1 // SPDX-License-Identifier: GPL-2.0-only
3 * Simple NUMA memory policy for the Linux kernel.
5 * Copyright 2003,2004 Andi Kleen, SuSE Labs.
6 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
8 * NUMA policy allows the user to give hints in which node(s) memory should
11 * Support four policies per VMA and per process:
13 * The VMA policy has priority over the process policy for a page fault.
15 * interleave Allocate memory interleaved over a set of nodes,
16 * with normal fallback if it fails.
17 * For VMA based allocations this interleaves based on the
18 * offset into the backing object or offset into the mapping
19 * for anonymous memory. For process policy an process counter
22 * bind Only allocate memory on a specific set of nodes,
24 * FIXME: memory is allocated starting with the first node
25 * to the last. It would be better if bind would truly restrict
26 * the allocation to memory nodes instead
28 * preferred Try a specific node first before normal fallback.
29 * As a special case NUMA_NO_NODE here means do the allocation
30 * on the local CPU. This is normally identical to default,
31 * but useful to set in a VMA when you have a non default
34 * preferred many Try a set of nodes first before normal fallback. This is
35 * similar to preferred without the special case.
37 * default Allocate on the local node first, or when on a VMA
38 * use the process policy. This is what Linux always did
39 * in a NUMA aware kernel and still does by, ahem, default.
41 * The process policy is applied for most non interrupt memory allocations
42 * in that process' context. Interrupts ignore the policies and always
43 * try to allocate on the local CPU. The VMA policy is only applied for memory
44 * allocations for a VMA in the VM.
46 * Currently there are a few corner cases in swapping where the policy
47 * is not applied, but the majority should be handled. When process policy
48 * is used it is not remembered over swap outs/swap ins.
50 * Only the highest zone in the zone hierarchy gets policied. Allocations
51 * requesting a lower zone just use default policy. This implies that
52 * on systems with highmem kernel lowmem allocation don't get policied.
53 * Same with GFP_DMA allocations.
55 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
56 * all users and remembered even when nobody has memory mapped.
60 fix mmap readahead to honour policy and enable policy for any page cache
62 statistics for bigpages
63 global policy for page cache? currently it uses process policy. Requires
65 handle mremap for shared memory (currently ignored for the policy)
67 make bind policy root only? It can trigger oom much faster and the
68 kernel is not always grateful with that.
71 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
73 #include <linux/mempolicy.h>
74 #include <linux/pagewalk.h>
75 #include <linux/highmem.h>
76 #include <linux/hugetlb.h>
77 #include <linux/kernel.h>
78 #include <linux/sched.h>
79 #include <linux/sched/mm.h>
80 #include <linux/sched/numa_balancing.h>
81 #include <linux/sched/task.h>
82 #include <linux/nodemask.h>
83 #include <linux/cpuset.h>
84 #include <linux/slab.h>
85 #include <linux/string.h>
86 #include <linux/export.h>
87 #include <linux/nsproxy.h>
88 #include <linux/interrupt.h>
89 #include <linux/init.h>
90 #include <linux/compat.h>
91 #include <linux/ptrace.h>
92 #include <linux/swap.h>
93 #include <linux/seq_file.h>
94 #include <linux/proc_fs.h>
95 #include <linux/migrate.h>
96 #include <linux/ksm.h>
97 #include <linux/rmap.h>
98 #include <linux/security.h>
99 #include <linux/syscalls.h>
100 #include <linux/ctype.h>
101 #include <linux/mm_inline.h>
102 #include <linux/mmu_notifier.h>
103 #include <linux/printk.h>
104 #include <linux/swapops.h>
106 #include <asm/tlbflush.h>
108 #include <linux/uaccess.h>
110 #include "internal.h"
113 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */
114 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */
116 static struct kmem_cache *policy_cache;
117 static struct kmem_cache *sn_cache;
119 /* Highest zone. An specific allocation for a zone below that is not
121 enum zone_type policy_zone = 0;
124 * run-time system-wide default policy => local allocation
126 static struct mempolicy default_policy = {
127 .refcnt = ATOMIC_INIT(1), /* never free it */
131 static struct mempolicy preferred_node_policy[MAX_NUMNODES];
134 * numa_map_to_online_node - Find closest online node
135 * @node: Node id to start the search
137 * Lookup the next closest node by distance if @nid is not online.
139 * Return: this @node if it is online, otherwise the closest node by distance
141 int numa_map_to_online_node(int node)
143 int min_dist = INT_MAX, dist, n, min_node;
145 if (node == NUMA_NO_NODE || node_online(node))
149 for_each_online_node(n) {
150 dist = node_distance(node, n);
151 if (dist < min_dist) {
159 EXPORT_SYMBOL_GPL(numa_map_to_online_node);
161 struct mempolicy *get_task_policy(struct task_struct *p)
163 struct mempolicy *pol = p->mempolicy;
169 node = numa_node_id();
170 if (node != NUMA_NO_NODE) {
171 pol = &preferred_node_policy[node];
172 /* preferred_node_policy is not initialised early in boot */
177 return &default_policy;
180 static const struct mempolicy_operations {
181 int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
182 void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes);
183 } mpol_ops[MPOL_MAX];
185 static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
187 return pol->flags & MPOL_MODE_FLAGS;
190 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
191 const nodemask_t *rel)
194 nodes_fold(tmp, *orig, nodes_weight(*rel));
195 nodes_onto(*ret, tmp, *rel);
198 static int mpol_new_nodemask(struct mempolicy *pol, const nodemask_t *nodes)
200 if (nodes_empty(*nodes))
206 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
208 if (nodes_empty(*nodes))
211 nodes_clear(pol->nodes);
212 node_set(first_node(*nodes), pol->nodes);
217 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
218 * any, for the new policy. mpol_new() has already validated the nodes
219 * parameter with respect to the policy mode and flags.
221 * Must be called holding task's alloc_lock to protect task's mems_allowed
222 * and mempolicy. May also be called holding the mmap_lock for write.
224 static int mpol_set_nodemask(struct mempolicy *pol,
225 const nodemask_t *nodes, struct nodemask_scratch *nsc)
230 * Default (pol==NULL) resp. local memory policies are not a
231 * subject of any remapping. They also do not need any special
234 if (!pol || pol->mode == MPOL_LOCAL)
238 nodes_and(nsc->mask1,
239 cpuset_current_mems_allowed, node_states[N_MEMORY]);
243 if (pol->flags & MPOL_F_RELATIVE_NODES)
244 mpol_relative_nodemask(&nsc->mask2, nodes, &nsc->mask1);
246 nodes_and(nsc->mask2, *nodes, nsc->mask1);
248 if (mpol_store_user_nodemask(pol))
249 pol->w.user_nodemask = *nodes;
251 pol->w.cpuset_mems_allowed = cpuset_current_mems_allowed;
253 ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
258 * This function just creates a new policy, does some check and simple
259 * initialization. You must invoke mpol_set_nodemask() to set nodes.
261 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
264 struct mempolicy *policy;
266 pr_debug("setting mode %d flags %d nodes[0] %lx\n",
267 mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE);
269 if (mode == MPOL_DEFAULT) {
270 if (nodes && !nodes_empty(*nodes))
271 return ERR_PTR(-EINVAL);
277 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
278 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
279 * All other modes require a valid pointer to a non-empty nodemask.
281 if (mode == MPOL_PREFERRED) {
282 if (nodes_empty(*nodes)) {
283 if (((flags & MPOL_F_STATIC_NODES) ||
284 (flags & MPOL_F_RELATIVE_NODES)))
285 return ERR_PTR(-EINVAL);
289 } else if (mode == MPOL_LOCAL) {
290 if (!nodes_empty(*nodes) ||
291 (flags & MPOL_F_STATIC_NODES) ||
292 (flags & MPOL_F_RELATIVE_NODES))
293 return ERR_PTR(-EINVAL);
294 } else if (nodes_empty(*nodes))
295 return ERR_PTR(-EINVAL);
296 policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
298 return ERR_PTR(-ENOMEM);
299 atomic_set(&policy->refcnt, 1);
301 policy->flags = flags;
302 policy->home_node = NUMA_NO_NODE;
307 /* Slow path of a mpol destructor. */
308 void __mpol_put(struct mempolicy *p)
310 if (!atomic_dec_and_test(&p->refcnt))
312 kmem_cache_free(policy_cache, p);
315 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes)
319 static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes)
323 if (pol->flags & MPOL_F_STATIC_NODES)
324 nodes_and(tmp, pol->w.user_nodemask, *nodes);
325 else if (pol->flags & MPOL_F_RELATIVE_NODES)
326 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
328 nodes_remap(tmp, pol->nodes, pol->w.cpuset_mems_allowed,
330 pol->w.cpuset_mems_allowed = *nodes;
333 if (nodes_empty(tmp))
339 static void mpol_rebind_preferred(struct mempolicy *pol,
340 const nodemask_t *nodes)
342 pol->w.cpuset_mems_allowed = *nodes;
346 * mpol_rebind_policy - Migrate a policy to a different set of nodes
348 * Per-vma policies are protected by mmap_lock. Allocations using per-task
349 * policies are protected by task->mems_allowed_seq to prevent a premature
350 * OOM/allocation failure due to parallel nodemask modification.
352 static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask)
354 if (!pol || pol->mode == MPOL_LOCAL)
356 if (!mpol_store_user_nodemask(pol) &&
357 nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
360 mpol_ops[pol->mode].rebind(pol, newmask);
364 * Wrapper for mpol_rebind_policy() that just requires task
365 * pointer, and updates task mempolicy.
367 * Called with task's alloc_lock held.
