1 // SPDX-License-Identifier: GPL-2.0-only
3 * Simple NUMA memory policy for the Linux kernel.
5 * Copyright 2003,2004 Andi Kleen, SuSE Labs.
6 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
8 * NUMA policy allows the user to give hints in which node(s) memory should
11 * Support four policies per VMA and per process:
13 * The VMA policy has priority over the process policy for a page fault.
15 * interleave Allocate memory interleaved over a set of nodes,
16 * with normal fallback if it fails.
17 * For VMA based allocations this interleaves based on the
18 * offset into the backing object or offset into the mapping
19 * for anonymous memory. For process policy an process counter
22 * bind Only allocate memory on a specific set of nodes,
24 * FIXME: memory is allocated starting with the first node
25 * to the last. It would be better if bind would truly restrict
26 * the allocation to memory nodes instead
28 * preferred Try a specific node first before normal fallback.
29 * As a special case NUMA_NO_NODE here means do the allocation
30 * on the local CPU. This is normally identical to default,
31 * but useful to set in a VMA when you have a non default
34 * preferred many Try a set of nodes first before normal fallback. This is
35 * similar to preferred without the special case.
37 * default Allocate on the local node first, or when on a VMA
38 * use the process policy. This is what Linux always did
39 * in a NUMA aware kernel and still does by, ahem, default.
41 * The process policy is applied for most non interrupt memory allocations
42 * in that process' context. Interrupts ignore the policies and always
43 * try to allocate on the local CPU. The VMA policy is only applied for memory
44 * allocations for a VMA in the VM.
46 * Currently there are a few corner cases in swapping where the policy
47 * is not applied, but the majority should be handled. When process policy
48 * is used it is not remembered over swap outs/swap ins.
50 * Only the highest zone in the zone hierarchy gets policied. Allocations
51 * requesting a lower zone just use default policy. This implies that
52 * on systems with highmem kernel lowmem allocation don't get policied.
53 * Same with GFP_DMA allocations.
55 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
56 * all users and remembered even when nobody has memory mapped.
60 fix mmap readahead to honour policy and enable policy for any page cache
62 statistics for bigpages
63 global policy for page cache? currently it uses process policy. Requires
65 handle mremap for shared memory (currently ignored for the policy)
67 make bind policy root only? It can trigger oom much faster and the
68 kernel is not always grateful with that.
71 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
73 #include <linux/mempolicy.h>
74 #include <linux/pagewalk.h>
75 #include <linux/highmem.h>
76 #include <linux/hugetlb.h>
77 #include <linux/kernel.h>
78 #include <linux/sched.h>
79 #include <linux/sched/mm.h>
80 #include <linux/sched/numa_balancing.h>
81 #include <linux/sched/task.h>
82 #include <linux/nodemask.h>
83 #include <linux/cpuset.h>
84 #include <linux/slab.h>
85 #include <linux/string.h>
86 #include <linux/export.h>
87 #include <linux/nsproxy.h>
88 #include <linux/interrupt.h>
89 #include <linux/init.h>
90 #include <linux/compat.h>
91 #include <linux/ptrace.h>
92 #include <linux/swap.h>
93 #include <linux/seq_file.h>
94 #include <linux/proc_fs.h>
95 #include <linux/migrate.h>
96 #include <linux/ksm.h>
97 #include <linux/rmap.h>
98 #include <linux/security.h>
99 #include <linux/syscalls.h>
100 #include <linux/ctype.h>
101 #include <linux/mm_inline.h>
102 #include <linux/mmu_notifier.h>
103 #include <linux/printk.h>
104 #include <linux/swapops.h>
106 #include <asm/tlbflush.h>
108 #include <linux/uaccess.h>
110 #include "internal.h"
113 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */
114 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */
116 static struct kmem_cache *policy_cache;
117 static struct kmem_cache *sn_cache;
119 /* Highest zone. An specific allocation for a zone below that is not
121 enum zone_type policy_zone = 0;
124 * run-time system-wide default policy => local allocation
126 static struct mempolicy default_policy = {
127 .refcnt = ATOMIC_INIT(1), /* never free it */
131 static struct mempolicy preferred_node_policy[MAX_NUMNODES];
134 * numa_map_to_online_node - Find closest online node
135 * @node: Node id to start the search
137 * Lookup the next closest node by distance if @nid is not online.
139 * Return: this @node if it is online, otherwise the closest node by distance
141 int numa_map_to_online_node(int node)
143 int min_dist = INT_MAX, dist, n, min_node;
145 if (node == NUMA_NO_NODE || node_online(node))
149 for_each_online_node(n) {
150 dist = node_distance(node, n);
151 if (dist < min_dist) {
159 EXPORT_SYMBOL_GPL(numa_map_to_online_node);
161 struct mempolicy *get_task_policy(struct task_struct *p)
163 struct mempolicy *pol = p->mempolicy;
169 node = numa_node_id();
170 if (node != NUMA_NO_NODE) {
171 pol = &preferred_node_policy[node];
172 /* preferred_node_policy is not initialised early in boot */
177 return &default_policy;
180 static const struct mempolicy_operations {
181 int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
182 void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes);
183 } mpol_ops[MPOL_MAX];
185 static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
187 return pol->flags & MPOL_MODE_FLAGS;
190 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
191 const nodemask_t *rel)
194 nodes_fold(tmp, *orig, nodes_weight(*rel));
195 nodes_onto(*ret, tmp, *rel);
198 static int mpol_new_nodemask(struct mempolicy *pol, const nodemask_t *nodes)
200 if (nodes_empty(*nodes))
206 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
208 if (nodes_empty(*nodes))
211 nodes_clear(pol->nodes);
212 node_set(first_node(*nodes), pol->nodes);
217 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
218 * any, for the new policy. mpol_new() has already validated the nodes
219 * parameter with respect to the policy mode and flags.
221 * Must be called holding task's alloc_lock to protect task's mems_allowed
222 * and mempolicy. May also be called holding the mmap_lock for write.
224 static int mpol_set_nodemask(struct mempolicy *pol,
225 const nodemask_t *nodes, struct nodemask_scratch *nsc)
230 * Default (pol==NULL) resp. local memory policies are not a
231 * subject of any remapping. They also do not need any special
234 if (!pol || pol->mode == MPOL_LOCAL)
238 nodes_and(nsc->mask1,
239 cpuset_current_mems_allowed, node_states[N_MEMORY]);
243 if (pol->flags & MPOL_F_RELATIVE_NODES)
244 mpol_relative_nodemask(&nsc->mask2, nodes, &nsc->mask1);
246 nodes_and(nsc->mask2, *nodes, nsc->mask1);
248 if (mpol_store_user_nodemask(pol))
249 pol->w.user_nodemask = *nodes;
251 pol->w.cpuset_mems_allowed = cpuset_current_mems_allowed;
253 ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
258 * This function just creates a new policy, does some check and simple
259 * initialization. You must invoke mpol_set_nodemask() to set nodes.
261 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
264 struct mempolicy *policy;
266 pr_debug("setting mode %d flags %d nodes[0] %lx\n",
267 mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE);
269 if (mode == MPOL_DEFAULT) {
270 if (nodes && !nodes_empty(*nodes))
271 return ERR_PTR(-EINVAL);
277 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
278 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
279 * All other modes require a valid pointer to a non-empty nodemask.
281 if (mode == MPOL_PREFERRED) {
282 if (nodes_empty(*nodes)) {
283 if (((flags & MPOL_F_STATIC_NODES) ||
284 (flags & MPOL_F_RELATIVE_NODES)))
285 return ERR_PTR(-EINVAL);
289 } else if (mode == MPOL_LOCAL) {
290 if (!nodes_empty(*nodes) ||
291 (flags & MPOL_F_STATIC_NODES) ||
292 (flags & MPOL_F_RELATIVE_NODES))
293 return ERR_PTR(-EINVAL);
294 } else if (nodes_empty(*nodes))
295 return ERR_PTR(-EINVAL);
296 policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
298 return ERR_PTR(-ENOMEM);
299 atomic_set(&policy->refcnt, 1);
301 policy->flags = flags;
302 policy->home_node = NUMA_NO_NODE;
307 /* Slow path of a mpol destructor. */
308 void __mpol_put(struct mempolicy *p)
310 if (!atomic_dec_and_test(&p->refcnt))
312 kmem_cache_free(policy_cache, p);
315 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes)
319 static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes)
323 if (pol->flags & MPOL_F_STATIC_NODES)
324 nodes_and(tmp, pol->w.user_nodemask, *nodes);
325 else if (pol->flags & MPOL_F_RELATIVE_NODES)
326 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
328 nodes_remap(tmp, pol->nodes, pol->w.cpuset_mems_allowed,
330 pol->w.cpuset_mems_allowed = *nodes;
333 if (nodes_empty(tmp))
339 static void mpol_rebind_preferred(struct mempolicy *pol,
340 const nodemask_t *nodes)
342 pol->w.cpuset_mems_allowed = *nodes;
346 * mpol_rebind_policy - Migrate a policy to a different set of nodes
348 * Per-vma policies are protected by mmap_lock. Allocations using per-task
349 * policies are protected by task->mems_allowed_seq to prevent a premature
350 * OOM/allocation failure due to parallel nodemask modification.
352 static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask)
354 if (!pol || pol->mode == MPOL_LOCAL)
356 if (!mpol_store_user_nodemask(pol) &&
357 nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
360 mpol_ops[pol->mode].rebind(pol, newmask);
364 * Wrapper for mpol_rebind_policy() that just requires task
365 * pointer, and updates task mempolicy.
367 * Called with task's alloc_lock held.
370 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new)
372 mpol_rebind_policy(tsk->mempolicy, new);
376 * Rebind each vma in mm to new nodemask.
378 * Call holding a reference to mm. Takes mm->mmap_lock during call.
