1 // SPDX-License-Identifier: GPL-2.0-only
3 * Simple NUMA memory policy for the Linux kernel.
5 * Copyright 2003,2004 Andi Kleen, SuSE Labs.
6 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
8 * NUMA policy allows the user to give hints in which node(s) memory should
11 * Support four policies per VMA and per process:
13 * The VMA policy has priority over the process policy for a page fault.
15 * interleave Allocate memory interleaved over a set of nodes,
16 * with normal fallback if it fails.
17 * For VMA based allocations this interleaves based on the
18 * offset into the backing object or offset into the mapping
19 * for anonymous memory. For process policy an process counter
22 * bind Only allocate memory on a specific set of nodes,
24 * FIXME: memory is allocated starting with the first node
25 * to the last. It would be better if bind would truly restrict
26 * the allocation to memory nodes instead
28 * preferred Try a specific node first before normal fallback.
29 * As a special case NUMA_NO_NODE here means do the allocation
30 * on the local CPU. This is normally identical to default,
31 * but useful to set in a VMA when you have a non default
34 * preferred many Try a set of nodes first before normal fallback. This is
35 * similar to preferred without the special case.
37 * default Allocate on the local node first, or when on a VMA
38 * use the process policy. This is what Linux always did
39 * in a NUMA aware kernel and still does by, ahem, default.
41 * The process policy is applied for most non interrupt memory allocations
42 * in that process' context. Interrupts ignore the policies and always
43 * try to allocate on the local CPU. The VMA policy is only applied for memory
44 * allocations for a VMA in the VM.
46 * Currently there are a few corner cases in swapping where the policy
47 * is not applied, but the majority should be handled. When process policy
48 * is used it is not remembered over swap outs/swap ins.
50 * Only the highest zone in the zone hierarchy gets policied. Allocations
51 * requesting a lower zone just use default policy. This implies that
52 * on systems with highmem kernel lowmem allocation don't get policied.
53 * Same with GFP_DMA allocations.
55 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
56 * all users and remembered even when nobody has memory mapped.
60 fix mmap readahead to honour policy and enable policy for any page cache
62 statistics for bigpages
63 global policy for page cache? currently it uses process policy. Requires
65 handle mremap for shared memory (currently ignored for the policy)
67 make bind policy root only? It can trigger oom much faster and the
68 kernel is not always grateful with that.
71 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
73 #include <linux/mempolicy.h>
74 #include <linux/pagewalk.h>
75 #include <linux/highmem.h>
76 #include <linux/hugetlb.h>
77 #include <linux/kernel.h>
78 #include <linux/sched.h>
79 #include <linux/sched/mm.h>
80 #include <linux/sched/numa_balancing.h>
81 #include <linux/sched/task.h>
82 #include <linux/nodemask.h>
83 #include <linux/cpuset.h>
84 #include <linux/slab.h>
85 #include <linux/string.h>
86 #include <linux/export.h>
87 #include <linux/nsproxy.h>
88 #include <linux/interrupt.h>
89 #include <linux/init.h>
90 #include <linux/compat.h>
91 #include <linux/ptrace.h>
92 #include <linux/swap.h>
93 #include <linux/seq_file.h>
94 #include <linux/proc_fs.h>
95 #include <linux/migrate.h>
96 #include <linux/ksm.h>
97 #include <linux/rmap.h>
98 #include <linux/security.h>
99 #include <linux/syscalls.h>
100 #include <linux/ctype.h>
101 #include <linux/mm_inline.h>
102 #include <linux/mmu_notifier.h>
103 #include <linux/printk.h>
104 #include <linux/swapops.h>
106 #include <asm/tlbflush.h>
108 #include <linux/uaccess.h>
110 #include "internal.h"
113 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */
114 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */
116 static struct kmem_cache *policy_cache;
117 static struct kmem_cache *sn_cache;
119 /* Highest zone. An specific allocation for a zone below that is not
121 enum zone_type policy_zone = 0;
124 * run-time system-wide default policy => local allocation
126 static struct mempolicy default_policy = {
127 .refcnt = ATOMIC_INIT(1), /* never free it */
131 static struct mempolicy preferred_node_policy[MAX_NUMNODES];
134 * numa_map_to_online_node - Find closest online node
135 * @node: Node id to start the search
137 * Lookup the next closest node by distance if @nid is not online.
139 * Return: this @node if it is online, otherwise the closest node by distance
141 int numa_map_to_online_node(int node)
143 int min_dist = INT_MAX, dist, n, min_node;
145 if (node == NUMA_NO_NODE || node_online(node))
149 for_each_online_node(n) {
150 dist = node_distance(node, n);
151 if (dist < min_dist) {
159 EXPORT_SYMBOL_GPL(numa_map_to_online_node);
161 struct mempolicy *get_task_policy(struct task_struct *p)
163 struct mempolicy *pol = p->mempolicy;
169 node = numa_node_id();
170 if (node != NUMA_NO_NODE) {
171 pol = &preferred_node_policy[node];
172 /* preferred_node_policy is not initialised early in boot */
177 return &default_policy;
180 static const struct mempolicy_operations {
181 int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
182 void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes);
183 } mpol_ops[MPOL_MAX];
185 static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
187 return pol->flags & MPOL_MODE_FLAGS;
190 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
191 const nodemask_t *rel)
194 nodes_fold(tmp, *orig, nodes_weight(*rel));
195 nodes_onto(*ret, tmp, *rel);
198 static int mpol_new_nodemask(struct mempolicy *pol, const nodemask_t *nodes)
200 if (nodes_empty(*nodes))
206 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
208 if (nodes_empty(*nodes))
211 nodes_clear(pol->nodes);
212 node_set(first_node(*nodes), pol->nodes);
217 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
218 * any, for the new policy. mpol_new() has already validated the nodes
219 * parameter with respect to the policy mode and flags.
221 * Must be called holding task's alloc_lock to protect task's mems_allowed
222 * and mempolicy. May also be called holding the mmap_lock for write.
224 static int mpol_set_nodemask(struct mempolicy *pol,
225 const nodemask_t *nodes, struct nodemask_scratch *nsc)
230 * Default (pol==NULL) resp. local memory policies are not a
231 * subject of any remapping. They also do not need any special
234 if (!pol || pol->mode == MPOL_LOCAL)
238 nodes_and(nsc->mask1,
239 cpuset_current_mems_allowed, node_states[N_MEMORY]);
243 if (pol->flags & MPOL_F_RELATIVE_NODES)
244 mpol_relative_nodemask(&nsc->mask2, nodes, &nsc->mask1);
246 nodes_and(nsc->mask2, *nodes, nsc->mask1);
248 if (mpol_store_user_nodemask(pol))
249 pol->w.user_nodemask = *nodes;
251 pol->w.cpuset_mems_allowed = cpuset_current_mems_allowed;
253 ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
258 * This function just creates a new policy, does some check and simple
259 * initialization. You must invoke mpol_set_nodemask() to set nodes.
261 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
264 struct mempolicy *policy;
266 pr_debug("setting mode %d flags %d nodes[0] %lx\n",
267 mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE);
269 if (mode == MPOL_DEFAULT) {
270 if (nodes && !nodes_empty(*nodes))
271 return ERR_PTR(-EINVAL);
277 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
278 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
279 * All other modes require a valid pointer to a non-empty nodemask.
281 if (mode == MPOL_PREFERRED) {
282 if (nodes_empty(*nodes)) {
283 if (((flags & MPOL_F_STATIC_NODES) ||
284 (flags & MPOL_F_RELATIVE_NODES)))
285 return ERR_PTR(-EINVAL);
289 } else if (mode == MPOL_LOCAL) {
290 if (!nodes_empty(*nodes) ||
291 (flags & MPOL_F_STATIC_NODES) ||
292 (flags & MPOL_F_RELATIVE_NODES))
293 return ERR_PTR(-EINVAL);
294 } else if (nodes_empty(*nodes))
295 return ERR_PTR(-EINVAL);
296 policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
298 return ERR_PTR(-ENOMEM);
299 atomic_set(&policy->refcnt, 1);
301 policy->flags = flags;
302 policy->home_node = NUMA_NO_NODE;
307 /* Slow path of a mpol destructor. */
308 void __mpol_put(struct mempolicy *p)
310 if (!atomic_dec_and_test(&p->refcnt))
312 kmem_cache_free(policy_cache, p);
315 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes)
319 static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes)
323 if (pol->flags & MPOL_F_STATIC_NODES)
324 nodes_and(tmp, pol->w.user_nodemask, *nodes);
325 else if (pol->flags & MPOL_F_RELATIVE_NODES)
326 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
328 nodes_remap(tmp, pol->nodes, pol->w.cpuset_mems_allowed,
330 pol->w.cpuset_mems_allowed = *nodes;
333 if (nodes_empty(tmp))
339 static void mpol_rebind_preferred(struct mempolicy *pol,
340 const nodemask_t *nodes)
342 pol->w.cpuset_mems_allowed = *nodes;
346 * mpol_rebind_policy - Migrate a policy to a different set of nodes
348 * Per-vma policies are protected by mmap_lock. Allocations using per-task
349 * policies are protected by task->mems_allowed_seq to prevent a premature
350 * OOM/allocation failure due to parallel nodemask modification.
352 static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask)
354 if (!pol || pol->mode == MPOL_LOCAL)
356 if (!mpol_store_user_nodemask(pol) &&
357 nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
360 mpol_ops[pol->mode].rebind(pol, newmask);
364 * Wrapper for mpol_rebind_policy() that just requires task
365 * pointer, and updates task mempolicy.
