2 * Simple NUMA memory policy for the Linux kernel.
4 * Copyright 2003,2004 Andi Kleen, SuSE Labs.
5 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
6 * Subject to the GNU Public License, version 2.
8 * NUMA policy allows the user to give hints in which node(s) memory should
11 * Support four policies per VMA and per process:
13 * The VMA policy has priority over the process policy for a page fault.
15 * interleave Allocate memory interleaved over a set of nodes,
16 * with normal fallback if it fails.
17 * For VMA based allocations this interleaves based on the
18 * offset into the backing object or offset into the mapping
19 * for anonymous memory. For process policy an process counter
22 * bind Only allocate memory on a specific set of nodes,
24 * FIXME: memory is allocated starting with the first node
25 * to the last. It would be better if bind would truly restrict
26 * the allocation to memory nodes instead
28 * preferred Try a specific node first before normal fallback.
29 * As a special case node -1 here means do the allocation
30 * on the local CPU. This is normally identical to default,
31 * but useful to set in a VMA when you have a non default
34 * default Allocate on the local node first, or when on a VMA
35 * use the process policy. This is what Linux always did
36 * in a NUMA aware kernel and still does by, ahem, default.
38 * The process policy is applied for most non interrupt memory allocations
39 * in that process' context. Interrupts ignore the policies and always
40 * try to allocate on the local CPU. The VMA policy is only applied for memory
41 * allocations for a VMA in the VM.
43 * Currently there are a few corner cases in swapping where the policy
44 * is not applied, but the majority should be handled. When process policy
45 * is used it is not remembered over swap outs/swap ins.
47 * Only the highest zone in the zone hierarchy gets policied. Allocations
48 * requesting a lower zone just use default policy. This implies that
49 * on systems with highmem kernel lowmem allocation don't get policied.
50 * Same with GFP_DMA allocations.
52 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
53 * all users and remembered even when nobody has memory mapped.
57 fix mmap readahead to honour policy and enable policy for any page cache
59 statistics for bigpages
60 global policy for page cache? currently it uses process policy. Requires
62 handle mremap for shared memory (currently ignored for the policy)
64 make bind policy root only? It can trigger oom much faster and the
65 kernel is not always grateful with that.
68 #include <linux/mempolicy.h>
70 #include <linux/highmem.h>
71 #include <linux/hugetlb.h>
72 #include <linux/kernel.h>
73 #include <linux/sched.h>
74 #include <linux/nodemask.h>
75 #include <linux/cpuset.h>
76 #include <linux/slab.h>
77 #include <linux/string.h>
78 #include <linux/export.h>
79 #include <linux/nsproxy.h>
80 #include <linux/interrupt.h>
81 #include <linux/init.h>
82 #include <linux/compat.h>
83 #include <linux/swap.h>
84 #include <linux/seq_file.h>
85 #include <linux/proc_fs.h>
86 #include <linux/migrate.h>
87 #include <linux/ksm.h>
88 #include <linux/rmap.h>
89 #include <linux/security.h>
90 #include <linux/syscalls.h>
91 #include <linux/ctype.h>
92 #include <linux/mm_inline.h>
94 #include <asm/tlbflush.h>
95 #include <asm/uaccess.h>
96 #include <linux/random.h>
101 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */
102 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */
104 static struct kmem_cache *policy_cache;
105 static struct kmem_cache *sn_cache;
107 /* Highest zone. An specific allocation for a zone below that is not
109 enum zone_type policy_zone = 0;
112 * run-time system-wide default policy => local allocation
114 static struct mempolicy default_policy = {
115 .refcnt = ATOMIC_INIT(1), /* never free it */
116 .mode = MPOL_PREFERRED,
117 .flags = MPOL_F_LOCAL,
120 static const struct mempolicy_operations {
121 int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
123 * If read-side task has no lock to protect task->mempolicy, write-side
124 * task will rebind the task->mempolicy by two step. The first step is
125 * setting all the newly nodes, and the second step is cleaning all the
126 * disallowed nodes. In this way, we can avoid finding no node to alloc
128 * If we have a lock to protect task->mempolicy in read-side, we do
132 * MPOL_REBIND_ONCE - do rebind work at once
133 * MPOL_REBIND_STEP1 - set all the newly nodes
134 * MPOL_REBIND_STEP2 - clean all the disallowed nodes
136 void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes,
137 enum mpol_rebind_step step);
138 } mpol_ops[MPOL_MAX];
140 /* Check that the nodemask contains at least one populated zone */
141 static int is_valid_nodemask(const nodemask_t *nodemask)
145 for_each_node_mask(nd, *nodemask) {
148 for (k = 0; k <= policy_zone; k++) {
149 z = &NODE_DATA(nd)->node_zones[k];
150 if (z->present_pages > 0)
158 static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
160 return pol->flags & MPOL_MODE_FLAGS;
163 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
164 const nodemask_t *rel)
167 nodes_fold(tmp, *orig, nodes_weight(*rel));
168 nodes_onto(*ret, tmp, *rel);
171 static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes)
173 if (nodes_empty(*nodes))
175 pol->v.nodes = *nodes;
179 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
182 pol->flags |= MPOL_F_LOCAL; /* local allocation */
183 else if (nodes_empty(*nodes))
184 return -EINVAL; /* no allowed nodes */
186 pol->v.preferred_node = first_node(*nodes);
190 static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes)
192 if (!is_valid_nodemask(nodes))
194 pol->v.nodes = *nodes;
199 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
200 * any, for the new policy. mpol_new() has already validated the nodes
201 * parameter with respect to the policy mode and flags. But, we need to
202 * handle an empty nodemask with MPOL_PREFERRED here.
204 * Must be called holding task's alloc_lock to protect task's mems_allowed
205 * and mempolicy. May also be called holding the mmap_semaphore for write.
207 static int mpol_set_nodemask(struct mempolicy *pol,
208 const nodemask_t *nodes, struct nodemask_scratch *nsc)
212 /* if mode is MPOL_DEFAULT, pol is NULL. This is right. */
215 /* Check N_HIGH_MEMORY */
216 nodes_and(nsc->mask1,
217 cpuset_current_mems_allowed, node_states[N_HIGH_MEMORY]);
220 if (pol->mode == MPOL_PREFERRED && nodes_empty(*nodes))
221 nodes = NULL; /* explicit local allocation */
223 if (pol->flags & MPOL_F_RELATIVE_NODES)
224 mpol_relative_nodemask(&nsc->mask2, nodes,&nsc->mask1);
226 nodes_and(nsc->mask2, *nodes, nsc->mask1);
228 if (mpol_store_user_nodemask(pol))
229 pol->w.user_nodemask = *nodes;
231 pol->w.cpuset_mems_allowed =
232 cpuset_current_mems_allowed;
236 ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
238 ret = mpol_ops[pol->mode].create(pol, NULL);
243 * This function just creates a new policy, does some check and simple
244 * initialization. You must invoke mpol_set_nodemask() to set nodes.
246 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
249 struct mempolicy *policy;
251 pr_debug("setting mode %d flags %d nodes[0] %lx\n",
252 mode, flags, nodes ? nodes_addr(*nodes)[0] : -1);
254 if (mode == MPOL_DEFAULT) {
255 if (nodes && !nodes_empty(*nodes))
256 return ERR_PTR(-EINVAL);
257 return NULL; /* simply delete any existing policy */
262 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
263 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
264 * All other modes require a valid pointer to a non-empty nodemask.
