1 // SPDX-License-Identifier: GPL-2.0-only
3 * Simple NUMA memory policy for the Linux kernel.
5 * Copyright 2003,2004 Andi Kleen, SuSE Labs.
6 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
8 * NUMA policy allows the user to give hints in which node(s) memory should
11 * Support four policies per VMA and per process:
13 * The VMA policy has priority over the process policy for a page fault.
15 * interleave Allocate memory interleaved over a set of nodes,
16 * with normal fallback if it fails.
17 * For VMA based allocations this interleaves based on the
18 * offset into the backing object or offset into the mapping
19 * for anonymous memory. For process policy an process counter
22 * bind Only allocate memory on a specific set of nodes,
24 * FIXME: memory is allocated starting with the first node
25 * to the last. It would be better if bind would truly restrict
26 * the allocation to memory nodes instead
28 * preferred Try a specific node first before normal fallback.
29 * As a special case NUMA_NO_NODE here means do the allocation
30 * on the local CPU. This is normally identical to default,
31 * but useful to set in a VMA when you have a non default
34 * preferred many Try a set of nodes first before normal fallback. This is
35 * similar to preferred without the special case.
37 * default Allocate on the local node first, or when on a VMA
38 * use the process policy. This is what Linux always did
39 * in a NUMA aware kernel and still does by, ahem, default.
41 * The process policy is applied for most non interrupt memory allocations
42 * in that process' context. Interrupts ignore the policies and always
43 * try to allocate on the local CPU. The VMA policy is only applied for memory
44 * allocations for a VMA in the VM.
46 * Currently there are a few corner cases in swapping where the policy
47 * is not applied, but the majority should be handled. When process policy
48 * is used it is not remembered over swap outs/swap ins.
50 * Only the highest zone in the zone hierarchy gets policied. Allocations
51 * requesting a lower zone just use default policy. This implies that
52 * on systems with highmem kernel lowmem allocation don't get policied.
53 * Same with GFP_DMA allocations.
55 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
56 * all users and remembered even when nobody has memory mapped.
60 fix mmap readahead to honour policy and enable policy for any page cache
62 statistics for bigpages
63 global policy for page cache? currently it uses process policy. Requires
65 handle mremap for shared memory (currently ignored for the policy)
67 make bind policy root only? It can trigger oom much faster and the
68 kernel is not always grateful with that.
71 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
73 #include <linux/mempolicy.h>
74 #include <linux/pagewalk.h>
75 #include <linux/highmem.h>
76 #include <linux/hugetlb.h>
77 #include <linux/kernel.h>
78 #include <linux/sched.h>
79 #include <linux/sched/mm.h>
80 #include <linux/sched/numa_balancing.h>
81 #include <linux/sched/task.h>
82 #include <linux/nodemask.h>
83 #include <linux/cpuset.h>
84 #include <linux/slab.h>
85 #include <linux/string.h>
86 #include <linux/export.h>
87 #include <linux/nsproxy.h>
88 #include <linux/interrupt.h>
89 #include <linux/init.h>
90 #include <linux/compat.h>
91 #include <linux/ptrace.h>
92 #include <linux/swap.h>
93 #include <linux/seq_file.h>
94 #include <linux/proc_fs.h>
95 #include <linux/migrate.h>
96 #include <linux/ksm.h>
97 #include <linux/rmap.h>
98 #include <linux/security.h>
99 #include <linux/syscalls.h>
100 #include <linux/ctype.h>
101 #include <linux/mm_inline.h>
102 #include <linux/mmu_notifier.h>
103 #include <linux/printk.h>
104 #include <linux/swapops.h>
106 #include <asm/tlbflush.h>
108 #include <linux/uaccess.h>
110 #include "internal.h"
113 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */
114 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */
116 static struct kmem_cache *policy_cache;
117 static struct kmem_cache *sn_cache;
119 /* Highest zone. An specific allocation for a zone below that is not
121 enum zone_type policy_zone = 0;
124 * run-time system-wide default policy => local allocation
126 static struct mempolicy default_policy = {
127 .refcnt = ATOMIC_INIT(1), /* never free it */
131 static struct mempolicy preferred_node_policy[MAX_NUMNODES];
134 * numa_map_to_online_node - Find closest online node
135 * @node: Node id to start the search
137 * Lookup the next closest node by distance if @nid is not online.
139 * Return: this @node if it is online, otherwise the closest node by distance
141 int numa_map_to_online_node(int node)
143 int min_dist = INT_MAX, dist, n, min_node;
145 if (node == NUMA_NO_NODE || node_online(node))
149 for_each_online_node(n) {
150 dist = node_distance(node, n);
151 if (dist < min_dist) {
159 EXPORT_SYMBOL_GPL(numa_map_to_online_node);
161 struct mempolicy *get_task_policy(struct task_struct *p)
163 struct mempolicy *pol = p->mempolicy;
169 node = numa_node_id();
170 if (node != NUMA_NO_NODE) {
171 pol = &preferred_node_policy[node];
172 /* preferred_node_policy is not initialised early in boot */
177 return &default_policy;
180 static const struct mempolicy_operations {
181 int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
182 void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes);
183 } mpol_ops[MPOL_MAX];
185 static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
187 return pol->flags & MPOL_MODE_FLAGS;
190 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
191 const nodemask_t *rel)
194 nodes_fold(tmp, *orig, nodes_weight(*rel));
195 nodes_onto(*ret, tmp, *rel);
198 static int mpol_new_nodemask(struct mempolicy *pol, const nodemask_t *nodes)
200 if (nodes_empty(*nodes))
206 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
208 if (nodes_empty(*nodes))
211 nodes_clear(pol->nodes);
212 node_set(first_node(*nodes), pol->nodes);
217 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
218 * any, for the new policy. mpol_new() has already validated the nodes
219 * parameter with respect to the policy mode and flags.
221 * Must be called holding task's alloc_lock to protect task's mems_allowed
222 * and mempolicy. May also be called holding the mmap_lock for write.
224 static int mpol_set_nodemask(struct mempolicy *pol,
225 const nodemask_t *nodes, struct nodemask_scratch *nsc)
230 * Default (pol==NULL) resp. local memory policies are not a
231 * subject of any remapping. They also do not need any special
234 if (!pol || pol->mode == MPOL_LOCAL)
238 nodes_and(nsc->mask1,
239 cpuset_current_mems_allowed, node_states[N_MEMORY]);
243 if (pol->flags & MPOL_F_RELATIVE_NODES)
244 mpol_relative_nodemask(&nsc->mask2, nodes, &nsc->mask1);
246 nodes_and(nsc->mask2, *nodes, nsc->mask1);
248 if (mpol_store_user_nodemask(pol))
249 pol->w.user_nodemask = *nodes;
251 pol->w.cpuset_mems_allowed = cpuset_current_mems_allowed;
253 ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
258 * This function just creates a new policy, does some check and simple
259 * initialization. You must invoke mpol_set_nodemask() to set nodes.
261 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
264 struct mempolicy *policy;
266 pr_debug("setting mode %d flags %d nodes[0] %lx\n",
267 mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE);
269 if (mode == MPOL_DEFAULT) {
270 if (nodes && !nodes_empty(*nodes))
271 return ERR_PTR(-EINVAL);
277 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
278 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
279 * All other modes require a valid pointer to a non-empty nodemask.
281 if (mode == MPOL_PREFERRED) {
282 if (nodes_empty(*nodes)) {
283 if (((flags & MPOL_F_STATIC_NODES) ||
284 (flags & MPOL_F_RELATIVE_NODES)))
285 return ERR_PTR(-EINVAL);
289 } else if (mode == MPOL_LOCAL) {
290 if (!nodes_empty(*nodes) ||
291 (flags & MPOL_F_STATIC_NODES) ||
292 (flags & MPOL_F_RELATIVE_NODES))
293 return ERR_PTR(-EINVAL);
294 } else if (nodes_empty(*nodes))
295 return ERR_PTR(-EINVAL);
296 policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
298 return ERR_PTR(-ENOMEM);
299 atomic_set(&policy->refcnt, 1);
301 policy->flags = flags;
302 policy->home_node = NUMA_NO_NODE;
307 /* Slow path of a mpol destructor. */
308 void __mpol_put(struct mempolicy *p)
310 if (!atomic_dec_and_test(&p->refcnt))
312 kmem_cache_free(policy_cache, p);
315 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes)
319 static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes)
323 if (pol->flags & MPOL_F_STATIC_NODES)
324 nodes_and(tmp, pol->w.user_nodemask, *nodes);
325 else if (pol->flags & MPOL_F_RELATIVE_NODES)
326 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
328 nodes_remap(tmp, pol->nodes, pol->w.cpuset_mems_allowed,
330 pol->w.cpuset_mems_allowed = *nodes;
333 if (nodes_empty(tmp))
339 static void mpol_rebind_preferred(struct mempolicy *pol,
340 const nodemask_t *nodes)
342 pol->w.cpuset_mems_allowed = *nodes;
346 * mpol_rebind_policy - Migrate a policy to a different set of nodes
348 * Per-vma policies are protected by mmap_lock. Allocations using per-task
349 * policies are protected by task->mems_allowed_seq to prevent a premature
350 * OOM/allocation failure due to parallel nodemask modification.
352 static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask)
354 if (!pol || pol->mode == MPOL_LOCAL)
356 if (!mpol_store_user_nodemask(pol) &&
357 nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
360 mpol_ops[pol->mode].rebind(pol, newmask);
364 * Wrapper for mpol_rebind_policy() that just requires task
365 * pointer, and updates task mempolicy.
367 * Called with task's alloc_lock held.
370 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new)
372 mpol_rebind_policy(tsk->mempolicy, new);
376 * Rebind each vma in mm to new nodemask.
