2 * Simple NUMA memory policy for the Linux kernel.
4 * Copyright 2003,2004 Andi Kleen, SuSE Labs.
5 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
6 * Subject to the GNU Public License, version 2.
8 * NUMA policy allows the user to give hints in which node(s) memory should
11 * Support four policies per VMA and per process:
13 * The VMA policy has priority over the process policy for a page fault.
15 * interleave Allocate memory interleaved over a set of nodes,
16 * with normal fallback if it fails.
17 * For VMA based allocations this interleaves based on the
18 * offset into the backing object or offset into the mapping
19 * for anonymous memory. For process policy an process counter
22 * bind Only allocate memory on a specific set of nodes,
24 * FIXME: memory is allocated starting with the first node
25 * to the last. It would be better if bind would truly restrict
26 * the allocation to memory nodes instead
28 * preferred Try a specific node first before normal fallback.
29 * As a special case NUMA_NO_NODE here means do the allocation
30 * on the local CPU. This is normally identical to default,
31 * but useful to set in a VMA when you have a non default
34 * default Allocate on the local node first, or when on a VMA
35 * use the process policy. This is what Linux always did
36 * in a NUMA aware kernel and still does by, ahem, default.
38 * The process policy is applied for most non interrupt memory allocations
39 * in that process' context. Interrupts ignore the policies and always
40 * try to allocate on the local CPU. The VMA policy is only applied for memory
41 * allocations for a VMA in the VM.
43 * Currently there are a few corner cases in swapping where the policy
44 * is not applied, but the majority should be handled. When process policy
45 * is used it is not remembered over swap outs/swap ins.
47 * Only the highest zone in the zone hierarchy gets policied. Allocations
48 * requesting a lower zone just use default policy. This implies that
49 * on systems with highmem kernel lowmem allocation don't get policied.
50 * Same with GFP_DMA allocations.
52 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
53 * all users and remembered even when nobody has memory mapped.
57 fix mmap readahead to honour policy and enable policy for any page cache
59 statistics for bigpages
60 global policy for page cache? currently it uses process policy. Requires
62 handle mremap for shared memory (currently ignored for the policy)
64 make bind policy root only? It can trigger oom much faster and the
65 kernel is not always grateful with that.
68 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
70 #include <linux/mempolicy.h>
72 #include <linux/highmem.h>
73 #include <linux/hugetlb.h>
74 #include <linux/kernel.h>
75 #include <linux/sched.h>
76 #include <linux/nodemask.h>
77 #include <linux/cpuset.h>
78 #include <linux/slab.h>
79 #include <linux/string.h>
80 #include <linux/export.h>
81 #include <linux/nsproxy.h>
82 #include <linux/interrupt.h>
83 #include <linux/init.h>
84 #include <linux/compat.h>
85 #include <linux/swap.h>
86 #include <linux/seq_file.h>
87 #include <linux/proc_fs.h>
88 #include <linux/migrate.h>
89 #include <linux/ksm.h>
90 #include <linux/rmap.h>
91 #include <linux/security.h>
92 #include <linux/syscalls.h>
93 #include <linux/ctype.h>
94 #include <linux/mm_inline.h>
95 #include <linux/mmu_notifier.h>
96 #include <linux/printk.h>
98 #include <asm/tlbflush.h>
99 #include <asm/uaccess.h>
100 #include <linux/random.h>
102 #include "internal.h"
105 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */
106 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */
108 static struct kmem_cache *policy_cache;
109 static struct kmem_cache *sn_cache;
111 /* Highest zone. An specific allocation for a zone below that is not
113 enum zone_type policy_zone = 0;
116 * run-time system-wide default policy => local allocation
118 static struct mempolicy default_policy = {
119 .refcnt = ATOMIC_INIT(1), /* never free it */
120 .mode = MPOL_PREFERRED,
121 .flags = MPOL_F_LOCAL,
124 static struct mempolicy preferred_node_policy[MAX_NUMNODES];
126 struct mempolicy *get_task_policy(struct task_struct *p)
128 struct mempolicy *pol = p->mempolicy;
134 node = numa_node_id();
135 if (node != NUMA_NO_NODE) {
136 pol = &preferred_node_policy[node];
137 /* preferred_node_policy is not initialised early in boot */
142 return &default_policy;
145 static const struct mempolicy_operations {
146 int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
148 * If read-side task has no lock to protect task->mempolicy, write-side
149 * task will rebind the task->mempolicy by two step. The first step is
150 * setting all the newly nodes, and the second step is cleaning all the
151 * disallowed nodes. In this way, we can avoid finding no node to alloc
153 * If we have a lock to protect task->mempolicy in read-side, we do
157 * MPOL_REBIND_ONCE - do rebind work at once
158 * MPOL_REBIND_STEP1 - set all the newly nodes
159 * MPOL_REBIND_STEP2 - clean all the disallowed nodes
161 void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes,
162 enum mpol_rebind_step step);
163 } mpol_ops[MPOL_MAX];
165 static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
167 return pol->flags & MPOL_MODE_FLAGS;
170 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
171 const nodemask_t *rel)
174 nodes_fold(tmp, *orig, nodes_weight(*rel));
175 nodes_onto(*ret, tmp, *rel);
178 static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes)
180 if (nodes_empty(*nodes))
182 pol->v.nodes = *nodes;
186 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
189 pol->flags |= MPOL_F_LOCAL; /* local allocation */
190 else if (nodes_empty(*nodes))
191 return -EINVAL; /* no allowed nodes */
193 pol->v.preferred_node = first_node(*nodes);
197 static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes)
199 if (nodes_empty(*nodes))
201 pol->v.nodes = *nodes;
206 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
207 * any, for the new policy. mpol_new() has already validated the nodes
208 * parameter with respect to the policy mode and flags. But, we need to
209 * handle an empty nodemask with MPOL_PREFERRED here.
211 * Must be called holding task's alloc_lock to protect task's mems_allowed
212 * and mempolicy. May also be called holding the mmap_semaphore for write.
214 static int mpol_set_nodemask(struct mempolicy *pol,
215 const nodemask_t *nodes, struct nodemask_scratch *nsc)
219 /* if mode is MPOL_DEFAULT, pol is NULL. This is right. */
223 nodes_and(nsc->mask1,
224 cpuset_current_mems_allowed, node_states[N_MEMORY]);
227 if (pol->mode == MPOL_PREFERRED && nodes_empty(*nodes))
228 nodes = NULL; /* explicit local allocation */
230 if (pol->flags & MPOL_F_RELATIVE_NODES)
231 mpol_relative_nodemask(&nsc->mask2, nodes, &nsc->mask1);
233 nodes_and(nsc->mask2, *nodes, nsc->mask1);
235 if (mpol_store_user_nodemask(pol))
236 pol->w.user_nodemask = *nodes;
238 pol->w.cpuset_mems_allowed =
239 cpuset_current_mems_allowed;
243 ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
245 ret = mpol_ops[pol->mode].create(pol, NULL);
250 * This function just creates a new policy, does some check and simple
251 * initialization. You must invoke mpol_set_nodemask() to set nodes.
253 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
256 struct mempolicy *policy;
258 pr_debug("setting mode %d flags %d nodes[0] %lx\n",
259 mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE);
261 if (mode == MPOL_DEFAULT) {
262 if (nodes && !nodes_empty(*nodes))
263 return ERR_PTR(-EINVAL);
269 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
270 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
271 * All other modes require a valid pointer to a non-empty nodemask.
