2769 mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2772 atomic_set(&mpol_new->refcnt, 1);
2777 * mpol_shared_policy_init - initialize shared policy for inode
2778 * @sp: pointer to inode shared policy
2779 * @mpol: struct mempolicy to install
2781 * Install non-NULL @mpol in inode's shared policy rb-tree.
2782 * On entry, the current task has a reference on a non-NULL @mpol.
2783 * This must be released on exit.
2784 * This is called at get_inode() calls and we can use GFP_KERNEL.
2786 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2790 sp->root = RB_ROOT; /* empty tree == default mempolicy */
2791 rwlock_init(&sp->lock);
2794 struct vm_area_struct pvma;
2795 struct mempolicy *new;
2796 NODEMASK_SCRATCH(scratch);
2800 /* contextualize the tmpfs mount point mempolicy */
2801 new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2803 goto free_scratch; /* no valid nodemask intersection */
2806 ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch);
2807 task_unlock(current);
2811 /* Create pseudo-vma that contains just the policy */
2812 vma_init(&pvma, NULL);
2813 pvma.vm_end = TASK_SIZE; /* policy covers entire file */
2814 mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
2817 mpol_put(new); /* drop initial ref */
2819 NODEMASK_SCRATCH_FREE(scratch);
2821 mpol_put(mpol); /* drop our incoming ref on sb mpol */
2825 int mpol_set_shared_policy(struct shared_policy *info,
2826 struct vm_area_struct *vma, struct mempolicy *npol)
2829 struct sp_node *new = NULL;
2830 unsigned long sz = vma_pages(vma);
2832 pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2834 sz, npol ? npol->mode : -1,
2835 npol ? npol->flags : -1,
2836 npol ? nodes_addr(npol->nodes)[0] : NUMA_NO_NODE);
2839 new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
2843 err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
2849 /* Free a backing policy store on inode delete. */
2850 void mpol_free_shared_policy(struct shared_policy *p)
2853 struct rb_node *next;
2855 if (!p->root.rb_node)
2857 write_lock(&p->lock);
2858 next = rb_first(&p->root);
2860 n = rb_entry(next, struct sp_node, nd);
2861 next = rb_next(&n->nd);
2864 write_unlock(&p->lock);
2867 #ifdef CONFIG_NUMA_BALANCING
2868 static int __initdata numabalancing_override;
2870 static void __init check_numabalancing_enable(void)
2872 bool numabalancing_default = false;
2874 if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED))
2875 numabalancing_default = true;
2877 /* Parsed by setup_numabalancing. override == 1 enables, -1 disables */
2878 if (numabalancing_override)
2879 set_numabalancing_state(numabalancing_override == 1);
2881 if (num_online_nodes() > 1 && !numabalancing_override) {
2882 pr_info("%s automatic NUMA balancing. Configure with numa_balancing= or the kernel.numa_balancing sysctl\n",
2883 numabalancing_default ? "Enabling" : "Disabling");
2884 set_numabalancing_state(numabalancing_default);
2888 static int __init setup_numabalancing(char *str)
2894 if (!strcmp(str, "enable")) {
2895 numabalancing_override = 1;
2897 } else if (!strcmp(str, "disable")) {
2898 numabalancing_override = -1;
2903 pr_warn("Unable to parse numa_balancing=\n");
2907 __setup("numa_balancing=", setup_numabalancing);
2909 static inline void __init check_numabalancing_enable(void)
2912 #endif /* CONFIG_NUMA_BALANCING */
2914 /* assumes fs == KERNEL_DS */
2915 void __init numa_policy_init(void)
2917 nodemask_t interleave_nodes;
2918 unsigned long largest = 0;
2919 int nid, prefer = 0;
2921 policy_cache = kmem_cache_create("numa_policy",
2922 sizeof(struct mempolicy),
2923 0, SLAB_PANIC, NULL);
2925 sn_cache = kmem_cache_create("shared_policy_node",
2926 sizeof(struct sp_node),
2927 0, SLAB_PANIC, NULL);
2929 for_each_node(nid) {
2930 preferred_node_policy[nid] = (struct mempolicy) {
2931 .refcnt = ATOMIC_INIT(1),
2932 .mode = MPOL_PREFERRED,
2933 .flags = MPOL_F_MOF | MPOL_F_MORON,
2934 .nodes = nodemask_of_node(nid),
2939 * Set interleaving policy for system init. Interleaving is only
2940 * enabled across suitably sized nodes (default is >= 16MB), or
2941 * fall back to the largest node if they're all smaller.