378 * Call holding a reference to mm. Takes mm->mmap_lock during call.
381 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
383 struct vm_area_struct *vma;
384 VMA_ITERATOR(vmi, mm, 0);
387 for_each_vma(vmi, vma) {
388 vma_start_write(vma);
389 mpol_rebind_policy(vma->vm_policy, new);
391 mmap_write_unlock(mm);
394 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
396 .rebind = mpol_rebind_default,
398 [MPOL_INTERLEAVE] = {
399 .create = mpol_new_nodemask,
400 .rebind = mpol_rebind_nodemask,
403 .create = mpol_new_preferred,
404 .rebind = mpol_rebind_preferred,
407 .create = mpol_new_nodemask,
408 .rebind = mpol_rebind_nodemask,
411 .rebind = mpol_rebind_default,
413 [MPOL_PREFERRED_MANY] = {
414 .create = mpol_new_nodemask,
415 .rebind = mpol_rebind_preferred,
419 static int migrate_folio_add(struct folio *folio, struct list_head *foliolist,
420 unsigned long flags);
423 struct list_head *pagelist;
428 struct vm_area_struct *first;
432 * Check if the folio's nid is in qp->nmask.
434 * If MPOL_MF_INVERT is set in qp->flags, check if the nid is
435 * in the invert of qp->nmask.
437 static inline bool queue_folio_required(struct folio *folio,
438 struct queue_pages *qp)
440 int nid = folio_nid(folio);
441 unsigned long flags = qp->flags;
443 return node_isset(nid, *qp->nmask) == !(flags & MPOL_MF_INVERT);
447 * queue_folios_pmd() has three possible return values:
448 * 0 - folios are placed on the right node or queued successfully, or
449 * special page is met, i.e. huge zero page.
450 * 1 - there is unmovable folio, and MPOL_MF_MOVE* & MPOL_MF_STRICT were
452 * -EIO - is migration entry or only MPOL_MF_STRICT was specified and an
453 * existing folio was already on a node that does not follow the
456 static int queue_folios_pmd(pmd_t *pmd, spinlock_t *ptl, unsigned long addr,
457 unsigned long end, struct mm_walk *walk)
462 struct queue_pages *qp = walk->private;
465 if (unlikely(is_pmd_migration_entry(*pmd))) {
469 folio = pfn_folio(pmd_pfn(*pmd));
470 if (is_huge_zero_page(&folio->page)) {
471 walk->action = ACTION_CONTINUE;
474 if (!queue_folio_required(folio, qp))
478 /* go to folio migration */
479 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
480 if (!vma_migratable(walk->vma) ||
481 migrate_folio_add(folio, qp->pagelist, flags)) {
493 * Scan through pages checking if pages follow certain conditions,
494 * and move them to the pagelist if they do.
496 * queue_folios_pte_range() has three possible return values:
497 * 0 - folios are placed on the right node or queued successfully, or
498 * special page is met, i.e. zero page.
499 * 1 - there is unmovable folio, and MPOL_MF_MOVE* & MPOL_MF_STRICT were
501 * -EIO - only MPOL_MF_STRICT was specified and an existing folio was already
502 * on a node that does not follow the policy.
504 static int queue_folios_pte_range(pmd_t *pmd, unsigned long addr,
505 unsigned long end, struct mm_walk *walk)
507 struct vm_area_struct *vma = walk->vma;
509 struct queue_pages *qp = walk->private;
510 unsigned long flags = qp->flags;
511 bool has_unmovable = false;
512 pte_t *pte, *mapped_pte;
516 ptl = pmd_trans_huge_lock(pmd, vma);
518 return queue_folios_pmd(pmd, ptl, addr, end, walk);
520 mapped_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
522 walk->action = ACTION_AGAIN;
525 for (; addr != end; pte++, addr += PAGE_SIZE) {
526 ptent = ptep_get(pte);
527 if (!pte_present(ptent))
529 folio = vm_normal_folio(vma, addr, ptent);
530 if (!folio || folio_is_zone_device(folio))
533 * vm_normal_folio() filters out zero pages, but there might
534 * still be reserved folios to skip, perhaps in a VDSO.
536 if (folio_test_reserved(folio))
538 if (!queue_folio_required(folio, qp))
540 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
541 /* MPOL_MF_STRICT must be specified if we get here */
542 if (!vma_migratable(vma)) {
543 has_unmovable = true;
548 * Do not abort immediately since there may be
549 * temporary off LRU pages in the range. Still
550 * need migrate other LRU pages.
552 if (migrate_folio_add(folio, qp->pagelist, flags))
553 has_unmovable = true;
557 pte_unmap_unlock(mapped_pte, ptl);
563 return addr != end ? -EIO : 0;
566 static int queue_folios_hugetlb(pte_t *pte, unsigned long hmask,
567 unsigned long addr, unsigned long end,
568 struct mm_walk *walk)
571 #ifdef CONFIG_HUGETLB_PAGE
572 struct queue_pages *qp = walk->private;
573 unsigned long flags = (qp->flags & MPOL_MF_VALID);
578 ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte);
579 entry = huge_ptep_get(pte);
580 if (!pte_present(entry))
582 folio = pfn_folio(pte_pfn(entry));
583 if (!queue_folio_required(folio, qp))
586 if (flags == MPOL_MF_STRICT) {
588 * STRICT alone means only detecting misplaced folio and no
589 * need to further check other vma.
595 if (!vma_migratable(walk->vma)) {
597 * Must be STRICT with MOVE*, otherwise .test_walk() have
598 * stopped walking current vma.
599 * Detecting misplaced folio but allow migrating folios which
607 * With MPOL_MF_MOVE, we try to migrate only unshared folios. If it
608 * is shared it is likely not worth migrating.
610 * To check if the folio is shared, ideally we want to make sure
611 * every page is mapped to the same process. Doing that is very
612 * expensive, so check the estimated mapcount of the folio instead.
614 if (flags & (MPOL_MF_MOVE_ALL) ||
615 (flags & MPOL_MF_MOVE && folio_estimated_sharers(folio) == 1 &&
616 !hugetlb_pmd_shared(pte))) {
617 if (!isolate_hugetlb(folio, qp->pagelist) &&
618 (flags & MPOL_MF_STRICT))
620 * Failed to isolate folio but allow migrating pages
621 * which have been queued.
633 #ifdef CONFIG_NUMA_BALANCING
635 * This is used to mark a range of virtual addresses to be inaccessible.
636 * These are later cleared by a NUMA hinting fault. Depending on these
637 * faults, pages may be migrated for better NUMA placement.
639 * This is assuming that NUMA faults are handled using PROT_NONE. If
640 * an architecture makes a different choice, it will need further
641 * changes to the core.
643 unsigned long change_prot_numa(struct vm_area_struct *vma,
644 unsigned long addr, unsigned long end)
646 struct mmu_gather tlb;
649 tlb_gather_mmu(&tlb, vma->vm_mm);
651 nr_updated = change_protection(&tlb, vma, addr, end, MM_CP_PROT_NUMA);
653 count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated);
655 tlb_finish_mmu(&tlb);
660 static unsigned long change_prot_numa(struct vm_area_struct *vma,
661 unsigned long addr, unsigned long end)
665 #endif /* CONFIG_NUMA_BALANCING */
667 static int queue_pages_test_walk(unsigned long start, unsigned long end,
668 struct mm_walk *walk)
670 struct vm_area_struct *next, *vma = walk->vma;
671 struct queue_pages *qp = walk->private;
672 unsigned long endvma = vma->vm_end;
673 unsigned long flags = qp->flags;
675 /* range check first */
676 VM_BUG_ON_VMA(!range_in_vma(vma, start, end), vma);
680 if (!(flags & MPOL_MF_DISCONTIG_OK) &&
681 (qp->start < vma->vm_start))
682 /* hole at head side of range */
685 next = find_vma(vma->vm_mm, vma->vm_end);
686 if (!(flags & MPOL_MF_DISCONTIG_OK) &&
687 ((vma->vm_end < qp->end) &&
688 (!next || vma->vm_end < next->vm_start)))
689 /* hole at middle or tail of range */
693 * Need check MPOL_MF_STRICT to return -EIO if possible
694 * regardless of vma_migratable
696 if (!vma_migratable(vma) &&
697 !(flags & MPOL_MF_STRICT))
703 if (flags & MPOL_MF_LAZY) {
704 /* Similar to task_numa_work, skip inaccessible VMAs */
705 if (!is_vm_hugetlb_page(vma) && vma_is_accessible(vma) &&
706 !(vma->vm_flags & VM_MIXEDMAP))
707 change_prot_numa(vma, start, endvma);
711 /* queue pages from current vma */
712 if (flags & MPOL_MF_VALID)
717 static const struct mm_walk_ops queue_pages_walk_ops = {
718 .hugetlb_entry = queue_folios_hugetlb,
719 .pmd_entry = queue_folios_pte_range,
720 .test_walk = queue_pages_test_walk,
724 * Walk through page tables and collect pages to be migrated.
726 * If pages found in a given range are on a set of nodes (determined by
727 * @nodes and @flags,) it's isolated and queued to the pagelist which is
728 * passed via @private.
730 * queue_pages_range() has three possible return values:
731 * 1 - there is unmovable page, but MPOL_MF_MOVE* & MPOL_MF_STRICT were
733 * 0 - queue pages successfully or no misplaced page.
734 * errno - i.e. misplaced pages with MPOL_MF_STRICT specified (-EIO) or
735 * memory range specified by nodemask and maxnode points outside
736 * your accessible address space (-EFAULT)
739 queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end,
740 nodemask_t *nodes, unsigned long flags,
741 struct list_head *pagelist)
744 struct queue_pages qp = {
745 .pagelist = pagelist,
753 err = walk_page_range(mm, start, end, &queue_pages_walk_ops, &qp);
756 /* whole range in hole */
763 * Apply policy to a single VMA
764 * This must be called with the mmap_lock held for writing.