370 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new)
372 mpol_rebind_policy(tsk->mempolicy, new);
376 * Rebind each vma in mm to new nodemask.
378 * Call holding a reference to mm. Takes mm->mmap_lock during call.
381 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
383 struct vm_area_struct *vma;
384 VMA_ITERATOR(vmi, mm, 0);
387 for_each_vma(vmi, vma)
388 mpol_rebind_policy(vma->vm_policy, new);
389 mmap_write_unlock(mm);
392 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
394 .rebind = mpol_rebind_default,
396 [MPOL_INTERLEAVE] = {
397 .create = mpol_new_nodemask,
398 .rebind = mpol_rebind_nodemask,
401 .create = mpol_new_preferred,
402 .rebind = mpol_rebind_preferred,
405 .create = mpol_new_nodemask,
406 .rebind = mpol_rebind_nodemask,
409 .rebind = mpol_rebind_default,
411 [MPOL_PREFERRED_MANY] = {
412 .create = mpol_new_nodemask,
413 .rebind = mpol_rebind_preferred,
417 static int migrate_page_add(struct page *page, struct list_head *pagelist,
418 unsigned long flags);
421 struct list_head *pagelist;
426 struct vm_area_struct *first;
430 * Check if the page's nid is in qp->nmask.
432 * If MPOL_MF_INVERT is set in qp->flags, check if the nid is
433 * in the invert of qp->nmask.
435 static inline bool queue_pages_required(struct page *page,
436 struct queue_pages *qp)
438 int nid = page_to_nid(page);
439 unsigned long flags = qp->flags;
441 return node_isset(nid, *qp->nmask) == !(flags & MPOL_MF_INVERT);
445 * queue_pages_pmd() has three possible return values:
446 * 0 - pages are placed on the right node or queued successfully, or
447 * special page is met, i.e. huge zero page.
448 * 1 - there is unmovable page, and MPOL_MF_MOVE* & MPOL_MF_STRICT were
450 * -EIO - is migration entry or only MPOL_MF_STRICT was specified and an
451 * existing page was already on a node that does not follow the
454 static int queue_pages_pmd(pmd_t *pmd, spinlock_t *ptl, unsigned long addr,
455 unsigned long end, struct mm_walk *walk)
460 struct queue_pages *qp = walk->private;
463 if (unlikely(is_pmd_migration_entry(*pmd))) {
467 page = pmd_page(*pmd);
468 if (is_huge_zero_page(page)) {
469 walk->action = ACTION_CONTINUE;
472 if (!queue_pages_required(page, qp))
476 /* go to thp migration */
477 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
478 if (!vma_migratable(walk->vma) ||
479 migrate_page_add(page, qp->pagelist, flags)) {
491 * Scan through pages checking if pages follow certain conditions,
492 * and move them to the pagelist if they do.
494 * queue_pages_pte_range() has three possible return values:
495 * 0 - pages are placed on the right node or queued successfully, or
496 * special page is met, i.e. zero page.
497 * 1 - there is unmovable page, and MPOL_MF_MOVE* & MPOL_MF_STRICT were
499 * -EIO - only MPOL_MF_STRICT was specified and an existing page was already
500 * on a node that does not follow the policy.
502 static int queue_pages_pte_range(pmd_t *pmd, unsigned long addr,
503 unsigned long end, struct mm_walk *walk)
505 struct vm_area_struct *vma = walk->vma;
507 struct queue_pages *qp = walk->private;
508 unsigned long flags = qp->flags;
509 bool has_unmovable = false;
510 pte_t *pte, *mapped_pte;
513 ptl = pmd_trans_huge_lock(pmd, vma);
515 return queue_pages_pmd(pmd, ptl, addr, end, walk);
517 if (pmd_trans_unstable(pmd))
520 mapped_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
521 for (; addr != end; pte++, addr += PAGE_SIZE) {
522 if (!pte_present(*pte))
524 page = vm_normal_page(vma, addr, *pte);
525 if (!page || is_zone_device_page(page))
528 * vm_normal_page() filters out zero pages, but there might
529 * still be PageReserved pages to skip, perhaps in a VDSO.
531 if (PageReserved(page))
533 if (!queue_pages_required(page, qp))
535 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
536 /* MPOL_MF_STRICT must be specified if we get here */
537 if (!vma_migratable(vma)) {
538 has_unmovable = true;
543 * Do not abort immediately since there may be
544 * temporary off LRU pages in the range. Still
545 * need migrate other LRU pages.
547 if (migrate_page_add(page, qp->pagelist, flags))
548 has_unmovable = true;
552 pte_unmap_unlock(mapped_pte, ptl);
558 return addr != end ? -EIO : 0;
561 static int queue_pages_hugetlb(pte_t *pte, unsigned long hmask,
562 unsigned long addr, unsigned long end,
563 struct mm_walk *walk)
566 #ifdef CONFIG_HUGETLB_PAGE
567 struct queue_pages *qp = walk->private;
568 unsigned long flags = (qp->flags & MPOL_MF_VALID);
573 ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte);
574 entry = huge_ptep_get(pte);
575 if (!pte_present(entry))
577 page = pte_page(entry);
578 if (!queue_pages_required(page, qp))
581 if (flags == MPOL_MF_STRICT) {
583 * STRICT alone means only detecting misplaced page and no
584 * need to further check other vma.
590 if (!vma_migratable(walk->vma)) {
592 * Must be STRICT with MOVE*, otherwise .test_walk() have
593 * stopped walking current vma.
594 * Detecting misplaced page but allow migrating pages which
601 /* With MPOL_MF_MOVE, we migrate only unshared hugepage. */
602 if (flags & (MPOL_MF_MOVE_ALL) ||
603 (flags & MPOL_MF_MOVE && page_mapcount(page) == 1)) {
604 if (isolate_hugetlb(page, qp->pagelist) &&
605 (flags & MPOL_MF_STRICT))
607 * Failed to isolate page but allow migrating pages
608 * which have been queued.
620 #ifdef CONFIG_NUMA_BALANCING
622 * This is used to mark a range of virtual addresses to be inaccessible.
623 * These are later cleared by a NUMA hinting fault. Depending on these
624 * faults, pages may be migrated for better NUMA placement.
626 * This is assuming that NUMA faults are handled using PROT_NONE. If
627 * an architecture makes a different choice, it will need further
628 * changes to the core.
630 unsigned long change_prot_numa(struct vm_area_struct *vma,
631 unsigned long addr, unsigned long end)
633 struct mmu_gather tlb;
636 tlb_gather_mmu(&tlb, vma->vm_mm);
638 nr_updated = change_protection(&tlb, vma, addr, end, PAGE_NONE,
641 count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated);
643 tlb_finish_mmu(&tlb);
648 static unsigned long change_prot_numa(struct vm_area_struct *vma,
649 unsigned long addr, unsigned long end)
653 #endif /* CONFIG_NUMA_BALANCING */
655 static int queue_pages_test_walk(unsigned long start, unsigned long end,
656 struct mm_walk *walk)
658 struct vm_area_struct *next, *vma = walk->vma;
659 struct queue_pages *qp = walk->private;
660 unsigned long endvma = vma->vm_end;
661 unsigned long flags = qp->flags;
663 /* range check first */
664 VM_BUG_ON_VMA(!range_in_vma(vma, start, end), vma);
668 if (!(flags & MPOL_MF_DISCONTIG_OK) &&
669 (qp->start < vma->vm_start))
670 /* hole at head side of range */
673 next = find_vma(vma->vm_mm, vma->vm_end);
674 if (!(flags & MPOL_MF_DISCONTIG_OK) &&
675 ((vma->vm_end < qp->end) &&
676 (!next || vma->vm_end < next->vm_start)))
677 /* hole at middle or tail of range */
681 * Need check MPOL_MF_STRICT to return -EIO if possible
682 * regardless of vma_migratable
684 if (!vma_migratable(vma) &&
685 !(flags & MPOL_MF_STRICT))
691 if (flags & MPOL_MF_LAZY) {
692 /* Similar to task_numa_work, skip inaccessible VMAs */
693 if (!is_vm_hugetlb_page(vma) && vma_is_accessible(vma) &&
694 !(vma->vm_flags & VM_MIXEDMAP))
695 change_prot_numa(vma, start, endvma);
699 /* queue pages from current vma */
700 if (flags & MPOL_MF_VALID)
705 static const struct mm_walk_ops queue_pages_walk_ops = {
706 .hugetlb_entry = queue_pages_hugetlb,
707 .pmd_entry = queue_pages_pte_range,
708 .test_walk = queue_pages_test_walk,
712 * Walk through page tables and collect pages to be migrated.
714 * If pages found in a given range are on a set of nodes (determined by
715 * @nodes and @flags,) it's isolated and queued to the pagelist which is
716 * passed via @private.
718 * queue_pages_range() has three possible return values:
719 * 1 - there is unmovable page, but MPOL_MF_MOVE* & MPOL_MF_STRICT were
721 * 0 - queue pages successfully or no misplaced page.
722 * errno - i.e. misplaced pages with MPOL_MF_STRICT specified (-EIO) or
723 * memory range specified by nodemask and maxnode points outside
724 * your accessible address space (-EFAULT)
727 queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end,
728 nodemask_t *nodes, unsigned long flags,
729 struct list_head *pagelist)
732 struct queue_pages qp = {
733 .pagelist = pagelist,
741 err = walk_page_range(mm, start, end, &queue_pages_walk_ops, &qp);
744 /* whole range in hole */
751 * Apply policy to a single VMA
752 * This must be called with the mmap_lock held for writing.