2943 nodes_clear(interleave_nodes);
2944 for_each_node_state(nid, N_MEMORY) {
2945 unsigned long total_pages = node_present_pages(nid);
2947 /* Preserve the largest node */
2948 if (largest < total_pages) {
2949 largest = total_pages;
2953 /* Interleave this node? */
2954 if ((total_pages << PAGE_SHIFT) >= (16 << 20))
2955 node_set(nid, interleave_nodes);
2958 /* All too small, use the largest */
2959 if (unlikely(nodes_empty(interleave_nodes)))
2960 node_set(prefer, interleave_nodes);
2962 if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
2963 pr_err("%s: interleaving failed\n", __func__);
2965 check_numabalancing_enable();
2968 /* Reset policy of current process to default */
2969 void numa_default_policy(void)
2971 do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
2975 * Parse and format mempolicy from/to strings
2978 static const char * const policy_modes[] =
2980 [MPOL_DEFAULT] = "default",
2981 [MPOL_PREFERRED] = "prefer",
2982 [MPOL_BIND] = "bind",
2983 [MPOL_INTERLEAVE] = "interleave",
2984 [MPOL_LOCAL] = "local",
2985 [MPOL_PREFERRED_MANY] = "prefer (many)",
2991 * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option.
2992 * @str: string containing mempolicy to parse
2993 * @mpol: pointer to struct mempolicy pointer, returned on success.
2996 * <mode>[=<flags>][:<nodelist>]
2998 * Return: %0 on success, else %1
3000 int mpol_parse_str(char *str, struct mempolicy **mpol)
3002 struct mempolicy *new = NULL;
3003 unsigned short mode_flags;
3005 char *nodelist = strchr(str, ':');
3006 char *flags = strchr(str, '=');
3010 *flags++ = '\0'; /* terminate mode string */
3013 /* NUL-terminate mode or flags string */
3015 if (nodelist_parse(nodelist, nodes))
3017 if (!nodes_subset(nodes, node_states[N_MEMORY]))
3022 mode = match_string(policy_modes, MPOL_MAX, str);
3027 case MPOL_PREFERRED:
3029 * Insist on a nodelist of one node only, although later
3030 * we use first_node(nodes) to grab a single node, so here
3031 * nodelist (or nodes) cannot be empty.
3034 char *rest = nodelist;
3035 while (isdigit(*rest))
3039 if (nodes_empty(nodes))
3043 case MPOL_INTERLEAVE:
3045 * Default to online nodes with memory if no nodelist
3048 nodes = node_states[N_MEMORY];
3052 * Don't allow a nodelist; mpol_new() checks flags
3059 * Insist on a empty nodelist
3064 case MPOL_PREFERRED_MANY:
3067 * Insist on a nodelist
3076 * Currently, we only support two mutually exclusive
3079 if (!strcmp(flags, "static"))
3080 mode_flags |= MPOL_F_STATIC_NODES;
3081 else if (!strcmp(flags, "relative"))
3082 mode_flags |= MPOL_F_RELATIVE_NODES;
3087 new = mpol_new(mode, mode_flags, &nodes);
3092 * Save nodes for mpol_to_str() to show the tmpfs mount options
3093 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo.
3095 if (mode != MPOL_PREFERRED) {
3097 } else if (nodelist) {
3098 nodes_clear(new->nodes);
3099 node_set(first_node(nodes), new->nodes);
3101 new->mode = MPOL_LOCAL;
3105 * Save nodes for contextualization: this will be used to "clone"
3106 * the mempolicy in a specific context [cpuset] at a later time.
3108 new->w.user_nodemask = nodes;
3113 /* Restore string for error message */
3122 #endif /* CONFIG_TMPFS */
3125 * mpol_to_str - format a mempolicy structure for printing
3126 * @buffer: to contain formatted mempolicy string
3127 * @maxlen: length of @buffer
3128 * @pol: pointer to mempolicy to be formatted
3130 * Convert @pol into a string. If @buffer is too short, truncate the string.
3131 * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the
3132 * longest flag, "relative", and to display at least a few node ids.
3134 void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
3137 nodemask_t nodes = NODE_MASK_NONE;
3138 unsigned short mode = MPOL_DEFAULT;
3139 unsigned short flags = 0;
3141 if (pol && pol != &default_policy && !(pol->flags & MPOL_F_MORON)) {
3150 case MPOL_PREFERRED:
3151 case MPOL_PREFERRED_MANY:
3153 case MPOL_INTERLEAVE:
3158 snprintf(p, maxlen, "unknown");
3162 p += snprintf(p, maxlen, "%s", policy_modes[mode]);
3164 if (flags & MPOL_MODE_FLAGS) {
3165 p += snprintf(p, buffer + maxlen - p, "=");
3168 * Currently, the only defined flags are mutually exclusive
3170 if (flags & MPOL_F_STATIC_NODES)
3171 p += snprintf(p, buffer + maxlen - p, "static");
3172 else if (flags & MPOL_F_RELATIVE_NODES)
3173 p += snprintf(p, buffer + maxlen - p, "relative");
3176 if (!nodes_empty(nodes))
3177 p += scnprintf(p, buffer + maxlen - p, ":%*pbl",
3178 nodemask_pr_args(&nodes));