1 // SPDX-License-Identifier: GPL-2.0-only
3 * Simple NUMA memory policy for the Linux kernel.
5 * Copyright 2003,2004 Andi Kleen, SuSE Labs.
6 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
8 * NUMA policy allows the user to give hints in which node(s) memory should
11 * Support four policies per VMA and per process:
13 * The VMA policy has priority over the process policy for a page fault.
15 * interleave Allocate memory interleaved over a set of nodes,
16 * with normal fallback if it fails.
17 * For VMA based allocations this interleaves based on the
18 * offset into the backing object or offset into the mapping
19 * for anonymous memory. For process policy an process counter
22 * bind Only allocate memory on a specific set of nodes,
24 * FIXME: memory is allocated starting with the first node
25 * to the last. It would be better if bind would truly restrict
26 * the allocation to memory nodes instead
28 * preferred Try a specific node first before normal fallback.
29 * As a special case NUMA_NO_NODE here means do the allocation
30 * on the local CPU. This is normally identical to default,
31 * but useful to set in a VMA when you have a non default
34 * preferred many Try a set of nodes first before normal fallback. This is
35 * similar to preferred without the special case.
37 * default Allocate on the local node first, or when on a VMA
38 * use the process policy. This is what Linux always did
39 * in a NUMA aware kernel and still does by, ahem, default.
41 * The process policy is applied for most non interrupt memory allocations
42 * in that process' context. Interrupts ignore the policies and always
43 * try to allocate on the local CPU. The VMA policy is only applied for memory
44 * allocations for a VMA in the VM.
46 * Currently there are a few corner cases in swapping where the policy
47 * is not applied, but the majority should be handled. When process policy
48 * is used it is not remembered over swap outs/swap ins.
50 * Only the highest zone in the zone hierarchy gets policied. Allocations
51 * requesting a lower zone just use default policy. This implies that
52 * on systems with highmem kernel lowmem allocation don't get policied.
53 * Same with GFP_DMA allocations.
55 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
56 * all users and remembered even when nobody has memory mapped.
60 fix mmap readahead to honour policy and enable policy for any page cache
62 statistics for bigpages
63 global policy for page cache? currently it uses process policy. Requires
65 handle mremap for shared memory (currently ignored for the policy)
67 make bind policy root only? It can trigger oom much faster and the
68 kernel is not always grateful with that.
71 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
73 #include <linux/mempolicy.h>
74 #include <linux/pagewalk.h>
75 #include <linux/highmem.h>
76 #include <linux/hugetlb.h>
77 #include <linux/kernel.h>
78 #include <linux/sched.h>
79 #include <linux/sched/mm.h>
80 #include <linux/sched/numa_balancing.h>
81 #include <linux/sched/task.h>
82 #include <linux/nodemask.h>
83 #include <linux/cpuset.h>
84 #include <linux/slab.h>
85 #include <linux/string.h>
86 #include <linux/export.h>
87 #include <linux/nsproxy.h>
88 #include <linux/interrupt.h>
89 #include <linux/init.h>
90 #include <linux/compat.h>
91 #include <linux/ptrace.h>
92 #include <linux/swap.h>
93 #include <linux/seq_file.h>
94 #include <linux/proc_fs.h>
95 #include <linux/migrate.h>
96 #include <linux/ksm.h>
97 #include <linux/rmap.h>
98 #include <linux/security.h>
99 #include <linux/syscalls.h>
100 #include <linux/ctype.h>
101 #include <linux/mm_inline.h>
102 #include <linux/mmu_notifier.h>
103 #include <linux/printk.h>
104 #include <linux/swapops.h>
106 #include <asm/tlbflush.h>
108 #include <linux/uaccess.h>
110 #include "internal.h"
113 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */
114 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */
116 static struct kmem_cache *policy_cache;
117 static struct kmem_cache *sn_cache;
119 /* Highest zone. An specific allocation for a zone below that is not
121 enum zone_type policy_zone = 0;
124 * run-time system-wide default policy => local allocation
126 static struct mempolicy default_policy = {
127 .refcnt = ATOMIC_INIT(1), /* never free it */
131 static struct mempolicy preferred_node_policy[MAX_NUMNODES];
134 * numa_map_to_online_node - Find closest online node
135 * @node: Node id to start the search
137 * Lookup the next closest node by distance if @nid is not online.
139 * Return: this @node if it is online, otherwise the closest node by distance
141 int numa_map_to_online_node(int node)
143 int min_dist = INT_MAX, dist, n, min_node;
145 if (node == NUMA_NO_NODE || node_online(node))
149 for_each_online_node(n) {
150 dist = node_distance(node, n);
151 if (dist < min_dist) {
159 EXPORT_SYMBOL_GPL(numa_map_to_online_node);
161 struct mempolicy *get_task_policy(struct task_struct *p)
163 struct mempolicy *pol = p->mempolicy;
169 node = numa_node_id();
170 if (node != NUMA_NO_NODE) {
171 pol = &preferred_node_policy[node];
172 /* preferred_node_policy is not initialised early in boot */
177 return &default_policy;
180 static const struct mempolicy_operations {
181 int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
182 void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes);
183 } mpol_ops[MPOL_MAX];
185 static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
187 return pol->flags & MPOL_MODE_FLAGS;
190 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
191 const nodemask_t *rel)
194 nodes_fold(tmp, *orig, nodes_weight(*rel));
195 nodes_onto(*ret, tmp, *rel);
198 static int mpol_new_nodemask(struct mempolicy *pol, const nodemask_t *nodes)
200 if (nodes_empty(*nodes))
206 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
208 if (nodes_empty(*nodes))
211 nodes_clear(pol->nodes);
212 node_set(first_node(*nodes), pol->nodes);
217 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
218 * any, for the new policy. mpol_new() has already validated the nodes
219 * parameter with respect to the policy mode and flags.
221 * Must be called holding task's alloc_lock to protect task's mems_allowed
222 * and mempolicy. May also be called holding the mmap_lock for write.
224 static int mpol_set_nodemask(struct mempolicy *pol,
225 const nodemask_t *nodes, struct nodemask_scratch *nsc)
230 * Default (pol==NULL) resp. local memory policies are not a
231 * subject of any remapping. They also do not need any special
234 if (!pol || pol->mode == MPOL_LOCAL)
238 nodes_and(nsc->mask1,
239 cpuset_current_mems_allowed, node_states[N_MEMORY]);
243 if (pol->flags & MPOL_F_RELATIVE_NODES)
244 mpol_relative_nodemask(&nsc->mask2, nodes, &nsc->mask1);
246 nodes_and(nsc->mask2, *nodes, nsc->mask1);
248 if (mpol_store_user_nodemask(pol))
249 pol->w.user_nodemask = *nodes;
251 pol->w.cpuset_mems_allowed = cpuset_current_mems_allowed;
253 ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
258 * This function just creates a new policy, does some check and simple
259 * initialization. You must invoke mpol_set_nodemask() to set nodes.
261 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
264 struct mempolicy *policy;
266 pr_debug("setting mode %d flags %d nodes[0] %lx\n",
267 mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE);
269 if (mode == MPOL_DEFAULT) {
270 if (nodes && !nodes_empty(*nodes))
271 return ERR_PTR(-EINVAL);
277 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
278 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
279 * All other modes require a valid pointer to a non-empty nodemask.
281 if (mode == MPOL_PREFERRED) {
282 if (nodes_empty(*nodes)) {
283 if (((flags & MPOL_F_STATIC_NODES) ||
284 (flags & MPOL_F_RELATIVE_NODES)))
285 return ERR_PTR(-EINVAL);
289 } else if (mode == MPOL_LOCAL) {
290 if (!nodes_empty(*nodes) ||
291 (flags & MPOL_F_STATIC_NODES) ||
292 (flags & MPOL_F_RELATIVE_NODES))
293 return ERR_PTR(-EINVAL);
294 } else if (nodes_empty(*nodes))
295 return ERR_PTR(-EINVAL);
296 policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
298 return ERR_PTR(-ENOMEM);
299 atomic_set(&policy->refcnt, 1);
301 policy->flags = flags;
302 policy->home_node = NUMA_NO_NODE;
307 /* Slow path of a mpol destructor. */
308 void __mpol_put(struct mempolicy *p)
310 if (!atomic_dec_and_test(&p->refcnt))
312 kmem_cache_free(policy_cache, p);
315 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes)
319 static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes)
323 if (pol->flags & MPOL_F_STATIC_NODES)
324 nodes_and(tmp, pol->w.user_nodemask, *nodes);
325 else if (pol->flags & MPOL_F_RELATIVE_NODES)
326 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
328 nodes_remap(tmp, pol->nodes, pol->w.cpuset_mems_allowed,
330 pol->w.cpuset_mems_allowed = *nodes;
333 if (nodes_empty(tmp))
339 static void mpol_rebind_preferred(struct mempolicy *pol,
340 const nodemask_t *nodes)
342 pol->w.cpuset_mems_allowed = *nodes;
346 * mpol_rebind_policy - Migrate a policy to a different set of nodes
348 * Per-vma policies are protected by mmap_lock. Allocations using per-task
349 * policies are protected by task->mems_allowed_seq to prevent a premature
350 * OOM/allocation failure due to parallel nodemask modification.
352 static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask)
354 if (!pol || pol->mode == MPOL_LOCAL)
356 if (!mpol_store_user_nodemask(pol) &&
357 nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
360 mpol_ops[pol->mode].rebind(pol, newmask);
364 * Wrapper for mpol_rebind_policy() that just requires task
365 * pointer, and updates task mempolicy.
367 * Called with task's alloc_lock held.
370 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new)
372 mpol_rebind_policy(tsk->mempolicy, new);
376 * Rebind each vma in mm to new nodemask.