381 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
383 struct vm_area_struct *vma;
384 VMA_ITERATOR(vmi, mm, 0);
387 for_each_vma(vmi, vma) {
388 vma_start_write(vma);
389 mpol_rebind_policy(vma->vm_policy, new);
391 mmap_write_unlock(mm);
394 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
396 .rebind = mpol_rebind_default,
398 [MPOL_INTERLEAVE] = {
399 .create = mpol_new_nodemask,
400 .rebind = mpol_rebind_nodemask,
403 .create = mpol_new_preferred,
404 .rebind = mpol_rebind_preferred,
407 .create = mpol_new_nodemask,
408 .rebind = mpol_rebind_nodemask,
411 .rebind = mpol_rebind_default,
413 [MPOL_PREFERRED_MANY] = {
414 .create = mpol_new_nodemask,
415 .rebind = mpol_rebind_preferred,
419 static int migrate_folio_add(struct folio *folio, struct list_head *foliolist,
420 unsigned long flags);
423 struct list_head *pagelist;
428 struct vm_area_struct *first;
432 * Check if the folio's nid is in qp->nmask.
434 * If MPOL_MF_INVERT is set in qp->flags, check if the nid is
435 * in the invert of qp->nmask.
437 static inline bool queue_folio_required(struct folio *folio,
438 struct queue_pages *qp)
440 int nid = folio_nid(folio);
441 unsigned long flags = qp->flags;
443 return node_isset(nid, *qp->nmask) == !(flags & MPOL_MF_INVERT);
447 * queue_folios_pmd() has three possible return values:
448 * 0 - folios are placed on the right node or queued successfully, or
449 * special page is met, i.e. huge zero page.
450 * 1 - there is unmovable folio, and MPOL_MF_MOVE* & MPOL_MF_STRICT were
452 * -EIO - is migration entry or only MPOL_MF_STRICT was specified and an
453 * existing folio was already on a node that does not follow the
456 static int queue_folios_pmd(pmd_t *pmd, spinlock_t *ptl, unsigned long addr,
457 unsigned long end, struct mm_walk *walk)
462 struct queue_pages *qp = walk->private;
465 if (unlikely(is_pmd_migration_entry(*pmd))) {
469 folio = pfn_folio(pmd_pfn(*pmd));
470 if (is_huge_zero_page(&folio->page)) {
471 walk->action = ACTION_CONTINUE;
474 if (!queue_folio_required(folio, qp))
478 /* go to folio migration */
479 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
480 if (!vma_migratable(walk->vma) ||
481 migrate_folio_add(folio, qp->pagelist, flags)) {
493 * Scan through pages checking if pages follow certain conditions,
494 * and move them to the pagelist if they do.
496 * queue_folios_pte_range() has three possible return values:
497 * 0 - folios are placed on the right node or queued successfully, or
498 * special page is met, i.e. zero page.
499 * 1 - there is unmovable folio, and MPOL_MF_MOVE* & MPOL_MF_STRICT were
501 * -EIO - only MPOL_MF_STRICT was specified and an existing folio was already
502 * on a node that does not follow the policy.
504 static int queue_folios_pte_range(pmd_t *pmd, unsigned long addr,
505 unsigned long end, struct mm_walk *walk)
507 struct vm_area_struct *vma = walk->vma;
509 struct queue_pages *qp = walk->private;
510 unsigned long flags = qp->flags;
511 bool has_unmovable = false;
512 pte_t *pte, *mapped_pte;
516 ptl = pmd_trans_huge_lock(pmd, vma);
518 return queue_folios_pmd(pmd, ptl, addr, end, walk);
520 mapped_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
522 walk->action = ACTION_AGAIN;
525 for (; addr != end; pte++, addr += PAGE_SIZE) {
526 ptent = ptep_get(pte);
527 if (!pte_present(ptent))
529 folio = vm_normal_folio(vma, addr, ptent);
530 if (!folio || folio_is_zone_device(folio))
533 * vm_normal_folio() filters out zero pages, but there might
534 * still be reserved folios to skip, perhaps in a VDSO.
536 if (folio_test_reserved(folio))
538 if (!queue_folio_required(folio, qp))
540 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
541 /* MPOL_MF_STRICT must be specified if we get here */
542 if (!vma_migratable(vma)) {
543 has_unmovable = true;
548 * Do not abort immediately since there may be
549 * temporary off LRU pages in the range. Still
550 * need migrate other LRU pages.
552 if (migrate_folio_add(folio, qp->pagelist, flags))
553 has_unmovable = true;
557 pte_unmap_unlock(mapped_pte, ptl);
563 return addr != end ? -EIO : 0;
566 static int queue_folios_hugetlb(pte_t *pte, unsigned long hmask,
567 unsigned long addr, unsigned long end,
568 struct mm_walk *walk)
571 #ifdef CONFIG_HUGETLB_PAGE
572 struct queue_pages *qp = walk->private;
573 unsigned long flags = (qp->flags & MPOL_MF_VALID);
578 ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte);
579 entry = huge_ptep_get(pte);
580 if (!pte_present(entry))
582 folio = pfn_folio(pte_pfn(entry));
583 if (!queue_folio_required(folio, qp))
586 if (flags == MPOL_MF_STRICT) {
588 * STRICT alone means only detecting misplaced folio and no
589 * need to further check other vma.
595 if (!vma_migratable(walk->vma)) {
597 * Must be STRICT with MOVE*, otherwise .test_walk() have
598 * stopped walking current vma.
599 * Detecting misplaced folio but allow migrating folios which
607 * With MPOL_MF_MOVE, we try to migrate only unshared folios. If it
608 * is shared it is likely not worth migrating.
610 * To check if the folio is shared, ideally we want to make sure
611 * every page is mapped to the same process. Doing that is very
612 * expensive, so check the estimated mapcount of the folio instead.
614 if (flags & (MPOL_MF_MOVE_ALL) ||
615 (flags & MPOL_MF_MOVE && folio_estimated_sharers(folio) == 1 &&
616 !hugetlb_pmd_shared(pte))) {
617 if (!isolate_hugetlb(folio, qp->pagelist) &&
618 (flags & MPOL_MF_STRICT))
620 * Failed to isolate folio but allow migrating pages
621 * which have been queued.
633 #ifdef CONFIG_NUMA_BALANCING
635 * This is used to mark a range of virtual addresses to be inaccessible.
636 * These are later cleared by a NUMA hinting fault. Depending on these
637 * faults, pages may be migrated for better NUMA placement.
639 * This is assuming that NUMA faults are handled using PROT_NONE. If
640 * an architecture makes a different choice, it will need further
641 * changes to the core.
643 unsigned long change_prot_numa(struct vm_area_struct *vma,
644 unsigned long addr, unsigned long end)
646 struct mmu_gather tlb;
649 tlb_gather_mmu(&tlb, vma->vm_mm);
651 nr_updated = change_protection(&tlb, vma, addr, end, MM_CP_PROT_NUMA);
653 count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated);
655 tlb_finish_mmu(&tlb);
660 static unsigned long change_prot_numa(struct vm_area_struct *vma,
661 unsigned long addr, unsigned long end)
665 #endif /* CONFIG_NUMA_BALANCING */
667 static int queue_pages_test_walk(unsigned long start, unsigned long end,
668 struct mm_walk *walk)
670 struct vm_area_struct *next, *vma = walk->vma;
671 struct queue_pages *qp = walk->private;
672 unsigned long endvma = vma->vm_end;
673 unsigned long flags = qp->flags;
675 /* range check first */
676 VM_BUG_ON_VMA(!range_in_vma(vma, start, end), vma);
680 if (!(flags & MPOL_MF_DISCONTIG_OK) &&
681 (qp->start < vma->vm_start))
682 /* hole at head side of range */
685 next = find_vma(vma->vm_mm, vma->vm_end);
686 if (!(flags & MPOL_MF_DISCONTIG_OK) &&
687 ((vma->vm_end < qp->end) &&
688 (!next || vma->vm_end < next->vm_start)))
689 /* hole at middle or tail of range */
693 * Need check MPOL_MF_STRICT to return -EIO if possible
694 * regardless of vma_migratable
696 if (!vma_migratable(vma) &&
697 !(flags & MPOL_MF_STRICT))
703 if (flags & MPOL_MF_LAZY) {
704 /* Similar to task_numa_work, skip inaccessible VMAs */
705 if (!is_vm_hugetlb_page(vma) && vma_is_accessible(vma) &&
706 !(vma->vm_flags & VM_MIXEDMAP))
707 change_prot_numa(vma, start, endvma);
711 /* queue pages from current vma */
712 if (flags & MPOL_MF_VALID)
717 static const struct mm_walk_ops queue_pages_walk_ops = {
718 .hugetlb_entry = queue_folios_hugetlb,
719 .pmd_entry = queue_folios_pte_range,
720 .test_walk = queue_pages_test_walk,
721 .walk_lock = PGWALK_RDLOCK,
724 static const struct mm_walk_ops queue_pages_lock_vma_walk_ops = {
725 .hugetlb_entry = queue_folios_hugetlb,
726 .pmd_entry = queue_folios_pte_range,
727 .test_walk = queue_pages_test_walk,
728 .walk_lock = PGWALK_WRLOCK,
732 * Walk through page tables and collect pages to be migrated.
734 * If pages found in a given range are on a set of nodes (determined by
735 * @nodes and @flags,) it's isolated and queued to the pagelist which is
736 * passed via @private.
738 * queue_pages_range() has three possible return values:
739 * 1 - there is unmovable page, but MPOL_MF_MOVE* & MPOL_MF_STRICT were
741 * 0 - queue pages successfully or no misplaced page.
