1 // SPDX-License-Identifier: GPL-2.0-only
3 * Simple NUMA memory policy for the Linux kernel.
5 * Copyright 2003,2004 Andi Kleen, SuSE Labs.
6 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
8 * NUMA policy allows the user to give hints in which node(s) memory should
11 * Support four policies per VMA and per process:
13 * The VMA policy has priority over the process policy for a page fault.
15 * interleave Allocate memory interleaved over a set of nodes,
16 * with normal fallback if it fails.
17 * For VMA based allocations this interleaves based on the
18 * offset into the backing object or offset into the mapping
19 * for anonymous memory. For process policy an process counter
22 * bind Only allocate memory on a specific set of nodes,
24 * FIXME: memory is allocated starting with the first node
25 * to the last. It would be better if bind would truly restrict
26 * the allocation to memory nodes instead
28 * preferred Try a specific node first before normal fallback.
29 * As a special case NUMA_NO_NODE here means do the allocation
30 * on the local CPU. This is normally identical to default,
31 * but useful to set in a VMA when you have a non default
34 * default Allocate on the local node first, or when on a VMA
35 * use the process policy. This is what Linux always did
36 * in a NUMA aware kernel and still does by, ahem, default.
38 * The process policy is applied for most non interrupt memory allocations
39 * in that process' context. Interrupts ignore the policies and always
40 * try to allocate on the local CPU. The VMA policy is only applied for memory
41 * allocations for a VMA in the VM.
43 * Currently there are a few corner cases in swapping where the policy
44 * is not applied, but the majority should be handled. When process policy
45 * is used it is not remembered over swap outs/swap ins.
47 * Only the highest zone in the zone hierarchy gets policied. Allocations
48 * requesting a lower zone just use default policy. This implies that
49 * on systems with highmem kernel lowmem allocation don't get policied.
50 * Same with GFP_DMA allocations.
52 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
53 * all users and remembered even when nobody has memory mapped.
57 fix mmap readahead to honour policy and enable policy for any page cache
59 statistics for bigpages
60 global policy for page cache? currently it uses process policy. Requires
62 handle mremap for shared memory (currently ignored for the policy)
64 make bind policy root only? It can trigger oom much faster and the
65 kernel is not always grateful with that.
68 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
70 #include <linux/mempolicy.h>
71 #include <linux/pagewalk.h>
72 #include <linux/highmem.h>
73 #include <linux/hugetlb.h>
74 #include <linux/kernel.h>
75 #include <linux/sched.h>
76 #include <linux/sched/mm.h>
77 #include <linux/sched/numa_balancing.h>
78 #include <linux/sched/task.h>
79 #include <linux/nodemask.h>
80 #include <linux/cpuset.h>
81 #include <linux/slab.h>
82 #include <linux/string.h>
83 #include <linux/export.h>
84 #include <linux/nsproxy.h>
85 #include <linux/interrupt.h>
86 #include <linux/init.h>
87 #include <linux/compat.h>
88 #include <linux/ptrace.h>
89 #include <linux/swap.h>
90 #include <linux/seq_file.h>
91 #include <linux/proc_fs.h>
92 #include <linux/migrate.h>
93 #include <linux/ksm.h>
94 #include <linux/rmap.h>
95 #include <linux/security.h>
96 #include <linux/syscalls.h>
97 #include <linux/ctype.h>
98 #include <linux/mm_inline.h>
99 #include <linux/mmu_notifier.h>
100 #include <linux/printk.h>
101 #include <linux/swapops.h>
103 #include <asm/tlbflush.h>
104 #include <linux/uaccess.h>
106 #include "internal.h"
109 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */
110 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */
112 static struct kmem_cache *policy_cache;
113 static struct kmem_cache *sn_cache;
115 /* Highest zone. An specific allocation for a zone below that is not
117 enum zone_type policy_zone = 0;
120 * run-time system-wide default policy => local allocation
122 static struct mempolicy default_policy = {
123 .refcnt = ATOMIC_INIT(1), /* never free it */
124 .mode = MPOL_PREFERRED,
125 .flags = MPOL_F_LOCAL,
128 static struct mempolicy preferred_node_policy[MAX_NUMNODES];
130 struct mempolicy *get_task_policy(struct task_struct *p)
132 struct mempolicy *pol = p->mempolicy;
138 node = numa_node_id();
139 if (node != NUMA_NO_NODE) {
140 pol = &preferred_node_policy[node];
141 /* preferred_node_policy is not initialised early in boot */
146 return &default_policy;
149 static const struct mempolicy_operations {
150 int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
151 void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes);
152 } mpol_ops[MPOL_MAX];
154 static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
156 return pol->flags & MPOL_MODE_FLAGS;
159 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
160 const nodemask_t *rel)
163 nodes_fold(tmp, *orig, nodes_weight(*rel));
164 nodes_onto(*ret, tmp, *rel);
167 static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes)
169 if (nodes_empty(*nodes))
171 pol->v.nodes = *nodes;
175 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
178 pol->flags |= MPOL_F_LOCAL; /* local allocation */
179 else if (nodes_empty(*nodes))
180 return -EINVAL; /* no allowed nodes */
182 pol->v.preferred_node = first_node(*nodes);
186 static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes)
188 if (nodes_empty(*nodes))
190 pol->v.nodes = *nodes;
195 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
196 * any, for the new policy. mpol_new() has already validated the nodes
197 * parameter with respect to the policy mode and flags. But, we need to
198 * handle an empty nodemask with MPOL_PREFERRED here.
200 * Must be called holding task's alloc_lock to protect task's mems_allowed
201 * and mempolicy. May also be called holding the mmap_semaphore for write.
203 static int mpol_set_nodemask(struct mempolicy *pol,
204 const nodemask_t *nodes, struct nodemask_scratch *nsc)
208 /* if mode is MPOL_DEFAULT, pol is NULL. This is right. */
212 nodes_and(nsc->mask1,
213 cpuset_current_mems_allowed, node_states[N_MEMORY]);
216 if (pol->mode == MPOL_PREFERRED && nodes_empty(*nodes))
217 nodes = NULL; /* explicit local allocation */
219 if (pol->flags & MPOL_F_RELATIVE_NODES)
220 mpol_relative_nodemask(&nsc->mask2, nodes, &nsc->mask1);
222 nodes_and(nsc->mask2, *nodes, nsc->mask1);
224 if (mpol_store_user_nodemask(pol))
225 pol->w.user_nodemask = *nodes;
227 pol->w.cpuset_mems_allowed =
228 cpuset_current_mems_allowed;
232 ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
234 ret = mpol_ops[pol->mode].create(pol, NULL);
239 * This function just creates a new policy, does some check and simple
240 * initialization. You must invoke mpol_set_nodemask() to set nodes.
242 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
245 struct mempolicy *policy;
247 pr_debug("setting mode %d flags %d nodes[0] %lx\n",
248 mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE);
250 if (mode == MPOL_DEFAULT) {
251 if (nodes && !nodes_empty(*nodes))
252 return ERR_PTR(-EINVAL);
258 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
259 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
260 * All other modes require a valid pointer to a non-empty nodemask.
262 if (mode == MPOL_PREFERRED) {
263 if (nodes_empty(*nodes)) {
264 if (((flags & MPOL_F_STATIC_NODES) ||
265 (flags & MPOL_F_RELATIVE_NODES)))
266 return ERR_PTR(-EINVAL);
268 } else if (mode == MPOL_LOCAL) {
269 if (!nodes_empty(*nodes) ||
270 (flags & MPOL_F_STATIC_NODES) ||
271 (flags & MPOL_F_RELATIVE_NODES))
272 return ERR_PTR(-EINVAL);
273 mode = MPOL_PREFERRED;
274 } else if (nodes_empty(*nodes))
275 return ERR_PTR(-EINVAL);
276 policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
278 return ERR_PTR(-ENOMEM);
279 atomic_set(&policy->refcnt, 1);
281 policy->flags = flags;
286 /* Slow path of a mpol destructor. */
287 void __mpol_put(struct mempolicy *p)
289 if (!atomic_dec_and_test(&p->refcnt))
291 kmem_cache_free(policy_cache, p);
294 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes)
298 static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes)
302 if (pol->flags & MPOL_F_STATIC_NODES)
303 nodes_and(tmp, pol->w.user_nodemask, *nodes);
304 else if (pol->flags & MPOL_F_RELATIVE_NODES)
305 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
307 nodes_remap(tmp, pol->v.nodes,pol->w.cpuset_mems_allowed,
309 pol->w.cpuset_mems_allowed = *nodes;
312 if (nodes_empty(tmp))
318 static void mpol_rebind_preferred(struct mempolicy *pol,
319 const nodemask_t *nodes)
323 if (pol->flags & MPOL_F_STATIC_NODES) {
324 int node = first_node(pol->w.user_nodemask);
326 if (node_isset(node, *nodes)) {
327 pol->v.preferred_node = node;
328 pol->flags &= ~MPOL_F_LOCAL;
330 pol->flags |= MPOL_F_LOCAL;
331 } else if (pol->flags & MPOL_F_RELATIVE_NODES) {
332 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
333 pol->v.preferred_node = first_node(tmp);
334 } else if (!(pol->flags & MPOL_F_LOCAL)) {
335 pol->v.preferred_node = node_remap(pol->v.preferred_node,
336 pol->w.cpuset_mems_allowed,
338 pol->w.cpuset_mems_allowed = *nodes;
343 * mpol_rebind_policy - Migrate a policy to a different set of nodes
345 * Per-vma policies are protected by mmap_sem. Allocations using per-task
346 * policies are protected by task->mems_allowed_seq to prevent a premature
347 * OOM/allocation failure due to parallel nodemask modification.