273 if (mode == MPOL_PREFERRED) {
274 if (nodes_empty(*nodes)) {
275 if (((flags & MPOL_F_STATIC_NODES) ||
276 (flags & MPOL_F_RELATIVE_NODES)))
277 return ERR_PTR(-EINVAL);
279 } else if (mode == MPOL_LOCAL) {
280 if (!nodes_empty(*nodes))
281 return ERR_PTR(-EINVAL);
282 mode = MPOL_PREFERRED;
283 } else if (nodes_empty(*nodes))
284 return ERR_PTR(-EINVAL);
285 policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
287 return ERR_PTR(-ENOMEM);
288 atomic_set(&policy->refcnt, 1);
290 policy->flags = flags;
295 /* Slow path of a mpol destructor. */
296 void __mpol_put(struct mempolicy *p)
298 if (!atomic_dec_and_test(&p->refcnt))
300 kmem_cache_free(policy_cache, p);
303 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes,
304 enum mpol_rebind_step step)
310 * MPOL_REBIND_ONCE - do rebind work at once
311 * MPOL_REBIND_STEP1 - set all the newly nodes
312 * MPOL_REBIND_STEP2 - clean all the disallowed nodes
314 static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes,
315 enum mpol_rebind_step step)
319 if (pol->flags & MPOL_F_STATIC_NODES)
320 nodes_and(tmp, pol->w.user_nodemask, *nodes);
321 else if (pol->flags & MPOL_F_RELATIVE_NODES)
322 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
325 * if step == 1, we use ->w.cpuset_mems_allowed to cache the
328 if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP1) {
329 nodes_remap(tmp, pol->v.nodes,
330 pol->w.cpuset_mems_allowed, *nodes);
331 pol->w.cpuset_mems_allowed = step ? tmp : *nodes;
332 } else if (step == MPOL_REBIND_STEP2) {
333 tmp = pol->w.cpuset_mems_allowed;
334 pol->w.cpuset_mems_allowed = *nodes;
339 if (nodes_empty(tmp))
342 if (step == MPOL_REBIND_STEP1)
343 nodes_or(pol->v.nodes, pol->v.nodes, tmp);
344 else if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP2)
349 if (!node_isset(current->il_next, tmp)) {
350 current->il_next = next_node(current->il_next, tmp);
351 if (current->il_next >= MAX_NUMNODES)
352 current->il_next = first_node(tmp);
353 if (current->il_next >= MAX_NUMNODES)
354 current->il_next = numa_node_id();
358 static void mpol_rebind_preferred(struct mempolicy *pol,
359 const nodemask_t *nodes,
360 enum mpol_rebind_step step)
364 if (pol->flags & MPOL_F_STATIC_NODES) {
365 int node = first_node(pol->w.user_nodemask);
367 if (node_isset(node, *nodes)) {
368 pol->v.preferred_node = node;
369 pol->flags &= ~MPOL_F_LOCAL;
371 pol->flags |= MPOL_F_LOCAL;
372 } else if (pol->flags & MPOL_F_RELATIVE_NODES) {
373 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
374 pol->v.preferred_node = first_node(tmp);
375 } else if (!(pol->flags & MPOL_F_LOCAL)) {
376 pol->v.preferred_node = node_remap(pol->v.preferred_node,
377 pol->w.cpuset_mems_allowed,
379 pol->w.cpuset_mems_allowed = *nodes;
384 * mpol_rebind_policy - Migrate a policy to a different set of nodes
386 * If read-side task has no lock to protect task->mempolicy, write-side
387 * task will rebind the task->mempolicy by two step. The first step is
388 * setting all the newly nodes, and the second step is cleaning all the
389 * disallowed nodes. In this way, we can avoid finding no node to alloc
391 * If we have a lock to protect task->mempolicy in read-side, we do
395 * MPOL_REBIND_ONCE - do rebind work at once
396 * MPOL_REBIND_STEP1 - set all the newly nodes
397 * MPOL_REBIND_STEP2 - clean all the disallowed nodes
399 static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask,
400 enum mpol_rebind_step step)
404 if (!mpol_store_user_nodemask(pol) && step == MPOL_REBIND_ONCE &&
405 nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
408 if (step == MPOL_REBIND_STEP1 && (pol->flags & MPOL_F_REBINDING))
411 if (step == MPOL_REBIND_STEP2 && !(pol->flags & MPOL_F_REBINDING))
414 if (step == MPOL_REBIND_STEP1)
415 pol->flags |= MPOL_F_REBINDING;
416 else if (step == MPOL_REBIND_STEP2)
417 pol->flags &= ~MPOL_F_REBINDING;
418 else if (step >= MPOL_REBIND_NSTEP)
421 mpol_ops[pol->mode].rebind(pol, newmask, step);
425 * Wrapper for mpol_rebind_policy() that just requires task
426 * pointer, and updates task mempolicy.
428 * Called with task's alloc_lock held.
431 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new,
432 enum mpol_rebind_step step)
434 mpol_rebind_policy(tsk->mempolicy, new, step);
438 * Rebind each vma in mm to new nodemask.
440 * Call holding a reference to mm. Takes mm->mmap_sem during call.
443 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
445 struct vm_area_struct *vma;
447 down_write(&mm->mmap_sem);
448 for (vma = mm->mmap; vma; vma = vma->vm_next)
449 mpol_rebind_policy(vma->vm_policy, new, MPOL_REBIND_ONCE);
450 up_write(&mm->mmap_sem);
453 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
455 .rebind = mpol_rebind_default,
457 [MPOL_INTERLEAVE] = {
458 .create = mpol_new_interleave,
459 .rebind = mpol_rebind_nodemask,
462 .create = mpol_new_preferred,
463 .rebind = mpol_rebind_preferred,
466 .create = mpol_new_bind,
467 .rebind = mpol_rebind_nodemask,
471 static void migrate_page_add(struct page *page, struct list_head *pagelist,
472 unsigned long flags);
475 struct list_head *pagelist;
478 struct vm_area_struct *prev;
482 * Scan through pages checking if pages follow certain conditions,
483 * and move them to the pagelist if they do.
485 static int queue_pages_pte_range(pmd_t *pmd, unsigned long addr,
486 unsigned long end, struct mm_walk *walk)
488 struct vm_area_struct *vma = walk->vma;
490 struct queue_pages *qp = walk->private;
491 unsigned long flags = qp->flags;
496 split_huge_page_pmd(vma, addr, pmd);
497 if (pmd_trans_unstable(pmd))
500 pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
501 for (; addr != end; pte++, addr += PAGE_SIZE) {
502 if (!pte_present(*pte))
504 page = vm_normal_page(vma, addr, *pte);
508 * vm_normal_page() filters out zero pages, but there might
509 * still be PageReserved pages to skip, perhaps in a VDSO.
511 if (PageReserved(page))
513 nid = page_to_nid(page);
514 if (node_isset(nid, *qp->nmask) == !!(flags & MPOL_MF_INVERT))
517 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
518 migrate_page_add(page, qp->pagelist, flags);
520 pte_unmap_unlock(pte - 1, ptl);
525 static int queue_pages_hugetlb(pte_t *pte, unsigned long hmask,
526 unsigned long addr, unsigned long end,
527 struct mm_walk *walk)
529 #ifdef CONFIG_HUGETLB_PAGE
530 struct queue_pages *qp = walk->private;
531 unsigned long flags = qp->flags;
537 ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte);
538 entry = huge_ptep_get(pte);
539 if (!pte_present(entry))
541 page = pte_page(entry);
542 nid = page_to_nid(page);
543 if (node_isset(nid, *qp->nmask) == !!(flags & MPOL_MF_INVERT))
545 /* With MPOL_MF_MOVE, we migrate only unshared hugepage. */
546 if (flags & (MPOL_MF_MOVE_ALL) ||
547 (flags & MPOL_MF_MOVE && page_mapcount(page) == 1))
548 isolate_huge_page(page, qp->pagelist);
557 #ifdef CONFIG_NUMA_BALANCING
559 * This is used to mark a range of virtual addresses to be inaccessible.
560 * These are later cleared by a NUMA hinting fault. Depending on these
561 * faults, pages may be migrated for better NUMA placement.
563 * This is assuming that NUMA faults are handled using PROT_NONE. If
564 * an architecture makes a different choice, it will need further
565 * changes to the core.
567 unsigned long change_prot_numa(struct vm_area_struct *vma,
568 unsigned long addr, unsigned long end)
572 nr_updated = change_protection(vma, addr, end, PAGE_NONE, 0, 1);
574 count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated);
579 static unsigned long change_prot_numa(struct vm_area_struct *vma,
580 unsigned long addr, unsigned long end)
584 #endif /* CONFIG_NUMA_BALANCING */
586 static int queue_pages_test_walk(unsigned long start, unsigned long end,
587 struct mm_walk *walk)
589 struct vm_area_struct *vma = walk->vma;
590 struct queue_pages *qp = walk->private;
591 unsigned long endvma = vma->vm_end;
592 unsigned long flags = qp->flags;
594 if (vma->vm_flags & VM_PFNMAP)
599 if (vma->vm_start > start)
600 start = vma->vm_start;
602 if (!(flags & MPOL_MF_DISCONTIG_OK)) {
603 if (!vma->vm_next && vma->vm_end < end)
605 if (qp->prev && qp->prev->vm_end < vma->vm_start)
611 if (vma->vm_flags & VM_PFNMAP)
614 if (flags & MPOL_MF_LAZY) {
615 /* Similar to task_numa_work, skip inaccessible VMAs */
616 if (vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))
617 change_prot_numa(vma, start, endvma);
621 if ((flags & MPOL_MF_STRICT) ||
622 ((flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) &&
623 vma_migratable(vma)))
624 /* queue pages from current vma */
630 * Walk through page tables and collect pages to be migrated.