754 static int vma_replace_policy(struct vm_area_struct *vma,
755 struct mempolicy *pol)
758 struct mempolicy *old;
759 struct mempolicy *new;
761 pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
762 vma->vm_start, vma->vm_end, vma->vm_pgoff,
763 vma->vm_ops, vma->vm_file,
764 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
770 if (vma->vm_ops && vma->vm_ops->set_policy) {
771 err = vma->vm_ops->set_policy(vma, new);
776 old = vma->vm_policy;
777 vma->vm_policy = new; /* protected by mmap_lock */
786 /* Step 2: apply policy to a range and do splits. */
787 static int mbind_range(struct mm_struct *mm, unsigned long start,
788 unsigned long end, struct mempolicy *new_pol)
790 MA_STATE(mas, &mm->mm_mt, start - 1, start - 1);
791 struct vm_area_struct *prev;
792 struct vm_area_struct *vma;
796 prev = mas_find_rev(&mas, 0);
797 if (prev && (start < prev->vm_end))
800 vma = mas_next(&mas, end - 1);
802 for (; vma; vma = mas_next(&mas, end - 1)) {
803 unsigned long vmstart = max(start, vma->vm_start);
804 unsigned long vmend = min(end, vma->vm_end);
806 if (mpol_equal(vma_policy(vma), new_pol))
809 pgoff = vma->vm_pgoff +
810 ((vmstart - vma->vm_start) >> PAGE_SHIFT);
811 prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags,
812 vma->anon_vma, vma->vm_file, pgoff,
813 new_pol, vma->vm_userfaultfd_ctx,
816 /* vma_merge() invalidated the mas */
821 if (vma->vm_start != vmstart) {
822 err = split_vma(vma->vm_mm, vma, vmstart, 1);
825 /* split_vma() invalidated the mas */
828 if (vma->vm_end != vmend) {
829 err = split_vma(vma->vm_mm, vma, vmend, 0);
832 /* split_vma() invalidated the mas */
836 err = vma_replace_policy(vma, new_pol);
847 /* Set the process memory policy */
848 static long do_set_mempolicy(unsigned short mode, unsigned short flags,
851 struct mempolicy *new, *old;
852 NODEMASK_SCRATCH(scratch);
858 new = mpol_new(mode, flags, nodes);
865 ret = mpol_set_nodemask(new, nodes, scratch);
867 task_unlock(current);
872 old = current->mempolicy;
873 current->mempolicy = new;
874 if (new && new->mode == MPOL_INTERLEAVE)
875 current->il_prev = MAX_NUMNODES-1;
876 task_unlock(current);
880 NODEMASK_SCRATCH_FREE(scratch);
885 * Return nodemask for policy for get_mempolicy() query
887 * Called with task's alloc_lock held
889 static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
892 if (p == &default_policy)
897 case MPOL_INTERLEAVE:
899 case MPOL_PREFERRED_MANY:
903 /* return empty node mask for local allocation */
910 static int lookup_node(struct mm_struct *mm, unsigned long addr)
912 struct page *p = NULL;
915 ret = get_user_pages_fast(addr & PAGE_MASK, 1, 0, &p);
917 ret = page_to_nid(p);
923 /* Retrieve NUMA policy */
924 static long do_get_mempolicy(int *policy, nodemask_t *nmask,
925 unsigned long addr, unsigned long flags)
928 struct mm_struct *mm = current->mm;
929 struct vm_area_struct *vma = NULL;
930 struct mempolicy *pol = current->mempolicy, *pol_refcount = NULL;
933 ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
936 if (flags & MPOL_F_MEMS_ALLOWED) {
937 if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
939 *policy = 0; /* just so it's initialized */
941 *nmask = cpuset_current_mems_allowed;
942 task_unlock(current);
946 if (flags & MPOL_F_ADDR) {
948 * Do NOT fall back to task policy if the
949 * vma/shared policy at addr is NULL. We
950 * want to return MPOL_DEFAULT in this case.
953 vma = vma_lookup(mm, addr);
955 mmap_read_unlock(mm);
958 if (vma->vm_ops && vma->vm_ops->get_policy)
959 pol = vma->vm_ops->get_policy(vma, addr);
961 pol = vma->vm_policy;
966 pol = &default_policy; /* indicates default behavior */
968 if (flags & MPOL_F_NODE) {
969 if (flags & MPOL_F_ADDR) {
971 * Take a refcount on the mpol, because we are about to
972 * drop the mmap_lock, after which only "pol" remains
973 * valid, "vma" is stale.
978 mmap_read_unlock(mm);
979 err = lookup_node(mm, addr);
983 } else if (pol == current->mempolicy &&
984 pol->mode == MPOL_INTERLEAVE) {
985 *policy = next_node_in(current->il_prev, pol->nodes);
991 *policy = pol == &default_policy ? MPOL_DEFAULT :
994 * Internal mempolicy flags must be masked off before exposing
995 * the policy to userspace.
997 *policy |= (pol->flags & MPOL_MODE_FLAGS);
1002 if (mpol_store_user_nodemask(pol)) {
1003 *nmask = pol->w.user_nodemask;
1006 get_policy_nodemask(pol, nmask);
1007 task_unlock(current);
1014 mmap_read_unlock(mm);
1016 mpol_put(pol_refcount);
1020 #ifdef CONFIG_MIGRATION
1022 * page migration, thp tail pages can be passed.
1024 static int migrate_page_add(struct page *page, struct list_head *pagelist,
1025 unsigned long flags)
1027 struct page *head = compound_head(page);
1029 * Avoid migrating a page that is shared with others.
1031 if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(head) == 1) {
1032 if (!isolate_lru_page(head)) {
1033 list_add_tail(&head->lru, pagelist);
1034 mod_node_page_state(page_pgdat(head),
1035 NR_ISOLATED_ANON + page_is_file_lru(head),
1036 thp_nr_pages(head));
1037 } else if (flags & MPOL_MF_STRICT) {
1039 * Non-movable page may reach here. And, there may be
1040 * temporary off LRU pages or non-LRU movable pages.
1041 * Treat them as unmovable pages since they can't be
1042 * isolated, so they can't be moved at the moment. It
1043 * should return -EIO for this case too.
1053 * Migrate pages from one node to a target node.
1054 * Returns error or the number of pages not migrated.
1056 static int migrate_to_node(struct mm_struct *mm, int source, int dest,
1060 struct vm_area_struct *vma;
1061 LIST_HEAD(pagelist);
1063 struct migration_target_control mtc = {
1065 .gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE,
1069 node_set(source, nmask);
1072 * This does not "check" the range but isolates all pages that
1073 * need migration. Between passing in the full user address
1074 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail.
1076 vma = find_vma(mm, 0);
1077 VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)));
1078 queue_pages_range(mm, vma->vm_start, mm->task_size, &nmask,
1079 flags | MPOL_MF_DISCONTIG_OK, &pagelist);
1081 if (!list_empty(&pagelist)) {
1082 err = migrate_pages(&pagelist, alloc_migration_target, NULL,
1083 (unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL, NULL);
1085 putback_movable_pages(&pagelist);
1092 * Move pages between the two nodesets so as to preserve the physical
1093 * layout as much as possible.
1095 * Returns the number of page that could not be moved.
1097 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1098 const nodemask_t *to, int flags)
1104 lru_cache_disable();
1109 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
1110 * bit in 'to' is not also set in 'tmp'. Clear the found 'source'
1111 * bit in 'tmp', and return that <source, dest> pair for migration.
1112 * The pair of nodemasks 'to' and 'from' define the map.
1114 * If no pair of bits is found that way, fallback to picking some
1115 * pair of 'source' and 'dest' bits that are not the same. If the
1116 * 'source' and 'dest' bits are the same, this represents a node
1117 * that will be migrating to itself, so no pages need move.
1119 * If no bits are left in 'tmp', or if all remaining bits left
1120 * in 'tmp' correspond to the same bit in 'to', return false
1121 * (nothing left to migrate).
1123 * This lets us pick a pair of nodes to migrate between, such that
1124 * if possible the dest node is not already occupied by some other
1125 * source node, minimizing the risk of overloading the memory on a
1126 * node that would happen if we migrated incoming memory to a node
1127 * before migrating outgoing memory source that same node.
1129 * A single scan of tmp is sufficient. As we go, we remember the
1130 * most recent <s, d> pair that moved (s != d). If we find a pair
1131 * that not only moved, but what's better, moved to an empty slot
1132 * (d is not set in tmp), then we break out then, with that pair.
1133 * Otherwise when we finish scanning from_tmp, we at least have the
1134 * most recent <s, d> pair that moved. If we get all the way through
1135 * the scan of tmp without finding any node that moved, much less
1136 * moved to an empty node, then there is nothing left worth migrating.
1140 while (!nodes_empty(tmp)) {
1142 int source = NUMA_NO_NODE;
1145 for_each_node_mask(s, tmp) {
1148 * do_migrate_pages() tries to maintain the relative
1149 * node relationship of the pages established between
1150 * threads and memory areas.
1152 * However if the number of source nodes is not equal to
1153 * the number of destination nodes we can not preserve
1154 * this node relative relationship. In that case, skip
1155 * copying memory from a node that is in the destination
1158 * Example: [2,3,4] -> [3,4,5] moves everything.
1159 * [0-7] - > [3,4,5] moves only 0,1,2,6,7.
1162 if ((nodes_weight(*from) != nodes_weight(*to)) &&
1163 (node_isset(s, *to)))
1166 d = node_remap(s, *from, *to);
1170 source = s; /* Node moved. Memorize */
1173 /* dest not in remaining from nodes? */
1174 if (!node_isset(dest, tmp))
1177 if (source == NUMA_NO_NODE)
1180 node_clear(source, tmp);
1181 err = migrate_to_node(mm, source, dest, flags);
1187 mmap_read_unlock(mm);
1197 * Allocate a new page for page migration based on vma policy.