367 * Called with task's alloc_lock held.
370 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new)
372 mpol_rebind_policy(tsk->mempolicy, new);
376 * Rebind each vma in mm to new nodemask.
378 * Call holding a reference to mm. Takes mm->mmap_lock during call.
381 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
383 struct vm_area_struct *vma;
386 for (vma = mm->mmap; vma; vma = vma->vm_next)
387 mpol_rebind_policy(vma->vm_policy, new);
388 mmap_write_unlock(mm);
391 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
393 .rebind = mpol_rebind_default,
395 [MPOL_INTERLEAVE] = {
396 .create = mpol_new_nodemask,
397 .rebind = mpol_rebind_nodemask,
400 .create = mpol_new_preferred,
401 .rebind = mpol_rebind_preferred,
404 .create = mpol_new_nodemask,
405 .rebind = mpol_rebind_nodemask,
408 .rebind = mpol_rebind_default,
410 [MPOL_PREFERRED_MANY] = {
411 .create = mpol_new_nodemask,
412 .rebind = mpol_rebind_preferred,
416 static int migrate_page_add(struct page *page, struct list_head *pagelist,
417 unsigned long flags);
420 struct list_head *pagelist;
425 struct vm_area_struct *first;
429 * Check if the page's nid is in qp->nmask.
431 * If MPOL_MF_INVERT is set in qp->flags, check if the nid is
432 * in the invert of qp->nmask.
434 static inline bool queue_pages_required(struct page *page,
435 struct queue_pages *qp)
437 int nid = page_to_nid(page);
438 unsigned long flags = qp->flags;
440 return node_isset(nid, *qp->nmask) == !(flags & MPOL_MF_INVERT);
444 * queue_pages_pmd() has three possible return values:
445 * 0 - pages are placed on the right node or queued successfully, or
446 * special page is met, i.e. huge zero page.
447 * 1 - there is unmovable page, and MPOL_MF_MOVE* & MPOL_MF_STRICT were
449 * -EIO - is migration entry or only MPOL_MF_STRICT was specified and an
450 * existing page was already on a node that does not follow the
453 static int queue_pages_pmd(pmd_t *pmd, spinlock_t *ptl, unsigned long addr,
454 unsigned long end, struct mm_walk *walk)
459 struct queue_pages *qp = walk->private;
462 if (unlikely(is_pmd_migration_entry(*pmd))) {
466 page = pmd_page(*pmd);
467 if (is_huge_zero_page(page)) {
469 walk->action = ACTION_CONTINUE;
472 if (!queue_pages_required(page, qp))
476 /* go to thp migration */
477 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
478 if (!vma_migratable(walk->vma) ||
479 migrate_page_add(page, qp->pagelist, flags)) {
492 * Scan through pages checking if pages follow certain conditions,
493 * and move them to the pagelist if they do.
495 * queue_pages_pte_range() has three possible return values:
496 * 0 - pages are placed on the right node or queued successfully, or
497 * special page is met, i.e. zero page.
498 * 1 - there is unmovable page, and MPOL_MF_MOVE* & MPOL_MF_STRICT were
500 * -EIO - only MPOL_MF_STRICT was specified and an existing page was already
501 * on a node that does not follow the policy.
503 static int queue_pages_pte_range(pmd_t *pmd, unsigned long addr,
504 unsigned long end, struct mm_walk *walk)
506 struct vm_area_struct *vma = walk->vma;
508 struct queue_pages *qp = walk->private;
509 unsigned long flags = qp->flags;
510 bool has_unmovable = false;
511 pte_t *pte, *mapped_pte;
514 ptl = pmd_trans_huge_lock(pmd, vma);
516 return queue_pages_pmd(pmd, ptl, addr, end, walk);
518 if (pmd_trans_unstable(pmd))
521 mapped_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
522 for (; addr != end; pte++, addr += PAGE_SIZE) {
523 if (!pte_present(*pte))
525 page = vm_normal_page(vma, addr, *pte);
529 * vm_normal_page() filters out zero pages, but there might
530 * still be PageReserved pages to skip, perhaps in a VDSO.
532 if (PageReserved(page))
534 if (!queue_pages_required(page, qp))
536 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
537 /* MPOL_MF_STRICT must be specified if we get here */
538 if (!vma_migratable(vma)) {
539 has_unmovable = true;
544 * Do not abort immediately since there may be
545 * temporary off LRU pages in the range. Still
546 * need migrate other LRU pages.
548 if (migrate_page_add(page, qp->pagelist, flags))
549 has_unmovable = true;
553 pte_unmap_unlock(mapped_pte, ptl);
559 return addr != end ? -EIO : 0;
562 static int queue_pages_hugetlb(pte_t *pte, unsigned long hmask,
563 unsigned long addr, unsigned long end,
564 struct mm_walk *walk)
567 #ifdef CONFIG_HUGETLB_PAGE
568 struct queue_pages *qp = walk->private;
569 unsigned long flags = (qp->flags & MPOL_MF_VALID);
574 ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte);
575 entry = huge_ptep_get(pte);
576 if (!pte_present(entry))
578 page = pte_page(entry);
579 if (!queue_pages_required(page, qp))
582 if (flags == MPOL_MF_STRICT) {
584 * STRICT alone means only detecting misplaced page and no
585 * need to further check other vma.
591 if (!vma_migratable(walk->vma)) {
593 * Must be STRICT with MOVE*, otherwise .test_walk() have
594 * stopped walking current vma.
595 * Detecting misplaced page but allow migrating pages which
602 /* With MPOL_MF_MOVE, we migrate only unshared hugepage. */
603 if (flags & (MPOL_MF_MOVE_ALL) ||
604 (flags & MPOL_MF_MOVE && page_mapcount(page) == 1)) {
605 if (!isolate_huge_page(page, qp->pagelist) &&
606 (flags & MPOL_MF_STRICT))
608 * Failed to isolate page but allow migrating pages
609 * which have been queued.
621 #ifdef CONFIG_NUMA_BALANCING
623 * This is used to mark a range of virtual addresses to be inaccessible.
624 * These are later cleared by a NUMA hinting fault. Depending on these
625 * faults, pages may be migrated for better NUMA placement.
627 * This is assuming that NUMA faults are handled using PROT_NONE. If
628 * an architecture makes a different choice, it will need further
629 * changes to the core.
631 unsigned long change_prot_numa(struct vm_area_struct *vma,
632 unsigned long addr, unsigned long end)
634 struct mmu_gather tlb;
637 tlb_gather_mmu(&tlb, vma->vm_mm);
639 nr_updated = change_protection(&tlb, vma, addr, end, PAGE_NONE,
642 count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated);
644 tlb_finish_mmu(&tlb);
649 static unsigned long change_prot_numa(struct vm_area_struct *vma,
650 unsigned long addr, unsigned long end)
654 #endif /* CONFIG_NUMA_BALANCING */
656 static int queue_pages_test_walk(unsigned long start, unsigned long end,
657 struct mm_walk *walk)
659 struct vm_area_struct *vma = walk->vma;
660 struct queue_pages *qp = walk->private;
661 unsigned long endvma = vma->vm_end;
662 unsigned long flags = qp->flags;
664 /* range check first */
665 VM_BUG_ON_VMA(!range_in_vma(vma, start, end), vma);
669 if (!(flags & MPOL_MF_DISCONTIG_OK) &&
670 (qp->start < vma->vm_start))
671 /* hole at head side of range */
674 if (!(flags & MPOL_MF_DISCONTIG_OK) &&
675 ((vma->vm_end < qp->end) &&
676 (!vma->vm_next || vma->vm_end < vma->vm_next->vm_start)))
677 /* hole at middle or tail of range */
681 * Need check MPOL_MF_STRICT to return -EIO if possible
682 * regardless of vma_migratable
684 if (!vma_migratable(vma) &&
685 !(flags & MPOL_MF_STRICT))
691 if (flags & MPOL_MF_LAZY) {
692 /* Similar to task_numa_work, skip inaccessible VMAs */
693 if (!is_vm_hugetlb_page(vma) && vma_is_accessible(vma) &&
694 !(vma->vm_flags & VM_MIXEDMAP))
695 change_prot_numa(vma, start, endvma);
699 /* queue pages from current vma */
700 if (flags & MPOL_MF_VALID)
705 static const struct mm_walk_ops queue_pages_walk_ops = {
706 .hugetlb_entry = queue_pages_hugetlb,
707 .pmd_entry = queue_pages_pte_range,
708 .test_walk = queue_pages_test_walk,
712 * Walk through page tables and collect pages to be migrated.
714 * If pages found in a given range are on a set of nodes (determined by
715 * @nodes and @flags,) it's isolated and queued to the pagelist which is
716 * passed via @private.
718 * queue_pages_range() has three possible return values:
719 * 1 - there is unmovable page, but MPOL_MF_MOVE* & MPOL_MF_STRICT were
721 * 0 - queue pages successfully or no misplaced page.
722 * errno - i.e. misplaced pages with MPOL_MF_STRICT specified (-EIO) or
723 * memory range specified by nodemask and maxnode points outside
724 * your accessible address space (-EFAULT)
727 queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end,
728 nodemask_t *nodes, unsigned long flags,
729 struct list_head *pagelist)
732 struct queue_pages qp = {
733 .pagelist = pagelist,
741 err = walk_page_range(mm, start, end, &queue_pages_walk_ops, &qp);
744 /* whole range in hole */
751 * Apply policy to a single VMA
752 * This must be called with the mmap_lock held for writing.