378 * Call holding a reference to mm. Takes mm->mmap_lock during call.
381 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
383 struct vm_area_struct *vma;
384 VMA_ITERATOR(vmi, mm, 0);
387 for_each_vma(vmi, vma)
388 mpol_rebind_policy(vma->vm_policy, new);
389 mmap_write_unlock(mm);
392 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
394 .rebind = mpol_rebind_default,
396 [MPOL_INTERLEAVE] = {
397 .create = mpol_new_nodemask,
398 .rebind = mpol_rebind_nodemask,
401 .create = mpol_new_preferred,
402 .rebind = mpol_rebind_preferred,
405 .create = mpol_new_nodemask,
406 .rebind = mpol_rebind_nodemask,
409 .rebind = mpol_rebind_default,
411 [MPOL_PREFERRED_MANY] = {
412 .create = mpol_new_nodemask,
413 .rebind = mpol_rebind_preferred,
417 static int migrate_folio_add(struct folio *folio, struct list_head *foliolist,
418 unsigned long flags);
421 struct list_head *pagelist;
426 struct vm_area_struct *first;
430 * Check if the folio's nid is in qp->nmask.
432 * If MPOL_MF_INVERT is set in qp->flags, check if the nid is
433 * in the invert of qp->nmask.
435 static inline bool queue_folio_required(struct folio *folio,
436 struct queue_pages *qp)
438 int nid = folio_nid(folio);
439 unsigned long flags = qp->flags;
441 return node_isset(nid, *qp->nmask) == !(flags & MPOL_MF_INVERT);
445 * queue_folios_pmd() has three possible return values:
446 * 0 - folios are placed on the right node or queued successfully, or
447 * special page is met, i.e. huge zero page.
448 * 1 - there is unmovable folio, and MPOL_MF_MOVE* & MPOL_MF_STRICT were
450 * -EIO - is migration entry or only MPOL_MF_STRICT was specified and an
451 * existing folio was already on a node that does not follow the
454 static int queue_folios_pmd(pmd_t *pmd, spinlock_t *ptl, unsigned long addr,
455 unsigned long end, struct mm_walk *walk)
460 struct queue_pages *qp = walk->private;
463 if (unlikely(is_pmd_migration_entry(*pmd))) {
467 folio = pfn_folio(pmd_pfn(*pmd));
468 if (is_huge_zero_page(&folio->page)) {
469 walk->action = ACTION_CONTINUE;
472 if (!queue_folio_required(folio, qp))
476 /* go to folio migration */
477 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
478 if (!vma_migratable(walk->vma) ||
479 migrate_folio_add(folio, qp->pagelist, flags)) {
491 * Scan through pages checking if pages follow certain conditions,
492 * and move them to the pagelist if they do.
494 * queue_folios_pte_range() has three possible return values:
495 * 0 - folios are placed on the right node or queued successfully, or
496 * special page is met, i.e. zero page.
497 * 1 - there is unmovable folio, and MPOL_MF_MOVE* & MPOL_MF_STRICT were
499 * -EIO - only MPOL_MF_STRICT was specified and an existing folio was already
500 * on a node that does not follow the policy.
502 static int queue_folios_pte_range(pmd_t *pmd, unsigned long addr,
503 unsigned long end, struct mm_walk *walk)
505 struct vm_area_struct *vma = walk->vma;
507 struct queue_pages *qp = walk->private;
508 unsigned long flags = qp->flags;
509 bool has_unmovable = false;
510 pte_t *pte, *mapped_pte;
513 ptl = pmd_trans_huge_lock(pmd, vma);
515 return queue_folios_pmd(pmd, ptl, addr, end, walk);
517 if (pmd_trans_unstable(pmd))
520 mapped_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
521 for (; addr != end; pte++, addr += PAGE_SIZE) {
522 if (!pte_present(*pte))
524 folio = vm_normal_folio(vma, addr, *pte);
525 if (!folio || folio_is_zone_device(folio))
528 * vm_normal_folio() filters out zero pages, but there might
529 * still be reserved folios to skip, perhaps in a VDSO.
531 if (folio_test_reserved(folio))
533 if (!queue_folio_required(folio, qp))
535 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
536 /* MPOL_MF_STRICT must be specified if we get here */
537 if (!vma_migratable(vma)) {
538 has_unmovable = true;
543 * Do not abort immediately since there may be
544 * temporary off LRU pages in the range. Still
545 * need migrate other LRU pages.
547 if (migrate_folio_add(folio, qp->pagelist, flags))
548 has_unmovable = true;
552 pte_unmap_unlock(mapped_pte, ptl);
558 return addr != end ? -EIO : 0;
561 static int queue_folios_hugetlb(pte_t *pte, unsigned long hmask,
562 unsigned long addr, unsigned long end,
563 struct mm_walk *walk)
566 #ifdef CONFIG_HUGETLB_PAGE
567 struct queue_pages *qp = walk->private;
568 unsigned long flags = (qp->flags & MPOL_MF_VALID);
573 ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte);
574 entry = huge_ptep_get(pte);
575 if (!pte_present(entry))
577 folio = pfn_folio(pte_pfn(entry));
578 if (!queue_folio_required(folio, qp))
581 if (flags == MPOL_MF_STRICT) {
583 * STRICT alone means only detecting misplaced folio and no
584 * need to further check other vma.
590 if (!vma_migratable(walk->vma)) {
592 * Must be STRICT with MOVE*, otherwise .test_walk() have
593 * stopped walking current vma.
594 * Detecting misplaced folio but allow migrating folios which
602 * With MPOL_MF_MOVE, we try to migrate only unshared folios. If it
603 * is shared it is likely not worth migrating.
605 * To check if the folio is shared, ideally we want to make sure
606 * every page is mapped to the same process. Doing that is very
607 * expensive, so check the estimated mapcount of the folio instead.
609 if (flags & (MPOL_MF_MOVE_ALL) ||
610 (flags & MPOL_MF_MOVE && folio_estimated_sharers(folio) == 1 &&
611 !hugetlb_pmd_shared(pte))) {
612 if (!isolate_hugetlb(folio, qp->pagelist) &&
613 (flags & MPOL_MF_STRICT))
615 * Failed to isolate folio but allow migrating pages
616 * which have been queued.
628 #ifdef CONFIG_NUMA_BALANCING
630 * This is used to mark a range of virtual addresses to be inaccessible.
631 * These are later cleared by a NUMA hinting fault. Depending on these
632 * faults, pages may be migrated for better NUMA placement.
634 * This is assuming that NUMA faults are handled using PROT_NONE. If
635 * an architecture makes a different choice, it will need further
636 * changes to the core.
638 unsigned long change_prot_numa(struct vm_area_struct *vma,
639 unsigned long addr, unsigned long end)
641 struct mmu_gather tlb;
644 tlb_gather_mmu(&tlb, vma->vm_mm);
646 nr_updated = change_protection(&tlb, vma, addr, end, MM_CP_PROT_NUMA);
648 count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated);
650 tlb_finish_mmu(&tlb);
655 static unsigned long change_prot_numa(struct vm_area_struct *vma,
656 unsigned long addr, unsigned long end)
660 #endif /* CONFIG_NUMA_BALANCING */
662 static int queue_pages_test_walk(unsigned long start, unsigned long end,
663 struct mm_walk *walk)
665 struct vm_area_struct *next, *vma = walk->vma;
666 struct queue_pages *qp = walk->private;
667 unsigned long endvma = vma->vm_end;
668 unsigned long flags = qp->flags;
670 /* range check first */
671 VM_BUG_ON_VMA(!range_in_vma(vma, start, end), vma);
675 if (!(flags & MPOL_MF_DISCONTIG_OK) &&
676 (qp->start < vma->vm_start))
677 /* hole at head side of range */
680 next = find_vma(vma->vm_mm, vma->vm_end);
681 if (!(flags & MPOL_MF_DISCONTIG_OK) &&
682 ((vma->vm_end < qp->end) &&
683 (!next || vma->vm_end < next->vm_start)))
684 /* hole at middle or tail of range */
688 * Need check MPOL_MF_STRICT to return -EIO if possible
689 * regardless of vma_migratable
691 if (!vma_migratable(vma) &&
692 !(flags & MPOL_MF_STRICT))
698 if (flags & MPOL_MF_LAZY) {
699 /* Similar to task_numa_work, skip inaccessible VMAs */
700 if (!is_vm_hugetlb_page(vma) && vma_is_accessible(vma) &&
701 !(vma->vm_flags & VM_MIXEDMAP))
702 change_prot_numa(vma, start, endvma);
706 /* queue pages from current vma */
707 if (flags & MPOL_MF_VALID)
712 static const struct mm_walk_ops queue_pages_walk_ops = {
713 .hugetlb_entry = queue_folios_hugetlb,
714 .pmd_entry = queue_folios_pte_range,
715 .test_walk = queue_pages_test_walk,
719 * Walk through page tables and collect pages to be migrated.
721 * If pages found in a given range are on a set of nodes (determined by
722 * @nodes and @flags,) it's isolated and queued to the pagelist which is
723 * passed via @private.
725 * queue_pages_range() has three possible return values:
726 * 1 - there is unmovable page, but MPOL_MF_MOVE* & MPOL_MF_STRICT were
728 * 0 - queue pages successfully or no misplaced page.
729 * errno - i.e. misplaced pages with MPOL_MF_STRICT specified (-EIO) or
730 * memory range specified by nodemask and maxnode points outside
731 * your accessible address space (-EFAULT)
734 queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end,
735 nodemask_t *nodes, unsigned long flags,
736 struct list_head *pagelist)
739 struct queue_pages qp = {
740 .pagelist = pagelist,
748 err = walk_page_range(mm, start, end, &queue_pages_walk_ops, &qp);
751 /* whole range in hole */
758 * Apply policy to a single VMA
759 * This must be called with the mmap_lock held for writing.