1198 * Start by assuming the page is mapped by the same vma as contains @start.
1199 * Search forward from there, if not. N.B., this assumes that the
1200 * list of pages handed to migrate_pages()--which is how we get here--
1201 * is in virtual address order.
1203 static struct page *new_page(struct page *page, unsigned long start)
1205 struct folio *dst, *src = page_folio(page);
1206 struct vm_area_struct *vma;
1207 unsigned long address;
1208 VMA_ITERATOR(vmi, current->mm, start);
1209 gfp_t gfp = GFP_HIGHUSER_MOVABLE | __GFP_RETRY_MAYFAIL;
1211 for_each_vma(vmi, vma) {
1212 address = page_address_in_vma(page, vma);
1213 if (address != -EFAULT)
1217 if (folio_test_hugetlb(src))
1218 return alloc_huge_page_vma(page_hstate(&src->page),
1221 if (folio_test_large(src))
1222 gfp = GFP_TRANSHUGE;
1225 * if !vma, vma_alloc_folio() will use task or system default policy
1227 dst = vma_alloc_folio(gfp, folio_order(src), vma, address,
1228 folio_test_large(src));
1233 static int migrate_page_add(struct page *page, struct list_head *pagelist,
1234 unsigned long flags)
1239 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1240 const nodemask_t *to, int flags)
1245 static struct page *new_page(struct page *page, unsigned long start)
1251 static long do_mbind(unsigned long start, unsigned long len,
1252 unsigned short mode, unsigned short mode_flags,
1253 nodemask_t *nmask, unsigned long flags)
1255 struct mm_struct *mm = current->mm;
1256 struct mempolicy *new;
1260 LIST_HEAD(pagelist);
1262 if (flags & ~(unsigned long)MPOL_MF_VALID)
1264 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1267 if (start & ~PAGE_MASK)
1270 if (mode == MPOL_DEFAULT)
1271 flags &= ~MPOL_MF_STRICT;
1273 len = PAGE_ALIGN(len);
1281 new = mpol_new(mode, mode_flags, nmask);
1283 return PTR_ERR(new);
1285 if (flags & MPOL_MF_LAZY)
1286 new->flags |= MPOL_F_MOF;
1289 * If we are using the default policy then operation
1290 * on discontinuous address spaces is okay after all
1293 flags |= MPOL_MF_DISCONTIG_OK;
1295 pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1296 start, start + len, mode, mode_flags,
1297 nmask ? nodes_addr(*nmask)[0] : NUMA_NO_NODE);
1299 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
1301 lru_cache_disable();
1304 NODEMASK_SCRATCH(scratch);
1306 mmap_write_lock(mm);
1307 err = mpol_set_nodemask(new, nmask, scratch);
1309 mmap_write_unlock(mm);
1312 NODEMASK_SCRATCH_FREE(scratch);
1317 ret = queue_pages_range(mm, start, end, nmask,
1318 flags | MPOL_MF_INVERT, &pagelist);
1325 err = mbind_range(mm, start, end, new);
1330 if (!list_empty(&pagelist)) {
1331 WARN_ON_ONCE(flags & MPOL_MF_LAZY);
1332 nr_failed = migrate_pages(&pagelist, new_page, NULL,
1333 start, MIGRATE_SYNC, MR_MEMPOLICY_MBIND, NULL);
1335 putback_movable_pages(&pagelist);
1338 if ((ret > 0) || (nr_failed && (flags & MPOL_MF_STRICT)))
1342 if (!list_empty(&pagelist))
1343 putback_movable_pages(&pagelist);
1346 mmap_write_unlock(mm);
1349 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
1355 * User space interface with variable sized bitmaps for nodelists.
1357 static int get_bitmap(unsigned long *mask, const unsigned long __user *nmask,
1358 unsigned long maxnode)
1360 unsigned long nlongs = BITS_TO_LONGS(maxnode);
1363 if (in_compat_syscall())
1364 ret = compat_get_bitmap(mask,
1365 (const compat_ulong_t __user *)nmask,
1368 ret = copy_from_user(mask, nmask,
1369 nlongs * sizeof(unsigned long));
1374 if (maxnode % BITS_PER_LONG)
1375 mask[nlongs - 1] &= (1UL << (maxnode % BITS_PER_LONG)) - 1;
1380 /* Copy a node mask from user space. */
1381 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1382 unsigned long maxnode)
1385 nodes_clear(*nodes);
1386 if (maxnode == 0 || !nmask)
1388 if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1392 * When the user specified more nodes than supported just check
1393 * if the non supported part is all zero, one word at a time,
1394 * starting at the end.
1396 while (maxnode > MAX_NUMNODES) {
1397 unsigned long bits = min_t(unsigned long, maxnode, BITS_PER_LONG);
1400 if (get_bitmap(&t, &nmask[(maxnode - 1) / BITS_PER_LONG], bits))
1403 if (maxnode - bits >= MAX_NUMNODES) {
1406 maxnode = MAX_NUMNODES;
1407 t &= ~((1UL << (MAX_NUMNODES % BITS_PER_LONG)) - 1);
1413 return get_bitmap(nodes_addr(*nodes), nmask, maxnode);
1416 /* Copy a kernel node mask to user space */
1417 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1420 unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1421 unsigned int nbytes = BITS_TO_LONGS(nr_node_ids) * sizeof(long);
1422 bool compat = in_compat_syscall();
1425 nbytes = BITS_TO_COMPAT_LONGS(nr_node_ids) * sizeof(compat_long_t);
1427 if (copy > nbytes) {
1428 if (copy > PAGE_SIZE)
1430 if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1433 maxnode = nr_node_ids;
1437 return compat_put_bitmap((compat_ulong_t __user *)mask,
1438 nodes_addr(*nodes), maxnode);
1440 return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1443 /* Basic parameter sanity check used by both mbind() and set_mempolicy() */
1444 static inline int sanitize_mpol_flags(int *mode, unsigned short *flags)
1446 *flags = *mode & MPOL_MODE_FLAGS;
1447 *mode &= ~MPOL_MODE_FLAGS;
1449 if ((unsigned int)(*mode) >= MPOL_MAX)
1451 if ((*flags & MPOL_F_STATIC_NODES) && (*flags & MPOL_F_RELATIVE_NODES))
1453 if (*flags & MPOL_F_NUMA_BALANCING) {
1454 if (*mode != MPOL_BIND)
1456 *flags |= (MPOL_F_MOF | MPOL_F_MORON);
1461 static long kernel_mbind(unsigned long start, unsigned long len,
1462 unsigned long mode, const unsigned long __user *nmask,
1463 unsigned long maxnode, unsigned int flags)
1465 unsigned short mode_flags;
1470 start = untagged_addr(start);
1471 err = sanitize_mpol_flags(&lmode, &mode_flags);
1475 err = get_nodes(&nodes, nmask, maxnode);
1479 return do_mbind(start, len, lmode, mode_flags, &nodes, flags);
1482 SYSCALL_DEFINE4(set_mempolicy_home_node, unsigned long, start, unsigned long, len,
1483 unsigned long, home_node, unsigned long, flags)
1485 struct mm_struct *mm = current->mm;
1486 struct vm_area_struct *vma;
1487 struct mempolicy *new;
1488 unsigned long vmstart;
1489 unsigned long vmend;
1492 VMA_ITERATOR(vmi, mm, start);
1494 start = untagged_addr(start);
1495 if (start & ~PAGE_MASK)
1498 * flags is used for future extension if any.
1504 * Check home_node is online to avoid accessing uninitialized
1507 if (home_node >= MAX_NUMNODES || !node_online(home_node))
1510 len = PAGE_ALIGN(len);
1517 mmap_write_lock(mm);
1518 for_each_vma_range(vmi, vma, end) {
1519 vmstart = max(start, vma->vm_start);
1520 vmend = min(end, vma->vm_end);
1521 new = mpol_dup(vma_policy(vma));
1527 * Only update home node if there is an existing vma policy
1533 * If any vma in the range got policy other than MPOL_BIND
1534 * or MPOL_PREFERRED_MANY we return error. We don't reset
1535 * the home node for vmas we already updated before.
1537 if (new->mode != MPOL_BIND && new->mode != MPOL_PREFERRED_MANY) {
1542 new->home_node = home_node;
1543 err = mbind_range(mm, vmstart, vmend, new);
1548 mmap_write_unlock(mm);
1552 SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1553 unsigned long, mode, const unsigned long __user *, nmask,
1554 unsigned long, maxnode, unsigned int, flags)
1556 return kernel_mbind(start, len, mode, nmask, maxnode, flags);
1559 /* Set the process memory policy */
1560 static long kernel_set_mempolicy(int mode, const unsigned long __user *nmask,
1561 unsigned long maxnode)
1563 unsigned short mode_flags;
1568 err = sanitize_mpol_flags(&lmode, &mode_flags);
1572 err = get_nodes(&nodes, nmask, maxnode);
1576 return do_set_mempolicy(lmode, mode_flags, &nodes);
1579 SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask,
1580 unsigned long, maxnode)
1582 return kernel_set_mempolicy(mode, nmask, maxnode);
1585 static int kernel_migrate_pages(pid_t pid, unsigned long maxnode,
1586 const unsigned long __user *old_nodes,
1587 const unsigned long __user *new_nodes)
1589 struct mm_struct *mm = NULL;
1590 struct task_struct *task;
1591 nodemask_t task_nodes;
1595 NODEMASK_SCRATCH(scratch);
1600 old = &scratch->mask1;
1601 new = &scratch->mask2;
1603 err = get_nodes(old, old_nodes, maxnode);
1607 err = get_nodes(new, new_nodes, maxnode);
1611 /* Find the mm_struct */
1613 task = pid ? find_task_by_vpid(pid) : current;
1619 get_task_struct(task);
1624 * Check if this process has the right to modify the specified process.