266 if (mode == MPOL_PREFERRED) {
267 if (nodes_empty(*nodes)) {
268 if (((flags & MPOL_F_STATIC_NODES) ||
269 (flags & MPOL_F_RELATIVE_NODES)))
270 return ERR_PTR(-EINVAL);
272 } else if (nodes_empty(*nodes))
273 return ERR_PTR(-EINVAL);
274 policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
276 return ERR_PTR(-ENOMEM);
277 atomic_set(&policy->refcnt, 1);
279 policy->flags = flags;
284 /* Slow path of a mpol destructor. */
285 void __mpol_put(struct mempolicy *p)
287 if (!atomic_dec_and_test(&p->refcnt))
289 kmem_cache_free(policy_cache, p);
292 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes,
293 enum mpol_rebind_step step)
299 * MPOL_REBIND_ONCE - do rebind work at once
300 * MPOL_REBIND_STEP1 - set all the newly nodes
301 * MPOL_REBIND_STEP2 - clean all the disallowed nodes
303 static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes,
304 enum mpol_rebind_step step)
308 if (pol->flags & MPOL_F_STATIC_NODES)
309 nodes_and(tmp, pol->w.user_nodemask, *nodes);
310 else if (pol->flags & MPOL_F_RELATIVE_NODES)
311 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
314 * if step == 1, we use ->w.cpuset_mems_allowed to cache the
317 if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP1) {
318 nodes_remap(tmp, pol->v.nodes,
319 pol->w.cpuset_mems_allowed, *nodes);
320 pol->w.cpuset_mems_allowed = step ? tmp : *nodes;
321 } else if (step == MPOL_REBIND_STEP2) {
322 tmp = pol->w.cpuset_mems_allowed;
323 pol->w.cpuset_mems_allowed = *nodes;
328 if (nodes_empty(tmp))
331 if (step == MPOL_REBIND_STEP1)
332 nodes_or(pol->v.nodes, pol->v.nodes, tmp);
333 else if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP2)
338 if (!node_isset(current->il_next, tmp)) {
339 current->il_next = next_node(current->il_next, tmp);
340 if (current->il_next >= MAX_NUMNODES)
341 current->il_next = first_node(tmp);
342 if (current->il_next >= MAX_NUMNODES)
343 current->il_next = numa_node_id();
347 static void mpol_rebind_preferred(struct mempolicy *pol,
348 const nodemask_t *nodes,
349 enum mpol_rebind_step step)
353 if (pol->flags & MPOL_F_STATIC_NODES) {
354 int node = first_node(pol->w.user_nodemask);
356 if (node_isset(node, *nodes)) {
357 pol->v.preferred_node = node;
358 pol->flags &= ~MPOL_F_LOCAL;
360 pol->flags |= MPOL_F_LOCAL;
361 } else if (pol->flags & MPOL_F_RELATIVE_NODES) {
362 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
363 pol->v.preferred_node = first_node(tmp);
364 } else if (!(pol->flags & MPOL_F_LOCAL)) {
365 pol->v.preferred_node = node_remap(pol->v.preferred_node,
366 pol->w.cpuset_mems_allowed,
368 pol->w.cpuset_mems_allowed = *nodes;
373 * mpol_rebind_policy - Migrate a policy to a different set of nodes
375 * If read-side task has no lock to protect task->mempolicy, write-side
376 * task will rebind the task->mempolicy by two step. The first step is
377 * setting all the newly nodes, and the second step is cleaning all the
378 * disallowed nodes. In this way, we can avoid finding no node to alloc
380 * If we have a lock to protect task->mempolicy in read-side, we do
384 * MPOL_REBIND_ONCE - do rebind work at once
385 * MPOL_REBIND_STEP1 - set all the newly nodes
386 * MPOL_REBIND_STEP2 - clean all the disallowed nodes
388 static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask,
389 enum mpol_rebind_step step)
393 if (!mpol_store_user_nodemask(pol) && step == 0 &&
394 nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
397 if (step == MPOL_REBIND_STEP1 && (pol->flags & MPOL_F_REBINDING))
400 if (step == MPOL_REBIND_STEP2 && !(pol->flags & MPOL_F_REBINDING))
403 if (step == MPOL_REBIND_STEP1)
404 pol->flags |= MPOL_F_REBINDING;
405 else if (step == MPOL_REBIND_STEP2)
406 pol->flags &= ~MPOL_F_REBINDING;
407 else if (step >= MPOL_REBIND_NSTEP)
410 mpol_ops[pol->mode].rebind(pol, newmask, step);
414 * Wrapper for mpol_rebind_policy() that just requires task
415 * pointer, and updates task mempolicy.
417 * Called with task's alloc_lock held.
420 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new,
421 enum mpol_rebind_step step)
423 mpol_rebind_policy(tsk->mempolicy, new, step);
427 * Rebind each vma in mm to new nodemask.
429 * Call holding a reference to mm. Takes mm->mmap_sem during call.
432 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
434 struct vm_area_struct *vma;
436 down_write(&mm->mmap_sem);
437 for (vma = mm->mmap; vma; vma = vma->vm_next)
438 mpol_rebind_policy(vma->vm_policy, new, MPOL_REBIND_ONCE);
439 up_write(&mm->mmap_sem);
442 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
444 .rebind = mpol_rebind_default,
446 [MPOL_INTERLEAVE] = {
447 .create = mpol_new_interleave,
448 .rebind = mpol_rebind_nodemask,
451 .create = mpol_new_preferred,
452 .rebind = mpol_rebind_preferred,
455 .create = mpol_new_bind,
456 .rebind = mpol_rebind_nodemask,
460 static void migrate_page_add(struct page *page, struct list_head *pagelist,
461 unsigned long flags);
463 /* Scan through pages checking if pages follow certain conditions. */
464 static int check_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
465 unsigned long addr, unsigned long end,
466 const nodemask_t *nodes, unsigned long flags,
473 orig_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
478 if (!pte_present(*pte))
480 page = vm_normal_page(vma, addr, *pte);
484 * vm_normal_page() filters out zero pages, but there might
485 * still be PageReserved pages to skip, perhaps in a VDSO.
486 * And we cannot move PageKsm pages sensibly or safely yet.
488 if (PageReserved(page) || PageKsm(page))
490 nid = page_to_nid(page);
491 if (node_isset(nid, *nodes) == !!(flags & MPOL_MF_INVERT))
494 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
495 migrate_page_add(page, private, flags);
498 } while (pte++, addr += PAGE_SIZE, addr != end);
499 pte_unmap_unlock(orig_pte, ptl);
503 static inline int check_pmd_range(struct vm_area_struct *vma, pud_t *pud,
504 unsigned long addr, unsigned long end,
505 const nodemask_t *nodes, unsigned long flags,
511 pmd = pmd_offset(pud, addr);
513 next = pmd_addr_end(addr, end);
514 split_huge_page_pmd(vma->vm_mm, pmd);
515 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
517 if (check_pte_range(vma, pmd, addr, next, nodes,
520 } while (pmd++, addr = next, addr != end);
524 static inline int check_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
525 unsigned long addr, unsigned long end,
526 const nodemask_t *nodes, unsigned long flags,
532 pud = pud_offset(pgd, addr);
534 next = pud_addr_end(addr, end);
535 if (pud_none_or_clear_bad(pud))
537 if (check_pmd_range(vma, pud, addr, next, nodes,
540 } while (pud++, addr = next, addr != end);
544 static inline int check_pgd_range(struct vm_area_struct *vma,
545 unsigned long addr, unsigned long end,
546 const nodemask_t *nodes, unsigned long flags,
552 pgd = pgd_offset(vma->vm_mm, addr);
554 next = pgd_addr_end(addr, end);
555 if (pgd_none_or_clear_bad(pgd))
557 if (check_pud_range(vma, pgd, addr, next, nodes,
560 } while (pgd++, addr = next, addr != end);
565 * Check if all pages in a range are on a set of nodes.
566 * If pagelist != NULL then isolate pages from the LRU and
567 * put them on the pagelist.
