1 // SPDX-License-Identifier: GPL-2.0-only
3 * Simple NUMA memory policy for the Linux kernel.
5 * Copyright 2003,2004 Andi Kleen, SuSE Labs.
6 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
8 * NUMA policy allows the user to give hints in which node(s) memory should
11 * Support four policies per VMA and per process:
13 * The VMA policy has priority over the process policy for a page fault.
15 * interleave Allocate memory interleaved over a set of nodes,
16 * with normal fallback if it fails.
17 * For VMA based allocations this interleaves based on the
18 * offset into the backing object or offset into the mapping
19 * for anonymous memory. For process policy an process counter
22 * bind Only allocate memory on a specific set of nodes,
24 * FIXME: memory is allocated starting with the first node
25 * to the last. It would be better if bind would truly restrict
26 * the allocation to memory nodes instead
28 * preferred Try a specific node first before normal fallback.
29 * As a special case NUMA_NO_NODE here means do the allocation
30 * on the local CPU. This is normally identical to default,
31 * but useful to set in a VMA when you have a non default
34 * preferred many Try a set of nodes first before normal fallback. This is
35 * similar to preferred without the special case.
37 * default Allocate on the local node first, or when on a VMA
38 * use the process policy. This is what Linux always did
39 * in a NUMA aware kernel and still does by, ahem, default.
41 * The process policy is applied for most non interrupt memory allocations
42 * in that process' context. Interrupts ignore the policies and always
43 * try to allocate on the local CPU. The VMA policy is only applied for memory
44 * allocations for a VMA in the VM.
46 * Currently there are a few corner cases in swapping where the policy
47 * is not applied, but the majority should be handled. When process policy
48 * is used it is not remembered over swap outs/swap ins.
50 * Only the highest zone in the zone hierarchy gets policied. Allocations
51 * requesting a lower zone just use default policy. This implies that
52 * on systems with highmem kernel lowmem allocation don't get policied.
53 * Same with GFP_DMA allocations.
55 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
56 * all users and remembered even when nobody has memory mapped.
60 fix mmap readahead to honour policy and enable policy for any page cache
62 statistics for bigpages
63 global policy for page cache? currently it uses process policy. Requires
65 handle mremap for shared memory (currently ignored for the policy)
67 make bind policy root only? It can trigger oom much faster and the
68 kernel is not always grateful with that.
71 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
73 #include <linux/mempolicy.h>
74 #include <linux/pagewalk.h>
75 #include <linux/highmem.h>
76 #include <linux/hugetlb.h>
77 #include <linux/kernel.h>
78 #include <linux/sched.h>
79 #include <linux/sched/mm.h>
80 #include <linux/sched/numa_balancing.h>
81 #include <linux/sched/task.h>
82 #include <linux/nodemask.h>
83 #include <linux/cpuset.h>
84 #include <linux/slab.h>
85 #include <linux/string.h>
86 #include <linux/export.h>
87 #include <linux/nsproxy.h>
88 #include <linux/interrupt.h>
89 #include <linux/init.h>
90 #include <linux/compat.h>
91 #include <linux/ptrace.h>
92 #include <linux/swap.h>
93 #include <linux/seq_file.h>
94 #include <linux/proc_fs.h>
95 #include <linux/migrate.h>
96 #include <linux/ksm.h>
97 #include <linux/rmap.h>
98 #include <linux/security.h>
99 #include <linux/syscalls.h>
100 #include <linux/ctype.h>
101 #include <linux/mm_inline.h>
102 #include <linux/mmu_notifier.h>
103 #include <linux/printk.h>
104 #include <linux/swapops.h>
106 #include <asm/tlbflush.h>
108 #include <linux/uaccess.h>
110 #include "internal.h"
113 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */
114 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */
116 static struct kmem_cache *policy_cache;
117 static struct kmem_cache *sn_cache;
119 /* Highest zone. An specific allocation for a zone below that is not
121 enum zone_type policy_zone = 0;
124 * run-time system-wide default policy => local allocation
126 static struct mempolicy default_policy = {
127 .refcnt = ATOMIC_INIT(1), /* never free it */
131 static struct mempolicy preferred_node_policy[MAX_NUMNODES];
134 * numa_map_to_online_node - Find closest online node
135 * @node: Node id to start the search
137 * Lookup the next closest node by distance if @nid is not online.
139 * Return: this @node if it is online, otherwise the closest node by distance
141 int numa_map_to_online_node(int node)
143 int min_dist = INT_MAX, dist, n, min_node;
145 if (node == NUMA_NO_NODE || node_online(node))
149 for_each_online_node(n) {
150 dist = node_distance(node, n);
151 if (dist < min_dist) {
159 EXPORT_SYMBOL_GPL(numa_map_to_online_node);
161 struct mempolicy *get_task_policy(struct task_struct *p)
163 struct mempolicy *pol = p->mempolicy;
169 node = numa_node_id();
170 if (node != NUMA_NO_NODE) {
171 pol = &preferred_node_policy[node];
172 /* preferred_node_policy is not initialised early in boot */
177 return &default_policy;
180 static const struct mempolicy_operations {
181 int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
182 void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes);
183 } mpol_ops[MPOL_MAX];
185 static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
187 return pol->flags & MPOL_MODE_FLAGS;
190 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
191 const nodemask_t *rel)
194 nodes_fold(tmp, *orig, nodes_weight(*rel));
195 nodes_onto(*ret, tmp, *rel);
198 static int mpol_new_nodemask(struct mempolicy *pol, const nodemask_t *nodes)
200 if (nodes_empty(*nodes))
206 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
208 if (nodes_empty(*nodes))
211 nodes_clear(pol->nodes);
212 node_set(first_node(*nodes), pol->nodes);
217 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
218 * any, for the new policy. mpol_new() has already validated the nodes
219 * parameter with respect to the policy mode and flags.
221 * Must be called holding task's alloc_lock to protect task's mems_allowed
222 * and mempolicy. May also be called holding the mmap_lock for write.
224 static int mpol_set_nodemask(struct mempolicy *pol,
225 const nodemask_t *nodes, struct nodemask_scratch *nsc)
230 * Default (pol==NULL) resp. local memory policies are not a
231 * subject of any remapping. They also do not need any special
234 if (!pol || pol->mode == MPOL_LOCAL)
238 nodes_and(nsc->mask1,
239 cpuset_current_mems_allowed, node_states[N_MEMORY]);
243 if (pol->flags & MPOL_F_RELATIVE_NODES)
244 mpol_relative_nodemask(&nsc->mask2, nodes, &nsc->mask1);
246 nodes_and(nsc->mask2, *nodes, nsc->mask1);
248 if (mpol_store_user_nodemask(pol))
249 pol->w.user_nodemask = *nodes;
251 pol->w.cpuset_mems_allowed = cpuset_current_mems_allowed;
253 ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
258 * This function just creates a new policy, does some check and simple
259 * initialization. You must invoke mpol_set_nodemask() to set nodes.
261 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
264 struct mempolicy *policy;
266 pr_debug("setting mode %d flags %d nodes[0] %lx\n",
267 mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE);
269 if (mode == MPOL_DEFAULT) {
270 if (nodes && !nodes_empty(*nodes))
271 return ERR_PTR(-EINVAL);
277 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
278 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
279 * All other modes require a valid pointer to a non-empty nodemask.
281 if (mode == MPOL_PREFERRED) {
282 if (nodes_empty(*nodes)) {
283 if (((flags & MPOL_F_STATIC_NODES) ||
284 (flags & MPOL_F_RELATIVE_NODES)))
285 return ERR_PTR(-EINVAL);
289 } else if (mode == MPOL_LOCAL) {
290 if (!nodes_empty(*nodes) ||
291 (flags & MPOL_F_STATIC_NODES) ||
292 (flags & MPOL_F_RELATIVE_NODES))
293 return ERR_PTR(-EINVAL);
294 } else if (nodes_empty(*nodes))
295 return ERR_PTR(-EINVAL);
296 policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
298 return ERR_PTR(-ENOMEM);
299 atomic_set(&policy->refcnt, 1);
301 policy->flags = flags;
302 policy->home_node = NUMA_NO_NODE;
307 /* Slow path of a mpol destructor. */
308 void __mpol_put(struct mempolicy *p)
310 if (!atomic_dec_and_test(&p->refcnt))
312 kmem_cache_free(policy_cache, p);
315 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes)
319 static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes)
323 if (pol->flags & MPOL_F_STATIC_NODES)
324 nodes_and(tmp, pol->w.user_nodemask, *nodes);
325 else if (pol->flags & MPOL_F_RELATIVE_NODES)
326 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
328 nodes_remap(tmp, pol->nodes, pol->w.cpuset_mems_allowed,
330 pol->w.cpuset_mems_allowed = *nodes;
333 if (nodes_empty(tmp))
339 static void mpol_rebind_preferred(struct mempolicy *pol,
340 const nodemask_t *nodes)
342 pol->w.cpuset_mems_allowed = *nodes;
346 * mpol_rebind_policy - Migrate a policy to a different set of nodes
348 * Per-vma policies are protected by mmap_lock. Allocations using per-task
349 * policies are protected by task->mems_allowed_seq to prevent a premature
350 * OOM/allocation failure due to parallel nodemask modification.
352 static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask)
354 if (!pol || pol->mode == MPOL_LOCAL)
356 if (!mpol_store_user_nodemask(pol) &&
357 nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
360 mpol_ops[pol->mode].rebind(pol, newmask);
364 * Wrapper for mpol_rebind_policy() that just requires task
365 * pointer, and updates task mempolicy.
367 * Called with task's alloc_lock held.
370 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new)
372 mpol_rebind_policy(tsk->mempolicy, new);
376 * Rebind each vma in mm to new nodemask.
