1 // SPDX-License-Identifier: GPL-2.0-only
3 * Simple NUMA memory policy for the Linux kernel.
5 * Copyright 2003,2004 Andi Kleen, SuSE Labs.
6 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
8 * NUMA policy allows the user to give hints in which node(s) memory should
11 * Support four policies per VMA and per process:
13 * The VMA policy has priority over the process policy for a page fault.
15 * interleave Allocate memory interleaved over a set of nodes,
16 * with normal fallback if it fails.
17 * For VMA based allocations this interleaves based on the
18 * offset into the backing object or offset into the mapping
19 * for anonymous memory. For process policy an process counter
22 * bind Only allocate memory on a specific set of nodes,
24 * FIXME: memory is allocated starting with the first node
25 * to the last. It would be better if bind would truly restrict
26 * the allocation to memory nodes instead
28 * preferred Try a specific node first before normal fallback.
29 * As a special case NUMA_NO_NODE here means do the allocation
30 * on the local CPU. This is normally identical to default,
31 * but useful to set in a VMA when you have a non default
34 * preferred many Try a set of nodes first before normal fallback. This is
35 * similar to preferred without the special case.
37 * default Allocate on the local node first, or when on a VMA
38 * use the process policy. This is what Linux always did
39 * in a NUMA aware kernel and still does by, ahem, default.
41 * The process policy is applied for most non interrupt memory allocations
42 * in that process' context. Interrupts ignore the policies and always
43 * try to allocate on the local CPU. The VMA policy is only applied for memory
44 * allocations for a VMA in the VM.
46 * Currently there are a few corner cases in swapping where the policy
47 * is not applied, but the majority should be handled. When process policy
48 * is used it is not remembered over swap outs/swap ins.
50 * Only the highest zone in the zone hierarchy gets policied. Allocations
51 * requesting a lower zone just use default policy. This implies that
52 * on systems with highmem kernel lowmem allocation don't get policied.
53 * Same with GFP_DMA allocations.
55 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
56 * all users and remembered even when nobody has memory mapped.
60 fix mmap readahead to honour policy and enable policy for any page cache
62 statistics for bigpages
63 global policy for page cache? currently it uses process policy. Requires
65 handle mremap for shared memory (currently ignored for the policy)
67 make bind policy root only? It can trigger oom much faster and the
68 kernel is not always grateful with that.
71 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
73 #include <linux/mempolicy.h>
74 #include <linux/pagewalk.h>
75 #include <linux/highmem.h>
76 #include <linux/hugetlb.h>
77 #include <linux/kernel.h>
78 #include <linux/sched.h>
79 #include <linux/sched/mm.h>
80 #include <linux/sched/numa_balancing.h>
81 #include <linux/sched/task.h>
82 #include <linux/nodemask.h>
83 #include <linux/cpuset.h>
84 #include <linux/slab.h>
85 #include <linux/string.h>
86 #include <linux/export.h>
87 #include <linux/nsproxy.h>
88 #include <linux/interrupt.h>
89 #include <linux/init.h>
90 #include <linux/compat.h>
91 #include <linux/ptrace.h>
92 #include <linux/swap.h>
93 #include <linux/seq_file.h>
94 #include <linux/proc_fs.h>
95 #include <linux/migrate.h>
96 #include <linux/ksm.h>
97 #include <linux/rmap.h>
98 #include <linux/security.h>
99 #include <linux/syscalls.h>
100 #include <linux/ctype.h>
101 #include <linux/mm_inline.h>
102 #include <linux/mmu_notifier.h>
103 #include <linux/printk.h>
104 #include <linux/swapops.h>
106 #include <asm/tlbflush.h>
108 #include <linux/uaccess.h>
110 #include "internal.h"
113 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */
114 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */
116 static struct kmem_cache *policy_cache;
117 static struct kmem_cache *sn_cache;
119 /* Highest zone. An specific allocation for a zone below that is not
121 enum zone_type policy_zone = 0;
124 * run-time system-wide default policy => local allocation
126 static struct mempolicy default_policy = {
127 .refcnt = ATOMIC_INIT(1), /* never free it */
131 static struct mempolicy preferred_node_policy[MAX_NUMNODES];
134 * numa_map_to_online_node - Find closest online node
135 * @node: Node id to start the search
137 * Lookup the next closest node by distance if @nid is not online.
139 * Return: this @node if it is online, otherwise the closest node by distance
141 int numa_map_to_online_node(int node)
143 int min_dist = INT_MAX, dist, n, min_node;
145 if (node == NUMA_NO_NODE || node_online(node))
149 for_each_online_node(n) {
150 dist = node_distance(node, n);
151 if (dist < min_dist) {
159 EXPORT_SYMBOL_GPL(numa_map_to_online_node);
161 struct mempolicy *get_task_policy(struct task_struct *p)
163 struct mempolicy *pol = p->mempolicy;
169 node = numa_node_id();
170 if (node != NUMA_NO_NODE) {
171 pol = &preferred_node_policy[node];
172 /* preferred_node_policy is not initialised early in boot */
177 return &default_policy;
180 static const struct mempolicy_operations {
181 int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
182 void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes);
183 } mpol_ops[MPOL_MAX];
185 static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
187 return pol->flags & MPOL_MODE_FLAGS;
190 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
191 const nodemask_t *rel)
194 nodes_fold(tmp, *orig, nodes_weight(*rel));
195 nodes_onto(*ret, tmp, *rel);
198 static int mpol_new_nodemask(struct mempolicy *pol, const nodemask_t *nodes)
200 if (nodes_empty(*nodes))
206 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
208 if (nodes_empty(*nodes))
211 nodes_clear(pol->nodes);
212 node_set(first_node(*nodes), pol->nodes);
217 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
218 * any, for the new policy. mpol_new() has already validated the nodes
219 * parameter with respect to the policy mode and flags.
221 * Must be called holding task's alloc_lock to protect task's mems_allowed
222 * and mempolicy. May also be called holding the mmap_lock for write.
224 static int mpol_set_nodemask(struct mempolicy *pol,
225 const nodemask_t *nodes, struct nodemask_scratch *nsc)
230 * Default (pol==NULL) resp. local memory policies are not a
231 * subject of any remapping. They also do not need any special
234 if (!pol || pol->mode == MPOL_LOCAL)
238 nodes_and(nsc->mask1,
239 cpuset_current_mems_allowed, node_states[N_MEMORY]);
243 if (pol->flags & MPOL_F_RELATIVE_NODES)
244 mpol_relative_nodemask(&nsc->mask2, nodes, &nsc->mask1);
246 nodes_and(nsc->mask2, *nodes, nsc->mask1);
248 if (mpol_store_user_nodemask(pol))
249 pol->w.user_nodemask = *nodes;
251 pol->w.cpuset_mems_allowed = cpuset_current_mems_allowed;
253 ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
258 * This function just creates a new policy, does some check and simple
259 * initialization. You must invoke mpol_set_nodemask() to set nodes.
261 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
264 struct mempolicy *policy;
266 pr_debug("setting mode %d flags %d nodes[0] %lx\n",
267 mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE);
269 if (mode == MPOL_DEFAULT) {
270 if (nodes && !nodes_empty(*nodes))
271 return ERR_PTR(-EINVAL);
277 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
278 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
279 * All other modes require a valid pointer to a non-empty nodemask.
281 if (mode == MPOL_PREFERRED) {
282 if (nodes_empty(*nodes)) {
283 if (((flags & MPOL_F_STATIC_NODES) ||
284 (flags & MPOL_F_RELATIVE_NODES)))
285 return ERR_PTR(-EINVAL);
289 } else if (mode == MPOL_LOCAL) {
290 if (!nodes_empty(*nodes) ||
291 (flags & MPOL_F_STATIC_NODES) ||
292 (flags & MPOL_F_RELATIVE_NODES))
293 return ERR_PTR(-EINVAL);
294 } else if (nodes_empty(*nodes))
295 return ERR_PTR(-EINVAL);
296 policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
298 return ERR_PTR(-ENOMEM);
299 atomic_set(&policy->refcnt, 1);
301 policy->flags = flags;
302 policy->home_node = NUMA_NO_NODE;
307 /* Slow path of a mpol destructor. */
308 void __mpol_put(struct mempolicy *p)
310 if (!atomic_dec_and_test(&p->refcnt))
312 kmem_cache_free(policy_cache, p);
315 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes)
319 static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes)
323 if (pol->flags & MPOL_F_STATIC_NODES)
324 nodes_and(tmp, pol->w.user_nodemask, *nodes);
325 else if (pol->flags & MPOL_F_RELATIVE_NODES)
326 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
328 nodes_remap(tmp, pol->nodes, pol->w.cpuset_mems_allowed,
330 pol->w.cpuset_mems_allowed = *nodes;
333 if (nodes_empty(tmp))
339 static void mpol_rebind_preferred(struct mempolicy *pol,
340 const nodemask_t *nodes)
342 pol->w.cpuset_mems_allowed = *nodes;
346 * mpol_rebind_policy - Migrate a policy to a different set of nodes
348 * Per-vma policies are protected by mmap_lock. Allocations using per-task
349 * policies are protected by task->mems_allowed_seq to prevent a premature
350 * OOM/allocation failure due to parallel nodemask modification.
352 static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask)
354 if (!pol || pol->mode == MPOL_LOCAL)
356 if (!mpol_store_user_nodemask(pol) &&
357 nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
360 mpol_ops[pol->mode].rebind(pol, newmask);
364 * Wrapper for mpol_rebind_policy() that just requires task
365 * pointer, and updates task mempolicy.