349 static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask)
353 if (!mpol_store_user_nodemask(pol) && !(pol->flags & MPOL_F_LOCAL) &&
354 nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
357 mpol_ops[pol->mode].rebind(pol, newmask);
361 * Wrapper for mpol_rebind_policy() that just requires task
362 * pointer, and updates task mempolicy.
364 * Called with task's alloc_lock held.
367 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new)
369 mpol_rebind_policy(tsk->mempolicy, new);
373 * Rebind each vma in mm to new nodemask.
375 * Call holding a reference to mm. Takes mm->mmap_sem during call.
378 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
380 struct vm_area_struct *vma;
382 down_write(&mm->mmap_sem);
383 for (vma = mm->mmap; vma; vma = vma->vm_next)
384 mpol_rebind_policy(vma->vm_policy, new);
385 up_write(&mm->mmap_sem);
388 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
390 .rebind = mpol_rebind_default,
392 [MPOL_INTERLEAVE] = {
393 .create = mpol_new_interleave,
394 .rebind = mpol_rebind_nodemask,
397 .create = mpol_new_preferred,
398 .rebind = mpol_rebind_preferred,
401 .create = mpol_new_bind,
402 .rebind = mpol_rebind_nodemask,
406 static int migrate_page_add(struct page *page, struct list_head *pagelist,
407 unsigned long flags);
410 struct list_head *pagelist;
415 struct vm_area_struct *first;
419 * Check if the page's nid is in qp->nmask.
421 * If MPOL_MF_INVERT is set in qp->flags, check if the nid is
422 * in the invert of qp->nmask.
424 static inline bool queue_pages_required(struct page *page,
425 struct queue_pages *qp)
427 int nid = page_to_nid(page);
428 unsigned long flags = qp->flags;
430 return node_isset(nid, *qp->nmask) == !(flags & MPOL_MF_INVERT);
434 * queue_pages_pmd() has four possible return values:
435 * 0 - pages are placed on the right node or queued successfully.
436 * 1 - there is unmovable page, and MPOL_MF_MOVE* & MPOL_MF_STRICT were
439 * -EIO - is migration entry or only MPOL_MF_STRICT was specified and an
440 * existing page was already on a node that does not follow the
443 static int queue_pages_pmd(pmd_t *pmd, spinlock_t *ptl, unsigned long addr,
444 unsigned long end, struct mm_walk *walk)
448 struct queue_pages *qp = walk->private;
451 if (unlikely(is_pmd_migration_entry(*pmd))) {
455 page = pmd_page(*pmd);
456 if (is_huge_zero_page(page)) {
458 __split_huge_pmd(walk->vma, pmd, addr, false, NULL);
462 if (!queue_pages_required(page, qp))
466 /* go to thp migration */
467 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
468 if (!vma_migratable(walk->vma) ||
469 migrate_page_add(page, qp->pagelist, flags)) {
482 * Scan through pages checking if pages follow certain conditions,
483 * and move them to the pagelist if they do.
485 * queue_pages_pte_range() has three possible return values:
486 * 0 - pages are placed on the right node or queued successfully.
487 * 1 - there is unmovable page, and MPOL_MF_MOVE* & MPOL_MF_STRICT were
489 * -EIO - only MPOL_MF_STRICT was specified and an existing page was already
490 * on a node that does not follow the policy.
492 static int queue_pages_pte_range(pmd_t *pmd, unsigned long addr,
493 unsigned long end, struct mm_walk *walk)
495 struct vm_area_struct *vma = walk->vma;
497 struct queue_pages *qp = walk->private;
498 unsigned long flags = qp->flags;
500 bool has_unmovable = false;
504 ptl = pmd_trans_huge_lock(pmd, vma);
506 ret = queue_pages_pmd(pmd, ptl, addr, end, walk);
510 /* THP was split, fall through to pte walk */
512 if (pmd_trans_unstable(pmd))
515 pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
516 for (; addr != end; pte++, addr += PAGE_SIZE) {
517 if (!pte_present(*pte))
519 page = vm_normal_page(vma, addr, *pte);
523 * vm_normal_page() filters out zero pages, but there might
524 * still be PageReserved pages to skip, perhaps in a VDSO.
526 if (PageReserved(page))
528 if (!queue_pages_required(page, qp))
530 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
531 /* MPOL_MF_STRICT must be specified if we get here */
532 if (!vma_migratable(vma)) {
533 has_unmovable = true;
538 * Do not abort immediately since there may be
539 * temporary off LRU pages in the range. Still
540 * need migrate other LRU pages.
542 if (migrate_page_add(page, qp->pagelist, flags))
543 has_unmovable = true;
547 pte_unmap_unlock(pte - 1, ptl);
553 return addr != end ? -EIO : 0;
556 static int queue_pages_hugetlb(pte_t *pte, unsigned long hmask,
557 unsigned long addr, unsigned long end,
558 struct mm_walk *walk)
561 #ifdef CONFIG_HUGETLB_PAGE
562 struct queue_pages *qp = walk->private;
563 unsigned long flags = (qp->flags & MPOL_MF_VALID);
568 ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte);
569 entry = huge_ptep_get(pte);
570 if (!pte_present(entry))
572 page = pte_page(entry);
573 if (!queue_pages_required(page, qp))
576 if (flags == MPOL_MF_STRICT) {
578 * STRICT alone means only detecting misplaced page and no
579 * need to further check other vma.
585 if (!vma_migratable(walk->vma)) {
587 * Must be STRICT with MOVE*, otherwise .test_walk() have
588 * stopped walking current vma.
589 * Detecting misplaced page but allow migrating pages which
596 /* With MPOL_MF_MOVE, we migrate only unshared hugepage. */
597 if (flags & (MPOL_MF_MOVE_ALL) ||
598 (flags & MPOL_MF_MOVE && page_mapcount(page) == 1)) {
599 if (!isolate_huge_page(page, qp->pagelist) &&
600 (flags & MPOL_MF_STRICT))
602 * Failed to isolate page but allow migrating pages
603 * which have been queued.
615 #ifdef CONFIG_NUMA_BALANCING
617 * This is used to mark a range of virtual addresses to be inaccessible.
618 * These are later cleared by a NUMA hinting fault. Depending on these
619 * faults, pages may be migrated for better NUMA placement.
621 * This is assuming that NUMA faults are handled using PROT_NONE. If
622 * an architecture makes a different choice, it will need further
623 * changes to the core.
625 unsigned long change_prot_numa(struct vm_area_struct *vma,
626 unsigned long addr, unsigned long end)
630 nr_updated = change_protection(vma, addr, end, PAGE_NONE, 0, 1);
632 count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated);
637 static unsigned long change_prot_numa(struct vm_area_struct *vma,
638 unsigned long addr, unsigned long end)
642 #endif /* CONFIG_NUMA_BALANCING */
644 static int queue_pages_test_walk(unsigned long start, unsigned long end,
645 struct mm_walk *walk)
647 struct vm_area_struct *vma = walk->vma;
648 struct queue_pages *qp = walk->private;
649 unsigned long endvma = vma->vm_end;
650 unsigned long flags = qp->flags;
652 /* range check first */
653 VM_BUG_ON_VMA((vma->vm_start > start) || (vma->vm_end < end), vma);
657 if (!(flags & MPOL_MF_DISCONTIG_OK) &&
658 (qp->start < vma->vm_start))
659 /* hole at head side of range */
662 if (!(flags & MPOL_MF_DISCONTIG_OK) &&
663 ((vma->vm_end < qp->end) &&
664 (!vma->vm_next || vma->vm_end < vma->vm_next->vm_start)))
665 /* hole at middle or tail of range */
669 * Need check MPOL_MF_STRICT to return -EIO if possible
670 * regardless of vma_migratable
672 if (!vma_migratable(vma) &&
673 !(flags & MPOL_MF_STRICT))
679 if (flags & MPOL_MF_LAZY) {
680 /* Similar to task_numa_work, skip inaccessible VMAs */
681 if (!is_vm_hugetlb_page(vma) &&
682 (vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)) &&
683 !(vma->vm_flags & VM_MIXEDMAP))
684 change_prot_numa(vma, start, endvma);
688 /* queue pages from current vma */
689 if (flags & MPOL_MF_VALID)
694 static const struct mm_walk_ops queue_pages_walk_ops = {
695 .hugetlb_entry = queue_pages_hugetlb,
696 .pmd_entry = queue_pages_pte_range,
697 .test_walk = queue_pages_test_walk,
701 * Walk through page tables and collect pages to be migrated.
703 * If pages found in a given range are on a set of nodes (determined by
704 * @nodes and @flags,) it's isolated and queued to the pagelist which is
705 * passed via @private.
707 * queue_pages_range() has three possible return values:
708 * 1 - there is unmovable page, but MPOL_MF_MOVE* & MPOL_MF_STRICT were
710 * 0 - queue pages successfully or no misplaced page.
