1 // SPDX-License-Identifier: GPL-2.0-only
3 * Simple NUMA memory policy for the Linux kernel.
5 * Copyright 2003,2004 Andi Kleen, SuSE Labs.
6 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
8 * NUMA policy allows the user to give hints in which node(s) memory should
11 * Support four policies per VMA and per process:
13 * The VMA policy has priority over the process policy for a page fault.
15 * interleave Allocate memory interleaved over a set of nodes,
16 * with normal fallback if it fails.
17 * For VMA based allocations this interleaves based on the
18 * offset into the backing object or offset into the mapping
19 * for anonymous memory. For process policy an process counter
22 * bind Only allocate memory on a specific set of nodes,
24 * FIXME: memory is allocated starting with the first node
25 * to the last. It would be better if bind would truly restrict
26 * the allocation to memory nodes instead
28 * preferred Try a specific node first before normal fallback.
29 * As a special case NUMA_NO_NODE here means do the allocation
30 * on the local CPU. This is normally identical to default,
31 * but useful to set in a VMA when you have a non default
34 * preferred many Try a set of nodes first before normal fallback. This is
35 * similar to preferred without the special case.
37 * default Allocate on the local node first, or when on a VMA
38 * use the process policy. This is what Linux always did
39 * in a NUMA aware kernel and still does by, ahem, default.
41 * The process policy is applied for most non interrupt memory allocations
42 * in that process' context. Interrupts ignore the policies and always
43 * try to allocate on the local CPU. The VMA policy is only applied for memory
44 * allocations for a VMA in the VM.
46 * Currently there are a few corner cases in swapping where the policy
47 * is not applied, but the majority should be handled. When process policy
48 * is used it is not remembered over swap outs/swap ins.
50 * Only the highest zone in the zone hierarchy gets policied. Allocations
51 * requesting a lower zone just use default policy. This implies that
52 * on systems with highmem kernel lowmem allocation don't get policied.
53 * Same with GFP_DMA allocations.
55 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
56 * all users and remembered even when nobody has memory mapped.
60 fix mmap readahead to honour policy and enable policy for any page cache
62 statistics for bigpages
63 global policy for page cache? currently it uses process policy. Requires
65 handle mremap for shared memory (currently ignored for the policy)
67 make bind policy root only? It can trigger oom much faster and the
68 kernel is not always grateful with that.
71 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
73 #include <linux/mempolicy.h>
74 #include <linux/pagewalk.h>
75 #include <linux/highmem.h>
76 #include <linux/hugetlb.h>
77 #include <linux/kernel.h>
78 #include <linux/sched.h>
79 #include <linux/sched/mm.h>
80 #include <linux/sched/numa_balancing.h>
81 #include <linux/sched/task.h>
82 #include <linux/nodemask.h>
83 #include <linux/cpuset.h>
84 #include <linux/slab.h>
85 #include <linux/string.h>
86 #include <linux/export.h>
87 #include <linux/nsproxy.h>
88 #include <linux/interrupt.h>
89 #include <linux/init.h>
90 #include <linux/compat.h>
91 #include <linux/ptrace.h>
92 #include <linux/swap.h>
93 #include <linux/seq_file.h>
94 #include <linux/proc_fs.h>
95 #include <linux/migrate.h>
96 #include <linux/ksm.h>
97 #include <linux/rmap.h>
98 #include <linux/security.h>
99 #include <linux/syscalls.h>
100 #include <linux/ctype.h>
101 #include <linux/mm_inline.h>
102 #include <linux/mmu_notifier.h>
103 #include <linux/printk.h>
104 #include <linux/swapops.h>
106 #include <asm/tlbflush.h>
108 #include <linux/uaccess.h>
110 #include "internal.h"
113 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */
114 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */
116 static struct kmem_cache *policy_cache;
117 static struct kmem_cache *sn_cache;
119 /* Highest zone. An specific allocation for a zone below that is not
121 enum zone_type policy_zone = 0;
124 * run-time system-wide default policy => local allocation
126 static struct mempolicy default_policy = {
127 .refcnt = ATOMIC_INIT(1), /* never free it */
131 static struct mempolicy preferred_node_policy[MAX_NUMNODES];
134 * numa_map_to_online_node - Find closest online node
135 * @node: Node id to start the search
137 * Lookup the next closest node by distance if @nid is not online.
139 * Return: this @node if it is online, otherwise the closest node by distance
141 int numa_map_to_online_node(int node)
143 int min_dist = INT_MAX, dist, n, min_node;
145 if (node == NUMA_NO_NODE || node_online(node))
149 for_each_online_node(n) {
150 dist = node_distance(node, n);
151 if (dist < min_dist) {
159 EXPORT_SYMBOL_GPL(numa_map_to_online_node);
161 struct mempolicy *get_task_policy(struct task_struct *p)
163 struct mempolicy *pol = p->mempolicy;
169 node = numa_node_id();
170 if (node != NUMA_NO_NODE) {
171 pol = &preferred_node_policy[node];
172 /* preferred_node_policy is not initialised early in boot */
177 return &default_policy;
180 static const struct mempolicy_operations {
181 int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
182 void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes);
183 } mpol_ops[MPOL_MAX];
185 static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
187 return pol->flags & MPOL_MODE_FLAGS;
190 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
191 const nodemask_t *rel)
194 nodes_fold(tmp, *orig, nodes_weight(*rel));
195 nodes_onto(*ret, tmp, *rel);
198 static int mpol_new_nodemask(struct mempolicy *pol, const nodemask_t *nodes)
200 if (nodes_empty(*nodes))
206 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
208 if (nodes_empty(*nodes))
211 nodes_clear(pol->nodes);
212 node_set(first_node(*nodes), pol->nodes);
217 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
218 * any, for the new policy. mpol_new() has already validated the nodes
219 * parameter with respect to the policy mode and flags.
221 * Must be called holding task's alloc_lock to protect task's mems_allowed
222 * and mempolicy. May also be called holding the mmap_lock for write.
224 static int mpol_set_nodemask(struct mempolicy *pol,
225 const nodemask_t *nodes, struct nodemask_scratch *nsc)
230 * Default (pol==NULL) resp. local memory policies are not a
231 * subject of any remapping. They also do not need any special
234 if (!pol || pol->mode == MPOL_LOCAL)
238 nodes_and(nsc->mask1,
239 cpuset_current_mems_allowed, node_states[N_MEMORY]);
243 if (pol->flags & MPOL_F_RELATIVE_NODES)
244 mpol_relative_nodemask(&nsc->mask2, nodes, &nsc->mask1);
246 nodes_and(nsc->mask2, *nodes, nsc->mask1);
248 if (mpol_store_user_nodemask(pol))
249 pol->w.user_nodemask = *nodes;
251 pol->w.cpuset_mems_allowed = cpuset_current_mems_allowed;
253 ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
258 * This function just creates a new policy, does some check and simple
259 * initialization. You must invoke mpol_set_nodemask() to set nodes.
261 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
264 struct mempolicy *policy;
266 pr_debug("setting mode %d flags %d nodes[0] %lx\n",
267 mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE);
269 if (mode == MPOL_DEFAULT) {
270 if (nodes && !nodes_empty(*nodes))
271 return ERR_PTR(-EINVAL);
277 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
278 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
279 * All other modes require a valid pointer to a non-empty nodemask.
281 if (mode == MPOL_PREFERRED) {
282 if (nodes_empty(*nodes)) {
283 if (((flags & MPOL_F_STATIC_NODES) ||
284 (flags & MPOL_F_RELATIVE_NODES)))
285 return ERR_PTR(-EINVAL);
289 } else if (mode == MPOL_LOCAL) {
290 if (!nodes_empty(*nodes) ||
291 (flags & MPOL_F_STATIC_NODES) ||
292 (flags & MPOL_F_RELATIVE_NODES))
293 return ERR_PTR(-EINVAL);
294 } else if (nodes_empty(*nodes))
295 return ERR_PTR(-EINVAL);
296 policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
298 return ERR_PTR(-ENOMEM);
299 atomic_set(&policy->refcnt, 1);
301 policy->flags = flags;
302 policy->home_node = NUMA_NO_NODE;
307 /* Slow path of a mpol destructor. */
308 void __mpol_put(struct mempolicy *p)
310 if (!atomic_dec_and_test(&p->refcnt))
312 kmem_cache_free(policy_cache, p);
315 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes)
319 static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes)
323 if (pol->flags & MPOL_F_STATIC_NODES)
324 nodes_and(tmp, pol->w.user_nodemask, *nodes);
325 else if (pol->flags & MPOL_F_RELATIVE_NODES)
326 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
328 nodes_remap(tmp, pol->nodes, pol->w.cpuset_mems_allowed,
330 pol->w.cpuset_mems_allowed = *nodes;
333 if (nodes_empty(tmp))
339 static void mpol_rebind_preferred(struct mempolicy *pol,
340 const nodemask_t *nodes)
342 pol->w.cpuset_mems_allowed = *nodes;
346 * mpol_rebind_policy - Migrate a policy to a different set of nodes
348 * Per-vma policies are protected by mmap_lock. Allocations using per-task
349 * policies are protected by task->mems_allowed_seq to prevent a premature
350 * OOM/allocation failure due to parallel nodemask modification.
352 static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask)
354 if (!pol || pol->mode == MPOL_LOCAL)
356 if (!mpol_store_user_nodemask(pol) &&
357 nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
360 mpol_ops[pol->mode].rebind(pol, newmask);
364 * Wrapper for mpol_rebind_policy() that just requires task
365 * pointer, and updates task mempolicy.
367 * Called with task's alloc_lock held.
370 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new)
372 mpol_rebind_policy(tsk->mempolicy, new);
376 * Rebind each vma in mm to new nodemask.