761 static int vma_replace_policy(struct vm_area_struct *vma,
762 struct mempolicy *pol)
765 struct mempolicy *old;
766 struct mempolicy *new;
768 pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
769 vma->vm_start, vma->vm_end, vma->vm_pgoff,
770 vma->vm_ops, vma->vm_file,
771 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
777 if (vma->vm_ops && vma->vm_ops->set_policy) {
778 err = vma->vm_ops->set_policy(vma, new);
783 old = vma->vm_policy;
784 vma->vm_policy = new; /* protected by mmap_lock */
793 /* Step 2: apply policy to a range and do splits. */
794 static int mbind_range(struct mm_struct *mm, unsigned long start,
795 unsigned long end, struct mempolicy *new_pol)
797 VMA_ITERATOR(vmi, mm, start);
798 struct vm_area_struct *prev;
799 struct vm_area_struct *vma;
803 prev = vma_prev(&vmi);
804 vma = vma_find(&vmi, end);
808 if (start > vma->vm_start)
812 unsigned long vmstart = max(start, vma->vm_start);
813 unsigned long vmend = min(end, vma->vm_end);
815 if (mpol_equal(vma_policy(vma), new_pol))
818 pgoff = vma->vm_pgoff +
819 ((vmstart - vma->vm_start) >> PAGE_SHIFT);
820 prev = vma_merge(&vmi, mm, prev, vmstart, vmend, vma->vm_flags,
821 vma->anon_vma, vma->vm_file, pgoff,
822 new_pol, vma->vm_userfaultfd_ctx,
828 if (vma->vm_start != vmstart) {
829 err = split_vma(&vmi, vma, vmstart, 1);
833 if (vma->vm_end != vmend) {
834 err = split_vma(&vmi, vma, vmend, 0);
839 err = vma_replace_policy(vma, new_pol);
844 } for_each_vma_range(vmi, vma, end);
850 /* Set the process memory policy */
851 static long do_set_mempolicy(unsigned short mode, unsigned short flags,
854 struct mempolicy *new, *old;
855 NODEMASK_SCRATCH(scratch);
861 new = mpol_new(mode, flags, nodes);
868 ret = mpol_set_nodemask(new, nodes, scratch);
870 task_unlock(current);
875 old = current->mempolicy;
876 current->mempolicy = new;
877 if (new && new->mode == MPOL_INTERLEAVE)
878 current->il_prev = MAX_NUMNODES-1;
879 task_unlock(current);
883 NODEMASK_SCRATCH_FREE(scratch);
888 * Return nodemask for policy for get_mempolicy() query
890 * Called with task's alloc_lock held
892 static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
895 if (p == &default_policy)
900 case MPOL_INTERLEAVE:
902 case MPOL_PREFERRED_MANY:
906 /* return empty node mask for local allocation */
913 static int lookup_node(struct mm_struct *mm, unsigned long addr)
915 struct page *p = NULL;
918 ret = get_user_pages_fast(addr & PAGE_MASK, 1, 0, &p);
920 ret = page_to_nid(p);
926 /* Retrieve NUMA policy */
927 static long do_get_mempolicy(int *policy, nodemask_t *nmask,
928 unsigned long addr, unsigned long flags)
931 struct mm_struct *mm = current->mm;
932 struct vm_area_struct *vma = NULL;
933 struct mempolicy *pol = current->mempolicy, *pol_refcount = NULL;
936 ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
939 if (flags & MPOL_F_MEMS_ALLOWED) {
940 if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
942 *policy = 0; /* just so it's initialized */
944 *nmask = cpuset_current_mems_allowed;
945 task_unlock(current);
949 if (flags & MPOL_F_ADDR) {
951 * Do NOT fall back to task policy if the
952 * vma/shared policy at addr is NULL. We
953 * want to return MPOL_DEFAULT in this case.
956 vma = vma_lookup(mm, addr);
958 mmap_read_unlock(mm);
961 if (vma->vm_ops && vma->vm_ops->get_policy)
962 pol = vma->vm_ops->get_policy(vma, addr);
964 pol = vma->vm_policy;
969 pol = &default_policy; /* indicates default behavior */
971 if (flags & MPOL_F_NODE) {
972 if (flags & MPOL_F_ADDR) {
974 * Take a refcount on the mpol, because we are about to
975 * drop the mmap_lock, after which only "pol" remains
976 * valid, "vma" is stale.
981 mmap_read_unlock(mm);
982 err = lookup_node(mm, addr);
986 } else if (pol == current->mempolicy &&
987 pol->mode == MPOL_INTERLEAVE) {
988 *policy = next_node_in(current->il_prev, pol->nodes);
994 *policy = pol == &default_policy ? MPOL_DEFAULT :
997 * Internal mempolicy flags must be masked off before exposing
998 * the policy to userspace.
1000 *policy |= (pol->flags & MPOL_MODE_FLAGS);
1005 if (mpol_store_user_nodemask(pol)) {
1006 *nmask = pol->w.user_nodemask;
1009 get_policy_nodemask(pol, nmask);
1010 task_unlock(current);
1017 mmap_read_unlock(mm);
1019 mpol_put(pol_refcount);
1023 #ifdef CONFIG_MIGRATION
1024 static int migrate_folio_add(struct folio *folio, struct list_head *foliolist,
1025 unsigned long flags)
1028 * We try to migrate only unshared folios. If it is shared it
1029 * is likely not worth migrating.
1031 * To check if the folio is shared, ideally we want to make sure
1032 * every page is mapped to the same process. Doing that is very
1033 * expensive, so check the estimated mapcount of the folio instead.
1035 if ((flags & MPOL_MF_MOVE_ALL) || folio_estimated_sharers(folio) == 1) {
1036 if (folio_isolate_lru(folio)) {
1037 list_add_tail(&folio->lru, foliolist);
1038 node_stat_mod_folio(folio,
1039 NR_ISOLATED_ANON + folio_is_file_lru(folio),
1040 folio_nr_pages(folio));
1041 } else if (flags & MPOL_MF_STRICT) {
1043 * Non-movable folio may reach here. And, there may be
1044 * temporary off LRU folios or non-LRU movable folios.
1045 * Treat them as unmovable folios since they can't be
1046 * isolated, so they can't be moved at the moment. It
1047 * should return -EIO for this case too.
1057 * Migrate pages from one node to a target node.
1058 * Returns error or the number of pages not migrated.
1060 static int migrate_to_node(struct mm_struct *mm, int source, int dest,
1064 struct vm_area_struct *vma;
1065 LIST_HEAD(pagelist);
1067 struct migration_target_control mtc = {
1069 .gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE,
1073 node_set(source, nmask);
1076 * This does not "check" the range but isolates all pages that
1077 * need migration. Between passing in the full user address
1078 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail.
1080 vma = find_vma(mm, 0);
1081 VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)));
1082 queue_pages_range(mm, vma->vm_start, mm->task_size, &nmask,
1083 flags | MPOL_MF_DISCONTIG_OK, &pagelist);
1085 if (!list_empty(&pagelist)) {
1086 err = migrate_pages(&pagelist, alloc_migration_target, NULL,
1087 (unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL, NULL);
1089 putback_movable_pages(&pagelist);
1096 * Move pages between the two nodesets so as to preserve the physical
1097 * layout as much as possible.
1099 * Returns the number of page that could not be moved.
1101 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1102 const nodemask_t *to, int flags)
1108 lru_cache_disable();
1113 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
1114 * bit in 'to' is not also set in 'tmp'. Clear the found 'source'
1115 * bit in 'tmp', and return that <source, dest> pair for migration.
1116 * The pair of nodemasks 'to' and 'from' define the map.
1118 * If no pair of bits is found that way, fallback to picking some
1119 * pair of 'source' and 'dest' bits that are not the same. If the
1120 * 'source' and 'dest' bits are the same, this represents a node
1121 * that will be migrating to itself, so no pages need move.
1123 * If no bits are left in 'tmp', or if all remaining bits left
1124 * in 'tmp' correspond to the same bit in 'to', return false
1125 * (nothing left to migrate).
1127 * This lets us pick a pair of nodes to migrate between, such that
1128 * if possible the dest node is not already occupied by some other
1129 * source node, minimizing the risk of overloading the memory on a
1130 * node that would happen if we migrated incoming memory to a node
1131 * before migrating outgoing memory source that same node.
1133 * A single scan of tmp is sufficient. As we go, we remember the
1134 * most recent <s, d> pair that moved (s != d). If we find a pair
1135 * that not only moved, but what's better, moved to an empty slot
1136 * (d is not set in tmp), then we break out then, with that pair.
1137 * Otherwise when we finish scanning from_tmp, we at least have the
1138 * most recent <s, d> pair that moved. If we get all the way through
1139 * the scan of tmp without finding any node that moved, much less
1140 * moved to an empty node, then there is nothing left worth migrating.
1144 while (!nodes_empty(tmp)) {
1146 int source = NUMA_NO_NODE;
1149 for_each_node_mask(s, tmp) {
1152 * do_migrate_pages() tries to maintain the relative
1153 * node relationship of the pages established between
1154 * threads and memory areas.
1156 * However if the number of source nodes is not equal to
1157 * the number of destination nodes we can not preserve
1158 * this node relative relationship. In that case, skip
1159 * copying memory from a node that is in the destination
1162 * Example: [2,3,4] -> [3,4,5] moves everything.
1163 * [0-7] - > [3,4,5] moves only 0,1,2,6,7.