1625 * Use the regular "ptrace_may_access()" checks.
1627 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1634 task_nodes = cpuset_mems_allowed(task);
1635 /* Is the user allowed to access the target nodes? */
1636 if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1641 task_nodes = cpuset_mems_allowed(current);
1642 nodes_and(*new, *new, task_nodes);
1643 if (nodes_empty(*new))
1646 err = security_task_movememory(task);
1650 mm = get_task_mm(task);
1651 put_task_struct(task);
1658 err = do_migrate_pages(mm, old, new,
1659 capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1663 NODEMASK_SCRATCH_FREE(scratch);
1668 put_task_struct(task);
1673 SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1674 const unsigned long __user *, old_nodes,
1675 const unsigned long __user *, new_nodes)
1677 return kernel_migrate_pages(pid, maxnode, old_nodes, new_nodes);
1681 /* Retrieve NUMA policy */
1682 static int kernel_get_mempolicy(int __user *policy,
1683 unsigned long __user *nmask,
1684 unsigned long maxnode,
1686 unsigned long flags)
1692 if (nmask != NULL && maxnode < nr_node_ids)
1695 addr = untagged_addr(addr);
1697 err = do_get_mempolicy(&pval, &nodes, addr, flags);
1702 if (policy && put_user(pval, policy))
1706 err = copy_nodes_to_user(nmask, maxnode, &nodes);
1711 SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1712 unsigned long __user *, nmask, unsigned long, maxnode,
1713 unsigned long, addr, unsigned long, flags)
1715 return kernel_get_mempolicy(policy, nmask, maxnode, addr, flags);
1718 bool vma_migratable(struct vm_area_struct *vma)
1720 if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1724 * DAX device mappings require predictable access latency, so avoid
1725 * incurring periodic faults.
1727 if (vma_is_dax(vma))
1730 if (is_vm_hugetlb_page(vma) &&
1731 !hugepage_migration_supported(hstate_vma(vma)))
1735 * Migration allocates pages in the highest zone. If we cannot
1736 * do so then migration (at least from node to node) is not
1740 gfp_zone(mapping_gfp_mask(vma->vm_file->f_mapping))
1746 struct mempolicy *__get_vma_policy(struct vm_area_struct *vma,
1749 struct mempolicy *pol = NULL;
1752 if (vma->vm_ops && vma->vm_ops->get_policy) {
1753 pol = vma->vm_ops->get_policy(vma, addr);
1754 } else if (vma->vm_policy) {
1755 pol = vma->vm_policy;
1758 * shmem_alloc_page() passes MPOL_F_SHARED policy with
1759 * a pseudo vma whose vma->vm_ops=NULL. Take a reference
1760 * count on these policies which will be dropped by
1761 * mpol_cond_put() later
1763 if (mpol_needs_cond_ref(pol))
1772 * get_vma_policy(@vma, @addr)
1773 * @vma: virtual memory area whose policy is sought
1774 * @addr: address in @vma for shared policy lookup
1776 * Returns effective policy for a VMA at specified address.
1777 * Falls back to current->mempolicy or system default policy, as necessary.
1778 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1779 * count--added by the get_policy() vm_op, as appropriate--to protect against
1780 * freeing by another task. It is the caller's responsibility to free the
1781 * extra reference for shared policies.
1783 static struct mempolicy *get_vma_policy(struct vm_area_struct *vma,
1786 struct mempolicy *pol = __get_vma_policy(vma, addr);
1789 pol = get_task_policy(current);
1794 bool vma_policy_mof(struct vm_area_struct *vma)
1796 struct mempolicy *pol;
1798 if (vma->vm_ops && vma->vm_ops->get_policy) {
1801 pol = vma->vm_ops->get_policy(vma, vma->vm_start);
1802 if (pol && (pol->flags & MPOL_F_MOF))
1809 pol = vma->vm_policy;
1811 pol = get_task_policy(current);
1813 return pol->flags & MPOL_F_MOF;
1816 bool apply_policy_zone(struct mempolicy *policy, enum zone_type zone)
1818 enum zone_type dynamic_policy_zone = policy_zone;
1820 BUG_ON(dynamic_policy_zone == ZONE_MOVABLE);
1823 * if policy->nodes has movable memory only,
1824 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only.
1826 * policy->nodes is intersect with node_states[N_MEMORY].
1827 * so if the following test fails, it implies
1828 * policy->nodes has movable memory only.
1830 if (!nodes_intersects(policy->nodes, node_states[N_HIGH_MEMORY]))
1831 dynamic_policy_zone = ZONE_MOVABLE;
1833 return zone >= dynamic_policy_zone;
1837 * Return a nodemask representing a mempolicy for filtering nodes for
1840 nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1842 int mode = policy->mode;
1844 /* Lower zones don't get a nodemask applied for MPOL_BIND */
1845 if (unlikely(mode == MPOL_BIND) &&
1846 apply_policy_zone(policy, gfp_zone(gfp)) &&
1847 cpuset_nodemask_valid_mems_allowed(&policy->nodes))
1848 return &policy->nodes;
1850 if (mode == MPOL_PREFERRED_MANY)
1851 return &policy->nodes;
1857 * Return the preferred node id for 'prefer' mempolicy, and return
1858 * the given id for all other policies.
1860 * policy_node() is always coupled with policy_nodemask(), which
1861 * secures the nodemask limit for 'bind' and 'prefer-many' policy.
1863 static int policy_node(gfp_t gfp, struct mempolicy *policy, int nd)
1865 if (policy->mode == MPOL_PREFERRED) {
1866 nd = first_node(policy->nodes);
1869 * __GFP_THISNODE shouldn't even be used with the bind policy
1870 * because we might easily break the expectation to stay on the
1871 * requested node and not break the policy.
1873 WARN_ON_ONCE(policy->mode == MPOL_BIND && (gfp & __GFP_THISNODE));
1876 if ((policy->mode == MPOL_BIND ||
1877 policy->mode == MPOL_PREFERRED_MANY) &&
1878 policy->home_node != NUMA_NO_NODE)
1879 return policy->home_node;
1884 /* Do dynamic interleaving for a process */
1885 static unsigned interleave_nodes(struct mempolicy *policy)
1888 struct task_struct *me = current;
1890 next = next_node_in(me->il_prev, policy->nodes);
1891 if (next < MAX_NUMNODES)
1897 * Depending on the memory policy provide a node from which to allocate the
1900 unsigned int mempolicy_slab_node(void)
1902 struct mempolicy *policy;
1903 int node = numa_mem_id();
1908 policy = current->mempolicy;
1912 switch (policy->mode) {
1913 case MPOL_PREFERRED:
1914 return first_node(policy->nodes);
1916 case MPOL_INTERLEAVE:
1917 return interleave_nodes(policy);
1920 case MPOL_PREFERRED_MANY:
1925 * Follow bind policy behavior and start allocation at the
1928 struct zonelist *zonelist;
1929 enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1930 zonelist = &NODE_DATA(node)->node_zonelists[ZONELIST_FALLBACK];
1931 z = first_zones_zonelist(zonelist, highest_zoneidx,
1933 return z->zone ? zone_to_nid(z->zone) : node;
1944 * Do static interleaving for a VMA with known offset @n. Returns the n'th
1945 * node in pol->nodes (starting from n=0), wrapping around if n exceeds the
1946 * number of present nodes.
1948 static unsigned offset_il_node(struct mempolicy *pol, unsigned long n)
1950 nodemask_t nodemask = pol->nodes;
1951 unsigned int target, nnodes;
1955 * The barrier will stabilize the nodemask in a register or on
1956 * the stack so that it will stop changing under the code.
1958 * Between first_node() and next_node(), pol->nodes could be changed
1959 * by other threads. So we put pol->nodes in a local stack.
1963 nnodes = nodes_weight(nodemask);
1965 return numa_node_id();
1966 target = (unsigned int)n % nnodes;
1967 nid = first_node(nodemask);
1968 for (i = 0; i < target; i++)
1969 nid = next_node(nid, nodemask);
1973 /* Determine a node number for interleave */
1974 static inline unsigned interleave_nid(struct mempolicy *pol,
1975 struct vm_area_struct *vma, unsigned long addr, int shift)
1981 * for small pages, there is no difference between
1982 * shift and PAGE_SHIFT, so the bit-shift is safe.
1983 * for huge pages, since vm_pgoff is in units of small
1984 * pages, we need to shift off the always 0 bits to get
1987 BUG_ON(shift < PAGE_SHIFT);
1988 off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
1989 off += (addr - vma->vm_start) >> shift;
1990 return offset_il_node(pol, off);
1992 return interleave_nodes(pol);
1995 #ifdef CONFIG_HUGETLBFS
1997 * huge_node(@vma, @addr, @gfp_flags, @mpol)
1998 * @vma: virtual memory area whose policy is sought
1999 * @addr: address in @vma for shared policy lookup and interleave policy
2000 * @gfp_flags: for requested zone
2001 * @mpol: pointer to mempolicy pointer for reference counted mempolicy
2002 * @nodemask: pointer to nodemask pointer for 'bind' and 'prefer-many' policy
2004 * Returns a nid suitable for a huge page allocation and a pointer
2005 * to the struct mempolicy for conditional unref after allocation.
2006 * If the effective policy is 'bind' or 'prefer-many', returns a pointer
2007 * to the mempolicy's @nodemask for filtering the zonelist.