378 * Call holding a reference to mm. Takes mm->mmap_lock during call.
381 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
383 struct vm_area_struct *vma;
384 VMA_ITERATOR(vmi, mm, 0);
387 for_each_vma(vmi, vma)
388 mpol_rebind_policy(vma->vm_policy, new);
389 mmap_write_unlock(mm);
392 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
394 .rebind = mpol_rebind_default,
396 [MPOL_INTERLEAVE] = {
397 .create = mpol_new_nodemask,
398 .rebind = mpol_rebind_nodemask,
401 .create = mpol_new_preferred,
402 .rebind = mpol_rebind_preferred,
405 .create = mpol_new_nodemask,
406 .rebind = mpol_rebind_nodemask,
409 .rebind = mpol_rebind_default,
411 [MPOL_PREFERRED_MANY] = {
412 .create = mpol_new_nodemask,
413 .rebind = mpol_rebind_preferred,
417 static int migrate_folio_add(struct folio *folio, struct list_head *foliolist,
418 unsigned long flags);
421 struct list_head *pagelist;
426 struct vm_area_struct *first;
430 * Check if the folio's nid is in qp->nmask.
432 * If MPOL_MF_INVERT is set in qp->flags, check if the nid is
433 * in the invert of qp->nmask.
435 static inline bool queue_folio_required(struct folio *folio,
436 struct queue_pages *qp)
438 int nid = folio_nid(folio);
439 unsigned long flags = qp->flags;
441 return node_isset(nid, *qp->nmask) == !(flags & MPOL_MF_INVERT);
445 * queue_folios_pmd() has three possible return values:
446 * 0 - folios are placed on the right node or queued successfully, or
447 * special page is met, i.e. huge zero page.
448 * 1 - there is unmovable folio, and MPOL_MF_MOVE* & MPOL_MF_STRICT were
450 * -EIO - is migration entry or only MPOL_MF_STRICT was specified and an
451 * existing folio was already on a node that does not follow the
454 static int queue_folios_pmd(pmd_t *pmd, spinlock_t *ptl, unsigned long addr,
455 unsigned long end, struct mm_walk *walk)
460 struct queue_pages *qp = walk->private;
463 if (unlikely(is_pmd_migration_entry(*pmd))) {
467 folio = pfn_folio(pmd_pfn(*pmd));
468 if (is_huge_zero_page(&folio->page)) {
469 walk->action = ACTION_CONTINUE;
472 if (!queue_folio_required(folio, qp))
476 /* go to folio migration */
477 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
478 if (!vma_migratable(walk->vma) ||
479 migrate_folio_add(folio, qp->pagelist, flags)) {
491 * Scan through pages checking if pages follow certain conditions,
492 * and move them to the pagelist if they do.
494 * queue_folios_pte_range() has three possible return values:
495 * 0 - folios are placed on the right node or queued successfully, or
496 * special page is met, i.e. zero page.
497 * 1 - there is unmovable folio, and MPOL_MF_MOVE* & MPOL_MF_STRICT were
499 * -EIO - only MPOL_MF_STRICT was specified and an existing folio was already
500 * on a node that does not follow the policy.
502 static int queue_folios_pte_range(pmd_t *pmd, unsigned long addr,
503 unsigned long end, struct mm_walk *walk)
505 struct vm_area_struct *vma = walk->vma;
507 struct queue_pages *qp = walk->private;
508 unsigned long flags = qp->flags;
509 bool has_unmovable = false;
510 pte_t *pte, *mapped_pte;
513 ptl = pmd_trans_huge_lock(pmd, vma);
515 return queue_folios_pmd(pmd, ptl, addr, end, walk);
517 if (pmd_trans_unstable(pmd))
520 mapped_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
521 for (; addr != end; pte++, addr += PAGE_SIZE) {
522 if (!pte_present(*pte))
524 folio = vm_normal_folio(vma, addr, *pte);
525 if (!folio || folio_is_zone_device(folio))
528 * vm_normal_folio() filters out zero pages, but there might
529 * still be reserved folios to skip, perhaps in a VDSO.
531 if (folio_test_reserved(folio))
533 if (!queue_folio_required(folio, qp))
535 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
536 /* MPOL_MF_STRICT must be specified if we get here */
537 if (!vma_migratable(vma)) {
538 has_unmovable = true;
543 * Do not abort immediately since there may be
544 * temporary off LRU pages in the range. Still
545 * need migrate other LRU pages.
547 if (migrate_folio_add(folio, qp->pagelist, flags))
548 has_unmovable = true;
552 pte_unmap_unlock(mapped_pte, ptl);
558 return addr != end ? -EIO : 0;
561 static int queue_folios_hugetlb(pte_t *pte, unsigned long hmask,
562 unsigned long addr, unsigned long end,
563 struct mm_walk *walk)
566 #ifdef CONFIG_HUGETLB_PAGE
567 struct queue_pages *qp = walk->private;
568 unsigned long flags = (qp->flags & MPOL_MF_VALID);
573 ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte);
574 entry = huge_ptep_get(pte);
575 if (!pte_present(entry))
577 folio = pfn_folio(pte_pfn(entry));
578 if (!queue_folio_required(folio, qp))
581 if (flags == MPOL_MF_STRICT) {
583 * STRICT alone means only detecting misplaced folio and no
584 * need to further check other vma.
590 if (!vma_migratable(walk->vma)) {
592 * Must be STRICT with MOVE*, otherwise .test_walk() have
593 * stopped walking current vma.
594 * Detecting misplaced folio but allow migrating folios which
602 * With MPOL_MF_MOVE, we try to migrate only unshared folios. If it
603 * is shared it is likely not worth migrating.
605 * To check if the folio is shared, ideally we want to make sure
606 * every page is mapped to the same process. Doing that is very
607 * expensive, so check the estimated mapcount of the folio instead.
609 if (flags & (MPOL_MF_MOVE_ALL) ||
610 (flags & MPOL_MF_MOVE && folio_estimated_sharers(folio) == 1 &&
611 !hugetlb_pmd_shared(pte))) {
612 if (!isolate_hugetlb(folio, qp->pagelist) &&
613 (flags & MPOL_MF_STRICT))
615 * Failed to isolate folio but allow migrating pages
616 * which have been queued.
628 #ifdef CONFIG_NUMA_BALANCING
630 * This is used to mark a range of virtual addresses to be inaccessible.
631 * These are later cleared by a NUMA hinting fault. Depending on these
632 * faults, pages may be migrated for better NUMA placement.
634 * This is assuming that NUMA faults are handled using PROT_NONE. If
635 * an architecture makes a different choice, it will need further
636 * changes to the core.
638 unsigned long change_prot_numa(struct vm_area_struct *vma,
639 unsigned long addr, unsigned long end)
641 struct mmu_gather tlb;
644 tlb_gather_mmu(&tlb, vma->vm_mm);
646 nr_updated = change_protection(&tlb, vma, addr, end, MM_CP_PROT_NUMA);
648 count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated);
650 tlb_finish_mmu(&tlb);
655 static unsigned long change_prot_numa(struct vm_area_struct *vma,
656 unsigned long addr, unsigned long end)
660 #endif /* CONFIG_NUMA_BALANCING */
662 static int queue_pages_test_walk(unsigned long start, unsigned long end,
663 struct mm_walk *walk)
665 struct vm_area_struct *next, *vma = walk->vma;
666 struct queue_pages *qp = walk->private;
667 unsigned long endvma = vma->vm_end;
668 unsigned long flags = qp->flags;
670 /* range check first */
671 VM_BUG_ON_VMA(!range_in_vma(vma, start, end), vma);
675 if (!(flags & MPOL_MF_DISCONTIG_OK) &&
676 (qp->start < vma->vm_start))
677 /* hole at head side of range */
680 next = find_vma(vma->vm_mm, vma->vm_end);
681 if (!(flags & MPOL_MF_DISCONTIG_OK) &&
682 ((vma->vm_end < qp->end) &&
683 (!next || vma->vm_end < next->vm_start)))
684 /* hole at middle or tail of range */
688 * Need check MPOL_MF_STRICT to return -EIO if possible
689 * regardless of vma_migratable
691 if (!vma_migratable(vma) &&
692 !(flags & MPOL_MF_STRICT))
698 if (flags & MPOL_MF_LAZY) {
699 /* Similar to task_numa_work, skip inaccessible VMAs */
700 if (!is_vm_hugetlb_page(vma) && vma_is_accessible(vma) &&
701 !(vma->vm_flags & VM_MIXEDMAP))
702 change_prot_numa(vma, start, endvma);
706 /* queue pages from current vma */
707 if (flags & MPOL_MF_VALID)
712 static const struct mm_walk_ops queue_pages_walk_ops = {
713 .hugetlb_entry = queue_folios_hugetlb,
714 .pmd_entry = queue_folios_pte_range,
715 .test_walk = queue_pages_test_walk,
719 * Walk through page tables and collect pages to be migrated.
721 * If pages found in a given range are on a set of nodes (determined by
722 * @nodes and @flags,) it's isolated and queued to the pagelist which is
723 * passed via @private.
725 * queue_pages_range() has three possible return values:
726 * 1 - there is unmovable page, but MPOL_MF_MOVE* & MPOL_MF_STRICT were
728 * 0 - queue pages successfully or no misplaced page.
729 * errno - i.e. misplaced pages with MPOL_MF_STRICT specified (-EIO) or
730 * memory range specified by nodemask and maxnode points outside
731 * your accessible address space (-EFAULT)
734 queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end,
735 nodemask_t *nodes, unsigned long flags,
736 struct list_head *pagelist)
739 struct queue_pages qp = {
740 .pagelist = pagelist,
748 err = walk_page_range(mm, start, end, &queue_pages_walk_ops, &qp);
751 /* whole range in hole */
758 * Apply policy to a single VMA
759 * This must be called with the mmap_lock held for writing.