1166 if ((nodes_weight(*from) != nodes_weight(*to)) &&
1167 (node_isset(s, *to)))
1170 d = node_remap(s, *from, *to);
1174 source = s; /* Node moved. Memorize */
1177 /* dest not in remaining from nodes? */
1178 if (!node_isset(dest, tmp))
1181 if (source == NUMA_NO_NODE)
1184 node_clear(source, tmp);
1185 err = migrate_to_node(mm, source, dest, flags);
1191 mmap_read_unlock(mm);
1201 * Allocate a new page for page migration based on vma policy.
1202 * Start by assuming the page is mapped by the same vma as contains @start.
1203 * Search forward from there, if not. N.B., this assumes that the
1204 * list of pages handed to migrate_pages()--which is how we get here--
1205 * is in virtual address order.
1207 static struct page *new_page(struct page *page, unsigned long start)
1209 struct folio *dst, *src = page_folio(page);
1210 struct vm_area_struct *vma;
1211 unsigned long address;
1212 VMA_ITERATOR(vmi, current->mm, start);
1213 gfp_t gfp = GFP_HIGHUSER_MOVABLE | __GFP_RETRY_MAYFAIL;
1215 for_each_vma(vmi, vma) {
1216 address = page_address_in_vma(page, vma);
1217 if (address != -EFAULT)
1221 if (folio_test_hugetlb(src)) {
1222 dst = alloc_hugetlb_folio_vma(folio_hstate(src),
1227 if (folio_test_large(src))
1228 gfp = GFP_TRANSHUGE;
1231 * if !vma, vma_alloc_folio() will use task or system default policy
1233 dst = vma_alloc_folio(gfp, folio_order(src), vma, address,
1234 folio_test_large(src));
1239 static int migrate_folio_add(struct folio *folio, struct list_head *foliolist,
1240 unsigned long flags)
1245 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1246 const nodemask_t *to, int flags)
1251 static struct page *new_page(struct page *page, unsigned long start)
1257 static long do_mbind(unsigned long start, unsigned long len,
1258 unsigned short mode, unsigned short mode_flags,
1259 nodemask_t *nmask, unsigned long flags)
1261 struct mm_struct *mm = current->mm;
1262 struct mempolicy *new;
1266 LIST_HEAD(pagelist);
1268 if (flags & ~(unsigned long)MPOL_MF_VALID)
1270 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1273 if (start & ~PAGE_MASK)
1276 if (mode == MPOL_DEFAULT)
1277 flags &= ~MPOL_MF_STRICT;
1279 len = PAGE_ALIGN(len);
1287 new = mpol_new(mode, mode_flags, nmask);
1289 return PTR_ERR(new);
1291 if (flags & MPOL_MF_LAZY)
1292 new->flags |= MPOL_F_MOF;
1295 * If we are using the default policy then operation
1296 * on discontinuous address spaces is okay after all
1299 flags |= MPOL_MF_DISCONTIG_OK;
1301 pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1302 start, start + len, mode, mode_flags,
1303 nmask ? nodes_addr(*nmask)[0] : NUMA_NO_NODE);
1305 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
1307 lru_cache_disable();
1310 NODEMASK_SCRATCH(scratch);
1312 mmap_write_lock(mm);
1313 err = mpol_set_nodemask(new, nmask, scratch);
1315 mmap_write_unlock(mm);
1318 NODEMASK_SCRATCH_FREE(scratch);
1323 ret = queue_pages_range(mm, start, end, nmask,
1324 flags | MPOL_MF_INVERT, &pagelist);
1331 err = mbind_range(mm, start, end, new);
1336 if (!list_empty(&pagelist)) {
1337 WARN_ON_ONCE(flags & MPOL_MF_LAZY);
1338 nr_failed = migrate_pages(&pagelist, new_page, NULL,
1339 start, MIGRATE_SYNC, MR_MEMPOLICY_MBIND, NULL);
1341 putback_movable_pages(&pagelist);
1344 if ((ret > 0) || (nr_failed && (flags & MPOL_MF_STRICT)))
1348 if (!list_empty(&pagelist))
1349 putback_movable_pages(&pagelist);
1352 mmap_write_unlock(mm);
1355 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
1361 * User space interface with variable sized bitmaps for nodelists.
1363 static int get_bitmap(unsigned long *mask, const unsigned long __user *nmask,
1364 unsigned long maxnode)
1366 unsigned long nlongs = BITS_TO_LONGS(maxnode);
1369 if (in_compat_syscall())
1370 ret = compat_get_bitmap(mask,
1371 (const compat_ulong_t __user *)nmask,
1374 ret = copy_from_user(mask, nmask,
1375 nlongs * sizeof(unsigned long));
1380 if (maxnode % BITS_PER_LONG)
1381 mask[nlongs - 1] &= (1UL << (maxnode % BITS_PER_LONG)) - 1;
1386 /* Copy a node mask from user space. */
1387 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1388 unsigned long maxnode)
1391 nodes_clear(*nodes);
1392 if (maxnode == 0 || !nmask)
1394 if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1398 * When the user specified more nodes than supported just check
1399 * if the non supported part is all zero, one word at a time,
1400 * starting at the end.
1402 while (maxnode > MAX_NUMNODES) {
1403 unsigned long bits = min_t(unsigned long, maxnode, BITS_PER_LONG);
1406 if (get_bitmap(&t, &nmask[(maxnode - 1) / BITS_PER_LONG], bits))
1409 if (maxnode - bits >= MAX_NUMNODES) {
1412 maxnode = MAX_NUMNODES;
1413 t &= ~((1UL << (MAX_NUMNODES % BITS_PER_LONG)) - 1);
1419 return get_bitmap(nodes_addr(*nodes), nmask, maxnode);
1422 /* Copy a kernel node mask to user space */
1423 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1426 unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1427 unsigned int nbytes = BITS_TO_LONGS(nr_node_ids) * sizeof(long);
1428 bool compat = in_compat_syscall();
1431 nbytes = BITS_TO_COMPAT_LONGS(nr_node_ids) * sizeof(compat_long_t);
1433 if (copy > nbytes) {
1434 if (copy > PAGE_SIZE)
1436 if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1439 maxnode = nr_node_ids;
1443 return compat_put_bitmap((compat_ulong_t __user *)mask,
1444 nodes_addr(*nodes), maxnode);
1446 return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1449 /* Basic parameter sanity check used by both mbind() and set_mempolicy() */
1450 static inline int sanitize_mpol_flags(int *mode, unsigned short *flags)
1452 *flags = *mode & MPOL_MODE_FLAGS;
1453 *mode &= ~MPOL_MODE_FLAGS;
1455 if ((unsigned int)(*mode) >= MPOL_MAX)
1457 if ((*flags & MPOL_F_STATIC_NODES) && (*flags & MPOL_F_RELATIVE_NODES))
1459 if (*flags & MPOL_F_NUMA_BALANCING) {
1460 if (*mode != MPOL_BIND)
1462 *flags |= (MPOL_F_MOF | MPOL_F_MORON);
1467 static long kernel_mbind(unsigned long start, unsigned long len,
1468 unsigned long mode, const unsigned long __user *nmask,
1469 unsigned long maxnode, unsigned int flags)
1471 unsigned short mode_flags;
1476 start = untagged_addr(start);
1477 err = sanitize_mpol_flags(&lmode, &mode_flags);
1481 err = get_nodes(&nodes, nmask, maxnode);
1485 return do_mbind(start, len, lmode, mode_flags, &nodes, flags);
1488 SYSCALL_DEFINE4(set_mempolicy_home_node, unsigned long, start, unsigned long, len,
1489 unsigned long, home_node, unsigned long, flags)
1491 struct mm_struct *mm = current->mm;
1492 struct vm_area_struct *vma;
1493 struct mempolicy *new, *old;
1494 unsigned long vmstart;
1495 unsigned long vmend;
1498 VMA_ITERATOR(vmi, mm, start);
1500 start = untagged_addr(start);
1501 if (start & ~PAGE_MASK)
1504 * flags is used for future extension if any.
1510 * Check home_node is online to avoid accessing uninitialized
1513 if (home_node >= MAX_NUMNODES || !node_online(home_node))
1516 len = PAGE_ALIGN(len);
1523 mmap_write_lock(mm);
1524 for_each_vma_range(vmi, vma, end) {
1526 * If any vma in the range got policy other than MPOL_BIND
1527 * or MPOL_PREFERRED_MANY we return error. We don't reset
1528 * the home node for vmas we already updated before.
1530 old = vma_policy(vma);
1533 if (old->mode != MPOL_BIND && old->mode != MPOL_PREFERRED_MANY) {
1537 new = mpol_dup(old);
1543 new->home_node = home_node;
1544 vmstart = max(start, vma->vm_start);
1545 vmend = min(end, vma->vm_end);
1546 err = mbind_range(mm, vmstart, vmend, new);
1551 mmap_write_unlock(mm);
1555 SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1556 unsigned long, mode, const unsigned long __user *, nmask,
1557 unsigned long, maxnode, unsigned int, flags)
1559 return kernel_mbind(start, len, mode, nmask, maxnode, flags);
1562 /* Set the process memory policy */
1563 static long kernel_set_mempolicy(int mode, const unsigned long __user *nmask,
1564 unsigned long maxnode)
1566 unsigned short mode_flags;
1571 err = sanitize_mpol_flags(&lmode, &mode_flags);
1575 err = get_nodes(&nodes, nmask, maxnode);
1579 return do_set_mempolicy(lmode, mode_flags, &nodes);
1582 SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask,
1583 unsigned long, maxnode)
1585 return kernel_set_mempolicy(mode, nmask, maxnode);
1588 static int kernel_migrate_pages(pid_t pid, unsigned long maxnode,
1589 const unsigned long __user *old_nodes,
1590 const unsigned long __user *new_nodes)
1592 struct mm_struct *mm = NULL;
1593 struct task_struct *task;
1594 nodemask_t task_nodes;
1598 NODEMASK_SCRATCH(scratch);
1603 old = &scratch->mask1;
1604 new = &scratch->mask2;
1606 err = get_nodes(old, old_nodes, maxnode);
1610 err = get_nodes(new, new_nodes, maxnode);
1614 /* Find the mm_struct */
1616 task = pid ? find_task_by_vpid(pid) : current;
1622 get_task_struct(task);
1627 * Check if this process has the right to modify the specified process.