378 * Call holding a reference to mm. Takes mm->mmap_lock during call.
381 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
383 struct vm_area_struct *vma;
384 VMA_ITERATOR(vmi, mm, 0);
387 for_each_vma(vmi, vma)
388 mpol_rebind_policy(vma->vm_policy, new);
389 mmap_write_unlock(mm);
392 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
394 .rebind = mpol_rebind_default,
396 [MPOL_INTERLEAVE] = {
397 .create = mpol_new_nodemask,
398 .rebind = mpol_rebind_nodemask,
401 .create = mpol_new_preferred,
402 .rebind = mpol_rebind_preferred,
405 .create = mpol_new_nodemask,
406 .rebind = mpol_rebind_nodemask,
409 .rebind = mpol_rebind_default,
411 [MPOL_PREFERRED_MANY] = {
412 .create = mpol_new_nodemask,
413 .rebind = mpol_rebind_preferred,
417 static int migrate_folio_add(struct folio *folio, struct list_head *foliolist,
418 unsigned long flags);
421 struct list_head *pagelist;
426 struct vm_area_struct *first;
430 * Check if the folio's nid is in qp->nmask.
432 * If MPOL_MF_INVERT is set in qp->flags, check if the nid is
433 * in the invert of qp->nmask.
435 static inline bool queue_folio_required(struct folio *folio,
436 struct queue_pages *qp)
438 int nid = folio_nid(folio);
439 unsigned long flags = qp->flags;
441 return node_isset(nid, *qp->nmask) == !(flags & MPOL_MF_INVERT);
445 * queue_folios_pmd() has three possible return values:
446 * 0 - folios are placed on the right node or queued successfully, or
447 * special page is met, i.e. huge zero page.
448 * 1 - there is unmovable folio, and MPOL_MF_MOVE* & MPOL_MF_STRICT were
450 * -EIO - is migration entry or only MPOL_MF_STRICT was specified and an
451 * existing folio was already on a node that does not follow the
454 static int queue_folios_pmd(pmd_t *pmd, spinlock_t *ptl, unsigned long addr,
455 unsigned long end, struct mm_walk *walk)
460 struct queue_pages *qp = walk->private;
463 if (unlikely(is_pmd_migration_entry(*pmd))) {
467 folio = pfn_folio(pmd_pfn(*pmd));
468 if (is_huge_zero_page(&folio->page)) {
469 walk->action = ACTION_CONTINUE;
472 if (!queue_folio_required(folio, qp))
476 /* go to folio migration */
477 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
478 if (!vma_migratable(walk->vma) ||
479 migrate_folio_add(folio, qp->pagelist, flags)) {
491 * Scan through pages checking if pages follow certain conditions,
492 * and move them to the pagelist if they do.
494 * queue_folios_pte_range() has three possible return values:
495 * 0 - folios are placed on the right node or queued successfully, or
496 * special page is met, i.e. zero page.
497 * 1 - there is unmovable folio, and MPOL_MF_MOVE* & MPOL_MF_STRICT were
499 * -EIO - only MPOL_MF_STRICT was specified and an existing folio was already
500 * on a node that does not follow the policy.
502 static int queue_folios_pte_range(pmd_t *pmd, unsigned long addr,
503 unsigned long end, struct mm_walk *walk)
505 struct vm_area_struct *vma = walk->vma;
507 struct queue_pages *qp = walk->private;
508 unsigned long flags = qp->flags;
509 bool has_unmovable = false;
510 pte_t *pte, *mapped_pte;
513 ptl = pmd_trans_huge_lock(pmd, vma);
515 return queue_folios_pmd(pmd, ptl, addr, end, walk);
517 if (pmd_trans_unstable(pmd))
520 mapped_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
521 for (; addr != end; pte++, addr += PAGE_SIZE) {
522 if (!pte_present(*pte))
524 folio = vm_normal_folio(vma, addr, *pte);
525 if (!folio || folio_is_zone_device(folio))
528 * vm_normal_folio() filters out zero pages, but there might
529 * still be reserved folios to skip, perhaps in a VDSO.
531 if (folio_test_reserved(folio))
533 if (!queue_folio_required(folio, qp))
535 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
536 /* MPOL_MF_STRICT must be specified if we get here */
537 if (!vma_migratable(vma)) {
538 has_unmovable = true;
543 * Do not abort immediately since there may be
544 * temporary off LRU pages in the range. Still
545 * need migrate other LRU pages.
547 if (migrate_folio_add(folio, qp->pagelist, flags))
548 has_unmovable = true;
552 pte_unmap_unlock(mapped_pte, ptl);
558 return addr != end ? -EIO : 0;
561 static int queue_folios_hugetlb(pte_t *pte, unsigned long hmask,
562 unsigned long addr, unsigned long end,
563 struct mm_walk *walk)
566 #ifdef CONFIG_HUGETLB_PAGE
567 struct queue_pages *qp = walk->private;
568 unsigned long flags = (qp->flags & MPOL_MF_VALID);
573 ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte);
574 entry = huge_ptep_get(pte);
575 if (!pte_present(entry))
577 folio = pfn_folio(pte_pfn(entry));
578 if (!queue_folio_required(folio, qp))
581 if (flags == MPOL_MF_STRICT) {
583 * STRICT alone means only detecting misplaced folio and no
584 * need to further check other vma.
590 if (!vma_migratable(walk->vma)) {
592 * Must be STRICT with MOVE*, otherwise .test_walk() have
593 * stopped walking current vma.
594 * Detecting misplaced folio but allow migrating folios which
602 * With MPOL_MF_MOVE, we try to migrate only unshared folios. If it
603 * is shared it is likely not worth migrating.
605 * To check if the folio is shared, ideally we want to make sure
606 * every page is mapped to the same process. Doing that is very
607 * expensive, so check the estimated mapcount of the folio instead.
609 if (flags & (MPOL_MF_MOVE_ALL) ||
610 (flags & MPOL_MF_MOVE && folio_estimated_sharers(folio) == 1 &&
611 !hugetlb_pmd_shared(pte))) {
612 if (!isolate_hugetlb(folio, qp->pagelist) &&
613 (flags & MPOL_MF_STRICT))
615 * Failed to isolate folio but allow migrating pages
616 * which have been queued.
628 #ifdef CONFIG_NUMA_BALANCING
630 * This is used to mark a range of virtual addresses to be inaccessible.
631 * These are later cleared by a NUMA hinting fault. Depending on these
632 * faults, pages may be migrated for better NUMA placement.
634 * This is assuming that NUMA faults are handled using PROT_NONE. If
635 * an architecture makes a different choice, it will need further
636 * changes to the core.
638 unsigned long change_prot_numa(struct vm_area_struct *vma,
639 unsigned long addr, unsigned long end)
641 struct mmu_gather tlb;
644 tlb_gather_mmu(&tlb, vma->vm_mm);
646 nr_updated = change_protection(&tlb, vma, addr, end, MM_CP_PROT_NUMA);
648 count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated);
650 tlb_finish_mmu(&tlb);
655 static unsigned long change_prot_numa(struct vm_area_struct *vma,
656 unsigned long addr, unsigned long end)
660 #endif /* CONFIG_NUMA_BALANCING */
662 static int queue_pages_test_walk(unsigned long start, unsigned long end,
663 struct mm_walk *walk)
665 struct vm_area_struct *next, *vma = walk->vma;
666 struct queue_pages *qp = walk->private;
667 unsigned long endvma = vma->vm_end;
668 unsigned long flags = qp->flags;
670 /* range check first */
671 VM_BUG_ON_VMA(!range_in_vma(vma, start, end), vma);
675 if (!(flags & MPOL_MF_DISCONTIG_OK) &&
676 (qp->start < vma->vm_start))
677 /* hole at head side of range */
680 next = find_vma(vma->vm_mm, vma->vm_end);
681 if (!(flags & MPOL_MF_DISCONTIG_OK) &&
682 ((vma->vm_end < qp->end) &&
683 (!next || vma->vm_end < next->vm_start)))
684 /* hole at middle or tail of range */
688 * Need check MPOL_MF_STRICT to return -EIO if possible
689 * regardless of vma_migratable
691 if (!vma_migratable(vma) &&
692 !(flags & MPOL_MF_STRICT))
698 if (flags & MPOL_MF_LAZY) {
699 /* Similar to task_numa_work, skip inaccessible VMAs */
700 if (!is_vm_hugetlb_page(vma) && vma_is_accessible(vma) &&
701 !(vma->vm_flags & VM_MIXEDMAP))
702 change_prot_numa(vma, start, endvma);
706 /* queue pages from current vma */
707 if (flags & MPOL_MF_VALID)
712 static const struct mm_walk_ops queue_pages_walk_ops = {
713 .hugetlb_entry = queue_folios_hugetlb,
714 .pmd_entry = queue_folios_pte_range,
715 .test_walk = queue_pages_test_walk,
719 * Walk through page tables and collect pages to be migrated.
721 * If pages found in a given range are on a set of nodes (determined by
722 * @nodes and @flags,) it's isolated and queued to the pagelist which is
723 * passed via @private.
725 * queue_pages_range() has three possible return values:
726 * 1 - there is unmovable page, but MPOL_MF_MOVE* & MPOL_MF_STRICT were
728 * 0 - queue pages successfully or no misplaced page.
729 * errno - i.e. misplaced pages with MPOL_MF_STRICT specified (-EIO) or
730 * memory range specified by nodemask and maxnode points outside
731 * your accessible address space (-EFAULT)
734 queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end,
735 nodemask_t *nodes, unsigned long flags,
736 struct list_head *pagelist)
739 struct queue_pages qp = {
740 .pagelist = pagelist,
748 err = walk_page_range(mm, start, end, &queue_pages_walk_ops, &qp);
751 /* whole range in hole */
758 * Apply policy to a single VMA
759 * This must be called with the mmap_lock held for writing.