766 static int vma_replace_policy(struct vm_area_struct *vma,
767 struct mempolicy *pol)
770 struct mempolicy *old;
771 struct mempolicy *new;
773 vma_assert_write_locked(vma);
775 pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
776 vma->vm_start, vma->vm_end, vma->vm_pgoff,
777 vma->vm_ops, vma->vm_file,
778 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
784 if (vma->vm_ops && vma->vm_ops->set_policy) {
785 err = vma->vm_ops->set_policy(vma, new);
790 old = vma->vm_policy;
791 vma->vm_policy = new; /* protected by mmap_lock */
800 /* Split or merge the VMA (if required) and apply the new policy */
801 static int mbind_range(struct vma_iterator *vmi, struct vm_area_struct *vma,
802 struct vm_area_struct **prev, unsigned long start,
803 unsigned long end, struct mempolicy *new_pol)
805 struct vm_area_struct *merged;
806 unsigned long vmstart, vmend;
810 vmend = min(end, vma->vm_end);
811 if (start > vma->vm_start) {
815 vmstart = vma->vm_start;
818 if (mpol_equal(vma_policy(vma), new_pol)) {
823 pgoff = vma->vm_pgoff + ((vmstart - vma->vm_start) >> PAGE_SHIFT);
824 merged = vma_merge(vmi, vma->vm_mm, *prev, vmstart, vmend, vma->vm_flags,
825 vma->anon_vma, vma->vm_file, pgoff, new_pol,
826 vma->vm_userfaultfd_ctx, anon_vma_name(vma));
829 return vma_replace_policy(merged, new_pol);
832 if (vma->vm_start != vmstart) {
833 err = split_vma(vmi, vma, vmstart, 1);
838 if (vma->vm_end != vmend) {
839 err = split_vma(vmi, vma, vmend, 0);
845 return vma_replace_policy(vma, new_pol);
848 /* Set the process memory policy */
849 static long do_set_mempolicy(unsigned short mode, unsigned short flags,
852 struct mempolicy *new, *old;
853 NODEMASK_SCRATCH(scratch);
859 new = mpol_new(mode, flags, nodes);
866 ret = mpol_set_nodemask(new, nodes, scratch);
868 task_unlock(current);
873 old = current->mempolicy;
874 current->mempolicy = new;
875 if (new && new->mode == MPOL_INTERLEAVE)
876 current->il_prev = MAX_NUMNODES-1;
877 task_unlock(current);
881 NODEMASK_SCRATCH_FREE(scratch);
886 * Return nodemask for policy for get_mempolicy() query
888 * Called with task's alloc_lock held
890 static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
893 if (p == &default_policy)
898 case MPOL_INTERLEAVE:
900 case MPOL_PREFERRED_MANY:
904 /* return empty node mask for local allocation */
911 static int lookup_node(struct mm_struct *mm, unsigned long addr)
913 struct page *p = NULL;
916 ret = get_user_pages_fast(addr & PAGE_MASK, 1, 0, &p);
918 ret = page_to_nid(p);
924 /* Retrieve NUMA policy */
925 static long do_get_mempolicy(int *policy, nodemask_t *nmask,
926 unsigned long addr, unsigned long flags)
929 struct mm_struct *mm = current->mm;
930 struct vm_area_struct *vma = NULL;
931 struct mempolicy *pol = current->mempolicy, *pol_refcount = NULL;
934 ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
937 if (flags & MPOL_F_MEMS_ALLOWED) {
938 if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
940 *policy = 0; /* just so it's initialized */
942 *nmask = cpuset_current_mems_allowed;
943 task_unlock(current);
947 if (flags & MPOL_F_ADDR) {
949 * Do NOT fall back to task policy if the
950 * vma/shared policy at addr is NULL. We
951 * want to return MPOL_DEFAULT in this case.
954 vma = vma_lookup(mm, addr);
956 mmap_read_unlock(mm);
959 if (vma->vm_ops && vma->vm_ops->get_policy)
960 pol = vma->vm_ops->get_policy(vma, addr);
962 pol = vma->vm_policy;
967 pol = &default_policy; /* indicates default behavior */
969 if (flags & MPOL_F_NODE) {
970 if (flags & MPOL_F_ADDR) {
972 * Take a refcount on the mpol, because we are about to
973 * drop the mmap_lock, after which only "pol" remains
974 * valid, "vma" is stale.
979 mmap_read_unlock(mm);
980 err = lookup_node(mm, addr);
984 } else if (pol == current->mempolicy &&
985 pol->mode == MPOL_INTERLEAVE) {
986 *policy = next_node_in(current->il_prev, pol->nodes);
992 *policy = pol == &default_policy ? MPOL_DEFAULT :
995 * Internal mempolicy flags must be masked off before exposing
996 * the policy to userspace.
998 *policy |= (pol->flags & MPOL_MODE_FLAGS);
1003 if (mpol_store_user_nodemask(pol)) {
1004 *nmask = pol->w.user_nodemask;
1007 get_policy_nodemask(pol, nmask);
1008 task_unlock(current);
1015 mmap_read_unlock(mm);
1017 mpol_put(pol_refcount);
1021 #ifdef CONFIG_MIGRATION
1022 static int migrate_folio_add(struct folio *folio, struct list_head *foliolist,
1023 unsigned long flags)
1026 * We try to migrate only unshared folios. If it is shared it
1027 * is likely not worth migrating.
1029 * To check if the folio is shared, ideally we want to make sure
1030 * every page is mapped to the same process. Doing that is very
1031 * expensive, so check the estimated mapcount of the folio instead.
1033 if ((flags & MPOL_MF_MOVE_ALL) || folio_estimated_sharers(folio) == 1) {
1034 if (folio_isolate_lru(folio)) {
1035 list_add_tail(&folio->lru, foliolist);
1036 node_stat_mod_folio(folio,
1037 NR_ISOLATED_ANON + folio_is_file_lru(folio),
1038 folio_nr_pages(folio));
1039 } else if (flags & MPOL_MF_STRICT) {
1041 * Non-movable folio may reach here. And, there may be
1042 * temporary off LRU folios or non-LRU movable folios.
1043 * Treat them as unmovable folios since they can't be
1044 * isolated, so they can't be moved at the moment. It
1045 * should return -EIO for this case too.
1055 * Migrate pages from one node to a target node.
1056 * Returns error or the number of pages not migrated.
1058 static int migrate_to_node(struct mm_struct *mm, int source, int dest,
1062 struct vm_area_struct *vma;
1063 LIST_HEAD(pagelist);
1065 struct migration_target_control mtc = {
1067 .gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE,
1071 node_set(source, nmask);
1074 * This does not "check" the range but isolates all pages that
1075 * need migration. Between passing in the full user address
1076 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail.
1078 vma = find_vma(mm, 0);
1079 VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)));
1080 queue_pages_range(mm, vma->vm_start, mm->task_size, &nmask,
1081 flags | MPOL_MF_DISCONTIG_OK, &pagelist);
1083 if (!list_empty(&pagelist)) {
1084 err = migrate_pages(&pagelist, alloc_migration_target, NULL,
1085 (unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL, NULL);
1087 putback_movable_pages(&pagelist);
1094 * Move pages between the two nodesets so as to preserve the physical
1095 * layout as much as possible.
1097 * Returns the number of page that could not be moved.
1099 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1100 const nodemask_t *to, int flags)
1106 lru_cache_disable();
1111 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
1112 * bit in 'to' is not also set in 'tmp'. Clear the found 'source'
1113 * bit in 'tmp', and return that <source, dest> pair for migration.
1114 * The pair of nodemasks 'to' and 'from' define the map.
1116 * If no pair of bits is found that way, fallback to picking some
1117 * pair of 'source' and 'dest' bits that are not the same. If the
1118 * 'source' and 'dest' bits are the same, this represents a node
1119 * that will be migrating to itself, so no pages need move.
1121 * If no bits are left in 'tmp', or if all remaining bits left
1122 * in 'tmp' correspond to the same bit in 'to', return false
1123 * (nothing left to migrate).
1125 * This lets us pick a pair of nodes to migrate between, such that
1126 * if possible the dest node is not already occupied by some other
1127 * source node, minimizing the risk of overloading the memory on a
1128 * node that would happen if we migrated incoming memory to a node
1129 * before migrating outgoing memory source that same node.
1131 * A single scan of tmp is sufficient. As we go, we remember the
1132 * most recent <s, d> pair that moved (s != d). If we find a pair
1133 * that not only moved, but what's better, moved to an empty slot
1134 * (d is not set in tmp), then we break out then, with that pair.
1135 * Otherwise when we finish scanning from_tmp, we at least have the
1136 * most recent <s, d> pair that moved. If we get all the way through
1137 * the scan of tmp without finding any node that moved, much less
1138 * moved to an empty node, then there is nothing left worth migrating.
1142 while (!nodes_empty(tmp)) {
1144 int source = NUMA_NO_NODE;
1147 for_each_node_mask(s, tmp) {
1150 * do_migrate_pages() tries to maintain the relative
1151 * node relationship of the pages established between
1152 * threads and memory areas.
1154 * However if the number of source nodes is not equal to
1155 * the number of destination nodes we can not preserve
1156 * this node relative relationship. In that case, skip
1157 * copying memory from a node that is in the destination
1160 * Example: [2,3,4] -> [3,4,5] moves everything.
1161 * [0-7] - > [3,4,5] moves only 0,1,2,6,7.