761 static int vma_replace_policy(struct vm_area_struct *vma,
762 struct mempolicy *pol)
765 struct mempolicy *old;
766 struct mempolicy *new;
768 pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
769 vma->vm_start, vma->vm_end, vma->vm_pgoff,
770 vma->vm_ops, vma->vm_file,
771 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
777 if (vma->vm_ops && vma->vm_ops->set_policy) {
778 err = vma->vm_ops->set_policy(vma, new);
783 old = vma->vm_policy;
784 vma->vm_policy = new; /* protected by mmap_lock */
793 /* Split or merge the VMA (if required) and apply the new policy */
794 static int mbind_range(struct vma_iterator *vmi, struct vm_area_struct *vma,
795 struct vm_area_struct **prev, unsigned long start,
796 unsigned long end, struct mempolicy *new_pol)
798 struct vm_area_struct *merged;
799 unsigned long vmstart, vmend;
803 vmend = min(end, vma->vm_end);
804 if (start > vma->vm_start) {
808 vmstart = vma->vm_start;
811 if (mpol_equal(vma_policy(vma), new_pol))
814 pgoff = vma->vm_pgoff + ((vmstart - vma->vm_start) >> PAGE_SHIFT);
815 merged = vma_merge(vmi, vma->vm_mm, *prev, vmstart, vmend, vma->vm_flags,
816 vma->anon_vma, vma->vm_file, pgoff, new_pol,
817 vma->vm_userfaultfd_ctx, anon_vma_name(vma));
820 return vma_replace_policy(merged, new_pol);
823 if (vma->vm_start != vmstart) {
824 err = split_vma(vmi, vma, vmstart, 1);
829 if (vma->vm_end != vmend) {
830 err = split_vma(vmi, vma, vmend, 0);
836 return vma_replace_policy(vma, new_pol);
839 /* Set the process memory policy */
840 static long do_set_mempolicy(unsigned short mode, unsigned short flags,
843 struct mempolicy *new, *old;
844 NODEMASK_SCRATCH(scratch);
850 new = mpol_new(mode, flags, nodes);
857 ret = mpol_set_nodemask(new, nodes, scratch);
859 task_unlock(current);
864 old = current->mempolicy;
865 current->mempolicy = new;
866 if (new && new->mode == MPOL_INTERLEAVE)
867 current->il_prev = MAX_NUMNODES-1;
868 task_unlock(current);
872 NODEMASK_SCRATCH_FREE(scratch);
877 * Return nodemask for policy for get_mempolicy() query
879 * Called with task's alloc_lock held
881 static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
884 if (p == &default_policy)
889 case MPOL_INTERLEAVE:
891 case MPOL_PREFERRED_MANY:
895 /* return empty node mask for local allocation */
902 static int lookup_node(struct mm_struct *mm, unsigned long addr)
904 struct page *p = NULL;
907 ret = get_user_pages_fast(addr & PAGE_MASK, 1, 0, &p);
909 ret = page_to_nid(p);
915 /* Retrieve NUMA policy */
916 static long do_get_mempolicy(int *policy, nodemask_t *nmask,
917 unsigned long addr, unsigned long flags)
920 struct mm_struct *mm = current->mm;
921 struct vm_area_struct *vma = NULL;
922 struct mempolicy *pol = current->mempolicy, *pol_refcount = NULL;
925 ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
928 if (flags & MPOL_F_MEMS_ALLOWED) {
929 if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
931 *policy = 0; /* just so it's initialized */
933 *nmask = cpuset_current_mems_allowed;
934 task_unlock(current);
938 if (flags & MPOL_F_ADDR) {
940 * Do NOT fall back to task policy if the
941 * vma/shared policy at addr is NULL. We
942 * want to return MPOL_DEFAULT in this case.
945 vma = vma_lookup(mm, addr);
947 mmap_read_unlock(mm);
950 if (vma->vm_ops && vma->vm_ops->get_policy)
951 pol = vma->vm_ops->get_policy(vma, addr);
953 pol = vma->vm_policy;
958 pol = &default_policy; /* indicates default behavior */
960 if (flags & MPOL_F_NODE) {
961 if (flags & MPOL_F_ADDR) {
963 * Take a refcount on the mpol, because we are about to
964 * drop the mmap_lock, after which only "pol" remains
965 * valid, "vma" is stale.
970 mmap_read_unlock(mm);
971 err = lookup_node(mm, addr);
975 } else if (pol == current->mempolicy &&
976 pol->mode == MPOL_INTERLEAVE) {
977 *policy = next_node_in(current->il_prev, pol->nodes);
983 *policy = pol == &default_policy ? MPOL_DEFAULT :
986 * Internal mempolicy flags must be masked off before exposing
987 * the policy to userspace.
989 *policy |= (pol->flags & MPOL_MODE_FLAGS);
994 if (mpol_store_user_nodemask(pol)) {
995 *nmask = pol->w.user_nodemask;
998 get_policy_nodemask(pol, nmask);
999 task_unlock(current);
1006 mmap_read_unlock(mm);
1008 mpol_put(pol_refcount);
1012 #ifdef CONFIG_MIGRATION
1013 static int migrate_folio_add(struct folio *folio, struct list_head *foliolist,
1014 unsigned long flags)
1017 * We try to migrate only unshared folios. If it is shared it
1018 * is likely not worth migrating.
1020 * To check if the folio is shared, ideally we want to make sure
1021 * every page is mapped to the same process. Doing that is very
1022 * expensive, so check the estimated mapcount of the folio instead.
1024 if ((flags & MPOL_MF_MOVE_ALL) || folio_estimated_sharers(folio) == 1) {
1025 if (folio_isolate_lru(folio)) {
1026 list_add_tail(&folio->lru, foliolist);
1027 node_stat_mod_folio(folio,
1028 NR_ISOLATED_ANON + folio_is_file_lru(folio),
1029 folio_nr_pages(folio));
1030 } else if (flags & MPOL_MF_STRICT) {
1032 * Non-movable folio may reach here. And, there may be
1033 * temporary off LRU folios or non-LRU movable folios.
1034 * Treat them as unmovable folios since they can't be
1035 * isolated, so they can't be moved at the moment. It
1036 * should return -EIO for this case too.
1046 * Migrate pages from one node to a target node.
1047 * Returns error or the number of pages not migrated.
1049 static int migrate_to_node(struct mm_struct *mm, int source, int dest,
1053 struct vm_area_struct *vma;
1054 LIST_HEAD(pagelist);
1056 struct migration_target_control mtc = {
1058 .gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE,
1062 node_set(source, nmask);
1065 * This does not "check" the range but isolates all pages that
1066 * need migration. Between passing in the full user address
1067 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail.
1069 vma = find_vma(mm, 0);
1070 VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)));
1071 queue_pages_range(mm, vma->vm_start, mm->task_size, &nmask,
1072 flags | MPOL_MF_DISCONTIG_OK, &pagelist);
1074 if (!list_empty(&pagelist)) {
1075 err = migrate_pages(&pagelist, alloc_migration_target, NULL,
1076 (unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL, NULL);
1078 putback_movable_pages(&pagelist);
1085 * Move pages between the two nodesets so as to preserve the physical
1086 * layout as much as possible.
1088 * Returns the number of page that could not be moved.
1090 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1091 const nodemask_t *to, int flags)
1097 lru_cache_disable();
1102 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
1103 * bit in 'to' is not also set in 'tmp'. Clear the found 'source'
1104 * bit in 'tmp', and return that <source, dest> pair for migration.
1105 * The pair of nodemasks 'to' and 'from' define the map.
1107 * If no pair of bits is found that way, fallback to picking some
1108 * pair of 'source' and 'dest' bits that are not the same. If the
1109 * 'source' and 'dest' bits are the same, this represents a node
1110 * that will be migrating to itself, so no pages need move.
1112 * If no bits are left in 'tmp', or if all remaining bits left
1113 * in 'tmp' correspond to the same bit in 'to', return false
1114 * (nothing left to migrate).
1116 * This lets us pick a pair of nodes to migrate between, such that
1117 * if possible the dest node is not already occupied by some other
1118 * source node, minimizing the risk of overloading the memory on a
1119 * node that would happen if we migrated incoming memory to a node
1120 * before migrating outgoing memory source that same node.
1122 * A single scan of tmp is sufficient. As we go, we remember the
1123 * most recent <s, d> pair that moved (s != d). If we find a pair
1124 * that not only moved, but what's better, moved to an empty slot
1125 * (d is not set in tmp), then we break out then, with that pair.
1126 * Otherwise when we finish scanning from_tmp, we at least have the
1127 * most recent <s, d> pair that moved. If we get all the way through
1128 * the scan of tmp without finding any node that moved, much less
1129 * moved to an empty node, then there is nothing left worth migrating.
1133 while (!nodes_empty(tmp)) {
1135 int source = NUMA_NO_NODE;
1138 for_each_node_mask(s, tmp) {
1141 * do_migrate_pages() tries to maintain the relative
1142 * node relationship of the pages established between
1143 * threads and memory areas.
1145 * However if the number of source nodes is not equal to
1146 * the number of destination nodes we can not preserve
1147 * this node relative relationship. In that case, skip
1148 * copying memory from a node that is in the destination
1151 * Example: [2,3,4] -> [3,4,5] moves everything.
1152 * [0-7] - > [3,4,5] moves only 0,1,2,6,7.