761 static int vma_replace_policy(struct vm_area_struct *vma,
762 struct mempolicy *pol)
765 struct mempolicy *old;
766 struct mempolicy *new;
768 pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
769 vma->vm_start, vma->vm_end, vma->vm_pgoff,
770 vma->vm_ops, vma->vm_file,
771 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
777 if (vma->vm_ops && vma->vm_ops->set_policy) {
778 err = vma->vm_ops->set_policy(vma, new);
783 old = vma->vm_policy;
784 vma->vm_policy = new; /* protected by mmap_lock */
793 /* Split or merge the VMA (if required) and apply the new policy */
794 static int mbind_range(struct vma_iterator *vmi, struct vm_area_struct *vma,
795 struct vm_area_struct **prev, unsigned long start,
796 unsigned long end, struct mempolicy *new_pol)
798 struct vm_area_struct *merged;
799 unsigned long vmstart, vmend;
803 vmend = min(end, vma->vm_end);
804 if (start > vma->vm_start) {
808 vmstart = vma->vm_start;
811 if (mpol_equal(vma_policy(vma), new_pol)) {
816 pgoff = vma->vm_pgoff + ((vmstart - vma->vm_start) >> PAGE_SHIFT);
817 merged = vma_merge(vmi, vma->vm_mm, *prev, vmstart, vmend, vma->vm_flags,
818 vma->anon_vma, vma->vm_file, pgoff, new_pol,
819 vma->vm_userfaultfd_ctx, anon_vma_name(vma));
822 return vma_replace_policy(merged, new_pol);
825 if (vma->vm_start != vmstart) {
826 err = split_vma(vmi, vma, vmstart, 1);
831 if (vma->vm_end != vmend) {
832 err = split_vma(vmi, vma, vmend, 0);
838 return vma_replace_policy(vma, new_pol);
841 /* Set the process memory policy */
842 static long do_set_mempolicy(unsigned short mode, unsigned short flags,
845 struct mempolicy *new, *old;
846 NODEMASK_SCRATCH(scratch);
852 new = mpol_new(mode, flags, nodes);
859 ret = mpol_set_nodemask(new, nodes, scratch);
861 task_unlock(current);
866 old = current->mempolicy;
867 current->mempolicy = new;
868 if (new && new->mode == MPOL_INTERLEAVE)
869 current->il_prev = MAX_NUMNODES-1;
870 task_unlock(current);
874 NODEMASK_SCRATCH_FREE(scratch);
879 * Return nodemask for policy for get_mempolicy() query
881 * Called with task's alloc_lock held
883 static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
886 if (p == &default_policy)
891 case MPOL_INTERLEAVE:
893 case MPOL_PREFERRED_MANY:
897 /* return empty node mask for local allocation */
904 static int lookup_node(struct mm_struct *mm, unsigned long addr)
906 struct page *p = NULL;
909 ret = get_user_pages_fast(addr & PAGE_MASK, 1, 0, &p);
911 ret = page_to_nid(p);
917 /* Retrieve NUMA policy */
918 static long do_get_mempolicy(int *policy, nodemask_t *nmask,
919 unsigned long addr, unsigned long flags)
922 struct mm_struct *mm = current->mm;
923 struct vm_area_struct *vma = NULL;
924 struct mempolicy *pol = current->mempolicy, *pol_refcount = NULL;
927 ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
930 if (flags & MPOL_F_MEMS_ALLOWED) {
931 if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
933 *policy = 0; /* just so it's initialized */
935 *nmask = cpuset_current_mems_allowed;
936 task_unlock(current);
940 if (flags & MPOL_F_ADDR) {
942 * Do NOT fall back to task policy if the
943 * vma/shared policy at addr is NULL. We
944 * want to return MPOL_DEFAULT in this case.
947 vma = vma_lookup(mm, addr);
949 mmap_read_unlock(mm);
952 if (vma->vm_ops && vma->vm_ops->get_policy)
953 pol = vma->vm_ops->get_policy(vma, addr);
955 pol = vma->vm_policy;
960 pol = &default_policy; /* indicates default behavior */
962 if (flags & MPOL_F_NODE) {
963 if (flags & MPOL_F_ADDR) {
965 * Take a refcount on the mpol, because we are about to
966 * drop the mmap_lock, after which only "pol" remains
967 * valid, "vma" is stale.
972 mmap_read_unlock(mm);
973 err = lookup_node(mm, addr);
977 } else if (pol == current->mempolicy &&
978 pol->mode == MPOL_INTERLEAVE) {
979 *policy = next_node_in(current->il_prev, pol->nodes);
985 *policy = pol == &default_policy ? MPOL_DEFAULT :
988 * Internal mempolicy flags must be masked off before exposing
989 * the policy to userspace.
991 *policy |= (pol->flags & MPOL_MODE_FLAGS);
996 if (mpol_store_user_nodemask(pol)) {
997 *nmask = pol->w.user_nodemask;
1000 get_policy_nodemask(pol, nmask);
1001 task_unlock(current);
1008 mmap_read_unlock(mm);
1010 mpol_put(pol_refcount);
1014 #ifdef CONFIG_MIGRATION
1015 static int migrate_folio_add(struct folio *folio, struct list_head *foliolist,
1016 unsigned long flags)
1019 * We try to migrate only unshared folios. If it is shared it
1020 * is likely not worth migrating.
1022 * To check if the folio is shared, ideally we want to make sure
1023 * every page is mapped to the same process. Doing that is very
1024 * expensive, so check the estimated mapcount of the folio instead.
1026 if ((flags & MPOL_MF_MOVE_ALL) || folio_estimated_sharers(folio) == 1) {
1027 if (folio_isolate_lru(folio)) {
1028 list_add_tail(&folio->lru, foliolist);
1029 node_stat_mod_folio(folio,
1030 NR_ISOLATED_ANON + folio_is_file_lru(folio),
1031 folio_nr_pages(folio));
1032 } else if (flags & MPOL_MF_STRICT) {
1034 * Non-movable folio may reach here. And, there may be
1035 * temporary off LRU folios or non-LRU movable folios.
1036 * Treat them as unmovable folios since they can't be
1037 * isolated, so they can't be moved at the moment. It
1038 * should return -EIO for this case too.
1048 * Migrate pages from one node to a target node.
1049 * Returns error or the number of pages not migrated.
1051 static int migrate_to_node(struct mm_struct *mm, int source, int dest,
1055 struct vm_area_struct *vma;
1056 LIST_HEAD(pagelist);
1058 struct migration_target_control mtc = {
1060 .gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE,
1064 node_set(source, nmask);
1067 * This does not "check" the range but isolates all pages that
1068 * need migration. Between passing in the full user address
1069 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail.
1071 vma = find_vma(mm, 0);
1072 VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)));
1073 queue_pages_range(mm, vma->vm_start, mm->task_size, &nmask,
1074 flags | MPOL_MF_DISCONTIG_OK, &pagelist);
1076 if (!list_empty(&pagelist)) {
1077 err = migrate_pages(&pagelist, alloc_migration_target, NULL,
1078 (unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL, NULL);
1080 putback_movable_pages(&pagelist);
1087 * Move pages between the two nodesets so as to preserve the physical
1088 * layout as much as possible.
1090 * Returns the number of page that could not be moved.
1092 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1093 const nodemask_t *to, int flags)
1099 lru_cache_disable();
1104 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
1105 * bit in 'to' is not also set in 'tmp'. Clear the found 'source'
1106 * bit in 'tmp', and return that <source, dest> pair for migration.
1107 * The pair of nodemasks 'to' and 'from' define the map.
1109 * If no pair of bits is found that way, fallback to picking some
1110 * pair of 'source' and 'dest' bits that are not the same. If the
1111 * 'source' and 'dest' bits are the same, this represents a node
1112 * that will be migrating to itself, so no pages need move.
1114 * If no bits are left in 'tmp', or if all remaining bits left
1115 * in 'tmp' correspond to the same bit in 'to', return false
1116 * (nothing left to migrate).
1118 * This lets us pick a pair of nodes to migrate between, such that
1119 * if possible the dest node is not already occupied by some other
1120 * source node, minimizing the risk of overloading the memory on a
1121 * node that would happen if we migrated incoming memory to a node
1122 * before migrating outgoing memory source that same node.
1124 * A single scan of tmp is sufficient. As we go, we remember the
1125 * most recent <s, d> pair that moved (s != d). If we find a pair
1126 * that not only moved, but what's better, moved to an empty slot
1127 * (d is not set in tmp), then we break out then, with that pair.
1128 * Otherwise when we finish scanning from_tmp, we at least have the
1129 * most recent <s, d> pair that moved. If we get all the way through
1130 * the scan of tmp without finding any node that moved, much less
1131 * moved to an empty node, then there is nothing left worth migrating.
1135 while (!nodes_empty(tmp)) {
1137 int source = NUMA_NO_NODE;
1140 for_each_node_mask(s, tmp) {
1143 * do_migrate_pages() tries to maintain the relative
1144 * node relationship of the pages established between
1145 * threads and memory areas.
1147 * However if the number of source nodes is not equal to
1148 * the number of destination nodes we can not preserve
1149 * this node relative relationship. In that case, skip
1150 * copying memory from a node that is in the destination
1153 * Example: [2,3,4] -> [3,4,5] moves everything.
1154 * [0-7] - > [3,4,5] moves only 0,1,2,6,7.