1164 if ((nodes_weight(*from) != nodes_weight(*to)) &&
1165 (node_isset(s, *to)))
1168 d = node_remap(s, *from, *to);
1172 source = s; /* Node moved. Memorize */
1175 /* dest not in remaining from nodes? */
1176 if (!node_isset(dest, tmp))
1179 if (source == NUMA_NO_NODE)
1182 node_clear(source, tmp);
1183 err = migrate_to_node(mm, source, dest, flags);
1189 mmap_read_unlock(mm);
1199 * Allocate a new page for page migration based on vma policy.
1200 * Start by assuming the page is mapped by the same vma as contains @start.
1201 * Search forward from there, if not. N.B., this assumes that the
1202 * list of pages handed to migrate_pages()--which is how we get here--
1203 * is in virtual address order.
1205 static struct folio *new_folio(struct folio *src, unsigned long start)
1207 struct vm_area_struct *vma;
1208 unsigned long address;
1209 VMA_ITERATOR(vmi, current->mm, start);
1210 gfp_t gfp = GFP_HIGHUSER_MOVABLE | __GFP_RETRY_MAYFAIL;
1212 for_each_vma(vmi, vma) {
1213 address = page_address_in_vma(&src->page, vma);
1214 if (address != -EFAULT)
1218 if (folio_test_hugetlb(src)) {
1219 return alloc_hugetlb_folio_vma(folio_hstate(src),
1223 if (folio_test_large(src))
1224 gfp = GFP_TRANSHUGE;
1227 * if !vma, vma_alloc_folio() will use task or system default policy
1229 return vma_alloc_folio(gfp, folio_order(src), vma, address,
1230 folio_test_large(src));
1234 static int migrate_folio_add(struct folio *folio, struct list_head *foliolist,
1235 unsigned long flags)
1240 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1241 const nodemask_t *to, int flags)
1246 static struct folio *new_folio(struct folio *src, unsigned long start)
1252 static long do_mbind(unsigned long start, unsigned long len,
1253 unsigned short mode, unsigned short mode_flags,
1254 nodemask_t *nmask, unsigned long flags)
1256 struct mm_struct *mm = current->mm;
1257 struct vm_area_struct *vma, *prev;
1258 struct vma_iterator vmi;
1259 struct mempolicy *new;
1263 LIST_HEAD(pagelist);
1265 if (flags & ~(unsigned long)MPOL_MF_VALID)
1267 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1270 if (start & ~PAGE_MASK)
1273 if (mode == MPOL_DEFAULT)
1274 flags &= ~MPOL_MF_STRICT;
1276 len = PAGE_ALIGN(len);
1284 new = mpol_new(mode, mode_flags, nmask);
1286 return PTR_ERR(new);
1288 if (flags & MPOL_MF_LAZY)
1289 new->flags |= MPOL_F_MOF;
1292 * If we are using the default policy then operation
1293 * on discontinuous address spaces is okay after all
1296 flags |= MPOL_MF_DISCONTIG_OK;
1298 pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1299 start, start + len, mode, mode_flags,
1300 nmask ? nodes_addr(*nmask)[0] : NUMA_NO_NODE);
1302 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
1304 lru_cache_disable();
1307 NODEMASK_SCRATCH(scratch);
1309 mmap_write_lock(mm);
1310 err = mpol_set_nodemask(new, nmask, scratch);
1312 mmap_write_unlock(mm);
1315 NODEMASK_SCRATCH_FREE(scratch);
1321 * Lock the VMAs before scanning for pages to migrate, to ensure we don't
1322 * miss a concurrently inserted page.
1324 vma_iter_init(&vmi, mm, start);
1325 for_each_vma_range(vmi, vma, end)
1326 vma_start_write(vma);
1328 ret = queue_pages_range(mm, start, end, nmask,
1329 flags | MPOL_MF_INVERT, &pagelist);
1336 vma_iter_init(&vmi, mm, start);
1337 prev = vma_prev(&vmi);
1338 for_each_vma_range(vmi, vma, end) {
1339 err = mbind_range(&vmi, vma, &prev, start, end, new);
1347 if (!list_empty(&pagelist)) {
1348 WARN_ON_ONCE(flags & MPOL_MF_LAZY);
1349 nr_failed = migrate_pages(&pagelist, new_folio, NULL,
1350 start, MIGRATE_SYNC, MR_MEMPOLICY_MBIND, NULL);
1352 putback_movable_pages(&pagelist);
1355 if ((ret > 0) || (nr_failed && (flags & MPOL_MF_STRICT)))
1359 if (!list_empty(&pagelist))
1360 putback_movable_pages(&pagelist);
1363 mmap_write_unlock(mm);
1366 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
1372 * User space interface with variable sized bitmaps for nodelists.
1374 static int get_bitmap(unsigned long *mask, const unsigned long __user *nmask,
1375 unsigned long maxnode)
1377 unsigned long nlongs = BITS_TO_LONGS(maxnode);
1380 if (in_compat_syscall())
1381 ret = compat_get_bitmap(mask,
1382 (const compat_ulong_t __user *)nmask,
1385 ret = copy_from_user(mask, nmask,
1386 nlongs * sizeof(unsigned long));
1391 if (maxnode % BITS_PER_LONG)
1392 mask[nlongs - 1] &= (1UL << (maxnode % BITS_PER_LONG)) - 1;
1397 /* Copy a node mask from user space. */
1398 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1399 unsigned long maxnode)
1402 nodes_clear(*nodes);
1403 if (maxnode == 0 || !nmask)
1405 if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1409 * When the user specified more nodes than supported just check
1410 * if the non supported part is all zero, one word at a time,
1411 * starting at the end.
1413 while (maxnode > MAX_NUMNODES) {
1414 unsigned long bits = min_t(unsigned long, maxnode, BITS_PER_LONG);
1417 if (get_bitmap(&t, &nmask[(maxnode - 1) / BITS_PER_LONG], bits))
1420 if (maxnode - bits >= MAX_NUMNODES) {
1423 maxnode = MAX_NUMNODES;
1424 t &= ~((1UL << (MAX_NUMNODES % BITS_PER_LONG)) - 1);
1430 return get_bitmap(nodes_addr(*nodes), nmask, maxnode);
1433 /* Copy a kernel node mask to user space */
1434 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1437 unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1438 unsigned int nbytes = BITS_TO_LONGS(nr_node_ids) * sizeof(long);
1439 bool compat = in_compat_syscall();
1442 nbytes = BITS_TO_COMPAT_LONGS(nr_node_ids) * sizeof(compat_long_t);
1444 if (copy > nbytes) {
1445 if (copy > PAGE_SIZE)
1447 if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1450 maxnode = nr_node_ids;
1454 return compat_put_bitmap((compat_ulong_t __user *)mask,
1455 nodes_addr(*nodes), maxnode);
1457 return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1460 /* Basic parameter sanity check used by both mbind() and set_mempolicy() */
1461 static inline int sanitize_mpol_flags(int *mode, unsigned short *flags)
1463 *flags = *mode & MPOL_MODE_FLAGS;
1464 *mode &= ~MPOL_MODE_FLAGS;
1466 if ((unsigned int)(*mode) >= MPOL_MAX)
1468 if ((*flags & MPOL_F_STATIC_NODES) && (*flags & MPOL_F_RELATIVE_NODES))
1470 if (*flags & MPOL_F_NUMA_BALANCING) {
1471 if (*mode != MPOL_BIND)
1473 *flags |= (MPOL_F_MOF | MPOL_F_MORON);
1478 static long kernel_mbind(unsigned long start, unsigned long len,
1479 unsigned long mode, const unsigned long __user *nmask,
1480 unsigned long maxnode, unsigned int flags)
1482 unsigned short mode_flags;
1487 start = untagged_addr(start);
1488 err = sanitize_mpol_flags(&lmode, &mode_flags);
1492 err = get_nodes(&nodes, nmask, maxnode);
1496 return do_mbind(start, len, lmode, mode_flags, &nodes, flags);
1499 SYSCALL_DEFINE4(set_mempolicy_home_node, unsigned long, start, unsigned long, len,
1500 unsigned long, home_node, unsigned long, flags)
1502 struct mm_struct *mm = current->mm;
1503 struct vm_area_struct *vma, *prev;
1504 struct mempolicy *new, *old;
1507 VMA_ITERATOR(vmi, mm, start);
1509 start = untagged_addr(start);
1510 if (start & ~PAGE_MASK)
1513 * flags is used for future extension if any.
1519 * Check home_node is online to avoid accessing uninitialized
1522 if (home_node >= MAX_NUMNODES || !node_online(home_node))
1525 len = PAGE_ALIGN(len);
1532 mmap_write_lock(mm);
1533 prev = vma_prev(&vmi);
1534 for_each_vma_range(vmi, vma, end) {
1536 * If any vma in the range got policy other than MPOL_BIND
1537 * or MPOL_PREFERRED_MANY we return error. We don't reset
1538 * the home node for vmas we already updated before.
1540 old = vma_policy(vma);
1543 if (old->mode != MPOL_BIND && old->mode != MPOL_PREFERRED_MANY) {
1547 new = mpol_dup(old);
1553 vma_start_write(vma);
1554 new->home_node = home_node;
1555 err = mbind_range(&vmi, vma, &prev, start, end, new);
1560 mmap_write_unlock(mm);
1564 SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1565 unsigned long, mode, const unsigned long __user *, nmask,
1566 unsigned long, maxnode, unsigned int, flags)
1568 return kernel_mbind(start, len, mode, nmask, maxnode, flags);
1571 /* Set the process memory policy */
1572 static long kernel_set_mempolicy(int mode, const unsigned long __user *nmask,
1573 unsigned long maxnode)
1575 unsigned short mode_flags;
1580 err = sanitize_mpol_flags(&lmode, &mode_flags);
1584 err = get_nodes(&nodes, nmask, maxnode);
1588 return do_set_mempolicy(lmode, mode_flags, &nodes);
1591 SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask,
1592 unsigned long, maxnode)
1594 return kernel_set_mempolicy(mode, nmask, maxnode);
1597 static int kernel_migrate_pages(pid_t pid, unsigned long maxnode,
1598 const unsigned long __user *old_nodes,
1599 const unsigned long __user *new_nodes)
1601 struct mm_struct *mm = NULL;
1602 struct task_struct *task;
1603 nodemask_t task_nodes;
1607 NODEMASK_SCRATCH(scratch);
1612 old = &scratch->mask1;
1613 new = &scratch->mask2;
1615 err = get_nodes(old, old_nodes, maxnode);
1619 err = get_nodes(new, new_nodes, maxnode);
1623 /* Find the mm_struct */
1625 task = pid ? find_task_by_vpid(pid) : current;
1631 get_task_struct(task);
1636 * Check if this process has the right to modify the specified process.