1155 if ((nodes_weight(*from) != nodes_weight(*to)) &&
1156 (node_isset(s, *to)))
1159 d = node_remap(s, *from, *to);
1163 source = s; /* Node moved. Memorize */
1166 /* dest not in remaining from nodes? */
1167 if (!node_isset(dest, tmp))
1170 if (source == NUMA_NO_NODE)
1173 node_clear(source, tmp);
1174 err = migrate_to_node(mm, source, dest, flags);
1180 mmap_read_unlock(mm);
1190 * Allocate a new page for page migration based on vma policy.
1191 * Start by assuming the page is mapped by the same vma as contains @start.
1192 * Search forward from there, if not. N.B., this assumes that the
1193 * list of pages handed to migrate_pages()--which is how we get here--
1194 * is in virtual address order.
1196 static struct page *new_page(struct page *page, unsigned long start)
1198 struct folio *dst, *src = page_folio(page);
1199 struct vm_area_struct *vma;
1200 unsigned long address;
1201 VMA_ITERATOR(vmi, current->mm, start);
1202 gfp_t gfp = GFP_HIGHUSER_MOVABLE | __GFP_RETRY_MAYFAIL;
1204 for_each_vma(vmi, vma) {
1205 address = page_address_in_vma(page, vma);
1206 if (address != -EFAULT)
1210 if (folio_test_hugetlb(src)) {
1211 dst = alloc_hugetlb_folio_vma(folio_hstate(src),
1216 if (folio_test_large(src))
1217 gfp = GFP_TRANSHUGE;
1220 * if !vma, vma_alloc_folio() will use task or system default policy
1222 dst = vma_alloc_folio(gfp, folio_order(src), vma, address,
1223 folio_test_large(src));
1228 static int migrate_folio_add(struct folio *folio, struct list_head *foliolist,
1229 unsigned long flags)
1234 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1235 const nodemask_t *to, int flags)
1240 static struct page *new_page(struct page *page, unsigned long start)
1246 static long do_mbind(unsigned long start, unsigned long len,
1247 unsigned short mode, unsigned short mode_flags,
1248 nodemask_t *nmask, unsigned long flags)
1250 struct mm_struct *mm = current->mm;
1251 struct vm_area_struct *vma, *prev;
1252 struct vma_iterator vmi;
1253 struct mempolicy *new;
1257 LIST_HEAD(pagelist);
1259 if (flags & ~(unsigned long)MPOL_MF_VALID)
1261 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1264 if (start & ~PAGE_MASK)
1267 if (mode == MPOL_DEFAULT)
1268 flags &= ~MPOL_MF_STRICT;
1270 len = PAGE_ALIGN(len);
1278 new = mpol_new(mode, mode_flags, nmask);
1280 return PTR_ERR(new);
1282 if (flags & MPOL_MF_LAZY)
1283 new->flags |= MPOL_F_MOF;
1286 * If we are using the default policy then operation
1287 * on discontinuous address spaces is okay after all
1290 flags |= MPOL_MF_DISCONTIG_OK;
1292 pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1293 start, start + len, mode, mode_flags,
1294 nmask ? nodes_addr(*nmask)[0] : NUMA_NO_NODE);
1296 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
1298 lru_cache_disable();
1301 NODEMASK_SCRATCH(scratch);
1303 mmap_write_lock(mm);
1304 err = mpol_set_nodemask(new, nmask, scratch);
1306 mmap_write_unlock(mm);
1309 NODEMASK_SCRATCH_FREE(scratch);
1314 ret = queue_pages_range(mm, start, end, nmask,
1315 flags | MPOL_MF_INVERT, &pagelist);
1322 vma_iter_init(&vmi, mm, start);
1323 prev = vma_prev(&vmi);
1324 for_each_vma_range(vmi, vma, end) {
1325 err = mbind_range(&vmi, vma, &prev, start, end, new);
1333 if (!list_empty(&pagelist)) {
1334 WARN_ON_ONCE(flags & MPOL_MF_LAZY);
1335 nr_failed = migrate_pages(&pagelist, new_page, NULL,
1336 start, MIGRATE_SYNC, MR_MEMPOLICY_MBIND, NULL);
1338 putback_movable_pages(&pagelist);
1341 if ((ret > 0) || (nr_failed && (flags & MPOL_MF_STRICT)))
1345 if (!list_empty(&pagelist))
1346 putback_movable_pages(&pagelist);
1349 mmap_write_unlock(mm);
1352 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
1358 * User space interface with variable sized bitmaps for nodelists.
1360 static int get_bitmap(unsigned long *mask, const unsigned long __user *nmask,
1361 unsigned long maxnode)
1363 unsigned long nlongs = BITS_TO_LONGS(maxnode);
1366 if (in_compat_syscall())
1367 ret = compat_get_bitmap(mask,
1368 (const compat_ulong_t __user *)nmask,
1371 ret = copy_from_user(mask, nmask,
1372 nlongs * sizeof(unsigned long));
1377 if (maxnode % BITS_PER_LONG)
1378 mask[nlongs - 1] &= (1UL << (maxnode % BITS_PER_LONG)) - 1;
1383 /* Copy a node mask from user space. */
1384 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1385 unsigned long maxnode)
1388 nodes_clear(*nodes);
1389 if (maxnode == 0 || !nmask)
1391 if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1395 * When the user specified more nodes than supported just check
1396 * if the non supported part is all zero, one word at a time,
1397 * starting at the end.
1399 while (maxnode > MAX_NUMNODES) {
1400 unsigned long bits = min_t(unsigned long, maxnode, BITS_PER_LONG);
1403 if (get_bitmap(&t, &nmask[(maxnode - 1) / BITS_PER_LONG], bits))
1406 if (maxnode - bits >= MAX_NUMNODES) {
1409 maxnode = MAX_NUMNODES;
1410 t &= ~((1UL << (MAX_NUMNODES % BITS_PER_LONG)) - 1);
1416 return get_bitmap(nodes_addr(*nodes), nmask, maxnode);
1419 /* Copy a kernel node mask to user space */
1420 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1423 unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1424 unsigned int nbytes = BITS_TO_LONGS(nr_node_ids) * sizeof(long);
1425 bool compat = in_compat_syscall();
1428 nbytes = BITS_TO_COMPAT_LONGS(nr_node_ids) * sizeof(compat_long_t);
1430 if (copy > nbytes) {
1431 if (copy > PAGE_SIZE)
1433 if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1436 maxnode = nr_node_ids;
1440 return compat_put_bitmap((compat_ulong_t __user *)mask,
1441 nodes_addr(*nodes), maxnode);
1443 return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1446 /* Basic parameter sanity check used by both mbind() and set_mempolicy() */
1447 static inline int sanitize_mpol_flags(int *mode, unsigned short *flags)
1449 *flags = *mode & MPOL_MODE_FLAGS;
1450 *mode &= ~MPOL_MODE_FLAGS;
1452 if ((unsigned int)(*mode) >= MPOL_MAX)
1454 if ((*flags & MPOL_F_STATIC_NODES) && (*flags & MPOL_F_RELATIVE_NODES))
1456 if (*flags & MPOL_F_NUMA_BALANCING) {
1457 if (*mode != MPOL_BIND)
1459 *flags |= (MPOL_F_MOF | MPOL_F_MORON);
1464 static long kernel_mbind(unsigned long start, unsigned long len,
1465 unsigned long mode, const unsigned long __user *nmask,
1466 unsigned long maxnode, unsigned int flags)
1468 unsigned short mode_flags;
1473 start = untagged_addr(start);
1474 err = sanitize_mpol_flags(&lmode, &mode_flags);
1478 err = get_nodes(&nodes, nmask, maxnode);
1482 return do_mbind(start, len, lmode, mode_flags, &nodes, flags);
1485 SYSCALL_DEFINE4(set_mempolicy_home_node, unsigned long, start, unsigned long, len,
1486 unsigned long, home_node, unsigned long, flags)
1488 struct mm_struct *mm = current->mm;
1489 struct vm_area_struct *vma, *prev;
1490 struct mempolicy *new, *old;
1493 VMA_ITERATOR(vmi, mm, start);
1495 start = untagged_addr(start);
1496 if (start & ~PAGE_MASK)
1499 * flags is used for future extension if any.
1505 * Check home_node is online to avoid accessing uninitialized
1508 if (home_node >= MAX_NUMNODES || !node_online(home_node))
1511 len = PAGE_ALIGN(len);
1518 mmap_write_lock(mm);
1519 prev = vma_prev(&vmi);
1520 for_each_vma_range(vmi, vma, end) {
1522 * If any vma in the range got policy other than MPOL_BIND
1523 * or MPOL_PREFERRED_MANY we return error. We don't reset
1524 * the home node for vmas we already updated before.
1526 old = vma_policy(vma);
1529 if (old->mode != MPOL_BIND && old->mode != MPOL_PREFERRED_MANY) {
1533 new = mpol_dup(old);
1539 new->home_node = home_node;
1540 err = mbind_range(&vmi, vma, &prev, start, end, new);
1545 mmap_write_unlock(mm);
1549 SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1550 unsigned long, mode, const unsigned long __user *, nmask,
1551 unsigned long, maxnode, unsigned int, flags)
1553 return kernel_mbind(start, len, mode, nmask, maxnode, flags);
1556 /* Set the process memory policy */
1557 static long kernel_set_mempolicy(int mode, const unsigned long __user *nmask,
1558 unsigned long maxnode)
1560 unsigned short mode_flags;
1565 err = sanitize_mpol_flags(&lmode, &mode_flags);
1569 err = get_nodes(&nodes, nmask, maxnode);
1573 return do_set_mempolicy(lmode, mode_flags, &nodes);
1576 SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask,
1577 unsigned long, maxnode)
1579 return kernel_set_mempolicy(mode, nmask, maxnode);
1582 static int kernel_migrate_pages(pid_t pid, unsigned long maxnode,
1583 const unsigned long __user *old_nodes,
1584 const unsigned long __user *new_nodes)
1586 struct mm_struct *mm = NULL;
1587 struct task_struct *task;
1588 nodemask_t task_nodes;
1592 NODEMASK_SCRATCH(scratch);
1597 old = &scratch->mask1;
1598 new = &scratch->mask2;
1600 err = get_nodes(old, old_nodes, maxnode);
1604 err = get_nodes(new, new_nodes, maxnode);
1608 /* Find the mm_struct */
1610 task = pid ? find_task_by_vpid(pid) : current;
1616 get_task_struct(task);
1621 * Check if this process has the right to modify the specified process.