632 * If pages found in a given range are on a set of nodes (determined by
633 * @nodes and @flags,) it's isolated and queued to the pagelist which is
634 * passed via @private.)
637 queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end,
638 nodemask_t *nodes, unsigned long flags,
639 struct list_head *pagelist)
641 struct queue_pages qp = {
642 .pagelist = pagelist,
647 struct mm_walk queue_pages_walk = {
648 .hugetlb_entry = queue_pages_hugetlb,
649 .pmd_entry = queue_pages_pte_range,
650 .test_walk = queue_pages_test_walk,
655 return walk_page_range(start, end, &queue_pages_walk);
659 * Apply policy to a single VMA
660 * This must be called with the mmap_sem held for writing.
662 static int vma_replace_policy(struct vm_area_struct *vma,
663 struct mempolicy *pol)
666 struct mempolicy *old;
667 struct mempolicy *new;
669 pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
670 vma->vm_start, vma->vm_end, vma->vm_pgoff,
671 vma->vm_ops, vma->vm_file,
672 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
678 if (vma->vm_ops && vma->vm_ops->set_policy) {
679 err = vma->vm_ops->set_policy(vma, new);
684 old = vma->vm_policy;
685 vma->vm_policy = new; /* protected by mmap_sem */
694 /* Step 2: apply policy to a range and do splits. */
695 static int mbind_range(struct mm_struct *mm, unsigned long start,
696 unsigned long end, struct mempolicy *new_pol)
698 struct vm_area_struct *next;
699 struct vm_area_struct *prev;
700 struct vm_area_struct *vma;
703 unsigned long vmstart;
706 vma = find_vma(mm, start);
707 if (!vma || vma->vm_start > start)
711 if (start > vma->vm_start)
714 for (; vma && vma->vm_start < end; prev = vma, vma = next) {
716 vmstart = max(start, vma->vm_start);
717 vmend = min(end, vma->vm_end);
719 if (mpol_equal(vma_policy(vma), new_pol))
722 pgoff = vma->vm_pgoff +
723 ((vmstart - vma->vm_start) >> PAGE_SHIFT);
724 prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags,
725 vma->anon_vma, vma->vm_file, pgoff,
730 if (mpol_equal(vma_policy(vma), new_pol))
732 /* vma_merge() joined vma && vma->next, case 8 */
735 if (vma->vm_start != vmstart) {
736 err = split_vma(vma->vm_mm, vma, vmstart, 1);
740 if (vma->vm_end != vmend) {
741 err = split_vma(vma->vm_mm, vma, vmend, 0);
746 err = vma_replace_policy(vma, new_pol);
755 /* Set the process memory policy */
756 static long do_set_mempolicy(unsigned short mode, unsigned short flags,
759 struct mempolicy *new, *old;
760 NODEMASK_SCRATCH(scratch);
766 new = mpol_new(mode, flags, nodes);
773 ret = mpol_set_nodemask(new, nodes, scratch);
775 task_unlock(current);
779 old = current->mempolicy;
780 current->mempolicy = new;
781 if (new && new->mode == MPOL_INTERLEAVE &&
782 nodes_weight(new->v.nodes))
783 current->il_next = first_node(new->v.nodes);
784 task_unlock(current);
788 NODEMASK_SCRATCH_FREE(scratch);
793 * Return nodemask for policy for get_mempolicy() query
795 * Called with task's alloc_lock held
797 static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
800 if (p == &default_policy)
806 case MPOL_INTERLEAVE:
810 if (!(p->flags & MPOL_F_LOCAL))
811 node_set(p->v.preferred_node, *nodes);
812 /* else return empty node mask for local allocation */
819 static int lookup_node(struct mm_struct *mm, unsigned long addr)
824 err = get_user_pages(current, mm, addr & PAGE_MASK, 1, 0, 0, &p, NULL);
826 err = page_to_nid(p);
832 /* Retrieve NUMA policy */
833 static long do_get_mempolicy(int *policy, nodemask_t *nmask,
834 unsigned long addr, unsigned long flags)
837 struct mm_struct *mm = current->mm;
838 struct vm_area_struct *vma = NULL;
839 struct mempolicy *pol = current->mempolicy;
842 ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
845 if (flags & MPOL_F_MEMS_ALLOWED) {
846 if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
848 *policy = 0; /* just so it's initialized */
850 *nmask = cpuset_current_mems_allowed;
851 task_unlock(current);
855 if (flags & MPOL_F_ADDR) {
857 * Do NOT fall back to task policy if the
858 * vma/shared policy at addr is NULL. We
859 * want to return MPOL_DEFAULT in this case.
861 down_read(&mm->mmap_sem);
862 vma = find_vma_intersection(mm, addr, addr+1);
864 up_read(&mm->mmap_sem);
867 if (vma->vm_ops && vma->vm_ops->get_policy)
868 pol = vma->vm_ops->get_policy(vma, addr);
870 pol = vma->vm_policy;
875 pol = &default_policy; /* indicates default behavior */
877 if (flags & MPOL_F_NODE) {
878 if (flags & MPOL_F_ADDR) {
879 err = lookup_node(mm, addr);
883 } else if (pol == current->mempolicy &&
884 pol->mode == MPOL_INTERLEAVE) {
885 *policy = current->il_next;
891 *policy = pol == &default_policy ? MPOL_DEFAULT :
894 * Internal mempolicy flags must be masked off before exposing
895 * the policy to userspace.
897 *policy |= (pol->flags & MPOL_MODE_FLAGS);
901 up_read(¤t->mm->mmap_sem);
907 if (mpol_store_user_nodemask(pol)) {
908 *nmask = pol->w.user_nodemask;
911 get_policy_nodemask(pol, nmask);
912 task_unlock(current);
919 up_read(¤t->mm->mmap_sem);
923 #ifdef CONFIG_MIGRATION
927 static void migrate_page_add(struct page *page, struct list_head *pagelist,
931 * Avoid migrating a page that is shared with others.
933 if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(page) == 1) {
934 if (!isolate_lru_page(page)) {
935 list_add_tail(&page->lru, pagelist);
936 inc_zone_page_state(page, NR_ISOLATED_ANON +
937 page_is_file_cache(page));
942 static struct page *new_node_page(struct page *page, unsigned long node, int **x)
945 return alloc_huge_page_node(page_hstate(compound_head(page)),
948 return alloc_pages_exact_node(node, GFP_HIGHUSER_MOVABLE |
953 * Migrate pages from one node to a target node.
954 * Returns error or the number of pages not migrated.
956 static int migrate_to_node(struct mm_struct *mm, int source, int dest,
964 node_set(source, nmask);
967 * This does not "check" the range but isolates all pages that
968 * need migration. Between passing in the full user address
969 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail.
971 VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)));
972 queue_pages_range(mm, mm->mmap->vm_start, mm->task_size, &nmask,
973 flags | MPOL_MF_DISCONTIG_OK, &pagelist);
975 if (!list_empty(&pagelist)) {
976 err = migrate_pages(&pagelist, new_node_page, NULL, dest,
977 MIGRATE_SYNC, MR_SYSCALL);
979 putback_movable_pages(&pagelist);
986 * Move pages between the two nodesets so as to preserve the physical
987 * layout as much as possible.
989 * Returns the number of page that could not be moved.
991 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
992 const nodemask_t *to, int flags)
998 err = migrate_prep();
1002 down_read(&mm->mmap_sem);
1005 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
1006 * bit in 'to' is not also set in 'tmp'. Clear the found 'source'
1007 * bit in 'tmp', and return that <source, dest> pair for migration.
1008 * The pair of nodemasks 'to' and 'from' define the map.
1010 * If no pair of bits is found that way, fallback to picking some
1011 * pair of 'source' and 'dest' bits that are not the same. If the
1012 * 'source' and 'dest' bits are the same, this represents a node
1013 * that will be migrating to itself, so no pages need move.
1015 * If no bits are left in 'tmp', or if all remaining bits left
1016 * in 'tmp' correspond to the same bit in 'to', return false
1017 * (nothing left to migrate).
1019 * This lets us pick a pair of nodes to migrate between, such that
1020 * if possible the dest node is not already occupied by some other
1021 * source node, minimizing the risk of overloading the memory on a
1022 * node that would happen if we migrated incoming memory to a node
1023 * before migrating outgoing memory source that same node.
1025 * A single scan of tmp is sufficient. As we go, we remember the
1026 * most recent <s, d> pair that moved (s != d). If we find a pair
1027 * that not only moved, but what's better, moved to an empty slot
1028 * (d is not set in tmp), then we break out then, with that pair.