367 * Called with task's alloc_lock held.
370 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new)
372 mpol_rebind_policy(tsk->mempolicy, new);
376 * Rebind each vma in mm to new nodemask.
378 * Call holding a reference to mm. Takes mm->mmap_lock during call.
381 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
383 struct vm_area_struct *vma;
386 for (vma = mm->mmap; vma; vma = vma->vm_next)
387 mpol_rebind_policy(vma->vm_policy, new);
388 mmap_write_unlock(mm);
391 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
393 .rebind = mpol_rebind_default,
395 [MPOL_INTERLEAVE] = {
396 .create = mpol_new_nodemask,
397 .rebind = mpol_rebind_nodemask,
400 .create = mpol_new_preferred,
401 .rebind = mpol_rebind_preferred,
404 .create = mpol_new_nodemask,
405 .rebind = mpol_rebind_nodemask,
408 .rebind = mpol_rebind_default,
410 [MPOL_PREFERRED_MANY] = {
411 .create = mpol_new_nodemask,
412 .rebind = mpol_rebind_preferred,
416 static int migrate_page_add(struct page *page, struct list_head *pagelist,
417 unsigned long flags);
420 struct list_head *pagelist;
425 struct vm_area_struct *first;
429 * Check if the page's nid is in qp->nmask.
431 * If MPOL_MF_INVERT is set in qp->flags, check if the nid is
432 * in the invert of qp->nmask.
434 static inline bool queue_pages_required(struct page *page,
435 struct queue_pages *qp)
437 int nid = page_to_nid(page);
438 unsigned long flags = qp->flags;
440 return node_isset(nid, *qp->nmask) == !(flags & MPOL_MF_INVERT);
444 * queue_pages_pmd() has three possible return values:
445 * 0 - pages are placed on the right node or queued successfully, or
446 * special page is met, i.e. huge zero page.
447 * 1 - there is unmovable page, and MPOL_MF_MOVE* & MPOL_MF_STRICT were
449 * -EIO - is migration entry or only MPOL_MF_STRICT was specified and an
450 * existing page was already on a node that does not follow the
453 static int queue_pages_pmd(pmd_t *pmd, spinlock_t *ptl, unsigned long addr,
454 unsigned long end, struct mm_walk *walk)
459 struct queue_pages *qp = walk->private;
462 if (unlikely(is_pmd_migration_entry(*pmd))) {
466 page = pmd_page(*pmd);
467 if (is_huge_zero_page(page)) {
468 walk->action = ACTION_CONTINUE;
471 if (!queue_pages_required(page, qp))
475 /* go to thp migration */
476 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
477 if (!vma_migratable(walk->vma) ||
478 migrate_page_add(page, qp->pagelist, flags)) {
490 * Scan through pages checking if pages follow certain conditions,
491 * and move them to the pagelist if they do.
493 * queue_pages_pte_range() has three possible return values:
494 * 0 - pages are placed on the right node or queued successfully, or
495 * special page is met, i.e. zero page.
496 * 1 - there is unmovable page, and MPOL_MF_MOVE* & MPOL_MF_STRICT were
498 * -EIO - only MPOL_MF_STRICT was specified and an existing page was already
499 * on a node that does not follow the policy.
501 static int queue_pages_pte_range(pmd_t *pmd, unsigned long addr,
502 unsigned long end, struct mm_walk *walk)
504 struct vm_area_struct *vma = walk->vma;
506 struct queue_pages *qp = walk->private;
507 unsigned long flags = qp->flags;
508 bool has_unmovable = false;
509 pte_t *pte, *mapped_pte;
512 ptl = pmd_trans_huge_lock(pmd, vma);
514 return queue_pages_pmd(pmd, ptl, addr, end, walk);
516 if (pmd_trans_unstable(pmd))
519 mapped_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
520 for (; addr != end; pte++, addr += PAGE_SIZE) {
521 if (!pte_present(*pte))
523 page = vm_normal_page(vma, addr, *pte);
524 if (!page || is_zone_device_page(page))
527 * vm_normal_page() filters out zero pages, but there might
528 * still be PageReserved pages to skip, perhaps in a VDSO.
530 if (PageReserved(page))
532 if (!queue_pages_required(page, qp))
534 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
535 /* MPOL_MF_STRICT must be specified if we get here */
536 if (!vma_migratable(vma)) {
537 has_unmovable = true;
542 * Do not abort immediately since there may be
543 * temporary off LRU pages in the range. Still
544 * need migrate other LRU pages.
546 if (migrate_page_add(page, qp->pagelist, flags))
547 has_unmovable = true;
551 pte_unmap_unlock(mapped_pte, ptl);
557 return addr != end ? -EIO : 0;
560 static int queue_pages_hugetlb(pte_t *pte, unsigned long hmask,
561 unsigned long addr, unsigned long end,
562 struct mm_walk *walk)
565 #ifdef CONFIG_HUGETLB_PAGE
566 struct queue_pages *qp = walk->private;
567 unsigned long flags = (qp->flags & MPOL_MF_VALID);
572 ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte);
573 entry = huge_ptep_get(pte);
574 if (!pte_present(entry))
576 page = pte_page(entry);
577 if (!queue_pages_required(page, qp))
580 if (flags == MPOL_MF_STRICT) {
582 * STRICT alone means only detecting misplaced page and no
583 * need to further check other vma.
589 if (!vma_migratable(walk->vma)) {
591 * Must be STRICT with MOVE*, otherwise .test_walk() have
592 * stopped walking current vma.
593 * Detecting misplaced page but allow migrating pages which
600 /* With MPOL_MF_MOVE, we migrate only unshared hugepage. */
601 if (flags & (MPOL_MF_MOVE_ALL) ||
602 (flags & MPOL_MF_MOVE && page_mapcount(page) == 1)) {
603 if (isolate_hugetlb(page, qp->pagelist) &&
604 (flags & MPOL_MF_STRICT))
606 * Failed to isolate page but allow migrating pages
607 * which have been queued.
619 #ifdef CONFIG_NUMA_BALANCING
621 * This is used to mark a range of virtual addresses to be inaccessible.
622 * These are later cleared by a NUMA hinting fault. Depending on these
623 * faults, pages may be migrated for better NUMA placement.
625 * This is assuming that NUMA faults are handled using PROT_NONE. If
626 * an architecture makes a different choice, it will need further
627 * changes to the core.
629 unsigned long change_prot_numa(struct vm_area_struct *vma,
630 unsigned long addr, unsigned long end)
632 struct mmu_gather tlb;
635 tlb_gather_mmu(&tlb, vma->vm_mm);
637 nr_updated = change_protection(&tlb, vma, addr, end, PAGE_NONE,
640 count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated);
642 tlb_finish_mmu(&tlb);
647 static unsigned long change_prot_numa(struct vm_area_struct *vma,
648 unsigned long addr, unsigned long end)
652 #endif /* CONFIG_NUMA_BALANCING */
654 static int queue_pages_test_walk(unsigned long start, unsigned long end,
655 struct mm_walk *walk)
657 struct vm_area_struct *vma = walk->vma;
658 struct queue_pages *qp = walk->private;
659 unsigned long endvma = vma->vm_end;
660 unsigned long flags = qp->flags;
662 /* range check first */
663 VM_BUG_ON_VMA(!range_in_vma(vma, start, end), vma);
667 if (!(flags & MPOL_MF_DISCONTIG_OK) &&
668 (qp->start < vma->vm_start))
669 /* hole at head side of range */
672 if (!(flags & MPOL_MF_DISCONTIG_OK) &&
673 ((vma->vm_end < qp->end) &&
674 (!vma->vm_next || vma->vm_end < vma->vm_next->vm_start)))
675 /* hole at middle or tail of range */
679 * Need check MPOL_MF_STRICT to return -EIO if possible
680 * regardless of vma_migratable
682 if (!vma_migratable(vma) &&
683 !(flags & MPOL_MF_STRICT))
689 if (flags & MPOL_MF_LAZY) {
690 /* Similar to task_numa_work, skip inaccessible VMAs */
691 if (!is_vm_hugetlb_page(vma) && vma_is_accessible(vma) &&
692 !(vma->vm_flags & VM_MIXEDMAP))
693 change_prot_numa(vma, start, endvma);
697 /* queue pages from current vma */
698 if (flags & MPOL_MF_VALID)
703 static const struct mm_walk_ops queue_pages_walk_ops = {
704 .hugetlb_entry = queue_pages_hugetlb,
705 .pmd_entry = queue_pages_pte_range,
706 .test_walk = queue_pages_test_walk,
710 * Walk through page tables and collect pages to be migrated.
712 * If pages found in a given range are on a set of nodes (determined by
713 * @nodes and @flags,) it's isolated and queued to the pagelist which is
714 * passed via @private.
716 * queue_pages_range() has three possible return values:
717 * 1 - there is unmovable page, but MPOL_MF_MOVE* & MPOL_MF_STRICT were
719 * 0 - queue pages successfully or no misplaced page.
720 * errno - i.e. misplaced pages with MPOL_MF_STRICT specified (-EIO) or
721 * memory range specified by nodemask and maxnode points outside
722 * your accessible address space (-EFAULT)
725 queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end,
726 nodemask_t *nodes, unsigned long flags,
727 struct list_head *pagelist)
730 struct queue_pages qp = {
731 .pagelist = pagelist,
739 err = walk_page_range(mm, start, end, &queue_pages_walk_ops, &qp);
742 /* whole range in hole */
749 * Apply policy to a single VMA
750 * This must be called with the mmap_lock held for writing.