754 static int vma_replace_policy(struct vm_area_struct *vma,
755 struct mempolicy *pol)
758 struct mempolicy *old;
759 struct mempolicy *new;
761 pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
762 vma->vm_start, vma->vm_end, vma->vm_pgoff,
763 vma->vm_ops, vma->vm_file,
764 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
770 if (vma->vm_ops && vma->vm_ops->set_policy) {
771 err = vma->vm_ops->set_policy(vma, new);
776 old = vma->vm_policy;
777 vma->vm_policy = new; /* protected by mmap_lock */
786 /* Step 2: apply policy to a range and do splits. */
787 static int mbind_range(struct mm_struct *mm, unsigned long start,
788 unsigned long end, struct mempolicy *new_pol)
790 struct vm_area_struct *prev;
791 struct vm_area_struct *vma;
794 unsigned long vmstart;
797 vma = find_vma(mm, start);
801 if (start > vma->vm_start)
804 for (; vma && vma->vm_start < end; prev = vma, vma = vma->vm_next) {
805 vmstart = max(start, vma->vm_start);
806 vmend = min(end, vma->vm_end);
808 if (mpol_equal(vma_policy(vma), new_pol))
811 pgoff = vma->vm_pgoff +
812 ((vmstart - vma->vm_start) >> PAGE_SHIFT);
813 prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags,
814 vma->anon_vma, vma->vm_file, pgoff,
815 new_pol, vma->vm_userfaultfd_ctx,
821 if (vma->vm_start != vmstart) {
822 err = split_vma(vma->vm_mm, vma, vmstart, 1);
826 if (vma->vm_end != vmend) {
827 err = split_vma(vma->vm_mm, vma, vmend, 0);
832 err = vma_replace_policy(vma, new_pol);
841 /* Set the process memory policy */
842 static long do_set_mempolicy(unsigned short mode, unsigned short flags,
845 struct mempolicy *new, *old;
846 NODEMASK_SCRATCH(scratch);
852 new = mpol_new(mode, flags, nodes);
858 ret = mpol_set_nodemask(new, nodes, scratch);
864 old = current->mempolicy;
865 current->mempolicy = new;
866 if (new && new->mode == MPOL_INTERLEAVE)
867 current->il_prev = MAX_NUMNODES-1;
868 task_unlock(current);
872 NODEMASK_SCRATCH_FREE(scratch);
877 * Return nodemask for policy for get_mempolicy() query
879 * Called with task's alloc_lock held
881 static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
884 if (p == &default_policy)
889 case MPOL_INTERLEAVE:
891 case MPOL_PREFERRED_MANY:
895 /* return empty node mask for local allocation */
902 static int lookup_node(struct mm_struct *mm, unsigned long addr)
904 struct page *p = NULL;
907 ret = get_user_pages_fast(addr & PAGE_MASK, 1, 0, &p);
909 ret = page_to_nid(p);
915 /* Retrieve NUMA policy */
916 static long do_get_mempolicy(int *policy, nodemask_t *nmask,
917 unsigned long addr, unsigned long flags)
920 struct mm_struct *mm = current->mm;
921 struct vm_area_struct *vma = NULL;
922 struct mempolicy *pol = current->mempolicy, *pol_refcount = NULL;
925 ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
928 if (flags & MPOL_F_MEMS_ALLOWED) {
929 if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
931 *policy = 0; /* just so it's initialized */
933 *nmask = cpuset_current_mems_allowed;
934 task_unlock(current);
938 if (flags & MPOL_F_ADDR) {
940 * Do NOT fall back to task policy if the
941 * vma/shared policy at addr is NULL. We
942 * want to return MPOL_DEFAULT in this case.
945 vma = vma_lookup(mm, addr);
947 mmap_read_unlock(mm);
950 if (vma->vm_ops && vma->vm_ops->get_policy)
951 pol = vma->vm_ops->get_policy(vma, addr);
953 pol = vma->vm_policy;
958 pol = &default_policy; /* indicates default behavior */
960 if (flags & MPOL_F_NODE) {
961 if (flags & MPOL_F_ADDR) {
963 * Take a refcount on the mpol, because we are about to
964 * drop the mmap_lock, after which only "pol" remains
965 * valid, "vma" is stale.
970 mmap_read_unlock(mm);
971 err = lookup_node(mm, addr);
975 } else if (pol == current->mempolicy &&
976 pol->mode == MPOL_INTERLEAVE) {
977 *policy = next_node_in(current->il_prev, pol->nodes);
983 *policy = pol == &default_policy ? MPOL_DEFAULT :
986 * Internal mempolicy flags must be masked off before exposing
987 * the policy to userspace.
989 *policy |= (pol->flags & MPOL_MODE_FLAGS);
994 if (mpol_store_user_nodemask(pol)) {
995 *nmask = pol->w.user_nodemask;
998 get_policy_nodemask(pol, nmask);
999 task_unlock(current);
1006 mmap_read_unlock(mm);
1008 mpol_put(pol_refcount);
1012 #ifdef CONFIG_MIGRATION
1014 * page migration, thp tail pages can be passed.
1016 static int migrate_page_add(struct page *page, struct list_head *pagelist,
1017 unsigned long flags)
1019 struct page *head = compound_head(page);
1021 * Avoid migrating a page that is shared with others.
1023 if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(head) == 1) {
1024 if (!isolate_lru_page(head)) {
1025 list_add_tail(&head->lru, pagelist);
1026 mod_node_page_state(page_pgdat(head),
1027 NR_ISOLATED_ANON + page_is_file_lru(head),
1028 thp_nr_pages(head));
1029 } else if (flags & MPOL_MF_STRICT) {
1031 * Non-movable page may reach here. And, there may be
1032 * temporary off LRU pages or non-LRU movable pages.
1033 * Treat them as unmovable pages since they can't be
1034 * isolated, so they can't be moved at the moment. It
1035 * should return -EIO for this case too.
1045 * Migrate pages from one node to a target node.
1046 * Returns error or the number of pages not migrated.
1048 static int migrate_to_node(struct mm_struct *mm, int source, int dest,
1052 LIST_HEAD(pagelist);
1054 struct migration_target_control mtc = {
1056 .gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE,
1060 node_set(source, nmask);
1063 * This does not "check" the range but isolates all pages that
1064 * need migration. Between passing in the full user address
1065 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail.
1067 VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)));
1068 queue_pages_range(mm, mm->mmap->vm_start, mm->task_size, &nmask,
1069 flags | MPOL_MF_DISCONTIG_OK, &pagelist);
1071 if (!list_empty(&pagelist)) {
1072 err = migrate_pages(&pagelist, alloc_migration_target, NULL,
1073 (unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL, NULL);
1075 putback_movable_pages(&pagelist);
1082 * Move pages between the two nodesets so as to preserve the physical
1083 * layout as much as possible.
1085 * Returns the number of page that could not be moved.
1087 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1088 const nodemask_t *to, int flags)
1094 lru_cache_disable();
1099 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
1100 * bit in 'to' is not also set in 'tmp'. Clear the found 'source'
1101 * bit in 'tmp', and return that <source, dest> pair for migration.
1102 * The pair of nodemasks 'to' and 'from' define the map.
1104 * If no pair of bits is found that way, fallback to picking some
1105 * pair of 'source' and 'dest' bits that are not the same. If the
1106 * 'source' and 'dest' bits are the same, this represents a node
1107 * that will be migrating to itself, so no pages need move.
1109 * If no bits are left in 'tmp', or if all remaining bits left
1110 * in 'tmp' correspond to the same bit in 'to', return false
1111 * (nothing left to migrate).
1113 * This lets us pick a pair of nodes to migrate between, such that
1114 * if possible the dest node is not already occupied by some other
1115 * source node, minimizing the risk of overloading the memory on a
1116 * node that would happen if we migrated incoming memory to a node
1117 * before migrating outgoing memory source that same node.
1119 * A single scan of tmp is sufficient. As we go, we remember the
1120 * most recent <s, d> pair that moved (s != d). If we find a pair
1121 * that not only moved, but what's better, moved to an empty slot
1122 * (d is not set in tmp), then we break out then, with that pair.
1123 * Otherwise when we finish scanning from_tmp, we at least have the
1124 * most recent <s, d> pair that moved. If we get all the way through
1125 * the scan of tmp without finding any node that moved, much less
1126 * moved to an empty node, then there is nothing left worth migrating.
1130 while (!nodes_empty(tmp)) {
1132 int source = NUMA_NO_NODE;
1135 for_each_node_mask(s, tmp) {
1138 * do_migrate_pages() tries to maintain the relative
1139 * node relationship of the pages established between
1140 * threads and memory areas.
1142 * However if the number of source nodes is not equal to
1143 * the number of destination nodes we can not preserve
1144 * this node relative relationship. In that case, skip
1145 * copying memory from a node that is in the destination
1148 * Example: [2,3,4] -> [3,4,5] moves everything.
1149 * [0-7] - > [3,4,5] moves only 0,1,2,6,7.
1152 if ((nodes_weight(*from) != nodes_weight(*to)) &&
1153 (node_isset(s, *to)))
1156 d = node_remap(s, *from, *to);
1160 source = s; /* Node moved. Memorize */
1163 /* dest not in remaining from nodes? */
1164 if (!node_isset(dest, tmp))
1167 if (source == NUMA_NO_NODE)
1170 node_clear(source, tmp);
1171 err = migrate_to_node(mm, source, dest, flags);
1177 mmap_read_unlock(mm);
1187 * Allocate a new page for page migration based on vma policy.
1188 * Start by assuming the page is mapped by the same vma as contains @start.
1189 * Search forward from there, if not. N.B., this assumes that the
1190 * list of pages handed to migrate_pages()--which is how we get here--
1191 * is in virtual address order.