1029 * Otherwise when we finish scanning from_tmp, we at least have the
1030 * most recent <s, d> pair that moved. If we get all the way through
1031 * the scan of tmp without finding any node that moved, much less
1032 * moved to an empty node, then there is nothing left worth migrating.
1036 while (!nodes_empty(tmp)) {
1038 int source = NUMA_NO_NODE;
1041 for_each_node_mask(s, tmp) {
1044 * do_migrate_pages() tries to maintain the relative
1045 * node relationship of the pages established between
1046 * threads and memory areas.
1048 * However if the number of source nodes is not equal to
1049 * the number of destination nodes we can not preserve
1050 * this node relative relationship. In that case, skip
1051 * copying memory from a node that is in the destination
1054 * Example: [2,3,4] -> [3,4,5] moves everything.
1055 * [0-7] - > [3,4,5] moves only 0,1,2,6,7.
1058 if ((nodes_weight(*from) != nodes_weight(*to)) &&
1059 (node_isset(s, *to)))
1062 d = node_remap(s, *from, *to);
1066 source = s; /* Node moved. Memorize */
1069 /* dest not in remaining from nodes? */
1070 if (!node_isset(dest, tmp))
1073 if (source == NUMA_NO_NODE)
1076 node_clear(source, tmp);
1077 err = migrate_to_node(mm, source, dest, flags);
1083 up_read(&mm->mmap_sem);
1091 * Allocate a new page for page migration based on vma policy.
1092 * Start by assuming the page is mapped by the same vma as contains @start.
1093 * Search forward from there, if not. N.B., this assumes that the
1094 * list of pages handed to migrate_pages()--which is how we get here--
1095 * is in virtual address order.
1097 static struct page *new_page(struct page *page, unsigned long start, int **x)
1099 struct vm_area_struct *vma;
1100 unsigned long uninitialized_var(address);
1102 vma = find_vma(current->mm, start);
1104 address = page_address_in_vma(page, vma);
1105 if (address != -EFAULT)
1110 if (PageHuge(page)) {
1112 return alloc_huge_page_noerr(vma, address, 1);
1115 * if !vma, alloc_page_vma() will use task or system default policy
1117 return alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1121 static void migrate_page_add(struct page *page, struct list_head *pagelist,
1122 unsigned long flags)
1126 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1127 const nodemask_t *to, int flags)
1132 static struct page *new_page(struct page *page, unsigned long start, int **x)
1138 static long do_mbind(unsigned long start, unsigned long len,
1139 unsigned short mode, unsigned short mode_flags,
1140 nodemask_t *nmask, unsigned long flags)
1142 struct mm_struct *mm = current->mm;
1143 struct mempolicy *new;
1146 LIST_HEAD(pagelist);
1148 if (flags & ~(unsigned long)MPOL_MF_VALID)
1150 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1153 if (start & ~PAGE_MASK)
1156 if (mode == MPOL_DEFAULT)
1157 flags &= ~MPOL_MF_STRICT;
1159 len = (len + PAGE_SIZE - 1) & PAGE_MASK;
1167 new = mpol_new(mode, mode_flags, nmask);
1169 return PTR_ERR(new);
1171 if (flags & MPOL_MF_LAZY)
1172 new->flags |= MPOL_F_MOF;
1175 * If we are using the default policy then operation
1176 * on discontinuous address spaces is okay after all
1179 flags |= MPOL_MF_DISCONTIG_OK;
1181 pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1182 start, start + len, mode, mode_flags,
1183 nmask ? nodes_addr(*nmask)[0] : NUMA_NO_NODE);
1185 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
1187 err = migrate_prep();
1192 NODEMASK_SCRATCH(scratch);
1194 down_write(&mm->mmap_sem);
1196 err = mpol_set_nodemask(new, nmask, scratch);
1197 task_unlock(current);
1199 up_write(&mm->mmap_sem);
1202 NODEMASK_SCRATCH_FREE(scratch);
1207 err = queue_pages_range(mm, start, end, nmask,
1208 flags | MPOL_MF_INVERT, &pagelist);
1210 err = mbind_range(mm, start, end, new);
1215 if (!list_empty(&pagelist)) {
1216 WARN_ON_ONCE(flags & MPOL_MF_LAZY);
1217 nr_failed = migrate_pages(&pagelist, new_page, NULL,
1218 start, MIGRATE_SYNC, MR_MEMPOLICY_MBIND);
1220 putback_movable_pages(&pagelist);
1223 if (nr_failed && (flags & MPOL_MF_STRICT))
1226 putback_movable_pages(&pagelist);
1228 up_write(&mm->mmap_sem);
1235 * User space interface with variable sized bitmaps for nodelists.
1238 /* Copy a node mask from user space. */
1239 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1240 unsigned long maxnode)
1243 unsigned long nlongs;
1244 unsigned long endmask;
1247 nodes_clear(*nodes);
1248 if (maxnode == 0 || !nmask)
1250 if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1253 nlongs = BITS_TO_LONGS(maxnode);
1254 if ((maxnode % BITS_PER_LONG) == 0)
1257 endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1;
1259 /* When the user specified more nodes than supported just check
1260 if the non supported part is all zero. */
1261 if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) {
1262 if (nlongs > PAGE_SIZE/sizeof(long))
1264 for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) {
1266 if (get_user(t, nmask + k))
1268 if (k == nlongs - 1) {
1274 nlongs = BITS_TO_LONGS(MAX_NUMNODES);
1278 if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long)))
1280 nodes_addr(*nodes)[nlongs-1] &= endmask;
1284 /* Copy a kernel node mask to user space */
1285 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1288 unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1289 const int nbytes = BITS_TO_LONGS(MAX_NUMNODES) * sizeof(long);
1291 if (copy > nbytes) {
1292 if (copy > PAGE_SIZE)
1294 if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1298 return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1301 SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1302 unsigned long, mode, const unsigned long __user *, nmask,
1303 unsigned long, maxnode, unsigned, flags)
1307 unsigned short mode_flags;
1309 mode_flags = mode & MPOL_MODE_FLAGS;
1310 mode &= ~MPOL_MODE_FLAGS;
1311 if (mode >= MPOL_MAX)
1313 if ((mode_flags & MPOL_F_STATIC_NODES) &&
1314 (mode_flags & MPOL_F_RELATIVE_NODES))
1316 err = get_nodes(&nodes, nmask, maxnode);
1319 return do_mbind(start, len, mode, mode_flags, &nodes, flags);
1322 /* Set the process memory policy */
1323 SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask,
1324 unsigned long, maxnode)
1328 unsigned short flags;
1330 flags = mode & MPOL_MODE_FLAGS;
1331 mode &= ~MPOL_MODE_FLAGS;
1332 if ((unsigned int)mode >= MPOL_MAX)
1334 if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES))
1336 err = get_nodes(&nodes, nmask, maxnode);
1339 return do_set_mempolicy(mode, flags, &nodes);
1342 SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1343 const unsigned long __user *, old_nodes,
1344 const unsigned long __user *, new_nodes)
1346 const struct cred *cred = current_cred(), *tcred;
1347 struct mm_struct *mm = NULL;
1348 struct task_struct *task;
1349 nodemask_t task_nodes;
1353 NODEMASK_SCRATCH(scratch);
1358 old = &scratch->mask1;
1359 new = &scratch->mask2;
1361 err = get_nodes(old, old_nodes, maxnode);
1365 err = get_nodes(new, new_nodes, maxnode);
1369 /* Find the mm_struct */
1371 task = pid ? find_task_by_vpid(pid) : current;
1377 get_task_struct(task);
1382 * Check if this process has the right to modify the specified
1383 * process. The right exists if the process has administrative
1384 * capabilities, superuser privileges or the same
1385 * userid as the target process.