1637 * Use the regular "ptrace_may_access()" checks.
1639 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1646 task_nodes = cpuset_mems_allowed(task);
1647 /* Is the user allowed to access the target nodes? */
1648 if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1653 task_nodes = cpuset_mems_allowed(current);
1654 nodes_and(*new, *new, task_nodes);
1655 if (nodes_empty(*new))
1658 err = security_task_movememory(task);
1662 mm = get_task_mm(task);
1663 put_task_struct(task);
1670 err = do_migrate_pages(mm, old, new,
1671 capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1675 NODEMASK_SCRATCH_FREE(scratch);
1680 put_task_struct(task);
1685 SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1686 const unsigned long __user *, old_nodes,
1687 const unsigned long __user *, new_nodes)
1689 return kernel_migrate_pages(pid, maxnode, old_nodes, new_nodes);
1693 /* Retrieve NUMA policy */
1694 static int kernel_get_mempolicy(int __user *policy,
1695 unsigned long __user *nmask,
1696 unsigned long maxnode,
1698 unsigned long flags)
1704 if (nmask != NULL && maxnode < nr_node_ids)
1707 addr = untagged_addr(addr);
1709 err = do_get_mempolicy(&pval, &nodes, addr, flags);
1714 if (policy && put_user(pval, policy))
1718 err = copy_nodes_to_user(nmask, maxnode, &nodes);
1723 SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1724 unsigned long __user *, nmask, unsigned long, maxnode,
1725 unsigned long, addr, unsigned long, flags)
1727 return kernel_get_mempolicy(policy, nmask, maxnode, addr, flags);
1730 bool vma_migratable(struct vm_area_struct *vma)
1732 if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1736 * DAX device mappings require predictable access latency, so avoid
1737 * incurring periodic faults.
1739 if (vma_is_dax(vma))
1742 if (is_vm_hugetlb_page(vma) &&
1743 !hugepage_migration_supported(hstate_vma(vma)))
1747 * Migration allocates pages in the highest zone. If we cannot
1748 * do so then migration (at least from node to node) is not
1752 gfp_zone(mapping_gfp_mask(vma->vm_file->f_mapping))
1758 struct mempolicy *__get_vma_policy(struct vm_area_struct *vma,
1761 struct mempolicy *pol = NULL;
1764 if (vma->vm_ops && vma->vm_ops->get_policy) {
1765 pol = vma->vm_ops->get_policy(vma, addr);
1766 } else if (vma->vm_policy) {
1767 pol = vma->vm_policy;
1770 * shmem_alloc_page() passes MPOL_F_SHARED policy with
1771 * a pseudo vma whose vma->vm_ops=NULL. Take a reference
1772 * count on these policies which will be dropped by
1773 * mpol_cond_put() later
1775 if (mpol_needs_cond_ref(pol))
1784 * get_vma_policy(@vma, @addr)
1785 * @vma: virtual memory area whose policy is sought
1786 * @addr: address in @vma for shared policy lookup
1788 * Returns effective policy for a VMA at specified address.
1789 * Falls back to current->mempolicy or system default policy, as necessary.
1790 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1791 * count--added by the get_policy() vm_op, as appropriate--to protect against
1792 * freeing by another task. It is the caller's responsibility to free the
1793 * extra reference for shared policies.
1795 static struct mempolicy *get_vma_policy(struct vm_area_struct *vma,
1798 struct mempolicy *pol = __get_vma_policy(vma, addr);
1801 pol = get_task_policy(current);
1806 bool vma_policy_mof(struct vm_area_struct *vma)
1808 struct mempolicy *pol;
1810 if (vma->vm_ops && vma->vm_ops->get_policy) {
1813 pol = vma->vm_ops->get_policy(vma, vma->vm_start);
1814 if (pol && (pol->flags & MPOL_F_MOF))
1821 pol = vma->vm_policy;
1823 pol = get_task_policy(current);
1825 return pol->flags & MPOL_F_MOF;
1828 bool apply_policy_zone(struct mempolicy *policy, enum zone_type zone)
1830 enum zone_type dynamic_policy_zone = policy_zone;
1832 BUG_ON(dynamic_policy_zone == ZONE_MOVABLE);
1835 * if policy->nodes has movable memory only,
1836 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only.
1838 * policy->nodes is intersect with node_states[N_MEMORY].
1839 * so if the following test fails, it implies
1840 * policy->nodes has movable memory only.
1842 if (!nodes_intersects(policy->nodes, node_states[N_HIGH_MEMORY]))
1843 dynamic_policy_zone = ZONE_MOVABLE;
1845 return zone >= dynamic_policy_zone;
1849 * Return a nodemask representing a mempolicy for filtering nodes for
1852 nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1854 int mode = policy->mode;
1856 /* Lower zones don't get a nodemask applied for MPOL_BIND */
1857 if (unlikely(mode == MPOL_BIND) &&
1858 apply_policy_zone(policy, gfp_zone(gfp)) &&
1859 cpuset_nodemask_valid_mems_allowed(&policy->nodes))
1860 return &policy->nodes;
1862 if (mode == MPOL_PREFERRED_MANY)
1863 return &policy->nodes;
1869 * Return the preferred node id for 'prefer' mempolicy, and return
1870 * the given id for all other policies.
1872 * policy_node() is always coupled with policy_nodemask(), which
1873 * secures the nodemask limit for 'bind' and 'prefer-many' policy.
1875 static int policy_node(gfp_t gfp, struct mempolicy *policy, int nd)
1877 if (policy->mode == MPOL_PREFERRED) {
1878 nd = first_node(policy->nodes);
1881 * __GFP_THISNODE shouldn't even be used with the bind policy
1882 * because we might easily break the expectation to stay on the
1883 * requested node and not break the policy.
1885 WARN_ON_ONCE(policy->mode == MPOL_BIND && (gfp & __GFP_THISNODE));
1888 if ((policy->mode == MPOL_BIND ||
1889 policy->mode == MPOL_PREFERRED_MANY) &&
1890 policy->home_node != NUMA_NO_NODE)
1891 return policy->home_node;
1896 /* Do dynamic interleaving for a process */
1897 static unsigned interleave_nodes(struct mempolicy *policy)
1900 struct task_struct *me = current;
1902 next = next_node_in(me->il_prev, policy->nodes);
1903 if (next < MAX_NUMNODES)
1909 * Depending on the memory policy provide a node from which to allocate the
1912 unsigned int mempolicy_slab_node(void)
1914 struct mempolicy *policy;
1915 int node = numa_mem_id();
1920 policy = current->mempolicy;
1924 switch (policy->mode) {
1925 case MPOL_PREFERRED:
1926 return first_node(policy->nodes);
1928 case MPOL_INTERLEAVE:
1929 return interleave_nodes(policy);
1932 case MPOL_PREFERRED_MANY:
1937 * Follow bind policy behavior and start allocation at the
1940 struct zonelist *zonelist;
1941 enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1942 zonelist = &NODE_DATA(node)->node_zonelists[ZONELIST_FALLBACK];
1943 z = first_zones_zonelist(zonelist, highest_zoneidx,
1945 return z->zone ? zone_to_nid(z->zone) : node;
1956 * Do static interleaving for a VMA with known offset @n. Returns the n'th
1957 * node in pol->nodes (starting from n=0), wrapping around if n exceeds the
1958 * number of present nodes.
1960 static unsigned offset_il_node(struct mempolicy *pol, unsigned long n)
1962 nodemask_t nodemask = pol->nodes;
1963 unsigned int target, nnodes;
1967 * The barrier will stabilize the nodemask in a register or on
1968 * the stack so that it will stop changing under the code.
1970 * Between first_node() and next_node(), pol->nodes could be changed
1971 * by other threads. So we put pol->nodes in a local stack.
1975 nnodes = nodes_weight(nodemask);
1977 return numa_node_id();
1978 target = (unsigned int)n % nnodes;
1979 nid = first_node(nodemask);
1980 for (i = 0; i < target; i++)
1981 nid = next_node(nid, nodemask);
1985 /* Determine a node number for interleave */
1986 static inline unsigned interleave_nid(struct mempolicy *pol,
1987 struct vm_area_struct *vma, unsigned long addr, int shift)
1993 * for small pages, there is no difference between
1994 * shift and PAGE_SHIFT, so the bit-shift is safe.
1995 * for huge pages, since vm_pgoff is in units of small
1996 * pages, we need to shift off the always 0 bits to get
1999 BUG_ON(shift < PAGE_SHIFT);
2000 off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
2001 off += (addr - vma->vm_start) >> shift;
2002 return offset_il_node(pol, off);
2004 return interleave_nodes(pol);
2007 #ifdef CONFIG_HUGETLBFS
2009 * huge_node(@vma, @addr, @gfp_flags, @mpol)
2010 * @vma: virtual memory area whose policy is sought
2011 * @addr: address in @vma for shared policy lookup and interleave policy
2012 * @gfp_flags: for requested zone
2013 * @mpol: pointer to mempolicy pointer for reference counted mempolicy
2014 * @nodemask: pointer to nodemask pointer for 'bind' and 'prefer-many' policy
2016 * Returns a nid suitable for a huge page allocation and a pointer
2017 * to the struct mempolicy for conditional unref after allocation.