1193 static struct page *new_page(struct page *page, unsigned long start)
1195 struct folio *dst, *src = page_folio(page);
1196 struct vm_area_struct *vma;
1197 unsigned long address;
1198 gfp_t gfp = GFP_HIGHUSER_MOVABLE | __GFP_RETRY_MAYFAIL;
1200 vma = find_vma(current->mm, start);
1202 address = page_address_in_vma(page, vma);
1203 if (address != -EFAULT)
1208 if (folio_test_hugetlb(src))
1209 return alloc_huge_page_vma(page_hstate(&src->page),
1212 if (folio_test_large(src))
1213 gfp = GFP_TRANSHUGE;
1216 * if !vma, vma_alloc_folio() will use task or system default policy
1218 dst = vma_alloc_folio(gfp, folio_order(src), vma, address,
1219 folio_test_large(src));
1224 static int migrate_page_add(struct page *page, struct list_head *pagelist,
1225 unsigned long flags)
1230 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1231 const nodemask_t *to, int flags)
1236 static struct page *new_page(struct page *page, unsigned long start)
1242 static long do_mbind(unsigned long start, unsigned long len,
1243 unsigned short mode, unsigned short mode_flags,
1244 nodemask_t *nmask, unsigned long flags)
1246 struct mm_struct *mm = current->mm;
1247 struct mempolicy *new;
1251 LIST_HEAD(pagelist);
1253 if (flags & ~(unsigned long)MPOL_MF_VALID)
1255 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1258 if (start & ~PAGE_MASK)
1261 if (mode == MPOL_DEFAULT)
1262 flags &= ~MPOL_MF_STRICT;
1264 len = (len + PAGE_SIZE - 1) & PAGE_MASK;
1272 new = mpol_new(mode, mode_flags, nmask);
1274 return PTR_ERR(new);
1276 if (flags & MPOL_MF_LAZY)
1277 new->flags |= MPOL_F_MOF;
1280 * If we are using the default policy then operation
1281 * on discontinuous address spaces is okay after all
1284 flags |= MPOL_MF_DISCONTIG_OK;
1286 pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1287 start, start + len, mode, mode_flags,
1288 nmask ? nodes_addr(*nmask)[0] : NUMA_NO_NODE);
1290 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
1292 lru_cache_disable();
1295 NODEMASK_SCRATCH(scratch);
1297 mmap_write_lock(mm);
1298 err = mpol_set_nodemask(new, nmask, scratch);
1300 mmap_write_unlock(mm);
1303 NODEMASK_SCRATCH_FREE(scratch);
1308 ret = queue_pages_range(mm, start, end, nmask,
1309 flags | MPOL_MF_INVERT, &pagelist);
1316 err = mbind_range(mm, start, end, new);
1321 if (!list_empty(&pagelist)) {
1322 WARN_ON_ONCE(flags & MPOL_MF_LAZY);
1323 nr_failed = migrate_pages(&pagelist, new_page, NULL,
1324 start, MIGRATE_SYNC, MR_MEMPOLICY_MBIND, NULL);
1326 putback_movable_pages(&pagelist);
1329 if ((ret > 0) || (nr_failed && (flags & MPOL_MF_STRICT)))
1333 if (!list_empty(&pagelist))
1334 putback_movable_pages(&pagelist);
1337 mmap_write_unlock(mm);
1340 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
1346 * User space interface with variable sized bitmaps for nodelists.
1348 static int get_bitmap(unsigned long *mask, const unsigned long __user *nmask,
1349 unsigned long maxnode)
1351 unsigned long nlongs = BITS_TO_LONGS(maxnode);
1354 if (in_compat_syscall())
1355 ret = compat_get_bitmap(mask,
1356 (const compat_ulong_t __user *)nmask,
1359 ret = copy_from_user(mask, nmask,
1360 nlongs * sizeof(unsigned long));
1365 if (maxnode % BITS_PER_LONG)
1366 mask[nlongs - 1] &= (1UL << (maxnode % BITS_PER_LONG)) - 1;
1371 /* Copy a node mask from user space. */
1372 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1373 unsigned long maxnode)
1376 nodes_clear(*nodes);
1377 if (maxnode == 0 || !nmask)
1379 if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1383 * When the user specified more nodes than supported just check
1384 * if the non supported part is all zero, one word at a time,
1385 * starting at the end.
1387 while (maxnode > MAX_NUMNODES) {
1388 unsigned long bits = min_t(unsigned long, maxnode, BITS_PER_LONG);
1391 if (get_bitmap(&t, &nmask[maxnode / BITS_PER_LONG], bits))
1394 if (maxnode - bits >= MAX_NUMNODES) {
1397 maxnode = MAX_NUMNODES;
1398 t &= ~((1UL << (MAX_NUMNODES % BITS_PER_LONG)) - 1);
1404 return get_bitmap(nodes_addr(*nodes), nmask, maxnode);
1407 /* Copy a kernel node mask to user space */
1408 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1411 unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1412 unsigned int nbytes = BITS_TO_LONGS(nr_node_ids) * sizeof(long);
1413 bool compat = in_compat_syscall();
1416 nbytes = BITS_TO_COMPAT_LONGS(nr_node_ids) * sizeof(compat_long_t);
1418 if (copy > nbytes) {
1419 if (copy > PAGE_SIZE)
1421 if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1424 maxnode = nr_node_ids;
1428 return compat_put_bitmap((compat_ulong_t __user *)mask,
1429 nodes_addr(*nodes), maxnode);
1431 return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1434 /* Basic parameter sanity check used by both mbind() and set_mempolicy() */
1435 static inline int sanitize_mpol_flags(int *mode, unsigned short *flags)
1437 *flags = *mode & MPOL_MODE_FLAGS;
1438 *mode &= ~MPOL_MODE_FLAGS;
1440 if ((unsigned int)(*mode) >= MPOL_MAX)
1442 if ((*flags & MPOL_F_STATIC_NODES) && (*flags & MPOL_F_RELATIVE_NODES))
1444 if (*flags & MPOL_F_NUMA_BALANCING) {
1445 if (*mode != MPOL_BIND)
1447 *flags |= (MPOL_F_MOF | MPOL_F_MORON);
1452 static long kernel_mbind(unsigned long start, unsigned long len,
1453 unsigned long mode, const unsigned long __user *nmask,
1454 unsigned long maxnode, unsigned int flags)
1456 unsigned short mode_flags;
1461 start = untagged_addr(start);
1462 err = sanitize_mpol_flags(&lmode, &mode_flags);
1466 err = get_nodes(&nodes, nmask, maxnode);
1470 return do_mbind(start, len, lmode, mode_flags, &nodes, flags);
1473 SYSCALL_DEFINE4(set_mempolicy_home_node, unsigned long, start, unsigned long, len,
1474 unsigned long, home_node, unsigned long, flags)
1476 struct mm_struct *mm = current->mm;
1477 struct vm_area_struct *vma;
1478 struct mempolicy *new;
1479 unsigned long vmstart;
1480 unsigned long vmend;
1484 start = untagged_addr(start);
1485 if (start & ~PAGE_MASK)
1488 * flags is used for future extension if any.
1494 * Check home_node is online to avoid accessing uninitialized
1497 if (home_node >= MAX_NUMNODES || !node_online(home_node))
1500 len = (len + PAGE_SIZE - 1) & PAGE_MASK;
1507 mmap_write_lock(mm);
1508 vma = find_vma(mm, start);
1509 for (; vma && vma->vm_start < end; vma = vma->vm_next) {
1511 vmstart = max(start, vma->vm_start);
1512 vmend = min(end, vma->vm_end);
1513 new = mpol_dup(vma_policy(vma));
1519 * Only update home node if there is an existing vma policy
1525 * If any vma in the range got policy other than MPOL_BIND
1526 * or MPOL_PREFERRED_MANY we return error. We don't reset
1527 * the home node for vmas we already updated before.
1529 if (new->mode != MPOL_BIND && new->mode != MPOL_PREFERRED_MANY) {
1534 new->home_node = home_node;
1535 err = mbind_range(mm, vmstart, vmend, new);
1540 mmap_write_unlock(mm);
1544 SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1545 unsigned long, mode, const unsigned long __user *, nmask,
1546 unsigned long, maxnode, unsigned int, flags)
1548 return kernel_mbind(start, len, mode, nmask, maxnode, flags);
1551 /* Set the process memory policy */
1552 static long kernel_set_mempolicy(int mode, const unsigned long __user *nmask,
1553 unsigned long maxnode)
1555 unsigned short mode_flags;
1560 err = sanitize_mpol_flags(&lmode, &mode_flags);
1564 err = get_nodes(&nodes, nmask, maxnode);
1568 return do_set_mempolicy(lmode, mode_flags, &nodes);
1571 SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask,
1572 unsigned long, maxnode)
1574 return kernel_set_mempolicy(mode, nmask, maxnode);
1577 static int kernel_migrate_pages(pid_t pid, unsigned long maxnode,
1578 const unsigned long __user *old_nodes,
1579 const unsigned long __user *new_nodes)
1581 struct mm_struct *mm = NULL;
1582 struct task_struct *task;
1583 nodemask_t task_nodes;
1587 NODEMASK_SCRATCH(scratch);
1592 old = &scratch->mask1;
1593 new = &scratch->mask2;
1595 err = get_nodes(old, old_nodes, maxnode);
1599 err = get_nodes(new, new_nodes, maxnode);
1603 /* Find the mm_struct */
1605 task = pid ? find_task_by_vpid(pid) : current;
1611 get_task_struct(task);
1616 * Check if this process has the right to modify the specified process.