1387 tcred = __task_cred(task);
1388 if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) &&
1389 !uid_eq(cred->uid, tcred->suid) && !uid_eq(cred->uid, tcred->uid) &&
1390 !capable(CAP_SYS_NICE)) {
1397 task_nodes = cpuset_mems_allowed(task);
1398 /* Is the user allowed to access the target nodes? */
1399 if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1404 if (!nodes_subset(*new, node_states[N_MEMORY])) {
1409 err = security_task_movememory(task);
1413 mm = get_task_mm(task);
1414 put_task_struct(task);
1421 err = do_migrate_pages(mm, old, new,
1422 capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1426 NODEMASK_SCRATCH_FREE(scratch);
1431 put_task_struct(task);
1437 /* Retrieve NUMA policy */
1438 SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1439 unsigned long __user *, nmask, unsigned long, maxnode,
1440 unsigned long, addr, unsigned long, flags)
1443 int uninitialized_var(pval);
1446 if (nmask != NULL && maxnode < MAX_NUMNODES)
1449 err = do_get_mempolicy(&pval, &nodes, addr, flags);
1454 if (policy && put_user(pval, policy))
1458 err = copy_nodes_to_user(nmask, maxnode, &nodes);
1463 #ifdef CONFIG_COMPAT
1465 COMPAT_SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1466 compat_ulong_t __user *, nmask,
1467 compat_ulong_t, maxnode,
1468 compat_ulong_t, addr, compat_ulong_t, flags)
1471 unsigned long __user *nm = NULL;
1472 unsigned long nr_bits, alloc_size;
1473 DECLARE_BITMAP(bm, MAX_NUMNODES);
1475 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1476 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1479 nm = compat_alloc_user_space(alloc_size);
1481 err = sys_get_mempolicy(policy, nm, nr_bits+1, addr, flags);
1483 if (!err && nmask) {
1484 unsigned long copy_size;
1485 copy_size = min_t(unsigned long, sizeof(bm), alloc_size);
1486 err = copy_from_user(bm, nm, copy_size);
1487 /* ensure entire bitmap is zeroed */
1488 err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8);
1489 err |= compat_put_bitmap(nmask, bm, nr_bits);
1495 COMPAT_SYSCALL_DEFINE3(set_mempolicy, int, mode, compat_ulong_t __user *, nmask,
1496 compat_ulong_t, maxnode)
1499 unsigned long __user *nm = NULL;
1500 unsigned long nr_bits, alloc_size;
1501 DECLARE_BITMAP(bm, MAX_NUMNODES);
1503 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1504 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1507 err = compat_get_bitmap(bm, nmask, nr_bits);
1508 nm = compat_alloc_user_space(alloc_size);
1509 err |= copy_to_user(nm, bm, alloc_size);
1515 return sys_set_mempolicy(mode, nm, nr_bits+1);
1518 COMPAT_SYSCALL_DEFINE6(mbind, compat_ulong_t, start, compat_ulong_t, len,
1519 compat_ulong_t, mode, compat_ulong_t __user *, nmask,
1520 compat_ulong_t, maxnode, compat_ulong_t, flags)
1523 unsigned long __user *nm = NULL;
1524 unsigned long nr_bits, alloc_size;
1527 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1528 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1531 err = compat_get_bitmap(nodes_addr(bm), nmask, nr_bits);
1532 nm = compat_alloc_user_space(alloc_size);
1533 err |= copy_to_user(nm, nodes_addr(bm), alloc_size);
1539 return sys_mbind(start, len, mode, nm, nr_bits+1, flags);
1544 struct mempolicy *__get_vma_policy(struct vm_area_struct *vma,
1547 struct mempolicy *pol = NULL;
1550 if (vma->vm_ops && vma->vm_ops->get_policy) {
1551 pol = vma->vm_ops->get_policy(vma, addr);
1552 } else if (vma->vm_policy) {
1553 pol = vma->vm_policy;
1556 * shmem_alloc_page() passes MPOL_F_SHARED policy with
1557 * a pseudo vma whose vma->vm_ops=NULL. Take a reference
1558 * count on these policies which will be dropped by
1559 * mpol_cond_put() later
1561 if (mpol_needs_cond_ref(pol))
1570 * get_vma_policy(@vma, @addr)
1571 * @vma: virtual memory area whose policy is sought
1572 * @addr: address in @vma for shared policy lookup
1574 * Returns effective policy for a VMA at specified address.
1575 * Falls back to current->mempolicy or system default policy, as necessary.
1576 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1577 * count--added by the get_policy() vm_op, as appropriate--to protect against
1578 * freeing by another task. It is the caller's responsibility to free the
1579 * extra reference for shared policies.
1581 static struct mempolicy *get_vma_policy(struct vm_area_struct *vma,
1584 struct mempolicy *pol = __get_vma_policy(vma, addr);
1587 pol = get_task_policy(current);
1592 bool vma_policy_mof(struct vm_area_struct *vma)
1594 struct mempolicy *pol;
1596 if (vma->vm_ops && vma->vm_ops->get_policy) {
1599 pol = vma->vm_ops->get_policy(vma, vma->vm_start);
1600 if (pol && (pol->flags & MPOL_F_MOF))
1607 pol = vma->vm_policy;
1609 pol = get_task_policy(current);
1611 return pol->flags & MPOL_F_MOF;
1614 static int apply_policy_zone(struct mempolicy *policy, enum zone_type zone)
1616 enum zone_type dynamic_policy_zone = policy_zone;
1618 BUG_ON(dynamic_policy_zone == ZONE_MOVABLE);
1621 * if policy->v.nodes has movable memory only,
1622 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only.
1624 * policy->v.nodes is intersect with node_states[N_MEMORY].
1625 * so if the following test faile, it implies
1626 * policy->v.nodes has movable memory only.
1628 if (!nodes_intersects(policy->v.nodes, node_states[N_HIGH_MEMORY]))
1629 dynamic_policy_zone = ZONE_MOVABLE;
1631 return zone >= dynamic_policy_zone;
1635 * Return a nodemask representing a mempolicy for filtering nodes for
1638 static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1640 /* Lower zones don't get a nodemask applied for MPOL_BIND */
1641 if (unlikely(policy->mode == MPOL_BIND) &&
1642 apply_policy_zone(policy, gfp_zone(gfp)) &&
1643 cpuset_nodemask_valid_mems_allowed(&policy->v.nodes))
1644 return &policy->v.nodes;
1649 /* Return a zonelist indicated by gfp for node representing a mempolicy */
1650 static struct zonelist *policy_zonelist(gfp_t gfp, struct mempolicy *policy,
1653 switch (policy->mode) {
1654 case MPOL_PREFERRED:
1655 if (!(policy->flags & MPOL_F_LOCAL))
1656 nd = policy->v.preferred_node;
1660 * Normally, MPOL_BIND allocations are node-local within the
1661 * allowed nodemask. However, if __GFP_THISNODE is set and the
1662 * current node isn't part of the mask, we use the zonelist for
1663 * the first node in the mask instead.
1665 if (unlikely(gfp & __GFP_THISNODE) &&
1666 unlikely(!node_isset(nd, policy->v.nodes)))
1667 nd = first_node(policy->v.nodes);
1672 return node_zonelist(nd, gfp);
1675 /* Do dynamic interleaving for a process */
1676 static unsigned interleave_nodes(struct mempolicy *policy)
1679 struct task_struct *me = current;
1682 next = next_node(nid, policy->v.nodes);
1683 if (next >= MAX_NUMNODES)
1684 next = first_node(policy->v.nodes);
1685 if (next < MAX_NUMNODES)
1691 * Depending on the memory policy provide a node from which to allocate the
1694 unsigned int mempolicy_slab_node(void)
1696 struct mempolicy *policy;
1697 int node = numa_mem_id();
1702 policy = current->mempolicy;
1703 if (!policy || policy->flags & MPOL_F_LOCAL)
1706 switch (policy->mode) {
1707 case MPOL_PREFERRED:
1709 * handled MPOL_F_LOCAL above
1711 return policy->v.preferred_node;
1713 case MPOL_INTERLEAVE:
1714 return interleave_nodes(policy);
1718 * Follow bind policy behavior and start allocation at the
1721 struct zonelist *zonelist;
1723 enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1724 zonelist = &NODE_DATA(node)->node_zonelists[0];
1725 (void)first_zones_zonelist(zonelist, highest_zoneidx,
1728 return zone ? zone->node : node;
1736 /* Do static interleaving for a VMA with known offset. */
1737 static unsigned offset_il_node(struct mempolicy *pol,
1738 struct vm_area_struct *vma, unsigned long off)
1740 unsigned nnodes = nodes_weight(pol->v.nodes);
1743 int nid = NUMA_NO_NODE;
1746 return numa_node_id();
1747 target = (unsigned int)off % nnodes;
1750 nid = next_node(nid, pol->v.nodes);
1752 } while (c <= target);
1756 /* Determine a node number for interleave */
1757 static inline unsigned interleave_nid(struct mempolicy *pol,
1758 struct vm_area_struct *vma, unsigned long addr, int shift)
1764 * for small pages, there is no difference between
1765 * shift and PAGE_SHIFT, so the bit-shift is safe.
1766 * for huge pages, since vm_pgoff is in units of small
1767 * pages, we need to shift off the always 0 bits to get
1770 BUG_ON(shift < PAGE_SHIFT);
1771 off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
1772 off += (addr - vma->vm_start) >> shift;
1773 return offset_il_node(pol, vma, off);
1775 return interleave_nodes(pol);
1779 * Return the bit number of a random bit set in the nodemask.