1622 * Use the regular "ptrace_may_access()" checks.
1624 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1631 task_nodes = cpuset_mems_allowed(task);
1632 /* Is the user allowed to access the target nodes? */
1633 if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1638 task_nodes = cpuset_mems_allowed(current);
1639 nodes_and(*new, *new, task_nodes);
1640 if (nodes_empty(*new))
1643 err = security_task_movememory(task);
1647 mm = get_task_mm(task);
1648 put_task_struct(task);
1655 err = do_migrate_pages(mm, old, new,
1656 capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1660 NODEMASK_SCRATCH_FREE(scratch);
1665 put_task_struct(task);
1670 SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1671 const unsigned long __user *, old_nodes,
1672 const unsigned long __user *, new_nodes)
1674 return kernel_migrate_pages(pid, maxnode, old_nodes, new_nodes);
1678 /* Retrieve NUMA policy */
1679 static int kernel_get_mempolicy(int __user *policy,
1680 unsigned long __user *nmask,
1681 unsigned long maxnode,
1683 unsigned long flags)
1689 if (nmask != NULL && maxnode < nr_node_ids)
1692 addr = untagged_addr(addr);
1694 err = do_get_mempolicy(&pval, &nodes, addr, flags);
1699 if (policy && put_user(pval, policy))
1703 err = copy_nodes_to_user(nmask, maxnode, &nodes);
1708 SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1709 unsigned long __user *, nmask, unsigned long, maxnode,
1710 unsigned long, addr, unsigned long, flags)
1712 return kernel_get_mempolicy(policy, nmask, maxnode, addr, flags);
1715 bool vma_migratable(struct vm_area_struct *vma)
1717 if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1721 * DAX device mappings require predictable access latency, so avoid
1722 * incurring periodic faults.
1724 if (vma_is_dax(vma))
1727 if (is_vm_hugetlb_page(vma) &&
1728 !hugepage_migration_supported(hstate_vma(vma)))
1732 * Migration allocates pages in the highest zone. If we cannot
1733 * do so then migration (at least from node to node) is not
1737 gfp_zone(mapping_gfp_mask(vma->vm_file->f_mapping))
1743 struct mempolicy *__get_vma_policy(struct vm_area_struct *vma,
1746 struct mempolicy *pol = NULL;
1749 if (vma->vm_ops && vma->vm_ops->get_policy) {
1750 pol = vma->vm_ops->get_policy(vma, addr);
1751 } else if (vma->vm_policy) {
1752 pol = vma->vm_policy;
1755 * shmem_alloc_page() passes MPOL_F_SHARED policy with
1756 * a pseudo vma whose vma->vm_ops=NULL. Take a reference
1757 * count on these policies which will be dropped by
1758 * mpol_cond_put() later
1760 if (mpol_needs_cond_ref(pol))
1769 * get_vma_policy(@vma, @addr)
1770 * @vma: virtual memory area whose policy is sought
1771 * @addr: address in @vma for shared policy lookup
1773 * Returns effective policy for a VMA at specified address.
1774 * Falls back to current->mempolicy or system default policy, as necessary.
1775 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1776 * count--added by the get_policy() vm_op, as appropriate--to protect against
1777 * freeing by another task. It is the caller's responsibility to free the
1778 * extra reference for shared policies.
1780 static struct mempolicy *get_vma_policy(struct vm_area_struct *vma,
1783 struct mempolicy *pol = __get_vma_policy(vma, addr);
1786 pol = get_task_policy(current);
1791 bool vma_policy_mof(struct vm_area_struct *vma)
1793 struct mempolicy *pol;
1795 if (vma->vm_ops && vma->vm_ops->get_policy) {
1798 pol = vma->vm_ops->get_policy(vma, vma->vm_start);
1799 if (pol && (pol->flags & MPOL_F_MOF))
1806 pol = vma->vm_policy;
1808 pol = get_task_policy(current);
1810 return pol->flags & MPOL_F_MOF;
1813 bool apply_policy_zone(struct mempolicy *policy, enum zone_type zone)
1815 enum zone_type dynamic_policy_zone = policy_zone;
1817 BUG_ON(dynamic_policy_zone == ZONE_MOVABLE);
1820 * if policy->nodes has movable memory only,
1821 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only.
1823 * policy->nodes is intersect with node_states[N_MEMORY].
1824 * so if the following test fails, it implies
1825 * policy->nodes has movable memory only.
1827 if (!nodes_intersects(policy->nodes, node_states[N_HIGH_MEMORY]))
1828 dynamic_policy_zone = ZONE_MOVABLE;
1830 return zone >= dynamic_policy_zone;
1834 * Return a nodemask representing a mempolicy for filtering nodes for
1837 nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1839 int mode = policy->mode;
1841 /* Lower zones don't get a nodemask applied for MPOL_BIND */
1842 if (unlikely(mode == MPOL_BIND) &&
1843 apply_policy_zone(policy, gfp_zone(gfp)) &&
1844 cpuset_nodemask_valid_mems_allowed(&policy->nodes))
1845 return &policy->nodes;
1847 if (mode == MPOL_PREFERRED_MANY)
1848 return &policy->nodes;
1854 * Return the preferred node id for 'prefer' mempolicy, and return
1855 * the given id for all other policies.
1857 * policy_node() is always coupled with policy_nodemask(), which
1858 * secures the nodemask limit for 'bind' and 'prefer-many' policy.
1860 static int policy_node(gfp_t gfp, struct mempolicy *policy, int nd)
1862 if (policy->mode == MPOL_PREFERRED) {
1863 nd = first_node(policy->nodes);
1866 * __GFP_THISNODE shouldn't even be used with the bind policy
1867 * because we might easily break the expectation to stay on the
1868 * requested node and not break the policy.
1870 WARN_ON_ONCE(policy->mode == MPOL_BIND && (gfp & __GFP_THISNODE));
1873 if ((policy->mode == MPOL_BIND ||
1874 policy->mode == MPOL_PREFERRED_MANY) &&
1875 policy->home_node != NUMA_NO_NODE)
1876 return policy->home_node;
1881 /* Do dynamic interleaving for a process */
1882 static unsigned interleave_nodes(struct mempolicy *policy)
1885 struct task_struct *me = current;
1887 next = next_node_in(me->il_prev, policy->nodes);
1888 if (next < MAX_NUMNODES)
1894 * Depending on the memory policy provide a node from which to allocate the
1897 unsigned int mempolicy_slab_node(void)
1899 struct mempolicy *policy;
1900 int node = numa_mem_id();
1905 policy = current->mempolicy;
1909 switch (policy->mode) {
1910 case MPOL_PREFERRED:
1911 return first_node(policy->nodes);
1913 case MPOL_INTERLEAVE:
1914 return interleave_nodes(policy);
1917 case MPOL_PREFERRED_MANY:
1922 * Follow bind policy behavior and start allocation at the
1925 struct zonelist *zonelist;
1926 enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1927 zonelist = &NODE_DATA(node)->node_zonelists[ZONELIST_FALLBACK];
1928 z = first_zones_zonelist(zonelist, highest_zoneidx,
1930 return z->zone ? zone_to_nid(z->zone) : node;
1941 * Do static interleaving for a VMA with known offset @n. Returns the n'th
1942 * node in pol->nodes (starting from n=0), wrapping around if n exceeds the
1943 * number of present nodes.
1945 static unsigned offset_il_node(struct mempolicy *pol, unsigned long n)
1947 nodemask_t nodemask = pol->nodes;
1948 unsigned int target, nnodes;
1952 * The barrier will stabilize the nodemask in a register or on
1953 * the stack so that it will stop changing under the code.
1955 * Between first_node() and next_node(), pol->nodes could be changed
1956 * by other threads. So we put pol->nodes in a local stack.
1960 nnodes = nodes_weight(nodemask);
1962 return numa_node_id();
1963 target = (unsigned int)n % nnodes;
1964 nid = first_node(nodemask);
1965 for (i = 0; i < target; i++)
1966 nid = next_node(nid, nodemask);
1970 /* Determine a node number for interleave */
1971 static inline unsigned interleave_nid(struct mempolicy *pol,
1972 struct vm_area_struct *vma, unsigned long addr, int shift)
1978 * for small pages, there is no difference between
1979 * shift and PAGE_SHIFT, so the bit-shift is safe.
1980 * for huge pages, since vm_pgoff is in units of small
1981 * pages, we need to shift off the always 0 bits to get
1984 BUG_ON(shift < PAGE_SHIFT);
1985 off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
1986 off += (addr - vma->vm_start) >> shift;
1987 return offset_il_node(pol, off);
1989 return interleave_nodes(pol);
1992 #ifdef CONFIG_HUGETLBFS
1994 * huge_node(@vma, @addr, @gfp_flags, @mpol)
1995 * @vma: virtual memory area whose policy is sought
1996 * @addr: address in @vma for shared policy lookup and interleave policy
1997 * @gfp_flags: for requested zone
1998 * @mpol: pointer to mempolicy pointer for reference counted mempolicy
1999 * @nodemask: pointer to nodemask pointer for 'bind' and 'prefer-many' policy
2001 * Returns a nid suitable for a huge page allocation and a pointer
2002 * to the struct mempolicy for conditional unref after allocation.