2018 * If the effective policy is 'bind' or 'prefer-many', returns a pointer
2019 * to the mempolicy's @nodemask for filtering the zonelist.
2021 * Must be protected by read_mems_allowed_begin()
2023 int huge_node(struct vm_area_struct *vma, unsigned long addr, gfp_t gfp_flags,
2024 struct mempolicy **mpol, nodemask_t **nodemask)
2029 *mpol = get_vma_policy(vma, addr);
2031 mode = (*mpol)->mode;
2033 if (unlikely(mode == MPOL_INTERLEAVE)) {
2034 nid = interleave_nid(*mpol, vma, addr,
2035 huge_page_shift(hstate_vma(vma)));
2037 nid = policy_node(gfp_flags, *mpol, numa_node_id());
2038 if (mode == MPOL_BIND || mode == MPOL_PREFERRED_MANY)
2039 *nodemask = &(*mpol)->nodes;
2045 * init_nodemask_of_mempolicy
2047 * If the current task's mempolicy is "default" [NULL], return 'false'
2048 * to indicate default policy. Otherwise, extract the policy nodemask
2049 * for 'bind' or 'interleave' policy into the argument nodemask, or
2050 * initialize the argument nodemask to contain the single node for
2051 * 'preferred' or 'local' policy and return 'true' to indicate presence
2052 * of non-default mempolicy.
2054 * We don't bother with reference counting the mempolicy [mpol_get/put]
2055 * because the current task is examining it's own mempolicy and a task's
2056 * mempolicy is only ever changed by the task itself.
2058 * N.B., it is the caller's responsibility to free a returned nodemask.
2060 bool init_nodemask_of_mempolicy(nodemask_t *mask)
2062 struct mempolicy *mempolicy;
2064 if (!(mask && current->mempolicy))
2068 mempolicy = current->mempolicy;
2069 switch (mempolicy->mode) {
2070 case MPOL_PREFERRED:
2071 case MPOL_PREFERRED_MANY:
2073 case MPOL_INTERLEAVE:
2074 *mask = mempolicy->nodes;
2078 init_nodemask_of_node(mask, numa_node_id());
2084 task_unlock(current);
2091 * mempolicy_in_oom_domain
2093 * If tsk's mempolicy is "bind", check for intersection between mask and
2094 * the policy nodemask. Otherwise, return true for all other policies
2095 * including "interleave", as a tsk with "interleave" policy may have
2096 * memory allocated from all nodes in system.
2098 * Takes task_lock(tsk) to prevent freeing of its mempolicy.
2100 bool mempolicy_in_oom_domain(struct task_struct *tsk,
2101 const nodemask_t *mask)
2103 struct mempolicy *mempolicy;
2110 mempolicy = tsk->mempolicy;
2111 if (mempolicy && mempolicy->mode == MPOL_BIND)
2112 ret = nodes_intersects(mempolicy->nodes, *mask);
2118 /* Allocate a page in interleaved policy.
2119 Own path because it needs to do special accounting. */
2120 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
2125 page = __alloc_pages(gfp, order, nid, NULL);
2126 /* skip NUMA_INTERLEAVE_HIT counter update if numa stats is disabled */
2127 if (!static_branch_likely(&vm_numa_stat_key))
2129 if (page && page_to_nid(page) == nid) {
2131 __count_numa_event(page_zone(page), NUMA_INTERLEAVE_HIT);
2137 static struct page *alloc_pages_preferred_many(gfp_t gfp, unsigned int order,
2138 int nid, struct mempolicy *pol)
2141 gfp_t preferred_gfp;
2144 * This is a two pass approach. The first pass will only try the
2145 * preferred nodes but skip the direct reclaim and allow the
2146 * allocation to fail, while the second pass will try all the
2149 preferred_gfp = gfp | __GFP_NOWARN;
2150 preferred_gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2151 page = __alloc_pages(preferred_gfp, order, nid, &pol->nodes);
2153 page = __alloc_pages(gfp, order, nid, NULL);
2159 * vma_alloc_folio - Allocate a folio for a VMA.
2161 * @order: Order of the folio.
2162 * @vma: Pointer to VMA or NULL if not available.
2163 * @addr: Virtual address of the allocation. Must be inside @vma.
2164 * @hugepage: For hugepages try only the preferred node if possible.
2166 * Allocate a folio for a specific address in @vma, using the appropriate
2167 * NUMA policy. When @vma is not NULL the caller must hold the mmap_lock
2168 * of the mm_struct of the VMA to prevent it from going away. Should be
2169 * used for all allocations for folios that will be mapped into user space.
2171 * Return: The folio on success or NULL if allocation fails.
2173 struct folio *vma_alloc_folio(gfp_t gfp, int order, struct vm_area_struct *vma,
2174 unsigned long addr, bool hugepage)
2176 struct mempolicy *pol;
2177 int node = numa_node_id();
2178 struct folio *folio;
2182 pol = get_vma_policy(vma, addr);
2184 if (pol->mode == MPOL_INTERLEAVE) {
2188 nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order);
2191 page = alloc_page_interleave(gfp, order, nid);
2192 if (page && order > 1)
2193 prep_transhuge_page(page);
2194 folio = (struct folio *)page;
2198 if (pol->mode == MPOL_PREFERRED_MANY) {
2201 node = policy_node(gfp, pol, node);
2203 page = alloc_pages_preferred_many(gfp, order, node, pol);
2205 if (page && order > 1)
2206 prep_transhuge_page(page);
2207 folio = (struct folio *)page;
2211 if (unlikely(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && hugepage)) {
2212 int hpage_node = node;
2215 * For hugepage allocation and non-interleave policy which
2216 * allows the current node (or other explicitly preferred
2217 * node) we only try to allocate from the current/preferred
2218 * node and don't fall back to other nodes, as the cost of
2219 * remote accesses would likely offset THP benefits.
2221 * If the policy is interleave or does not allow the current
2222 * node in its nodemask, we allocate the standard way.
2224 if (pol->mode == MPOL_PREFERRED)
2225 hpage_node = first_node(pol->nodes);
2227 nmask = policy_nodemask(gfp, pol);
2228 if (!nmask || node_isset(hpage_node, *nmask)) {
2231 * First, try to allocate THP only on local node, but
2232 * don't reclaim unnecessarily, just compact.
2234 folio = __folio_alloc_node(gfp | __GFP_THISNODE |
2235 __GFP_NORETRY, order, hpage_node);
2238 * If hugepage allocations are configured to always
2239 * synchronous compact or the vma has been madvised
2240 * to prefer hugepage backing, retry allowing remote
2241 * memory with both reclaim and compact as well.
2243 if (!folio && (gfp & __GFP_DIRECT_RECLAIM))
2244 folio = __folio_alloc(gfp, order, hpage_node,
2251 nmask = policy_nodemask(gfp, pol);
2252 preferred_nid = policy_node(gfp, pol, node);
2253 folio = __folio_alloc(gfp, order, preferred_nid, nmask);
2258 EXPORT_SYMBOL(vma_alloc_folio);
2261 * alloc_pages - Allocate pages.
2263 * @order: Power of two of number of pages to allocate.
2265 * Allocate 1 << @order contiguous pages. The physical address of the
2266 * first page is naturally aligned (eg an order-3 allocation will be aligned
2267 * to a multiple of 8 * PAGE_SIZE bytes). The NUMA policy of the current
2268 * process is honoured when in process context.
2270 * Context: Can be called from any context, providing the appropriate GFP
2272 * Return: The page on success or NULL if allocation fails.
2274 struct page *alloc_pages(gfp_t gfp, unsigned order)
2276 struct mempolicy *pol = &default_policy;
2279 if (!in_interrupt() && !(gfp & __GFP_THISNODE))
2280 pol = get_task_policy(current);
2283 * No reference counting needed for current->mempolicy
2284 * nor system default_policy
2286 if (pol->mode == MPOL_INTERLEAVE)
2287 page = alloc_page_interleave(gfp, order, interleave_nodes(pol));
2288 else if (pol->mode == MPOL_PREFERRED_MANY)
2289 page = alloc_pages_preferred_many(gfp, order,
2290 policy_node(gfp, pol, numa_node_id()), pol);
2292 page = __alloc_pages(gfp, order,
2293 policy_node(gfp, pol, numa_node_id()),
2294 policy_nodemask(gfp, pol));
2298 EXPORT_SYMBOL(alloc_pages);
2300 struct folio *folio_alloc(gfp_t gfp, unsigned order)
2302 struct page *page = alloc_pages(gfp | __GFP_COMP, order);
2304 if (page && order > 1)
2305 prep_transhuge_page(page);
2306 return (struct folio *)page;
2308 EXPORT_SYMBOL(folio_alloc);
2310 static unsigned long alloc_pages_bulk_array_interleave(gfp_t gfp,
2311 struct mempolicy *pol, unsigned long nr_pages,
2312 struct page **page_array)
2315 unsigned long nr_pages_per_node;
2318 unsigned long nr_allocated;
2319 unsigned long total_allocated = 0;
2321 nodes = nodes_weight(pol->nodes);
2322 nr_pages_per_node = nr_pages / nodes;
2323 delta = nr_pages - nodes * nr_pages_per_node;
2325 for (i = 0; i < nodes; i++) {
2327 nr_allocated = __alloc_pages_bulk(gfp,
2328 interleave_nodes(pol), NULL,
2329 nr_pages_per_node + 1, NULL,
2333 nr_allocated = __alloc_pages_bulk(gfp,
2334 interleave_nodes(pol), NULL,
2335 nr_pages_per_node, NULL, page_array);
2338 page_array += nr_allocated;
2339 total_allocated += nr_allocated;
2342 return total_allocated;
2345 static unsigned long alloc_pages_bulk_array_preferred_many(gfp_t gfp, int nid,
2346 struct mempolicy *pol, unsigned long nr_pages,
2347 struct page **page_array)
2349 gfp_t preferred_gfp;
2350 unsigned long nr_allocated = 0;
2352 preferred_gfp = gfp | __GFP_NOWARN;
2353 preferred_gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2355 nr_allocated = __alloc_pages_bulk(preferred_gfp, nid, &pol->nodes,
2356 nr_pages, NULL, page_array);
2358 if (nr_allocated < nr_pages)
2359 nr_allocated += __alloc_pages_bulk(gfp, numa_node_id(), NULL,
2360 nr_pages - nr_allocated, NULL,
2361 page_array + nr_allocated);
2362 return nr_allocated;
2365 /* alloc pages bulk and mempolicy should be considered at the
2366 * same time in some situation such as vmalloc.