1780 * (returns NUMA_NO_NODE if nodemask is empty)
1782 int node_random(const nodemask_t *maskp)
1784 int w, bit = NUMA_NO_NODE;
1786 w = nodes_weight(*maskp);
1788 bit = bitmap_ord_to_pos(maskp->bits,
1789 get_random_int() % w, MAX_NUMNODES);
1793 #ifdef CONFIG_HUGETLBFS
1795 * huge_zonelist(@vma, @addr, @gfp_flags, @mpol)
1796 * @vma: virtual memory area whose policy is sought
1797 * @addr: address in @vma for shared policy lookup and interleave policy
1798 * @gfp_flags: for requested zone
1799 * @mpol: pointer to mempolicy pointer for reference counted mempolicy
1800 * @nodemask: pointer to nodemask pointer for MPOL_BIND nodemask
1802 * Returns a zonelist suitable for a huge page allocation and a pointer
1803 * to the struct mempolicy for conditional unref after allocation.
1804 * If the effective policy is 'BIND, returns a pointer to the mempolicy's
1805 * @nodemask for filtering the zonelist.
1807 * Must be protected by read_mems_allowed_begin()
1809 struct zonelist *huge_zonelist(struct vm_area_struct *vma, unsigned long addr,
1810 gfp_t gfp_flags, struct mempolicy **mpol,
1811 nodemask_t **nodemask)
1813 struct zonelist *zl;
1815 *mpol = get_vma_policy(vma, addr);
1816 *nodemask = NULL; /* assume !MPOL_BIND */
1818 if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) {
1819 zl = node_zonelist(interleave_nid(*mpol, vma, addr,
1820 huge_page_shift(hstate_vma(vma))), gfp_flags);
1822 zl = policy_zonelist(gfp_flags, *mpol, numa_node_id());
1823 if ((*mpol)->mode == MPOL_BIND)
1824 *nodemask = &(*mpol)->v.nodes;
1830 * init_nodemask_of_mempolicy
1832 * If the current task's mempolicy is "default" [NULL], return 'false'
1833 * to indicate default policy. Otherwise, extract the policy nodemask
1834 * for 'bind' or 'interleave' policy into the argument nodemask, or
1835 * initialize the argument nodemask to contain the single node for
1836 * 'preferred' or 'local' policy and return 'true' to indicate presence
1837 * of non-default mempolicy.
1839 * We don't bother with reference counting the mempolicy [mpol_get/put]
1840 * because the current task is examining it's own mempolicy and a task's
1841 * mempolicy is only ever changed by the task itself.
1843 * N.B., it is the caller's responsibility to free a returned nodemask.
1845 bool init_nodemask_of_mempolicy(nodemask_t *mask)
1847 struct mempolicy *mempolicy;
1850 if (!(mask && current->mempolicy))
1854 mempolicy = current->mempolicy;
1855 switch (mempolicy->mode) {
1856 case MPOL_PREFERRED:
1857 if (mempolicy->flags & MPOL_F_LOCAL)
1858 nid = numa_node_id();
1860 nid = mempolicy->v.preferred_node;
1861 init_nodemask_of_node(mask, nid);
1866 case MPOL_INTERLEAVE:
1867 *mask = mempolicy->v.nodes;
1873 task_unlock(current);
1880 * mempolicy_nodemask_intersects
1882 * If tsk's mempolicy is "default" [NULL], return 'true' to indicate default
1883 * policy. Otherwise, check for intersection between mask and the policy
1884 * nodemask for 'bind' or 'interleave' policy. For 'perferred' or 'local'
1885 * policy, always return true since it may allocate elsewhere on fallback.
1887 * Takes task_lock(tsk) to prevent freeing of its mempolicy.
1889 bool mempolicy_nodemask_intersects(struct task_struct *tsk,
1890 const nodemask_t *mask)
1892 struct mempolicy *mempolicy;
1898 mempolicy = tsk->mempolicy;
1902 switch (mempolicy->mode) {
1903 case MPOL_PREFERRED:
1905 * MPOL_PREFERRED and MPOL_F_LOCAL are only preferred nodes to
1906 * allocate from, they may fallback to other nodes when oom.
1907 * Thus, it's possible for tsk to have allocated memory from
1912 case MPOL_INTERLEAVE:
1913 ret = nodes_intersects(mempolicy->v.nodes, *mask);
1923 /* Allocate a page in interleaved policy.
1924 Own path because it needs to do special accounting. */
1925 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
1928 struct zonelist *zl;
1931 zl = node_zonelist(nid, gfp);
1932 page = __alloc_pages(gfp, order, zl);
1933 if (page && page_zone(page) == zonelist_zone(&zl->_zonerefs[0]))
1934 inc_zone_page_state(page, NUMA_INTERLEAVE_HIT);
1939 * alloc_pages_vma - Allocate a page for a VMA.
1942 * %GFP_USER user allocation.
1943 * %GFP_KERNEL kernel allocations,
1944 * %GFP_HIGHMEM highmem/user allocations,
1945 * %GFP_FS allocation should not call back into a file system.
1946 * %GFP_ATOMIC don't sleep.
1948 * @order:Order of the GFP allocation.
1949 * @vma: Pointer to VMA or NULL if not available.
1950 * @addr: Virtual Address of the allocation. Must be inside the VMA.
1951 * @node: Which node to prefer for allocation (modulo policy).
1952 * @hugepage: for hugepages try only the preferred node if possible
1954 * This function allocates a page from the kernel page pool and applies
1955 * a NUMA policy associated with the VMA or the current process.
1956 * When VMA is not NULL caller must hold down_read on the mmap_sem of the
1957 * mm_struct of the VMA to prevent it from going away. Should be used for
1958 * all allocations for pages that will be mapped into user space. Returns
1959 * NULL when no page can be allocated.
1962 alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma,
1963 unsigned long addr, int node, bool hugepage)
1965 struct mempolicy *pol;
1967 unsigned int cpuset_mems_cookie;
1968 struct zonelist *zl;
1972 pol = get_vma_policy(vma, addr);
1973 cpuset_mems_cookie = read_mems_allowed_begin();
1975 if (unlikely(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && hugepage &&
1976 pol->mode != MPOL_INTERLEAVE)) {
1978 * For hugepage allocation and non-interleave policy which
1979 * allows the current node, we only try to allocate from the
1980 * current node and don't fall back to other nodes, as the
1981 * cost of remote accesses would likely offset THP benefits.
1983 * If the policy is interleave, or does not allow the current
1984 * node in its nodemask, we allocate the standard way.
1986 nmask = policy_nodemask(gfp, pol);
1987 if (!nmask || node_isset(node, *nmask)) {
1989 page = alloc_pages_exact_node(node,
1990 gfp | __GFP_THISNODE, order);
1995 if (pol->mode == MPOL_INTERLEAVE) {
1998 nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order);
2000 page = alloc_page_interleave(gfp, order, nid);
2004 nmask = policy_nodemask(gfp, pol);
2005 zl = policy_zonelist(gfp, pol, node);
2007 page = __alloc_pages_nodemask(gfp, order, zl, nmask);
2009 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
2015 * alloc_pages_current - Allocate pages.
2018 * %GFP_USER user allocation,
2019 * %GFP_KERNEL kernel allocation,
2020 * %GFP_HIGHMEM highmem allocation,
2021 * %GFP_FS don't call back into a file system.
2022 * %GFP_ATOMIC don't sleep.
2023 * @order: Power of two of allocation size in pages. 0 is a single page.
2025 * Allocate a page from the kernel page pool. When not in
2026 * interrupt context and apply the current process NUMA policy.
2027 * Returns NULL when no page can be allocated.
2029 * Don't call cpuset_update_task_memory_state() unless
2030 * 1) it's ok to take cpuset_sem (can WAIT), and
2031 * 2) allocating for current task (not interrupt).
2033 struct page *alloc_pages_current(gfp_t gfp, unsigned order)
2035 struct mempolicy *pol = &default_policy;
2037 unsigned int cpuset_mems_cookie;
2039 if (!in_interrupt() && !(gfp & __GFP_THISNODE))
2040 pol = get_task_policy(current);
2043 cpuset_mems_cookie = read_mems_allowed_begin();
2046 * No reference counting needed for current->mempolicy
2047 * nor system default_policy
2049 if (pol->mode == MPOL_INTERLEAVE)
2050 page = alloc_page_interleave(gfp, order, interleave_nodes(pol));
2052 page = __alloc_pages_nodemask(gfp, order,
2053 policy_zonelist(gfp, pol, numa_node_id()),
2054 policy_nodemask(gfp, pol));
2056 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
2061 EXPORT_SYMBOL(alloc_pages_current);
2063 int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst)
2065 struct mempolicy *pol = mpol_dup(vma_policy(src));
2068 return PTR_ERR(pol);
2069 dst->vm_policy = pol;
2074 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
2075 * rebinds the mempolicy its copying by calling mpol_rebind_policy()
2076 * with the mems_allowed returned by cpuset_mems_allowed(). This
2077 * keeps mempolicies cpuset relative after its cpuset moves. See
2078 * further kernel/cpuset.c update_nodemask().