1628 * Use the regular "ptrace_may_access()" checks.
1630 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1637 task_nodes = cpuset_mems_allowed(task);
1638 /* Is the user allowed to access the target nodes? */
1639 if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1644 task_nodes = cpuset_mems_allowed(current);
1645 nodes_and(*new, *new, task_nodes);
1646 if (nodes_empty(*new))
1649 err = security_task_movememory(task);
1653 mm = get_task_mm(task);
1654 put_task_struct(task);
1661 err = do_migrate_pages(mm, old, new,
1662 capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1666 NODEMASK_SCRATCH_FREE(scratch);
1671 put_task_struct(task);
1676 SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1677 const unsigned long __user *, old_nodes,
1678 const unsigned long __user *, new_nodes)
1680 return kernel_migrate_pages(pid, maxnode, old_nodes, new_nodes);
1684 /* Retrieve NUMA policy */
1685 static int kernel_get_mempolicy(int __user *policy,
1686 unsigned long __user *nmask,
1687 unsigned long maxnode,
1689 unsigned long flags)
1695 if (nmask != NULL && maxnode < nr_node_ids)
1698 addr = untagged_addr(addr);
1700 err = do_get_mempolicy(&pval, &nodes, addr, flags);
1705 if (policy && put_user(pval, policy))
1709 err = copy_nodes_to_user(nmask, maxnode, &nodes);
1714 SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1715 unsigned long __user *, nmask, unsigned long, maxnode,
1716 unsigned long, addr, unsigned long, flags)
1718 return kernel_get_mempolicy(policy, nmask, maxnode, addr, flags);
1721 bool vma_migratable(struct vm_area_struct *vma)
1723 if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1727 * DAX device mappings require predictable access latency, so avoid
1728 * incurring periodic faults.
1730 if (vma_is_dax(vma))
1733 if (is_vm_hugetlb_page(vma) &&
1734 !hugepage_migration_supported(hstate_vma(vma)))
1738 * Migration allocates pages in the highest zone. If we cannot
1739 * do so then migration (at least from node to node) is not
1743 gfp_zone(mapping_gfp_mask(vma->vm_file->f_mapping))
1749 struct mempolicy *__get_vma_policy(struct vm_area_struct *vma,
1752 struct mempolicy *pol = NULL;
1755 if (vma->vm_ops && vma->vm_ops->get_policy) {
1756 pol = vma->vm_ops->get_policy(vma, addr);
1757 } else if (vma->vm_policy) {
1758 pol = vma->vm_policy;
1761 * shmem_alloc_page() passes MPOL_F_SHARED policy with
1762 * a pseudo vma whose vma->vm_ops=NULL. Take a reference
1763 * count on these policies which will be dropped by
1764 * mpol_cond_put() later
1766 if (mpol_needs_cond_ref(pol))
1775 * get_vma_policy(@vma, @addr)
1776 * @vma: virtual memory area whose policy is sought
1777 * @addr: address in @vma for shared policy lookup
1779 * Returns effective policy for a VMA at specified address.
1780 * Falls back to current->mempolicy or system default policy, as necessary.
1781 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1782 * count--added by the get_policy() vm_op, as appropriate--to protect against
1783 * freeing by another task. It is the caller's responsibility to free the
1784 * extra reference for shared policies.
1786 static struct mempolicy *get_vma_policy(struct vm_area_struct *vma,
1789 struct mempolicy *pol = __get_vma_policy(vma, addr);
1792 pol = get_task_policy(current);
1797 bool vma_policy_mof(struct vm_area_struct *vma)
1799 struct mempolicy *pol;
1801 if (vma->vm_ops && vma->vm_ops->get_policy) {
1804 pol = vma->vm_ops->get_policy(vma, vma->vm_start);
1805 if (pol && (pol->flags & MPOL_F_MOF))
1812 pol = vma->vm_policy;
1814 pol = get_task_policy(current);
1816 return pol->flags & MPOL_F_MOF;
1819 bool apply_policy_zone(struct mempolicy *policy, enum zone_type zone)
1821 enum zone_type dynamic_policy_zone = policy_zone;
1823 BUG_ON(dynamic_policy_zone == ZONE_MOVABLE);
1826 * if policy->nodes has movable memory only,
1827 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only.
1829 * policy->nodes is intersect with node_states[N_MEMORY].
1830 * so if the following test fails, it implies
1831 * policy->nodes has movable memory only.
1833 if (!nodes_intersects(policy->nodes, node_states[N_HIGH_MEMORY]))
1834 dynamic_policy_zone = ZONE_MOVABLE;
1836 return zone >= dynamic_policy_zone;
1840 * Return a nodemask representing a mempolicy for filtering nodes for
1843 nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1845 int mode = policy->mode;
1847 /* Lower zones don't get a nodemask applied for MPOL_BIND */
1848 if (unlikely(mode == MPOL_BIND) &&
1849 apply_policy_zone(policy, gfp_zone(gfp)) &&
1850 cpuset_nodemask_valid_mems_allowed(&policy->nodes))
1851 return &policy->nodes;
1853 if (mode == MPOL_PREFERRED_MANY)
1854 return &policy->nodes;
1860 * Return the preferred node id for 'prefer' mempolicy, and return
1861 * the given id for all other policies.
1863 * policy_node() is always coupled with policy_nodemask(), which
1864 * secures the nodemask limit for 'bind' and 'prefer-many' policy.
1866 static int policy_node(gfp_t gfp, struct mempolicy *policy, int nd)
1868 if (policy->mode == MPOL_PREFERRED) {
1869 nd = first_node(policy->nodes);
1872 * __GFP_THISNODE shouldn't even be used with the bind policy
1873 * because we might easily break the expectation to stay on the
1874 * requested node and not break the policy.
1876 WARN_ON_ONCE(policy->mode == MPOL_BIND && (gfp & __GFP_THISNODE));
1879 if ((policy->mode == MPOL_BIND ||
1880 policy->mode == MPOL_PREFERRED_MANY) &&
1881 policy->home_node != NUMA_NO_NODE)
1882 return policy->home_node;
1887 /* Do dynamic interleaving for a process */
1888 static unsigned interleave_nodes(struct mempolicy *policy)
1891 struct task_struct *me = current;
1893 next = next_node_in(me->il_prev, policy->nodes);
1894 if (next < MAX_NUMNODES)
1900 * Depending on the memory policy provide a node from which to allocate the
1903 unsigned int mempolicy_slab_node(void)
1905 struct mempolicy *policy;
1906 int node = numa_mem_id();
1911 policy = current->mempolicy;
1915 switch (policy->mode) {
1916 case MPOL_PREFERRED:
1917 return first_node(policy->nodes);
1919 case MPOL_INTERLEAVE:
1920 return interleave_nodes(policy);
1923 case MPOL_PREFERRED_MANY:
1928 * Follow bind policy behavior and start allocation at the
1931 struct zonelist *zonelist;
1932 enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1933 zonelist = &NODE_DATA(node)->node_zonelists[ZONELIST_FALLBACK];
1934 z = first_zones_zonelist(zonelist, highest_zoneidx,
1936 return z->zone ? zone_to_nid(z->zone) : node;
1947 * Do static interleaving for a VMA with known offset @n. Returns the n'th
1948 * node in pol->nodes (starting from n=0), wrapping around if n exceeds the
1949 * number of present nodes.
1951 static unsigned offset_il_node(struct mempolicy *pol, unsigned long n)
1953 nodemask_t nodemask = pol->nodes;
1954 unsigned int target, nnodes;
1958 * The barrier will stabilize the nodemask in a register or on
1959 * the stack so that it will stop changing under the code.
1961 * Between first_node() and next_node(), pol->nodes could be changed
1962 * by other threads. So we put pol->nodes in a local stack.
1966 nnodes = nodes_weight(nodemask);
1968 return numa_node_id();
1969 target = (unsigned int)n % nnodes;
1970 nid = first_node(nodemask);
1971 for (i = 0; i < target; i++)
1972 nid = next_node(nid, nodemask);
1976 /* Determine a node number for interleave */
1977 static inline unsigned interleave_nid(struct mempolicy *pol,
1978 struct vm_area_struct *vma, unsigned long addr, int shift)
1984 * for small pages, there is no difference between
1985 * shift and PAGE_SHIFT, so the bit-shift is safe.
1986 * for huge pages, since vm_pgoff is in units of small
1987 * pages, we need to shift off the always 0 bits to get
1990 BUG_ON(shift < PAGE_SHIFT);
1991 off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
1992 off += (addr - vma->vm_start) >> shift;
1993 return offset_il_node(pol, off);
1995 return interleave_nodes(pol);
1998 #ifdef CONFIG_HUGETLBFS
2000 * huge_node(@vma, @addr, @gfp_flags, @mpol)
2001 * @vma: virtual memory area whose policy is sought
2002 * @addr: address in @vma for shared policy lookup and interleave policy
2003 * @gfp_flags: for requested zone
2004 * @mpol: pointer to mempolicy pointer for reference counted mempolicy
2005 * @nodemask: pointer to nodemask pointer for 'bind' and 'prefer-many' policy
2007 * Returns a nid suitable for a huge page allocation and a pointer
2008 * to the struct mempolicy for conditional unref after allocation.