2009 * Must be protected by read_mems_allowed_begin()
2011 int huge_node(struct vm_area_struct *vma, unsigned long addr, gfp_t gfp_flags,
2012 struct mempolicy **mpol, nodemask_t **nodemask)
2017 *mpol = get_vma_policy(vma, addr);
2019 mode = (*mpol)->mode;
2021 if (unlikely(mode == MPOL_INTERLEAVE)) {
2022 nid = interleave_nid(*mpol, vma, addr,
2023 huge_page_shift(hstate_vma(vma)));
2025 nid = policy_node(gfp_flags, *mpol, numa_node_id());
2026 if (mode == MPOL_BIND || mode == MPOL_PREFERRED_MANY)
2027 *nodemask = &(*mpol)->nodes;
2033 * init_nodemask_of_mempolicy
2035 * If the current task's mempolicy is "default" [NULL], return 'false'
2036 * to indicate default policy. Otherwise, extract the policy nodemask
2037 * for 'bind' or 'interleave' policy into the argument nodemask, or
2038 * initialize the argument nodemask to contain the single node for
2039 * 'preferred' or 'local' policy and return 'true' to indicate presence
2040 * of non-default mempolicy.
2042 * We don't bother with reference counting the mempolicy [mpol_get/put]
2043 * because the current task is examining it's own mempolicy and a task's
2044 * mempolicy is only ever changed by the task itself.
2046 * N.B., it is the caller's responsibility to free a returned nodemask.
2048 bool init_nodemask_of_mempolicy(nodemask_t *mask)
2050 struct mempolicy *mempolicy;
2052 if (!(mask && current->mempolicy))
2056 mempolicy = current->mempolicy;
2057 switch (mempolicy->mode) {
2058 case MPOL_PREFERRED:
2059 case MPOL_PREFERRED_MANY:
2061 case MPOL_INTERLEAVE:
2062 *mask = mempolicy->nodes;
2066 init_nodemask_of_node(mask, numa_node_id());
2072 task_unlock(current);
2079 * mempolicy_in_oom_domain
2081 * If tsk's mempolicy is "bind", check for intersection between mask and
2082 * the policy nodemask. Otherwise, return true for all other policies
2083 * including "interleave", as a tsk with "interleave" policy may have
2084 * memory allocated from all nodes in system.
2086 * Takes task_lock(tsk) to prevent freeing of its mempolicy.
2088 bool mempolicy_in_oom_domain(struct task_struct *tsk,
2089 const nodemask_t *mask)
2091 struct mempolicy *mempolicy;
2098 mempolicy = tsk->mempolicy;
2099 if (mempolicy && mempolicy->mode == MPOL_BIND)
2100 ret = nodes_intersects(mempolicy->nodes, *mask);
2106 /* Allocate a page in interleaved policy.
2107 Own path because it needs to do special accounting. */
2108 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
2113 page = __alloc_pages(gfp, order, nid, NULL);
2114 /* skip NUMA_INTERLEAVE_HIT counter update if numa stats is disabled */
2115 if (!static_branch_likely(&vm_numa_stat_key))
2117 if (page && page_to_nid(page) == nid) {
2119 __count_numa_event(page_zone(page), NUMA_INTERLEAVE_HIT);
2125 static struct page *alloc_pages_preferred_many(gfp_t gfp, unsigned int order,
2126 int nid, struct mempolicy *pol)
2129 gfp_t preferred_gfp;
2132 * This is a two pass approach. The first pass will only try the
2133 * preferred nodes but skip the direct reclaim and allow the
2134 * allocation to fail, while the second pass will try all the
2137 preferred_gfp = gfp | __GFP_NOWARN;
2138 preferred_gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2139 page = __alloc_pages(preferred_gfp, order, nid, &pol->nodes);
2141 page = __alloc_pages(gfp, order, nid, NULL);
2147 * vma_alloc_folio - Allocate a folio for a VMA.
2149 * @order: Order of the folio.
2150 * @vma: Pointer to VMA or NULL if not available.
2151 * @addr: Virtual address of the allocation. Must be inside @vma.
2152 * @hugepage: For hugepages try only the preferred node if possible.
2154 * Allocate a folio for a specific address in @vma, using the appropriate
2155 * NUMA policy. When @vma is not NULL the caller must hold the mmap_lock
2156 * of the mm_struct of the VMA to prevent it from going away. Should be
2157 * used for all allocations for folios that will be mapped into user space.
2159 * Return: The folio on success or NULL if allocation fails.
2161 struct folio *vma_alloc_folio(gfp_t gfp, int order, struct vm_area_struct *vma,
2162 unsigned long addr, bool hugepage)
2164 struct mempolicy *pol;
2165 int node = numa_node_id();
2166 struct folio *folio;
2170 pol = get_vma_policy(vma, addr);
2172 if (pol->mode == MPOL_INTERLEAVE) {
2176 nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order);
2179 page = alloc_page_interleave(gfp, order, nid);
2180 if (page && order > 1)
2181 prep_transhuge_page(page);
2182 folio = (struct folio *)page;
2186 if (pol->mode == MPOL_PREFERRED_MANY) {
2189 node = policy_node(gfp, pol, node);
2191 page = alloc_pages_preferred_many(gfp, order, node, pol);
2193 if (page && order > 1)
2194 prep_transhuge_page(page);
2195 folio = (struct folio *)page;
2199 if (unlikely(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && hugepage)) {
2200 int hpage_node = node;
2203 * For hugepage allocation and non-interleave policy which
2204 * allows the current node (or other explicitly preferred
2205 * node) we only try to allocate from the current/preferred
2206 * node and don't fall back to other nodes, as the cost of
2207 * remote accesses would likely offset THP benefits.
2209 * If the policy is interleave or does not allow the current
2210 * node in its nodemask, we allocate the standard way.
2212 if (pol->mode == MPOL_PREFERRED)
2213 hpage_node = first_node(pol->nodes);
2215 nmask = policy_nodemask(gfp, pol);
2216 if (!nmask || node_isset(hpage_node, *nmask)) {
2219 * First, try to allocate THP only on local node, but
2220 * don't reclaim unnecessarily, just compact.
2222 folio = __folio_alloc_node(gfp | __GFP_THISNODE |
2223 __GFP_NORETRY, order, hpage_node);
2226 * If hugepage allocations are configured to always
2227 * synchronous compact or the vma has been madvised
2228 * to prefer hugepage backing, retry allowing remote
2229 * memory with both reclaim and compact as well.
2231 if (!folio && (gfp & __GFP_DIRECT_RECLAIM))
2232 folio = __folio_alloc(gfp, order, hpage_node,
2239 nmask = policy_nodemask(gfp, pol);
2240 preferred_nid = policy_node(gfp, pol, node);
2241 folio = __folio_alloc(gfp, order, preferred_nid, nmask);
2246 EXPORT_SYMBOL(vma_alloc_folio);
2249 * alloc_pages - Allocate pages.
2251 * @order: Power of two of number of pages to allocate.
2253 * Allocate 1 << @order contiguous pages. The physical address of the
2254 * first page is naturally aligned (eg an order-3 allocation will be aligned
2255 * to a multiple of 8 * PAGE_SIZE bytes). The NUMA policy of the current
2256 * process is honoured when in process context.
2258 * Context: Can be called from any context, providing the appropriate GFP
2260 * Return: The page on success or NULL if allocation fails.
2262 struct page *alloc_pages(gfp_t gfp, unsigned order)
2264 struct mempolicy *pol = &default_policy;
2267 if (!in_interrupt() && !(gfp & __GFP_THISNODE))
2268 pol = get_task_policy(current);
2271 * No reference counting needed for current->mempolicy
2272 * nor system default_policy
2274 if (pol->mode == MPOL_INTERLEAVE)
2275 page = alloc_page_interleave(gfp, order, interleave_nodes(pol));
2276 else if (pol->mode == MPOL_PREFERRED_MANY)
2277 page = alloc_pages_preferred_many(gfp, order,
2278 policy_node(gfp, pol, numa_node_id()), pol);
2280 page = __alloc_pages(gfp, order,
2281 policy_node(gfp, pol, numa_node_id()),
2282 policy_nodemask(gfp, pol));
2286 EXPORT_SYMBOL(alloc_pages);
2288 struct folio *folio_alloc(gfp_t gfp, unsigned order)
2290 struct page *page = alloc_pages(gfp | __GFP_COMP, order);
2292 if (page && order > 1)
2293 prep_transhuge_page(page);
2294 return (struct folio *)page;
2296 EXPORT_SYMBOL(folio_alloc);
2298 static unsigned long alloc_pages_bulk_array_interleave(gfp_t gfp,
2299 struct mempolicy *pol, unsigned long nr_pages,
2300 struct page **page_array)
2303 unsigned long nr_pages_per_node;
2306 unsigned long nr_allocated;
2307 unsigned long total_allocated = 0;
2309 nodes = nodes_weight(pol->nodes);
2310 nr_pages_per_node = nr_pages / nodes;
2311 delta = nr_pages - nodes * nr_pages_per_node;
2313 for (i = 0; i < nodes; i++) {
2315 nr_allocated = __alloc_pages_bulk(gfp,
2316 interleave_nodes(pol), NULL,
2317 nr_pages_per_node + 1, NULL,
2321 nr_allocated = __alloc_pages_bulk(gfp,
2322 interleave_nodes(pol), NULL,
2323 nr_pages_per_node, NULL, page_array);
2326 page_array += nr_allocated;
2327 total_allocated += nr_allocated;
2330 return total_allocated;
2333 static unsigned long alloc_pages_bulk_array_preferred_many(gfp_t gfp, int nid,
2334 struct mempolicy *pol, unsigned long nr_pages,
2335 struct page **page_array)
2337 gfp_t preferred_gfp;
2338 unsigned long nr_allocated = 0;
2340 preferred_gfp = gfp | __GFP_NOWARN;
2341 preferred_gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2343 nr_allocated = __alloc_pages_bulk(preferred_gfp, nid, &pol->nodes,
2344 nr_pages, NULL, page_array);
2346 if (nr_allocated < nr_pages)
2347 nr_allocated += __alloc_pages_bulk(gfp, numa_node_id(), NULL,
2348 nr_pages - nr_allocated, NULL,
2349 page_array + nr_allocated);
2350 return nr_allocated;
2353 /* alloc pages bulk and mempolicy should be considered at the
2354 * same time in some situation such as vmalloc.