711 * errno - i.e. misplaced pages with MPOL_MF_STRICT specified (-EIO) or
712 * memory range specified by nodemask and maxnode points outside
713 * your accessible address space (-EFAULT)
716 queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end,
717 nodemask_t *nodes, unsigned long flags,
718 struct list_head *pagelist)
721 struct queue_pages qp = {
722 .pagelist = pagelist,
730 err = walk_page_range(mm, start, end, &queue_pages_walk_ops, &qp);
733 /* whole range in hole */
740 * Apply policy to a single VMA
741 * This must be called with the mmap_sem held for writing.
743 static int vma_replace_policy(struct vm_area_struct *vma,
744 struct mempolicy *pol)
747 struct mempolicy *old;
748 struct mempolicy *new;
750 pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
751 vma->vm_start, vma->vm_end, vma->vm_pgoff,
752 vma->vm_ops, vma->vm_file,
753 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
759 if (vma->vm_ops && vma->vm_ops->set_policy) {
760 err = vma->vm_ops->set_policy(vma, new);
765 old = vma->vm_policy;
766 vma->vm_policy = new; /* protected by mmap_sem */
775 /* Step 2: apply policy to a range and do splits. */
776 static int mbind_range(struct mm_struct *mm, unsigned long start,
777 unsigned long end, struct mempolicy *new_pol)
779 struct vm_area_struct *next;
780 struct vm_area_struct *prev;
781 struct vm_area_struct *vma;
784 unsigned long vmstart;
787 vma = find_vma(mm, start);
791 if (start > vma->vm_start)
794 for (; vma && vma->vm_start < end; prev = vma, vma = next) {
796 vmstart = max(start, vma->vm_start);
797 vmend = min(end, vma->vm_end);
799 if (mpol_equal(vma_policy(vma), new_pol))
802 pgoff = vma->vm_pgoff +
803 ((vmstart - vma->vm_start) >> PAGE_SHIFT);
804 prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags,
805 vma->anon_vma, vma->vm_file, pgoff,
806 new_pol, vma->vm_userfaultfd_ctx);
810 if (mpol_equal(vma_policy(vma), new_pol))
812 /* vma_merge() joined vma && vma->next, case 8 */
815 if (vma->vm_start != vmstart) {
816 err = split_vma(vma->vm_mm, vma, vmstart, 1);
820 if (vma->vm_end != vmend) {
821 err = split_vma(vma->vm_mm, vma, vmend, 0);
826 err = vma_replace_policy(vma, new_pol);
835 /* Set the process memory policy */
836 static long do_set_mempolicy(unsigned short mode, unsigned short flags,
839 struct mempolicy *new, *old;
840 NODEMASK_SCRATCH(scratch);
846 new = mpol_new(mode, flags, nodes);
853 ret = mpol_set_nodemask(new, nodes, scratch);
855 task_unlock(current);
859 old = current->mempolicy;
860 current->mempolicy = new;
861 if (new && new->mode == MPOL_INTERLEAVE)
862 current->il_prev = MAX_NUMNODES-1;
863 task_unlock(current);
867 NODEMASK_SCRATCH_FREE(scratch);
872 * Return nodemask for policy for get_mempolicy() query
874 * Called with task's alloc_lock held
876 static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
879 if (p == &default_policy)
885 case MPOL_INTERLEAVE:
889 if (!(p->flags & MPOL_F_LOCAL))
890 node_set(p->v.preferred_node, *nodes);
891 /* else return empty node mask for local allocation */
898 static int lookup_node(struct mm_struct *mm, unsigned long addr)
904 err = get_user_pages_locked(addr & PAGE_MASK, 1, 0, &p, &locked);
906 err = page_to_nid(p);
910 up_read(&mm->mmap_sem);
914 /* Retrieve NUMA policy */
915 static long do_get_mempolicy(int *policy, nodemask_t *nmask,
916 unsigned long addr, unsigned long flags)
919 struct mm_struct *mm = current->mm;
920 struct vm_area_struct *vma = NULL;
921 struct mempolicy *pol = current->mempolicy, *pol_refcount = NULL;
924 ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
927 if (flags & MPOL_F_MEMS_ALLOWED) {
928 if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
930 *policy = 0; /* just so it's initialized */
932 *nmask = cpuset_current_mems_allowed;
933 task_unlock(current);
937 if (flags & MPOL_F_ADDR) {
939 * Do NOT fall back to task policy if the
940 * vma/shared policy at addr is NULL. We
941 * want to return MPOL_DEFAULT in this case.
943 down_read(&mm->mmap_sem);
944 vma = find_vma_intersection(mm, addr, addr+1);
946 up_read(&mm->mmap_sem);
949 if (vma->vm_ops && vma->vm_ops->get_policy)
950 pol = vma->vm_ops->get_policy(vma, addr);
952 pol = vma->vm_policy;
957 pol = &default_policy; /* indicates default behavior */
959 if (flags & MPOL_F_NODE) {
960 if (flags & MPOL_F_ADDR) {
962 * Take a refcount on the mpol, lookup_node()
963 * wil drop the mmap_sem, so after calling
964 * lookup_node() only "pol" remains valid, "vma"
970 err = lookup_node(mm, addr);
974 } else if (pol == current->mempolicy &&
975 pol->mode == MPOL_INTERLEAVE) {
976 *policy = next_node_in(current->il_prev, pol->v.nodes);
982 *policy = pol == &default_policy ? MPOL_DEFAULT :
985 * Internal mempolicy flags must be masked off before exposing
986 * the policy to userspace.
988 *policy |= (pol->flags & MPOL_MODE_FLAGS);
993 if (mpol_store_user_nodemask(pol)) {
994 *nmask = pol->w.user_nodemask;
997 get_policy_nodemask(pol, nmask);
998 task_unlock(current);
1005 up_read(&mm->mmap_sem);
1007 mpol_put(pol_refcount);
1011 #ifdef CONFIG_MIGRATION
1013 * page migration, thp tail pages can be passed.
1015 static int migrate_page_add(struct page *page, struct list_head *pagelist,
1016 unsigned long flags)
1018 struct page *head = compound_head(page);
1020 * Avoid migrating a page that is shared with others.
1022 if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(head) == 1) {
1023 if (!isolate_lru_page(head)) {
1024 list_add_tail(&head->lru, pagelist);
1025 mod_node_page_state(page_pgdat(head),
1026 NR_ISOLATED_ANON + page_is_file_cache(head),
1027 hpage_nr_pages(head));
1028 } else if (flags & MPOL_MF_STRICT) {
1030 * Non-movable page may reach here. And, there may be
1031 * temporary off LRU pages or non-LRU movable pages.
1032 * Treat them as unmovable pages since they can't be
1033 * isolated, so they can't be moved at the moment. It
1034 * should return -EIO for this case too.
1043 /* page allocation callback for NUMA node migration */
1044 struct page *alloc_new_node_page(struct page *page, unsigned long node)
1047 return alloc_huge_page_node(page_hstate(compound_head(page)),
1049 else if (PageTransHuge(page)) {
1052 thp = alloc_pages_node(node,
1053 (GFP_TRANSHUGE | __GFP_THISNODE),
1057 prep_transhuge_page(thp);
1060 return __alloc_pages_node(node, GFP_HIGHUSER_MOVABLE |
1065 * Migrate pages from one node to a target node.
1066 * Returns error or the number of pages not migrated.
1068 static int migrate_to_node(struct mm_struct *mm, int source, int dest,
1072 LIST_HEAD(pagelist);
1076 node_set(source, nmask);
1079 * This does not "check" the range but isolates all pages that
1080 * need migration. Between passing in the full user address
1081 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail.
1083 VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)));
1084 queue_pages_range(mm, mm->mmap->vm_start, mm->task_size, &nmask,
1085 flags | MPOL_MF_DISCONTIG_OK, &pagelist);
1087 if (!list_empty(&pagelist)) {
1088 err = migrate_pages(&pagelist, alloc_new_node_page, NULL, dest,
1089 MIGRATE_SYNC, MR_SYSCALL);
1091 putback_movable_pages(&pagelist);
1098 * Move pages between the two nodesets so as to preserve the physical
1099 * layout as much as possible.
1101 * Returns the number of page that could not be moved.
1103 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1104 const nodemask_t *to, int flags)
1110 err = migrate_prep();
1114 down_read(&mm->mmap_sem);
1117 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
1118 * bit in 'to' is not also set in 'tmp'. Clear the found 'source'
1119 * bit in 'tmp', and return that <source, dest> pair for migration.
1120 * The pair of nodemasks 'to' and 'from' define the map.
1122 * If no pair of bits is found that way, fallback to picking some
1123 * pair of 'source' and 'dest' bits that are not the same. If the
1124 * 'source' and 'dest' bits are the same, this represents a node
1125 * that will be migrating to itself, so no pages need move.
1127 * If no bits are left in 'tmp', or if all remaining bits left
1128 * in 'tmp' correspond to the same bit in 'to', return false
1129 * (nothing left to migrate).
1131 * This lets us pick a pair of nodes to migrate between, such that
1132 * if possible the dest node is not already occupied by some other
1133 * source node, minimizing the risk of overloading the memory on a
1134 * node that would happen if we migrated incoming memory to a node
1135 * before migrating outgoing memory source that same node.