1157 if ((nodes_weight(*from) != nodes_weight(*to)) &&
1158 (node_isset(s, *to)))
1161 d = node_remap(s, *from, *to);
1165 source = s; /* Node moved. Memorize */
1168 /* dest not in remaining from nodes? */
1169 if (!node_isset(dest, tmp))
1172 if (source == NUMA_NO_NODE)
1175 node_clear(source, tmp);
1176 err = migrate_to_node(mm, source, dest, flags);
1182 mmap_read_unlock(mm);
1192 * Allocate a new page for page migration based on vma policy.
1193 * Start by assuming the page is mapped by the same vma as contains @start.
1194 * Search forward from there, if not. N.B., this assumes that the
1195 * list of pages handed to migrate_pages()--which is how we get here--
1196 * is in virtual address order.
1198 static struct page *new_page(struct page *page, unsigned long start)
1200 struct folio *dst, *src = page_folio(page);
1201 struct vm_area_struct *vma;
1202 unsigned long address;
1203 VMA_ITERATOR(vmi, current->mm, start);
1204 gfp_t gfp = GFP_HIGHUSER_MOVABLE | __GFP_RETRY_MAYFAIL;
1206 for_each_vma(vmi, vma) {
1207 address = page_address_in_vma(page, vma);
1208 if (address != -EFAULT)
1212 if (folio_test_hugetlb(src)) {
1213 dst = alloc_hugetlb_folio_vma(folio_hstate(src),
1218 if (folio_test_large(src))
1219 gfp = GFP_TRANSHUGE;
1222 * if !vma, vma_alloc_folio() will use task or system default policy
1224 dst = vma_alloc_folio(gfp, folio_order(src), vma, address,
1225 folio_test_large(src));
1230 static int migrate_folio_add(struct folio *folio, struct list_head *foliolist,
1231 unsigned long flags)
1236 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1237 const nodemask_t *to, int flags)
1242 static struct page *new_page(struct page *page, unsigned long start)
1248 static long do_mbind(unsigned long start, unsigned long len,
1249 unsigned short mode, unsigned short mode_flags,
1250 nodemask_t *nmask, unsigned long flags)
1252 struct mm_struct *mm = current->mm;
1253 struct vm_area_struct *vma, *prev;
1254 struct vma_iterator vmi;
1255 struct mempolicy *new;
1259 LIST_HEAD(pagelist);
1261 if (flags & ~(unsigned long)MPOL_MF_VALID)
1263 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1266 if (start & ~PAGE_MASK)
1269 if (mode == MPOL_DEFAULT)
1270 flags &= ~MPOL_MF_STRICT;
1272 len = PAGE_ALIGN(len);
1280 new = mpol_new(mode, mode_flags, nmask);
1282 return PTR_ERR(new);
1284 if (flags & MPOL_MF_LAZY)
1285 new->flags |= MPOL_F_MOF;
1288 * If we are using the default policy then operation
1289 * on discontinuous address spaces is okay after all
1292 flags |= MPOL_MF_DISCONTIG_OK;
1294 pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1295 start, start + len, mode, mode_flags,
1296 nmask ? nodes_addr(*nmask)[0] : NUMA_NO_NODE);
1298 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
1300 lru_cache_disable();
1303 NODEMASK_SCRATCH(scratch);
1305 mmap_write_lock(mm);
1306 err = mpol_set_nodemask(new, nmask, scratch);
1308 mmap_write_unlock(mm);
1311 NODEMASK_SCRATCH_FREE(scratch);
1316 ret = queue_pages_range(mm, start, end, nmask,
1317 flags | MPOL_MF_INVERT, &pagelist);
1324 vma_iter_init(&vmi, mm, start);
1325 prev = vma_prev(&vmi);
1326 for_each_vma_range(vmi, vma, end) {
1327 err = mbind_range(&vmi, vma, &prev, start, end, new);
1335 if (!list_empty(&pagelist)) {
1336 WARN_ON_ONCE(flags & MPOL_MF_LAZY);
1337 nr_failed = migrate_pages(&pagelist, new_page, NULL,
1338 start, MIGRATE_SYNC, MR_MEMPOLICY_MBIND, NULL);
1340 putback_movable_pages(&pagelist);
1343 if ((ret > 0) || (nr_failed && (flags & MPOL_MF_STRICT)))
1347 if (!list_empty(&pagelist))
1348 putback_movable_pages(&pagelist);
1351 mmap_write_unlock(mm);
1354 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
1360 * User space interface with variable sized bitmaps for nodelists.
1362 static int get_bitmap(unsigned long *mask, const unsigned long __user *nmask,
1363 unsigned long maxnode)
1365 unsigned long nlongs = BITS_TO_LONGS(maxnode);
1368 if (in_compat_syscall())
1369 ret = compat_get_bitmap(mask,
1370 (const compat_ulong_t __user *)nmask,
1373 ret = copy_from_user(mask, nmask,
1374 nlongs * sizeof(unsigned long));
1379 if (maxnode % BITS_PER_LONG)
1380 mask[nlongs - 1] &= (1UL << (maxnode % BITS_PER_LONG)) - 1;
1385 /* Copy a node mask from user space. */
1386 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1387 unsigned long maxnode)
1390 nodes_clear(*nodes);
1391 if (maxnode == 0 || !nmask)
1393 if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1397 * When the user specified more nodes than supported just check
1398 * if the non supported part is all zero, one word at a time,
1399 * starting at the end.
1401 while (maxnode > MAX_NUMNODES) {
1402 unsigned long bits = min_t(unsigned long, maxnode, BITS_PER_LONG);
1405 if (get_bitmap(&t, &nmask[(maxnode - 1) / BITS_PER_LONG], bits))
1408 if (maxnode - bits >= MAX_NUMNODES) {
1411 maxnode = MAX_NUMNODES;
1412 t &= ~((1UL << (MAX_NUMNODES % BITS_PER_LONG)) - 1);
1418 return get_bitmap(nodes_addr(*nodes), nmask, maxnode);
1421 /* Copy a kernel node mask to user space */
1422 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1425 unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1426 unsigned int nbytes = BITS_TO_LONGS(nr_node_ids) * sizeof(long);
1427 bool compat = in_compat_syscall();
1430 nbytes = BITS_TO_COMPAT_LONGS(nr_node_ids) * sizeof(compat_long_t);
1432 if (copy > nbytes) {
1433 if (copy > PAGE_SIZE)
1435 if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1438 maxnode = nr_node_ids;
1442 return compat_put_bitmap((compat_ulong_t __user *)mask,
1443 nodes_addr(*nodes), maxnode);
1445 return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1448 /* Basic parameter sanity check used by both mbind() and set_mempolicy() */
1449 static inline int sanitize_mpol_flags(int *mode, unsigned short *flags)
1451 *flags = *mode & MPOL_MODE_FLAGS;
1452 *mode &= ~MPOL_MODE_FLAGS;
1454 if ((unsigned int)(*mode) >= MPOL_MAX)
1456 if ((*flags & MPOL_F_STATIC_NODES) && (*flags & MPOL_F_RELATIVE_NODES))
1458 if (*flags & MPOL_F_NUMA_BALANCING) {
1459 if (*mode != MPOL_BIND)
1461 *flags |= (MPOL_F_MOF | MPOL_F_MORON);
1466 static long kernel_mbind(unsigned long start, unsigned long len,
1467 unsigned long mode, const unsigned long __user *nmask,
1468 unsigned long maxnode, unsigned int flags)
1470 unsigned short mode_flags;
1475 start = untagged_addr(start);
1476 err = sanitize_mpol_flags(&lmode, &mode_flags);
1480 err = get_nodes(&nodes, nmask, maxnode);
1484 return do_mbind(start, len, lmode, mode_flags, &nodes, flags);
1487 SYSCALL_DEFINE4(set_mempolicy_home_node, unsigned long, start, unsigned long, len,
1488 unsigned long, home_node, unsigned long, flags)
1490 struct mm_struct *mm = current->mm;
1491 struct vm_area_struct *vma, *prev;
1492 struct mempolicy *new, *old;
1495 VMA_ITERATOR(vmi, mm, start);
1497 start = untagged_addr(start);
1498 if (start & ~PAGE_MASK)
1501 * flags is used for future extension if any.
1507 * Check home_node is online to avoid accessing uninitialized
1510 if (home_node >= MAX_NUMNODES || !node_online(home_node))
1513 len = PAGE_ALIGN(len);
1520 mmap_write_lock(mm);
1521 prev = vma_prev(&vmi);
1522 for_each_vma_range(vmi, vma, end) {
1524 * If any vma in the range got policy other than MPOL_BIND
1525 * or MPOL_PREFERRED_MANY we return error. We don't reset
1526 * the home node for vmas we already updated before.
1528 old = vma_policy(vma);
1531 if (old->mode != MPOL_BIND && old->mode != MPOL_PREFERRED_MANY) {
1535 new = mpol_dup(old);
1541 new->home_node = home_node;
1542 err = mbind_range(&vmi, vma, &prev, start, end, new);
1547 mmap_write_unlock(mm);
1551 SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1552 unsigned long, mode, const unsigned long __user *, nmask,
1553 unsigned long, maxnode, unsigned int, flags)
1555 return kernel_mbind(start, len, mode, nmask, maxnode, flags);
1558 /* Set the process memory policy */
1559 static long kernel_set_mempolicy(int mode, const unsigned long __user *nmask,
1560 unsigned long maxnode)
1562 unsigned short mode_flags;
1567 err = sanitize_mpol_flags(&lmode, &mode_flags);
1571 err = get_nodes(&nodes, nmask, maxnode);
1575 return do_set_mempolicy(lmode, mode_flags, &nodes);
1578 SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask,
1579 unsigned long, maxnode)
1581 return kernel_set_mempolicy(mode, nmask, maxnode);
1584 static int kernel_migrate_pages(pid_t pid, unsigned long maxnode,
1585 const unsigned long __user *old_nodes,
1586 const unsigned long __user *new_nodes)
1588 struct mm_struct *mm = NULL;
1589 struct task_struct *task;
1590 nodemask_t task_nodes;
1594 NODEMASK_SCRATCH(scratch);
1599 old = &scratch->mask1;
1600 new = &scratch->mask2;
1602 err = get_nodes(old, old_nodes, maxnode);
1606 err = get_nodes(new, new_nodes, maxnode);
1610 /* Find the mm_struct */
1612 task = pid ? find_task_by_vpid(pid) : current;
1618 get_task_struct(task);
1623 * Check if this process has the right to modify the specified process.