2356 * It can accelerate memory allocation especially interleaving
2359 unsigned long alloc_pages_bulk_array_mempolicy(gfp_t gfp,
2360 unsigned long nr_pages, struct page **page_array)
2362 struct mempolicy *pol = &default_policy;
2364 if (!in_interrupt() && !(gfp & __GFP_THISNODE))
2365 pol = get_task_policy(current);
2367 if (pol->mode == MPOL_INTERLEAVE)
2368 return alloc_pages_bulk_array_interleave(gfp, pol,
2369 nr_pages, page_array);
2371 if (pol->mode == MPOL_PREFERRED_MANY)
2372 return alloc_pages_bulk_array_preferred_many(gfp,
2373 numa_node_id(), pol, nr_pages, page_array);
2375 return __alloc_pages_bulk(gfp, policy_node(gfp, pol, numa_node_id()),
2376 policy_nodemask(gfp, pol), nr_pages, NULL,
2380 int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst)
2382 struct mempolicy *pol = mpol_dup(vma_policy(src));
2385 return PTR_ERR(pol);
2386 dst->vm_policy = pol;
2391 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
2392 * rebinds the mempolicy its copying by calling mpol_rebind_policy()
2393 * with the mems_allowed returned by cpuset_mems_allowed(). This
2394 * keeps mempolicies cpuset relative after its cpuset moves. See
2395 * further kernel/cpuset.c update_nodemask().
2397 * current's mempolicy may be rebinded by the other task(the task that changes
2398 * cpuset's mems), so we needn't do rebind work for current task.
2401 /* Slow path of a mempolicy duplicate */
2402 struct mempolicy *__mpol_dup(struct mempolicy *old)
2404 struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2407 return ERR_PTR(-ENOMEM);
2409 /* task's mempolicy is protected by alloc_lock */
2410 if (old == current->mempolicy) {
2413 task_unlock(current);
2417 if (current_cpuset_is_being_rebound()) {
2418 nodemask_t mems = cpuset_mems_allowed(current);
2419 mpol_rebind_policy(new, &mems);
2421 atomic_set(&new->refcnt, 1);
2425 /* Slow path of a mempolicy comparison */
2426 bool __mpol_equal(struct mempolicy *a, struct mempolicy *b)
2430 if (a->mode != b->mode)
2432 if (a->flags != b->flags)
2434 if (a->home_node != b->home_node)
2436 if (mpol_store_user_nodemask(a))
2437 if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
2442 case MPOL_INTERLEAVE:
2443 case MPOL_PREFERRED:
2444 case MPOL_PREFERRED_MANY:
2445 return !!nodes_equal(a->nodes, b->nodes);
2455 * Shared memory backing store policy support.
2457 * Remember policies even when nobody has shared memory mapped.
2458 * The policies are kept in Red-Black tree linked from the inode.
2459 * They are protected by the sp->lock rwlock, which should be held
2460 * for any accesses to the tree.
2464 * lookup first element intersecting start-end. Caller holds sp->lock for
2465 * reading or for writing
2467 static struct sp_node *
2468 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
2470 struct rb_node *n = sp->root.rb_node;
2473 struct sp_node *p = rb_entry(n, struct sp_node, nd);
2475 if (start >= p->end)
2477 else if (end <= p->start)
2485 struct sp_node *w = NULL;
2486 struct rb_node *prev = rb_prev(n);
2489 w = rb_entry(prev, struct sp_node, nd);
2490 if (w->end <= start)
2494 return rb_entry(n, struct sp_node, nd);
2498 * Insert a new shared policy into the list. Caller holds sp->lock for
2501 static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2503 struct rb_node **p = &sp->root.rb_node;
2504 struct rb_node *parent = NULL;
2509 nd = rb_entry(parent, struct sp_node, nd);
2510 if (new->start < nd->start)
2512 else if (new->end > nd->end)
2513 p = &(*p)->rb_right;
2517 rb_link_node(&new->nd, parent, p);
2518 rb_insert_color(&new->nd, &sp->root);
2519 pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
2520 new->policy ? new->policy->mode : 0);
2523 /* Find shared policy intersecting idx */
2525 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
2527 struct mempolicy *pol = NULL;
2530 if (!sp->root.rb_node)
2532 read_lock(&sp->lock);
2533 sn = sp_lookup(sp, idx, idx+1);
2535 mpol_get(sn->policy);
2538 read_unlock(&sp->lock);
2542 static void sp_free(struct sp_node *n)
2544 mpol_put(n->policy);
2545 kmem_cache_free(sn_cache, n);
2549 * mpol_misplaced - check whether current page node is valid in policy
2551 * @page: page to be checked
2552 * @vma: vm area where page mapped
2553 * @addr: virtual address where page mapped
2555 * Lookup current policy node id for vma,addr and "compare to" page's
2556 * node id. Policy determination "mimics" alloc_page_vma().
2557 * Called from fault path where we know the vma and faulting address.
2559 * Return: NUMA_NO_NODE if the page is in a node that is valid for this
2560 * policy, or a suitable node ID to allocate a replacement page from.
2562 int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr)
2564 struct mempolicy *pol;
2566 int curnid = page_to_nid(page);
2567 unsigned long pgoff;
2568 int thiscpu = raw_smp_processor_id();
2569 int thisnid = cpu_to_node(thiscpu);
2570 int polnid = NUMA_NO_NODE;
2571 int ret = NUMA_NO_NODE;
2573 pol = get_vma_policy(vma, addr);
2574 if (!(pol->flags & MPOL_F_MOF))
2577 switch (pol->mode) {
2578 case MPOL_INTERLEAVE:
2579 pgoff = vma->vm_pgoff;
2580 pgoff += (addr - vma->vm_start) >> PAGE_SHIFT;
2581 polnid = offset_il_node(pol, pgoff);
2584 case MPOL_PREFERRED:
2585 if (node_isset(curnid, pol->nodes))
2587 polnid = first_node(pol->nodes);
2591 polnid = numa_node_id();
2595 /* Optimize placement among multiple nodes via NUMA balancing */
2596 if (pol->flags & MPOL_F_MORON) {
2597 if (node_isset(thisnid, pol->nodes))
2603 case MPOL_PREFERRED_MANY:
2605 * use current page if in policy nodemask,
2606 * else select nearest allowed node, if any.
2607 * If no allowed nodes, use current [!misplaced].
2609 if (node_isset(curnid, pol->nodes))
2611 z = first_zones_zonelist(
2612 node_zonelist(numa_node_id(), GFP_HIGHUSER),
2613 gfp_zone(GFP_HIGHUSER),
2615 polnid = zone_to_nid(z->zone);
2622 /* Migrate the page towards the node whose CPU is referencing it */
2623 if (pol->flags & MPOL_F_MORON) {
2626 if (!should_numa_migrate_memory(current, page, curnid, thiscpu))
2630 if (curnid != polnid)
2639 * Drop the (possibly final) reference to task->mempolicy. It needs to be
2640 * dropped after task->mempolicy is set to NULL so that any allocation done as
2641 * part of its kmem_cache_free(), such as by KASAN, doesn't reference a freed
2644 void mpol_put_task_policy(struct task_struct *task)
2646 struct mempolicy *pol;
2649 pol = task->mempolicy;
2650 task->mempolicy = NULL;
2655 static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2657 pr_debug("deleting %lx-l%lx\n", n->start, n->end);
2658 rb_erase(&n->nd, &sp->root);
2662 static void sp_node_init(struct sp_node *node, unsigned long start,
2663 unsigned long end, struct mempolicy *pol)
2665 node->start = start;
2670 static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2671 struct mempolicy *pol)
2674 struct mempolicy *newpol;
2676 n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2680 newpol = mpol_dup(pol);
2681 if (IS_ERR(newpol)) {
2682 kmem_cache_free(sn_cache, n);
2685 newpol->flags |= MPOL_F_SHARED;
2686 sp_node_init(n, start, end, newpol);
2691 /* Replace a policy range. */
2692 static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
2693 unsigned long end, struct sp_node *new)
2696 struct sp_node *n_new = NULL;
2697 struct mempolicy *mpol_new = NULL;
2701 write_lock(&sp->lock);
2702 n = sp_lookup(sp, start, end);
2703 /* Take care of old policies in the same range. */
2704 while (n && n->start < end) {
2705 struct rb_node *next = rb_next(&n->nd);
2706 if (n->start >= start) {
2712 /* Old policy spanning whole new range. */
2717 *mpol_new = *n->policy;
2718 atomic_set(&mpol_new->refcnt, 1);
2719 sp_node_init(n_new, end, n->end, mpol_new);
2721 sp_insert(sp, n_new);
2730 n = rb_entry(next, struct sp_node, nd);
2734 write_unlock(&sp->lock);
2741 kmem_cache_free(sn_cache, n_new);
2746 write_unlock(&sp->lock);
2748 n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2751 mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2754 atomic_set(&mpol_new->refcnt, 1);
2759 * mpol_shared_policy_init - initialize shared policy for inode
2760 * @sp: pointer to inode shared policy
2761 * @mpol: struct mempolicy to install
2763 * Install non-NULL @mpol in inode's shared policy rb-tree.