1137 * A single scan of tmp is sufficient. As we go, we remember the
1138 * most recent <s, d> pair that moved (s != d). If we find a pair
1139 * that not only moved, but what's better, moved to an empty slot
1140 * (d is not set in tmp), then we break out then, with that pair.
1141 * Otherwise when we finish scanning from_tmp, we at least have the
1142 * most recent <s, d> pair that moved. If we get all the way through
1143 * the scan of tmp without finding any node that moved, much less
1144 * moved to an empty node, then there is nothing left worth migrating.
1148 while (!nodes_empty(tmp)) {
1150 int source = NUMA_NO_NODE;
1153 for_each_node_mask(s, tmp) {
1156 * do_migrate_pages() tries to maintain the relative
1157 * node relationship of the pages established between
1158 * threads and memory areas.
1160 * However if the number of source nodes is not equal to
1161 * the number of destination nodes we can not preserve
1162 * this node relative relationship. In that case, skip
1163 * copying memory from a node that is in the destination
1166 * Example: [2,3,4] -> [3,4,5] moves everything.
1167 * [0-7] - > [3,4,5] moves only 0,1,2,6,7.
1170 if ((nodes_weight(*from) != nodes_weight(*to)) &&
1171 (node_isset(s, *to)))
1174 d = node_remap(s, *from, *to);
1178 source = s; /* Node moved. Memorize */
1181 /* dest not in remaining from nodes? */
1182 if (!node_isset(dest, tmp))
1185 if (source == NUMA_NO_NODE)
1188 node_clear(source, tmp);
1189 err = migrate_to_node(mm, source, dest, flags);
1195 up_read(&mm->mmap_sem);
1203 * Allocate a new page for page migration based on vma policy.
1204 * Start by assuming the page is mapped by the same vma as contains @start.
1205 * Search forward from there, if not. N.B., this assumes that the
1206 * list of pages handed to migrate_pages()--which is how we get here--
1207 * is in virtual address order.
1209 static struct page *new_page(struct page *page, unsigned long start)
1211 struct vm_area_struct *vma;
1212 unsigned long uninitialized_var(address);
1214 vma = find_vma(current->mm, start);
1216 address = page_address_in_vma(page, vma);
1217 if (address != -EFAULT)
1222 if (PageHuge(page)) {
1223 return alloc_huge_page_vma(page_hstate(compound_head(page)),
1225 } else if (PageTransHuge(page)) {
1228 thp = alloc_hugepage_vma(GFP_TRANSHUGE, vma, address,
1232 prep_transhuge_page(thp);
1236 * if !vma, alloc_page_vma() will use task or system default policy
1238 return alloc_page_vma(GFP_HIGHUSER_MOVABLE | __GFP_RETRY_MAYFAIL,
1243 static int migrate_page_add(struct page *page, struct list_head *pagelist,
1244 unsigned long flags)
1249 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1250 const nodemask_t *to, int flags)
1255 static struct page *new_page(struct page *page, unsigned long start)
1261 static long do_mbind(unsigned long start, unsigned long len,
1262 unsigned short mode, unsigned short mode_flags,
1263 nodemask_t *nmask, unsigned long flags)
1265 struct mm_struct *mm = current->mm;
1266 struct mempolicy *new;
1270 LIST_HEAD(pagelist);
1272 if (flags & ~(unsigned long)MPOL_MF_VALID)
1274 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1277 if (start & ~PAGE_MASK)
1280 if (mode == MPOL_DEFAULT)
1281 flags &= ~MPOL_MF_STRICT;
1283 len = (len + PAGE_SIZE - 1) & PAGE_MASK;
1291 new = mpol_new(mode, mode_flags, nmask);
1293 return PTR_ERR(new);
1295 if (flags & MPOL_MF_LAZY)
1296 new->flags |= MPOL_F_MOF;
1299 * If we are using the default policy then operation
1300 * on discontinuous address spaces is okay after all
1303 flags |= MPOL_MF_DISCONTIG_OK;
1305 pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1306 start, start + len, mode, mode_flags,
1307 nmask ? nodes_addr(*nmask)[0] : NUMA_NO_NODE);
1309 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
1311 err = migrate_prep();
1316 NODEMASK_SCRATCH(scratch);
1318 down_write(&mm->mmap_sem);
1320 err = mpol_set_nodemask(new, nmask, scratch);
1321 task_unlock(current);
1323 up_write(&mm->mmap_sem);
1326 NODEMASK_SCRATCH_FREE(scratch);
1331 ret = queue_pages_range(mm, start, end, nmask,
1332 flags | MPOL_MF_INVERT, &pagelist);
1339 err = mbind_range(mm, start, end, new);
1344 if (!list_empty(&pagelist)) {
1345 WARN_ON_ONCE(flags & MPOL_MF_LAZY);
1346 nr_failed = migrate_pages(&pagelist, new_page, NULL,
1347 start, MIGRATE_SYNC, MR_MEMPOLICY_MBIND);
1349 putback_movable_pages(&pagelist);
1352 if ((ret > 0) || (nr_failed && (flags & MPOL_MF_STRICT)))
1356 if (!list_empty(&pagelist))
1357 putback_movable_pages(&pagelist);
1360 up_write(&mm->mmap_sem);
1367 * User space interface with variable sized bitmaps for nodelists.
1370 /* Copy a node mask from user space. */
1371 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1372 unsigned long maxnode)
1376 unsigned long nlongs;
1377 unsigned long endmask;
1380 nodes_clear(*nodes);
1381 if (maxnode == 0 || !nmask)
1383 if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1386 nlongs = BITS_TO_LONGS(maxnode);
1387 if ((maxnode % BITS_PER_LONG) == 0)
1390 endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1;
1393 * When the user specified more nodes than supported just check
1394 * if the non supported part is all zero.
1396 * If maxnode have more longs than MAX_NUMNODES, check
1397 * the bits in that area first. And then go through to
1398 * check the rest bits which equal or bigger than MAX_NUMNODES.
1399 * Otherwise, just check bits [MAX_NUMNODES, maxnode).
1401 if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) {
1402 for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) {
1403 if (get_user(t, nmask + k))
1405 if (k == nlongs - 1) {
1411 nlongs = BITS_TO_LONGS(MAX_NUMNODES);
1415 if (maxnode > MAX_NUMNODES && MAX_NUMNODES % BITS_PER_LONG != 0) {
1416 unsigned long valid_mask = endmask;
1418 valid_mask &= ~((1UL << (MAX_NUMNODES % BITS_PER_LONG)) - 1);
1419 if (get_user(t, nmask + nlongs - 1))
1425 if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long)))
1427 nodes_addr(*nodes)[nlongs-1] &= endmask;
1431 /* Copy a kernel node mask to user space */
1432 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1435 unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1436 unsigned int nbytes = BITS_TO_LONGS(nr_node_ids) * sizeof(long);
1438 if (copy > nbytes) {
1439 if (copy > PAGE_SIZE)
1441 if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1445 return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1448 static long kernel_mbind(unsigned long start, unsigned long len,
1449 unsigned long mode, const unsigned long __user *nmask,
1450 unsigned long maxnode, unsigned int flags)
1454 unsigned short mode_flags;
1456 start = untagged_addr(start);
1457 mode_flags = mode & MPOL_MODE_FLAGS;
1458 mode &= ~MPOL_MODE_FLAGS;
1459 if (mode >= MPOL_MAX)
1461 if ((mode_flags & MPOL_F_STATIC_NODES) &&
1462 (mode_flags & MPOL_F_RELATIVE_NODES))
1464 err = get_nodes(&nodes, nmask, maxnode);
1467 return do_mbind(start, len, mode, mode_flags, &nodes, flags);
1470 SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1471 unsigned long, mode, const unsigned long __user *, nmask,
1472 unsigned long, maxnode, unsigned int, flags)
1474 return kernel_mbind(start, len, mode, nmask, maxnode, flags);
1477 /* Set the process memory policy */
1478 static long kernel_set_mempolicy(int mode, const unsigned long __user *nmask,
1479 unsigned long maxnode)
1483 unsigned short flags;
1485 flags = mode & MPOL_MODE_FLAGS;
1486 mode &= ~MPOL_MODE_FLAGS;
1487 if ((unsigned int)mode >= MPOL_MAX)
1489 if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES))
1491 err = get_nodes(&nodes, nmask, maxnode);
1494 return do_set_mempolicy(mode, flags, &nodes);
1497 SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask,
1498 unsigned long, maxnode)
1500 return kernel_set_mempolicy(mode, nmask, maxnode);
1503 static int kernel_migrate_pages(pid_t pid, unsigned long maxnode,
1504 const unsigned long __user *old_nodes,
1505 const unsigned long __user *new_nodes)
1507 struct mm_struct *mm = NULL;
1508 struct task_struct *task;
1509 nodemask_t task_nodes;
1513 NODEMASK_SCRATCH(scratch);
1518 old = &scratch->mask1;
1519 new = &scratch->mask2;
1521 err = get_nodes(old, old_nodes, maxnode);
1525 err = get_nodes(new, new_nodes, maxnode);
1529 /* Find the mm_struct */
1531 task = pid ? find_task_by_vpid(pid) : current;
1537 get_task_struct(task);
1542 * Check if this process has the right to modify the specified process.
1543 * Use the regular "ptrace_may_access()" checks.