2080 * current's mempolicy may be rebinded by the other task(the task that changes
2081 * cpuset's mems), so we needn't do rebind work for current task.
2084 /* Slow path of a mempolicy duplicate */
2085 struct mempolicy *__mpol_dup(struct mempolicy *old)
2087 struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2090 return ERR_PTR(-ENOMEM);
2092 /* task's mempolicy is protected by alloc_lock */
2093 if (old == current->mempolicy) {
2096 task_unlock(current);
2100 if (current_cpuset_is_being_rebound()) {
2101 nodemask_t mems = cpuset_mems_allowed(current);
2102 if (new->flags & MPOL_F_REBINDING)
2103 mpol_rebind_policy(new, &mems, MPOL_REBIND_STEP2);
2105 mpol_rebind_policy(new, &mems, MPOL_REBIND_ONCE);
2107 atomic_set(&new->refcnt, 1);
2111 /* Slow path of a mempolicy comparison */
2112 bool __mpol_equal(struct mempolicy *a, struct mempolicy *b)
2116 if (a->mode != b->mode)
2118 if (a->flags != b->flags)
2120 if (mpol_store_user_nodemask(a))
2121 if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
2127 case MPOL_INTERLEAVE:
2128 return !!nodes_equal(a->v.nodes, b->v.nodes);
2129 case MPOL_PREFERRED:
2130 return a->v.preferred_node == b->v.preferred_node;
2138 * Shared memory backing store policy support.
2140 * Remember policies even when nobody has shared memory mapped.
2141 * The policies are kept in Red-Black tree linked from the inode.
2142 * They are protected by the sp->lock spinlock, which should be held
2143 * for any accesses to the tree.
2146 /* lookup first element intersecting start-end */
2147 /* Caller holds sp->lock */
2148 static struct sp_node *
2149 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
2151 struct rb_node *n = sp->root.rb_node;
2154 struct sp_node *p = rb_entry(n, struct sp_node, nd);
2156 if (start >= p->end)
2158 else if (end <= p->start)
2166 struct sp_node *w = NULL;
2167 struct rb_node *prev = rb_prev(n);
2170 w = rb_entry(prev, struct sp_node, nd);
2171 if (w->end <= start)
2175 return rb_entry(n, struct sp_node, nd);
2178 /* Insert a new shared policy into the list. */
2179 /* Caller holds sp->lock */
2180 static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2182 struct rb_node **p = &sp->root.rb_node;
2183 struct rb_node *parent = NULL;
2188 nd = rb_entry(parent, struct sp_node, nd);
2189 if (new->start < nd->start)
2191 else if (new->end > nd->end)
2192 p = &(*p)->rb_right;
2196 rb_link_node(&new->nd, parent, p);
2197 rb_insert_color(&new->nd, &sp->root);
2198 pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
2199 new->policy ? new->policy->mode : 0);
2202 /* Find shared policy intersecting idx */
2204 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
2206 struct mempolicy *pol = NULL;
2209 if (!sp->root.rb_node)
2211 spin_lock(&sp->lock);
2212 sn = sp_lookup(sp, idx, idx+1);
2214 mpol_get(sn->policy);
2217 spin_unlock(&sp->lock);
2221 static void sp_free(struct sp_node *n)
2223 mpol_put(n->policy);
2224 kmem_cache_free(sn_cache, n);
2228 * mpol_misplaced - check whether current page node is valid in policy
2230 * @page: page to be checked
2231 * @vma: vm area where page mapped
2232 * @addr: virtual address where page mapped
2234 * Lookup current policy node id for vma,addr and "compare to" page's
2238 * -1 - not misplaced, page is in the right node
2239 * node - node id where the page should be
2241 * Policy determination "mimics" alloc_page_vma().
2242 * Called from fault path where we know the vma and faulting address.
2244 int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr)
2246 struct mempolicy *pol;
2248 int curnid = page_to_nid(page);
2249 unsigned long pgoff;
2250 int thiscpu = raw_smp_processor_id();
2251 int thisnid = cpu_to_node(thiscpu);
2257 pol = get_vma_policy(vma, addr);
2258 if (!(pol->flags & MPOL_F_MOF))
2261 switch (pol->mode) {
2262 case MPOL_INTERLEAVE:
2263 BUG_ON(addr >= vma->vm_end);
2264 BUG_ON(addr < vma->vm_start);
2266 pgoff = vma->vm_pgoff;
2267 pgoff += (addr - vma->vm_start) >> PAGE_SHIFT;
2268 polnid = offset_il_node(pol, vma, pgoff);
2271 case MPOL_PREFERRED:
2272 if (pol->flags & MPOL_F_LOCAL)
2273 polnid = numa_node_id();
2275 polnid = pol->v.preferred_node;
2280 * allows binding to multiple nodes.
2281 * use current page if in policy nodemask,
2282 * else select nearest allowed node, if any.
2283 * If no allowed nodes, use current [!misplaced].
2285 if (node_isset(curnid, pol->v.nodes))
2287 (void)first_zones_zonelist(
2288 node_zonelist(numa_node_id(), GFP_HIGHUSER),
2289 gfp_zone(GFP_HIGHUSER),
2290 &pol->v.nodes, &zone);
2291 polnid = zone->node;
2298 /* Migrate the page towards the node whose CPU is referencing it */
2299 if (pol->flags & MPOL_F_MORON) {
2302 if (!should_numa_migrate_memory(current, page, curnid, thiscpu))
2306 if (curnid != polnid)
2314 static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2316 pr_debug("deleting %lx-l%lx\n", n->start, n->end);
2317 rb_erase(&n->nd, &sp->root);
2321 static void sp_node_init(struct sp_node *node, unsigned long start,
2322 unsigned long end, struct mempolicy *pol)
2324 node->start = start;
2329 static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2330 struct mempolicy *pol)
2333 struct mempolicy *newpol;
2335 n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2339 newpol = mpol_dup(pol);
2340 if (IS_ERR(newpol)) {
2341 kmem_cache_free(sn_cache, n);
2344 newpol->flags |= MPOL_F_SHARED;
2345 sp_node_init(n, start, end, newpol);
2350 /* Replace a policy range. */
2351 static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
2352 unsigned long end, struct sp_node *new)
2355 struct sp_node *n_new = NULL;
2356 struct mempolicy *mpol_new = NULL;
2360 spin_lock(&sp->lock);
2361 n = sp_lookup(sp, start, end);
2362 /* Take care of old policies in the same range. */
2363 while (n && n->start < end) {
2364 struct rb_node *next = rb_next(&n->nd);
2365 if (n->start >= start) {
2371 /* Old policy spanning whole new range. */
2376 *mpol_new = *n->policy;
2377 atomic_set(&mpol_new->refcnt, 1);
2378 sp_node_init(n_new, end, n->end, mpol_new);
2380 sp_insert(sp, n_new);
2389 n = rb_entry(next, struct sp_node, nd);
2393 spin_unlock(&sp->lock);
2400 kmem_cache_free(sn_cache, n_new);
2405 spin_unlock(&sp->lock);
2407 n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2410 mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2417 * mpol_shared_policy_init - initialize shared policy for inode
2418 * @sp: pointer to inode shared policy
2419 * @mpol: struct mempolicy to install
2421 * Install non-NULL @mpol in inode's shared policy rb-tree.
2422 * On entry, the current task has a reference on a non-NULL @mpol.
2423 * This must be released on exit.
2424 * This is called at get_inode() calls and we can use GFP_KERNEL.