752 static int vma_replace_policy(struct vm_area_struct *vma,
753 struct mempolicy *pol)
756 struct mempolicy *old;
757 struct mempolicy *new;
759 pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
760 vma->vm_start, vma->vm_end, vma->vm_pgoff,
761 vma->vm_ops, vma->vm_file,
762 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
768 if (vma->vm_ops && vma->vm_ops->set_policy) {
769 err = vma->vm_ops->set_policy(vma, new);
774 old = vma->vm_policy;
775 vma->vm_policy = new; /* protected by mmap_lock */
784 /* Step 2: apply policy to a range and do splits. */
785 static int mbind_range(struct mm_struct *mm, unsigned long start,
786 unsigned long end, struct mempolicy *new_pol)
788 struct vm_area_struct *prev;
789 struct vm_area_struct *vma;
792 unsigned long vmstart;
795 vma = find_vma(mm, start);
799 if (start > vma->vm_start)
802 for (; vma && vma->vm_start < end; prev = vma, vma = vma->vm_next) {
803 vmstart = max(start, vma->vm_start);
804 vmend = min(end, vma->vm_end);
806 if (mpol_equal(vma_policy(vma), new_pol))
809 pgoff = vma->vm_pgoff +
810 ((vmstart - vma->vm_start) >> PAGE_SHIFT);
811 prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags,
812 vma->anon_vma, vma->vm_file, pgoff,
813 new_pol, vma->vm_userfaultfd_ctx,
819 if (vma->vm_start != vmstart) {
820 err = split_vma(vma->vm_mm, vma, vmstart, 1);
824 if (vma->vm_end != vmend) {
825 err = split_vma(vma->vm_mm, vma, vmend, 0);
830 err = vma_replace_policy(vma, new_pol);
839 /* Set the process memory policy */
840 static long do_set_mempolicy(unsigned short mode, unsigned short flags,
843 struct mempolicy *new, *old;
844 NODEMASK_SCRATCH(scratch);
850 new = mpol_new(mode, flags, nodes);
856 ret = mpol_set_nodemask(new, nodes, scratch);
862 old = current->mempolicy;
863 current->mempolicy = new;
864 if (new && new->mode == MPOL_INTERLEAVE)
865 current->il_prev = MAX_NUMNODES-1;
866 task_unlock(current);
870 NODEMASK_SCRATCH_FREE(scratch);
875 * Return nodemask for policy for get_mempolicy() query
877 * Called with task's alloc_lock held
879 static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
882 if (p == &default_policy)
887 case MPOL_INTERLEAVE:
889 case MPOL_PREFERRED_MANY:
893 /* return empty node mask for local allocation */
900 static int lookup_node(struct mm_struct *mm, unsigned long addr)
902 struct page *p = NULL;
905 ret = get_user_pages_fast(addr & PAGE_MASK, 1, 0, &p);
907 ret = page_to_nid(p);
913 /* Retrieve NUMA policy */
914 static long do_get_mempolicy(int *policy, nodemask_t *nmask,
915 unsigned long addr, unsigned long flags)
918 struct mm_struct *mm = current->mm;
919 struct vm_area_struct *vma = NULL;
920 struct mempolicy *pol = current->mempolicy, *pol_refcount = NULL;
923 ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
926 if (flags & MPOL_F_MEMS_ALLOWED) {
927 if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
929 *policy = 0; /* just so it's initialized */
931 *nmask = cpuset_current_mems_allowed;
932 task_unlock(current);
936 if (flags & MPOL_F_ADDR) {
938 * Do NOT fall back to task policy if the
939 * vma/shared policy at addr is NULL. We
940 * want to return MPOL_DEFAULT in this case.
943 vma = vma_lookup(mm, addr);
945 mmap_read_unlock(mm);
948 if (vma->vm_ops && vma->vm_ops->get_policy)
949 pol = vma->vm_ops->get_policy(vma, addr);
951 pol = vma->vm_policy;
956 pol = &default_policy; /* indicates default behavior */
958 if (flags & MPOL_F_NODE) {
959 if (flags & MPOL_F_ADDR) {
961 * Take a refcount on the mpol, because we are about to
962 * drop the mmap_lock, after which only "pol" remains
963 * valid, "vma" is stale.
968 mmap_read_unlock(mm);
969 err = lookup_node(mm, addr);
973 } else if (pol == current->mempolicy &&
974 pol->mode == MPOL_INTERLEAVE) {
975 *policy = next_node_in(current->il_prev, pol->nodes);
981 *policy = pol == &default_policy ? MPOL_DEFAULT :
984 * Internal mempolicy flags must be masked off before exposing
985 * the policy to userspace.
987 *policy |= (pol->flags & MPOL_MODE_FLAGS);
992 if (mpol_store_user_nodemask(pol)) {
993 *nmask = pol->w.user_nodemask;
996 get_policy_nodemask(pol, nmask);
997 task_unlock(current);
1004 mmap_read_unlock(mm);
1006 mpol_put(pol_refcount);
1010 #ifdef CONFIG_MIGRATION
1012 * page migration, thp tail pages can be passed.
1014 static int migrate_page_add(struct page *page, struct list_head *pagelist,
1015 unsigned long flags)
1017 struct page *head = compound_head(page);
1019 * Avoid migrating a page that is shared with others.
1021 if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(head) == 1) {
1022 if (!isolate_lru_page(head)) {
1023 list_add_tail(&head->lru, pagelist);
1024 mod_node_page_state(page_pgdat(head),
1025 NR_ISOLATED_ANON + page_is_file_lru(head),
1026 thp_nr_pages(head));
1027 } else if (flags & MPOL_MF_STRICT) {
1029 * Non-movable page may reach here. And, there may be
1030 * temporary off LRU pages or non-LRU movable pages.
1031 * Treat them as unmovable pages since they can't be
1032 * isolated, so they can't be moved at the moment. It
1033 * should return -EIO for this case too.
1043 * Migrate pages from one node to a target node.
1044 * Returns error or the number of pages not migrated.
1046 static int migrate_to_node(struct mm_struct *mm, int source, int dest,
1050 LIST_HEAD(pagelist);
1052 struct migration_target_control mtc = {
1054 .gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE,
1058 node_set(source, nmask);
1061 * This does not "check" the range but isolates all pages that
1062 * need migration. Between passing in the full user address
1063 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail.
1065 VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)));
1066 queue_pages_range(mm, mm->mmap->vm_start, mm->task_size, &nmask,
1067 flags | MPOL_MF_DISCONTIG_OK, &pagelist);
1069 if (!list_empty(&pagelist)) {
1070 err = migrate_pages(&pagelist, alloc_migration_target, NULL,
1071 (unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL, NULL);
1073 putback_movable_pages(&pagelist);
1080 * Move pages between the two nodesets so as to preserve the physical
1081 * layout as much as possible.
1083 * Returns the number of page that could not be moved.
1085 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1086 const nodemask_t *to, int flags)
1092 lru_cache_disable();
1097 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
1098 * bit in 'to' is not also set in 'tmp'. Clear the found 'source'
1099 * bit in 'tmp', and return that <source, dest> pair for migration.
1100 * The pair of nodemasks 'to' and 'from' define the map.
1102 * If no pair of bits is found that way, fallback to picking some
1103 * pair of 'source' and 'dest' bits that are not the same. If the
1104 * 'source' and 'dest' bits are the same, this represents a node
1105 * that will be migrating to itself, so no pages need move.
1107 * If no bits are left in 'tmp', or if all remaining bits left
1108 * in 'tmp' correspond to the same bit in 'to', return false
1109 * (nothing left to migrate).
1111 * This lets us pick a pair of nodes to migrate between, such that
1112 * if possible the dest node is not already occupied by some other
1113 * source node, minimizing the risk of overloading the memory on a
1114 * node that would happen if we migrated incoming memory to a node
1115 * before migrating outgoing memory source that same node.
1117 * A single scan of tmp is sufficient. As we go, we remember the
1118 * most recent <s, d> pair that moved (s != d). If we find a pair
1119 * that not only moved, but what's better, moved to an empty slot
1120 * (d is not set in tmp), then we break out then, with that pair.
1121 * Otherwise when we finish scanning from_tmp, we at least have the
1122 * most recent <s, d> pair that moved. If we get all the way through
1123 * the scan of tmp without finding any node that moved, much less
1124 * moved to an empty node, then there is nothing left worth migrating.
1128 while (!nodes_empty(tmp)) {
1130 int source = NUMA_NO_NODE;
1133 for_each_node_mask(s, tmp) {
1136 * do_migrate_pages() tries to maintain the relative
1137 * node relationship of the pages established between
1138 * threads and memory areas.
1140 * However if the number of source nodes is not equal to
1141 * the number of destination nodes we can not preserve
1142 * this node relative relationship. In that case, skip
1143 * copying memory from a node that is in the destination
1146 * Example: [2,3,4] -> [3,4,5] moves everything.
1147 * [0-7] - > [3,4,5] moves only 0,1,2,6,7.
1150 if ((nodes_weight(*from) != nodes_weight(*to)) &&
1151 (node_isset(s, *to)))
1154 d = node_remap(s, *from, *to);
1158 source = s; /* Node moved. Memorize */
1161 /* dest not in remaining from nodes? */
1162 if (!node_isset(dest, tmp))
1165 if (source == NUMA_NO_NODE)
1168 node_clear(source, tmp);
1169 err = migrate_to_node(mm, source, dest, flags);
1175 mmap_read_unlock(mm);
1185 * Allocate a new page for page migration based on vma policy.
1186 * Start by assuming the page is mapped by the same vma as contains @start.