1545 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1552 task_nodes = cpuset_mems_allowed(task);
1553 /* Is the user allowed to access the target nodes? */
1554 if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1559 task_nodes = cpuset_mems_allowed(current);
1560 nodes_and(*new, *new, task_nodes);
1561 if (nodes_empty(*new))
1564 err = security_task_movememory(task);
1568 mm = get_task_mm(task);
1569 put_task_struct(task);
1576 err = do_migrate_pages(mm, old, new,
1577 capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1581 NODEMASK_SCRATCH_FREE(scratch);
1586 put_task_struct(task);
1591 SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1592 const unsigned long __user *, old_nodes,
1593 const unsigned long __user *, new_nodes)
1595 return kernel_migrate_pages(pid, maxnode, old_nodes, new_nodes);
1599 /* Retrieve NUMA policy */
1600 static int kernel_get_mempolicy(int __user *policy,
1601 unsigned long __user *nmask,
1602 unsigned long maxnode,
1604 unsigned long flags)
1607 int uninitialized_var(pval);
1610 addr = untagged_addr(addr);
1612 if (nmask != NULL && maxnode < nr_node_ids)
1615 err = do_get_mempolicy(&pval, &nodes, addr, flags);
1620 if (policy && put_user(pval, policy))
1624 err = copy_nodes_to_user(nmask, maxnode, &nodes);
1629 SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1630 unsigned long __user *, nmask, unsigned long, maxnode,
1631 unsigned long, addr, unsigned long, flags)
1633 return kernel_get_mempolicy(policy, nmask, maxnode, addr, flags);
1636 #ifdef CONFIG_COMPAT
1638 COMPAT_SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1639 compat_ulong_t __user *, nmask,
1640 compat_ulong_t, maxnode,
1641 compat_ulong_t, addr, compat_ulong_t, flags)
1644 unsigned long __user *nm = NULL;
1645 unsigned long nr_bits, alloc_size;
1646 DECLARE_BITMAP(bm, MAX_NUMNODES);
1648 nr_bits = min_t(unsigned long, maxnode-1, nr_node_ids);
1649 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1652 nm = compat_alloc_user_space(alloc_size);
1654 err = kernel_get_mempolicy(policy, nm, nr_bits+1, addr, flags);
1656 if (!err && nmask) {
1657 unsigned long copy_size;
1658 copy_size = min_t(unsigned long, sizeof(bm), alloc_size);
1659 err = copy_from_user(bm, nm, copy_size);
1660 /* ensure entire bitmap is zeroed */
1661 err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8);
1662 err |= compat_put_bitmap(nmask, bm, nr_bits);
1668 COMPAT_SYSCALL_DEFINE3(set_mempolicy, int, mode, compat_ulong_t __user *, nmask,
1669 compat_ulong_t, maxnode)
1671 unsigned long __user *nm = NULL;
1672 unsigned long nr_bits, alloc_size;
1673 DECLARE_BITMAP(bm, MAX_NUMNODES);
1675 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1676 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1679 if (compat_get_bitmap(bm, nmask, nr_bits))
1681 nm = compat_alloc_user_space(alloc_size);
1682 if (copy_to_user(nm, bm, alloc_size))
1686 return kernel_set_mempolicy(mode, nm, nr_bits+1);
1689 COMPAT_SYSCALL_DEFINE6(mbind, compat_ulong_t, start, compat_ulong_t, len,
1690 compat_ulong_t, mode, compat_ulong_t __user *, nmask,
1691 compat_ulong_t, maxnode, compat_ulong_t, flags)
1693 unsigned long __user *nm = NULL;
1694 unsigned long nr_bits, alloc_size;
1697 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1698 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1701 if (compat_get_bitmap(nodes_addr(bm), nmask, nr_bits))
1703 nm = compat_alloc_user_space(alloc_size);
1704 if (copy_to_user(nm, nodes_addr(bm), alloc_size))
1708 return kernel_mbind(start, len, mode, nm, nr_bits+1, flags);
1711 COMPAT_SYSCALL_DEFINE4(migrate_pages, compat_pid_t, pid,
1712 compat_ulong_t, maxnode,
1713 const compat_ulong_t __user *, old_nodes,
1714 const compat_ulong_t __user *, new_nodes)
1716 unsigned long __user *old = NULL;
1717 unsigned long __user *new = NULL;
1718 nodemask_t tmp_mask;
1719 unsigned long nr_bits;
1722 nr_bits = min_t(unsigned long, maxnode - 1, MAX_NUMNODES);
1723 size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1725 if (compat_get_bitmap(nodes_addr(tmp_mask), old_nodes, nr_bits))
1727 old = compat_alloc_user_space(new_nodes ? size * 2 : size);
1729 new = old + size / sizeof(unsigned long);
1730 if (copy_to_user(old, nodes_addr(tmp_mask), size))
1734 if (compat_get_bitmap(nodes_addr(tmp_mask), new_nodes, nr_bits))
1737 new = compat_alloc_user_space(size);
1738 if (copy_to_user(new, nodes_addr(tmp_mask), size))
1741 return kernel_migrate_pages(pid, nr_bits + 1, old, new);
1744 #endif /* CONFIG_COMPAT */
1746 bool vma_migratable(struct vm_area_struct *vma)
1748 if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1752 * DAX device mappings require predictable access latency, so avoid
1753 * incurring periodic faults.
1755 if (vma_is_dax(vma))
1758 if (is_vm_hugetlb_page(vma) &&
1759 !hugepage_migration_supported(hstate_vma(vma)))
1763 * Migration allocates pages in the highest zone. If we cannot
1764 * do so then migration (at least from node to node) is not
1768 gfp_zone(mapping_gfp_mask(vma->vm_file->f_mapping))
1774 struct mempolicy *__get_vma_policy(struct vm_area_struct *vma,
1777 struct mempolicy *pol = NULL;
1780 if (vma->vm_ops && vma->vm_ops->get_policy) {
1781 pol = vma->vm_ops->get_policy(vma, addr);
1782 } else if (vma->vm_policy) {
1783 pol = vma->vm_policy;
1786 * shmem_alloc_page() passes MPOL_F_SHARED policy with
1787 * a pseudo vma whose vma->vm_ops=NULL. Take a reference
1788 * count on these policies which will be dropped by
1789 * mpol_cond_put() later
1791 if (mpol_needs_cond_ref(pol))
1800 * get_vma_policy(@vma, @addr)
1801 * @vma: virtual memory area whose policy is sought
1802 * @addr: address in @vma for shared policy lookup
1804 * Returns effective policy for a VMA at specified address.
1805 * Falls back to current->mempolicy or system default policy, as necessary.
1806 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1807 * count--added by the get_policy() vm_op, as appropriate--to protect against
1808 * freeing by another task. It is the caller's responsibility to free the
1809 * extra reference for shared policies.
1811 static struct mempolicy *get_vma_policy(struct vm_area_struct *vma,
1814 struct mempolicy *pol = __get_vma_policy(vma, addr);
1817 pol = get_task_policy(current);
1822 bool vma_policy_mof(struct vm_area_struct *vma)
1824 struct mempolicy *pol;
1826 if (vma->vm_ops && vma->vm_ops->get_policy) {
1829 pol = vma->vm_ops->get_policy(vma, vma->vm_start);
1830 if (pol && (pol->flags & MPOL_F_MOF))
1837 pol = vma->vm_policy;
1839 pol = get_task_policy(current);
1841 return pol->flags & MPOL_F_MOF;
1844 static int apply_policy_zone(struct mempolicy *policy, enum zone_type zone)
1846 enum zone_type dynamic_policy_zone = policy_zone;
1848 BUG_ON(dynamic_policy_zone == ZONE_MOVABLE);
1851 * if policy->v.nodes has movable memory only,
1852 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only.
1854 * policy->v.nodes is intersect with node_states[N_MEMORY].
1855 * so if the following test faile, it implies
1856 * policy->v.nodes has movable memory only.
1858 if (!nodes_intersects(policy->v.nodes, node_states[N_HIGH_MEMORY]))
1859 dynamic_policy_zone = ZONE_MOVABLE;
1861 return zone >= dynamic_policy_zone;
1865 * Return a nodemask representing a mempolicy for filtering nodes for
1868 static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1870 /* Lower zones don't get a nodemask applied for MPOL_BIND */
1871 if (unlikely(policy->mode == MPOL_BIND) &&
1872 apply_policy_zone(policy, gfp_zone(gfp)) &&
1873 cpuset_nodemask_valid_mems_allowed(&policy->v.nodes))
1874 return &policy->v.nodes;
1879 /* Return the node id preferred by the given mempolicy, or the given id */
1880 static int policy_node(gfp_t gfp, struct mempolicy *policy,
1883 if (policy->mode == MPOL_PREFERRED && !(policy->flags & MPOL_F_LOCAL))
1884 nd = policy->v.preferred_node;
1887 * __GFP_THISNODE shouldn't even be used with the bind policy
1888 * because we might easily break the expectation to stay on the
1889 * requested node and not break the policy.