569 static struct vm_area_struct *
570 check_range(struct mm_struct *mm, unsigned long start, unsigned long end,
571 const nodemask_t *nodes, unsigned long flags, void *private)
574 struct vm_area_struct *first, *vma, *prev;
577 first = find_vma(mm, start);
579 return ERR_PTR(-EFAULT);
581 for (vma = first; vma && vma->vm_start < end; vma = vma->vm_next) {
582 if (!(flags & MPOL_MF_DISCONTIG_OK)) {
583 if (!vma->vm_next && vma->vm_end < end)
584 return ERR_PTR(-EFAULT);
585 if (prev && prev->vm_end < vma->vm_start)
586 return ERR_PTR(-EFAULT);
588 if (!is_vm_hugetlb_page(vma) &&
589 ((flags & MPOL_MF_STRICT) ||
590 ((flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) &&
591 vma_migratable(vma)))) {
592 unsigned long endvma = vma->vm_end;
596 if (vma->vm_start > start)
597 start = vma->vm_start;
598 err = check_pgd_range(vma, start, endvma, nodes,
601 first = ERR_PTR(err);
610 /* Step 2: apply policy to a range and do splits. */
611 static int mbind_range(struct mm_struct *mm, unsigned long start,
612 unsigned long end, struct mempolicy *new_pol)
614 struct vm_area_struct *next;
615 struct vm_area_struct *prev;
616 struct vm_area_struct *vma;
619 unsigned long vmstart;
622 vma = find_vma(mm, start);
623 if (!vma || vma->vm_start > start)
627 if (start > vma->vm_start)
630 for (; vma && vma->vm_start < end; prev = vma, vma = next) {
632 vmstart = max(start, vma->vm_start);
633 vmend = min(end, vma->vm_end);
635 if (mpol_equal(vma_policy(vma), new_pol))
638 pgoff = vma->vm_pgoff +
639 ((vmstart - vma->vm_start) >> PAGE_SHIFT);
640 prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags,
641 vma->anon_vma, vma->vm_file, pgoff,
648 if (vma->vm_start != vmstart) {
649 err = split_vma(vma->vm_mm, vma, vmstart, 1);
653 if (vma->vm_end != vmend) {
654 err = split_vma(vma->vm_mm, vma, vmend, 0);
660 * Apply policy to a single VMA. The reference counting of
661 * policy for vma_policy linkages has already been handled by
662 * vma_merge and split_vma as necessary. If this is a shared
663 * policy then ->set_policy will increment the reference count
666 pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
667 vma->vm_start, vma->vm_end, vma->vm_pgoff,
668 vma->vm_ops, vma->vm_file,
669 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
670 if (vma->vm_ops && vma->vm_ops->set_policy) {
671 err = vma->vm_ops->set_policy(vma, new_pol);
682 * Update task->flags PF_MEMPOLICY bit: set iff non-default
683 * mempolicy. Allows more rapid checking of this (combined perhaps
684 * with other PF_* flag bits) on memory allocation hot code paths.
686 * If called from outside this file, the task 'p' should -only- be
687 * a newly forked child not yet visible on the task list, because
688 * manipulating the task flags of a visible task is not safe.
690 * The above limitation is why this routine has the funny name
691 * mpol_fix_fork_child_flag().
693 * It is also safe to call this with a task pointer of current,
694 * which the static wrapper mpol_set_task_struct_flag() does,
695 * for use within this file.
698 void mpol_fix_fork_child_flag(struct task_struct *p)
701 p->flags |= PF_MEMPOLICY;
703 p->flags &= ~PF_MEMPOLICY;
706 static void mpol_set_task_struct_flag(void)
708 mpol_fix_fork_child_flag(current);
711 /* Set the process memory policy */
712 static long do_set_mempolicy(unsigned short mode, unsigned short flags,
715 struct mempolicy *new, *old;
716 struct mm_struct *mm = current->mm;
717 NODEMASK_SCRATCH(scratch);
723 new = mpol_new(mode, flags, nodes);
729 * prevent changing our mempolicy while show_numa_maps()
731 * Note: do_set_mempolicy() can be called at init time
735 down_write(&mm->mmap_sem);
737 ret = mpol_set_nodemask(new, nodes, scratch);
739 task_unlock(current);
741 up_write(&mm->mmap_sem);
745 old = current->mempolicy;
746 current->mempolicy = new;
747 mpol_set_task_struct_flag();
748 if (new && new->mode == MPOL_INTERLEAVE &&
749 nodes_weight(new->v.nodes))
750 current->il_next = first_node(new->v.nodes);
751 task_unlock(current);
753 up_write(&mm->mmap_sem);
758 NODEMASK_SCRATCH_FREE(scratch);
763 * Return nodemask for policy for get_mempolicy() query
765 * Called with task's alloc_lock held
767 static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
770 if (p == &default_policy)
776 case MPOL_INTERLEAVE:
780 if (!(p->flags & MPOL_F_LOCAL))
781 node_set(p->v.preferred_node, *nodes);
782 /* else return empty node mask for local allocation */
789 static int lookup_node(struct mm_struct *mm, unsigned long addr)
794 err = get_user_pages(current, mm, addr & PAGE_MASK, 1, 0, 0, &p, NULL);
796 err = page_to_nid(p);
802 /* Retrieve NUMA policy */
803 static long do_get_mempolicy(int *policy, nodemask_t *nmask,
804 unsigned long addr, unsigned long flags)
807 struct mm_struct *mm = current->mm;
808 struct vm_area_struct *vma = NULL;
809 struct mempolicy *pol = current->mempolicy;
812 ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
815 if (flags & MPOL_F_MEMS_ALLOWED) {
816 if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
818 *policy = 0; /* just so it's initialized */
820 *nmask = cpuset_current_mems_allowed;
821 task_unlock(current);
825 if (flags & MPOL_F_ADDR) {
827 * Do NOT fall back to task policy if the
828 * vma/shared policy at addr is NULL. We
829 * want to return MPOL_DEFAULT in this case.
831 down_read(&mm->mmap_sem);
832 vma = find_vma_intersection(mm, addr, addr+1);
834 up_read(&mm->mmap_sem);
837 if (vma->vm_ops && vma->vm_ops->get_policy)
838 pol = vma->vm_ops->get_policy(vma, addr);
840 pol = vma->vm_policy;
845 pol = &default_policy; /* indicates default behavior */
847 if (flags & MPOL_F_NODE) {
848 if (flags & MPOL_F_ADDR) {
849 err = lookup_node(mm, addr);
853 } else if (pol == current->mempolicy &&
854 pol->mode == MPOL_INTERLEAVE) {
855 *policy = current->il_next;
861 *policy = pol == &default_policy ? MPOL_DEFAULT :
864 * Internal mempolicy flags must be masked off before exposing
865 * the policy to userspace.
867 *policy |= (pol->flags & MPOL_MODE_FLAGS);
871 up_read(¤t->mm->mmap_sem);
877 if (mpol_store_user_nodemask(pol)) {
878 *nmask = pol->w.user_nodemask;
881 get_policy_nodemask(pol, nmask);
882 task_unlock(current);
889 up_read(¤t->mm->mmap_sem);
893 #ifdef CONFIG_MIGRATION
897 static void migrate_page_add(struct page *page, struct list_head *pagelist,
901 * Avoid migrating a page that is shared with others.
903 if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(page) == 1) {
904 if (!isolate_lru_page(page)) {
905 list_add_tail(&page->lru, pagelist);
906 inc_zone_page_state(page, NR_ISOLATED_ANON +
907 page_is_file_cache(page));
912 static struct page *new_node_page(struct page *page, unsigned long node, int **x)
914 return alloc_pages_exact_node(node, GFP_HIGHUSER_MOVABLE, 0);
918 * Migrate pages from one node to a target node.
919 * Returns error or the number of pages not migrated.
921 static int migrate_to_node(struct mm_struct *mm, int source, int dest,
927 struct vm_area_struct *vma;
930 node_set(source, nmask);
932 vma = check_range(mm, mm->mmap->vm_start, mm->task_size, &nmask,
933 flags | MPOL_MF_DISCONTIG_OK, &pagelist);
937 if (!list_empty(&pagelist)) {
938 err = migrate_pages(&pagelist, new_node_page, dest,
939 false, MIGRATE_SYNC);
941 putback_lru_pages(&pagelist);
948 * Move pages between the two nodesets so as to preserve the physical
949 * layout as much as possible.