2009 * If the effective policy is 'bind' or 'prefer-many', returns a pointer
2010 * to the mempolicy's @nodemask for filtering the zonelist.
2012 * Must be protected by read_mems_allowed_begin()
2014 int huge_node(struct vm_area_struct *vma, unsigned long addr, gfp_t gfp_flags,
2015 struct mempolicy **mpol, nodemask_t **nodemask)
2020 *mpol = get_vma_policy(vma, addr);
2022 mode = (*mpol)->mode;
2024 if (unlikely(mode == MPOL_INTERLEAVE)) {
2025 nid = interleave_nid(*mpol, vma, addr,
2026 huge_page_shift(hstate_vma(vma)));
2028 nid = policy_node(gfp_flags, *mpol, numa_node_id());
2029 if (mode == MPOL_BIND || mode == MPOL_PREFERRED_MANY)
2030 *nodemask = &(*mpol)->nodes;
2036 * init_nodemask_of_mempolicy
2038 * If the current task's mempolicy is "default" [NULL], return 'false'
2039 * to indicate default policy. Otherwise, extract the policy nodemask
2040 * for 'bind' or 'interleave' policy into the argument nodemask, or
2041 * initialize the argument nodemask to contain the single node for
2042 * 'preferred' or 'local' policy and return 'true' to indicate presence
2043 * of non-default mempolicy.
2045 * We don't bother with reference counting the mempolicy [mpol_get/put]
2046 * because the current task is examining it's own mempolicy and a task's
2047 * mempolicy is only ever changed by the task itself.
2049 * N.B., it is the caller's responsibility to free a returned nodemask.
2051 bool init_nodemask_of_mempolicy(nodemask_t *mask)
2053 struct mempolicy *mempolicy;
2055 if (!(mask && current->mempolicy))
2059 mempolicy = current->mempolicy;
2060 switch (mempolicy->mode) {
2061 case MPOL_PREFERRED:
2062 case MPOL_PREFERRED_MANY:
2064 case MPOL_INTERLEAVE:
2065 *mask = mempolicy->nodes;
2069 init_nodemask_of_node(mask, numa_node_id());
2075 task_unlock(current);
2082 * mempolicy_in_oom_domain
2084 * If tsk's mempolicy is "bind", check for intersection between mask and
2085 * the policy nodemask. Otherwise, return true for all other policies
2086 * including "interleave", as a tsk with "interleave" policy may have
2087 * memory allocated from all nodes in system.
2089 * Takes task_lock(tsk) to prevent freeing of its mempolicy.
2091 bool mempolicy_in_oom_domain(struct task_struct *tsk,
2092 const nodemask_t *mask)
2094 struct mempolicy *mempolicy;
2101 mempolicy = tsk->mempolicy;
2102 if (mempolicy && mempolicy->mode == MPOL_BIND)
2103 ret = nodes_intersects(mempolicy->nodes, *mask);
2109 /* Allocate a page in interleaved policy.
2110 Own path because it needs to do special accounting. */
2111 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
2116 page = __alloc_pages(gfp, order, nid, NULL);
2117 /* skip NUMA_INTERLEAVE_HIT counter update if numa stats is disabled */
2118 if (!static_branch_likely(&vm_numa_stat_key))
2120 if (page && page_to_nid(page) == nid) {
2122 __count_numa_event(page_zone(page), NUMA_INTERLEAVE_HIT);
2128 static struct page *alloc_pages_preferred_many(gfp_t gfp, unsigned int order,
2129 int nid, struct mempolicy *pol)
2132 gfp_t preferred_gfp;
2135 * This is a two pass approach. The first pass will only try the
2136 * preferred nodes but skip the direct reclaim and allow the
2137 * allocation to fail, while the second pass will try all the
2140 preferred_gfp = gfp | __GFP_NOWARN;
2141 preferred_gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2142 page = __alloc_pages(preferred_gfp, order, nid, &pol->nodes);
2144 page = __alloc_pages(gfp, order, nid, NULL);
2150 * vma_alloc_folio - Allocate a folio for a VMA.
2152 * @order: Order of the folio.
2153 * @vma: Pointer to VMA or NULL if not available.
2154 * @addr: Virtual address of the allocation. Must be inside @vma.
2155 * @hugepage: For hugepages try only the preferred node if possible.
2157 * Allocate a folio for a specific address in @vma, using the appropriate
2158 * NUMA policy. When @vma is not NULL the caller must hold the mmap_lock
2159 * of the mm_struct of the VMA to prevent it from going away. Should be
2160 * used for all allocations for folios that will be mapped into user space.
2162 * Return: The folio on success or NULL if allocation fails.
2164 struct folio *vma_alloc_folio(gfp_t gfp, int order, struct vm_area_struct *vma,
2165 unsigned long addr, bool hugepage)
2167 struct mempolicy *pol;
2168 int node = numa_node_id();
2169 struct folio *folio;
2173 pol = get_vma_policy(vma, addr);
2175 if (pol->mode == MPOL_INTERLEAVE) {
2179 nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order);
2182 page = alloc_page_interleave(gfp, order, nid);
2183 if (page && order > 1)
2184 prep_transhuge_page(page);
2185 folio = (struct folio *)page;
2189 if (pol->mode == MPOL_PREFERRED_MANY) {
2192 node = policy_node(gfp, pol, node);
2194 page = alloc_pages_preferred_many(gfp, order, node, pol);
2196 if (page && order > 1)
2197 prep_transhuge_page(page);
2198 folio = (struct folio *)page;
2202 if (unlikely(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && hugepage)) {
2203 int hpage_node = node;
2206 * For hugepage allocation and non-interleave policy which
2207 * allows the current node (or other explicitly preferred
2208 * node) we only try to allocate from the current/preferred
2209 * node and don't fall back to other nodes, as the cost of
2210 * remote accesses would likely offset THP benefits.
2212 * If the policy is interleave or does not allow the current
2213 * node in its nodemask, we allocate the standard way.
2215 if (pol->mode == MPOL_PREFERRED)
2216 hpage_node = first_node(pol->nodes);
2218 nmask = policy_nodemask(gfp, pol);
2219 if (!nmask || node_isset(hpage_node, *nmask)) {
2222 * First, try to allocate THP only on local node, but
2223 * don't reclaim unnecessarily, just compact.
2225 folio = __folio_alloc_node(gfp | __GFP_THISNODE |
2226 __GFP_NORETRY, order, hpage_node);
2229 * If hugepage allocations are configured to always
2230 * synchronous compact or the vma has been madvised
2231 * to prefer hugepage backing, retry allowing remote
2232 * memory with both reclaim and compact as well.
2234 if (!folio && (gfp & __GFP_DIRECT_RECLAIM))
2235 folio = __folio_alloc(gfp, order, hpage_node,
2242 nmask = policy_nodemask(gfp, pol);
2243 preferred_nid = policy_node(gfp, pol, node);
2244 folio = __folio_alloc(gfp, order, preferred_nid, nmask);
2249 EXPORT_SYMBOL(vma_alloc_folio);
2252 * alloc_pages - Allocate pages.
2254 * @order: Power of two of number of pages to allocate.
2256 * Allocate 1 << @order contiguous pages. The physical address of the
2257 * first page is naturally aligned (eg an order-3 allocation will be aligned
2258 * to a multiple of 8 * PAGE_SIZE bytes). The NUMA policy of the current
2259 * process is honoured when in process context.
2261 * Context: Can be called from any context, providing the appropriate GFP
2263 * Return: The page on success or NULL if allocation fails.
2265 struct page *alloc_pages(gfp_t gfp, unsigned order)
2267 struct mempolicy *pol = &default_policy;
2270 if (!in_interrupt() && !(gfp & __GFP_THISNODE))
2271 pol = get_task_policy(current);
2274 * No reference counting needed for current->mempolicy
2275 * nor system default_policy
2277 if (pol->mode == MPOL_INTERLEAVE)
2278 page = alloc_page_interleave(gfp, order, interleave_nodes(pol));
2279 else if (pol->mode == MPOL_PREFERRED_MANY)
2280 page = alloc_pages_preferred_many(gfp, order,
2281 policy_node(gfp, pol, numa_node_id()), pol);
2283 page = __alloc_pages(gfp, order,
2284 policy_node(gfp, pol, numa_node_id()),
2285 policy_nodemask(gfp, pol));
2289 EXPORT_SYMBOL(alloc_pages);
2291 struct folio *folio_alloc(gfp_t gfp, unsigned order)
2293 struct page *page = alloc_pages(gfp | __GFP_COMP, order);
2295 if (page && order > 1)
2296 prep_transhuge_page(page);
2297 return (struct folio *)page;
2299 EXPORT_SYMBOL(folio_alloc);
2301 static unsigned long alloc_pages_bulk_array_interleave(gfp_t gfp,
2302 struct mempolicy *pol, unsigned long nr_pages,
2303 struct page **page_array)
2306 unsigned long nr_pages_per_node;
2309 unsigned long nr_allocated;
2310 unsigned long total_allocated = 0;
2312 nodes = nodes_weight(pol->nodes);
2313 nr_pages_per_node = nr_pages / nodes;
2314 delta = nr_pages - nodes * nr_pages_per_node;
2316 for (i = 0; i < nodes; i++) {
2318 nr_allocated = __alloc_pages_bulk(gfp,
2319 interleave_nodes(pol), NULL,
2320 nr_pages_per_node + 1, NULL,
2324 nr_allocated = __alloc_pages_bulk(gfp,
2325 interleave_nodes(pol), NULL,
2326 nr_pages_per_node, NULL, page_array);
2329 page_array += nr_allocated;
2330 total_allocated += nr_allocated;
2333 return total_allocated;
2336 static unsigned long alloc_pages_bulk_array_preferred_many(gfp_t gfp, int nid,
2337 struct mempolicy *pol, unsigned long nr_pages,
2338 struct page **page_array)
2340 gfp_t preferred_gfp;
2341 unsigned long nr_allocated = 0;
2343 preferred_gfp = gfp | __GFP_NOWARN;
2344 preferred_gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2346 nr_allocated = __alloc_pages_bulk(preferred_gfp, nid, &pol->nodes,
2347 nr_pages, NULL, page_array);
2349 if (nr_allocated < nr_pages)
2350 nr_allocated += __alloc_pages_bulk(gfp, numa_node_id(), NULL,
2351 nr_pages - nr_allocated, NULL,
2352 page_array + nr_allocated);
2353 return nr_allocated;
2356 /* alloc pages bulk and mempolicy should be considered at the
2357 * same time in some situation such as vmalloc.