742 * errno - i.e. misplaced pages with MPOL_MF_STRICT specified (-EIO) or
743 * memory range specified by nodemask and maxnode points outside
744 * your accessible address space (-EFAULT)
747 queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end,
748 nodemask_t *nodes, unsigned long flags,
749 struct list_head *pagelist, bool lock_vma)
752 struct queue_pages qp = {
753 .pagelist = pagelist,
760 const struct mm_walk_ops *ops = lock_vma ?
761 &queue_pages_lock_vma_walk_ops : &queue_pages_walk_ops;
763 err = walk_page_range(mm, start, end, ops, &qp);
766 /* whole range in hole */
773 * Apply policy to a single VMA
774 * This must be called with the mmap_lock held for writing.
776 static int vma_replace_policy(struct vm_area_struct *vma,
777 struct mempolicy *pol)
780 struct mempolicy *old;
781 struct mempolicy *new;
783 vma_assert_write_locked(vma);
785 pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
786 vma->vm_start, vma->vm_end, vma->vm_pgoff,
787 vma->vm_ops, vma->vm_file,
788 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
794 if (vma->vm_ops && vma->vm_ops->set_policy) {
795 err = vma->vm_ops->set_policy(vma, new);
800 old = vma->vm_policy;
801 vma->vm_policy = new; /* protected by mmap_lock */
810 /* Split or merge the VMA (if required) and apply the new policy */
811 static int mbind_range(struct vma_iterator *vmi, struct vm_area_struct *vma,
812 struct vm_area_struct **prev, unsigned long start,
813 unsigned long end, struct mempolicy *new_pol)
815 struct vm_area_struct *merged;
816 unsigned long vmstart, vmend;
820 vmend = min(end, vma->vm_end);
821 if (start > vma->vm_start) {
825 vmstart = vma->vm_start;
828 if (mpol_equal(vma_policy(vma), new_pol)) {
833 pgoff = vma->vm_pgoff + ((vmstart - vma->vm_start) >> PAGE_SHIFT);
834 merged = vma_merge(vmi, vma->vm_mm, *prev, vmstart, vmend, vma->vm_flags,
835 vma->anon_vma, vma->vm_file, pgoff, new_pol,
836 vma->vm_userfaultfd_ctx, anon_vma_name(vma));
839 return vma_replace_policy(merged, new_pol);
842 if (vma->vm_start != vmstart) {
843 err = split_vma(vmi, vma, vmstart, 1);
848 if (vma->vm_end != vmend) {
849 err = split_vma(vmi, vma, vmend, 0);
855 return vma_replace_policy(vma, new_pol);
858 /* Set the process memory policy */
859 static long do_set_mempolicy(unsigned short mode, unsigned short flags,
862 struct mempolicy *new, *old;
863 NODEMASK_SCRATCH(scratch);
869 new = mpol_new(mode, flags, nodes);
876 ret = mpol_set_nodemask(new, nodes, scratch);
878 task_unlock(current);
883 old = current->mempolicy;
884 current->mempolicy = new;
885 if (new && new->mode == MPOL_INTERLEAVE)
886 current->il_prev = MAX_NUMNODES-1;
887 task_unlock(current);
891 NODEMASK_SCRATCH_FREE(scratch);
896 * Return nodemask for policy for get_mempolicy() query
898 * Called with task's alloc_lock held
900 static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
903 if (p == &default_policy)
908 case MPOL_INTERLEAVE:
910 case MPOL_PREFERRED_MANY:
914 /* return empty node mask for local allocation */
921 static int lookup_node(struct mm_struct *mm, unsigned long addr)
923 struct page *p = NULL;
926 ret = get_user_pages_fast(addr & PAGE_MASK, 1, 0, &p);
928 ret = page_to_nid(p);
934 /* Retrieve NUMA policy */
935 static long do_get_mempolicy(int *policy, nodemask_t *nmask,
936 unsigned long addr, unsigned long flags)
939 struct mm_struct *mm = current->mm;
940 struct vm_area_struct *vma = NULL;
941 struct mempolicy *pol = current->mempolicy, *pol_refcount = NULL;
944 ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
947 if (flags & MPOL_F_MEMS_ALLOWED) {
948 if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
950 *policy = 0; /* just so it's initialized */
952 *nmask = cpuset_current_mems_allowed;
953 task_unlock(current);
957 if (flags & MPOL_F_ADDR) {
959 * Do NOT fall back to task policy if the
960 * vma/shared policy at addr is NULL. We
961 * want to return MPOL_DEFAULT in this case.
964 vma = vma_lookup(mm, addr);
966 mmap_read_unlock(mm);
969 if (vma->vm_ops && vma->vm_ops->get_policy)
970 pol = vma->vm_ops->get_policy(vma, addr);
972 pol = vma->vm_policy;
977 pol = &default_policy; /* indicates default behavior */
979 if (flags & MPOL_F_NODE) {
980 if (flags & MPOL_F_ADDR) {
982 * Take a refcount on the mpol, because we are about to
983 * drop the mmap_lock, after which only "pol" remains
984 * valid, "vma" is stale.
989 mmap_read_unlock(mm);
990 err = lookup_node(mm, addr);
994 } else if (pol == current->mempolicy &&
995 pol->mode == MPOL_INTERLEAVE) {
996 *policy = next_node_in(current->il_prev, pol->nodes);
1002 *policy = pol == &default_policy ? MPOL_DEFAULT :
1005 * Internal mempolicy flags must be masked off before exposing
1006 * the policy to userspace.
1008 *policy |= (pol->flags & MPOL_MODE_FLAGS);
1013 if (mpol_store_user_nodemask(pol)) {
1014 *nmask = pol->w.user_nodemask;
1017 get_policy_nodemask(pol, nmask);
1018 task_unlock(current);
1025 mmap_read_unlock(mm);
1027 mpol_put(pol_refcount);
1031 #ifdef CONFIG_MIGRATION
1032 static int migrate_folio_add(struct folio *folio, struct list_head *foliolist,
1033 unsigned long flags)
1036 * We try to migrate only unshared folios. If it is shared it
1037 * is likely not worth migrating.
1039 * To check if the folio is shared, ideally we want to make sure
1040 * every page is mapped to the same process. Doing that is very
1041 * expensive, so check the estimated mapcount of the folio instead.
1043 if ((flags & MPOL_MF_MOVE_ALL) || folio_estimated_sharers(folio) == 1) {
1044 if (folio_isolate_lru(folio)) {
1045 list_add_tail(&folio->lru, foliolist);
1046 node_stat_mod_folio(folio,
1047 NR_ISOLATED_ANON + folio_is_file_lru(folio),
1048 folio_nr_pages(folio));
1049 } else if (flags & MPOL_MF_STRICT) {
1051 * Non-movable folio may reach here. And, there may be
1052 * temporary off LRU folios or non-LRU movable folios.
1053 * Treat them as unmovable folios since they can't be
1054 * isolated, so they can't be moved at the moment. It
1055 * should return -EIO for this case too.
1065 * Migrate pages from one node to a target node.
1066 * Returns error or the number of pages not migrated.
1068 static int migrate_to_node(struct mm_struct *mm, int source, int dest,
1072 struct vm_area_struct *vma;
1073 LIST_HEAD(pagelist);
1075 struct migration_target_control mtc = {
1077 .gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE,
1081 node_set(source, nmask);
1084 * This does not "check" the range but isolates all pages that
1085 * need migration. Between passing in the full user address
1086 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail.
1088 vma = find_vma(mm, 0);
1089 VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)));
1090 queue_pages_range(mm, vma->vm_start, mm->task_size, &nmask,
1091 flags | MPOL_MF_DISCONTIG_OK, &pagelist, false);
1093 if (!list_empty(&pagelist)) {
1094 err = migrate_pages(&pagelist, alloc_migration_target, NULL,
1095 (unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL, NULL);
1097 putback_movable_pages(&pagelist);
1104 * Move pages between the two nodesets so as to preserve the physical
1105 * layout as much as possible.
1107 * Returns the number of page that could not be moved.
1109 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1110 const nodemask_t *to, int flags)
1116 lru_cache_disable();
1121 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
1122 * bit in 'to' is not also set in 'tmp'. Clear the found 'source'
1123 * bit in 'tmp', and return that <source, dest> pair for migration.
1124 * The pair of nodemasks 'to' and 'from' define the map.
1126 * If no pair of bits is found that way, fallback to picking some
1127 * pair of 'source' and 'dest' bits that are not the same. If the
1128 * 'source' and 'dest' bits are the same, this represents a node
1129 * that will be migrating to itself, so no pages need move.
1131 * If no bits are left in 'tmp', or if all remaining bits left
1132 * in 'tmp' correspond to the same bit in 'to', return false
1133 * (nothing left to migrate).
1135 * This lets us pick a pair of nodes to migrate between, such that
1136 * if possible the dest node is not already occupied by some other
1137 * source node, minimizing the risk of overloading the memory on a
1138 * node that would happen if we migrated incoming memory to a node
1139 * before migrating outgoing memory source that same node.
1141 * A single scan of tmp is sufficient. As we go, we remember the
1142 * most recent <s, d> pair that moved (s != d). If we find a pair
1143 * that not only moved, but what's better, moved to an empty slot
1144 * (d is not set in tmp), then we break out then, with that pair.
1145 * Otherwise when we finish scanning from_tmp, we at least have the
1146 * most recent <s, d> pair that moved. If we get all the way through
1147 * the scan of tmp without finding any node that moved, much less
1148 * moved to an empty node, then there is nothing left worth migrating.
1152 while (!nodes_empty(tmp)) {
1154 int source = NUMA_NO_NODE;
1157 for_each_node_mask(s, tmp) {
1160 * do_migrate_pages() tries to maintain the relative
1161 * node relationship of the pages established between
1162 * threads and memory areas.
1164 * However if the number of source nodes is not equal to
1165 * the number of destination nodes we can not preserve
1166 * this node relative relationship. In that case, skip
1167 * copying memory from a node that is in the destination
1170 * Example: [2,3,4] -> [3,4,5] moves everything.