1624 * Use the regular "ptrace_may_access()" checks.
1626 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1633 task_nodes = cpuset_mems_allowed(task);
1634 /* Is the user allowed to access the target nodes? */
1635 if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1640 task_nodes = cpuset_mems_allowed(current);
1641 nodes_and(*new, *new, task_nodes);
1642 if (nodes_empty(*new))
1645 err = security_task_movememory(task);
1649 mm = get_task_mm(task);
1650 put_task_struct(task);
1657 err = do_migrate_pages(mm, old, new,
1658 capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1662 NODEMASK_SCRATCH_FREE(scratch);
1667 put_task_struct(task);
1672 SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1673 const unsigned long __user *, old_nodes,
1674 const unsigned long __user *, new_nodes)
1676 return kernel_migrate_pages(pid, maxnode, old_nodes, new_nodes);
1680 /* Retrieve NUMA policy */
1681 static int kernel_get_mempolicy(int __user *policy,
1682 unsigned long __user *nmask,
1683 unsigned long maxnode,
1685 unsigned long flags)
1691 if (nmask != NULL && maxnode < nr_node_ids)
1694 addr = untagged_addr(addr);
1696 err = do_get_mempolicy(&pval, &nodes, addr, flags);
1701 if (policy && put_user(pval, policy))
1705 err = copy_nodes_to_user(nmask, maxnode, &nodes);
1710 SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1711 unsigned long __user *, nmask, unsigned long, maxnode,
1712 unsigned long, addr, unsigned long, flags)
1714 return kernel_get_mempolicy(policy, nmask, maxnode, addr, flags);
1717 bool vma_migratable(struct vm_area_struct *vma)
1719 if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1723 * DAX device mappings require predictable access latency, so avoid
1724 * incurring periodic faults.
1726 if (vma_is_dax(vma))
1729 if (is_vm_hugetlb_page(vma) &&
1730 !hugepage_migration_supported(hstate_vma(vma)))
1734 * Migration allocates pages in the highest zone. If we cannot
1735 * do so then migration (at least from node to node) is not
1739 gfp_zone(mapping_gfp_mask(vma->vm_file->f_mapping))
1745 struct mempolicy *__get_vma_policy(struct vm_area_struct *vma,
1748 struct mempolicy *pol = NULL;
1751 if (vma->vm_ops && vma->vm_ops->get_policy) {
1752 pol = vma->vm_ops->get_policy(vma, addr);
1753 } else if (vma->vm_policy) {
1754 pol = vma->vm_policy;
1757 * shmem_alloc_page() passes MPOL_F_SHARED policy with
1758 * a pseudo vma whose vma->vm_ops=NULL. Take a reference
1759 * count on these policies which will be dropped by
1760 * mpol_cond_put() later
1762 if (mpol_needs_cond_ref(pol))
1771 * get_vma_policy(@vma, @addr)
1772 * @vma: virtual memory area whose policy is sought
1773 * @addr: address in @vma for shared policy lookup
1775 * Returns effective policy for a VMA at specified address.
1776 * Falls back to current->mempolicy or system default policy, as necessary.
1777 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1778 * count--added by the get_policy() vm_op, as appropriate--to protect against
1779 * freeing by another task. It is the caller's responsibility to free the
1780 * extra reference for shared policies.
1782 static struct mempolicy *get_vma_policy(struct vm_area_struct *vma,
1785 struct mempolicy *pol = __get_vma_policy(vma, addr);
1788 pol = get_task_policy(current);
1793 bool vma_policy_mof(struct vm_area_struct *vma)
1795 struct mempolicy *pol;
1797 if (vma->vm_ops && vma->vm_ops->get_policy) {
1800 pol = vma->vm_ops->get_policy(vma, vma->vm_start);
1801 if (pol && (pol->flags & MPOL_F_MOF))
1808 pol = vma->vm_policy;
1810 pol = get_task_policy(current);
1812 return pol->flags & MPOL_F_MOF;
1815 bool apply_policy_zone(struct mempolicy *policy, enum zone_type zone)
1817 enum zone_type dynamic_policy_zone = policy_zone;
1819 BUG_ON(dynamic_policy_zone == ZONE_MOVABLE);
1822 * if policy->nodes has movable memory only,
1823 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only.
1825 * policy->nodes is intersect with node_states[N_MEMORY].
1826 * so if the following test fails, it implies
1827 * policy->nodes has movable memory only.
1829 if (!nodes_intersects(policy->nodes, node_states[N_HIGH_MEMORY]))
1830 dynamic_policy_zone = ZONE_MOVABLE;
1832 return zone >= dynamic_policy_zone;
1836 * Return a nodemask representing a mempolicy for filtering nodes for
1839 nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1841 int mode = policy->mode;
1843 /* Lower zones don't get a nodemask applied for MPOL_BIND */
1844 if (unlikely(mode == MPOL_BIND) &&
1845 apply_policy_zone(policy, gfp_zone(gfp)) &&
1846 cpuset_nodemask_valid_mems_allowed(&policy->nodes))
1847 return &policy->nodes;
1849 if (mode == MPOL_PREFERRED_MANY)
1850 return &policy->nodes;
1856 * Return the preferred node id for 'prefer' mempolicy, and return
1857 * the given id for all other policies.
1859 * policy_node() is always coupled with policy_nodemask(), which
1860 * secures the nodemask limit for 'bind' and 'prefer-many' policy.
1862 static int policy_node(gfp_t gfp, struct mempolicy *policy, int nd)
1864 if (policy->mode == MPOL_PREFERRED) {
1865 nd = first_node(policy->nodes);
1868 * __GFP_THISNODE shouldn't even be used with the bind policy
1869 * because we might easily break the expectation to stay on the
1870 * requested node and not break the policy.
1872 WARN_ON_ONCE(policy->mode == MPOL_BIND && (gfp & __GFP_THISNODE));
1875 if ((policy->mode == MPOL_BIND ||
1876 policy->mode == MPOL_PREFERRED_MANY) &&
1877 policy->home_node != NUMA_NO_NODE)
1878 return policy->home_node;
1883 /* Do dynamic interleaving for a process */
1884 static unsigned interleave_nodes(struct mempolicy *policy)
1887 struct task_struct *me = current;
1889 next = next_node_in(me->il_prev, policy->nodes);
1890 if (next < MAX_NUMNODES)
1896 * Depending on the memory policy provide a node from which to allocate the
1899 unsigned int mempolicy_slab_node(void)
1901 struct mempolicy *policy;
1902 int node = numa_mem_id();
1907 policy = current->mempolicy;
1911 switch (policy->mode) {
1912 case MPOL_PREFERRED:
1913 return first_node(policy->nodes);
1915 case MPOL_INTERLEAVE:
1916 return interleave_nodes(policy);
1919 case MPOL_PREFERRED_MANY:
1924 * Follow bind policy behavior and start allocation at the
1927 struct zonelist *zonelist;
1928 enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1929 zonelist = &NODE_DATA(node)->node_zonelists[ZONELIST_FALLBACK];
1930 z = first_zones_zonelist(zonelist, highest_zoneidx,
1932 return z->zone ? zone_to_nid(z->zone) : node;
1943 * Do static interleaving for a VMA with known offset @n. Returns the n'th
1944 * node in pol->nodes (starting from n=0), wrapping around if n exceeds the
1945 * number of present nodes.
1947 static unsigned offset_il_node(struct mempolicy *pol, unsigned long n)
1949 nodemask_t nodemask = pol->nodes;
1950 unsigned int target, nnodes;
1954 * The barrier will stabilize the nodemask in a register or on
1955 * the stack so that it will stop changing under the code.
1957 * Between first_node() and next_node(), pol->nodes could be changed
1958 * by other threads. So we put pol->nodes in a local stack.
1962 nnodes = nodes_weight(nodemask);
1964 return numa_node_id();
1965 target = (unsigned int)n % nnodes;
1966 nid = first_node(nodemask);
1967 for (i = 0; i < target; i++)
1968 nid = next_node(nid, nodemask);
1972 /* Determine a node number for interleave */
1973 static inline unsigned interleave_nid(struct mempolicy *pol,
1974 struct vm_area_struct *vma, unsigned long addr, int shift)
1980 * for small pages, there is no difference between
1981 * shift and PAGE_SHIFT, so the bit-shift is safe.
1982 * for huge pages, since vm_pgoff is in units of small
1983 * pages, we need to shift off the always 0 bits to get
1986 BUG_ON(shift < PAGE_SHIFT);
1987 off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
1988 off += (addr - vma->vm_start) >> shift;
1989 return offset_il_node(pol, off);
1991 return interleave_nodes(pol);
1994 #ifdef CONFIG_HUGETLBFS
1996 * huge_node(@vma, @addr, @gfp_flags, @mpol)
1997 * @vma: virtual memory area whose policy is sought
1998 * @addr: address in @vma for shared policy lookup and interleave policy
1999 * @gfp_flags: for requested zone
2000 * @mpol: pointer to mempolicy pointer for reference counted mempolicy
2001 * @nodemask: pointer to nodemask pointer for 'bind' and 'prefer-many' policy
2003 * Returns a nid suitable for a huge page allocation and a pointer
2004 * to the struct mempolicy for conditional unref after allocation.