2359 * It can accelerate memory allocation especially interleaving
2362 unsigned long alloc_pages_bulk_array_mempolicy(gfp_t gfp,
2363 unsigned long nr_pages, struct page **page_array)
2365 struct mempolicy *pol = &default_policy;
2367 if (!in_interrupt() && !(gfp & __GFP_THISNODE))
2368 pol = get_task_policy(current);
2370 if (pol->mode == MPOL_INTERLEAVE)
2371 return alloc_pages_bulk_array_interleave(gfp, pol,
2372 nr_pages, page_array);
2374 if (pol->mode == MPOL_PREFERRED_MANY)
2375 return alloc_pages_bulk_array_preferred_many(gfp,
2376 numa_node_id(), pol, nr_pages, page_array);
2378 return __alloc_pages_bulk(gfp, policy_node(gfp, pol, numa_node_id()),
2379 policy_nodemask(gfp, pol), nr_pages, NULL,
2383 int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst)
2385 struct mempolicy *pol = mpol_dup(vma_policy(src));
2388 return PTR_ERR(pol);
2389 dst->vm_policy = pol;
2394 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
2395 * rebinds the mempolicy its copying by calling mpol_rebind_policy()
2396 * with the mems_allowed returned by cpuset_mems_allowed(). This
2397 * keeps mempolicies cpuset relative after its cpuset moves. See
2398 * further kernel/cpuset.c update_nodemask().
2400 * current's mempolicy may be rebinded by the other task(the task that changes
2401 * cpuset's mems), so we needn't do rebind work for current task.
2404 /* Slow path of a mempolicy duplicate */
2405 struct mempolicy *__mpol_dup(struct mempolicy *old)
2407 struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2410 return ERR_PTR(-ENOMEM);
2412 /* task's mempolicy is protected by alloc_lock */
2413 if (old == current->mempolicy) {
2416 task_unlock(current);
2420 if (current_cpuset_is_being_rebound()) {
2421 nodemask_t mems = cpuset_mems_allowed(current);
2422 mpol_rebind_policy(new, &mems);
2424 atomic_set(&new->refcnt, 1);
2428 /* Slow path of a mempolicy comparison */
2429 bool __mpol_equal(struct mempolicy *a, struct mempolicy *b)
2433 if (a->mode != b->mode)
2435 if (a->flags != b->flags)
2437 if (a->home_node != b->home_node)
2439 if (mpol_store_user_nodemask(a))
2440 if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
2445 case MPOL_INTERLEAVE:
2446 case MPOL_PREFERRED:
2447 case MPOL_PREFERRED_MANY:
2448 return !!nodes_equal(a->nodes, b->nodes);
2458 * Shared memory backing store policy support.
2460 * Remember policies even when nobody has shared memory mapped.
2461 * The policies are kept in Red-Black tree linked from the inode.
2462 * They are protected by the sp->lock rwlock, which should be held
2463 * for any accesses to the tree.
2467 * lookup first element intersecting start-end. Caller holds sp->lock for
2468 * reading or for writing
2470 static struct sp_node *
2471 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
2473 struct rb_node *n = sp->root.rb_node;
2476 struct sp_node *p = rb_entry(n, struct sp_node, nd);
2478 if (start >= p->end)
2480 else if (end <= p->start)
2488 struct sp_node *w = NULL;
2489 struct rb_node *prev = rb_prev(n);
2492 w = rb_entry(prev, struct sp_node, nd);
2493 if (w->end <= start)
2497 return rb_entry(n, struct sp_node, nd);
2501 * Insert a new shared policy into the list. Caller holds sp->lock for
2504 static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2506 struct rb_node **p = &sp->root.rb_node;
2507 struct rb_node *parent = NULL;
2512 nd = rb_entry(parent, struct sp_node, nd);
2513 if (new->start < nd->start)
2515 else if (new->end > nd->end)
2516 p = &(*p)->rb_right;
2520 rb_link_node(&new->nd, parent, p);
2521 rb_insert_color(&new->nd, &sp->root);
2522 pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
2523 new->policy ? new->policy->mode : 0);
2526 /* Find shared policy intersecting idx */
2528 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
2530 struct mempolicy *pol = NULL;
2533 if (!sp->root.rb_node)
2535 read_lock(&sp->lock);
2536 sn = sp_lookup(sp, idx, idx+1);
2538 mpol_get(sn->policy);
2541 read_unlock(&sp->lock);
2545 static void sp_free(struct sp_node *n)
2547 mpol_put(n->policy);
2548 kmem_cache_free(sn_cache, n);
2552 * mpol_misplaced - check whether current page node is valid in policy
2554 * @page: page to be checked
2555 * @vma: vm area where page mapped
2556 * @addr: virtual address where page mapped
2558 * Lookup current policy node id for vma,addr and "compare to" page's
2559 * node id. Policy determination "mimics" alloc_page_vma().
2560 * Called from fault path where we know the vma and faulting address.
2562 * Return: NUMA_NO_NODE if the page is in a node that is valid for this
2563 * policy, or a suitable node ID to allocate a replacement page from.
2565 int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr)
2567 struct mempolicy *pol;
2569 int curnid = page_to_nid(page);
2570 unsigned long pgoff;
2571 int thiscpu = raw_smp_processor_id();
2572 int thisnid = cpu_to_node(thiscpu);
2573 int polnid = NUMA_NO_NODE;
2574 int ret = NUMA_NO_NODE;
2576 pol = get_vma_policy(vma, addr);
2577 if (!(pol->flags & MPOL_F_MOF))
2580 switch (pol->mode) {
2581 case MPOL_INTERLEAVE:
2582 pgoff = vma->vm_pgoff;
2583 pgoff += (addr - vma->vm_start) >> PAGE_SHIFT;
2584 polnid = offset_il_node(pol, pgoff);
2587 case MPOL_PREFERRED:
2588 if (node_isset(curnid, pol->nodes))
2590 polnid = first_node(pol->nodes);
2594 polnid = numa_node_id();
2598 /* Optimize placement among multiple nodes via NUMA balancing */
2599 if (pol->flags & MPOL_F_MORON) {
2600 if (node_isset(thisnid, pol->nodes))
2606 case MPOL_PREFERRED_MANY:
2608 * use current page if in policy nodemask,
2609 * else select nearest allowed node, if any.
2610 * If no allowed nodes, use current [!misplaced].
2612 if (node_isset(curnid, pol->nodes))
2614 z = first_zones_zonelist(
2615 node_zonelist(numa_node_id(), GFP_HIGHUSER),
2616 gfp_zone(GFP_HIGHUSER),
2618 polnid = zone_to_nid(z->zone);
2625 /* Migrate the page towards the node whose CPU is referencing it */
2626 if (pol->flags & MPOL_F_MORON) {
2629 if (!should_numa_migrate_memory(current, page, curnid, thiscpu))
2633 if (curnid != polnid)
2642 * Drop the (possibly final) reference to task->mempolicy. It needs to be
2643 * dropped after task->mempolicy is set to NULL so that any allocation done as
2644 * part of its kmem_cache_free(), such as by KASAN, doesn't reference a freed
2647 void mpol_put_task_policy(struct task_struct *task)
2649 struct mempolicy *pol;
2652 pol = task->mempolicy;
2653 task->mempolicy = NULL;
2658 static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2660 pr_debug("deleting %lx-l%lx\n", n->start, n->end);
2661 rb_erase(&n->nd, &sp->root);
2665 static void sp_node_init(struct sp_node *node, unsigned long start,
2666 unsigned long end, struct mempolicy *pol)
2668 node->start = start;
2673 static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2674 struct mempolicy *pol)
2677 struct mempolicy *newpol;
2679 n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2683 newpol = mpol_dup(pol);
2684 if (IS_ERR(newpol)) {
2685 kmem_cache_free(sn_cache, n);
2688 newpol->flags |= MPOL_F_SHARED;
2689 sp_node_init(n, start, end, newpol);
2694 /* Replace a policy range. */
2695 static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
2696 unsigned long end, struct sp_node *new)
2699 struct sp_node *n_new = NULL;
2700 struct mempolicy *mpol_new = NULL;
2704 write_lock(&sp->lock);
2705 n = sp_lookup(sp, start, end);
2706 /* Take care of old policies in the same range. */
2707 while (n && n->start < end) {
2708 struct rb_node *next = rb_next(&n->nd);
2709 if (n->start >= start) {
2715 /* Old policy spanning whole new range. */
2720 *mpol_new = *n->policy;
2721 atomic_set(&mpol_new->refcnt, 1);
2722 sp_node_init(n_new, end, n->end, mpol_new);
2724 sp_insert(sp, n_new);
2733 n = rb_entry(next, struct sp_node, nd);
2737 write_unlock(&sp->lock);
2744 kmem_cache_free(sn_cache, n_new);
2749 write_unlock(&sp->lock);
2751 n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2754 mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2757 atomic_set(&mpol_new->refcnt, 1);
2762 * mpol_shared_policy_init - initialize shared policy for inode
2763 * @sp: pointer to inode shared policy
2764 * @mpol: struct mempolicy to install
2766 * Install non-NULL @mpol in inode's shared policy rb-tree.