1171 * [0-7] - > [3,4,5] moves only 0,1,2,6,7.
1174 if ((nodes_weight(*from) != nodes_weight(*to)) &&
1175 (node_isset(s, *to)))
1178 d = node_remap(s, *from, *to);
1182 source = s; /* Node moved. Memorize */
1185 /* dest not in remaining from nodes? */
1186 if (!node_isset(dest, tmp))
1189 if (source == NUMA_NO_NODE)
1192 node_clear(source, tmp);
1193 err = migrate_to_node(mm, source, dest, flags);
1199 mmap_read_unlock(mm);
1209 * Allocate a new page for page migration based on vma policy.
1210 * Start by assuming the page is mapped by the same vma as contains @start.
1211 * Search forward from there, if not. N.B., this assumes that the
1212 * list of pages handed to migrate_pages()--which is how we get here--
1213 * is in virtual address order.
1215 static struct folio *new_folio(struct folio *src, unsigned long start)
1217 struct vm_area_struct *vma;
1218 unsigned long address;
1219 VMA_ITERATOR(vmi, current->mm, start);
1220 gfp_t gfp = GFP_HIGHUSER_MOVABLE | __GFP_RETRY_MAYFAIL;
1222 for_each_vma(vmi, vma) {
1223 address = page_address_in_vma(&src->page, vma);
1224 if (address != -EFAULT)
1228 if (folio_test_hugetlb(src)) {
1229 return alloc_hugetlb_folio_vma(folio_hstate(src),
1233 if (folio_test_large(src))
1234 gfp = GFP_TRANSHUGE;
1237 * if !vma, vma_alloc_folio() will use task or system default policy
1239 return vma_alloc_folio(gfp, folio_order(src), vma, address,
1240 folio_test_large(src));
1244 static int migrate_folio_add(struct folio *folio, struct list_head *foliolist,
1245 unsigned long flags)
1250 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1251 const nodemask_t *to, int flags)
1256 static struct folio *new_folio(struct folio *src, unsigned long start)
1262 static long do_mbind(unsigned long start, unsigned long len,
1263 unsigned short mode, unsigned short mode_flags,
1264 nodemask_t *nmask, unsigned long flags)
1266 struct mm_struct *mm = current->mm;
1267 struct vm_area_struct *vma, *prev;
1268 struct vma_iterator vmi;
1269 struct mempolicy *new;
1273 LIST_HEAD(pagelist);
1275 if (flags & ~(unsigned long)MPOL_MF_VALID)
1277 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1280 if (start & ~PAGE_MASK)
1283 if (mode == MPOL_DEFAULT)
1284 flags &= ~MPOL_MF_STRICT;
1286 len = PAGE_ALIGN(len);
1294 new = mpol_new(mode, mode_flags, nmask);
1296 return PTR_ERR(new);
1298 if (flags & MPOL_MF_LAZY)
1299 new->flags |= MPOL_F_MOF;
1302 * If we are using the default policy then operation
1303 * on discontinuous address spaces is okay after all
1306 flags |= MPOL_MF_DISCONTIG_OK;
1308 pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1309 start, start + len, mode, mode_flags,
1310 nmask ? nodes_addr(*nmask)[0] : NUMA_NO_NODE);
1312 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
1314 lru_cache_disable();
1317 NODEMASK_SCRATCH(scratch);
1319 mmap_write_lock(mm);
1320 err = mpol_set_nodemask(new, nmask, scratch);
1322 mmap_write_unlock(mm);
1325 NODEMASK_SCRATCH_FREE(scratch);
1331 * Lock the VMAs before scanning for pages to migrate, to ensure we don't
1332 * miss a concurrently inserted page.
1334 ret = queue_pages_range(mm, start, end, nmask,
1335 flags | MPOL_MF_INVERT, &pagelist, true);
1342 vma_iter_init(&vmi, mm, start);
1343 prev = vma_prev(&vmi);
1344 for_each_vma_range(vmi, vma, end) {
1345 err = mbind_range(&vmi, vma, &prev, start, end, new);
1353 if (!list_empty(&pagelist)) {
1354 WARN_ON_ONCE(flags & MPOL_MF_LAZY);
1355 nr_failed = migrate_pages(&pagelist, new_folio, NULL,
1356 start, MIGRATE_SYNC, MR_MEMPOLICY_MBIND, NULL);
1358 putback_movable_pages(&pagelist);
1361 if ((ret > 0) || (nr_failed && (flags & MPOL_MF_STRICT)))
1365 if (!list_empty(&pagelist))
1366 putback_movable_pages(&pagelist);
1369 mmap_write_unlock(mm);
1372 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
1378 * User space interface with variable sized bitmaps for nodelists.
1380 static int get_bitmap(unsigned long *mask, const unsigned long __user *nmask,
1381 unsigned long maxnode)
1383 unsigned long nlongs = BITS_TO_LONGS(maxnode);
1386 if (in_compat_syscall())
1387 ret = compat_get_bitmap(mask,
1388 (const compat_ulong_t __user *)nmask,
1391 ret = copy_from_user(mask, nmask,
1392 nlongs * sizeof(unsigned long));
1397 if (maxnode % BITS_PER_LONG)
1398 mask[nlongs - 1] &= (1UL << (maxnode % BITS_PER_LONG)) - 1;
1403 /* Copy a node mask from user space. */
1404 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1405 unsigned long maxnode)
1408 nodes_clear(*nodes);
1409 if (maxnode == 0 || !nmask)
1411 if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1415 * When the user specified more nodes than supported just check
1416 * if the non supported part is all zero, one word at a time,
1417 * starting at the end.
1419 while (maxnode > MAX_NUMNODES) {
1420 unsigned long bits = min_t(unsigned long, maxnode, BITS_PER_LONG);
1423 if (get_bitmap(&t, &nmask[(maxnode - 1) / BITS_PER_LONG], bits))
1426 if (maxnode - bits >= MAX_NUMNODES) {
1429 maxnode = MAX_NUMNODES;
1430 t &= ~((1UL << (MAX_NUMNODES % BITS_PER_LONG)) - 1);
1436 return get_bitmap(nodes_addr(*nodes), nmask, maxnode);
1439 /* Copy a kernel node mask to user space */
1440 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1443 unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1444 unsigned int nbytes = BITS_TO_LONGS(nr_node_ids) * sizeof(long);
1445 bool compat = in_compat_syscall();
1448 nbytes = BITS_TO_COMPAT_LONGS(nr_node_ids) * sizeof(compat_long_t);
1450 if (copy > nbytes) {
1451 if (copy > PAGE_SIZE)
1453 if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1456 maxnode = nr_node_ids;
1460 return compat_put_bitmap((compat_ulong_t __user *)mask,
1461 nodes_addr(*nodes), maxnode);
1463 return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1466 /* Basic parameter sanity check used by both mbind() and set_mempolicy() */
1467 static inline int sanitize_mpol_flags(int *mode, unsigned short *flags)
1469 *flags = *mode & MPOL_MODE_FLAGS;
1470 *mode &= ~MPOL_MODE_FLAGS;
1472 if ((unsigned int)(*mode) >= MPOL_MAX)
1474 if ((*flags & MPOL_F_STATIC_NODES) && (*flags & MPOL_F_RELATIVE_NODES))
1476 if (*flags & MPOL_F_NUMA_BALANCING) {
1477 if (*mode != MPOL_BIND)
1479 *flags |= (MPOL_F_MOF | MPOL_F_MORON);
1484 static long kernel_mbind(unsigned long start, unsigned long len,
1485 unsigned long mode, const unsigned long __user *nmask,
1486 unsigned long maxnode, unsigned int flags)
1488 unsigned short mode_flags;
1493 start = untagged_addr(start);
1494 err = sanitize_mpol_flags(&lmode, &mode_flags);
1498 err = get_nodes(&nodes, nmask, maxnode);
1502 return do_mbind(start, len, lmode, mode_flags, &nodes, flags);
1505 SYSCALL_DEFINE4(set_mempolicy_home_node, unsigned long, start, unsigned long, len,
1506 unsigned long, home_node, unsigned long, flags)
1508 struct mm_struct *mm = current->mm;
1509 struct vm_area_struct *vma, *prev;
1510 struct mempolicy *new, *old;
1513 VMA_ITERATOR(vmi, mm, start);
1515 start = untagged_addr(start);
1516 if (start & ~PAGE_MASK)
1519 * flags is used for future extension if any.
1525 * Check home_node is online to avoid accessing uninitialized
1528 if (home_node >= MAX_NUMNODES || !node_online(home_node))
1531 len = PAGE_ALIGN(len);
1538 mmap_write_lock(mm);
1539 prev = vma_prev(&vmi);
1540 for_each_vma_range(vmi, vma, end) {
1542 * If any vma in the range got policy other than MPOL_BIND
1543 * or MPOL_PREFERRED_MANY we return error. We don't reset
1544 * the home node for vmas we already updated before.