1187 * Search forward from there, if not. N.B., this assumes that the
1188 * list of pages handed to migrate_pages()--which is how we get here--
1189 * is in virtual address order.
1191 static struct page *new_page(struct page *page, unsigned long start)
1193 struct folio *dst, *src = page_folio(page);
1194 struct vm_area_struct *vma;
1195 unsigned long address;
1196 gfp_t gfp = GFP_HIGHUSER_MOVABLE | __GFP_RETRY_MAYFAIL;
1198 vma = find_vma(current->mm, start);
1200 address = page_address_in_vma(page, vma);
1201 if (address != -EFAULT)
1206 if (folio_test_hugetlb(src))
1207 return alloc_huge_page_vma(page_hstate(&src->page),
1210 if (folio_test_large(src))
1211 gfp = GFP_TRANSHUGE;
1214 * if !vma, vma_alloc_folio() will use task or system default policy
1216 dst = vma_alloc_folio(gfp, folio_order(src), vma, address,
1217 folio_test_large(src));
1222 static int migrate_page_add(struct page *page, struct list_head *pagelist,
1223 unsigned long flags)
1228 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1229 const nodemask_t *to, int flags)
1234 static struct page *new_page(struct page *page, unsigned long start)
1240 static long do_mbind(unsigned long start, unsigned long len,
1241 unsigned short mode, unsigned short mode_flags,
1242 nodemask_t *nmask, unsigned long flags)
1244 struct mm_struct *mm = current->mm;
1245 struct mempolicy *new;
1249 LIST_HEAD(pagelist);
1251 if (flags & ~(unsigned long)MPOL_MF_VALID)
1253 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1256 if (start & ~PAGE_MASK)
1259 if (mode == MPOL_DEFAULT)
1260 flags &= ~MPOL_MF_STRICT;
1262 len = (len + PAGE_SIZE - 1) & PAGE_MASK;
1270 new = mpol_new(mode, mode_flags, nmask);
1272 return PTR_ERR(new);
1274 if (flags & MPOL_MF_LAZY)
1275 new->flags |= MPOL_F_MOF;
1278 * If we are using the default policy then operation
1279 * on discontinuous address spaces is okay after all
1282 flags |= MPOL_MF_DISCONTIG_OK;
1284 pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1285 start, start + len, mode, mode_flags,
1286 nmask ? nodes_addr(*nmask)[0] : NUMA_NO_NODE);
1288 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
1290 lru_cache_disable();
1293 NODEMASK_SCRATCH(scratch);
1295 mmap_write_lock(mm);
1296 err = mpol_set_nodemask(new, nmask, scratch);
1298 mmap_write_unlock(mm);
1301 NODEMASK_SCRATCH_FREE(scratch);
1306 ret = queue_pages_range(mm, start, end, nmask,
1307 flags | MPOL_MF_INVERT, &pagelist);
1314 err = mbind_range(mm, start, end, new);
1319 if (!list_empty(&pagelist)) {
1320 WARN_ON_ONCE(flags & MPOL_MF_LAZY);
1321 nr_failed = migrate_pages(&pagelist, new_page, NULL,
1322 start, MIGRATE_SYNC, MR_MEMPOLICY_MBIND, NULL);
1324 putback_movable_pages(&pagelist);
1327 if ((ret > 0) || (nr_failed && (flags & MPOL_MF_STRICT)))
1331 if (!list_empty(&pagelist))
1332 putback_movable_pages(&pagelist);
1335 mmap_write_unlock(mm);
1338 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
1344 * User space interface with variable sized bitmaps for nodelists.
1346 static int get_bitmap(unsigned long *mask, const unsigned long __user *nmask,
1347 unsigned long maxnode)
1349 unsigned long nlongs = BITS_TO_LONGS(maxnode);
1352 if (in_compat_syscall())
1353 ret = compat_get_bitmap(mask,
1354 (const compat_ulong_t __user *)nmask,
1357 ret = copy_from_user(mask, nmask,
1358 nlongs * sizeof(unsigned long));
1363 if (maxnode % BITS_PER_LONG)
1364 mask[nlongs - 1] &= (1UL << (maxnode % BITS_PER_LONG)) - 1;
1369 /* Copy a node mask from user space. */
1370 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1371 unsigned long maxnode)
1374 nodes_clear(*nodes);
1375 if (maxnode == 0 || !nmask)
1377 if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1381 * When the user specified more nodes than supported just check
1382 * if the non supported part is all zero, one word at a time,
1383 * starting at the end.
1385 while (maxnode > MAX_NUMNODES) {
1386 unsigned long bits = min_t(unsigned long, maxnode, BITS_PER_LONG);
1389 if (get_bitmap(&t, &nmask[(maxnode - 1) / BITS_PER_LONG], bits))
1392 if (maxnode - bits >= MAX_NUMNODES) {
1395 maxnode = MAX_NUMNODES;
1396 t &= ~((1UL << (MAX_NUMNODES % BITS_PER_LONG)) - 1);
1402 return get_bitmap(nodes_addr(*nodes), nmask, maxnode);
1405 /* Copy a kernel node mask to user space */
1406 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1409 unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1410 unsigned int nbytes = BITS_TO_LONGS(nr_node_ids) * sizeof(long);
1411 bool compat = in_compat_syscall();
1414 nbytes = BITS_TO_COMPAT_LONGS(nr_node_ids) * sizeof(compat_long_t);
1416 if (copy > nbytes) {
1417 if (copy > PAGE_SIZE)
1419 if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1422 maxnode = nr_node_ids;
1426 return compat_put_bitmap((compat_ulong_t __user *)mask,
1427 nodes_addr(*nodes), maxnode);
1429 return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1432 /* Basic parameter sanity check used by both mbind() and set_mempolicy() */
1433 static inline int sanitize_mpol_flags(int *mode, unsigned short *flags)
1435 *flags = *mode & MPOL_MODE_FLAGS;
1436 *mode &= ~MPOL_MODE_FLAGS;
1438 if ((unsigned int)(*mode) >= MPOL_MAX)
1440 if ((*flags & MPOL_F_STATIC_NODES) && (*flags & MPOL_F_RELATIVE_NODES))
1442 if (*flags & MPOL_F_NUMA_BALANCING) {
1443 if (*mode != MPOL_BIND)
1445 *flags |= (MPOL_F_MOF | MPOL_F_MORON);
1450 static long kernel_mbind(unsigned long start, unsigned long len,
1451 unsigned long mode, const unsigned long __user *nmask,
1452 unsigned long maxnode, unsigned int flags)
1454 unsigned short mode_flags;
1459 start = untagged_addr(start);
1460 err = sanitize_mpol_flags(&lmode, &mode_flags);
1464 err = get_nodes(&nodes, nmask, maxnode);
1468 return do_mbind(start, len, lmode, mode_flags, &nodes, flags);
1471 SYSCALL_DEFINE4(set_mempolicy_home_node, unsigned long, start, unsigned long, len,
1472 unsigned long, home_node, unsigned long, flags)
1474 struct mm_struct *mm = current->mm;
1475 struct vm_area_struct *vma;
1476 struct mempolicy *new;
1477 unsigned long vmstart;
1478 unsigned long vmend;
1482 start = untagged_addr(start);
1483 if (start & ~PAGE_MASK)
1486 * flags is used for future extension if any.
1492 * Check home_node is online to avoid accessing uninitialized
1495 if (home_node >= MAX_NUMNODES || !node_online(home_node))
1498 len = (len + PAGE_SIZE - 1) & PAGE_MASK;
1505 mmap_write_lock(mm);
1506 vma = find_vma(mm, start);
1507 for (; vma && vma->vm_start < end; vma = vma->vm_next) {
1509 vmstart = max(start, vma->vm_start);
1510 vmend = min(end, vma->vm_end);
1511 new = mpol_dup(vma_policy(vma));
1517 * Only update home node if there is an existing vma policy
1523 * If any vma in the range got policy other than MPOL_BIND
1524 * or MPOL_PREFERRED_MANY we return error. We don't reset
1525 * the home node for vmas we already updated before.
1527 if (new->mode != MPOL_BIND && new->mode != MPOL_PREFERRED_MANY) {
1532 new->home_node = home_node;
1533 err = mbind_range(mm, vmstart, vmend, new);
1538 mmap_write_unlock(mm);
1542 SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1543 unsigned long, mode, const unsigned long __user *, nmask,
1544 unsigned long, maxnode, unsigned int, flags)
1546 return kernel_mbind(start, len, mode, nmask, maxnode, flags);
1549 /* Set the process memory policy */
1550 static long kernel_set_mempolicy(int mode, const unsigned long __user *nmask,
1551 unsigned long maxnode)
1553 unsigned short mode_flags;
1558 err = sanitize_mpol_flags(&lmode, &mode_flags);
1562 err = get_nodes(&nodes, nmask, maxnode);
1566 return do_set_mempolicy(lmode, mode_flags, &nodes);
1569 SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask,
1570 unsigned long, maxnode)
1572 return kernel_set_mempolicy(mode, nmask, maxnode);
1575 static int kernel_migrate_pages(pid_t pid, unsigned long maxnode,
1576 const unsigned long __user *old_nodes,
1577 const unsigned long __user *new_nodes)
1579 struct mm_struct *mm = NULL;
1580 struct task_struct *task;
1581 nodemask_t task_nodes;
1585 NODEMASK_SCRATCH(scratch);
1590 old = &scratch->mask1;
1591 new = &scratch->mask2;
1593 err = get_nodes(old, old_nodes, maxnode);
1597 err = get_nodes(new, new_nodes, maxnode);
1601 /* Find the mm_struct */
1603 task = pid ? find_task_by_vpid(pid) : current;
1609 get_task_struct(task);
1614 * Check if this process has the right to modify the specified process.