1617 * Use the regular "ptrace_may_access()" checks.
1619 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1626 task_nodes = cpuset_mems_allowed(task);
1627 /* Is the user allowed to access the target nodes? */
1628 if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1633 task_nodes = cpuset_mems_allowed(current);
1634 nodes_and(*new, *new, task_nodes);
1635 if (nodes_empty(*new))
1638 err = security_task_movememory(task);
1642 mm = get_task_mm(task);
1643 put_task_struct(task);
1650 err = do_migrate_pages(mm, old, new,
1651 capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1655 NODEMASK_SCRATCH_FREE(scratch);
1660 put_task_struct(task);
1665 SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1666 const unsigned long __user *, old_nodes,
1667 const unsigned long __user *, new_nodes)
1669 return kernel_migrate_pages(pid, maxnode, old_nodes, new_nodes);
1673 /* Retrieve NUMA policy */
1674 static int kernel_get_mempolicy(int __user *policy,
1675 unsigned long __user *nmask,
1676 unsigned long maxnode,
1678 unsigned long flags)
1684 if (nmask != NULL && maxnode < nr_node_ids)
1687 addr = untagged_addr(addr);
1689 err = do_get_mempolicy(&pval, &nodes, addr, flags);
1694 if (policy && put_user(pval, policy))
1698 err = copy_nodes_to_user(nmask, maxnode, &nodes);
1703 SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1704 unsigned long __user *, nmask, unsigned long, maxnode,
1705 unsigned long, addr, unsigned long, flags)
1707 return kernel_get_mempolicy(policy, nmask, maxnode, addr, flags);
1710 bool vma_migratable(struct vm_area_struct *vma)
1712 if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1716 * DAX device mappings require predictable access latency, so avoid
1717 * incurring periodic faults.
1719 if (vma_is_dax(vma))
1722 if (is_vm_hugetlb_page(vma) &&
1723 !hugepage_migration_supported(hstate_vma(vma)))
1727 * Migration allocates pages in the highest zone. If we cannot
1728 * do so then migration (at least from node to node) is not
1732 gfp_zone(mapping_gfp_mask(vma->vm_file->f_mapping))
1738 struct mempolicy *__get_vma_policy(struct vm_area_struct *vma,
1741 struct mempolicy *pol = NULL;
1744 if (vma->vm_ops && vma->vm_ops->get_policy) {
1745 pol = vma->vm_ops->get_policy(vma, addr);
1746 } else if (vma->vm_policy) {
1747 pol = vma->vm_policy;
1750 * shmem_alloc_page() passes MPOL_F_SHARED policy with
1751 * a pseudo vma whose vma->vm_ops=NULL. Take a reference
1752 * count on these policies which will be dropped by
1753 * mpol_cond_put() later
1755 if (mpol_needs_cond_ref(pol))
1764 * get_vma_policy(@vma, @addr)
1765 * @vma: virtual memory area whose policy is sought
1766 * @addr: address in @vma for shared policy lookup
1768 * Returns effective policy for a VMA at specified address.
1769 * Falls back to current->mempolicy or system default policy, as necessary.
1770 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1771 * count--added by the get_policy() vm_op, as appropriate--to protect against
1772 * freeing by another task. It is the caller's responsibility to free the
1773 * extra reference for shared policies.
1775 static struct mempolicy *get_vma_policy(struct vm_area_struct *vma,
1778 struct mempolicy *pol = __get_vma_policy(vma, addr);
1781 pol = get_task_policy(current);
1786 bool vma_policy_mof(struct vm_area_struct *vma)
1788 struct mempolicy *pol;
1790 if (vma->vm_ops && vma->vm_ops->get_policy) {
1793 pol = vma->vm_ops->get_policy(vma, vma->vm_start);
1794 if (pol && (pol->flags & MPOL_F_MOF))
1801 pol = vma->vm_policy;
1803 pol = get_task_policy(current);
1805 return pol->flags & MPOL_F_MOF;
1808 static int apply_policy_zone(struct mempolicy *policy, enum zone_type zone)
1810 enum zone_type dynamic_policy_zone = policy_zone;
1812 BUG_ON(dynamic_policy_zone == ZONE_MOVABLE);
1815 * if policy->nodes has movable memory only,
1816 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only.
1818 * policy->nodes is intersect with node_states[N_MEMORY].
1819 * so if the following test fails, it implies
1820 * policy->nodes has movable memory only.
1822 if (!nodes_intersects(policy->nodes, node_states[N_HIGH_MEMORY]))
1823 dynamic_policy_zone = ZONE_MOVABLE;
1825 return zone >= dynamic_policy_zone;
1829 * Return a nodemask representing a mempolicy for filtering nodes for
1832 nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1834 int mode = policy->mode;
1836 /* Lower zones don't get a nodemask applied for MPOL_BIND */
1837 if (unlikely(mode == MPOL_BIND) &&
1838 apply_policy_zone(policy, gfp_zone(gfp)) &&
1839 cpuset_nodemask_valid_mems_allowed(&policy->nodes))
1840 return &policy->nodes;
1842 if (mode == MPOL_PREFERRED_MANY)
1843 return &policy->nodes;
1849 * Return the preferred node id for 'prefer' mempolicy, and return
1850 * the given id for all other policies.
1852 * policy_node() is always coupled with policy_nodemask(), which
1853 * secures the nodemask limit for 'bind' and 'prefer-many' policy.
1855 static int policy_node(gfp_t gfp, struct mempolicy *policy, int nd)
1857 if (policy->mode == MPOL_PREFERRED) {
1858 nd = first_node(policy->nodes);
1861 * __GFP_THISNODE shouldn't even be used with the bind policy
1862 * because we might easily break the expectation to stay on the
1863 * requested node and not break the policy.
1865 WARN_ON_ONCE(policy->mode == MPOL_BIND && (gfp & __GFP_THISNODE));
1868 if ((policy->mode == MPOL_BIND ||
1869 policy->mode == MPOL_PREFERRED_MANY) &&
1870 policy->home_node != NUMA_NO_NODE)
1871 return policy->home_node;
1876 /* Do dynamic interleaving for a process */
1877 static unsigned interleave_nodes(struct mempolicy *policy)
1880 struct task_struct *me = current;
1882 next = next_node_in(me->il_prev, policy->nodes);
1883 if (next < MAX_NUMNODES)
1889 * Depending on the memory policy provide a node from which to allocate the
1892 unsigned int mempolicy_slab_node(void)
1894 struct mempolicy *policy;
1895 int node = numa_mem_id();
1900 policy = current->mempolicy;
1904 switch (policy->mode) {
1905 case MPOL_PREFERRED:
1906 return first_node(policy->nodes);
1908 case MPOL_INTERLEAVE:
1909 return interleave_nodes(policy);
1912 case MPOL_PREFERRED_MANY:
1917 * Follow bind policy behavior and start allocation at the
1920 struct zonelist *zonelist;
1921 enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1922 zonelist = &NODE_DATA(node)->node_zonelists[ZONELIST_FALLBACK];
1923 z = first_zones_zonelist(zonelist, highest_zoneidx,
1925 return z->zone ? zone_to_nid(z->zone) : node;
1936 * Do static interleaving for a VMA with known offset @n. Returns the n'th
1937 * node in pol->nodes (starting from n=0), wrapping around if n exceeds the
1938 * number of present nodes.
1940 static unsigned offset_il_node(struct mempolicy *pol, unsigned long n)
1942 nodemask_t nodemask = pol->nodes;
1943 unsigned int target, nnodes;
1947 * The barrier will stabilize the nodemask in a register or on
1948 * the stack so that it will stop changing under the code.
1950 * Between first_node() and next_node(), pol->nodes could be changed
1951 * by other threads. So we put pol->nodes in a local stack.
1955 nnodes = nodes_weight(nodemask);
1957 return numa_node_id();
1958 target = (unsigned int)n % nnodes;
1959 nid = first_node(nodemask);
1960 for (i = 0; i < target; i++)
1961 nid = next_node(nid, nodemask);
1965 /* Determine a node number for interleave */
1966 static inline unsigned interleave_nid(struct mempolicy *pol,
1967 struct vm_area_struct *vma, unsigned long addr, int shift)
1973 * for small pages, there is no difference between
1974 * shift and PAGE_SHIFT, so the bit-shift is safe.
1975 * for huge pages, since vm_pgoff is in units of small
1976 * pages, we need to shift off the always 0 bits to get
1979 BUG_ON(shift < PAGE_SHIFT);
1980 off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
1981 off += (addr - vma->vm_start) >> shift;
1982 return offset_il_node(pol, off);
1984 return interleave_nodes(pol);
1987 #ifdef CONFIG_HUGETLBFS
1989 * huge_node(@vma, @addr, @gfp_flags, @mpol)
1990 * @vma: virtual memory area whose policy is sought
1991 * @addr: address in @vma for shared policy lookup and interleave policy
1992 * @gfp_flags: for requested zone
1993 * @mpol: pointer to mempolicy pointer for reference counted mempolicy
1994 * @nodemask: pointer to nodemask pointer for 'bind' and 'prefer-many' policy
1996 * Returns a nid suitable for a huge page allocation and a pointer
1997 * to the struct mempolicy for conditional unref after allocation.
1998 * If the effective policy is 'bind' or 'prefer-many', returns a pointer
1999 * to the mempolicy's @nodemask for filtering the zonelist.