2005 * If the effective policy is 'bind' or 'prefer-many', returns a pointer
2006 * to the mempolicy's @nodemask for filtering the zonelist.
2008 * Must be protected by read_mems_allowed_begin()
2010 int huge_node(struct vm_area_struct *vma, unsigned long addr, gfp_t gfp_flags,
2011 struct mempolicy **mpol, nodemask_t **nodemask)
2016 *mpol = get_vma_policy(vma, addr);
2018 mode = (*mpol)->mode;
2020 if (unlikely(mode == MPOL_INTERLEAVE)) {
2021 nid = interleave_nid(*mpol, vma, addr,
2022 huge_page_shift(hstate_vma(vma)));
2024 nid = policy_node(gfp_flags, *mpol, numa_node_id());
2025 if (mode == MPOL_BIND || mode == MPOL_PREFERRED_MANY)
2026 *nodemask = &(*mpol)->nodes;
2032 * init_nodemask_of_mempolicy
2034 * If the current task's mempolicy is "default" [NULL], return 'false'
2035 * to indicate default policy. Otherwise, extract the policy nodemask
2036 * for 'bind' or 'interleave' policy into the argument nodemask, or
2037 * initialize the argument nodemask to contain the single node for
2038 * 'preferred' or 'local' policy and return 'true' to indicate presence
2039 * of non-default mempolicy.
2041 * We don't bother with reference counting the mempolicy [mpol_get/put]
2042 * because the current task is examining it's own mempolicy and a task's
2043 * mempolicy is only ever changed by the task itself.
2045 * N.B., it is the caller's responsibility to free a returned nodemask.
2047 bool init_nodemask_of_mempolicy(nodemask_t *mask)
2049 struct mempolicy *mempolicy;
2051 if (!(mask && current->mempolicy))
2055 mempolicy = current->mempolicy;
2056 switch (mempolicy->mode) {
2057 case MPOL_PREFERRED:
2058 case MPOL_PREFERRED_MANY:
2060 case MPOL_INTERLEAVE:
2061 *mask = mempolicy->nodes;
2065 init_nodemask_of_node(mask, numa_node_id());
2071 task_unlock(current);
2078 * mempolicy_in_oom_domain
2080 * If tsk's mempolicy is "bind", check for intersection between mask and
2081 * the policy nodemask. Otherwise, return true for all other policies
2082 * including "interleave", as a tsk with "interleave" policy may have
2083 * memory allocated from all nodes in system.
2085 * Takes task_lock(tsk) to prevent freeing of its mempolicy.
2087 bool mempolicy_in_oom_domain(struct task_struct *tsk,
2088 const nodemask_t *mask)
2090 struct mempolicy *mempolicy;
2097 mempolicy = tsk->mempolicy;
2098 if (mempolicy && mempolicy->mode == MPOL_BIND)
2099 ret = nodes_intersects(mempolicy->nodes, *mask);
2105 /* Allocate a page in interleaved policy.
2106 Own path because it needs to do special accounting. */
2107 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
2112 page = __alloc_pages(gfp, order, nid, NULL);
2113 /* skip NUMA_INTERLEAVE_HIT counter update if numa stats is disabled */
2114 if (!static_branch_likely(&vm_numa_stat_key))
2116 if (page && page_to_nid(page) == nid) {
2118 __count_numa_event(page_zone(page), NUMA_INTERLEAVE_HIT);
2124 static struct page *alloc_pages_preferred_many(gfp_t gfp, unsigned int order,
2125 int nid, struct mempolicy *pol)
2128 gfp_t preferred_gfp;
2131 * This is a two pass approach. The first pass will only try the
2132 * preferred nodes but skip the direct reclaim and allow the
2133 * allocation to fail, while the second pass will try all the
2136 preferred_gfp = gfp | __GFP_NOWARN;
2137 preferred_gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2138 page = __alloc_pages(preferred_gfp, order, nid, &pol->nodes);
2140 page = __alloc_pages(gfp, order, nid, NULL);
2146 * vma_alloc_folio - Allocate a folio for a VMA.
2148 * @order: Order of the folio.
2149 * @vma: Pointer to VMA or NULL if not available.
2150 * @addr: Virtual address of the allocation. Must be inside @vma.
2151 * @hugepage: For hugepages try only the preferred node if possible.
2153 * Allocate a folio for a specific address in @vma, using the appropriate
2154 * NUMA policy. When @vma is not NULL the caller must hold the mmap_lock
2155 * of the mm_struct of the VMA to prevent it from going away. Should be
2156 * used for all allocations for folios that will be mapped into user space.
2158 * Return: The folio on success or NULL if allocation fails.
2160 struct folio *vma_alloc_folio(gfp_t gfp, int order, struct vm_area_struct *vma,
2161 unsigned long addr, bool hugepage)
2163 struct mempolicy *pol;
2164 int node = numa_node_id();
2165 struct folio *folio;
2169 pol = get_vma_policy(vma, addr);
2171 if (pol->mode == MPOL_INTERLEAVE) {
2175 nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order);
2178 page = alloc_page_interleave(gfp, order, nid);
2179 if (page && order > 1)
2180 prep_transhuge_page(page);
2181 folio = (struct folio *)page;
2185 if (pol->mode == MPOL_PREFERRED_MANY) {
2188 node = policy_node(gfp, pol, node);
2190 page = alloc_pages_preferred_many(gfp, order, node, pol);
2192 if (page && order > 1)
2193 prep_transhuge_page(page);
2194 folio = (struct folio *)page;
2198 if (unlikely(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && hugepage)) {
2199 int hpage_node = node;
2202 * For hugepage allocation and non-interleave policy which
2203 * allows the current node (or other explicitly preferred
2204 * node) we only try to allocate from the current/preferred
2205 * node and don't fall back to other nodes, as the cost of
2206 * remote accesses would likely offset THP benefits.
2208 * If the policy is interleave or does not allow the current
2209 * node in its nodemask, we allocate the standard way.
2211 if (pol->mode == MPOL_PREFERRED)
2212 hpage_node = first_node(pol->nodes);
2214 nmask = policy_nodemask(gfp, pol);
2215 if (!nmask || node_isset(hpage_node, *nmask)) {
2218 * First, try to allocate THP only on local node, but
2219 * don't reclaim unnecessarily, just compact.
2221 folio = __folio_alloc_node(gfp | __GFP_THISNODE |
2222 __GFP_NORETRY, order, hpage_node);
2225 * If hugepage allocations are configured to always
2226 * synchronous compact or the vma has been madvised
2227 * to prefer hugepage backing, retry allowing remote
2228 * memory with both reclaim and compact as well.
2230 if (!folio && (gfp & __GFP_DIRECT_RECLAIM))
2231 folio = __folio_alloc(gfp, order, hpage_node,
2238 nmask = policy_nodemask(gfp, pol);
2239 preferred_nid = policy_node(gfp, pol, node);
2240 folio = __folio_alloc(gfp, order, preferred_nid, nmask);
2245 EXPORT_SYMBOL(vma_alloc_folio);
2248 * alloc_pages - Allocate pages.
2250 * @order: Power of two of number of pages to allocate.
2252 * Allocate 1 << @order contiguous pages. The physical address of the
2253 * first page is naturally aligned (eg an order-3 allocation will be aligned
2254 * to a multiple of 8 * PAGE_SIZE bytes). The NUMA policy of the current
2255 * process is honoured when in process context.
2257 * Context: Can be called from any context, providing the appropriate GFP
2259 * Return: The page on success or NULL if allocation fails.
2261 struct page *alloc_pages(gfp_t gfp, unsigned order)
2263 struct mempolicy *pol = &default_policy;
2266 if (!in_interrupt() && !(gfp & __GFP_THISNODE))
2267 pol = get_task_policy(current);
2270 * No reference counting needed for current->mempolicy
2271 * nor system default_policy
2273 if (pol->mode == MPOL_INTERLEAVE)
2274 page = alloc_page_interleave(gfp, order, interleave_nodes(pol));
2275 else if (pol->mode == MPOL_PREFERRED_MANY)
2276 page = alloc_pages_preferred_many(gfp, order,
2277 policy_node(gfp, pol, numa_node_id()), pol);
2279 page = __alloc_pages(gfp, order,
2280 policy_node(gfp, pol, numa_node_id()),
2281 policy_nodemask(gfp, pol));
2285 EXPORT_SYMBOL(alloc_pages);
2287 struct folio *folio_alloc(gfp_t gfp, unsigned order)
2289 struct page *page = alloc_pages(gfp | __GFP_COMP, order);
2291 if (page && order > 1)
2292 prep_transhuge_page(page);
2293 return (struct folio *)page;
2295 EXPORT_SYMBOL(folio_alloc);
2297 static unsigned long alloc_pages_bulk_array_interleave(gfp_t gfp,
2298 struct mempolicy *pol, unsigned long nr_pages,
2299 struct page **page_array)
2302 unsigned long nr_pages_per_node;
2305 unsigned long nr_allocated;
2306 unsigned long total_allocated = 0;
2308 nodes = nodes_weight(pol->nodes);
2309 nr_pages_per_node = nr_pages / nodes;
2310 delta = nr_pages - nodes * nr_pages_per_node;
2312 for (i = 0; i < nodes; i++) {
2314 nr_allocated = __alloc_pages_bulk(gfp,
2315 interleave_nodes(pol), NULL,
2316 nr_pages_per_node + 1, NULL,
2320 nr_allocated = __alloc_pages_bulk(gfp,
2321 interleave_nodes(pol), NULL,
2322 nr_pages_per_node, NULL, page_array);
2325 page_array += nr_allocated;
2326 total_allocated += nr_allocated;
2329 return total_allocated;
2332 static unsigned long alloc_pages_bulk_array_preferred_many(gfp_t gfp, int nid,
2333 struct mempolicy *pol, unsigned long nr_pages,
2334 struct page **page_array)
2336 gfp_t preferred_gfp;
2337 unsigned long nr_allocated = 0;
2339 preferred_gfp = gfp | __GFP_NOWARN;
2340 preferred_gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2342 nr_allocated = __alloc_pages_bulk(preferred_gfp, nid, &pol->nodes,
2343 nr_pages, NULL, page_array);
2345 if (nr_allocated < nr_pages)
2346 nr_allocated += __alloc_pages_bulk(gfp, numa_node_id(), NULL,
2347 nr_pages - nr_allocated, NULL,
2348 page_array + nr_allocated);
2349 return nr_allocated;
2352 /* alloc pages bulk and mempolicy should be considered at the
2353 * same time in some situation such as vmalloc.