1615 * Use the regular "ptrace_may_access()" checks.
1617 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1624 task_nodes = cpuset_mems_allowed(task);
1625 /* Is the user allowed to access the target nodes? */
1626 if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1631 task_nodes = cpuset_mems_allowed(current);
1632 nodes_and(*new, *new, task_nodes);
1633 if (nodes_empty(*new))
1636 err = security_task_movememory(task);
1640 mm = get_task_mm(task);
1641 put_task_struct(task);
1648 err = do_migrate_pages(mm, old, new,
1649 capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1653 NODEMASK_SCRATCH_FREE(scratch);
1658 put_task_struct(task);
1663 SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1664 const unsigned long __user *, old_nodes,
1665 const unsigned long __user *, new_nodes)
1667 return kernel_migrate_pages(pid, maxnode, old_nodes, new_nodes);
1671 /* Retrieve NUMA policy */
1672 static int kernel_get_mempolicy(int __user *policy,
1673 unsigned long __user *nmask,
1674 unsigned long maxnode,
1676 unsigned long flags)
1682 if (nmask != NULL && maxnode < nr_node_ids)
1685 addr = untagged_addr(addr);
1687 err = do_get_mempolicy(&pval, &nodes, addr, flags);
1692 if (policy && put_user(pval, policy))
1696 err = copy_nodes_to_user(nmask, maxnode, &nodes);
1701 SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1702 unsigned long __user *, nmask, unsigned long, maxnode,
1703 unsigned long, addr, unsigned long, flags)
1705 return kernel_get_mempolicy(policy, nmask, maxnode, addr, flags);
1708 bool vma_migratable(struct vm_area_struct *vma)
1710 if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1714 * DAX device mappings require predictable access latency, so avoid
1715 * incurring periodic faults.
1717 if (vma_is_dax(vma))
1720 if (is_vm_hugetlb_page(vma) &&
1721 !hugepage_migration_supported(hstate_vma(vma)))
1725 * Migration allocates pages in the highest zone. If we cannot
1726 * do so then migration (at least from node to node) is not
1730 gfp_zone(mapping_gfp_mask(vma->vm_file->f_mapping))
1736 struct mempolicy *__get_vma_policy(struct vm_area_struct *vma,
1739 struct mempolicy *pol = NULL;
1742 if (vma->vm_ops && vma->vm_ops->get_policy) {
1743 pol = vma->vm_ops->get_policy(vma, addr);
1744 } else if (vma->vm_policy) {
1745 pol = vma->vm_policy;
1748 * shmem_alloc_page() passes MPOL_F_SHARED policy with
1749 * a pseudo vma whose vma->vm_ops=NULL. Take a reference
1750 * count on these policies which will be dropped by
1751 * mpol_cond_put() later
1753 if (mpol_needs_cond_ref(pol))
1762 * get_vma_policy(@vma, @addr)
1763 * @vma: virtual memory area whose policy is sought
1764 * @addr: address in @vma for shared policy lookup
1766 * Returns effective policy for a VMA at specified address.
1767 * Falls back to current->mempolicy or system default policy, as necessary.
1768 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1769 * count--added by the get_policy() vm_op, as appropriate--to protect against
1770 * freeing by another task. It is the caller's responsibility to free the
1771 * extra reference for shared policies.
1773 static struct mempolicy *get_vma_policy(struct vm_area_struct *vma,
1776 struct mempolicy *pol = __get_vma_policy(vma, addr);
1779 pol = get_task_policy(current);
1784 bool vma_policy_mof(struct vm_area_struct *vma)
1786 struct mempolicy *pol;
1788 if (vma->vm_ops && vma->vm_ops->get_policy) {
1791 pol = vma->vm_ops->get_policy(vma, vma->vm_start);
1792 if (pol && (pol->flags & MPOL_F_MOF))
1799 pol = vma->vm_policy;
1801 pol = get_task_policy(current);
1803 return pol->flags & MPOL_F_MOF;
1806 static int apply_policy_zone(struct mempolicy *policy, enum zone_type zone)
1808 enum zone_type dynamic_policy_zone = policy_zone;
1810 BUG_ON(dynamic_policy_zone == ZONE_MOVABLE);
1813 * if policy->nodes has movable memory only,
1814 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only.
1816 * policy->nodes is intersect with node_states[N_MEMORY].
1817 * so if the following test fails, it implies
1818 * policy->nodes has movable memory only.
1820 if (!nodes_intersects(policy->nodes, node_states[N_HIGH_MEMORY]))
1821 dynamic_policy_zone = ZONE_MOVABLE;
1823 return zone >= dynamic_policy_zone;
1827 * Return a nodemask representing a mempolicy for filtering nodes for
1830 nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1832 int mode = policy->mode;
1834 /* Lower zones don't get a nodemask applied for MPOL_BIND */
1835 if (unlikely(mode == MPOL_BIND) &&
1836 apply_policy_zone(policy, gfp_zone(gfp)) &&
1837 cpuset_nodemask_valid_mems_allowed(&policy->nodes))
1838 return &policy->nodes;
1840 if (mode == MPOL_PREFERRED_MANY)
1841 return &policy->nodes;
1847 * Return the preferred node id for 'prefer' mempolicy, and return
1848 * the given id for all other policies.
1850 * policy_node() is always coupled with policy_nodemask(), which
1851 * secures the nodemask limit for 'bind' and 'prefer-many' policy.
1853 static int policy_node(gfp_t gfp, struct mempolicy *policy, int nd)
1855 if (policy->mode == MPOL_PREFERRED) {
1856 nd = first_node(policy->nodes);
1859 * __GFP_THISNODE shouldn't even be used with the bind policy
1860 * because we might easily break the expectation to stay on the
1861 * requested node and not break the policy.
1863 WARN_ON_ONCE(policy->mode == MPOL_BIND && (gfp & __GFP_THISNODE));
1866 if ((policy->mode == MPOL_BIND ||
1867 policy->mode == MPOL_PREFERRED_MANY) &&
1868 policy->home_node != NUMA_NO_NODE)
1869 return policy->home_node;
1874 /* Do dynamic interleaving for a process */
1875 static unsigned interleave_nodes(struct mempolicy *policy)
1878 struct task_struct *me = current;
1880 next = next_node_in(me->il_prev, policy->nodes);
1881 if (next < MAX_NUMNODES)
1887 * Depending on the memory policy provide a node from which to allocate the
1890 unsigned int mempolicy_slab_node(void)
1892 struct mempolicy *policy;
1893 int node = numa_mem_id();
1898 policy = current->mempolicy;
1902 switch (policy->mode) {
1903 case MPOL_PREFERRED:
1904 return first_node(policy->nodes);
1906 case MPOL_INTERLEAVE:
1907 return interleave_nodes(policy);
1910 case MPOL_PREFERRED_MANY:
1915 * Follow bind policy behavior and start allocation at the
1918 struct zonelist *zonelist;
1919 enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1920 zonelist = &NODE_DATA(node)->node_zonelists[ZONELIST_FALLBACK];
1921 z = first_zones_zonelist(zonelist, highest_zoneidx,
1923 return z->zone ? zone_to_nid(z->zone) : node;
1934 * Do static interleaving for a VMA with known offset @n. Returns the n'th
1935 * node in pol->nodes (starting from n=0), wrapping around if n exceeds the
1936 * number of present nodes.
1938 static unsigned offset_il_node(struct mempolicy *pol, unsigned long n)
1940 nodemask_t nodemask = pol->nodes;
1941 unsigned int target, nnodes;
1945 * The barrier will stabilize the nodemask in a register or on
1946 * the stack so that it will stop changing under the code.
1948 * Between first_node() and next_node(), pol->nodes could be changed
1949 * by other threads. So we put pol->nodes in a local stack.
1953 nnodes = nodes_weight(nodemask);
1955 return numa_node_id();
1956 target = (unsigned int)n % nnodes;
1957 nid = first_node(nodemask);
1958 for (i = 0; i < target; i++)
1959 nid = next_node(nid, nodemask);
1963 /* Determine a node number for interleave */
1964 static inline unsigned interleave_nid(struct mempolicy *pol,
1965 struct vm_area_struct *vma, unsigned long addr, int shift)
1971 * for small pages, there is no difference between
1972 * shift and PAGE_SHIFT, so the bit-shift is safe.
1973 * for huge pages, since vm_pgoff is in units of small
1974 * pages, we need to shift off the always 0 bits to get
1977 BUG_ON(shift < PAGE_SHIFT);
1978 off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
1979 off += (addr - vma->vm_start) >> shift;
1980 return offset_il_node(pol, off);
1982 return interleave_nodes(pol);
1985 #ifdef CONFIG_HUGETLBFS
1987 * huge_node(@vma, @addr, @gfp_flags, @mpol)
1988 * @vma: virtual memory area whose policy is sought
1989 * @addr: address in @vma for shared policy lookup and interleave policy
1990 * @gfp_flags: for requested zone
1991 * @mpol: pointer to mempolicy pointer for reference counted mempolicy
1992 * @nodemask: pointer to nodemask pointer for 'bind' and 'prefer-many' policy
1994 * Returns a nid suitable for a huge page allocation and a pointer
1995 * to the struct mempolicy for conditional unref after allocation.
1996 * If the effective policy is 'bind' or 'prefer-many', returns a pointer
1997 * to the mempolicy's @nodemask for filtering the zonelist.