2003 * If the effective policy is 'bind' or 'prefer-many', returns a pointer
2004 * to the mempolicy's @nodemask for filtering the zonelist.
2006 * Must be protected by read_mems_allowed_begin()
2008 int huge_node(struct vm_area_struct *vma, unsigned long addr, gfp_t gfp_flags,
2009 struct mempolicy **mpol, nodemask_t **nodemask)
2014 *mpol = get_vma_policy(vma, addr);
2016 mode = (*mpol)->mode;
2018 if (unlikely(mode == MPOL_INTERLEAVE)) {
2019 nid = interleave_nid(*mpol, vma, addr,
2020 huge_page_shift(hstate_vma(vma)));
2022 nid = policy_node(gfp_flags, *mpol, numa_node_id());
2023 if (mode == MPOL_BIND || mode == MPOL_PREFERRED_MANY)
2024 *nodemask = &(*mpol)->nodes;
2030 * init_nodemask_of_mempolicy
2032 * If the current task's mempolicy is "default" [NULL], return 'false'
2033 * to indicate default policy. Otherwise, extract the policy nodemask
2034 * for 'bind' or 'interleave' policy into the argument nodemask, or
2035 * initialize the argument nodemask to contain the single node for
2036 * 'preferred' or 'local' policy and return 'true' to indicate presence
2037 * of non-default mempolicy.
2039 * We don't bother with reference counting the mempolicy [mpol_get/put]
2040 * because the current task is examining it's own mempolicy and a task's
2041 * mempolicy is only ever changed by the task itself.
2043 * N.B., it is the caller's responsibility to free a returned nodemask.
2045 bool init_nodemask_of_mempolicy(nodemask_t *mask)
2047 struct mempolicy *mempolicy;
2049 if (!(mask && current->mempolicy))
2053 mempolicy = current->mempolicy;
2054 switch (mempolicy->mode) {
2055 case MPOL_PREFERRED:
2056 case MPOL_PREFERRED_MANY:
2058 case MPOL_INTERLEAVE:
2059 *mask = mempolicy->nodes;
2063 init_nodemask_of_node(mask, numa_node_id());
2069 task_unlock(current);
2076 * mempolicy_in_oom_domain
2078 * If tsk's mempolicy is "bind", check for intersection between mask and
2079 * the policy nodemask. Otherwise, return true for all other policies
2080 * including "interleave", as a tsk with "interleave" policy may have
2081 * memory allocated from all nodes in system.
2083 * Takes task_lock(tsk) to prevent freeing of its mempolicy.
2085 bool mempolicy_in_oom_domain(struct task_struct *tsk,
2086 const nodemask_t *mask)
2088 struct mempolicy *mempolicy;
2095 mempolicy = tsk->mempolicy;
2096 if (mempolicy && mempolicy->mode == MPOL_BIND)
2097 ret = nodes_intersects(mempolicy->nodes, *mask);
2103 /* Allocate a page in interleaved policy.
2104 Own path because it needs to do special accounting. */
2105 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
2110 page = __alloc_pages(gfp, order, nid, NULL);
2111 /* skip NUMA_INTERLEAVE_HIT counter update if numa stats is disabled */
2112 if (!static_branch_likely(&vm_numa_stat_key))
2114 if (page && page_to_nid(page) == nid) {
2116 __count_numa_event(page_zone(page), NUMA_INTERLEAVE_HIT);
2122 static struct page *alloc_pages_preferred_many(gfp_t gfp, unsigned int order,
2123 int nid, struct mempolicy *pol)
2126 gfp_t preferred_gfp;
2129 * This is a two pass approach. The first pass will only try the
2130 * preferred nodes but skip the direct reclaim and allow the
2131 * allocation to fail, while the second pass will try all the
2134 preferred_gfp = gfp | __GFP_NOWARN;
2135 preferred_gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2136 page = __alloc_pages(preferred_gfp, order, nid, &pol->nodes);
2138 page = __alloc_pages(gfp, order, nid, NULL);
2144 * vma_alloc_folio - Allocate a folio for a VMA.
2146 * @order: Order of the folio.
2147 * @vma: Pointer to VMA or NULL if not available.
2148 * @addr: Virtual address of the allocation. Must be inside @vma.
2149 * @hugepage: For hugepages try only the preferred node if possible.
2151 * Allocate a folio for a specific address in @vma, using the appropriate
2152 * NUMA policy. When @vma is not NULL the caller must hold the mmap_lock
2153 * of the mm_struct of the VMA to prevent it from going away. Should be
2154 * used for all allocations for folios that will be mapped into user space.
2156 * Return: The folio on success or NULL if allocation fails.
2158 struct folio *vma_alloc_folio(gfp_t gfp, int order, struct vm_area_struct *vma,
2159 unsigned long addr, bool hugepage)
2161 struct mempolicy *pol;
2162 int node = numa_node_id();
2163 struct folio *folio;
2167 pol = get_vma_policy(vma, addr);
2169 if (pol->mode == MPOL_INTERLEAVE) {
2173 nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order);
2176 page = alloc_page_interleave(gfp, order, nid);
2177 if (page && order > 1)
2178 prep_transhuge_page(page);
2179 folio = (struct folio *)page;
2183 if (pol->mode == MPOL_PREFERRED_MANY) {
2186 node = policy_node(gfp, pol, node);
2188 page = alloc_pages_preferred_many(gfp, order, node, pol);
2190 if (page && order > 1)
2191 prep_transhuge_page(page);
2192 folio = (struct folio *)page;
2196 if (unlikely(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && hugepage)) {
2197 int hpage_node = node;
2200 * For hugepage allocation and non-interleave policy which
2201 * allows the current node (or other explicitly preferred
2202 * node) we only try to allocate from the current/preferred
2203 * node and don't fall back to other nodes, as the cost of
2204 * remote accesses would likely offset THP benefits.
2206 * If the policy is interleave or does not allow the current
2207 * node in its nodemask, we allocate the standard way.
2209 if (pol->mode == MPOL_PREFERRED)
2210 hpage_node = first_node(pol->nodes);
2212 nmask = policy_nodemask(gfp, pol);
2213 if (!nmask || node_isset(hpage_node, *nmask)) {
2216 * First, try to allocate THP only on local node, but
2217 * don't reclaim unnecessarily, just compact.
2219 folio = __folio_alloc_node(gfp | __GFP_THISNODE |
2220 __GFP_NORETRY, order, hpage_node);
2223 * If hugepage allocations are configured to always
2224 * synchronous compact or the vma has been madvised
2225 * to prefer hugepage backing, retry allowing remote
2226 * memory with both reclaim and compact as well.
2228 if (!folio && (gfp & __GFP_DIRECT_RECLAIM))
2229 folio = __folio_alloc(gfp, order, hpage_node,
2236 nmask = policy_nodemask(gfp, pol);
2237 preferred_nid = policy_node(gfp, pol, node);
2238 folio = __folio_alloc(gfp, order, preferred_nid, nmask);
2243 EXPORT_SYMBOL(vma_alloc_folio);
2246 * alloc_pages - Allocate pages.
2248 * @order: Power of two of number of pages to allocate.
2250 * Allocate 1 << @order contiguous pages. The physical address of the
2251 * first page is naturally aligned (eg an order-3 allocation will be aligned
2252 * to a multiple of 8 * PAGE_SIZE bytes). The NUMA policy of the current
2253 * process is honoured when in process context.
2255 * Context: Can be called from any context, providing the appropriate GFP
2257 * Return: The page on success or NULL if allocation fails.
2259 struct page *alloc_pages(gfp_t gfp, unsigned order)
2261 struct mempolicy *pol = &default_policy;
2264 if (!in_interrupt() && !(gfp & __GFP_THISNODE))
2265 pol = get_task_policy(current);
2268 * No reference counting needed for current->mempolicy
2269 * nor system default_policy
2271 if (pol->mode == MPOL_INTERLEAVE)
2272 page = alloc_page_interleave(gfp, order, interleave_nodes(pol));
2273 else if (pol->mode == MPOL_PREFERRED_MANY)
2274 page = alloc_pages_preferred_many(gfp, order,
2275 policy_node(gfp, pol, numa_node_id()), pol);
2277 page = __alloc_pages(gfp, order,
2278 policy_node(gfp, pol, numa_node_id()),
2279 policy_nodemask(gfp, pol));
2283 EXPORT_SYMBOL(alloc_pages);
2285 struct folio *folio_alloc(gfp_t gfp, unsigned order)
2287 struct page *page = alloc_pages(gfp | __GFP_COMP, order);
2289 if (page && order > 1)
2290 prep_transhuge_page(page);
2291 return (struct folio *)page;
2293 EXPORT_SYMBOL(folio_alloc);
2295 static unsigned long alloc_pages_bulk_array_interleave(gfp_t gfp,
2296 struct mempolicy *pol, unsigned long nr_pages,
2297 struct page **page_array)
2300 unsigned long nr_pages_per_node;
2303 unsigned long nr_allocated;
2304 unsigned long total_allocated = 0;
2306 nodes = nodes_weight(pol->nodes);
2307 nr_pages_per_node = nr_pages / nodes;
2308 delta = nr_pages - nodes * nr_pages_per_node;
2310 for (i = 0; i < nodes; i++) {
2312 nr_allocated = __alloc_pages_bulk(gfp,
2313 interleave_nodes(pol), NULL,
2314 nr_pages_per_node + 1, NULL,
2318 nr_allocated = __alloc_pages_bulk(gfp,
2319 interleave_nodes(pol), NULL,
2320 nr_pages_per_node, NULL, page_array);
2323 page_array += nr_allocated;
2324 total_allocated += nr_allocated;
2327 return total_allocated;
2330 static unsigned long alloc_pages_bulk_array_preferred_many(gfp_t gfp, int nid,
2331 struct mempolicy *pol, unsigned long nr_pages,
2332 struct page **page_array)
2334 gfp_t preferred_gfp;
2335 unsigned long nr_allocated = 0;
2337 preferred_gfp = gfp | __GFP_NOWARN;
2338 preferred_gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2340 nr_allocated = __alloc_pages_bulk(preferred_gfp, nid, &pol->nodes,
2341 nr_pages, NULL, page_array);
2343 if (nr_allocated < nr_pages)
2344 nr_allocated += __alloc_pages_bulk(gfp, numa_node_id(), NULL,
2345 nr_pages - nr_allocated, NULL,
2346 page_array + nr_allocated);
2347 return nr_allocated;
2350 /* alloc pages bulk and mempolicy should be considered at the
2351 * same time in some situation such as vmalloc.