2764 * On entry, the current task has a reference on a non-NULL @mpol.
2765 * This must be released on exit.
2766 * This is called at get_inode() calls and we can use GFP_KERNEL.
2768 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2772 sp->root = RB_ROOT; /* empty tree == default mempolicy */
2773 rwlock_init(&sp->lock);
2776 struct vm_area_struct pvma;
2777 struct mempolicy *new;
2778 NODEMASK_SCRATCH(scratch);
2782 /* contextualize the tmpfs mount point mempolicy */
2783 new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2785 goto free_scratch; /* no valid nodemask intersection */
2788 ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch);
2789 task_unlock(current);
2793 /* Create pseudo-vma that contains just the policy */
2794 vma_init(&pvma, NULL);
2795 pvma.vm_end = TASK_SIZE; /* policy covers entire file */
2796 mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
2799 mpol_put(new); /* drop initial ref */
2801 NODEMASK_SCRATCH_FREE(scratch);
2803 mpol_put(mpol); /* drop our incoming ref on sb mpol */
2807 int mpol_set_shared_policy(struct shared_policy *info,
2808 struct vm_area_struct *vma, struct mempolicy *npol)
2811 struct sp_node *new = NULL;
2812 unsigned long sz = vma_pages(vma);
2814 pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2816 sz, npol ? npol->mode : -1,
2817 npol ? npol->flags : -1,
2818 npol ? nodes_addr(npol->nodes)[0] : NUMA_NO_NODE);
2821 new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
2825 err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
2831 /* Free a backing policy store on inode delete. */
2832 void mpol_free_shared_policy(struct shared_policy *p)
2835 struct rb_node *next;
2837 if (!p->root.rb_node)
2839 write_lock(&p->lock);
2840 next = rb_first(&p->root);
2842 n = rb_entry(next, struct sp_node, nd);
2843 next = rb_next(&n->nd);
2846 write_unlock(&p->lock);
2849 #ifdef CONFIG_NUMA_BALANCING
2850 static int __initdata numabalancing_override;
2852 static void __init check_numabalancing_enable(void)
2854 bool numabalancing_default = false;
2856 if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED))
2857 numabalancing_default = true;
2859 /* Parsed by setup_numabalancing. override == 1 enables, -1 disables */
2860 if (numabalancing_override)
2861 set_numabalancing_state(numabalancing_override == 1);
2863 if (num_online_nodes() > 1 && !numabalancing_override) {
2864 pr_info("%s automatic NUMA balancing. Configure with numa_balancing= or the kernel.numa_balancing sysctl\n",
2865 numabalancing_default ? "Enabling" : "Disabling");
2866 set_numabalancing_state(numabalancing_default);
2870 static int __init setup_numabalancing(char *str)
2876 if (!strcmp(str, "enable")) {
2877 numabalancing_override = 1;
2879 } else if (!strcmp(str, "disable")) {
2880 numabalancing_override = -1;
2885 pr_warn("Unable to parse numa_balancing=\n");
2889 __setup("numa_balancing=", setup_numabalancing);
2891 static inline void __init check_numabalancing_enable(void)
2894 #endif /* CONFIG_NUMA_BALANCING */
2896 /* assumes fs == KERNEL_DS */
2897 void __init numa_policy_init(void)
2899 nodemask_t interleave_nodes;
2900 unsigned long largest = 0;
2901 int nid, prefer = 0;
2903 policy_cache = kmem_cache_create("numa_policy",
2904 sizeof(struct mempolicy),
2905 0, SLAB_PANIC, NULL);
2907 sn_cache = kmem_cache_create("shared_policy_node",
2908 sizeof(struct sp_node),
2909 0, SLAB_PANIC, NULL);
2911 for_each_node(nid) {
2912 preferred_node_policy[nid] = (struct mempolicy) {
2913 .refcnt = ATOMIC_INIT(1),
2914 .mode = MPOL_PREFERRED,
2915 .flags = MPOL_F_MOF | MPOL_F_MORON,
2916 .nodes = nodemask_of_node(nid),
2921 * Set interleaving policy for system init. Interleaving is only
2922 * enabled across suitably sized nodes (default is >= 16MB), or
2923 * fall back to the largest node if they're all smaller.
2925 nodes_clear(interleave_nodes);
2926 for_each_node_state(nid, N_MEMORY) {
2927 unsigned long total_pages = node_present_pages(nid);
2929 /* Preserve the largest node */
2930 if (largest < total_pages) {
2931 largest = total_pages;
2935 /* Interleave this node? */
2936 if ((total_pages << PAGE_SHIFT) >= (16 << 20))
2937 node_set(nid, interleave_nodes);
2940 /* All too small, use the largest */
2941 if (unlikely(nodes_empty(interleave_nodes)))
2942 node_set(prefer, interleave_nodes);
2944 if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
2945 pr_err("%s: interleaving failed\n", __func__);
2947 check_numabalancing_enable();
2950 /* Reset policy of current process to default */
2951 void numa_default_policy(void)
2953 do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
2957 * Parse and format mempolicy from/to strings
2960 static const char * const policy_modes[] =
2962 [MPOL_DEFAULT] = "default",
2963 [MPOL_PREFERRED] = "prefer",
2964 [MPOL_BIND] = "bind",
2965 [MPOL_INTERLEAVE] = "interleave",
2966 [MPOL_LOCAL] = "local",
2967 [MPOL_PREFERRED_MANY] = "prefer (many)",
2973 * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option.
2974 * @str: string containing mempolicy to parse
2975 * @mpol: pointer to struct mempolicy pointer, returned on success.
2978 * <mode>[=<flags>][:<nodelist>]
2980 * Return: %0 on success, else %1
2982 int mpol_parse_str(char *str, struct mempolicy **mpol)
2984 struct mempolicy *new = NULL;
2985 unsigned short mode_flags;
2987 char *nodelist = strchr(str, ':');
2988 char *flags = strchr(str, '=');
2992 *flags++ = '\0'; /* terminate mode string */
2995 /* NUL-terminate mode or flags string */
2997 if (nodelist_parse(nodelist, nodes))
2999 if (!nodes_subset(nodes, node_states[N_MEMORY]))
3004 mode = match_string(policy_modes, MPOL_MAX, str);
3009 case MPOL_PREFERRED:
3011 * Insist on a nodelist of one node only, although later
3012 * we use first_node(nodes) to grab a single node, so here
3013 * nodelist (or nodes) cannot be empty.
3016 char *rest = nodelist;
3017 while (isdigit(*rest))
3021 if (nodes_empty(nodes))
3025 case MPOL_INTERLEAVE:
3027 * Default to online nodes with memory if no nodelist
3030 nodes = node_states[N_MEMORY];
3034 * Don't allow a nodelist; mpol_new() checks flags
3041 * Insist on a empty nodelist
3046 case MPOL_PREFERRED_MANY:
3049 * Insist on a nodelist
3058 * Currently, we only support two mutually exclusive
3061 if (!strcmp(flags, "static"))
3062 mode_flags |= MPOL_F_STATIC_NODES;
3063 else if (!strcmp(flags, "relative"))
3064 mode_flags |= MPOL_F_RELATIVE_NODES;
3069 new = mpol_new(mode, mode_flags, &nodes);
3074 * Save nodes for mpol_to_str() to show the tmpfs mount options
3075 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo.
3077 if (mode != MPOL_PREFERRED) {
3079 } else if (nodelist) {
3080 nodes_clear(new->nodes);
3081 node_set(first_node(nodes), new->nodes);
3083 new->mode = MPOL_LOCAL;
3087 * Save nodes for contextualization: this will be used to "clone"
3088 * the mempolicy in a specific context [cpuset] at a later time.
3090 new->w.user_nodemask = nodes;
3095 /* Restore string for error message */
3104 #endif /* CONFIG_TMPFS */
3107 * mpol_to_str - format a mempolicy structure for printing
3108 * @buffer: to contain formatted mempolicy string
3109 * @maxlen: length of @buffer
3110 * @pol: pointer to mempolicy to be formatted
3112 * Convert @pol into a string. If @buffer is too short, truncate the string.
3113 * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the
3114 * longest flag, "relative", and to display at least a few node ids.
3116 void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
3119 nodemask_t nodes = NODE_MASK_NONE;
3120 unsigned short mode = MPOL_DEFAULT;
3121 unsigned short flags = 0;
3123 if (pol && pol != &default_policy && !(pol->flags & MPOL_F_MORON)) {
3132 case MPOL_PREFERRED:
3133 case MPOL_PREFERRED_MANY:
3135 case MPOL_INTERLEAVE:
3140 snprintf(p, maxlen, "unknown");
3144 p += snprintf(p, maxlen, "%s", policy_modes[mode]);
3146 if (flags & MPOL_MODE_FLAGS) {
3147 p += snprintf(p, buffer + maxlen - p, "=");
3150 * Currently, the only defined flags are mutually exclusive
3152 if (flags & MPOL_F_STATIC_NODES)
3153 p += snprintf(p, buffer + maxlen - p, "static");
3154 else if (flags & MPOL_F_RELATIVE_NODES)
3155 p += snprintf(p, buffer + maxlen - p, "relative");
3158 if (!nodes_empty(nodes))
3159 p += scnprintf(p, buffer + maxlen - p, ":%*pbl",
3160 nodemask_pr_args(&nodes));