1999 * Must be protected by read_mems_allowed_begin()
2001 int huge_node(struct vm_area_struct *vma, unsigned long addr, gfp_t gfp_flags,
2002 struct mempolicy **mpol, nodemask_t **nodemask)
2007 *mpol = get_vma_policy(vma, addr);
2009 mode = (*mpol)->mode;
2011 if (unlikely(mode == MPOL_INTERLEAVE)) {
2012 nid = interleave_nid(*mpol, vma, addr,
2013 huge_page_shift(hstate_vma(vma)));
2015 nid = policy_node(gfp_flags, *mpol, numa_node_id());
2016 if (mode == MPOL_BIND || mode == MPOL_PREFERRED_MANY)
2017 *nodemask = &(*mpol)->nodes;
2023 * init_nodemask_of_mempolicy
2025 * If the current task's mempolicy is "default" [NULL], return 'false'
2026 * to indicate default policy. Otherwise, extract the policy nodemask
2027 * for 'bind' or 'interleave' policy into the argument nodemask, or
2028 * initialize the argument nodemask to contain the single node for
2029 * 'preferred' or 'local' policy and return 'true' to indicate presence
2030 * of non-default mempolicy.
2032 * We don't bother with reference counting the mempolicy [mpol_get/put]
2033 * because the current task is examining it's own mempolicy and a task's
2034 * mempolicy is only ever changed by the task itself.
2036 * N.B., it is the caller's responsibility to free a returned nodemask.
2038 bool init_nodemask_of_mempolicy(nodemask_t *mask)
2040 struct mempolicy *mempolicy;
2042 if (!(mask && current->mempolicy))
2046 mempolicy = current->mempolicy;
2047 switch (mempolicy->mode) {
2048 case MPOL_PREFERRED:
2049 case MPOL_PREFERRED_MANY:
2051 case MPOL_INTERLEAVE:
2052 *mask = mempolicy->nodes;
2056 init_nodemask_of_node(mask, numa_node_id());
2062 task_unlock(current);
2069 * mempolicy_in_oom_domain
2071 * If tsk's mempolicy is "bind", check for intersection between mask and
2072 * the policy nodemask. Otherwise, return true for all other policies
2073 * including "interleave", as a tsk with "interleave" policy may have
2074 * memory allocated from all nodes in system.
2076 * Takes task_lock(tsk) to prevent freeing of its mempolicy.
2078 bool mempolicy_in_oom_domain(struct task_struct *tsk,
2079 const nodemask_t *mask)
2081 struct mempolicy *mempolicy;
2088 mempolicy = tsk->mempolicy;
2089 if (mempolicy && mempolicy->mode == MPOL_BIND)
2090 ret = nodes_intersects(mempolicy->nodes, *mask);
2096 /* Allocate a page in interleaved policy.
2097 Own path because it needs to do special accounting. */
2098 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
2103 page = __alloc_pages(gfp, order, nid, NULL);
2104 /* skip NUMA_INTERLEAVE_HIT counter update if numa stats is disabled */
2105 if (!static_branch_likely(&vm_numa_stat_key))
2107 if (page && page_to_nid(page) == nid) {
2109 __count_numa_event(page_zone(page), NUMA_INTERLEAVE_HIT);
2115 static struct page *alloc_pages_preferred_many(gfp_t gfp, unsigned int order,
2116 int nid, struct mempolicy *pol)
2119 gfp_t preferred_gfp;
2122 * This is a two pass approach. The first pass will only try the
2123 * preferred nodes but skip the direct reclaim and allow the
2124 * allocation to fail, while the second pass will try all the
2127 preferred_gfp = gfp | __GFP_NOWARN;
2128 preferred_gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2129 page = __alloc_pages(preferred_gfp, order, nid, &pol->nodes);
2131 page = __alloc_pages(gfp, order, nid, NULL);
2137 * vma_alloc_folio - Allocate a folio for a VMA.
2139 * @order: Order of the folio.
2140 * @vma: Pointer to VMA or NULL if not available.
2141 * @addr: Virtual address of the allocation. Must be inside @vma.
2142 * @hugepage: For hugepages try only the preferred node if possible.
2144 * Allocate a folio for a specific address in @vma, using the appropriate
2145 * NUMA policy. When @vma is not NULL the caller must hold the mmap_lock
2146 * of the mm_struct of the VMA to prevent it from going away. Should be
2147 * used for all allocations for folios that will be mapped into user space.
2149 * Return: The folio on success or NULL if allocation fails.
2151 struct folio *vma_alloc_folio(gfp_t gfp, int order, struct vm_area_struct *vma,
2152 unsigned long addr, bool hugepage)
2154 struct mempolicy *pol;
2155 int node = numa_node_id();
2156 struct folio *folio;
2160 pol = get_vma_policy(vma, addr);
2162 if (pol->mode == MPOL_INTERLEAVE) {
2166 nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order);
2169 page = alloc_page_interleave(gfp, order, nid);
2170 if (page && order > 1)
2171 prep_transhuge_page(page);
2172 folio = (struct folio *)page;
2176 if (pol->mode == MPOL_PREFERRED_MANY) {
2179 node = policy_node(gfp, pol, node);
2181 page = alloc_pages_preferred_many(gfp, order, node, pol);
2183 if (page && order > 1)
2184 prep_transhuge_page(page);
2185 folio = (struct folio *)page;
2189 if (unlikely(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && hugepage)) {
2190 int hpage_node = node;
2193 * For hugepage allocation and non-interleave policy which
2194 * allows the current node (or other explicitly preferred
2195 * node) we only try to allocate from the current/preferred
2196 * node and don't fall back to other nodes, as the cost of
2197 * remote accesses would likely offset THP benefits.
2199 * If the policy is interleave or does not allow the current
2200 * node in its nodemask, we allocate the standard way.
2202 if (pol->mode == MPOL_PREFERRED)
2203 hpage_node = first_node(pol->nodes);
2205 nmask = policy_nodemask(gfp, pol);
2206 if (!nmask || node_isset(hpage_node, *nmask)) {
2209 * First, try to allocate THP only on local node, but
2210 * don't reclaim unnecessarily, just compact.
2212 folio = __folio_alloc_node(gfp | __GFP_THISNODE |
2213 __GFP_NORETRY, order, hpage_node);
2216 * If hugepage allocations are configured to always
2217 * synchronous compact or the vma has been madvised
2218 * to prefer hugepage backing, retry allowing remote
2219 * memory with both reclaim and compact as well.
2221 if (!folio && (gfp & __GFP_DIRECT_RECLAIM))
2222 folio = __folio_alloc(gfp, order, hpage_node,
2229 nmask = policy_nodemask(gfp, pol);
2230 preferred_nid = policy_node(gfp, pol, node);
2231 folio = __folio_alloc(gfp, order, preferred_nid, nmask);
2236 EXPORT_SYMBOL(vma_alloc_folio);
2239 * alloc_pages - Allocate pages.
2241 * @order: Power of two of number of pages to allocate.
2243 * Allocate 1 << @order contiguous pages. The physical address of the
2244 * first page is naturally aligned (eg an order-3 allocation will be aligned
2245 * to a multiple of 8 * PAGE_SIZE bytes). The NUMA policy of the current
2246 * process is honoured when in process context.
2248 * Context: Can be called from any context, providing the appropriate GFP
2250 * Return: The page on success or NULL if allocation fails.
2252 struct page *alloc_pages(gfp_t gfp, unsigned order)
2254 struct mempolicy *pol = &default_policy;
2257 if (!in_interrupt() && !(gfp & __GFP_THISNODE))
2258 pol = get_task_policy(current);
2261 * No reference counting needed for current->mempolicy
2262 * nor system default_policy
2264 if (pol->mode == MPOL_INTERLEAVE)
2265 page = alloc_page_interleave(gfp, order, interleave_nodes(pol));
2266 else if (pol->mode == MPOL_PREFERRED_MANY)
2267 page = alloc_pages_preferred_many(gfp, order,
2268 policy_node(gfp, pol, numa_node_id()), pol);
2270 page = __alloc_pages(gfp, order,
2271 policy_node(gfp, pol, numa_node_id()),
2272 policy_nodemask(gfp, pol));
2276 EXPORT_SYMBOL(alloc_pages);
2278 struct folio *folio_alloc(gfp_t gfp, unsigned order)
2280 struct page *page = alloc_pages(gfp | __GFP_COMP, order);
2282 if (page && order > 1)
2283 prep_transhuge_page(page);
2284 return (struct folio *)page;
2286 EXPORT_SYMBOL(folio_alloc);
2288 static unsigned long alloc_pages_bulk_array_interleave(gfp_t gfp,
2289 struct mempolicy *pol, unsigned long nr_pages,
2290 struct page **page_array)
2293 unsigned long nr_pages_per_node;
2296 unsigned long nr_allocated;
2297 unsigned long total_allocated = 0;
2299 nodes = nodes_weight(pol->nodes);
2300 nr_pages_per_node = nr_pages / nodes;
2301 delta = nr_pages - nodes * nr_pages_per_node;
2303 for (i = 0; i < nodes; i++) {
2305 nr_allocated = __alloc_pages_bulk(gfp,
2306 interleave_nodes(pol), NULL,
2307 nr_pages_per_node + 1, NULL,
2311 nr_allocated = __alloc_pages_bulk(gfp,
2312 interleave_nodes(pol), NULL,
2313 nr_pages_per_node, NULL, page_array);
2316 page_array += nr_allocated;
2317 total_allocated += nr_allocated;
2320 return total_allocated;
2323 static unsigned long alloc_pages_bulk_array_preferred_many(gfp_t gfp, int nid,
2324 struct mempolicy *pol, unsigned long nr_pages,
2325 struct page **page_array)
2327 gfp_t preferred_gfp;
2328 unsigned long nr_allocated = 0;
2330 preferred_gfp = gfp | __GFP_NOWARN;
2331 preferred_gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2333 nr_allocated = __alloc_pages_bulk(preferred_gfp, nid, &pol->nodes,
2334 nr_pages, NULL, page_array);
2336 if (nr_allocated < nr_pages)
2337 nr_allocated += __alloc_pages_bulk(gfp, numa_node_id(), NULL,
2338 nr_pages - nr_allocated, NULL,
2339 page_array + nr_allocated);
2340 return nr_allocated;
2343 /* alloc pages bulk and mempolicy should be considered at the
2344 * same time in some situation such as vmalloc.