2355 * It can accelerate memory allocation especially interleaving
2358 unsigned long alloc_pages_bulk_array_mempolicy(gfp_t gfp,
2359 unsigned long nr_pages, struct page **page_array)
2361 struct mempolicy *pol = &default_policy;
2363 if (!in_interrupt() && !(gfp & __GFP_THISNODE))
2364 pol = get_task_policy(current);
2366 if (pol->mode == MPOL_INTERLEAVE)
2367 return alloc_pages_bulk_array_interleave(gfp, pol,
2368 nr_pages, page_array);
2370 if (pol->mode == MPOL_PREFERRED_MANY)
2371 return alloc_pages_bulk_array_preferred_many(gfp,
2372 numa_node_id(), pol, nr_pages, page_array);
2374 return __alloc_pages_bulk(gfp, policy_node(gfp, pol, numa_node_id()),
2375 policy_nodemask(gfp, pol), nr_pages, NULL,
2379 int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst)
2381 struct mempolicy *pol = mpol_dup(vma_policy(src));
2384 return PTR_ERR(pol);
2385 dst->vm_policy = pol;
2390 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
2391 * rebinds the mempolicy its copying by calling mpol_rebind_policy()
2392 * with the mems_allowed returned by cpuset_mems_allowed(). This
2393 * keeps mempolicies cpuset relative after its cpuset moves. See
2394 * further kernel/cpuset.c update_nodemask().
2396 * current's mempolicy may be rebinded by the other task(the task that changes
2397 * cpuset's mems), so we needn't do rebind work for current task.
2400 /* Slow path of a mempolicy duplicate */
2401 struct mempolicy *__mpol_dup(struct mempolicy *old)
2403 struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2406 return ERR_PTR(-ENOMEM);
2408 /* task's mempolicy is protected by alloc_lock */
2409 if (old == current->mempolicy) {
2412 task_unlock(current);
2416 if (current_cpuset_is_being_rebound()) {
2417 nodemask_t mems = cpuset_mems_allowed(current);
2418 mpol_rebind_policy(new, &mems);
2420 atomic_set(&new->refcnt, 1);
2424 /* Slow path of a mempolicy comparison */
2425 bool __mpol_equal(struct mempolicy *a, struct mempolicy *b)
2429 if (a->mode != b->mode)
2431 if (a->flags != b->flags)
2433 if (a->home_node != b->home_node)
2435 if (mpol_store_user_nodemask(a))
2436 if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
2441 case MPOL_INTERLEAVE:
2442 case MPOL_PREFERRED:
2443 case MPOL_PREFERRED_MANY:
2444 return !!nodes_equal(a->nodes, b->nodes);
2454 * Shared memory backing store policy support.
2456 * Remember policies even when nobody has shared memory mapped.
2457 * The policies are kept in Red-Black tree linked from the inode.
2458 * They are protected by the sp->lock rwlock, which should be held
2459 * for any accesses to the tree.
2463 * lookup first element intersecting start-end. Caller holds sp->lock for
2464 * reading or for writing
2466 static struct sp_node *
2467 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
2469 struct rb_node *n = sp->root.rb_node;
2472 struct sp_node *p = rb_entry(n, struct sp_node, nd);
2474 if (start >= p->end)
2476 else if (end <= p->start)
2484 struct sp_node *w = NULL;
2485 struct rb_node *prev = rb_prev(n);
2488 w = rb_entry(prev, struct sp_node, nd);
2489 if (w->end <= start)
2493 return rb_entry(n, struct sp_node, nd);
2497 * Insert a new shared policy into the list. Caller holds sp->lock for
2500 static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2502 struct rb_node **p = &sp->root.rb_node;
2503 struct rb_node *parent = NULL;
2508 nd = rb_entry(parent, struct sp_node, nd);
2509 if (new->start < nd->start)
2511 else if (new->end > nd->end)
2512 p = &(*p)->rb_right;
2516 rb_link_node(&new->nd, parent, p);
2517 rb_insert_color(&new->nd, &sp->root);
2518 pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
2519 new->policy ? new->policy->mode : 0);
2522 /* Find shared policy intersecting idx */
2524 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
2526 struct mempolicy *pol = NULL;
2529 if (!sp->root.rb_node)
2531 read_lock(&sp->lock);
2532 sn = sp_lookup(sp, idx, idx+1);
2534 mpol_get(sn->policy);
2537 read_unlock(&sp->lock);
2541 static void sp_free(struct sp_node *n)
2543 mpol_put(n->policy);
2544 kmem_cache_free(sn_cache, n);
2548 * mpol_misplaced - check whether current page node is valid in policy
2550 * @page: page to be checked
2551 * @vma: vm area where page mapped
2552 * @addr: virtual address where page mapped
2554 * Lookup current policy node id for vma,addr and "compare to" page's
2555 * node id. Policy determination "mimics" alloc_page_vma().
2556 * Called from fault path where we know the vma and faulting address.
2558 * Return: NUMA_NO_NODE if the page is in a node that is valid for this
2559 * policy, or a suitable node ID to allocate a replacement page from.
2561 int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr)
2563 struct mempolicy *pol;
2565 int curnid = page_to_nid(page);
2566 unsigned long pgoff;
2567 int thiscpu = raw_smp_processor_id();
2568 int thisnid = cpu_to_node(thiscpu);
2569 int polnid = NUMA_NO_NODE;
2570 int ret = NUMA_NO_NODE;
2572 pol = get_vma_policy(vma, addr);
2573 if (!(pol->flags & MPOL_F_MOF))
2576 switch (pol->mode) {
2577 case MPOL_INTERLEAVE:
2578 pgoff = vma->vm_pgoff;
2579 pgoff += (addr - vma->vm_start) >> PAGE_SHIFT;
2580 polnid = offset_il_node(pol, pgoff);
2583 case MPOL_PREFERRED:
2584 if (node_isset(curnid, pol->nodes))
2586 polnid = first_node(pol->nodes);
2590 polnid = numa_node_id();
2594 /* Optimize placement among multiple nodes via NUMA balancing */
2595 if (pol->flags & MPOL_F_MORON) {
2596 if (node_isset(thisnid, pol->nodes))
2602 case MPOL_PREFERRED_MANY:
2604 * use current page if in policy nodemask,
2605 * else select nearest allowed node, if any.
2606 * If no allowed nodes, use current [!misplaced].
2608 if (node_isset(curnid, pol->nodes))
2610 z = first_zones_zonelist(
2611 node_zonelist(numa_node_id(), GFP_HIGHUSER),
2612 gfp_zone(GFP_HIGHUSER),
2614 polnid = zone_to_nid(z->zone);
2621 /* Migrate the page towards the node whose CPU is referencing it */
2622 if (pol->flags & MPOL_F_MORON) {
2625 if (!should_numa_migrate_memory(current, page, curnid, thiscpu))
2629 if (curnid != polnid)
2638 * Drop the (possibly final) reference to task->mempolicy. It needs to be
2639 * dropped after task->mempolicy is set to NULL so that any allocation done as
2640 * part of its kmem_cache_free(), such as by KASAN, doesn't reference a freed
2643 void mpol_put_task_policy(struct task_struct *task)
2645 struct mempolicy *pol;
2648 pol = task->mempolicy;
2649 task->mempolicy = NULL;
2654 static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2656 pr_debug("deleting %lx-l%lx\n", n->start, n->end);
2657 rb_erase(&n->nd, &sp->root);
2661 static void sp_node_init(struct sp_node *node, unsigned long start,
2662 unsigned long end, struct mempolicy *pol)
2664 node->start = start;
2669 static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2670 struct mempolicy *pol)
2673 struct mempolicy *newpol;
2675 n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2679 newpol = mpol_dup(pol);
2680 if (IS_ERR(newpol)) {
2681 kmem_cache_free(sn_cache, n);
2684 newpol->flags |= MPOL_F_SHARED;
2685 sp_node_init(n, start, end, newpol);
2690 /* Replace a policy range. */
2691 static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
2692 unsigned long end, struct sp_node *new)
2695 struct sp_node *n_new = NULL;
2696 struct mempolicy *mpol_new = NULL;
2700 write_lock(&sp->lock);
2701 n = sp_lookup(sp, start, end);
2702 /* Take care of old policies in the same range. */
2703 while (n && n->start < end) {
2704 struct rb_node *next = rb_next(&n->nd);
2705 if (n->start >= start) {
2711 /* Old policy spanning whole new range. */
2716 *mpol_new = *n->policy;
2717 atomic_set(&mpol_new->refcnt, 1);
2718 sp_node_init(n_new, end, n->end, mpol_new);
2720 sp_insert(sp, n_new);
2729 n = rb_entry(next, struct sp_node, nd);
2733 write_unlock(&sp->lock);
2740 kmem_cache_free(sn_cache, n_new);
2745 write_unlock(&sp->lock);
2747 n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2750 mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2753 atomic_set(&mpol_new->refcnt, 1);
2758 * mpol_shared_policy_init - initialize shared policy for inode
2759 * @sp: pointer to inode shared policy
2760 * @mpol: struct mempolicy to install
2762 * Install non-NULL @mpol in inode's shared policy rb-tree.