2001 * Must be protected by read_mems_allowed_begin()
2003 int huge_node(struct vm_area_struct *vma, unsigned long addr, gfp_t gfp_flags,
2004 struct mempolicy **mpol, nodemask_t **nodemask)
2009 *mpol = get_vma_policy(vma, addr);
2011 mode = (*mpol)->mode;
2013 if (unlikely(mode == MPOL_INTERLEAVE)) {
2014 nid = interleave_nid(*mpol, vma, addr,
2015 huge_page_shift(hstate_vma(vma)));
2017 nid = policy_node(gfp_flags, *mpol, numa_node_id());
2018 if (mode == MPOL_BIND || mode == MPOL_PREFERRED_MANY)
2019 *nodemask = &(*mpol)->nodes;
2025 * init_nodemask_of_mempolicy
2027 * If the current task's mempolicy is "default" [NULL], return 'false'
2028 * to indicate default policy. Otherwise, extract the policy nodemask
2029 * for 'bind' or 'interleave' policy into the argument nodemask, or
2030 * initialize the argument nodemask to contain the single node for
2031 * 'preferred' or 'local' policy and return 'true' to indicate presence
2032 * of non-default mempolicy.
2034 * We don't bother with reference counting the mempolicy [mpol_get/put]
2035 * because the current task is examining it's own mempolicy and a task's
2036 * mempolicy is only ever changed by the task itself.
2038 * N.B., it is the caller's responsibility to free a returned nodemask.
2040 bool init_nodemask_of_mempolicy(nodemask_t *mask)
2042 struct mempolicy *mempolicy;
2044 if (!(mask && current->mempolicy))
2048 mempolicy = current->mempolicy;
2049 switch (mempolicy->mode) {
2050 case MPOL_PREFERRED:
2051 case MPOL_PREFERRED_MANY:
2053 case MPOL_INTERLEAVE:
2054 *mask = mempolicy->nodes;
2058 init_nodemask_of_node(mask, numa_node_id());
2064 task_unlock(current);
2071 * mempolicy_in_oom_domain
2073 * If tsk's mempolicy is "bind", check for intersection between mask and
2074 * the policy nodemask. Otherwise, return true for all other policies
2075 * including "interleave", as a tsk with "interleave" policy may have
2076 * memory allocated from all nodes in system.
2078 * Takes task_lock(tsk) to prevent freeing of its mempolicy.
2080 bool mempolicy_in_oom_domain(struct task_struct *tsk,
2081 const nodemask_t *mask)
2083 struct mempolicy *mempolicy;
2090 mempolicy = tsk->mempolicy;
2091 if (mempolicy && mempolicy->mode == MPOL_BIND)
2092 ret = nodes_intersects(mempolicy->nodes, *mask);
2098 /* Allocate a page in interleaved policy.
2099 Own path because it needs to do special accounting. */
2100 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
2105 page = __alloc_pages(gfp, order, nid, NULL);
2106 /* skip NUMA_INTERLEAVE_HIT counter update if numa stats is disabled */
2107 if (!static_branch_likely(&vm_numa_stat_key))
2109 if (page && page_to_nid(page) == nid) {
2111 __count_numa_event(page_zone(page), NUMA_INTERLEAVE_HIT);
2117 static struct page *alloc_pages_preferred_many(gfp_t gfp, unsigned int order,
2118 int nid, struct mempolicy *pol)
2121 gfp_t preferred_gfp;
2124 * This is a two pass approach. The first pass will only try the
2125 * preferred nodes but skip the direct reclaim and allow the
2126 * allocation to fail, while the second pass will try all the
2129 preferred_gfp = gfp | __GFP_NOWARN;
2130 preferred_gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2131 page = __alloc_pages(preferred_gfp, order, nid, &pol->nodes);
2133 page = __alloc_pages(gfp, order, nid, NULL);
2139 * vma_alloc_folio - Allocate a folio for a VMA.
2141 * @order: Order of the folio.
2142 * @vma: Pointer to VMA or NULL if not available.
2143 * @addr: Virtual address of the allocation. Must be inside @vma.
2144 * @hugepage: For hugepages try only the preferred node if possible.
2146 * Allocate a folio for a specific address in @vma, using the appropriate
2147 * NUMA policy. When @vma is not NULL the caller must hold the mmap_lock
2148 * of the mm_struct of the VMA to prevent it from going away. Should be
2149 * used for all allocations for folios that will be mapped into user space.
2151 * Return: The folio on success or NULL if allocation fails.
2153 struct folio *vma_alloc_folio(gfp_t gfp, int order, struct vm_area_struct *vma,
2154 unsigned long addr, bool hugepage)
2156 struct mempolicy *pol;
2157 int node = numa_node_id();
2158 struct folio *folio;
2162 pol = get_vma_policy(vma, addr);
2164 if (pol->mode == MPOL_INTERLEAVE) {
2168 nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order);
2171 page = alloc_page_interleave(gfp, order, nid);
2172 if (page && order > 1)
2173 prep_transhuge_page(page);
2174 folio = (struct folio *)page;
2178 if (pol->mode == MPOL_PREFERRED_MANY) {
2181 node = policy_node(gfp, pol, node);
2183 page = alloc_pages_preferred_many(gfp, order, node, pol);
2185 if (page && order > 1)
2186 prep_transhuge_page(page);
2187 folio = (struct folio *)page;
2191 if (unlikely(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && hugepage)) {
2192 int hpage_node = node;
2195 * For hugepage allocation and non-interleave policy which
2196 * allows the current node (or other explicitly preferred
2197 * node) we only try to allocate from the current/preferred
2198 * node and don't fall back to other nodes, as the cost of
2199 * remote accesses would likely offset THP benefits.
2201 * If the policy is interleave or does not allow the current
2202 * node in its nodemask, we allocate the standard way.
2204 if (pol->mode == MPOL_PREFERRED)
2205 hpage_node = first_node(pol->nodes);
2207 nmask = policy_nodemask(gfp, pol);
2208 if (!nmask || node_isset(hpage_node, *nmask)) {
2211 * First, try to allocate THP only on local node, but
2212 * don't reclaim unnecessarily, just compact.
2214 folio = __folio_alloc_node(gfp | __GFP_THISNODE |
2215 __GFP_NORETRY, order, hpage_node);
2218 * If hugepage allocations are configured to always
2219 * synchronous compact or the vma has been madvised
2220 * to prefer hugepage backing, retry allowing remote
2221 * memory with both reclaim and compact as well.
2223 if (!folio && (gfp & __GFP_DIRECT_RECLAIM))
2224 folio = __folio_alloc(gfp, order, hpage_node,
2231 nmask = policy_nodemask(gfp, pol);
2232 preferred_nid = policy_node(gfp, pol, node);
2233 folio = __folio_alloc(gfp, order, preferred_nid, nmask);
2238 EXPORT_SYMBOL(vma_alloc_folio);
2241 * alloc_pages - Allocate pages.
2243 * @order: Power of two of number of pages to allocate.
2245 * Allocate 1 << @order contiguous pages. The physical address of the
2246 * first page is naturally aligned (eg an order-3 allocation will be aligned
2247 * to a multiple of 8 * PAGE_SIZE bytes). The NUMA policy of the current
2248 * process is honoured when in process context.
2250 * Context: Can be called from any context, providing the appropriate GFP
2252 * Return: The page on success or NULL if allocation fails.
2254 struct page *alloc_pages(gfp_t gfp, unsigned order)
2256 struct mempolicy *pol = &default_policy;
2259 if (!in_interrupt() && !(gfp & __GFP_THISNODE))
2260 pol = get_task_policy(current);
2263 * No reference counting needed for current->mempolicy
2264 * nor system default_policy
2266 if (pol->mode == MPOL_INTERLEAVE)
2267 page = alloc_page_interleave(gfp, order, interleave_nodes(pol));
2268 else if (pol->mode == MPOL_PREFERRED_MANY)
2269 page = alloc_pages_preferred_many(gfp, order,
2270 policy_node(gfp, pol, numa_node_id()), pol);
2272 page = __alloc_pages(gfp, order,
2273 policy_node(gfp, pol, numa_node_id()),
2274 policy_nodemask(gfp, pol));
2278 EXPORT_SYMBOL(alloc_pages);
2280 struct folio *folio_alloc(gfp_t gfp, unsigned order)
2282 struct page *page = alloc_pages(gfp | __GFP_COMP, order);
2284 if (page && order > 1)
2285 prep_transhuge_page(page);
2286 return (struct folio *)page;
2288 EXPORT_SYMBOL(folio_alloc);
2290 static unsigned long alloc_pages_bulk_array_interleave(gfp_t gfp,
2291 struct mempolicy *pol, unsigned long nr_pages,
2292 struct page **page_array)
2295 unsigned long nr_pages_per_node;
2298 unsigned long nr_allocated;
2299 unsigned long total_allocated = 0;
2301 nodes = nodes_weight(pol->nodes);
2302 nr_pages_per_node = nr_pages / nodes;
2303 delta = nr_pages - nodes * nr_pages_per_node;
2305 for (i = 0; i < nodes; i++) {
2307 nr_allocated = __alloc_pages_bulk(gfp,
2308 interleave_nodes(pol), NULL,
2309 nr_pages_per_node + 1, NULL,
2313 nr_allocated = __alloc_pages_bulk(gfp,
2314 interleave_nodes(pol), NULL,
2315 nr_pages_per_node, NULL, page_array);
2318 page_array += nr_allocated;
2319 total_allocated += nr_allocated;
2322 return total_allocated;
2325 static unsigned long alloc_pages_bulk_array_preferred_many(gfp_t gfp, int nid,
2326 struct mempolicy *pol, unsigned long nr_pages,
2327 struct page **page_array)
2329 gfp_t preferred_gfp;
2330 unsigned long nr_allocated = 0;
2332 preferred_gfp = gfp | __GFP_NOWARN;
2333 preferred_gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2335 nr_allocated = __alloc_pages_bulk(preferred_gfp, nid, &pol->nodes,
2336 nr_pages, NULL, page_array);
2338 if (nr_allocated < nr_pages)
2339 nr_allocated += __alloc_pages_bulk(gfp, numa_node_id(), NULL,
2340 nr_pages - nr_allocated, NULL,
2341 page_array + nr_allocated);
2342 return nr_allocated;
2345 /* alloc pages bulk and mempolicy should be considered at the
2346 * same time in some situation such as vmalloc.