1891 WARN_ON_ONCE(policy->mode == MPOL_BIND && (gfp & __GFP_THISNODE));
1897 /* Do dynamic interleaving for a process */
1898 static unsigned interleave_nodes(struct mempolicy *policy)
1901 struct task_struct *me = current;
1903 next = next_node_in(me->il_prev, policy->v.nodes);
1904 if (next < MAX_NUMNODES)
1910 * Depending on the memory policy provide a node from which to allocate the
1913 unsigned int mempolicy_slab_node(void)
1915 struct mempolicy *policy;
1916 int node = numa_mem_id();
1921 policy = current->mempolicy;
1922 if (!policy || policy->flags & MPOL_F_LOCAL)
1925 switch (policy->mode) {
1926 case MPOL_PREFERRED:
1928 * handled MPOL_F_LOCAL above
1930 return policy->v.preferred_node;
1932 case MPOL_INTERLEAVE:
1933 return interleave_nodes(policy);
1939 * Follow bind policy behavior and start allocation at the
1942 struct zonelist *zonelist;
1943 enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1944 zonelist = &NODE_DATA(node)->node_zonelists[ZONELIST_FALLBACK];
1945 z = first_zones_zonelist(zonelist, highest_zoneidx,
1947 return z->zone ? zone_to_nid(z->zone) : node;
1956 * Do static interleaving for a VMA with known offset @n. Returns the n'th
1957 * node in pol->v.nodes (starting from n=0), wrapping around if n exceeds the
1958 * number of present nodes.
1960 static unsigned offset_il_node(struct mempolicy *pol, unsigned long n)
1962 unsigned nnodes = nodes_weight(pol->v.nodes);
1968 return numa_node_id();
1969 target = (unsigned int)n % nnodes;
1970 nid = first_node(pol->v.nodes);
1971 for (i = 0; i < target; i++)
1972 nid = next_node(nid, pol->v.nodes);
1976 /* Determine a node number for interleave */
1977 static inline unsigned interleave_nid(struct mempolicy *pol,
1978 struct vm_area_struct *vma, unsigned long addr, int shift)
1984 * for small pages, there is no difference between
1985 * shift and PAGE_SHIFT, so the bit-shift is safe.
1986 * for huge pages, since vm_pgoff is in units of small
1987 * pages, we need to shift off the always 0 bits to get
1990 BUG_ON(shift < PAGE_SHIFT);
1991 off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
1992 off += (addr - vma->vm_start) >> shift;
1993 return offset_il_node(pol, off);
1995 return interleave_nodes(pol);
1998 #ifdef CONFIG_HUGETLBFS
2000 * huge_node(@vma, @addr, @gfp_flags, @mpol)
2001 * @vma: virtual memory area whose policy is sought
2002 * @addr: address in @vma for shared policy lookup and interleave policy
2003 * @gfp_flags: for requested zone
2004 * @mpol: pointer to mempolicy pointer for reference counted mempolicy
2005 * @nodemask: pointer to nodemask pointer for MPOL_BIND nodemask
2007 * Returns a nid suitable for a huge page allocation and a pointer
2008 * to the struct mempolicy for conditional unref after allocation.
2009 * If the effective policy is 'BIND, returns a pointer to the mempolicy's
2010 * @nodemask for filtering the zonelist.
2012 * Must be protected by read_mems_allowed_begin()
2014 int huge_node(struct vm_area_struct *vma, unsigned long addr, gfp_t gfp_flags,
2015 struct mempolicy **mpol, nodemask_t **nodemask)
2019 *mpol = get_vma_policy(vma, addr);
2020 *nodemask = NULL; /* assume !MPOL_BIND */
2022 if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) {
2023 nid = interleave_nid(*mpol, vma, addr,
2024 huge_page_shift(hstate_vma(vma)));
2026 nid = policy_node(gfp_flags, *mpol, numa_node_id());
2027 if ((*mpol)->mode == MPOL_BIND)
2028 *nodemask = &(*mpol)->v.nodes;
2034 * init_nodemask_of_mempolicy
2036 * If the current task's mempolicy is "default" [NULL], return 'false'
2037 * to indicate default policy. Otherwise, extract the policy nodemask
2038 * for 'bind' or 'interleave' policy into the argument nodemask, or
2039 * initialize the argument nodemask to contain the single node for
2040 * 'preferred' or 'local' policy and return 'true' to indicate presence
2041 * of non-default mempolicy.
2043 * We don't bother with reference counting the mempolicy [mpol_get/put]
2044 * because the current task is examining it's own mempolicy and a task's
2045 * mempolicy is only ever changed by the task itself.
2047 * N.B., it is the caller's responsibility to free a returned nodemask.
2049 bool init_nodemask_of_mempolicy(nodemask_t *mask)
2051 struct mempolicy *mempolicy;
2054 if (!(mask && current->mempolicy))
2058 mempolicy = current->mempolicy;
2059 switch (mempolicy->mode) {
2060 case MPOL_PREFERRED:
2061 if (mempolicy->flags & MPOL_F_LOCAL)
2062 nid = numa_node_id();
2064 nid = mempolicy->v.preferred_node;
2065 init_nodemask_of_node(mask, nid);
2070 case MPOL_INTERLEAVE:
2071 *mask = mempolicy->v.nodes;
2077 task_unlock(current);
2084 * mempolicy_nodemask_intersects
2086 * If tsk's mempolicy is "default" [NULL], return 'true' to indicate default
2087 * policy. Otherwise, check for intersection between mask and the policy
2088 * nodemask for 'bind' or 'interleave' policy. For 'perferred' or 'local'
2089 * policy, always return true since it may allocate elsewhere on fallback.
2091 * Takes task_lock(tsk) to prevent freeing of its mempolicy.
2093 bool mempolicy_nodemask_intersects(struct task_struct *tsk,
2094 const nodemask_t *mask)
2096 struct mempolicy *mempolicy;
2102 mempolicy = tsk->mempolicy;
2106 switch (mempolicy->mode) {
2107 case MPOL_PREFERRED:
2109 * MPOL_PREFERRED and MPOL_F_LOCAL are only preferred nodes to
2110 * allocate from, they may fallback to other nodes when oom.
2111 * Thus, it's possible for tsk to have allocated memory from
2116 case MPOL_INTERLEAVE:
2117 ret = nodes_intersects(mempolicy->v.nodes, *mask);
2127 /* Allocate a page in interleaved policy.
2128 Own path because it needs to do special accounting. */
2129 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
2134 page = __alloc_pages(gfp, order, nid);
2135 /* skip NUMA_INTERLEAVE_HIT counter update if numa stats is disabled */
2136 if (!static_branch_likely(&vm_numa_stat_key))
2138 if (page && page_to_nid(page) == nid) {
2140 __inc_numa_state(page_zone(page), NUMA_INTERLEAVE_HIT);
2147 * alloc_pages_vma - Allocate a page for a VMA.
2150 * %GFP_USER user allocation.
2151 * %GFP_KERNEL kernel allocations,
2152 * %GFP_HIGHMEM highmem/user allocations,
2153 * %GFP_FS allocation should not call back into a file system.
2154 * %GFP_ATOMIC don't sleep.
2156 * @order:Order of the GFP allocation.
2157 * @vma: Pointer to VMA or NULL if not available.
2158 * @addr: Virtual Address of the allocation. Must be inside the VMA.
2159 * @node: Which node to prefer for allocation (modulo policy).
2160 * @hugepage: for hugepages try only the preferred node if possible
2162 * This function allocates a page from the kernel page pool and applies
2163 * a NUMA policy associated with the VMA or the current process.
2164 * When VMA is not NULL caller must hold down_read on the mmap_sem of the
2165 * mm_struct of the VMA to prevent it from going away. Should be used for
2166 * all allocations for pages that will be mapped into user space. Returns
2167 * NULL when no page can be allocated.
2170 alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma,
2171 unsigned long addr, int node, bool hugepage)
2173 struct mempolicy *pol;
2178 pol = get_vma_policy(vma, addr);
2180 if (pol->mode == MPOL_INTERLEAVE) {
2183 nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order);
2185 page = alloc_page_interleave(gfp, order, nid);
2189 if (unlikely(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && hugepage)) {
2190 int hpage_node = node;
2193 * For hugepage allocation and non-interleave policy which
2194 * allows the current node (or other explicitly preferred
2195 * node) we only try to allocate from the current/preferred
2196 * node and don't fall back to other nodes, as the cost of
2197 * remote accesses would likely offset THP benefits.
2199 * If the policy is interleave, or does not allow the current
2200 * node in its nodemask, we allocate the standard way.
2202 if (pol->mode == MPOL_PREFERRED && !(pol->flags & MPOL_F_LOCAL))
2203 hpage_node = pol->v.preferred_node;
2205 nmask = policy_nodemask(gfp, pol);
2206 if (!nmask || node_isset(hpage_node, *nmask)) {
2209 * First, try to allocate THP only on local node, but
2210 * don't reclaim unnecessarily, just compact.
2212 page = __alloc_pages_node(hpage_node,
2213 gfp | __GFP_THISNODE | __GFP_NORETRY, order);
2216 * If hugepage allocations are configured to always
2217 * synchronous compact or the vma has been madvised
2218 * to prefer hugepage backing, retry allowing remote
2219 * memory with both reclaim and compact as well.
2221 if (!page && (gfp & __GFP_DIRECT_RECLAIM))
2222 page = __alloc_pages_node(hpage_node,
2229 nmask = policy_nodemask(gfp, pol);
2230 preferred_nid = policy_node(gfp, pol, node);
2231 page = __alloc_pages_nodemask(gfp, order, preferred_nid, nmask);
2236 EXPORT_SYMBOL(alloc_pages_vma);
2239 * alloc_pages_current - Allocate pages.