2763 * On entry, the current task has a reference on a non-NULL @mpol.
2764 * This must be released on exit.
2765 * This is called at get_inode() calls and we can use GFP_KERNEL.
2767 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2771 sp->root = RB_ROOT; /* empty tree == default mempolicy */
2772 rwlock_init(&sp->lock);
2775 struct vm_area_struct pvma;
2776 struct mempolicy *new;
2777 NODEMASK_SCRATCH(scratch);
2781 /* contextualize the tmpfs mount point mempolicy */
2782 new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2784 goto free_scratch; /* no valid nodemask intersection */
2787 ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch);
2788 task_unlock(current);
2792 /* Create pseudo-vma that contains just the policy */
2793 vma_init(&pvma, NULL);
2794 pvma.vm_end = TASK_SIZE; /* policy covers entire file */
2795 mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
2798 mpol_put(new); /* drop initial ref */
2800 NODEMASK_SCRATCH_FREE(scratch);
2802 mpol_put(mpol); /* drop our incoming ref on sb mpol */
2806 int mpol_set_shared_policy(struct shared_policy *info,
2807 struct vm_area_struct *vma, struct mempolicy *npol)
2810 struct sp_node *new = NULL;
2811 unsigned long sz = vma_pages(vma);
2813 pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2815 sz, npol ? npol->mode : -1,
2816 npol ? npol->flags : -1,
2817 npol ? nodes_addr(npol->nodes)[0] : NUMA_NO_NODE);
2820 new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
2824 err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
2830 /* Free a backing policy store on inode delete. */
2831 void mpol_free_shared_policy(struct shared_policy *p)
2834 struct rb_node *next;
2836 if (!p->root.rb_node)
2838 write_lock(&p->lock);
2839 next = rb_first(&p->root);
2841 n = rb_entry(next, struct sp_node, nd);
2842 next = rb_next(&n->nd);
2845 write_unlock(&p->lock);
2848 #ifdef CONFIG_NUMA_BALANCING
2849 static int __initdata numabalancing_override;
2851 static void __init check_numabalancing_enable(void)
2853 bool numabalancing_default = false;
2855 if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED))
2856 numabalancing_default = true;
2858 /* Parsed by setup_numabalancing. override == 1 enables, -1 disables */
2859 if (numabalancing_override)
2860 set_numabalancing_state(numabalancing_override == 1);
2862 if (num_online_nodes() > 1 && !numabalancing_override) {
2863 pr_info("%s automatic NUMA balancing. Configure with numa_balancing= or the kernel.numa_balancing sysctl\n",
2864 numabalancing_default ? "Enabling" : "Disabling");
2865 set_numabalancing_state(numabalancing_default);
2869 static int __init setup_numabalancing(char *str)
2875 if (!strcmp(str, "enable")) {
2876 numabalancing_override = 1;
2878 } else if (!strcmp(str, "disable")) {
2879 numabalancing_override = -1;
2884 pr_warn("Unable to parse numa_balancing=\n");
2888 __setup("numa_balancing=", setup_numabalancing);
2890 static inline void __init check_numabalancing_enable(void)
2893 #endif /* CONFIG_NUMA_BALANCING */
2895 /* assumes fs == KERNEL_DS */
2896 void __init numa_policy_init(void)
2898 nodemask_t interleave_nodes;
2899 unsigned long largest = 0;
2900 int nid, prefer = 0;
2902 policy_cache = kmem_cache_create("numa_policy",
2903 sizeof(struct mempolicy),
2904 0, SLAB_PANIC, NULL);
2906 sn_cache = kmem_cache_create("shared_policy_node",
2907 sizeof(struct sp_node),
2908 0, SLAB_PANIC, NULL);
2910 for_each_node(nid) {
2911 preferred_node_policy[nid] = (struct mempolicy) {
2912 .refcnt = ATOMIC_INIT(1),
2913 .mode = MPOL_PREFERRED,
2914 .flags = MPOL_F_MOF | MPOL_F_MORON,
2915 .nodes = nodemask_of_node(nid),
2920 * Set interleaving policy for system init. Interleaving is only
2921 * enabled across suitably sized nodes (default is >= 16MB), or
2922 * fall back to the largest node if they're all smaller.
2924 nodes_clear(interleave_nodes);
2925 for_each_node_state(nid, N_MEMORY) {
2926 unsigned long total_pages = node_present_pages(nid);
2928 /* Preserve the largest node */
2929 if (largest < total_pages) {
2930 largest = total_pages;
2934 /* Interleave this node? */
2935 if ((total_pages << PAGE_SHIFT) >= (16 << 20))
2936 node_set(nid, interleave_nodes);
2939 /* All too small, use the largest */
2940 if (unlikely(nodes_empty(interleave_nodes)))
2941 node_set(prefer, interleave_nodes);
2943 if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
2944 pr_err("%s: interleaving failed\n", __func__);
2946 check_numabalancing_enable();
2949 /* Reset policy of current process to default */
2950 void numa_default_policy(void)
2952 do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
2956 * Parse and format mempolicy from/to strings
2959 static const char * const policy_modes[] =
2961 [MPOL_DEFAULT] = "default",
2962 [MPOL_PREFERRED] = "prefer",
2963 [MPOL_BIND] = "bind",
2964 [MPOL_INTERLEAVE] = "interleave",
2965 [MPOL_LOCAL] = "local",
2966 [MPOL_PREFERRED_MANY] = "prefer (many)",
2972 * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option.
2973 * @str: string containing mempolicy to parse
2974 * @mpol: pointer to struct mempolicy pointer, returned on success.
2977 * <mode>[=<flags>][:<nodelist>]
2979 * Return: %0 on success, else %1
2981 int mpol_parse_str(char *str, struct mempolicy **mpol)
2983 struct mempolicy *new = NULL;
2984 unsigned short mode_flags;
2986 char *nodelist = strchr(str, ':');
2987 char *flags = strchr(str, '=');
2991 *flags++ = '\0'; /* terminate mode string */
2994 /* NUL-terminate mode or flags string */
2996 if (nodelist_parse(nodelist, nodes))
2998 if (!nodes_subset(nodes, node_states[N_MEMORY]))
3003 mode = match_string(policy_modes, MPOL_MAX, str);
3008 case MPOL_PREFERRED:
3010 * Insist on a nodelist of one node only, although later
3011 * we use first_node(nodes) to grab a single node, so here
3012 * nodelist (or nodes) cannot be empty.
3015 char *rest = nodelist;
3016 while (isdigit(*rest))
3020 if (nodes_empty(nodes))
3024 case MPOL_INTERLEAVE:
3026 * Default to online nodes with memory if no nodelist
3029 nodes = node_states[N_MEMORY];
3033 * Don't allow a nodelist; mpol_new() checks flags
3040 * Insist on a empty nodelist
3045 case MPOL_PREFERRED_MANY:
3048 * Insist on a nodelist
3057 * Currently, we only support two mutually exclusive
3060 if (!strcmp(flags, "static"))
3061 mode_flags |= MPOL_F_STATIC_NODES;
3062 else if (!strcmp(flags, "relative"))
3063 mode_flags |= MPOL_F_RELATIVE_NODES;
3068 new = mpol_new(mode, mode_flags, &nodes);
3073 * Save nodes for mpol_to_str() to show the tmpfs mount options
3074 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo.
3076 if (mode != MPOL_PREFERRED) {
3078 } else if (nodelist) {
3079 nodes_clear(new->nodes);
3080 node_set(first_node(nodes), new->nodes);
3082 new->mode = MPOL_LOCAL;
3086 * Save nodes for contextualization: this will be used to "clone"
3087 * the mempolicy in a specific context [cpuset] at a later time.
3089 new->w.user_nodemask = nodes;
3094 /* Restore string for error message */
3103 #endif /* CONFIG_TMPFS */
3106 * mpol_to_str - format a mempolicy structure for printing
3107 * @buffer: to contain formatted mempolicy string
3108 * @maxlen: length of @buffer
3109 * @pol: pointer to mempolicy to be formatted
3111 * Convert @pol into a string. If @buffer is too short, truncate the string.
3112 * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the
3113 * longest flag, "relative", and to display at least a few node ids.
3115 void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
3118 nodemask_t nodes = NODE_MASK_NONE;
3119 unsigned short mode = MPOL_DEFAULT;
3120 unsigned short flags = 0;
3122 if (pol && pol != &default_policy && !(pol->flags & MPOL_F_MORON)) {
3131 case MPOL_PREFERRED:
3132 case MPOL_PREFERRED_MANY:
3134 case MPOL_INTERLEAVE:
3139 snprintf(p, maxlen, "unknown");
3143 p += snprintf(p, maxlen, "%s", policy_modes[mode]);
3145 if (flags & MPOL_MODE_FLAGS) {
3146 p += snprintf(p, buffer + maxlen - p, "=");
3149 * Currently, the only defined flags are mutually exclusive
3151 if (flags & MPOL_F_STATIC_NODES)
3152 p += snprintf(p, buffer + maxlen - p, "static");
3153 else if (flags & MPOL_F_RELATIVE_NODES)
3154 p += snprintf(p, buffer + maxlen - p, "relative");
3157 if (!nodes_empty(nodes))
3158 p += scnprintf(p, buffer + maxlen - p, ":%*pbl",
3159 nodemask_pr_args(&nodes));