2348 * It can accelerate memory allocation especially interleaving
2351 unsigned long alloc_pages_bulk_array_mempolicy(gfp_t gfp,
2352 unsigned long nr_pages, struct page **page_array)
2354 struct mempolicy *pol = &default_policy;
2356 if (!in_interrupt() && !(gfp & __GFP_THISNODE))
2357 pol = get_task_policy(current);
2359 if (pol->mode == MPOL_INTERLEAVE)
2360 return alloc_pages_bulk_array_interleave(gfp, pol,
2361 nr_pages, page_array);
2363 if (pol->mode == MPOL_PREFERRED_MANY)
2364 return alloc_pages_bulk_array_preferred_many(gfp,
2365 numa_node_id(), pol, nr_pages, page_array);
2367 return __alloc_pages_bulk(gfp, policy_node(gfp, pol, numa_node_id()),
2368 policy_nodemask(gfp, pol), nr_pages, NULL,
2372 int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst)
2374 struct mempolicy *pol = mpol_dup(vma_policy(src));
2377 return PTR_ERR(pol);
2378 dst->vm_policy = pol;
2383 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
2384 * rebinds the mempolicy its copying by calling mpol_rebind_policy()
2385 * with the mems_allowed returned by cpuset_mems_allowed(). This
2386 * keeps mempolicies cpuset relative after its cpuset moves. See
2387 * further kernel/cpuset.c update_nodemask().
2389 * current's mempolicy may be rebinded by the other task(the task that changes
2390 * cpuset's mems), so we needn't do rebind work for current task.
2393 /* Slow path of a mempolicy duplicate */
2394 struct mempolicy *__mpol_dup(struct mempolicy *old)
2396 struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2399 return ERR_PTR(-ENOMEM);
2401 /* task's mempolicy is protected by alloc_lock */
2402 if (old == current->mempolicy) {
2405 task_unlock(current);
2409 if (current_cpuset_is_being_rebound()) {
2410 nodemask_t mems = cpuset_mems_allowed(current);
2411 mpol_rebind_policy(new, &mems);
2413 atomic_set(&new->refcnt, 1);
2417 /* Slow path of a mempolicy comparison */
2418 bool __mpol_equal(struct mempolicy *a, struct mempolicy *b)
2422 if (a->mode != b->mode)
2424 if (a->flags != b->flags)
2426 if (a->home_node != b->home_node)
2428 if (mpol_store_user_nodemask(a))
2429 if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
2434 case MPOL_INTERLEAVE:
2435 case MPOL_PREFERRED:
2436 case MPOL_PREFERRED_MANY:
2437 return !!nodes_equal(a->nodes, b->nodes);
2447 * Shared memory backing store policy support.
2449 * Remember policies even when nobody has shared memory mapped.
2450 * The policies are kept in Red-Black tree linked from the inode.
2451 * They are protected by the sp->lock rwlock, which should be held
2452 * for any accesses to the tree.
2456 * lookup first element intersecting start-end. Caller holds sp->lock for
2457 * reading or for writing
2459 static struct sp_node *
2460 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
2462 struct rb_node *n = sp->root.rb_node;
2465 struct sp_node *p = rb_entry(n, struct sp_node, nd);
2467 if (start >= p->end)
2469 else if (end <= p->start)
2477 struct sp_node *w = NULL;
2478 struct rb_node *prev = rb_prev(n);
2481 w = rb_entry(prev, struct sp_node, nd);
2482 if (w->end <= start)
2486 return rb_entry(n, struct sp_node, nd);
2490 * Insert a new shared policy into the list. Caller holds sp->lock for
2493 static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2495 struct rb_node **p = &sp->root.rb_node;
2496 struct rb_node *parent = NULL;
2501 nd = rb_entry(parent, struct sp_node, nd);
2502 if (new->start < nd->start)
2504 else if (new->end > nd->end)
2505 p = &(*p)->rb_right;
2509 rb_link_node(&new->nd, parent, p);
2510 rb_insert_color(&new->nd, &sp->root);
2511 pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
2512 new->policy ? new->policy->mode : 0);
2515 /* Find shared policy intersecting idx */
2517 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
2519 struct mempolicy *pol = NULL;
2522 if (!sp->root.rb_node)
2524 read_lock(&sp->lock);
2525 sn = sp_lookup(sp, idx, idx+1);
2527 mpol_get(sn->policy);
2530 read_unlock(&sp->lock);
2534 static void sp_free(struct sp_node *n)
2536 mpol_put(n->policy);
2537 kmem_cache_free(sn_cache, n);
2541 * mpol_misplaced - check whether current page node is valid in policy
2543 * @page: page to be checked
2544 * @vma: vm area where page mapped
2545 * @addr: virtual address where page mapped
2547 * Lookup current policy node id for vma,addr and "compare to" page's
2548 * node id. Policy determination "mimics" alloc_page_vma().
2549 * Called from fault path where we know the vma and faulting address.
2551 * Return: NUMA_NO_NODE if the page is in a node that is valid for this
2552 * policy, or a suitable node ID to allocate a replacement page from.
2554 int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr)
2556 struct mempolicy *pol;
2558 int curnid = page_to_nid(page);
2559 unsigned long pgoff;
2560 int thiscpu = raw_smp_processor_id();
2561 int thisnid = cpu_to_node(thiscpu);
2562 int polnid = NUMA_NO_NODE;
2563 int ret = NUMA_NO_NODE;
2565 pol = get_vma_policy(vma, addr);
2566 if (!(pol->flags & MPOL_F_MOF))
2569 switch (pol->mode) {
2570 case MPOL_INTERLEAVE:
2571 pgoff = vma->vm_pgoff;
2572 pgoff += (addr - vma->vm_start) >> PAGE_SHIFT;
2573 polnid = offset_il_node(pol, pgoff);
2576 case MPOL_PREFERRED:
2577 if (node_isset(curnid, pol->nodes))
2579 polnid = first_node(pol->nodes);
2583 polnid = numa_node_id();
2587 /* Optimize placement among multiple nodes via NUMA balancing */
2588 if (pol->flags & MPOL_F_MORON) {
2589 if (node_isset(thisnid, pol->nodes))
2595 case MPOL_PREFERRED_MANY:
2597 * use current page if in policy nodemask,
2598 * else select nearest allowed node, if any.
2599 * If no allowed nodes, use current [!misplaced].
2601 if (node_isset(curnid, pol->nodes))
2603 z = first_zones_zonelist(
2604 node_zonelist(numa_node_id(), GFP_HIGHUSER),
2605 gfp_zone(GFP_HIGHUSER),
2607 polnid = zone_to_nid(z->zone);
2614 /* Migrate the page towards the node whose CPU is referencing it */
2615 if (pol->flags & MPOL_F_MORON) {
2618 if (!should_numa_migrate_memory(current, page, curnid, thiscpu))
2622 if (curnid != polnid)
2631 * Drop the (possibly final) reference to task->mempolicy. It needs to be
2632 * dropped after task->mempolicy is set to NULL so that any allocation done as
2633 * part of its kmem_cache_free(), such as by KASAN, doesn't reference a freed
2636 void mpol_put_task_policy(struct task_struct *task)
2638 struct mempolicy *pol;
2641 pol = task->mempolicy;
2642 task->mempolicy = NULL;
2647 static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2649 pr_debug("deleting %lx-l%lx\n", n->start, n->end);
2650 rb_erase(&n->nd, &sp->root);
2654 static void sp_node_init(struct sp_node *node, unsigned long start,
2655 unsigned long end, struct mempolicy *pol)
2657 node->start = start;
2662 static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2663 struct mempolicy *pol)
2666 struct mempolicy *newpol;
2668 n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2672 newpol = mpol_dup(pol);
2673 if (IS_ERR(newpol)) {
2674 kmem_cache_free(sn_cache, n);
2677 newpol->flags |= MPOL_F_SHARED;
2678 sp_node_init(n, start, end, newpol);
2683 /* Replace a policy range. */
2684 static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
2685 unsigned long end, struct sp_node *new)
2688 struct sp_node *n_new = NULL;
2689 struct mempolicy *mpol_new = NULL;
2693 write_lock(&sp->lock);
2694 n = sp_lookup(sp, start, end);
2695 /* Take care of old policies in the same range. */
2696 while (n && n->start < end) {
2697 struct rb_node *next = rb_next(&n->nd);
2698 if (n->start >= start) {
2704 /* Old policy spanning whole new range. */
2709 *mpol_new = *n->policy;
2710 atomic_set(&mpol_new->refcnt, 1);
2711 sp_node_init(n_new, end, n->end, mpol_new);
2713 sp_insert(sp, n_new);
2722 n = rb_entry(next, struct sp_node, nd);
2726 write_unlock(&sp->lock);
2733 kmem_cache_free(sn_cache, n_new);
2738 write_unlock(&sp->lock);
2740 n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2743 mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2746 atomic_set(&mpol_new->refcnt, 1);
2751 * mpol_shared_policy_init - initialize shared policy for inode
2752 * @sp: pointer to inode shared policy
2753 * @mpol: struct mempolicy to install
2755 * Install non-NULL @mpol in inode's shared policy rb-tree.