951 * Returns the number of page that could not be moved.
953 int do_migrate_pages(struct mm_struct *mm,
954 const nodemask_t *from_nodes, const nodemask_t *to_nodes, int flags)
960 err = migrate_prep();
964 down_read(&mm->mmap_sem);
966 err = migrate_vmas(mm, from_nodes, to_nodes, flags);
971 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
972 * bit in 'to' is not also set in 'tmp'. Clear the found 'source'
973 * bit in 'tmp', and return that <source, dest> pair for migration.
974 * The pair of nodemasks 'to' and 'from' define the map.
976 * If no pair of bits is found that way, fallback to picking some
977 * pair of 'source' and 'dest' bits that are not the same. If the
978 * 'source' and 'dest' bits are the same, this represents a node
979 * that will be migrating to itself, so no pages need move.
981 * If no bits are left in 'tmp', or if all remaining bits left
982 * in 'tmp' correspond to the same bit in 'to', return false
983 * (nothing left to migrate).
985 * This lets us pick a pair of nodes to migrate between, such that
986 * if possible the dest node is not already occupied by some other
987 * source node, minimizing the risk of overloading the memory on a
988 * node that would happen if we migrated incoming memory to a node
989 * before migrating outgoing memory source that same node.
991 * A single scan of tmp is sufficient. As we go, we remember the
992 * most recent <s, d> pair that moved (s != d). If we find a pair
993 * that not only moved, but what's better, moved to an empty slot
994 * (d is not set in tmp), then we break out then, with that pair.
995 * Otherwise when we finish scanning from_tmp, we at least have the
996 * most recent <s, d> pair that moved. If we get all the way through
997 * the scan of tmp without finding any node that moved, much less
998 * moved to an empty node, then there is nothing left worth migrating.
1002 while (!nodes_empty(tmp)) {
1007 for_each_node_mask(s, tmp) {
1008 d = node_remap(s, *from_nodes, *to_nodes);
1012 source = s; /* Node moved. Memorize */
1015 /* dest not in remaining from nodes? */
1016 if (!node_isset(dest, tmp))
1022 node_clear(source, tmp);
1023 err = migrate_to_node(mm, source, dest, flags);
1030 up_read(&mm->mmap_sem);
1038 * Allocate a new page for page migration based on vma policy.
1039 * Start assuming that page is mapped by vma pointed to by @private.
1040 * Search forward from there, if not. N.B., this assumes that the
1041 * list of pages handed to migrate_pages()--which is how we get here--
1042 * is in virtual address order.
1044 static struct page *new_vma_page(struct page *page, unsigned long private, int **x)
1046 struct vm_area_struct *vma = (struct vm_area_struct *)private;
1047 unsigned long uninitialized_var(address);
1050 address = page_address_in_vma(page, vma);
1051 if (address != -EFAULT)
1057 * if !vma, alloc_page_vma() will use task or system default policy
1059 return alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1063 static void migrate_page_add(struct page *page, struct list_head *pagelist,
1064 unsigned long flags)
1068 int do_migrate_pages(struct mm_struct *mm,
1069 const nodemask_t *from_nodes, const nodemask_t *to_nodes, int flags)
1074 static struct page *new_vma_page(struct page *page, unsigned long private, int **x)
1080 static long do_mbind(unsigned long start, unsigned long len,
1081 unsigned short mode, unsigned short mode_flags,
1082 nodemask_t *nmask, unsigned long flags)
1084 struct vm_area_struct *vma;
1085 struct mm_struct *mm = current->mm;
1086 struct mempolicy *new;
1089 LIST_HEAD(pagelist);
1091 if (flags & ~(unsigned long)(MPOL_MF_STRICT |
1092 MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
1094 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1097 if (start & ~PAGE_MASK)
1100 if (mode == MPOL_DEFAULT)
1101 flags &= ~MPOL_MF_STRICT;
1103 len = (len + PAGE_SIZE - 1) & PAGE_MASK;
1111 new = mpol_new(mode, mode_flags, nmask);
1113 return PTR_ERR(new);
1116 * If we are using the default policy then operation
1117 * on discontinuous address spaces is okay after all
1120 flags |= MPOL_MF_DISCONTIG_OK;
1122 pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1123 start, start + len, mode, mode_flags,
1124 nmask ? nodes_addr(*nmask)[0] : -1);
1126 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
1128 err = migrate_prep();
1133 NODEMASK_SCRATCH(scratch);
1135 down_write(&mm->mmap_sem);
1137 err = mpol_set_nodemask(new, nmask, scratch);
1138 task_unlock(current);
1140 up_write(&mm->mmap_sem);
1143 NODEMASK_SCRATCH_FREE(scratch);
1148 vma = check_range(mm, start, end, nmask,
1149 flags | MPOL_MF_INVERT, &pagelist);
1155 err = mbind_range(mm, start, end, new);
1157 if (!list_empty(&pagelist)) {
1158 nr_failed = migrate_pages(&pagelist, new_vma_page,
1162 putback_lru_pages(&pagelist);
1165 if (!err && nr_failed && (flags & MPOL_MF_STRICT))
1168 putback_lru_pages(&pagelist);
1170 up_write(&mm->mmap_sem);
1177 * User space interface with variable sized bitmaps for nodelists.
1180 /* Copy a node mask from user space. */
1181 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1182 unsigned long maxnode)
1185 unsigned long nlongs;
1186 unsigned long endmask;
1189 nodes_clear(*nodes);
1190 if (maxnode == 0 || !nmask)
1192 if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1195 nlongs = BITS_TO_LONGS(maxnode);
1196 if ((maxnode % BITS_PER_LONG) == 0)
1199 endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1;
1201 /* When the user specified more nodes than supported just check
1202 if the non supported part is all zero. */
1203 if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) {
1204 if (nlongs > PAGE_SIZE/sizeof(long))
1206 for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) {
1208 if (get_user(t, nmask + k))
1210 if (k == nlongs - 1) {
1216 nlongs = BITS_TO_LONGS(MAX_NUMNODES);
1220 if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long)))
1222 nodes_addr(*nodes)[nlongs-1] &= endmask;
1226 /* Copy a kernel node mask to user space */
1227 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1230 unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1231 const int nbytes = BITS_TO_LONGS(MAX_NUMNODES) * sizeof(long);
1233 if (copy > nbytes) {
1234 if (copy > PAGE_SIZE)
1236 if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1240 return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1243 SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1244 unsigned long, mode, unsigned long __user *, nmask,
1245 unsigned long, maxnode, unsigned, flags)
1249 unsigned short mode_flags;
1251 mode_flags = mode & MPOL_MODE_FLAGS;
1252 mode &= ~MPOL_MODE_FLAGS;
1253 if (mode >= MPOL_MAX)
1255 if ((mode_flags & MPOL_F_STATIC_NODES) &&
1256 (mode_flags & MPOL_F_RELATIVE_NODES))
1258 err = get_nodes(&nodes, nmask, maxnode);
1261 return do_mbind(start, len, mode, mode_flags, &nodes, flags);
1264 /* Set the process memory policy */
1265 SYSCALL_DEFINE3(set_mempolicy, int, mode, unsigned long __user *, nmask,
1266 unsigned long, maxnode)
1270 unsigned short flags;
1272 flags = mode & MPOL_MODE_FLAGS;
1273 mode &= ~MPOL_MODE_FLAGS;
1274 if ((unsigned int)mode >= MPOL_MAX)
1276 if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES))
1278 err = get_nodes(&nodes, nmask, maxnode);
1281 return do_set_mempolicy(mode, flags, &nodes);
1284 SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1285 const unsigned long __user *, old_nodes,
1286 const unsigned long __user *, new_nodes)
1288 const struct cred *cred = current_cred(), *tcred;
1289 struct mm_struct *mm = NULL;
1290 struct task_struct *task;
1291 nodemask_t task_nodes;
1295 NODEMASK_SCRATCH(scratch);
1300 old = &scratch->mask1;
1301 new = &scratch->mask2;
1303 err = get_nodes(old, old_nodes, maxnode);
1307 err = get_nodes(new, new_nodes, maxnode);
1311 /* Find the mm_struct */
1313 task = pid ? find_task_by_vpid(pid) : current;
1319 get_task_struct(task);
1324 * Check if this process has the right to modify the specified
1325 * process. The right exists if the process has administrative
1326 * capabilities, superuser privileges or the same
1327 * userid as the target process.