2346 * It can accelerate memory allocation especially interleaving
2349 unsigned long alloc_pages_bulk_array_mempolicy(gfp_t gfp,
2350 unsigned long nr_pages, struct page **page_array)
2352 struct mempolicy *pol = &default_policy;
2354 if (!in_interrupt() && !(gfp & __GFP_THISNODE))
2355 pol = get_task_policy(current);
2357 if (pol->mode == MPOL_INTERLEAVE)
2358 return alloc_pages_bulk_array_interleave(gfp, pol,
2359 nr_pages, page_array);
2361 if (pol->mode == MPOL_PREFERRED_MANY)
2362 return alloc_pages_bulk_array_preferred_many(gfp,
2363 numa_node_id(), pol, nr_pages, page_array);
2365 return __alloc_pages_bulk(gfp, policy_node(gfp, pol, numa_node_id()),
2366 policy_nodemask(gfp, pol), nr_pages, NULL,
2370 int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst)
2372 struct mempolicy *pol = mpol_dup(vma_policy(src));
2375 return PTR_ERR(pol);
2376 dst->vm_policy = pol;
2381 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
2382 * rebinds the mempolicy its copying by calling mpol_rebind_policy()
2383 * with the mems_allowed returned by cpuset_mems_allowed(). This
2384 * keeps mempolicies cpuset relative after its cpuset moves. See
2385 * further kernel/cpuset.c update_nodemask().
2387 * current's mempolicy may be rebinded by the other task(the task that changes
2388 * cpuset's mems), so we needn't do rebind work for current task.
2391 /* Slow path of a mempolicy duplicate */
2392 struct mempolicy *__mpol_dup(struct mempolicy *old)
2394 struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2397 return ERR_PTR(-ENOMEM);
2399 /* task's mempolicy is protected by alloc_lock */
2400 if (old == current->mempolicy) {
2403 task_unlock(current);
2407 if (current_cpuset_is_being_rebound()) {
2408 nodemask_t mems = cpuset_mems_allowed(current);
2409 mpol_rebind_policy(new, &mems);
2411 atomic_set(&new->refcnt, 1);
2415 /* Slow path of a mempolicy comparison */
2416 bool __mpol_equal(struct mempolicy *a, struct mempolicy *b)
2420 if (a->mode != b->mode)
2422 if (a->flags != b->flags)
2424 if (a->home_node != b->home_node)
2426 if (mpol_store_user_nodemask(a))
2427 if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
2432 case MPOL_INTERLEAVE:
2433 case MPOL_PREFERRED:
2434 case MPOL_PREFERRED_MANY:
2435 return !!nodes_equal(a->nodes, b->nodes);
2445 * Shared memory backing store policy support.
2447 * Remember policies even when nobody has shared memory mapped.
2448 * The policies are kept in Red-Black tree linked from the inode.
2449 * They are protected by the sp->lock rwlock, which should be held
2450 * for any accesses to the tree.
2454 * lookup first element intersecting start-end. Caller holds sp->lock for
2455 * reading or for writing
2457 static struct sp_node *
2458 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
2460 struct rb_node *n = sp->root.rb_node;
2463 struct sp_node *p = rb_entry(n, struct sp_node, nd);
2465 if (start >= p->end)
2467 else if (end <= p->start)
2475 struct sp_node *w = NULL;
2476 struct rb_node *prev = rb_prev(n);
2479 w = rb_entry(prev, struct sp_node, nd);
2480 if (w->end <= start)
2484 return rb_entry(n, struct sp_node, nd);
2488 * Insert a new shared policy into the list. Caller holds sp->lock for
2491 static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2493 struct rb_node **p = &sp->root.rb_node;
2494 struct rb_node *parent = NULL;
2499 nd = rb_entry(parent, struct sp_node, nd);
2500 if (new->start < nd->start)
2502 else if (new->end > nd->end)
2503 p = &(*p)->rb_right;
2507 rb_link_node(&new->nd, parent, p);
2508 rb_insert_color(&new->nd, &sp->root);
2509 pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
2510 new->policy ? new->policy->mode : 0);
2513 /* Find shared policy intersecting idx */
2515 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
2517 struct mempolicy *pol = NULL;
2520 if (!sp->root.rb_node)
2522 read_lock(&sp->lock);
2523 sn = sp_lookup(sp, idx, idx+1);
2525 mpol_get(sn->policy);
2528 read_unlock(&sp->lock);
2532 static void sp_free(struct sp_node *n)
2534 mpol_put(n->policy);
2535 kmem_cache_free(sn_cache, n);
2539 * mpol_misplaced - check whether current page node is valid in policy
2541 * @page: page to be checked
2542 * @vma: vm area where page mapped
2543 * @addr: virtual address where page mapped
2545 * Lookup current policy node id for vma,addr and "compare to" page's
2546 * node id. Policy determination "mimics" alloc_page_vma().
2547 * Called from fault path where we know the vma and faulting address.
2549 * Return: NUMA_NO_NODE if the page is in a node that is valid for this
2550 * policy, or a suitable node ID to allocate a replacement page from.
2552 int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr)
2554 struct mempolicy *pol;
2556 int curnid = page_to_nid(page);
2557 unsigned long pgoff;
2558 int thiscpu = raw_smp_processor_id();
2559 int thisnid = cpu_to_node(thiscpu);
2560 int polnid = NUMA_NO_NODE;
2561 int ret = NUMA_NO_NODE;
2563 pol = get_vma_policy(vma, addr);
2564 if (!(pol->flags & MPOL_F_MOF))
2567 switch (pol->mode) {
2568 case MPOL_INTERLEAVE:
2569 pgoff = vma->vm_pgoff;
2570 pgoff += (addr - vma->vm_start) >> PAGE_SHIFT;
2571 polnid = offset_il_node(pol, pgoff);
2574 case MPOL_PREFERRED:
2575 if (node_isset(curnid, pol->nodes))
2577 polnid = first_node(pol->nodes);
2581 polnid = numa_node_id();
2585 /* Optimize placement among multiple nodes via NUMA balancing */
2586 if (pol->flags & MPOL_F_MORON) {
2587 if (node_isset(thisnid, pol->nodes))
2593 case MPOL_PREFERRED_MANY:
2595 * use current page if in policy nodemask,
2596 * else select nearest allowed node, if any.
2597 * If no allowed nodes, use current [!misplaced].
2599 if (node_isset(curnid, pol->nodes))
2601 z = first_zones_zonelist(
2602 node_zonelist(numa_node_id(), GFP_HIGHUSER),
2603 gfp_zone(GFP_HIGHUSER),
2605 polnid = zone_to_nid(z->zone);
2612 /* Migrate the page towards the node whose CPU is referencing it */
2613 if (pol->flags & MPOL_F_MORON) {
2616 if (!should_numa_migrate_memory(current, page, curnid, thiscpu))
2620 if (curnid != polnid)
2629 * Drop the (possibly final) reference to task->mempolicy. It needs to be
2630 * dropped after task->mempolicy is set to NULL so that any allocation done as
2631 * part of its kmem_cache_free(), such as by KASAN, doesn't reference a freed
2634 void mpol_put_task_policy(struct task_struct *task)
2636 struct mempolicy *pol;
2639 pol = task->mempolicy;
2640 task->mempolicy = NULL;
2645 static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2647 pr_debug("deleting %lx-l%lx\n", n->start, n->end);
2648 rb_erase(&n->nd, &sp->root);
2652 static void sp_node_init(struct sp_node *node, unsigned long start,
2653 unsigned long end, struct mempolicy *pol)
2655 node->start = start;
2660 static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2661 struct mempolicy *pol)
2664 struct mempolicy *newpol;
2666 n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2670 newpol = mpol_dup(pol);
2671 if (IS_ERR(newpol)) {
2672 kmem_cache_free(sn_cache, n);
2675 newpol->flags |= MPOL_F_SHARED;
2676 sp_node_init(n, start, end, newpol);
2681 /* Replace a policy range. */
2682 static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
2683 unsigned long end, struct sp_node *new)
2686 struct sp_node *n_new = NULL;
2687 struct mempolicy *mpol_new = NULL;
2691 write_lock(&sp->lock);
2692 n = sp_lookup(sp, start, end);
2693 /* Take care of old policies in the same range. */
2694 while (n && n->start < end) {
2695 struct rb_node *next = rb_next(&n->nd);
2696 if (n->start >= start) {
2702 /* Old policy spanning whole new range. */
2707 *mpol_new = *n->policy;
2708 atomic_set(&mpol_new->refcnt, 1);
2709 sp_node_init(n_new, end, n->end, mpol_new);
2711 sp_insert(sp, n_new);
2720 n = rb_entry(next, struct sp_node, nd);
2724 write_unlock(&sp->lock);
2731 kmem_cache_free(sn_cache, n_new);
2736 write_unlock(&sp->lock);
2738 n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2741 mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2744 atomic_set(&mpol_new->refcnt, 1);
2749 * mpol_shared_policy_init - initialize shared policy for inode
2750 * @sp: pointer to inode shared policy
2751 * @mpol: struct mempolicy to install
2753 * Install non-NULL @mpol in inode's shared policy rb-tree.