2368 * It can accelerate memory allocation especially interleaving
2371 unsigned long alloc_pages_bulk_array_mempolicy(gfp_t gfp,
2372 unsigned long nr_pages, struct page **page_array)
2374 struct mempolicy *pol = &default_policy;
2376 if (!in_interrupt() && !(gfp & __GFP_THISNODE))
2377 pol = get_task_policy(current);
2379 if (pol->mode == MPOL_INTERLEAVE)
2380 return alloc_pages_bulk_array_interleave(gfp, pol,
2381 nr_pages, page_array);
2383 if (pol->mode == MPOL_PREFERRED_MANY)
2384 return alloc_pages_bulk_array_preferred_many(gfp,
2385 numa_node_id(), pol, nr_pages, page_array);
2387 return __alloc_pages_bulk(gfp, policy_node(gfp, pol, numa_node_id()),
2388 policy_nodemask(gfp, pol), nr_pages, NULL,
2392 int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst)
2394 struct mempolicy *pol = mpol_dup(vma_policy(src));
2397 return PTR_ERR(pol);
2398 dst->vm_policy = pol;
2403 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
2404 * rebinds the mempolicy its copying by calling mpol_rebind_policy()
2405 * with the mems_allowed returned by cpuset_mems_allowed(). This
2406 * keeps mempolicies cpuset relative after its cpuset moves. See
2407 * further kernel/cpuset.c update_nodemask().
2409 * current's mempolicy may be rebinded by the other task(the task that changes
2410 * cpuset's mems), so we needn't do rebind work for current task.
2413 /* Slow path of a mempolicy duplicate */
2414 struct mempolicy *__mpol_dup(struct mempolicy *old)
2416 struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2419 return ERR_PTR(-ENOMEM);
2421 /* task's mempolicy is protected by alloc_lock */
2422 if (old == current->mempolicy) {
2425 task_unlock(current);
2429 if (current_cpuset_is_being_rebound()) {
2430 nodemask_t mems = cpuset_mems_allowed(current);
2431 mpol_rebind_policy(new, &mems);
2433 atomic_set(&new->refcnt, 1);
2437 /* Slow path of a mempolicy comparison */
2438 bool __mpol_equal(struct mempolicy *a, struct mempolicy *b)
2442 if (a->mode != b->mode)
2444 if (a->flags != b->flags)
2446 if (a->home_node != b->home_node)
2448 if (mpol_store_user_nodemask(a))
2449 if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
2454 case MPOL_INTERLEAVE:
2455 case MPOL_PREFERRED:
2456 case MPOL_PREFERRED_MANY:
2457 return !!nodes_equal(a->nodes, b->nodes);
2467 * Shared memory backing store policy support.
2469 * Remember policies even when nobody has shared memory mapped.
2470 * The policies are kept in Red-Black tree linked from the inode.
2471 * They are protected by the sp->lock rwlock, which should be held
2472 * for any accesses to the tree.
2476 * lookup first element intersecting start-end. Caller holds sp->lock for
2477 * reading or for writing
2479 static struct sp_node *
2480 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
2482 struct rb_node *n = sp->root.rb_node;
2485 struct sp_node *p = rb_entry(n, struct sp_node, nd);
2487 if (start >= p->end)
2489 else if (end <= p->start)
2497 struct sp_node *w = NULL;
2498 struct rb_node *prev = rb_prev(n);
2501 w = rb_entry(prev, struct sp_node, nd);
2502 if (w->end <= start)
2506 return rb_entry(n, struct sp_node, nd);
2510 * Insert a new shared policy into the list. Caller holds sp->lock for
2513 static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2515 struct rb_node **p = &sp->root.rb_node;
2516 struct rb_node *parent = NULL;
2521 nd = rb_entry(parent, struct sp_node, nd);
2522 if (new->start < nd->start)
2524 else if (new->end > nd->end)
2525 p = &(*p)->rb_right;
2529 rb_link_node(&new->nd, parent, p);
2530 rb_insert_color(&new->nd, &sp->root);
2531 pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
2532 new->policy ? new->policy->mode : 0);
2535 /* Find shared policy intersecting idx */
2537 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
2539 struct mempolicy *pol = NULL;
2542 if (!sp->root.rb_node)
2544 read_lock(&sp->lock);
2545 sn = sp_lookup(sp, idx, idx+1);
2547 mpol_get(sn->policy);
2550 read_unlock(&sp->lock);
2554 static void sp_free(struct sp_node *n)
2556 mpol_put(n->policy);
2557 kmem_cache_free(sn_cache, n);
2561 * mpol_misplaced - check whether current page node is valid in policy
2563 * @page: page to be checked
2564 * @vma: vm area where page mapped
2565 * @addr: virtual address where page mapped
2567 * Lookup current policy node id for vma,addr and "compare to" page's
2568 * node id. Policy determination "mimics" alloc_page_vma().
2569 * Called from fault path where we know the vma and faulting address.
2571 * Return: NUMA_NO_NODE if the page is in a node that is valid for this
2572 * policy, or a suitable node ID to allocate a replacement page from.
2574 int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr)
2576 struct mempolicy *pol;
2578 int curnid = page_to_nid(page);
2579 unsigned long pgoff;
2580 int thiscpu = raw_smp_processor_id();
2581 int thisnid = cpu_to_node(thiscpu);
2582 int polnid = NUMA_NO_NODE;
2583 int ret = NUMA_NO_NODE;
2585 pol = get_vma_policy(vma, addr);
2586 if (!(pol->flags & MPOL_F_MOF))
2589 switch (pol->mode) {
2590 case MPOL_INTERLEAVE:
2591 pgoff = vma->vm_pgoff;
2592 pgoff += (addr - vma->vm_start) >> PAGE_SHIFT;
2593 polnid = offset_il_node(pol, pgoff);
2596 case MPOL_PREFERRED:
2597 if (node_isset(curnid, pol->nodes))
2599 polnid = first_node(pol->nodes);
2603 polnid = numa_node_id();
2607 /* Optimize placement among multiple nodes via NUMA balancing */
2608 if (pol->flags & MPOL_F_MORON) {
2609 if (node_isset(thisnid, pol->nodes))
2615 case MPOL_PREFERRED_MANY:
2617 * use current page if in policy nodemask,
2618 * else select nearest allowed node, if any.
2619 * If no allowed nodes, use current [!misplaced].
2621 if (node_isset(curnid, pol->nodes))
2623 z = first_zones_zonelist(
2624 node_zonelist(numa_node_id(), GFP_HIGHUSER),
2625 gfp_zone(GFP_HIGHUSER),
2627 polnid = zone_to_nid(z->zone);
2634 /* Migrate the page towards the node whose CPU is referencing it */
2635 if (pol->flags & MPOL_F_MORON) {
2638 if (!should_numa_migrate_memory(current, page, curnid, thiscpu))
2642 if (curnid != polnid)
2651 * Drop the (possibly final) reference to task->mempolicy. It needs to be
2652 * dropped after task->mempolicy is set to NULL so that any allocation done as
2653 * part of its kmem_cache_free(), such as by KASAN, doesn't reference a freed
2656 void mpol_put_task_policy(struct task_struct *task)
2658 struct mempolicy *pol;
2661 pol = task->mempolicy;
2662 task->mempolicy = NULL;
2667 static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2669 pr_debug("deleting %lx-l%lx\n", n->start, n->end);
2670 rb_erase(&n->nd, &sp->root);
2674 static void sp_node_init(struct sp_node *node, unsigned long start,
2675 unsigned long end, struct mempolicy *pol)
2677 node->start = start;
2682 static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2683 struct mempolicy *pol)
2686 struct mempolicy *newpol;
2688 n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2692 newpol = mpol_dup(pol);
2693 if (IS_ERR(newpol)) {
2694 kmem_cache_free(sn_cache, n);
2697 newpol->flags |= MPOL_F_SHARED;
2698 sp_node_init(n, start, end, newpol);
2703 /* Replace a policy range. */
2704 static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
2705 unsigned long end, struct sp_node *new)
2708 struct sp_node *n_new = NULL;
2709 struct mempolicy *mpol_new = NULL;
2713 write_lock(&sp->lock);
2714 n = sp_lookup(sp, start, end);
2715 /* Take care of old policies in the same range. */
2716 while (n && n->start < end) {
2717 struct rb_node *next = rb_next(&n->nd);
2718 if (n->start >= start) {
2724 /* Old policy spanning whole new range. */
2729 *mpol_new = *n->policy;
2730 atomic_set(&mpol_new->refcnt, 1);
2731 sp_node_init(n_new, end, n->end, mpol_new);
2733 sp_insert(sp, n_new);
2742 n = rb_entry(next, struct sp_node, nd);
2746 write_unlock(&sp->lock);
2753 kmem_cache_free(sn_cache, n_new);
2758 write_unlock(&sp->lock);
2760 n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2763 mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2766 atomic_set(&mpol_new->refcnt, 1);
2771 * mpol_shared_policy_init - initialize shared policy for inode
2772 * @sp: pointer to inode shared policy
2773 * @mpol: struct mempolicy to install
2775 * Install non-NULL @mpol in inode's shared policy rb-tree.