1329 tcred = __task_cred(task);
1330 if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) &&
1331 !uid_eq(cred->uid, tcred->suid) && !uid_eq(cred->uid, tcred->uid) &&
1332 !capable(CAP_SYS_NICE)) {
1339 task_nodes = cpuset_mems_allowed(task);
1340 /* Is the user allowed to access the target nodes? */
1341 if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1346 if (!nodes_subset(*new, node_states[N_HIGH_MEMORY])) {
1351 err = security_task_movememory(task);
1355 mm = get_task_mm(task);
1356 put_task_struct(task);
1363 err = do_migrate_pages(mm, old, new,
1364 capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1368 NODEMASK_SCRATCH_FREE(scratch);
1373 put_task_struct(task);
1379 /* Retrieve NUMA policy */
1380 SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1381 unsigned long __user *, nmask, unsigned long, maxnode,
1382 unsigned long, addr, unsigned long, flags)
1385 int uninitialized_var(pval);
1388 if (nmask != NULL && maxnode < MAX_NUMNODES)
1391 err = do_get_mempolicy(&pval, &nodes, addr, flags);
1396 if (policy && put_user(pval, policy))
1400 err = copy_nodes_to_user(nmask, maxnode, &nodes);
1405 #ifdef CONFIG_COMPAT
1407 asmlinkage long compat_sys_get_mempolicy(int __user *policy,
1408 compat_ulong_t __user *nmask,
1409 compat_ulong_t maxnode,
1410 compat_ulong_t addr, compat_ulong_t flags)
1413 unsigned long __user *nm = NULL;
1414 unsigned long nr_bits, alloc_size;
1415 DECLARE_BITMAP(bm, MAX_NUMNODES);
1417 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1418 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1421 nm = compat_alloc_user_space(alloc_size);
1423 err = sys_get_mempolicy(policy, nm, nr_bits+1, addr, flags);
1425 if (!err && nmask) {
1426 unsigned long copy_size;
1427 copy_size = min_t(unsigned long, sizeof(bm), alloc_size);
1428 err = copy_from_user(bm, nm, copy_size);
1429 /* ensure entire bitmap is zeroed */
1430 err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8);
1431 err |= compat_put_bitmap(nmask, bm, nr_bits);
1437 asmlinkage long compat_sys_set_mempolicy(int mode, compat_ulong_t __user *nmask,
1438 compat_ulong_t maxnode)
1441 unsigned long __user *nm = NULL;
1442 unsigned long nr_bits, alloc_size;
1443 DECLARE_BITMAP(bm, MAX_NUMNODES);
1445 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1446 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1449 err = compat_get_bitmap(bm, nmask, nr_bits);
1450 nm = compat_alloc_user_space(alloc_size);
1451 err |= copy_to_user(nm, bm, alloc_size);
1457 return sys_set_mempolicy(mode, nm, nr_bits+1);
1460 asmlinkage long compat_sys_mbind(compat_ulong_t start, compat_ulong_t len,
1461 compat_ulong_t mode, compat_ulong_t __user *nmask,
1462 compat_ulong_t maxnode, compat_ulong_t flags)
1465 unsigned long __user *nm = NULL;
1466 unsigned long nr_bits, alloc_size;
1469 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1470 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1473 err = compat_get_bitmap(nodes_addr(bm), nmask, nr_bits);
1474 nm = compat_alloc_user_space(alloc_size);
1475 err |= copy_to_user(nm, nodes_addr(bm), alloc_size);
1481 return sys_mbind(start, len, mode, nm, nr_bits+1, flags);
1487 * get_vma_policy(@task, @vma, @addr)
1488 * @task - task for fallback if vma policy == default
1489 * @vma - virtual memory area whose policy is sought
1490 * @addr - address in @vma for shared policy lookup
1492 * Returns effective policy for a VMA at specified address.
1493 * Falls back to @task or system default policy, as necessary.
1494 * Current or other task's task mempolicy and non-shared vma policies
1495 * are protected by the task's mmap_sem, which must be held for read by
1497 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1498 * count--added by the get_policy() vm_op, as appropriate--to protect against
1499 * freeing by another task. It is the caller's responsibility to free the
1500 * extra reference for shared policies.
1502 struct mempolicy *get_vma_policy(struct task_struct *task,
1503 struct vm_area_struct *vma, unsigned long addr)
1505 struct mempolicy *pol = task->mempolicy;
1508 if (vma->vm_ops && vma->vm_ops->get_policy) {
1509 struct mempolicy *vpol = vma->vm_ops->get_policy(vma,
1513 } else if (vma->vm_policy)
1514 pol = vma->vm_policy;
1517 pol = &default_policy;
1522 * Return a nodemask representing a mempolicy for filtering nodes for
1525 static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1527 /* Lower zones don't get a nodemask applied for MPOL_BIND */
1528 if (unlikely(policy->mode == MPOL_BIND) &&
1529 gfp_zone(gfp) >= policy_zone &&
1530 cpuset_nodemask_valid_mems_allowed(&policy->v.nodes))
1531 return &policy->v.nodes;
1536 /* Return a zonelist indicated by gfp for node representing a mempolicy */
1537 static struct zonelist *policy_zonelist(gfp_t gfp, struct mempolicy *policy,
1540 switch (policy->mode) {
1541 case MPOL_PREFERRED:
1542 if (!(policy->flags & MPOL_F_LOCAL))
1543 nd = policy->v.preferred_node;
1547 * Normally, MPOL_BIND allocations are node-local within the
1548 * allowed nodemask. However, if __GFP_THISNODE is set and the
1549 * current node isn't part of the mask, we use the zonelist for
1550 * the first node in the mask instead.
1552 if (unlikely(gfp & __GFP_THISNODE) &&
1553 unlikely(!node_isset(nd, policy->v.nodes)))
1554 nd = first_node(policy->v.nodes);
1559 return node_zonelist(nd, gfp);
1562 /* Do dynamic interleaving for a process */
1563 static unsigned interleave_nodes(struct mempolicy *policy)
1566 struct task_struct *me = current;
1569 next = next_node(nid, policy->v.nodes);
1570 if (next >= MAX_NUMNODES)
1571 next = first_node(policy->v.nodes);
1572 if (next < MAX_NUMNODES)
1578 * Depending on the memory policy provide a node from which to allocate the
1580 * @policy must be protected by freeing by the caller. If @policy is
1581 * the current task's mempolicy, this protection is implicit, as only the
1582 * task can change it's policy. The system default policy requires no
1585 unsigned slab_node(struct mempolicy *policy)
1587 if (!policy || policy->flags & MPOL_F_LOCAL)
1588 return numa_node_id();
1590 switch (policy->mode) {
1591 case MPOL_PREFERRED:
1593 * handled MPOL_F_LOCAL above
1595 return policy->v.preferred_node;
1597 case MPOL_INTERLEAVE:
1598 return interleave_nodes(policy);
1602 * Follow bind policy behavior and start allocation at the
1605 struct zonelist *zonelist;
1607 enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1608 zonelist = &NODE_DATA(numa_node_id())->node_zonelists[0];
1609 (void)first_zones_zonelist(zonelist, highest_zoneidx,
1612 return zone ? zone->node : numa_node_id();
1620 /* Do static interleaving for a VMA with known offset. */
1621 static unsigned offset_il_node(struct mempolicy *pol,
1622 struct vm_area_struct *vma, unsigned long off)
1624 unsigned nnodes = nodes_weight(pol->v.nodes);
1630 return numa_node_id();
1631 target = (unsigned int)off % nnodes;
1634 nid = next_node(nid, pol->v.nodes);
1636 } while (c <= target);
1640 /* Determine a node number for interleave */
1641 static inline unsigned interleave_nid(struct mempolicy *pol,
1642 struct vm_area_struct *vma, unsigned long addr, int shift)
1648 * for small pages, there is no difference between
1649 * shift and PAGE_SHIFT, so the bit-shift is safe.