1546 old = vma_policy(vma);
1549 if (old->mode != MPOL_BIND && old->mode != MPOL_PREFERRED_MANY) {
1553 new = mpol_dup(old);
1559 vma_start_write(vma);
1560 new->home_node = home_node;
1561 err = mbind_range(&vmi, vma, &prev, start, end, new);
1566 mmap_write_unlock(mm);
1570 SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1571 unsigned long, mode, const unsigned long __user *, nmask,
1572 unsigned long, maxnode, unsigned int, flags)
1574 return kernel_mbind(start, len, mode, nmask, maxnode, flags);
1577 /* Set the process memory policy */
1578 static long kernel_set_mempolicy(int mode, const unsigned long __user *nmask,
1579 unsigned long maxnode)
1581 unsigned short mode_flags;
1586 err = sanitize_mpol_flags(&lmode, &mode_flags);
1590 err = get_nodes(&nodes, nmask, maxnode);
1594 return do_set_mempolicy(lmode, mode_flags, &nodes);
1597 SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask,
1598 unsigned long, maxnode)
1600 return kernel_set_mempolicy(mode, nmask, maxnode);
1603 static int kernel_migrate_pages(pid_t pid, unsigned long maxnode,
1604 const unsigned long __user *old_nodes,
1605 const unsigned long __user *new_nodes)
1607 struct mm_struct *mm = NULL;
1608 struct task_struct *task;
1609 nodemask_t task_nodes;
1613 NODEMASK_SCRATCH(scratch);
1618 old = &scratch->mask1;
1619 new = &scratch->mask2;
1621 err = get_nodes(old, old_nodes, maxnode);
1625 err = get_nodes(new, new_nodes, maxnode);
1629 /* Find the mm_struct */
1631 task = pid ? find_task_by_vpid(pid) : current;
1637 get_task_struct(task);
1642 * Check if this process has the right to modify the specified process.
1643 * Use the regular "ptrace_may_access()" checks.
1645 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1652 task_nodes = cpuset_mems_allowed(task);
1653 /* Is the user allowed to access the target nodes? */
1654 if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1659 task_nodes = cpuset_mems_allowed(current);
1660 nodes_and(*new, *new, task_nodes);
1661 if (nodes_empty(*new))
1664 err = security_task_movememory(task);
1668 mm = get_task_mm(task);
1669 put_task_struct(task);
1676 err = do_migrate_pages(mm, old, new,
1677 capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1681 NODEMASK_SCRATCH_FREE(scratch);
1686 put_task_struct(task);
1691 SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1692 const unsigned long __user *, old_nodes,
1693 const unsigned long __user *, new_nodes)
1695 return kernel_migrate_pages(pid, maxnode, old_nodes, new_nodes);
1699 /* Retrieve NUMA policy */
1700 static int kernel_get_mempolicy(int __user *policy,
1701 unsigned long __user *nmask,
1702 unsigned long maxnode,
1704 unsigned long flags)
1710 if (nmask != NULL && maxnode < nr_node_ids)
1713 addr = untagged_addr(addr);
1715 err = do_get_mempolicy(&pval, &nodes, addr, flags);
1720 if (policy && put_user(pval, policy))
1724 err = copy_nodes_to_user(nmask, maxnode, &nodes);
1729 SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1730 unsigned long __user *, nmask, unsigned long, maxnode,
1731 unsigned long, addr, unsigned long, flags)
1733 return kernel_get_mempolicy(policy, nmask, maxnode, addr, flags);
1736 bool vma_migratable(struct vm_area_struct *vma)
1738 if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1742 * DAX device mappings require predictable access latency, so avoid
1743 * incurring periodic faults.
1745 if (vma_is_dax(vma))
1748 if (is_vm_hugetlb_page(vma) &&
1749 !hugepage_migration_supported(hstate_vma(vma)))
1753 * Migration allocates pages in the highest zone. If we cannot
1754 * do so then migration (at least from node to node) is not
1758 gfp_zone(mapping_gfp_mask(vma->vm_file->f_mapping))
1764 struct mempolicy *__get_vma_policy(struct vm_area_struct *vma,
1767 struct mempolicy *pol = NULL;
1770 if (vma->vm_ops && vma->vm_ops->get_policy) {
1771 pol = vma->vm_ops->get_policy(vma, addr);
1772 } else if (vma->vm_policy) {
1773 pol = vma->vm_policy;
1776 * shmem_alloc_page() passes MPOL_F_SHARED policy with
1777 * a pseudo vma whose vma->vm_ops=NULL. Take a reference
1778 * count on these policies which will be dropped by
1779 * mpol_cond_put() later
1781 if (mpol_needs_cond_ref(pol))
1790 * get_vma_policy(@vma, @addr)
1791 * @vma: virtual memory area whose policy is sought
1792 * @addr: address in @vma for shared policy lookup
1794 * Returns effective policy for a VMA at specified address.
1795 * Falls back to current->mempolicy or system default policy, as necessary.
1796 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1797 * count--added by the get_policy() vm_op, as appropriate--to protect against
1798 * freeing by another task. It is the caller's responsibility to free the
1799 * extra reference for shared policies.
1801 static struct mempolicy *get_vma_policy(struct vm_area_struct *vma,
1804 struct mempolicy *pol = __get_vma_policy(vma, addr);
1807 pol = get_task_policy(current);
1812 bool vma_policy_mof(struct vm_area_struct *vma)
1814 struct mempolicy *pol;
1816 if (vma->vm_ops && vma->vm_ops->get_policy) {
1819 pol = vma->vm_ops->get_policy(vma, vma->vm_start);
1820 if (pol && (pol->flags & MPOL_F_MOF))
1827 pol = vma->vm_policy;
1829 pol = get_task_policy(current);
1831 return pol->flags & MPOL_F_MOF;
1834 bool apply_policy_zone(struct mempolicy *policy, enum zone_type zone)
1836 enum zone_type dynamic_policy_zone = policy_zone;
1838 BUG_ON(dynamic_policy_zone == ZONE_MOVABLE);
1841 * if policy->nodes has movable memory only,
1842 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only.
1844 * policy->nodes is intersect with node_states[N_MEMORY].
1845 * so if the following test fails, it implies
1846 * policy->nodes has movable memory only.
1848 if (!nodes_intersects(policy->nodes, node_states[N_HIGH_MEMORY]))
1849 dynamic_policy_zone = ZONE_MOVABLE;
1851 return zone >= dynamic_policy_zone;
1855 * Return a nodemask representing a mempolicy for filtering nodes for
1858 nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1860 int mode = policy->mode;
1862 /* Lower zones don't get a nodemask applied for MPOL_BIND */
1863 if (unlikely(mode == MPOL_BIND) &&
1864 apply_policy_zone(policy, gfp_zone(gfp)) &&
1865 cpuset_nodemask_valid_mems_allowed(&policy->nodes))
1866 return &policy->nodes;
1868 if (mode == MPOL_PREFERRED_MANY)
1869 return &policy->nodes;
1875 * Return the preferred node id for 'prefer' mempolicy, and return
1876 * the given id for all other policies.
1878 * policy_node() is always coupled with policy_nodemask(), which
1879 * secures the nodemask limit for 'bind' and 'prefer-many' policy.
1881 static int policy_node(gfp_t gfp, struct mempolicy *policy, int nd)
1883 if (policy->mode == MPOL_PREFERRED) {
1884 nd = first_node(policy->nodes);
1887 * __GFP_THISNODE shouldn't even be used with the bind policy
1888 * because we might easily break the expectation to stay on the
1889 * requested node and not break the policy.
1891 WARN_ON_ONCE(policy->mode == MPOL_BIND && (gfp & __GFP_THISNODE));
1894 if ((policy->mode == MPOL_BIND ||
1895 policy->mode == MPOL_PREFERRED_MANY) &&
1896 policy->home_node != NUMA_NO_NODE)
1897 return policy->home_node;
1902 /* Do dynamic interleaving for a process */
1903 static unsigned interleave_nodes(struct mempolicy *policy)
1906 struct task_struct *me = current;
1908 next = next_node_in(me->il_prev, policy->nodes);
1909 if (next < MAX_NUMNODES)
1915 * Depending on the memory policy provide a node from which to allocate the
1918 unsigned int mempolicy_slab_node(void)
1920 struct mempolicy *policy;
1921 int node = numa_mem_id();
1926 policy = current->mempolicy;
1930 switch (policy->mode) {
1931 case MPOL_PREFERRED:
1932 return first_node(policy->nodes);
1934 case MPOL_INTERLEAVE:
1935 return interleave_nodes(policy);
1938 case MPOL_PREFERRED_MANY:
1943 * Follow bind policy behavior and start allocation at the
1946 struct zonelist *zonelist;
1947 enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1948 zonelist = &NODE_DATA(node)->node_zonelists[ZONELIST_FALLBACK];
1949 z = first_zones_zonelist(zonelist, highest_zoneidx,
1951 return z->zone ? zone_to_nid(z->zone) : node;
1962 * Do static interleaving for a VMA with known offset @n. Returns the n'th
1963 * node in pol->nodes (starting from n=0), wrapping around if n exceeds the
1964 * number of present nodes.
1966 static unsigned offset_il_node(struct mempolicy *pol, unsigned long n)
1968 nodemask_t nodemask = pol->nodes;
1969 unsigned int target, nnodes;
1973 * The barrier will stabilize the nodemask in a register or on
1974 * the stack so that it will stop changing under the code.
1976 * Between first_node() and next_node(), pol->nodes could be changed
1977 * by other threads. So we put pol->nodes in a local stack.
1981 nnodes = nodes_weight(nodemask);
1983 return numa_node_id();
1984 target = (unsigned int)n % nnodes;
1985 nid = first_node(nodemask);
1986 for (i = 0; i < target; i++)
1987 nid = next_node(nid, nodemask);
1991 /* Determine a node number for interleave */
1992 static inline unsigned interleave_nid(struct mempolicy *pol,
1993 struct vm_area_struct *vma, unsigned long addr, int shift)
1999 * for small pages, there is no difference between
2000 * shift and PAGE_SHIFT, so the bit-shift is safe.
2001 * for huge pages, since vm_pgoff is in units of small
2002 * pages, we need to shift off the always 0 bits to get
2005 BUG_ON(shift < PAGE_SHIFT);
2006 off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
2007 off += (addr - vma->vm_start) >> shift;
2008 return offset_il_node(pol, off);
2010 return interleave_nodes(pol);
2013 #ifdef CONFIG_HUGETLBFS
2015 * huge_node(@vma, @addr, @gfp_flags, @mpol)
2016 * @vma: virtual memory area whose policy is sought
2017 * @addr: address in @vma for shared policy lookup and interleave policy
2018 * @gfp_flags: for requested zone
2019 * @mpol: pointer to mempolicy pointer for reference counted mempolicy
2020 * @nodemask: pointer to nodemask pointer for 'bind' and 'prefer-many' policy
2022 * Returns a nid suitable for a huge page allocation and a pointer
2023 * to the struct mempolicy for conditional unref after allocation.