2353 * It can accelerate memory allocation especially interleaving
2356 unsigned long alloc_pages_bulk_array_mempolicy(gfp_t gfp,
2357 unsigned long nr_pages, struct page **page_array)
2359 struct mempolicy *pol = &default_policy;
2361 if (!in_interrupt() && !(gfp & __GFP_THISNODE))
2362 pol = get_task_policy(current);
2364 if (pol->mode == MPOL_INTERLEAVE)
2365 return alloc_pages_bulk_array_interleave(gfp, pol,
2366 nr_pages, page_array);
2368 if (pol->mode == MPOL_PREFERRED_MANY)
2369 return alloc_pages_bulk_array_preferred_many(gfp,
2370 numa_node_id(), pol, nr_pages, page_array);
2372 return __alloc_pages_bulk(gfp, policy_node(gfp, pol, numa_node_id()),
2373 policy_nodemask(gfp, pol), nr_pages, NULL,
2377 int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst)
2379 struct mempolicy *pol = mpol_dup(vma_policy(src));
2382 return PTR_ERR(pol);
2383 dst->vm_policy = pol;
2388 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
2389 * rebinds the mempolicy its copying by calling mpol_rebind_policy()
2390 * with the mems_allowed returned by cpuset_mems_allowed(). This
2391 * keeps mempolicies cpuset relative after its cpuset moves. See
2392 * further kernel/cpuset.c update_nodemask().
2394 * current's mempolicy may be rebinded by the other task(the task that changes
2395 * cpuset's mems), so we needn't do rebind work for current task.
2398 /* Slow path of a mempolicy duplicate */
2399 struct mempolicy *__mpol_dup(struct mempolicy *old)
2401 struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2404 return ERR_PTR(-ENOMEM);
2406 /* task's mempolicy is protected by alloc_lock */
2407 if (old == current->mempolicy) {
2410 task_unlock(current);
2414 if (current_cpuset_is_being_rebound()) {
2415 nodemask_t mems = cpuset_mems_allowed(current);
2416 mpol_rebind_policy(new, &mems);
2418 atomic_set(&new->refcnt, 1);
2422 /* Slow path of a mempolicy comparison */
2423 bool __mpol_equal(struct mempolicy *a, struct mempolicy *b)
2427 if (a->mode != b->mode)
2429 if (a->flags != b->flags)
2431 if (a->home_node != b->home_node)
2433 if (mpol_store_user_nodemask(a))
2434 if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
2439 case MPOL_INTERLEAVE:
2440 case MPOL_PREFERRED:
2441 case MPOL_PREFERRED_MANY:
2442 return !!nodes_equal(a->nodes, b->nodes);
2452 * Shared memory backing store policy support.
2454 * Remember policies even when nobody has shared memory mapped.
2455 * The policies are kept in Red-Black tree linked from the inode.
2456 * They are protected by the sp->lock rwlock, which should be held
2457 * for any accesses to the tree.
2461 * lookup first element intersecting start-end. Caller holds sp->lock for
2462 * reading or for writing
2464 static struct sp_node *
2465 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
2467 struct rb_node *n = sp->root.rb_node;
2470 struct sp_node *p = rb_entry(n, struct sp_node, nd);
2472 if (start >= p->end)
2474 else if (end <= p->start)
2482 struct sp_node *w = NULL;
2483 struct rb_node *prev = rb_prev(n);
2486 w = rb_entry(prev, struct sp_node, nd);
2487 if (w->end <= start)
2491 return rb_entry(n, struct sp_node, nd);
2495 * Insert a new shared policy into the list. Caller holds sp->lock for
2498 static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2500 struct rb_node **p = &sp->root.rb_node;
2501 struct rb_node *parent = NULL;
2506 nd = rb_entry(parent, struct sp_node, nd);
2507 if (new->start < nd->start)
2509 else if (new->end > nd->end)
2510 p = &(*p)->rb_right;
2514 rb_link_node(&new->nd, parent, p);
2515 rb_insert_color(&new->nd, &sp->root);
2516 pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
2517 new->policy ? new->policy->mode : 0);
2520 /* Find shared policy intersecting idx */
2522 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
2524 struct mempolicy *pol = NULL;
2527 if (!sp->root.rb_node)
2529 read_lock(&sp->lock);
2530 sn = sp_lookup(sp, idx, idx+1);
2532 mpol_get(sn->policy);
2535 read_unlock(&sp->lock);
2539 static void sp_free(struct sp_node *n)
2541 mpol_put(n->policy);
2542 kmem_cache_free(sn_cache, n);
2546 * mpol_misplaced - check whether current page node is valid in policy
2548 * @page: page to be checked
2549 * @vma: vm area where page mapped
2550 * @addr: virtual address where page mapped
2552 * Lookup current policy node id for vma,addr and "compare to" page's
2553 * node id. Policy determination "mimics" alloc_page_vma().
2554 * Called from fault path where we know the vma and faulting address.
2556 * Return: NUMA_NO_NODE if the page is in a node that is valid for this
2557 * policy, or a suitable node ID to allocate a replacement page from.
2559 int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr)
2561 struct mempolicy *pol;
2563 int curnid = page_to_nid(page);
2564 unsigned long pgoff;
2565 int thiscpu = raw_smp_processor_id();
2566 int thisnid = cpu_to_node(thiscpu);
2567 int polnid = NUMA_NO_NODE;
2568 int ret = NUMA_NO_NODE;
2570 pol = get_vma_policy(vma, addr);
2571 if (!(pol->flags & MPOL_F_MOF))
2574 switch (pol->mode) {
2575 case MPOL_INTERLEAVE:
2576 pgoff = vma->vm_pgoff;
2577 pgoff += (addr - vma->vm_start) >> PAGE_SHIFT;
2578 polnid = offset_il_node(pol, pgoff);
2581 case MPOL_PREFERRED:
2582 if (node_isset(curnid, pol->nodes))
2584 polnid = first_node(pol->nodes);
2588 polnid = numa_node_id();
2592 /* Optimize placement among multiple nodes via NUMA balancing */
2593 if (pol->flags & MPOL_F_MORON) {
2594 if (node_isset(thisnid, pol->nodes))
2600 case MPOL_PREFERRED_MANY:
2602 * use current page if in policy nodemask,
2603 * else select nearest allowed node, if any.
2604 * If no allowed nodes, use current [!misplaced].
2606 if (node_isset(curnid, pol->nodes))
2608 z = first_zones_zonelist(
2609 node_zonelist(numa_node_id(), GFP_HIGHUSER),
2610 gfp_zone(GFP_HIGHUSER),
2612 polnid = zone_to_nid(z->zone);
2619 /* Migrate the page towards the node whose CPU is referencing it */
2620 if (pol->flags & MPOL_F_MORON) {
2623 if (!should_numa_migrate_memory(current, page, curnid, thiscpu))
2627 if (curnid != polnid)
2636 * Drop the (possibly final) reference to task->mempolicy. It needs to be
2637 * dropped after task->mempolicy is set to NULL so that any allocation done as
2638 * part of its kmem_cache_free(), such as by KASAN, doesn't reference a freed
2641 void mpol_put_task_policy(struct task_struct *task)
2643 struct mempolicy *pol;
2646 pol = task->mempolicy;
2647 task->mempolicy = NULL;
2652 static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2654 pr_debug("deleting %lx-l%lx\n", n->start, n->end);
2655 rb_erase(&n->nd, &sp->root);
2659 static void sp_node_init(struct sp_node *node, unsigned long start,
2660 unsigned long end, struct mempolicy *pol)
2662 node->start = start;
2667 static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2668 struct mempolicy *pol)
2671 struct mempolicy *newpol;
2673 n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2677 newpol = mpol_dup(pol);
2678 if (IS_ERR(newpol)) {
2679 kmem_cache_free(sn_cache, n);
2682 newpol->flags |= MPOL_F_SHARED;
2683 sp_node_init(n, start, end, newpol);
2688 /* Replace a policy range. */
2689 static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
2690 unsigned long end, struct sp_node *new)
2693 struct sp_node *n_new = NULL;
2694 struct mempolicy *mpol_new = NULL;
2698 write_lock(&sp->lock);
2699 n = sp_lookup(sp, start, end);
2700 /* Take care of old policies in the same range. */
2701 while (n && n->start < end) {
2702 struct rb_node *next = rb_next(&n->nd);
2703 if (n->start >= start) {
2709 /* Old policy spanning whole new range. */
2714 *mpol_new = *n->policy;
2715 atomic_set(&mpol_new->refcnt, 1);
2716 sp_node_init(n_new, end, n->end, mpol_new);
2718 sp_insert(sp, n_new);
2727 n = rb_entry(next, struct sp_node, nd);
2731 write_unlock(&sp->lock);
2738 kmem_cache_free(sn_cache, n_new);
2743 write_unlock(&sp->lock);
2745 n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2748 mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2751 atomic_set(&mpol_new->refcnt, 1);
2756 * mpol_shared_policy_init - initialize shared policy for inode
2757 * @sp: pointer to inode shared policy
2758 * @mpol: struct mempolicy to install
2760 * Install non-NULL @mpol in inode's shared policy rb-tree.