1650 * for huge pages, since vm_pgoff is in units of small
1651 * pages, we need to shift off the always 0 bits to get
1654 BUG_ON(shift < PAGE_SHIFT);
1655 off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
1656 off += (addr - vma->vm_start) >> shift;
1657 return offset_il_node(pol, vma, off);
1659 return interleave_nodes(pol);
1663 * Return the bit number of a random bit set in the nodemask.
1664 * (returns -1 if nodemask is empty)
1666 int node_random(const nodemask_t *maskp)
1670 w = nodes_weight(*maskp);
1672 bit = bitmap_ord_to_pos(maskp->bits,
1673 get_random_int() % w, MAX_NUMNODES);
1677 #ifdef CONFIG_HUGETLBFS
1679 * huge_zonelist(@vma, @addr, @gfp_flags, @mpol)
1680 * @vma = virtual memory area whose policy is sought
1681 * @addr = address in @vma for shared policy lookup and interleave policy
1682 * @gfp_flags = for requested zone
1683 * @mpol = pointer to mempolicy pointer for reference counted mempolicy
1684 * @nodemask = pointer to nodemask pointer for MPOL_BIND nodemask
1686 * Returns a zonelist suitable for a huge page allocation and a pointer
1687 * to the struct mempolicy for conditional unref after allocation.
1688 * If the effective policy is 'BIND, returns a pointer to the mempolicy's
1689 * @nodemask for filtering the zonelist.
1691 * Must be protected by get_mems_allowed()
1693 struct zonelist *huge_zonelist(struct vm_area_struct *vma, unsigned long addr,
1694 gfp_t gfp_flags, struct mempolicy **mpol,
1695 nodemask_t **nodemask)
1697 struct zonelist *zl;
1699 *mpol = get_vma_policy(current, vma, addr);
1700 *nodemask = NULL; /* assume !MPOL_BIND */
1702 if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) {
1703 zl = node_zonelist(interleave_nid(*mpol, vma, addr,
1704 huge_page_shift(hstate_vma(vma))), gfp_flags);
1706 zl = policy_zonelist(gfp_flags, *mpol, numa_node_id());
1707 if ((*mpol)->mode == MPOL_BIND)
1708 *nodemask = &(*mpol)->v.nodes;
1714 * init_nodemask_of_mempolicy
1716 * If the current task's mempolicy is "default" [NULL], return 'false'
1717 * to indicate default policy. Otherwise, extract the policy nodemask
1718 * for 'bind' or 'interleave' policy into the argument nodemask, or
1719 * initialize the argument nodemask to contain the single node for
1720 * 'preferred' or 'local' policy and return 'true' to indicate presence
1721 * of non-default mempolicy.
1723 * We don't bother with reference counting the mempolicy [mpol_get/put]
1724 * because the current task is examining it's own mempolicy and a task's
1725 * mempolicy is only ever changed by the task itself.
1727 * N.B., it is the caller's responsibility to free a returned nodemask.
1729 bool init_nodemask_of_mempolicy(nodemask_t *mask)
1731 struct mempolicy *mempolicy;
1734 if (!(mask && current->mempolicy))
1738 mempolicy = current->mempolicy;
1739 switch (mempolicy->mode) {
1740 case MPOL_PREFERRED:
1741 if (mempolicy->flags & MPOL_F_LOCAL)
1742 nid = numa_node_id();
1744 nid = mempolicy->v.preferred_node;
1745 init_nodemask_of_node(mask, nid);
1750 case MPOL_INTERLEAVE:
1751 *mask = mempolicy->v.nodes;
1757 task_unlock(current);
1764 * mempolicy_nodemask_intersects
1766 * If tsk's mempolicy is "default" [NULL], return 'true' to indicate default
1767 * policy. Otherwise, check for intersection between mask and the policy
1768 * nodemask for 'bind' or 'interleave' policy. For 'perferred' or 'local'
1769 * policy, always return true since it may allocate elsewhere on fallback.
1771 * Takes task_lock(tsk) to prevent freeing of its mempolicy.
1773 bool mempolicy_nodemask_intersects(struct task_struct *tsk,
1774 const nodemask_t *mask)
1776 struct mempolicy *mempolicy;
1782 mempolicy = tsk->mempolicy;
1786 switch (mempolicy->mode) {
1787 case MPOL_PREFERRED:
1789 * MPOL_PREFERRED and MPOL_F_LOCAL are only preferred nodes to
1790 * allocate from, they may fallback to other nodes when oom.
1791 * Thus, it's possible for tsk to have allocated memory from
1796 case MPOL_INTERLEAVE:
1797 ret = nodes_intersects(mempolicy->v.nodes, *mask);
1807 /* Allocate a page in interleaved policy.
1808 Own path because it needs to do special accounting. */
1809 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
1812 struct zonelist *zl;
1815 zl = node_zonelist(nid, gfp);
1816 page = __alloc_pages(gfp, order, zl);
1817 if (page && page_zone(page) == zonelist_zone(&zl->_zonerefs[0]))
1818 inc_zone_page_state(page, NUMA_INTERLEAVE_HIT);
1823 * alloc_pages_vma - Allocate a page for a VMA.
1826 * %GFP_USER user allocation.
1827 * %GFP_KERNEL kernel allocations,
1828 * %GFP_HIGHMEM highmem/user allocations,
1829 * %GFP_FS allocation should not call back into a file system.
1830 * %GFP_ATOMIC don't sleep.
1832 * @order:Order of the GFP allocation.
1833 * @vma: Pointer to VMA or NULL if not available.
1834 * @addr: Virtual Address of the allocation. Must be inside the VMA.
1836 * This function allocates a page from the kernel page pool and applies
1837 * a NUMA policy associated with the VMA or the current process.
1838 * When VMA is not NULL caller must hold down_read on the mmap_sem of the
1839 * mm_struct of the VMA to prevent it from going away. Should be used for
1840 * all allocations for pages that will be mapped into
1841 * user space. Returns NULL when no page can be allocated.
1843 * Should be called with the mm_sem of the vma hold.
1846 alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma,
1847 unsigned long addr, int node)
1849 struct mempolicy *pol;
1850 struct zonelist *zl;
1852 unsigned int cpuset_mems_cookie;
1855 pol = get_vma_policy(current, vma, addr);
1856 cpuset_mems_cookie = get_mems_allowed();
1858 if (unlikely(pol->mode == MPOL_INTERLEAVE)) {
1861 nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order);
1863 page = alloc_page_interleave(gfp, order, nid);
1864 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
1869 zl = policy_zonelist(gfp, pol, node);
1870 if (unlikely(mpol_needs_cond_ref(pol))) {
1872 * slow path: ref counted shared policy
1874 struct page *page = __alloc_pages_nodemask(gfp, order,
1875 zl, policy_nodemask(gfp, pol));
1877 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
1882 * fast path: default or task policy
1884 page = __alloc_pages_nodemask(gfp, order, zl,
1885 policy_nodemask(gfp, pol));
1886 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
1892 * alloc_pages_current - Allocate pages.
1895 * %GFP_USER user allocation,
1896 * %GFP_KERNEL kernel allocation,
1897 * %GFP_HIGHMEM highmem allocation,
1898 * %GFP_FS don't call back into a file system.
1899 * %GFP_ATOMIC don't sleep.