2024 * If the effective policy is 'bind' or 'prefer-many', returns a pointer
2025 * to the mempolicy's @nodemask for filtering the zonelist.
2027 * Must be protected by read_mems_allowed_begin()
2029 int huge_node(struct vm_area_struct *vma, unsigned long addr, gfp_t gfp_flags,
2030 struct mempolicy **mpol, nodemask_t **nodemask)
2035 *mpol = get_vma_policy(vma, addr);
2037 mode = (*mpol)->mode;
2039 if (unlikely(mode == MPOL_INTERLEAVE)) {
2040 nid = interleave_nid(*mpol, vma, addr,
2041 huge_page_shift(hstate_vma(vma)));
2043 nid = policy_node(gfp_flags, *mpol, numa_node_id());
2044 if (mode == MPOL_BIND || mode == MPOL_PREFERRED_MANY)
2045 *nodemask = &(*mpol)->nodes;
2051 * init_nodemask_of_mempolicy
2053 * If the current task's mempolicy is "default" [NULL], return 'false'
2054 * to indicate default policy. Otherwise, extract the policy nodemask
2055 * for 'bind' or 'interleave' policy into the argument nodemask, or
2056 * initialize the argument nodemask to contain the single node for
2057 * 'preferred' or 'local' policy and return 'true' to indicate presence
2058 * of non-default mempolicy.
2060 * We don't bother with reference counting the mempolicy [mpol_get/put]
2061 * because the current task is examining it's own mempolicy and a task's
2062 * mempolicy is only ever changed by the task itself.
2064 * N.B., it is the caller's responsibility to free a returned nodemask.
2066 bool init_nodemask_of_mempolicy(nodemask_t *mask)
2068 struct mempolicy *mempolicy;
2070 if (!(mask && current->mempolicy))
2074 mempolicy = current->mempolicy;
2075 switch (mempolicy->mode) {
2076 case MPOL_PREFERRED:
2077 case MPOL_PREFERRED_MANY:
2079 case MPOL_INTERLEAVE:
2080 *mask = mempolicy->nodes;
2084 init_nodemask_of_node(mask, numa_node_id());
2090 task_unlock(current);
2097 * mempolicy_in_oom_domain
2099 * If tsk's mempolicy is "bind", check for intersection between mask and
2100 * the policy nodemask. Otherwise, return true for all other policies
2101 * including "interleave", as a tsk with "interleave" policy may have
2102 * memory allocated from all nodes in system.
2104 * Takes task_lock(tsk) to prevent freeing of its mempolicy.
2106 bool mempolicy_in_oom_domain(struct task_struct *tsk,
2107 const nodemask_t *mask)
2109 struct mempolicy *mempolicy;
2116 mempolicy = tsk->mempolicy;
2117 if (mempolicy && mempolicy->mode == MPOL_BIND)
2118 ret = nodes_intersects(mempolicy->nodes, *mask);
2124 /* Allocate a page in interleaved policy.
2125 Own path because it needs to do special accounting. */
2126 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
2131 page = __alloc_pages(gfp, order, nid, NULL);
2132 /* skip NUMA_INTERLEAVE_HIT counter update if numa stats is disabled */
2133 if (!static_branch_likely(&vm_numa_stat_key))
2135 if (page && page_to_nid(page) == nid) {
2137 __count_numa_event(page_zone(page), NUMA_INTERLEAVE_HIT);
2143 static struct page *alloc_pages_preferred_many(gfp_t gfp, unsigned int order,
2144 int nid, struct mempolicy *pol)
2147 gfp_t preferred_gfp;
2150 * This is a two pass approach. The first pass will only try the
2151 * preferred nodes but skip the direct reclaim and allow the
2152 * allocation to fail, while the second pass will try all the
2155 preferred_gfp = gfp | __GFP_NOWARN;
2156 preferred_gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2157 page = __alloc_pages(preferred_gfp, order, nid, &pol->nodes);
2159 page = __alloc_pages(gfp, order, nid, NULL);
2165 * vma_alloc_folio - Allocate a folio for a VMA.
2167 * @order: Order of the folio.
2168 * @vma: Pointer to VMA or NULL if not available.
2169 * @addr: Virtual address of the allocation. Must be inside @vma.
2170 * @hugepage: For hugepages try only the preferred node if possible.
2172 * Allocate a folio for a specific address in @vma, using the appropriate
2173 * NUMA policy. When @vma is not NULL the caller must hold the mmap_lock
2174 * of the mm_struct of the VMA to prevent it from going away. Should be
2175 * used for all allocations for folios that will be mapped into user space.
2177 * Return: The folio on success or NULL if allocation fails.
2179 struct folio *vma_alloc_folio(gfp_t gfp, int order, struct vm_area_struct *vma,
2180 unsigned long addr, bool hugepage)
2182 struct mempolicy *pol;
2183 int node = numa_node_id();
2184 struct folio *folio;
2188 pol = get_vma_policy(vma, addr);
2190 if (pol->mode == MPOL_INTERLEAVE) {
2194 nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order);
2197 page = alloc_page_interleave(gfp, order, nid);
2198 folio = (struct folio *)page;
2199 if (folio && order > 1)
2200 folio_prep_large_rmappable(folio);
2204 if (pol->mode == MPOL_PREFERRED_MANY) {
2207 node = policy_node(gfp, pol, node);
2209 page = alloc_pages_preferred_many(gfp, order, node, pol);
2211 folio = (struct folio *)page;
2212 if (folio && order > 1)
2213 folio_prep_large_rmappable(folio);
2217 if (unlikely(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && hugepage)) {
2218 int hpage_node = node;
2221 * For hugepage allocation and non-interleave policy which
2222 * allows the current node (or other explicitly preferred
2223 * node) we only try to allocate from the current/preferred
2224 * node and don't fall back to other nodes, as the cost of
2225 * remote accesses would likely offset THP benefits.
2227 * If the policy is interleave or does not allow the current
2228 * node in its nodemask, we allocate the standard way.
2230 if (pol->mode == MPOL_PREFERRED)
2231 hpage_node = first_node(pol->nodes);
2233 nmask = policy_nodemask(gfp, pol);
2234 if (!nmask || node_isset(hpage_node, *nmask)) {
2237 * First, try to allocate THP only on local node, but
2238 * don't reclaim unnecessarily, just compact.
2240 folio = __folio_alloc_node(gfp | __GFP_THISNODE |
2241 __GFP_NORETRY, order, hpage_node);
2244 * If hugepage allocations are configured to always
2245 * synchronous compact or the vma has been madvised
2246 * to prefer hugepage backing, retry allowing remote
2247 * memory with both reclaim and compact as well.
2249 if (!folio && (gfp & __GFP_DIRECT_RECLAIM))
2250 folio = __folio_alloc(gfp, order, hpage_node,
2257 nmask = policy_nodemask(gfp, pol);
2258 preferred_nid = policy_node(gfp, pol, node);
2259 folio = __folio_alloc(gfp, order, preferred_nid, nmask);
2264 EXPORT_SYMBOL(vma_alloc_folio);
2267 * alloc_pages - Allocate pages.
2269 * @order: Power of two of number of pages to allocate.
2271 * Allocate 1 << @order contiguous pages. The physical address of the
2272 * first page is naturally aligned (eg an order-3 allocation will be aligned
2273 * to a multiple of 8 * PAGE_SIZE bytes). The NUMA policy of the current
2274 * process is honoured when in process context.
2276 * Context: Can be called from any context, providing the appropriate GFP
2278 * Return: The page on success or NULL if allocation fails.
2280 struct page *alloc_pages(gfp_t gfp, unsigned order)
2282 struct mempolicy *pol = &default_policy;
2285 if (!in_interrupt() && !(gfp & __GFP_THISNODE))
2286 pol = get_task_policy(current);
2289 * No reference counting needed for current->mempolicy
2290 * nor system default_policy
2292 if (pol->mode == MPOL_INTERLEAVE)
2293 page = alloc_page_interleave(gfp, order, interleave_nodes(pol));
2294 else if (pol->mode == MPOL_PREFERRED_MANY)
2295 page = alloc_pages_preferred_many(gfp, order,
2296 policy_node(gfp, pol, numa_node_id()), pol);
2298 page = __alloc_pages(gfp, order,
2299 policy_node(gfp, pol, numa_node_id()),
2300 policy_nodemask(gfp, pol));
2304 EXPORT_SYMBOL(alloc_pages);
2306 struct folio *folio_alloc(gfp_t gfp, unsigned order)
2308 struct page *page = alloc_pages(gfp | __GFP_COMP, order);
2309 struct folio *folio = (struct folio *)page;
2311 if (folio && order > 1)
2312 folio_prep_large_rmappable(folio);
2315 EXPORT_SYMBOL(folio_alloc);
2317 static unsigned long alloc_pages_bulk_array_interleave(gfp_t gfp,
2318 struct mempolicy *pol, unsigned long nr_pages,
2319 struct page **page_array)
2322 unsigned long nr_pages_per_node;
2325 unsigned long nr_allocated;
2326 unsigned long total_allocated = 0;
2328 nodes = nodes_weight(pol->nodes);
2329 nr_pages_per_node = nr_pages / nodes;
2330 delta = nr_pages - nodes * nr_pages_per_node;
2332 for (i = 0; i < nodes; i++) {
2334 nr_allocated = __alloc_pages_bulk(gfp,
2335 interleave_nodes(pol), NULL,
2336 nr_pages_per_node + 1, NULL,
2340 nr_allocated = __alloc_pages_bulk(gfp,
2341 interleave_nodes(pol), NULL,
2342 nr_pages_per_node, NULL, page_array);
2345 page_array += nr_allocated;
2346 total_allocated += nr_allocated;
2349 return total_allocated;
2352 static unsigned long alloc_pages_bulk_array_preferred_many(gfp_t gfp, int nid,
2353 struct mempolicy *pol, unsigned long nr_pages,
2354 struct page **page_array)
2356 gfp_t preferred_gfp;
2357 unsigned long nr_allocated = 0;
2359 preferred_gfp = gfp | __GFP_NOWARN;
2360 preferred_gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2362 nr_allocated = __alloc_pages_bulk(preferred_gfp, nid, &pol->nodes,
2363 nr_pages, NULL, page_array);
2365 if (nr_allocated < nr_pages)
2366 nr_allocated += __alloc_pages_bulk(gfp, numa_node_id(), NULL,
2367 nr_pages - nr_allocated, NULL,
2368 page_array + nr_allocated);
2369 return nr_allocated;
2372 /* alloc pages bulk and mempolicy should be considered at the
2373 * same time in some situation such as vmalloc.