2426 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2430 sp->root = RB_ROOT; /* empty tree == default mempolicy */
2431 spin_lock_init(&sp->lock);
2434 struct vm_area_struct pvma;
2435 struct mempolicy *new;
2436 NODEMASK_SCRATCH(scratch);
2440 /* contextualize the tmpfs mount point mempolicy */
2441 new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2443 goto free_scratch; /* no valid nodemask intersection */
2446 ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch);
2447 task_unlock(current);
2451 /* Create pseudo-vma that contains just the policy */
2452 memset(&pvma, 0, sizeof(struct vm_area_struct));
2453 pvma.vm_end = TASK_SIZE; /* policy covers entire file */
2454 mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
2457 mpol_put(new); /* drop initial ref */
2459 NODEMASK_SCRATCH_FREE(scratch);
2461 mpol_put(mpol); /* drop our incoming ref on sb mpol */
2465 int mpol_set_shared_policy(struct shared_policy *info,
2466 struct vm_area_struct *vma, struct mempolicy *npol)
2469 struct sp_node *new = NULL;
2470 unsigned long sz = vma_pages(vma);
2472 pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2474 sz, npol ? npol->mode : -1,
2475 npol ? npol->flags : -1,
2476 npol ? nodes_addr(npol->v.nodes)[0] : NUMA_NO_NODE);
2479 new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
2483 err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
2489 /* Free a backing policy store on inode delete. */
2490 void mpol_free_shared_policy(struct shared_policy *p)
2493 struct rb_node *next;
2495 if (!p->root.rb_node)
2497 spin_lock(&p->lock);
2498 next = rb_first(&p->root);
2500 n = rb_entry(next, struct sp_node, nd);
2501 next = rb_next(&n->nd);
2504 spin_unlock(&p->lock);
2507 #ifdef CONFIG_NUMA_BALANCING
2508 static int __initdata numabalancing_override;
2510 static void __init check_numabalancing_enable(void)
2512 bool numabalancing_default = false;
2514 if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED))
2515 numabalancing_default = true;
2517 /* Parsed by setup_numabalancing. override == 1 enables, -1 disables */
2518 if (numabalancing_override)
2519 set_numabalancing_state(numabalancing_override == 1);
2521 if (num_online_nodes() > 1 && !numabalancing_override) {
2522 pr_info("%s automatic NUMA balancing. "
2523 "Configure with numa_balancing= or the "
2524 "kernel.numa_balancing sysctl",
2525 numabalancing_default ? "Enabling" : "Disabling");
2526 set_numabalancing_state(numabalancing_default);
2530 static int __init setup_numabalancing(char *str)
2536 if (!strcmp(str, "enable")) {
2537 numabalancing_override = 1;
2539 } else if (!strcmp(str, "disable")) {
2540 numabalancing_override = -1;
2545 pr_warn("Unable to parse numa_balancing=\n");
2549 __setup("numa_balancing=", setup_numabalancing);
2551 static inline void __init check_numabalancing_enable(void)
2554 #endif /* CONFIG_NUMA_BALANCING */
2556 /* assumes fs == KERNEL_DS */
2557 void __init numa_policy_init(void)
2559 nodemask_t interleave_nodes;
2560 unsigned long largest = 0;
2561 int nid, prefer = 0;
2563 policy_cache = kmem_cache_create("numa_policy",
2564 sizeof(struct mempolicy),
2565 0, SLAB_PANIC, NULL);
2567 sn_cache = kmem_cache_create("shared_policy_node",
2568 sizeof(struct sp_node),
2569 0, SLAB_PANIC, NULL);
2571 for_each_node(nid) {
2572 preferred_node_policy[nid] = (struct mempolicy) {
2573 .refcnt = ATOMIC_INIT(1),
2574 .mode = MPOL_PREFERRED,
2575 .flags = MPOL_F_MOF | MPOL_F_MORON,
2576 .v = { .preferred_node = nid, },
2581 * Set interleaving policy for system init. Interleaving is only
2582 * enabled across suitably sized nodes (default is >= 16MB), or
2583 * fall back to the largest node if they're all smaller.
2585 nodes_clear(interleave_nodes);
2586 for_each_node_state(nid, N_MEMORY) {
2587 unsigned long total_pages = node_present_pages(nid);
2589 /* Preserve the largest node */
2590 if (largest < total_pages) {
2591 largest = total_pages;
2595 /* Interleave this node? */
2596 if ((total_pages << PAGE_SHIFT) >= (16 << 20))
2597 node_set(nid, interleave_nodes);
2600 /* All too small, use the largest */
2601 if (unlikely(nodes_empty(interleave_nodes)))
2602 node_set(prefer, interleave_nodes);
2604 if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
2605 pr_err("%s: interleaving failed\n", __func__);
2607 check_numabalancing_enable();
2610 /* Reset policy of current process to default */
2611 void numa_default_policy(void)
2613 do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
2617 * Parse and format mempolicy from/to strings
2621 * "local" is implemented internally by MPOL_PREFERRED with MPOL_F_LOCAL flag.
2623 static const char * const policy_modes[] =
2625 [MPOL_DEFAULT] = "default",
2626 [MPOL_PREFERRED] = "prefer",
2627 [MPOL_BIND] = "bind",
2628 [MPOL_INTERLEAVE] = "interleave",
2629 [MPOL_LOCAL] = "local",
2635 * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option.
2636 * @str: string containing mempolicy to parse
2637 * @mpol: pointer to struct mempolicy pointer, returned on success.
2640 * <mode>[=<flags>][:<nodelist>]
2642 * On success, returns 0, else 1
2644 int mpol_parse_str(char *str, struct mempolicy **mpol)
2646 struct mempolicy *new = NULL;
2647 unsigned short mode;
2648 unsigned short mode_flags;
2650 char *nodelist = strchr(str, ':');
2651 char *flags = strchr(str, '=');
2655 /* NUL-terminate mode or flags string */
2657 if (nodelist_parse(nodelist, nodes))
2659 if (!nodes_subset(nodes, node_states[N_MEMORY]))
2665 *flags++ = '\0'; /* terminate mode string */
2667 for (mode = 0; mode < MPOL_MAX; mode++) {
2668 if (!strcmp(str, policy_modes[mode])) {
2672 if (mode >= MPOL_MAX)
2676 case MPOL_PREFERRED:
2678 * Insist on a nodelist of one node only
2681 char *rest = nodelist;
2682 while (isdigit(*rest))
2688 case MPOL_INTERLEAVE:
2690 * Default to online nodes with memory if no nodelist
2693 nodes = node_states[N_MEMORY];
2697 * Don't allow a nodelist; mpol_new() checks flags
2701 mode = MPOL_PREFERRED;
2705 * Insist on a empty nodelist
2712 * Insist on a nodelist
2721 * Currently, we only support two mutually exclusive
2724 if (!strcmp(flags, "static"))
2725 mode_flags |= MPOL_F_STATIC_NODES;
2726 else if (!strcmp(flags, "relative"))
2727 mode_flags |= MPOL_F_RELATIVE_NODES;
2732 new = mpol_new(mode, mode_flags, &nodes);
2737 * Save nodes for mpol_to_str() to show the tmpfs mount options
2738 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo.
2740 if (mode != MPOL_PREFERRED)
2741 new->v.nodes = nodes;
2743 new->v.preferred_node = first_node(nodes);
2745 new->flags |= MPOL_F_LOCAL;
2748 * Save nodes for contextualization: this will be used to "clone"
2749 * the mempolicy in a specific context [cpuset] at a later time.
2751 new->w.user_nodemask = nodes;
2756 /* Restore string for error message */
2765 #endif /* CONFIG_TMPFS */
2768 * mpol_to_str - format a mempolicy structure for printing
2769 * @buffer: to contain formatted mempolicy string
2770 * @maxlen: length of @buffer
2771 * @pol: pointer to mempolicy to be formatted
2773 * Convert @pol into a string. If @buffer is too short, truncate the string.
2774 * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the
2775 * longest flag, "relative", and to display at least a few node ids.
2777 void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
2780 nodemask_t nodes = NODE_MASK_NONE;
2781 unsigned short mode = MPOL_DEFAULT;
2782 unsigned short flags = 0;
2784 if (pol && pol != &default_policy && !(pol->flags & MPOL_F_MORON)) {
2792 case MPOL_PREFERRED:
2793 if (flags & MPOL_F_LOCAL)
2796 node_set(pol->v.preferred_node, nodes);
2799 case MPOL_INTERLEAVE:
2800 nodes = pol->v.nodes;
2804 snprintf(p, maxlen, "unknown");
2808 p += snprintf(p, maxlen, "%s", policy_modes[mode]);
2810 if (flags & MPOL_MODE_FLAGS) {
2811 p += snprintf(p, buffer + maxlen - p, "=");
2814 * Currently, the only defined flags are mutually exclusive
2816 if (flags & MPOL_F_STATIC_NODES)
2817 p += snprintf(p, buffer + maxlen - p, "static");
2818 else if (flags & MPOL_F_RELATIVE_NODES)
2819 p += snprintf(p, buffer + maxlen - p, "relative");
2822 if (!nodes_empty(nodes))
2823 p += scnprintf(p, buffer + maxlen - p, ":%*pbl",
2824 nodemask_pr_args(&nodes));