2761 * On entry, the current task has a reference on a non-NULL @mpol.
2762 * This must be released on exit.
2763 * This is called at get_inode() calls and we can use GFP_KERNEL.
2765 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2769 sp->root = RB_ROOT; /* empty tree == default mempolicy */
2770 rwlock_init(&sp->lock);
2773 struct vm_area_struct pvma;
2774 struct mempolicy *new;
2775 NODEMASK_SCRATCH(scratch);
2779 /* contextualize the tmpfs mount point mempolicy */
2780 new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2782 goto free_scratch; /* no valid nodemask intersection */
2785 ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch);
2786 task_unlock(current);
2790 /* Create pseudo-vma that contains just the policy */
2791 vma_init(&pvma, NULL);
2792 pvma.vm_end = TASK_SIZE; /* policy covers entire file */
2793 mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
2796 mpol_put(new); /* drop initial ref */
2798 NODEMASK_SCRATCH_FREE(scratch);
2800 mpol_put(mpol); /* drop our incoming ref on sb mpol */
2804 int mpol_set_shared_policy(struct shared_policy *info,
2805 struct vm_area_struct *vma, struct mempolicy *npol)
2808 struct sp_node *new = NULL;
2809 unsigned long sz = vma_pages(vma);
2811 pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2813 sz, npol ? npol->mode : -1,
2814 npol ? npol->flags : -1,
2815 npol ? nodes_addr(npol->nodes)[0] : NUMA_NO_NODE);
2818 new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
2822 err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
2828 /* Free a backing policy store on inode delete. */
2829 void mpol_free_shared_policy(struct shared_policy *p)
2832 struct rb_node *next;
2834 if (!p->root.rb_node)
2836 write_lock(&p->lock);
2837 next = rb_first(&p->root);
2839 n = rb_entry(next, struct sp_node, nd);
2840 next = rb_next(&n->nd);
2843 write_unlock(&p->lock);
2846 #ifdef CONFIG_NUMA_BALANCING
2847 static int __initdata numabalancing_override;
2849 static void __init check_numabalancing_enable(void)
2851 bool numabalancing_default = false;
2853 if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED))
2854 numabalancing_default = true;
2856 /* Parsed by setup_numabalancing. override == 1 enables, -1 disables */
2857 if (numabalancing_override)
2858 set_numabalancing_state(numabalancing_override == 1);
2860 if (num_online_nodes() > 1 && !numabalancing_override) {
2861 pr_info("%s automatic NUMA balancing. Configure with numa_balancing= or the kernel.numa_balancing sysctl\n",
2862 numabalancing_default ? "Enabling" : "Disabling");
2863 set_numabalancing_state(numabalancing_default);
2867 static int __init setup_numabalancing(char *str)
2873 if (!strcmp(str, "enable")) {
2874 numabalancing_override = 1;
2876 } else if (!strcmp(str, "disable")) {
2877 numabalancing_override = -1;
2882 pr_warn("Unable to parse numa_balancing=\n");
2886 __setup("numa_balancing=", setup_numabalancing);
2888 static inline void __init check_numabalancing_enable(void)
2891 #endif /* CONFIG_NUMA_BALANCING */
2893 /* assumes fs == KERNEL_DS */
2894 void __init numa_policy_init(void)
2896 nodemask_t interleave_nodes;
2897 unsigned long largest = 0;
2898 int nid, prefer = 0;
2900 policy_cache = kmem_cache_create("numa_policy",
2901 sizeof(struct mempolicy),
2902 0, SLAB_PANIC, NULL);
2904 sn_cache = kmem_cache_create("shared_policy_node",
2905 sizeof(struct sp_node),
2906 0, SLAB_PANIC, NULL);
2908 for_each_node(nid) {
2909 preferred_node_policy[nid] = (struct mempolicy) {
2910 .refcnt = ATOMIC_INIT(1),
2911 .mode = MPOL_PREFERRED,
2912 .flags = MPOL_F_MOF | MPOL_F_MORON,
2913 .nodes = nodemask_of_node(nid),
2918 * Set interleaving policy for system init. Interleaving is only
2919 * enabled across suitably sized nodes (default is >= 16MB), or
2920 * fall back to the largest node if they're all smaller.
2922 nodes_clear(interleave_nodes);
2923 for_each_node_state(nid, N_MEMORY) {
2924 unsigned long total_pages = node_present_pages(nid);
2926 /* Preserve the largest node */
2927 if (largest < total_pages) {
2928 largest = total_pages;
2932 /* Interleave this node? */
2933 if ((total_pages << PAGE_SHIFT) >= (16 << 20))
2934 node_set(nid, interleave_nodes);
2937 /* All too small, use the largest */
2938 if (unlikely(nodes_empty(interleave_nodes)))
2939 node_set(prefer, interleave_nodes);
2941 if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
2942 pr_err("%s: interleaving failed\n", __func__);
2944 check_numabalancing_enable();
2947 /* Reset policy of current process to default */
2948 void numa_default_policy(void)
2950 do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
2954 * Parse and format mempolicy from/to strings
2957 static const char * const policy_modes[] =
2959 [MPOL_DEFAULT] = "default",
2960 [MPOL_PREFERRED] = "prefer",
2961 [MPOL_BIND] = "bind",
2962 [MPOL_INTERLEAVE] = "interleave",
2963 [MPOL_LOCAL] = "local",
2964 [MPOL_PREFERRED_MANY] = "prefer (many)",
2970 * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option.
2971 * @str: string containing mempolicy to parse
2972 * @mpol: pointer to struct mempolicy pointer, returned on success.
2975 * <mode>[=<flags>][:<nodelist>]
2977 * Return: %0 on success, else %1
2979 int mpol_parse_str(char *str, struct mempolicy **mpol)
2981 struct mempolicy *new = NULL;
2982 unsigned short mode_flags;
2984 char *nodelist = strchr(str, ':');
2985 char *flags = strchr(str, '=');
2989 *flags++ = '\0'; /* terminate mode string */
2992 /* NUL-terminate mode or flags string */
2994 if (nodelist_parse(nodelist, nodes))
2996 if (!nodes_subset(nodes, node_states[N_MEMORY]))
3001 mode = match_string(policy_modes, MPOL_MAX, str);
3006 case MPOL_PREFERRED:
3008 * Insist on a nodelist of one node only, although later
3009 * we use first_node(nodes) to grab a single node, so here
3010 * nodelist (or nodes) cannot be empty.
3013 char *rest = nodelist;
3014 while (isdigit(*rest))
3018 if (nodes_empty(nodes))
3022 case MPOL_INTERLEAVE:
3024 * Default to online nodes with memory if no nodelist
3027 nodes = node_states[N_MEMORY];
3031 * Don't allow a nodelist; mpol_new() checks flags
3038 * Insist on a empty nodelist
3043 case MPOL_PREFERRED_MANY:
3046 * Insist on a nodelist
3055 * Currently, we only support two mutually exclusive
3058 if (!strcmp(flags, "static"))
3059 mode_flags |= MPOL_F_STATIC_NODES;
3060 else if (!strcmp(flags, "relative"))
3061 mode_flags |= MPOL_F_RELATIVE_NODES;
3066 new = mpol_new(mode, mode_flags, &nodes);
3071 * Save nodes for mpol_to_str() to show the tmpfs mount options
3072 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo.
3074 if (mode != MPOL_PREFERRED) {
3076 } else if (nodelist) {
3077 nodes_clear(new->nodes);
3078 node_set(first_node(nodes), new->nodes);
3080 new->mode = MPOL_LOCAL;
3084 * Save nodes for contextualization: this will be used to "clone"
3085 * the mempolicy in a specific context [cpuset] at a later time.
3087 new->w.user_nodemask = nodes;
3092 /* Restore string for error message */
3101 #endif /* CONFIG_TMPFS */
3104 * mpol_to_str - format a mempolicy structure for printing
3105 * @buffer: to contain formatted mempolicy string
3106 * @maxlen: length of @buffer
3107 * @pol: pointer to mempolicy to be formatted
3109 * Convert @pol into a string. If @buffer is too short, truncate the string.
3110 * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the
3111 * longest flag, "relative", and to display at least a few node ids.
3113 void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
3116 nodemask_t nodes = NODE_MASK_NONE;
3117 unsigned short mode = MPOL_DEFAULT;
3118 unsigned short flags = 0;
3120 if (pol && pol != &default_policy && !(pol->flags & MPOL_F_MORON)) {
3129 case MPOL_PREFERRED:
3130 case MPOL_PREFERRED_MANY:
3132 case MPOL_INTERLEAVE:
3137 snprintf(p, maxlen, "unknown");
3141 p += snprintf(p, maxlen, "%s", policy_modes[mode]);
3143 if (flags & MPOL_MODE_FLAGS) {
3144 p += snprintf(p, buffer + maxlen - p, "=");
3147 * Currently, the only defined flags are mutually exclusive
3149 if (flags & MPOL_F_STATIC_NODES)
3150 p += snprintf(p, buffer + maxlen - p, "static");
3151 else if (flags & MPOL_F_RELATIVE_NODES)
3152 p += snprintf(p, buffer + maxlen - p, "relative");
3155 if (!nodes_empty(nodes))
3156 p += scnprintf(p, buffer + maxlen - p, ":%*pbl",
3157 nodemask_pr_args(&nodes));