2375 * It can accelerate memory allocation especially interleaving
2378 unsigned long alloc_pages_bulk_array_mempolicy(gfp_t gfp,
2379 unsigned long nr_pages, struct page **page_array)
2381 struct mempolicy *pol = &default_policy;
2383 if (!in_interrupt() && !(gfp & __GFP_THISNODE))
2384 pol = get_task_policy(current);
2386 if (pol->mode == MPOL_INTERLEAVE)
2387 return alloc_pages_bulk_array_interleave(gfp, pol,
2388 nr_pages, page_array);
2390 if (pol->mode == MPOL_PREFERRED_MANY)
2391 return alloc_pages_bulk_array_preferred_many(gfp,
2392 numa_node_id(), pol, nr_pages, page_array);
2394 return __alloc_pages_bulk(gfp, policy_node(gfp, pol, numa_node_id()),
2395 policy_nodemask(gfp, pol), nr_pages, NULL,
2399 int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst)
2401 struct mempolicy *pol = mpol_dup(vma_policy(src));
2404 return PTR_ERR(pol);
2405 dst->vm_policy = pol;
2410 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
2411 * rebinds the mempolicy its copying by calling mpol_rebind_policy()
2412 * with the mems_allowed returned by cpuset_mems_allowed(). This
2413 * keeps mempolicies cpuset relative after its cpuset moves. See
2414 * further kernel/cpuset.c update_nodemask().
2416 * current's mempolicy may be rebinded by the other task(the task that changes
2417 * cpuset's mems), so we needn't do rebind work for current task.
2420 /* Slow path of a mempolicy duplicate */
2421 struct mempolicy *__mpol_dup(struct mempolicy *old)
2423 struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2426 return ERR_PTR(-ENOMEM);
2428 /* task's mempolicy is protected by alloc_lock */
2429 if (old == current->mempolicy) {
2432 task_unlock(current);
2436 if (current_cpuset_is_being_rebound()) {
2437 nodemask_t mems = cpuset_mems_allowed(current);
2438 mpol_rebind_policy(new, &mems);
2440 atomic_set(&new->refcnt, 1);
2444 /* Slow path of a mempolicy comparison */
2445 bool __mpol_equal(struct mempolicy *a, struct mempolicy *b)
2449 if (a->mode != b->mode)
2451 if (a->flags != b->flags)
2453 if (a->home_node != b->home_node)
2455 if (mpol_store_user_nodemask(a))
2456 if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
2461 case MPOL_INTERLEAVE:
2462 case MPOL_PREFERRED:
2463 case MPOL_PREFERRED_MANY:
2464 return !!nodes_equal(a->nodes, b->nodes);
2474 * Shared memory backing store policy support.
2476 * Remember policies even when nobody has shared memory mapped.
2477 * The policies are kept in Red-Black tree linked from the inode.
2478 * They are protected by the sp->lock rwlock, which should be held
2479 * for any accesses to the tree.
2483 * lookup first element intersecting start-end. Caller holds sp->lock for
2484 * reading or for writing
2486 static struct sp_node *
2487 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
2489 struct rb_node *n = sp->root.rb_node;
2492 struct sp_node *p = rb_entry(n, struct sp_node, nd);
2494 if (start >= p->end)
2496 else if (end <= p->start)
2504 struct sp_node *w = NULL;
2505 struct rb_node *prev = rb_prev(n);
2508 w = rb_entry(prev, struct sp_node, nd);
2509 if (w->end <= start)
2513 return rb_entry(n, struct sp_node, nd);
2517 * Insert a new shared policy into the list. Caller holds sp->lock for
2520 static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2522 struct rb_node **p = &sp->root.rb_node;
2523 struct rb_node *parent = NULL;
2528 nd = rb_entry(parent, struct sp_node, nd);
2529 if (new->start < nd->start)
2531 else if (new->end > nd->end)
2532 p = &(*p)->rb_right;
2536 rb_link_node(&new->nd, parent, p);
2537 rb_insert_color(&new->nd, &sp->root);
2538 pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
2539 new->policy ? new->policy->mode : 0);
2542 /* Find shared policy intersecting idx */
2544 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
2546 struct mempolicy *pol = NULL;
2549 if (!sp->root.rb_node)
2551 read_lock(&sp->lock);
2552 sn = sp_lookup(sp, idx, idx+1);
2554 mpol_get(sn->policy);
2557 read_unlock(&sp->lock);
2561 static void sp_free(struct sp_node *n)
2563 mpol_put(n->policy);
2564 kmem_cache_free(sn_cache, n);
2568 * mpol_misplaced - check whether current page node is valid in policy
2570 * @page: page to be checked
2571 * @vma: vm area where page mapped
2572 * @addr: virtual address where page mapped
2574 * Lookup current policy node id for vma,addr and "compare to" page's
2575 * node id. Policy determination "mimics" alloc_page_vma().
2576 * Called from fault path where we know the vma and faulting address.
2578 * Return: NUMA_NO_NODE if the page is in a node that is valid for this
2579 * policy, or a suitable node ID to allocate a replacement page from.
2581 int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr)
2583 struct mempolicy *pol;
2585 int curnid = page_to_nid(page);
2586 unsigned long pgoff;
2587 int thiscpu = raw_smp_processor_id();
2588 int thisnid = cpu_to_node(thiscpu);
2589 int polnid = NUMA_NO_NODE;
2590 int ret = NUMA_NO_NODE;
2592 pol = get_vma_policy(vma, addr);
2593 if (!(pol->flags & MPOL_F_MOF))
2596 switch (pol->mode) {
2597 case MPOL_INTERLEAVE:
2598 pgoff = vma->vm_pgoff;
2599 pgoff += (addr - vma->vm_start) >> PAGE_SHIFT;
2600 polnid = offset_il_node(pol, pgoff);
2603 case MPOL_PREFERRED:
2604 if (node_isset(curnid, pol->nodes))
2606 polnid = first_node(pol->nodes);
2610 polnid = numa_node_id();
2614 /* Optimize placement among multiple nodes via NUMA balancing */
2615 if (pol->flags & MPOL_F_MORON) {
2616 if (node_isset(thisnid, pol->nodes))
2622 case MPOL_PREFERRED_MANY:
2624 * use current page if in policy nodemask,
2625 * else select nearest allowed node, if any.
2626 * If no allowed nodes, use current [!misplaced].
2628 if (node_isset(curnid, pol->nodes))
2630 z = first_zones_zonelist(
2631 node_zonelist(numa_node_id(), GFP_HIGHUSER),
2632 gfp_zone(GFP_HIGHUSER),
2634 polnid = zone_to_nid(z->zone);
2641 /* Migrate the page towards the node whose CPU is referencing it */
2642 if (pol->flags & MPOL_F_MORON) {
2645 if (!should_numa_migrate_memory(current, page, curnid, thiscpu))
2649 if (curnid != polnid)
2658 * Drop the (possibly final) reference to task->mempolicy. It needs to be
2659 * dropped after task->mempolicy is set to NULL so that any allocation done as
2660 * part of its kmem_cache_free(), such as by KASAN, doesn't reference a freed
2663 void mpol_put_task_policy(struct task_struct *task)
2665 struct mempolicy *pol;
2668 pol = task->mempolicy;
2669 task->mempolicy = NULL;
2674 static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2676 pr_debug("deleting %lx-l%lx\n", n->start, n->end);
2677 rb_erase(&n->nd, &sp->root);
2681 static void sp_node_init(struct sp_node *node, unsigned long start,
2682 unsigned long end, struct mempolicy *pol)
2684 node->start = start;
2689 static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2690 struct mempolicy *pol)
2693 struct mempolicy *newpol;
2695 n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2699 newpol = mpol_dup(pol);
2700 if (IS_ERR(newpol)) {
2701 kmem_cache_free(sn_cache, n);
2704 newpol->flags |= MPOL_F_SHARED;
2705 sp_node_init(n, start, end, newpol);
2710 /* Replace a policy range. */
2711 static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
2712 unsigned long end, struct sp_node *new)
2715 struct sp_node *n_new = NULL;
2716 struct mempolicy *mpol_new = NULL;
2720 write_lock(&sp->lock);
2721 n = sp_lookup(sp, start, end);
2722 /* Take care of old policies in the same range. */
2723 while (n && n->start < end) {
2724 struct rb_node *next = rb_next(&n->nd);
2725 if (n->start >= start) {
2731 /* Old policy spanning whole new range. */
2736 *mpol_new = *n->policy;
2737 atomic_set(&mpol_new->refcnt, 1);
2738 sp_node_init(n_new, end, n->end, mpol_new);
2740 sp_insert(sp, n_new);
2749 n = rb_entry(next, struct sp_node, nd);
2753 write_unlock(&sp->lock);
2760 kmem_cache_free(sn_cache, n_new);
2765 write_unlock(&sp->lock);
2767 n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2770 mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2773 atomic_set(&mpol_new->refcnt, 1);
2778 * mpol_shared_policy_init - initialize shared policy for inode
2779 * @sp: pointer to inode shared policy
2780 * @mpol: struct mempolicy to install
2782 * Install non-NULL @mpol in inode's shared policy rb-tree.