2756 * On entry, the current task has a reference on a non-NULL @mpol.
2757 * This must be released on exit.
2758 * This is called at get_inode() calls and we can use GFP_KERNEL.
2760 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2764 sp->root = RB_ROOT; /* empty tree == default mempolicy */
2765 rwlock_init(&sp->lock);
2768 struct vm_area_struct pvma;
2769 struct mempolicy *new;
2770 NODEMASK_SCRATCH(scratch);
2774 /* contextualize the tmpfs mount point mempolicy */
2775 new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2777 goto free_scratch; /* no valid nodemask intersection */
2780 ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch);
2781 task_unlock(current);
2785 /* Create pseudo-vma that contains just the policy */
2786 vma_init(&pvma, NULL);
2787 pvma.vm_end = TASK_SIZE; /* policy covers entire file */
2788 mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
2791 mpol_put(new); /* drop initial ref */
2793 NODEMASK_SCRATCH_FREE(scratch);
2795 mpol_put(mpol); /* drop our incoming ref on sb mpol */
2799 int mpol_set_shared_policy(struct shared_policy *info,
2800 struct vm_area_struct *vma, struct mempolicy *npol)
2803 struct sp_node *new = NULL;
2804 unsigned long sz = vma_pages(vma);
2806 pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2808 sz, npol ? npol->mode : -1,
2809 npol ? npol->flags : -1,
2810 npol ? nodes_addr(npol->nodes)[0] : NUMA_NO_NODE);
2813 new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
2817 err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
2823 /* Free a backing policy store on inode delete. */
2824 void mpol_free_shared_policy(struct shared_policy *p)
2827 struct rb_node *next;
2829 if (!p->root.rb_node)
2831 write_lock(&p->lock);
2832 next = rb_first(&p->root);
2834 n = rb_entry(next, struct sp_node, nd);
2835 next = rb_next(&n->nd);
2838 write_unlock(&p->lock);
2841 #ifdef CONFIG_NUMA_BALANCING
2842 static int __initdata numabalancing_override;
2844 static void __init check_numabalancing_enable(void)
2846 bool numabalancing_default = false;
2848 if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED))
2849 numabalancing_default = true;
2851 /* Parsed by setup_numabalancing. override == 1 enables, -1 disables */
2852 if (numabalancing_override)
2853 set_numabalancing_state(numabalancing_override == 1);
2855 if (num_online_nodes() > 1 && !numabalancing_override) {
2856 pr_info("%s automatic NUMA balancing. Configure with numa_balancing= or the kernel.numa_balancing sysctl\n",
2857 numabalancing_default ? "Enabling" : "Disabling");
2858 set_numabalancing_state(numabalancing_default);
2862 static int __init setup_numabalancing(char *str)
2868 if (!strcmp(str, "enable")) {
2869 numabalancing_override = 1;
2871 } else if (!strcmp(str, "disable")) {
2872 numabalancing_override = -1;
2877 pr_warn("Unable to parse numa_balancing=\n");
2881 __setup("numa_balancing=", setup_numabalancing);
2883 static inline void __init check_numabalancing_enable(void)
2886 #endif /* CONFIG_NUMA_BALANCING */
2888 /* assumes fs == KERNEL_DS */
2889 void __init numa_policy_init(void)
2891 nodemask_t interleave_nodes;
2892 unsigned long largest = 0;
2893 int nid, prefer = 0;
2895 policy_cache = kmem_cache_create("numa_policy",
2896 sizeof(struct mempolicy),
2897 0, SLAB_PANIC, NULL);
2899 sn_cache = kmem_cache_create("shared_policy_node",
2900 sizeof(struct sp_node),
2901 0, SLAB_PANIC, NULL);
2903 for_each_node(nid) {
2904 preferred_node_policy[nid] = (struct mempolicy) {
2905 .refcnt = ATOMIC_INIT(1),
2906 .mode = MPOL_PREFERRED,
2907 .flags = MPOL_F_MOF | MPOL_F_MORON,
2908 .nodes = nodemask_of_node(nid),
2913 * Set interleaving policy for system init. Interleaving is only
2914 * enabled across suitably sized nodes (default is >= 16MB), or
2915 * fall back to the largest node if they're all smaller.
2917 nodes_clear(interleave_nodes);
2918 for_each_node_state(nid, N_MEMORY) {
2919 unsigned long total_pages = node_present_pages(nid);
2921 /* Preserve the largest node */
2922 if (largest < total_pages) {
2923 largest = total_pages;
2927 /* Interleave this node? */
2928 if ((total_pages << PAGE_SHIFT) >= (16 << 20))
2929 node_set(nid, interleave_nodes);
2932 /* All too small, use the largest */
2933 if (unlikely(nodes_empty(interleave_nodes)))
2934 node_set(prefer, interleave_nodes);
2936 if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
2937 pr_err("%s: interleaving failed\n", __func__);
2939 check_numabalancing_enable();
2942 /* Reset policy of current process to default */
2943 void numa_default_policy(void)
2945 do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
2949 * Parse and format mempolicy from/to strings
2952 static const char * const policy_modes[] =
2954 [MPOL_DEFAULT] = "default",
2955 [MPOL_PREFERRED] = "prefer",
2956 [MPOL_BIND] = "bind",
2957 [MPOL_INTERLEAVE] = "interleave",
2958 [MPOL_LOCAL] = "local",
2959 [MPOL_PREFERRED_MANY] = "prefer (many)",
2965 * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option.
2966 * @str: string containing mempolicy to parse
2967 * @mpol: pointer to struct mempolicy pointer, returned on success.
2970 * <mode>[=<flags>][:<nodelist>]
2972 * Return: %0 on success, else %1
2974 int mpol_parse_str(char *str, struct mempolicy **mpol)
2976 struct mempolicy *new = NULL;
2977 unsigned short mode_flags;
2979 char *nodelist = strchr(str, ':');
2980 char *flags = strchr(str, '=');
2984 *flags++ = '\0'; /* terminate mode string */
2987 /* NUL-terminate mode or flags string */
2989 if (nodelist_parse(nodelist, nodes))
2991 if (!nodes_subset(nodes, node_states[N_MEMORY]))
2996 mode = match_string(policy_modes, MPOL_MAX, str);
3001 case MPOL_PREFERRED:
3003 * Insist on a nodelist of one node only, although later
3004 * we use first_node(nodes) to grab a single node, so here
3005 * nodelist (or nodes) cannot be empty.
3008 char *rest = nodelist;
3009 while (isdigit(*rest))
3013 if (nodes_empty(nodes))
3017 case MPOL_INTERLEAVE:
3019 * Default to online nodes with memory if no nodelist
3022 nodes = node_states[N_MEMORY];
3026 * Don't allow a nodelist; mpol_new() checks flags
3033 * Insist on a empty nodelist
3038 case MPOL_PREFERRED_MANY:
3041 * Insist on a nodelist
3050 * Currently, we only support two mutually exclusive
3053 if (!strcmp(flags, "static"))
3054 mode_flags |= MPOL_F_STATIC_NODES;
3055 else if (!strcmp(flags, "relative"))
3056 mode_flags |= MPOL_F_RELATIVE_NODES;
3061 new = mpol_new(mode, mode_flags, &nodes);
3066 * Save nodes for mpol_to_str() to show the tmpfs mount options
3067 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo.
3069 if (mode != MPOL_PREFERRED) {
3071 } else if (nodelist) {
3072 nodes_clear(new->nodes);
3073 node_set(first_node(nodes), new->nodes);
3075 new->mode = MPOL_LOCAL;
3079 * Save nodes for contextualization: this will be used to "clone"
3080 * the mempolicy in a specific context [cpuset] at a later time.
3082 new->w.user_nodemask = nodes;
3087 /* Restore string for error message */
3096 #endif /* CONFIG_TMPFS */
3099 * mpol_to_str - format a mempolicy structure for printing
3100 * @buffer: to contain formatted mempolicy string
3101 * @maxlen: length of @buffer
3102 * @pol: pointer to mempolicy to be formatted
3104 * Convert @pol into a string. If @buffer is too short, truncate the string.
3105 * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the
3106 * longest flag, "relative", and to display at least a few node ids.
3108 void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
3111 nodemask_t nodes = NODE_MASK_NONE;
3112 unsigned short mode = MPOL_DEFAULT;
3113 unsigned short flags = 0;
3115 if (pol && pol != &default_policy && !(pol->flags & MPOL_F_MORON)) {
3124 case MPOL_PREFERRED:
3125 case MPOL_PREFERRED_MANY:
3127 case MPOL_INTERLEAVE:
3132 snprintf(p, maxlen, "unknown");
3136 p += snprintf(p, maxlen, "%s", policy_modes[mode]);
3138 if (flags & MPOL_MODE_FLAGS) {
3139 p += snprintf(p, buffer + maxlen - p, "=");
3142 * Currently, the only defined flags are mutually exclusive
3144 if (flags & MPOL_F_STATIC_NODES)
3145 p += snprintf(p, buffer + maxlen - p, "static");
3146 else if (flags & MPOL_F_RELATIVE_NODES)
3147 p += snprintf(p, buffer + maxlen - p, "relative");
3150 if (!nodes_empty(nodes))
3151 p += scnprintf(p, buffer + maxlen - p, ":%*pbl",
3152 nodemask_pr_args(&nodes));