2754 * On entry, the current task has a reference on a non-NULL @mpol.
2755 * This must be released on exit.
2756 * This is called at get_inode() calls and we can use GFP_KERNEL.
2758 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2762 sp->root = RB_ROOT; /* empty tree == default mempolicy */
2763 rwlock_init(&sp->lock);
2766 struct vm_area_struct pvma;
2767 struct mempolicy *new;
2768 NODEMASK_SCRATCH(scratch);
2772 /* contextualize the tmpfs mount point mempolicy */
2773 new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2775 goto free_scratch; /* no valid nodemask intersection */
2778 ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch);
2779 task_unlock(current);
2783 /* Create pseudo-vma that contains just the policy */
2784 vma_init(&pvma, NULL);
2785 pvma.vm_end = TASK_SIZE; /* policy covers entire file */
2786 mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
2789 mpol_put(new); /* drop initial ref */
2791 NODEMASK_SCRATCH_FREE(scratch);
2793 mpol_put(mpol); /* drop our incoming ref on sb mpol */
2797 int mpol_set_shared_policy(struct shared_policy *info,
2798 struct vm_area_struct *vma, struct mempolicy *npol)
2801 struct sp_node *new = NULL;
2802 unsigned long sz = vma_pages(vma);
2804 pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2806 sz, npol ? npol->mode : -1,
2807 npol ? npol->flags : -1,
2808 npol ? nodes_addr(npol->nodes)[0] : NUMA_NO_NODE);
2811 new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
2815 err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
2821 /* Free a backing policy store on inode delete. */
2822 void mpol_free_shared_policy(struct shared_policy *p)
2825 struct rb_node *next;
2827 if (!p->root.rb_node)
2829 write_lock(&p->lock);
2830 next = rb_first(&p->root);
2832 n = rb_entry(next, struct sp_node, nd);
2833 next = rb_next(&n->nd);
2836 write_unlock(&p->lock);
2839 #ifdef CONFIG_NUMA_BALANCING
2840 static int __initdata numabalancing_override;
2842 static void __init check_numabalancing_enable(void)
2844 bool numabalancing_default = false;
2846 if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED))
2847 numabalancing_default = true;
2849 /* Parsed by setup_numabalancing. override == 1 enables, -1 disables */
2850 if (numabalancing_override)
2851 set_numabalancing_state(numabalancing_override == 1);
2853 if (num_online_nodes() > 1 && !numabalancing_override) {
2854 pr_info("%s automatic NUMA balancing. Configure with numa_balancing= or the kernel.numa_balancing sysctl\n",
2855 numabalancing_default ? "Enabling" : "Disabling");
2856 set_numabalancing_state(numabalancing_default);
2860 static int __init setup_numabalancing(char *str)
2866 if (!strcmp(str, "enable")) {
2867 numabalancing_override = 1;
2869 } else if (!strcmp(str, "disable")) {
2870 numabalancing_override = -1;
2875 pr_warn("Unable to parse numa_balancing=\n");
2879 __setup("numa_balancing=", setup_numabalancing);
2881 static inline void __init check_numabalancing_enable(void)
2884 #endif /* CONFIG_NUMA_BALANCING */
2886 /* assumes fs == KERNEL_DS */
2887 void __init numa_policy_init(void)
2889 nodemask_t interleave_nodes;
2890 unsigned long largest = 0;
2891 int nid, prefer = 0;
2893 policy_cache = kmem_cache_create("numa_policy",
2894 sizeof(struct mempolicy),
2895 0, SLAB_PANIC, NULL);
2897 sn_cache = kmem_cache_create("shared_policy_node",
2898 sizeof(struct sp_node),
2899 0, SLAB_PANIC, NULL);
2901 for_each_node(nid) {
2902 preferred_node_policy[nid] = (struct mempolicy) {
2903 .refcnt = ATOMIC_INIT(1),
2904 .mode = MPOL_PREFERRED,
2905 .flags = MPOL_F_MOF | MPOL_F_MORON,
2906 .nodes = nodemask_of_node(nid),
2911 * Set interleaving policy for system init. Interleaving is only
2912 * enabled across suitably sized nodes (default is >= 16MB), or
2913 * fall back to the largest node if they're all smaller.
2915 nodes_clear(interleave_nodes);
2916 for_each_node_state(nid, N_MEMORY) {
2917 unsigned long total_pages = node_present_pages(nid);
2919 /* Preserve the largest node */
2920 if (largest < total_pages) {
2921 largest = total_pages;
2925 /* Interleave this node? */
2926 if ((total_pages << PAGE_SHIFT) >= (16 << 20))
2927 node_set(nid, interleave_nodes);
2930 /* All too small, use the largest */
2931 if (unlikely(nodes_empty(interleave_nodes)))
2932 node_set(prefer, interleave_nodes);
2934 if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
2935 pr_err("%s: interleaving failed\n", __func__);
2937 check_numabalancing_enable();
2940 /* Reset policy of current process to default */
2941 void numa_default_policy(void)
2943 do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
2947 * Parse and format mempolicy from/to strings
2950 static const char * const policy_modes[] =
2952 [MPOL_DEFAULT] = "default",
2953 [MPOL_PREFERRED] = "prefer",
2954 [MPOL_BIND] = "bind",
2955 [MPOL_INTERLEAVE] = "interleave",
2956 [MPOL_LOCAL] = "local",
2957 [MPOL_PREFERRED_MANY] = "prefer (many)",
2963 * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option.
2964 * @str: string containing mempolicy to parse
2965 * @mpol: pointer to struct mempolicy pointer, returned on success.
2968 * <mode>[=<flags>][:<nodelist>]
2970 * Return: %0 on success, else %1
2972 int mpol_parse_str(char *str, struct mempolicy **mpol)
2974 struct mempolicy *new = NULL;
2975 unsigned short mode_flags;
2977 char *nodelist = strchr(str, ':');
2978 char *flags = strchr(str, '=');
2982 *flags++ = '\0'; /* terminate mode string */
2985 /* NUL-terminate mode or flags string */
2987 if (nodelist_parse(nodelist, nodes))
2989 if (!nodes_subset(nodes, node_states[N_MEMORY]))
2994 mode = match_string(policy_modes, MPOL_MAX, str);
2999 case MPOL_PREFERRED:
3001 * Insist on a nodelist of one node only, although later
3002 * we use first_node(nodes) to grab a single node, so here
3003 * nodelist (or nodes) cannot be empty.
3006 char *rest = nodelist;
3007 while (isdigit(*rest))
3011 if (nodes_empty(nodes))
3015 case MPOL_INTERLEAVE:
3017 * Default to online nodes with memory if no nodelist
3020 nodes = node_states[N_MEMORY];
3024 * Don't allow a nodelist; mpol_new() checks flags
3031 * Insist on a empty nodelist
3036 case MPOL_PREFERRED_MANY:
3039 * Insist on a nodelist
3048 * Currently, we only support two mutually exclusive
3051 if (!strcmp(flags, "static"))
3052 mode_flags |= MPOL_F_STATIC_NODES;
3053 else if (!strcmp(flags, "relative"))
3054 mode_flags |= MPOL_F_RELATIVE_NODES;
3059 new = mpol_new(mode, mode_flags, &nodes);
3064 * Save nodes for mpol_to_str() to show the tmpfs mount options
3065 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo.
3067 if (mode != MPOL_PREFERRED) {
3069 } else if (nodelist) {
3070 nodes_clear(new->nodes);
3071 node_set(first_node(nodes), new->nodes);
3073 new->mode = MPOL_LOCAL;
3077 * Save nodes for contextualization: this will be used to "clone"
3078 * the mempolicy in a specific context [cpuset] at a later time.
3080 new->w.user_nodemask = nodes;
3085 /* Restore string for error message */
3094 #endif /* CONFIG_TMPFS */
3097 * mpol_to_str - format a mempolicy structure for printing
3098 * @buffer: to contain formatted mempolicy string
3099 * @maxlen: length of @buffer
3100 * @pol: pointer to mempolicy to be formatted
3102 * Convert @pol into a string. If @buffer is too short, truncate the string.
3103 * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the
3104 * longest flag, "relative", and to display at least a few node ids.
3106 void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
3109 nodemask_t nodes = NODE_MASK_NONE;
3110 unsigned short mode = MPOL_DEFAULT;
3111 unsigned short flags = 0;
3113 if (pol && pol != &default_policy && !(pol->flags & MPOL_F_MORON)) {
3122 case MPOL_PREFERRED:
3123 case MPOL_PREFERRED_MANY:
3125 case MPOL_INTERLEAVE:
3130 snprintf(p, maxlen, "unknown");
3134 p += snprintf(p, maxlen, "%s", policy_modes[mode]);
3136 if (flags & MPOL_MODE_FLAGS) {
3137 p += snprintf(p, buffer + maxlen - p, "=");
3140 * Currently, the only defined flags are mutually exclusive
3142 if (flags & MPOL_F_STATIC_NODES)
3143 p += snprintf(p, buffer + maxlen - p, "static");
3144 else if (flags & MPOL_F_RELATIVE_NODES)
3145 p += snprintf(p, buffer + maxlen - p, "relative");
3148 if (!nodes_empty(nodes))
3149 p += scnprintf(p, buffer + maxlen - p, ":%*pbl",
3150 nodemask_pr_args(&nodes));