2783 * On entry, the current task has a reference on a non-NULL @mpol.
2784 * This must be released on exit.
2785 * This is called at get_inode() calls and we can use GFP_KERNEL.
2787 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2791 sp->root = RB_ROOT; /* empty tree == default mempolicy */
2792 rwlock_init(&sp->lock);
2795 struct vm_area_struct pvma;
2796 struct mempolicy *new;
2797 NODEMASK_SCRATCH(scratch);
2801 /* contextualize the tmpfs mount point mempolicy */
2802 new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2804 goto free_scratch; /* no valid nodemask intersection */
2807 ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch);
2808 task_unlock(current);
2812 /* Create pseudo-vma that contains just the policy */
2813 vma_init(&pvma, NULL);
2814 pvma.vm_end = TASK_SIZE; /* policy covers entire file */
2815 mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
2818 mpol_put(new); /* drop initial ref */
2820 NODEMASK_SCRATCH_FREE(scratch);
2822 mpol_put(mpol); /* drop our incoming ref on sb mpol */
2826 int mpol_set_shared_policy(struct shared_policy *info,
2827 struct vm_area_struct *vma, struct mempolicy *npol)
2830 struct sp_node *new = NULL;
2831 unsigned long sz = vma_pages(vma);
2833 pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2835 sz, npol ? npol->mode : -1,
2836 npol ? npol->flags : -1,
2837 npol ? nodes_addr(npol->nodes)[0] : NUMA_NO_NODE);
2840 new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
2844 err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
2850 /* Free a backing policy store on inode delete. */
2851 void mpol_free_shared_policy(struct shared_policy *p)
2854 struct rb_node *next;
2856 if (!p->root.rb_node)
2858 write_lock(&p->lock);
2859 next = rb_first(&p->root);
2861 n = rb_entry(next, struct sp_node, nd);
2862 next = rb_next(&n->nd);
2865 write_unlock(&p->lock);
2868 #ifdef CONFIG_NUMA_BALANCING
2869 static int __initdata numabalancing_override;
2871 static void __init check_numabalancing_enable(void)
2873 bool numabalancing_default = false;
2875 if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED))
2876 numabalancing_default = true;
2878 /* Parsed by setup_numabalancing. override == 1 enables, -1 disables */
2879 if (numabalancing_override)
2880 set_numabalancing_state(numabalancing_override == 1);
2882 if (num_online_nodes() > 1 && !numabalancing_override) {
2883 pr_info("%s automatic NUMA balancing. Configure with numa_balancing= or the kernel.numa_balancing sysctl\n",
2884 numabalancing_default ? "Enabling" : "Disabling");
2885 set_numabalancing_state(numabalancing_default);
2889 static int __init setup_numabalancing(char *str)
2895 if (!strcmp(str, "enable")) {
2896 numabalancing_override = 1;
2898 } else if (!strcmp(str, "disable")) {
2899 numabalancing_override = -1;
2904 pr_warn("Unable to parse numa_balancing=\n");
2908 __setup("numa_balancing=", setup_numabalancing);
2910 static inline void __init check_numabalancing_enable(void)
2913 #endif /* CONFIG_NUMA_BALANCING */
2915 /* assumes fs == KERNEL_DS */
2916 void __init numa_policy_init(void)
2918 nodemask_t interleave_nodes;
2919 unsigned long largest = 0;
2920 int nid, prefer = 0;
2922 policy_cache = kmem_cache_create("numa_policy",
2923 sizeof(struct mempolicy),
2924 0, SLAB_PANIC, NULL);
2926 sn_cache = kmem_cache_create("shared_policy_node",
2927 sizeof(struct sp_node),
2928 0, SLAB_PANIC, NULL);
2930 for_each_node(nid) {
2931 preferred_node_policy[nid] = (struct mempolicy) {
2932 .refcnt = ATOMIC_INIT(1),
2933 .mode = MPOL_PREFERRED,
2934 .flags = MPOL_F_MOF | MPOL_F_MORON,
2935 .nodes = nodemask_of_node(nid),
2940 * Set interleaving policy for system init. Interleaving is only
2941 * enabled across suitably sized nodes (default is >= 16MB), or
2942 * fall back to the largest node if they're all smaller.
2944 nodes_clear(interleave_nodes);
2945 for_each_node_state(nid, N_MEMORY) {
2946 unsigned long total_pages = node_present_pages(nid);
2948 /* Preserve the largest node */
2949 if (largest < total_pages) {
2950 largest = total_pages;
2954 /* Interleave this node? */
2955 if ((total_pages << PAGE_SHIFT) >= (16 << 20))
2956 node_set(nid, interleave_nodes);
2959 /* All too small, use the largest */
2960 if (unlikely(nodes_empty(interleave_nodes)))
2961 node_set(prefer, interleave_nodes);
2963 if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
2964 pr_err("%s: interleaving failed\n", __func__);
2966 check_numabalancing_enable();
2969 /* Reset policy of current process to default */
2970 void numa_default_policy(void)
2972 do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
2976 * Parse and format mempolicy from/to strings
2979 static const char * const policy_modes[] =
2981 [MPOL_DEFAULT] = "default",
2982 [MPOL_PREFERRED] = "prefer",
2983 [MPOL_BIND] = "bind",
2984 [MPOL_INTERLEAVE] = "interleave",
2985 [MPOL_LOCAL] = "local",
2986 [MPOL_PREFERRED_MANY] = "prefer (many)",
2992 * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option.
2993 * @str: string containing mempolicy to parse
2994 * @mpol: pointer to struct mempolicy pointer, returned on success.
2997 * <mode>[=<flags>][:<nodelist>]
2999 * Return: %0 on success, else %1
3001 int mpol_parse_str(char *str, struct mempolicy **mpol)
3003 struct mempolicy *new = NULL;
3004 unsigned short mode_flags;
3006 char *nodelist = strchr(str, ':');
3007 char *flags = strchr(str, '=');
3011 *flags++ = '\0'; /* terminate mode string */
3014 /* NUL-terminate mode or flags string */
3016 if (nodelist_parse(nodelist, nodes))
3018 if (!nodes_subset(nodes, node_states[N_MEMORY]))
3023 mode = match_string(policy_modes, MPOL_MAX, str);
3028 case MPOL_PREFERRED:
3030 * Insist on a nodelist of one node only, although later
3031 * we use first_node(nodes) to grab a single node, so here
3032 * nodelist (or nodes) cannot be empty.
3035 char *rest = nodelist;
3036 while (isdigit(*rest))
3040 if (nodes_empty(nodes))
3044 case MPOL_INTERLEAVE:
3046 * Default to online nodes with memory if no nodelist
3049 nodes = node_states[N_MEMORY];
3053 * Don't allow a nodelist; mpol_new() checks flags
3060 * Insist on a empty nodelist
3065 case MPOL_PREFERRED_MANY:
3068 * Insist on a nodelist
3077 * Currently, we only support two mutually exclusive
3080 if (!strcmp(flags, "static"))
3081 mode_flags |= MPOL_F_STATIC_NODES;
3082 else if (!strcmp(flags, "relative"))
3083 mode_flags |= MPOL_F_RELATIVE_NODES;
3088 new = mpol_new(mode, mode_flags, &nodes);
3093 * Save nodes for mpol_to_str() to show the tmpfs mount options
3094 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo.
3096 if (mode != MPOL_PREFERRED) {
3098 } else if (nodelist) {
3099 nodes_clear(new->nodes);
3100 node_set(first_node(nodes), new->nodes);
3102 new->mode = MPOL_LOCAL;
3106 * Save nodes for contextualization: this will be used to "clone"
3107 * the mempolicy in a specific context [cpuset] at a later time.
3109 new->w.user_nodemask = nodes;
3114 /* Restore string for error message */
3123 #endif /* CONFIG_TMPFS */
3126 * mpol_to_str - format a mempolicy structure for printing
3127 * @buffer: to contain formatted mempolicy string
3128 * @maxlen: length of @buffer
3129 * @pol: pointer to mempolicy to be formatted
3131 * Convert @pol into a string. If @buffer is too short, truncate the string.
3132 * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the
3133 * longest flag, "relative", and to display at least a few node ids.
3135 void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
3138 nodemask_t nodes = NODE_MASK_NONE;
3139 unsigned short mode = MPOL_DEFAULT;
3140 unsigned short flags = 0;
3142 if (pol && pol != &default_policy && !(pol->flags & MPOL_F_MORON)) {
3151 case MPOL_PREFERRED:
3152 case MPOL_PREFERRED_MANY:
3154 case MPOL_INTERLEAVE:
3159 snprintf(p, maxlen, "unknown");
3163 p += snprintf(p, maxlen, "%s", policy_modes[mode]);
3165 if (flags & MPOL_MODE_FLAGS) {
3166 p += snprintf(p, buffer + maxlen - p, "=");
3169 * Currently, the only defined flags are mutually exclusive
3171 if (flags & MPOL_F_STATIC_NODES)
3172 p += snprintf(p, buffer + maxlen - p, "static");
3173 else if (flags & MPOL_F_RELATIVE_NODES)
3174 p += snprintf(p, buffer + maxlen - p, "relative");
3177 if (!nodes_empty(nodes))
3178 p += scnprintf(p, buffer + maxlen - p, ":%*pbl",
3179 nodemask_pr_args(&nodes));