2242 * %GFP_USER user allocation,
2243 * %GFP_KERNEL kernel allocation,
2244 * %GFP_HIGHMEM highmem allocation,
2245 * %GFP_FS don't call back into a file system.
2246 * %GFP_ATOMIC don't sleep.
2247 * @order: Power of two of allocation size in pages. 0 is a single page.
2249 * Allocate a page from the kernel page pool. When not in
2250 * interrupt context and apply the current process NUMA policy.
2251 * Returns NULL when no page can be allocated.
2253 struct page *alloc_pages_current(gfp_t gfp, unsigned order)
2255 struct mempolicy *pol = &default_policy;
2258 if (!in_interrupt() && !(gfp & __GFP_THISNODE))
2259 pol = get_task_policy(current);
2262 * No reference counting needed for current->mempolicy
2263 * nor system default_policy
2265 if (pol->mode == MPOL_INTERLEAVE)
2266 page = alloc_page_interleave(gfp, order, interleave_nodes(pol));
2268 page = __alloc_pages_nodemask(gfp, order,
2269 policy_node(gfp, pol, numa_node_id()),
2270 policy_nodemask(gfp, pol));
2274 EXPORT_SYMBOL(alloc_pages_current);
2276 int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst)
2278 struct mempolicy *pol = mpol_dup(vma_policy(src));
2281 return PTR_ERR(pol);
2282 dst->vm_policy = pol;
2287 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
2288 * rebinds the mempolicy its copying by calling mpol_rebind_policy()
2289 * with the mems_allowed returned by cpuset_mems_allowed(). This
2290 * keeps mempolicies cpuset relative after its cpuset moves. See
2291 * further kernel/cpuset.c update_nodemask().
2293 * current's mempolicy may be rebinded by the other task(the task that changes
2294 * cpuset's mems), so we needn't do rebind work for current task.
2297 /* Slow path of a mempolicy duplicate */
2298 struct mempolicy *__mpol_dup(struct mempolicy *old)
2300 struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2303 return ERR_PTR(-ENOMEM);
2305 /* task's mempolicy is protected by alloc_lock */
2306 if (old == current->mempolicy) {
2309 task_unlock(current);
2313 if (current_cpuset_is_being_rebound()) {
2314 nodemask_t mems = cpuset_mems_allowed(current);
2315 mpol_rebind_policy(new, &mems);
2317 atomic_set(&new->refcnt, 1);
2321 /* Slow path of a mempolicy comparison */
2322 bool __mpol_equal(struct mempolicy *a, struct mempolicy *b)
2326 if (a->mode != b->mode)
2328 if (a->flags != b->flags)
2330 if (mpol_store_user_nodemask(a))
2331 if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
2337 case MPOL_INTERLEAVE:
2338 return !!nodes_equal(a->v.nodes, b->v.nodes);
2339 case MPOL_PREFERRED:
2340 /* a's ->flags is the same as b's */
2341 if (a->flags & MPOL_F_LOCAL)
2343 return a->v.preferred_node == b->v.preferred_node;
2351 * Shared memory backing store policy support.
2353 * Remember policies even when nobody has shared memory mapped.
2354 * The policies are kept in Red-Black tree linked from the inode.
2355 * They are protected by the sp->lock rwlock, which should be held
2356 * for any accesses to the tree.
2360 * lookup first element intersecting start-end. Caller holds sp->lock for
2361 * reading or for writing
2363 static struct sp_node *
2364 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
2366 struct rb_node *n = sp->root.rb_node;
2369 struct sp_node *p = rb_entry(n, struct sp_node, nd);
2371 if (start >= p->end)
2373 else if (end <= p->start)
2381 struct sp_node *w = NULL;
2382 struct rb_node *prev = rb_prev(n);
2385 w = rb_entry(prev, struct sp_node, nd);
2386 if (w->end <= start)
2390 return rb_entry(n, struct sp_node, nd);
2394 * Insert a new shared policy into the list. Caller holds sp->lock for
2397 static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2399 struct rb_node **p = &sp->root.rb_node;
2400 struct rb_node *parent = NULL;
2405 nd = rb_entry(parent, struct sp_node, nd);
2406 if (new->start < nd->start)
2408 else if (new->end > nd->end)
2409 p = &(*p)->rb_right;
2413 rb_link_node(&new->nd, parent, p);
2414 rb_insert_color(&new->nd, &sp->root);
2415 pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
2416 new->policy ? new->policy->mode : 0);
2419 /* Find shared policy intersecting idx */
2421 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
2423 struct mempolicy *pol = NULL;
2426 if (!sp->root.rb_node)
2428 read_lock(&sp->lock);
2429 sn = sp_lookup(sp, idx, idx+1);
2431 mpol_get(sn->policy);
2434 read_unlock(&sp->lock);
2438 static void sp_free(struct sp_node *n)
2440 mpol_put(n->policy);
2441 kmem_cache_free(sn_cache, n);
2445 * mpol_misplaced - check whether current page node is valid in policy
2447 * @page: page to be checked
2448 * @vma: vm area where page mapped
2449 * @addr: virtual address where page mapped
2451 * Lookup current policy node id for vma,addr and "compare to" page's
2455 * -1 - not misplaced, page is in the right node
2456 * node - node id where the page should be
2458 * Policy determination "mimics" alloc_page_vma().
2459 * Called from fault path where we know the vma and faulting address.
2461 int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr)
2463 struct mempolicy *pol;
2465 int curnid = page_to_nid(page);
2466 unsigned long pgoff;
2467 int thiscpu = raw_smp_processor_id();
2468 int thisnid = cpu_to_node(thiscpu);
2469 int polnid = NUMA_NO_NODE;
2472 pol = get_vma_policy(vma, addr);
2473 if (!(pol->flags & MPOL_F_MOF))
2476 switch (pol->mode) {
2477 case MPOL_INTERLEAVE:
2478 pgoff = vma->vm_pgoff;
2479 pgoff += (addr - vma->vm_start) >> PAGE_SHIFT;
2480 polnid = offset_il_node(pol, pgoff);
2483 case MPOL_PREFERRED:
2484 if (pol->flags & MPOL_F_LOCAL)
2485 polnid = numa_node_id();
2487 polnid = pol->v.preferred_node;
2493 * allows binding to multiple nodes.
2494 * use current page if in policy nodemask,
2495 * else select nearest allowed node, if any.
2496 * If no allowed nodes, use current [!misplaced].
2498 if (node_isset(curnid, pol->v.nodes))
2500 z = first_zones_zonelist(
2501 node_zonelist(numa_node_id(), GFP_HIGHUSER),
2502 gfp_zone(GFP_HIGHUSER),
2504 polnid = zone_to_nid(z->zone);
2511 /* Migrate the page towards the node whose CPU is referencing it */
2512 if (pol->flags & MPOL_F_MORON) {
2515 if (!should_numa_migrate_memory(current, page, curnid, thiscpu))
2519 if (curnid != polnid)
2528 * Drop the (possibly final) reference to task->mempolicy. It needs to be
2529 * dropped after task->mempolicy is set to NULL so that any allocation done as
2530 * part of its kmem_cache_free(), such as by KASAN, doesn't reference a freed
2533 void mpol_put_task_policy(struct task_struct *task)
2535 struct mempolicy *pol;
2538 pol = task->mempolicy;
2539 task->mempolicy = NULL;
2544 static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2546 pr_debug("deleting %lx-l%lx\n", n->start, n->end);
2547 rb_erase(&n->nd, &sp->root);
2551 static void sp_node_init(struct sp_node *node, unsigned long start,
2552 unsigned long end, struct mempolicy *pol)
2554 node->start = start;
2559 static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2560 struct mempolicy *pol)
2563 struct mempolicy *newpol;
2565 n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2569 newpol = mpol_dup(pol);
2570 if (IS_ERR(newpol)) {
2571 kmem_cache_free(sn_cache, n);
2574 newpol->flags |= MPOL_F_SHARED;
2575 sp_node_init(n, start, end, newpol);
2580 /* Replace a policy range. */
2581 static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
2582 unsigned long end, struct sp_node *new)
2585 struct sp_node *n_new = NULL;
2586 struct mempolicy *mpol_new = NULL;
2590 write_lock(&sp->lock);
2591 n = sp_lookup(sp, start, end);
2592 /* Take care of old policies in the same range. */
2593 while (n && n->start < end) {
2594 struct rb_node *next = rb_next(&n->nd);
2595 if (n->start >= start) {
2601 /* Old policy spanning whole new range. */
2606 *mpol_new = *n->policy;
2607 atomic_set(&mpol_new->refcnt, 1);
2608 sp_node_init(n_new, end, n->end, mpol_new);
2610 sp_insert(sp, n_new);
2619 n = rb_entry(next, struct sp_node, nd);
2623 write_unlock(&sp->lock);
2630 kmem_cache_free(sn_cache, n_new);
2635 write_unlock(&sp->lock);
2637 n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2640 mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2647 * mpol_shared_policy_init - initialize shared policy for inode
2648 * @sp: pointer to inode shared policy
2649 * @mpol: struct mempolicy to install
2651 * Install non-NULL @mpol in inode's shared policy rb-tree.
2652 * On entry, the current task has a reference on a non-NULL @mpol.
2653 * This must be released on exit.