2776 * On entry, the current task has a reference on a non-NULL @mpol.
2777 * This must be released on exit.
2778 * This is called at get_inode() calls and we can use GFP_KERNEL.
2780 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2784 sp->root = RB_ROOT; /* empty tree == default mempolicy */
2785 rwlock_init(&sp->lock);
2788 struct vm_area_struct pvma;
2789 struct mempolicy *new;
2790 NODEMASK_SCRATCH(scratch);
2794 /* contextualize the tmpfs mount point mempolicy */
2795 new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2797 goto free_scratch; /* no valid nodemask intersection */
2800 ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch);
2801 task_unlock(current);
2805 /* Create pseudo-vma that contains just the policy */
2806 vma_init(&pvma, NULL);
2807 pvma.vm_end = TASK_SIZE; /* policy covers entire file */
2808 mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
2811 mpol_put(new); /* drop initial ref */
2813 NODEMASK_SCRATCH_FREE(scratch);
2815 mpol_put(mpol); /* drop our incoming ref on sb mpol */
2819 int mpol_set_shared_policy(struct shared_policy *info,
2820 struct vm_area_struct *vma, struct mempolicy *npol)
2823 struct sp_node *new = NULL;
2824 unsigned long sz = vma_pages(vma);
2826 pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2828 sz, npol ? npol->mode : -1,
2829 npol ? npol->flags : -1,
2830 npol ? nodes_addr(npol->nodes)[0] : NUMA_NO_NODE);
2833 new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
2837 err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
2843 /* Free a backing policy store on inode delete. */
2844 void mpol_free_shared_policy(struct shared_policy *p)
2847 struct rb_node *next;
2849 if (!p->root.rb_node)
2851 write_lock(&p->lock);
2852 next = rb_first(&p->root);
2854 n = rb_entry(next, struct sp_node, nd);
2855 next = rb_next(&n->nd);
2858 write_unlock(&p->lock);
2861 #ifdef CONFIG_NUMA_BALANCING
2862 static int __initdata numabalancing_override;
2864 static void __init check_numabalancing_enable(void)
2866 bool numabalancing_default = false;
2868 if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED))
2869 numabalancing_default = true;
2871 /* Parsed by setup_numabalancing. override == 1 enables, -1 disables */
2872 if (numabalancing_override)
2873 set_numabalancing_state(numabalancing_override == 1);
2875 if (num_online_nodes() > 1 && !numabalancing_override) {
2876 pr_info("%s automatic NUMA balancing. Configure with numa_balancing= or the kernel.numa_balancing sysctl\n",
2877 numabalancing_default ? "Enabling" : "Disabling");
2878 set_numabalancing_state(numabalancing_default);
2882 static int __init setup_numabalancing(char *str)
2888 if (!strcmp(str, "enable")) {
2889 numabalancing_override = 1;
2891 } else if (!strcmp(str, "disable")) {
2892 numabalancing_override = -1;
2897 pr_warn("Unable to parse numa_balancing=\n");
2901 __setup("numa_balancing=", setup_numabalancing);
2903 static inline void __init check_numabalancing_enable(void)
2906 #endif /* CONFIG_NUMA_BALANCING */
2908 /* assumes fs == KERNEL_DS */
2909 void __init numa_policy_init(void)
2911 nodemask_t interleave_nodes;
2912 unsigned long largest = 0;
2913 int nid, prefer = 0;
2915 policy_cache = kmem_cache_create("numa_policy",
2916 sizeof(struct mempolicy),
2917 0, SLAB_PANIC, NULL);
2919 sn_cache = kmem_cache_create("shared_policy_node",
2920 sizeof(struct sp_node),
2921 0, SLAB_PANIC, NULL);
2923 for_each_node(nid) {
2924 preferred_node_policy[nid] = (struct mempolicy) {
2925 .refcnt = ATOMIC_INIT(1),
2926 .mode = MPOL_PREFERRED,
2927 .flags = MPOL_F_MOF | MPOL_F_MORON,
2928 .nodes = nodemask_of_node(nid),
2933 * Set interleaving policy for system init. Interleaving is only
2934 * enabled across suitably sized nodes (default is >= 16MB), or
2935 * fall back to the largest node if they're all smaller.
2937 nodes_clear(interleave_nodes);
2938 for_each_node_state(nid, N_MEMORY) {
2939 unsigned long total_pages = node_present_pages(nid);
2941 /* Preserve the largest node */
2942 if (largest < total_pages) {
2943 largest = total_pages;
2947 /* Interleave this node? */
2948 if ((total_pages << PAGE_SHIFT) >= (16 << 20))
2949 node_set(nid, interleave_nodes);
2952 /* All too small, use the largest */
2953 if (unlikely(nodes_empty(interleave_nodes)))
2954 node_set(prefer, interleave_nodes);
2956 if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
2957 pr_err("%s: interleaving failed\n", __func__);
2959 check_numabalancing_enable();
2962 /* Reset policy of current process to default */
2963 void numa_default_policy(void)
2965 do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
2969 * Parse and format mempolicy from/to strings
2972 static const char * const policy_modes[] =
2974 [MPOL_DEFAULT] = "default",
2975 [MPOL_PREFERRED] = "prefer",
2976 [MPOL_BIND] = "bind",
2977 [MPOL_INTERLEAVE] = "interleave",
2978 [MPOL_LOCAL] = "local",
2979 [MPOL_PREFERRED_MANY] = "prefer (many)",
2985 * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option.
2986 * @str: string containing mempolicy to parse
2987 * @mpol: pointer to struct mempolicy pointer, returned on success.
2990 * <mode>[=<flags>][:<nodelist>]
2992 * Return: %0 on success, else %1
2994 int mpol_parse_str(char *str, struct mempolicy **mpol)
2996 struct mempolicy *new = NULL;
2997 unsigned short mode_flags;
2999 char *nodelist = strchr(str, ':');
3000 char *flags = strchr(str, '=');
3004 *flags++ = '\0'; /* terminate mode string */
3007 /* NUL-terminate mode or flags string */
3009 if (nodelist_parse(nodelist, nodes))
3011 if (!nodes_subset(nodes, node_states[N_MEMORY]))
3016 mode = match_string(policy_modes, MPOL_MAX, str);
3021 case MPOL_PREFERRED:
3023 * Insist on a nodelist of one node only, although later
3024 * we use first_node(nodes) to grab a single node, so here
3025 * nodelist (or nodes) cannot be empty.
3028 char *rest = nodelist;
3029 while (isdigit(*rest))
3033 if (nodes_empty(nodes))
3037 case MPOL_INTERLEAVE:
3039 * Default to online nodes with memory if no nodelist
3042 nodes = node_states[N_MEMORY];
3046 * Don't allow a nodelist; mpol_new() checks flags
3053 * Insist on a empty nodelist
3058 case MPOL_PREFERRED_MANY:
3061 * Insist on a nodelist
3070 * Currently, we only support two mutually exclusive
3073 if (!strcmp(flags, "static"))
3074 mode_flags |= MPOL_F_STATIC_NODES;
3075 else if (!strcmp(flags, "relative"))
3076 mode_flags |= MPOL_F_RELATIVE_NODES;
3081 new = mpol_new(mode, mode_flags, &nodes);
3086 * Save nodes for mpol_to_str() to show the tmpfs mount options
3087 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo.
3089 if (mode != MPOL_PREFERRED) {
3091 } else if (nodelist) {
3092 nodes_clear(new->nodes);
3093 node_set(first_node(nodes), new->nodes);
3095 new->mode = MPOL_LOCAL;
3099 * Save nodes for contextualization: this will be used to "clone"
3100 * the mempolicy in a specific context [cpuset] at a later time.
3102 new->w.user_nodemask = nodes;
3107 /* Restore string for error message */
3116 #endif /* CONFIG_TMPFS */
3119 * mpol_to_str - format a mempolicy structure for printing
3120 * @buffer: to contain formatted mempolicy string
3121 * @maxlen: length of @buffer
3122 * @pol: pointer to mempolicy to be formatted
3124 * Convert @pol into a string. If @buffer is too short, truncate the string.
3125 * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the
3126 * longest flag, "relative", and to display at least a few node ids.
3128 void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
3131 nodemask_t nodes = NODE_MASK_NONE;
3132 unsigned short mode = MPOL_DEFAULT;
3133 unsigned short flags = 0;
3135 if (pol && pol != &default_policy && !(pol->flags & MPOL_F_MORON)) {
3144 case MPOL_PREFERRED:
3145 case MPOL_PREFERRED_MANY:
3147 case MPOL_INTERLEAVE:
3152 snprintf(p, maxlen, "unknown");
3156 p += snprintf(p, maxlen, "%s", policy_modes[mode]);
3158 if (flags & MPOL_MODE_FLAGS) {
3159 p += snprintf(p, buffer + maxlen - p, "=");
3162 * Currently, the only defined flags are mutually exclusive
3164 if (flags & MPOL_F_STATIC_NODES)
3165 p += snprintf(p, buffer + maxlen - p, "static");
3166 else if (flags & MPOL_F_RELATIVE_NODES)
3167 p += snprintf(p, buffer + maxlen - p, "relative");
3170 if (!nodes_empty(nodes))
3171 p += scnprintf(p, buffer + maxlen - p, ":%*pbl",
3172 nodemask_pr_args(&nodes));