1900 * @order: Power of two of allocation size in pages. 0 is a single page.
1902 * Allocate a page from the kernel page pool. When not in
1903 * interrupt context and apply the current process NUMA policy.
1904 * Returns NULL when no page can be allocated.
1906 * Don't call cpuset_update_task_memory_state() unless
1907 * 1) it's ok to take cpuset_sem (can WAIT), and
1908 * 2) allocating for current task (not interrupt).
1910 struct page *alloc_pages_current(gfp_t gfp, unsigned order)
1912 struct mempolicy *pol = current->mempolicy;
1914 unsigned int cpuset_mems_cookie;
1916 if (!pol || in_interrupt() || (gfp & __GFP_THISNODE))
1917 pol = &default_policy;
1920 cpuset_mems_cookie = get_mems_allowed();
1923 * No reference counting needed for current->mempolicy
1924 * nor system default_policy
1926 if (pol->mode == MPOL_INTERLEAVE)
1927 page = alloc_page_interleave(gfp, order, interleave_nodes(pol));
1929 page = __alloc_pages_nodemask(gfp, order,
1930 policy_zonelist(gfp, pol, numa_node_id()),
1931 policy_nodemask(gfp, pol));
1933 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
1938 EXPORT_SYMBOL(alloc_pages_current);
1941 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
1942 * rebinds the mempolicy its copying by calling mpol_rebind_policy()
1943 * with the mems_allowed returned by cpuset_mems_allowed(). This
1944 * keeps mempolicies cpuset relative after its cpuset moves. See
1945 * further kernel/cpuset.c update_nodemask().
1947 * current's mempolicy may be rebinded by the other task(the task that changes
1948 * cpuset's mems), so we needn't do rebind work for current task.
1951 /* Slow path of a mempolicy duplicate */
1952 struct mempolicy *__mpol_dup(struct mempolicy *old)
1954 struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
1957 return ERR_PTR(-ENOMEM);
1959 /* task's mempolicy is protected by alloc_lock */
1960 if (old == current->mempolicy) {
1963 task_unlock(current);
1968 if (current_cpuset_is_being_rebound()) {
1969 nodemask_t mems = cpuset_mems_allowed(current);
1970 if (new->flags & MPOL_F_REBINDING)
1971 mpol_rebind_policy(new, &mems, MPOL_REBIND_STEP2);
1973 mpol_rebind_policy(new, &mems, MPOL_REBIND_ONCE);
1976 atomic_set(&new->refcnt, 1);
1981 * If *frompol needs [has] an extra ref, copy *frompol to *tompol ,
1982 * eliminate the * MPOL_F_* flags that require conditional ref and
1983 * [NOTE!!!] drop the extra ref. Not safe to reference *frompol directly
1984 * after return. Use the returned value.
1986 * Allows use of a mempolicy for, e.g., multiple allocations with a single
1987 * policy lookup, even if the policy needs/has extra ref on lookup.
1988 * shmem_readahead needs this.
1990 struct mempolicy *__mpol_cond_copy(struct mempolicy *tompol,
1991 struct mempolicy *frompol)
1993 if (!mpol_needs_cond_ref(frompol))
1997 tompol->flags &= ~MPOL_F_SHARED; /* copy doesn't need unref */
1998 __mpol_put(frompol);
2002 /* Slow path of a mempolicy comparison */
2003 bool __mpol_equal(struct mempolicy *a, struct mempolicy *b)
2007 if (a->mode != b->mode)
2009 if (a->flags != b->flags)
2011 if (mpol_store_user_nodemask(a))
2012 if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
2018 case MPOL_INTERLEAVE:
2019 return !!nodes_equal(a->v.nodes, b->v.nodes);
2020 case MPOL_PREFERRED:
2021 return a->v.preferred_node == b->v.preferred_node;
2029 * Shared memory backing store policy support.
2031 * Remember policies even when nobody has shared memory mapped.
2032 * The policies are kept in Red-Black tree linked from the inode.
2033 * They are protected by the sp->lock spinlock, which should be held
2034 * for any accesses to the tree.
2037 /* lookup first element intersecting start-end */
2038 /* Caller holds sp->lock */
2039 static struct sp_node *
2040 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
2042 struct rb_node *n = sp->root.rb_node;
2045 struct sp_node *p = rb_entry(n, struct sp_node, nd);
2047 if (start >= p->end)
2049 else if (end <= p->start)
2057 struct sp_node *w = NULL;
2058 struct rb_node *prev = rb_prev(n);
2061 w = rb_entry(prev, struct sp_node, nd);
2062 if (w->end <= start)
2066 return rb_entry(n, struct sp_node, nd);
2069 /* Insert a new shared policy into the list. */
2070 /* Caller holds sp->lock */
2071 static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2073 struct rb_node **p = &sp->root.rb_node;
2074 struct rb_node *parent = NULL;
2079 nd = rb_entry(parent, struct sp_node, nd);
2080 if (new->start < nd->start)
2082 else if (new->end > nd->end)
2083 p = &(*p)->rb_right;
2087 rb_link_node(&new->nd, parent, p);
2088 rb_insert_color(&new->nd, &sp->root);
2089 pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
2090 new->policy ? new->policy->mode : 0);
2093 /* Find shared policy intersecting idx */
2095 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
2097 struct mempolicy *pol = NULL;
2100 if (!sp->root.rb_node)
2102 spin_lock(&sp->lock);
2103 sn = sp_lookup(sp, idx, idx+1);
2105 mpol_get(sn->policy);
2108 spin_unlock(&sp->lock);
2112 static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2114 pr_debug("deleting %lx-l%lx\n", n->start, n->end);
2115 rb_erase(&n->nd, &sp->root);
2116 mpol_put(n->policy);
2117 kmem_cache_free(sn_cache, n);
2120 static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2121 struct mempolicy *pol)
2123 struct sp_node *n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2130 pol->flags |= MPOL_F_SHARED; /* for unref */
2135 /* Replace a policy range. */
2136 static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
2137 unsigned long end, struct sp_node *new)
2139 struct sp_node *n, *new2 = NULL;
2142 spin_lock(&sp->lock);
2143 n = sp_lookup(sp, start, end);
2144 /* Take care of old policies in the same range. */
2145 while (n && n->start < end) {
2146 struct rb_node *next = rb_next(&n->nd);
2147 if (n->start >= start) {
2153 /* Old policy spanning whole new range. */
2156 spin_unlock(&sp->lock);
2157 new2 = sp_alloc(end, n->end, n->policy);
2163 sp_insert(sp, new2);
2171 n = rb_entry(next, struct sp_node, nd);
2175 spin_unlock(&sp->lock);
2177 mpol_put(new2->policy);
2178 kmem_cache_free(sn_cache, new2);
2184 * mpol_shared_policy_init - initialize shared policy for inode
2185 * @sp: pointer to inode shared policy
2186 * @mpol: struct mempolicy to install
2188 * Install non-NULL @mpol in inode's shared policy rb-tree.
2189 * On entry, the current task has a reference on a non-NULL @mpol.
2190 * This must be released on exit.
2191 * This is called at get_inode() calls and we can use GFP_KERNEL.