2654 * This is called at get_inode() calls and we can use GFP_KERNEL.
2656 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2660 sp->root = RB_ROOT; /* empty tree == default mempolicy */
2661 rwlock_init(&sp->lock);
2664 struct vm_area_struct pvma;
2665 struct mempolicy *new;
2666 NODEMASK_SCRATCH(scratch);
2670 /* contextualize the tmpfs mount point mempolicy */
2671 new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2673 goto free_scratch; /* no valid nodemask intersection */
2676 ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch);
2677 task_unlock(current);
2681 /* Create pseudo-vma that contains just the policy */
2682 vma_init(&pvma, NULL);
2683 pvma.vm_end = TASK_SIZE; /* policy covers entire file */
2684 mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
2687 mpol_put(new); /* drop initial ref */
2689 NODEMASK_SCRATCH_FREE(scratch);
2691 mpol_put(mpol); /* drop our incoming ref on sb mpol */
2695 int mpol_set_shared_policy(struct shared_policy *info,
2696 struct vm_area_struct *vma, struct mempolicy *npol)
2699 struct sp_node *new = NULL;
2700 unsigned long sz = vma_pages(vma);
2702 pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2704 sz, npol ? npol->mode : -1,
2705 npol ? npol->flags : -1,
2706 npol ? nodes_addr(npol->v.nodes)[0] : NUMA_NO_NODE);
2709 new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
2713 err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
2719 /* Free a backing policy store on inode delete. */
2720 void mpol_free_shared_policy(struct shared_policy *p)
2723 struct rb_node *next;
2725 if (!p->root.rb_node)
2727 write_lock(&p->lock);
2728 next = rb_first(&p->root);
2730 n = rb_entry(next, struct sp_node, nd);
2731 next = rb_next(&n->nd);
2734 write_unlock(&p->lock);
2737 #ifdef CONFIG_NUMA_BALANCING
2738 static int __initdata numabalancing_override;
2740 static void __init check_numabalancing_enable(void)
2742 bool numabalancing_default = false;
2744 if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED))
2745 numabalancing_default = true;
2747 /* Parsed by setup_numabalancing. override == 1 enables, -1 disables */
2748 if (numabalancing_override)
2749 set_numabalancing_state(numabalancing_override == 1);
2751 if (num_online_nodes() > 1 && !numabalancing_override) {
2752 pr_info("%s automatic NUMA balancing. Configure with numa_balancing= or the kernel.numa_balancing sysctl\n",
2753 numabalancing_default ? "Enabling" : "Disabling");
2754 set_numabalancing_state(numabalancing_default);
2758 static int __init setup_numabalancing(char *str)
2764 if (!strcmp(str, "enable")) {
2765 numabalancing_override = 1;
2767 } else if (!strcmp(str, "disable")) {
2768 numabalancing_override = -1;
2773 pr_warn("Unable to parse numa_balancing=\n");
2777 __setup("numa_balancing=", setup_numabalancing);
2779 static inline void __init check_numabalancing_enable(void)
2782 #endif /* CONFIG_NUMA_BALANCING */
2784 /* assumes fs == KERNEL_DS */
2785 void __init numa_policy_init(void)
2787 nodemask_t interleave_nodes;
2788 unsigned long largest = 0;
2789 int nid, prefer = 0;
2791 policy_cache = kmem_cache_create("numa_policy",
2792 sizeof(struct mempolicy),
2793 0, SLAB_PANIC, NULL);
2795 sn_cache = kmem_cache_create("shared_policy_node",
2796 sizeof(struct sp_node),
2797 0, SLAB_PANIC, NULL);
2799 for_each_node(nid) {
2800 preferred_node_policy[nid] = (struct mempolicy) {
2801 .refcnt = ATOMIC_INIT(1),
2802 .mode = MPOL_PREFERRED,
2803 .flags = MPOL_F_MOF | MPOL_F_MORON,
2804 .v = { .preferred_node = nid, },
2809 * Set interleaving policy for system init. Interleaving is only
2810 * enabled across suitably sized nodes (default is >= 16MB), or
2811 * fall back to the largest node if they're all smaller.
2813 nodes_clear(interleave_nodes);
2814 for_each_node_state(nid, N_MEMORY) {
2815 unsigned long total_pages = node_present_pages(nid);
2817 /* Preserve the largest node */
2818 if (largest < total_pages) {
2819 largest = total_pages;
2823 /* Interleave this node? */
2824 if ((total_pages << PAGE_SHIFT) >= (16 << 20))
2825 node_set(nid, interleave_nodes);
2828 /* All too small, use the largest */
2829 if (unlikely(nodes_empty(interleave_nodes)))
2830 node_set(prefer, interleave_nodes);
2832 if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
2833 pr_err("%s: interleaving failed\n", __func__);
2835 check_numabalancing_enable();
2838 /* Reset policy of current process to default */
2839 void numa_default_policy(void)
2841 do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
2845 * Parse and format mempolicy from/to strings
2849 * "local" is implemented internally by MPOL_PREFERRED with MPOL_F_LOCAL flag.
2851 static const char * const policy_modes[] =
2853 [MPOL_DEFAULT] = "default",
2854 [MPOL_PREFERRED] = "prefer",
2855 [MPOL_BIND] = "bind",
2856 [MPOL_INTERLEAVE] = "interleave",
2857 [MPOL_LOCAL] = "local",
2863 * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option.
2864 * @str: string containing mempolicy to parse
2865 * @mpol: pointer to struct mempolicy pointer, returned on success.
2868 * <mode>[=<flags>][:<nodelist>]
2870 * On success, returns 0, else 1
2872 int mpol_parse_str(char *str, struct mempolicy **mpol)
2874 struct mempolicy *new = NULL;
2875 unsigned short mode_flags;
2877 char *nodelist = strchr(str, ':');
2878 char *flags = strchr(str, '=');
2882 *flags++ = '\0'; /* terminate mode string */
2885 /* NUL-terminate mode or flags string */
2887 if (nodelist_parse(nodelist, nodes))
2889 if (!nodes_subset(nodes, node_states[N_MEMORY]))
2894 mode = match_string(policy_modes, MPOL_MAX, str);
2899 case MPOL_PREFERRED:
2901 * Insist on a nodelist of one node only, although later
2902 * we use first_node(nodes) to grab a single node, so here
2903 * nodelist (or nodes) cannot be empty.
2906 char *rest = nodelist;
2907 while (isdigit(*rest))
2911 if (nodes_empty(nodes))
2915 case MPOL_INTERLEAVE:
2917 * Default to online nodes with memory if no nodelist
2920 nodes = node_states[N_MEMORY];
2924 * Don't allow a nodelist; mpol_new() checks flags
2928 mode = MPOL_PREFERRED;
2932 * Insist on a empty nodelist
2939 * Insist on a nodelist
2948 * Currently, we only support two mutually exclusive
2951 if (!strcmp(flags, "static"))
2952 mode_flags |= MPOL_F_STATIC_NODES;
2953 else if (!strcmp(flags, "relative"))
2954 mode_flags |= MPOL_F_RELATIVE_NODES;
2959 new = mpol_new(mode, mode_flags, &nodes);
2964 * Save nodes for mpol_to_str() to show the tmpfs mount options
2965 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo.
2967 if (mode != MPOL_PREFERRED)
2968 new->v.nodes = nodes;
2970 new->v.preferred_node = first_node(nodes);
2972 new->flags |= MPOL_F_LOCAL;
2975 * Save nodes for contextualization: this will be used to "clone"
2976 * the mempolicy in a specific context [cpuset] at a later time.
2978 new->w.user_nodemask = nodes;
2983 /* Restore string for error message */
2992 #endif /* CONFIG_TMPFS */
2995 * mpol_to_str - format a mempolicy structure for printing
2996 * @buffer: to contain formatted mempolicy string
2997 * @maxlen: length of @buffer
2998 * @pol: pointer to mempolicy to be formatted
3000 * Convert @pol into a string. If @buffer is too short, truncate the string.
3001 * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the
3002 * longest flag, "relative", and to display at least a few node ids.
3004 void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
3007 nodemask_t nodes = NODE_MASK_NONE;
3008 unsigned short mode = MPOL_DEFAULT;
3009 unsigned short flags = 0;
3011 if (pol && pol != &default_policy && !(pol->flags & MPOL_F_MORON)) {
3019 case MPOL_PREFERRED:
3020 if (flags & MPOL_F_LOCAL)
3023 node_set(pol->v.preferred_node, nodes);
3026 case MPOL_INTERLEAVE:
3027 nodes = pol->v.nodes;
3031 snprintf(p, maxlen, "unknown");
3035 p += snprintf(p, maxlen, "%s", policy_modes[mode]);
3037 if (flags & MPOL_MODE_FLAGS) {
3038 p += snprintf(p, buffer + maxlen - p, "=");
3041 * Currently, the only defined flags are mutually exclusive
3043 if (flags & MPOL_F_STATIC_NODES)
3044 p += snprintf(p, buffer + maxlen - p, "static");
3045 else if (flags & MPOL_F_RELATIVE_NODES)
3046 p += snprintf(p, buffer + maxlen - p, "relative");
3049 if (!nodes_empty(nodes))
3050 p += scnprintf(p, buffer + maxlen - p, ":%*pbl",
3051 nodemask_pr_args(&nodes));