2767 * On entry, the current task has a reference on a non-NULL @mpol.
2768 * This must be released on exit.
2769 * This is called at get_inode() calls and we can use GFP_KERNEL.
2771 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2775 sp->root = RB_ROOT; /* empty tree == default mempolicy */
2776 rwlock_init(&sp->lock);
2779 struct vm_area_struct pvma;
2780 struct mempolicy *new;
2781 NODEMASK_SCRATCH(scratch);
2785 /* contextualize the tmpfs mount point mempolicy */
2786 new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2788 goto free_scratch; /* no valid nodemask intersection */
2791 ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch);
2792 task_unlock(current);
2796 /* Create pseudo-vma that contains just the policy */
2797 vma_init(&pvma, NULL);
2798 pvma.vm_end = TASK_SIZE; /* policy covers entire file */
2799 mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
2802 mpol_put(new); /* drop initial ref */
2804 NODEMASK_SCRATCH_FREE(scratch);
2806 mpol_put(mpol); /* drop our incoming ref on sb mpol */
2810 int mpol_set_shared_policy(struct shared_policy *info,
2811 struct vm_area_struct *vma, struct mempolicy *npol)
2814 struct sp_node *new = NULL;
2815 unsigned long sz = vma_pages(vma);
2817 pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2819 sz, npol ? npol->mode : -1,
2820 npol ? npol->flags : -1,
2821 npol ? nodes_addr(npol->nodes)[0] : NUMA_NO_NODE);
2824 new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
2828 err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
2834 /* Free a backing policy store on inode delete. */
2835 void mpol_free_shared_policy(struct shared_policy *p)
2838 struct rb_node *next;
2840 if (!p->root.rb_node)
2842 write_lock(&p->lock);
2843 next = rb_first(&p->root);
2845 n = rb_entry(next, struct sp_node, nd);
2846 next = rb_next(&n->nd);
2849 write_unlock(&p->lock);
2852 #ifdef CONFIG_NUMA_BALANCING
2853 static int __initdata numabalancing_override;
2855 static void __init check_numabalancing_enable(void)
2857 bool numabalancing_default = false;
2859 if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED))
2860 numabalancing_default = true;
2862 /* Parsed by setup_numabalancing. override == 1 enables, -1 disables */
2863 if (numabalancing_override)
2864 set_numabalancing_state(numabalancing_override == 1);
2866 if (num_online_nodes() > 1 && !numabalancing_override) {
2867 pr_info("%s automatic NUMA balancing. Configure with numa_balancing= or the kernel.numa_balancing sysctl\n",
2868 numabalancing_default ? "Enabling" : "Disabling");
2869 set_numabalancing_state(numabalancing_default);
2873 static int __init setup_numabalancing(char *str)
2879 if (!strcmp(str, "enable")) {
2880 numabalancing_override = 1;
2882 } else if (!strcmp(str, "disable")) {
2883 numabalancing_override = -1;
2888 pr_warn("Unable to parse numa_balancing=\n");
2892 __setup("numa_balancing=", setup_numabalancing);
2894 static inline void __init check_numabalancing_enable(void)
2897 #endif /* CONFIG_NUMA_BALANCING */
2899 /* assumes fs == KERNEL_DS */
2900 void __init numa_policy_init(void)
2902 nodemask_t interleave_nodes;
2903 unsigned long largest = 0;
2904 int nid, prefer = 0;
2906 policy_cache = kmem_cache_create("numa_policy",
2907 sizeof(struct mempolicy),
2908 0, SLAB_PANIC, NULL);
2910 sn_cache = kmem_cache_create("shared_policy_node",
2911 sizeof(struct sp_node),
2912 0, SLAB_PANIC, NULL);
2914 for_each_node(nid) {
2915 preferred_node_policy[nid] = (struct mempolicy) {
2916 .refcnt = ATOMIC_INIT(1),
2917 .mode = MPOL_PREFERRED,
2918 .flags = MPOL_F_MOF | MPOL_F_MORON,
2919 .nodes = nodemask_of_node(nid),
2924 * Set interleaving policy for system init. Interleaving is only
2925 * enabled across suitably sized nodes (default is >= 16MB), or
2926 * fall back to the largest node if they're all smaller.
2928 nodes_clear(interleave_nodes);
2929 for_each_node_state(nid, N_MEMORY) {
2930 unsigned long total_pages = node_present_pages(nid);
2932 /* Preserve the largest node */
2933 if (largest < total_pages) {
2934 largest = total_pages;
2938 /* Interleave this node? */
2939 if ((total_pages << PAGE_SHIFT) >= (16 << 20))
2940 node_set(nid, interleave_nodes);
2943 /* All too small, use the largest */
2944 if (unlikely(nodes_empty(interleave_nodes)))
2945 node_set(prefer, interleave_nodes);
2947 if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
2948 pr_err("%s: interleaving failed\n", __func__);
2950 check_numabalancing_enable();
2953 /* Reset policy of current process to default */
2954 void numa_default_policy(void)
2956 do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
2960 * Parse and format mempolicy from/to strings
2963 static const char * const policy_modes[] =
2965 [MPOL_DEFAULT] = "default",
2966 [MPOL_PREFERRED] = "prefer",
2967 [MPOL_BIND] = "bind",
2968 [MPOL_INTERLEAVE] = "interleave",
2969 [MPOL_LOCAL] = "local",
2970 [MPOL_PREFERRED_MANY] = "prefer (many)",
2976 * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option.
2977 * @str: string containing mempolicy to parse
2978 * @mpol: pointer to struct mempolicy pointer, returned on success.
2981 * <mode>[=<flags>][:<nodelist>]
2983 * Return: %0 on success, else %1
2985 int mpol_parse_str(char *str, struct mempolicy **mpol)
2987 struct mempolicy *new = NULL;
2988 unsigned short mode_flags;
2990 char *nodelist = strchr(str, ':');
2991 char *flags = strchr(str, '=');
2995 *flags++ = '\0'; /* terminate mode string */
2998 /* NUL-terminate mode or flags string */
3000 if (nodelist_parse(nodelist, nodes))
3002 if (!nodes_subset(nodes, node_states[N_MEMORY]))
3007 mode = match_string(policy_modes, MPOL_MAX, str);
3012 case MPOL_PREFERRED:
3014 * Insist on a nodelist of one node only, although later
3015 * we use first_node(nodes) to grab a single node, so here
3016 * nodelist (or nodes) cannot be empty.
3019 char *rest = nodelist;
3020 while (isdigit(*rest))
3024 if (nodes_empty(nodes))
3028 case MPOL_INTERLEAVE:
3030 * Default to online nodes with memory if no nodelist
3033 nodes = node_states[N_MEMORY];
3037 * Don't allow a nodelist; mpol_new() checks flags
3044 * Insist on a empty nodelist
3049 case MPOL_PREFERRED_MANY:
3052 * Insist on a nodelist
3061 * Currently, we only support two mutually exclusive
3064 if (!strcmp(flags, "static"))
3065 mode_flags |= MPOL_F_STATIC_NODES;
3066 else if (!strcmp(flags, "relative"))
3067 mode_flags |= MPOL_F_RELATIVE_NODES;
3072 new = mpol_new(mode, mode_flags, &nodes);
3077 * Save nodes for mpol_to_str() to show the tmpfs mount options
3078 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo.
3080 if (mode != MPOL_PREFERRED) {
3082 } else if (nodelist) {
3083 nodes_clear(new->nodes);
3084 node_set(first_node(nodes), new->nodes);
3086 new->mode = MPOL_LOCAL;
3090 * Save nodes for contextualization: this will be used to "clone"
3091 * the mempolicy in a specific context [cpuset] at a later time.
3093 new->w.user_nodemask = nodes;
3098 /* Restore string for error message */
3107 #endif /* CONFIG_TMPFS */
3110 * mpol_to_str - format a mempolicy structure for printing
3111 * @buffer: to contain formatted mempolicy string
3112 * @maxlen: length of @buffer
3113 * @pol: pointer to mempolicy to be formatted
3115 * Convert @pol into a string. If @buffer is too short, truncate the string.
3116 * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the
3117 * longest flag, "relative", and to display at least a few node ids.
3119 void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
3122 nodemask_t nodes = NODE_MASK_NONE;
3123 unsigned short mode = MPOL_DEFAULT;
3124 unsigned short flags = 0;
3126 if (pol && pol != &default_policy && !(pol->flags & MPOL_F_MORON)) {
3135 case MPOL_PREFERRED:
3136 case MPOL_PREFERRED_MANY:
3138 case MPOL_INTERLEAVE:
3143 snprintf(p, maxlen, "unknown");
3147 p += snprintf(p, maxlen, "%s", policy_modes[mode]);
3149 if (flags & MPOL_MODE_FLAGS) {
3150 p += snprintf(p, buffer + maxlen - p, "=");
3153 * Currently, the only defined flags are mutually exclusive
3155 if (flags & MPOL_F_STATIC_NODES)
3156 p += snprintf(p, buffer + maxlen - p, "static");
3157 else if (flags & MPOL_F_RELATIVE_NODES)
3158 p += snprintf(p, buffer + maxlen - p, "relative");
3161 if (!nodes_empty(nodes))
3162 p += scnprintf(p, buffer + maxlen - p, ":%*pbl",
3163 nodemask_pr_args(&nodes));