2193 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2197 sp->root = RB_ROOT; /* empty tree == default mempolicy */
2198 spin_lock_init(&sp->lock);
2201 struct vm_area_struct pvma;
2202 struct mempolicy *new;
2203 NODEMASK_SCRATCH(scratch);
2207 /* contextualize the tmpfs mount point mempolicy */
2208 new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2210 goto free_scratch; /* no valid nodemask intersection */
2213 ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch);
2214 task_unlock(current);
2218 /* Create pseudo-vma that contains just the policy */
2219 memset(&pvma, 0, sizeof(struct vm_area_struct));
2220 pvma.vm_end = TASK_SIZE; /* policy covers entire file */
2221 mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
2224 mpol_put(new); /* drop initial ref */
2226 NODEMASK_SCRATCH_FREE(scratch);
2228 mpol_put(mpol); /* drop our incoming ref on sb mpol */
2232 int mpol_set_shared_policy(struct shared_policy *info,
2233 struct vm_area_struct *vma, struct mempolicy *npol)
2236 struct sp_node *new = NULL;
2237 unsigned long sz = vma_pages(vma);
2239 pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2241 sz, npol ? npol->mode : -1,
2242 npol ? npol->flags : -1,
2243 npol ? nodes_addr(npol->v.nodes)[0] : -1);
2246 new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
2250 err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
2252 kmem_cache_free(sn_cache, new);
2256 /* Free a backing policy store on inode delete. */
2257 void mpol_free_shared_policy(struct shared_policy *p)
2260 struct rb_node *next;
2262 if (!p->root.rb_node)
2264 spin_lock(&p->lock);
2265 next = rb_first(&p->root);
2267 n = rb_entry(next, struct sp_node, nd);
2268 next = rb_next(&n->nd);
2269 rb_erase(&n->nd, &p->root);
2270 mpol_put(n->policy);
2271 kmem_cache_free(sn_cache, n);
2273 spin_unlock(&p->lock);
2276 /* assumes fs == KERNEL_DS */
2277 void __init numa_policy_init(void)
2279 nodemask_t interleave_nodes;
2280 unsigned long largest = 0;
2281 int nid, prefer = 0;
2283 policy_cache = kmem_cache_create("numa_policy",
2284 sizeof(struct mempolicy),
2285 0, SLAB_PANIC, NULL);
2287 sn_cache = kmem_cache_create("shared_policy_node",
2288 sizeof(struct sp_node),
2289 0, SLAB_PANIC, NULL);
2292 * Set interleaving policy for system init. Interleaving is only
2293 * enabled across suitably sized nodes (default is >= 16MB), or
2294 * fall back to the largest node if they're all smaller.
2296 nodes_clear(interleave_nodes);
2297 for_each_node_state(nid, N_HIGH_MEMORY) {
2298 unsigned long total_pages = node_present_pages(nid);
2300 /* Preserve the largest node */
2301 if (largest < total_pages) {
2302 largest = total_pages;
2306 /* Interleave this node? */
2307 if ((total_pages << PAGE_SHIFT) >= (16 << 20))
2308 node_set(nid, interleave_nodes);
2311 /* All too small, use the largest */
2312 if (unlikely(nodes_empty(interleave_nodes)))
2313 node_set(prefer, interleave_nodes);
2315 if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
2316 printk("numa_policy_init: interleaving failed\n");
2319 /* Reset policy of current process to default */
2320 void numa_default_policy(void)
2322 do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
2326 * Parse and format mempolicy from/to strings
2330 * "local" is pseudo-policy: MPOL_PREFERRED with MPOL_F_LOCAL flag
2331 * Used only for mpol_parse_str() and mpol_to_str()
2333 #define MPOL_LOCAL MPOL_MAX
2334 static const char * const policy_modes[] =
2336 [MPOL_DEFAULT] = "default",
2337 [MPOL_PREFERRED] = "prefer",
2338 [MPOL_BIND] = "bind",
2339 [MPOL_INTERLEAVE] = "interleave",
2340 [MPOL_LOCAL] = "local"
2346 * mpol_parse_str - parse string to mempolicy
2347 * @str: string containing mempolicy to parse
2348 * @mpol: pointer to struct mempolicy pointer, returned on success.
2349 * @no_context: flag whether to "contextualize" the mempolicy
2352 * <mode>[=<flags>][:<nodelist>]
2354 * if @no_context is true, save the input nodemask in w.user_nodemask in
2355 * the returned mempolicy. This will be used to "clone" the mempolicy in
2356 * a specific context [cpuset] at a later time. Used to parse tmpfs mpol
2357 * mount option. Note that if 'static' or 'relative' mode flags were
2358 * specified, the input nodemask will already have been saved. Saving
2359 * it again is redundant, but safe.
2361 * On success, returns 0, else 1
2363 int mpol_parse_str(char *str, struct mempolicy **mpol, int no_context)
2365 struct mempolicy *new = NULL;
2366 unsigned short mode;
2367 unsigned short uninitialized_var(mode_flags);
2369 char *nodelist = strchr(str, ':');
2370 char *flags = strchr(str, '=');
2374 /* NUL-terminate mode or flags string */
2376 if (nodelist_parse(nodelist, nodes))
2378 if (!nodes_subset(nodes, node_states[N_HIGH_MEMORY]))
2384 *flags++ = '\0'; /* terminate mode string */
2386 for (mode = 0; mode <= MPOL_LOCAL; mode++) {
2387 if (!strcmp(str, policy_modes[mode])) {
2391 if (mode > MPOL_LOCAL)
2395 case MPOL_PREFERRED:
2397 * Insist on a nodelist of one node only
2400 char *rest = nodelist;
2401 while (isdigit(*rest))
2407 case MPOL_INTERLEAVE:
2409 * Default to online nodes with memory if no nodelist
2412 nodes = node_states[N_HIGH_MEMORY];
2416 * Don't allow a nodelist; mpol_new() checks flags
2420 mode = MPOL_PREFERRED;
2424 * Insist on a empty nodelist
2431 * Insist on a nodelist
2440 * Currently, we only support two mutually exclusive
2443 if (!strcmp(flags, "static"))
2444 mode_flags |= MPOL_F_STATIC_NODES;
2445 else if (!strcmp(flags, "relative"))
2446 mode_flags |= MPOL_F_RELATIVE_NODES;
2451 new = mpol_new(mode, mode_flags, &nodes);
2456 /* save for contextualization */
2457 new->w.user_nodemask = nodes;
2460 NODEMASK_SCRATCH(scratch);
2463 ret = mpol_set_nodemask(new, &nodes, scratch);
2464 task_unlock(current);
2467 NODEMASK_SCRATCH_FREE(scratch);
2476 /* Restore string for error message */
2485 #endif /* CONFIG_TMPFS */
2488 * mpol_to_str - format a mempolicy structure for printing
2489 * @buffer: to contain formatted mempolicy string
2490 * @maxlen: length of @buffer
2491 * @pol: pointer to mempolicy to be formatted
2492 * @no_context: "context free" mempolicy - use nodemask in w.user_nodemask
2494 * Convert a mempolicy into a string.
2495 * Returns the number of characters in buffer (if positive)
2496 * or an error (negative)
2498 int mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol, int no_context)
2503 unsigned short mode;
2504 unsigned short flags = pol ? pol->flags : 0;
2507 * Sanity check: room for longest mode, flag and some nodes
2509 VM_BUG_ON(maxlen < strlen("interleave") + strlen("relative") + 16);
2511 if (!pol || pol == &default_policy)
2512 mode = MPOL_DEFAULT;
2521 case MPOL_PREFERRED:
2523 if (flags & MPOL_F_LOCAL)
2524 mode = MPOL_LOCAL; /* pseudo-policy */
2526 node_set(pol->v.preferred_node, nodes);
2531 case MPOL_INTERLEAVE:
2533 nodes = pol->w.user_nodemask;
2535 nodes = pol->v.nodes;
2542 l = strlen(policy_modes[mode]);
2543 if (buffer + maxlen < p + l + 1)
2546 strcpy(p, policy_modes[mode]);
2549 if (flags & MPOL_MODE_FLAGS) {
2550 if (buffer + maxlen < p + 2)
2555 * Currently, the only defined flags are mutually exclusive
2557 if (flags & MPOL_F_STATIC_NODES)
2558 p += snprintf(p, buffer + maxlen - p, "static");
2559 else if (flags & MPOL_F_RELATIVE_NODES)
2560 p += snprintf(p, buffer + maxlen - p, "relative");
2563 if (!nodes_empty(nodes)) {
2564 if (buffer + maxlen < p + 2)
2567 p += nodelist_scnprintf(p, buffer + maxlen - p, nodes);