1 // SPDX-License-Identifier: GPL-2.0-only
3 * Simple NUMA memory policy for the Linux kernel.
5 * Copyright 2003,2004 Andi Kleen, SuSE Labs.
6 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
8 * NUMA policy allows the user to give hints in which node(s) memory should
11 * Support four policies per VMA and per process:
13 * The VMA policy has priority over the process policy for a page fault.
15 * interleave Allocate memory interleaved over a set of nodes,
16 * with normal fallback if it fails.
17 * For VMA based allocations this interleaves based on the
18 * offset into the backing object or offset into the mapping
19 * for anonymous memory. For process policy an process counter
22 * bind Only allocate memory on a specific set of nodes,
24 * FIXME: memory is allocated starting with the first node
25 * to the last. It would be better if bind would truly restrict
26 * the allocation to memory nodes instead
28 * preferred Try a specific node first before normal fallback.
29 * As a special case NUMA_NO_NODE here means do the allocation
30 * on the local CPU. This is normally identical to default,
31 * but useful to set in a VMA when you have a non default
34 * preferred many Try a set of nodes first before normal fallback. This is
35 * similar to preferred without the special case.
37 * default Allocate on the local node first, or when on a VMA
38 * use the process policy. This is what Linux always did
39 * in a NUMA aware kernel and still does by, ahem, default.
41 * The process policy is applied for most non interrupt memory allocations
42 * in that process' context. Interrupts ignore the policies and always
43 * try to allocate on the local CPU. The VMA policy is only applied for memory
44 * allocations for a VMA in the VM.
46 * Currently there are a few corner cases in swapping where the policy
47 * is not applied, but the majority should be handled. When process policy
48 * is used it is not remembered over swap outs/swap ins.
50 * Only the highest zone in the zone hierarchy gets policied. Allocations
51 * requesting a lower zone just use default policy. This implies that
52 * on systems with highmem kernel lowmem allocation don't get policied.
53 * Same with GFP_DMA allocations.
55 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
56 * all users and remembered even when nobody has memory mapped.
60 fix mmap readahead to honour policy and enable policy for any page cache
62 statistics for bigpages
63 global policy for page cache? currently it uses process policy. Requires
65 handle mremap for shared memory (currently ignored for the policy)
67 make bind policy root only? It can trigger oom much faster and the
68 kernel is not always grateful with that.
71 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
73 #include <linux/mempolicy.h>
74 #include <linux/pagewalk.h>
75 #include <linux/highmem.h>
76 #include <linux/hugetlb.h>
77 #include <linux/kernel.h>
78 #include <linux/sched.h>
79 #include <linux/sched/mm.h>
80 #include <linux/sched/numa_balancing.h>
81 #include <linux/sched/task.h>
82 #include <linux/nodemask.h>
83 #include <linux/cpuset.h>
84 #include <linux/slab.h>
85 #include <linux/string.h>
86 #include <linux/export.h>
87 #include <linux/nsproxy.h>
88 #include <linux/interrupt.h>
89 #include <linux/init.h>
90 #include <linux/compat.h>
91 #include <linux/ptrace.h>
92 #include <linux/swap.h>
93 #include <linux/seq_file.h>
94 #include <linux/proc_fs.h>
95 #include <linux/migrate.h>
96 #include <linux/ksm.h>
97 #include <linux/rmap.h>
98 #include <linux/security.h>
99 #include <linux/syscalls.h>
100 #include <linux/ctype.h>
101 #include <linux/mm_inline.h>
102 #include <linux/mmu_notifier.h>
103 #include <linux/printk.h>
104 #include <linux/swapops.h>
106 #include <asm/tlbflush.h>
108 #include <linux/uaccess.h>
110 #include "internal.h"
113 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */
114 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */
116 static struct kmem_cache *policy_cache;
117 static struct kmem_cache *sn_cache;
119 /* Highest zone. An specific allocation for a zone below that is not
121 enum zone_type policy_zone = 0;
124 * run-time system-wide default policy => local allocation
126 static struct mempolicy default_policy = {
127 .refcnt = ATOMIC_INIT(1), /* never free it */
131 static struct mempolicy preferred_node_policy[MAX_NUMNODES];
134 * numa_map_to_online_node - Find closest online node
135 * @node: Node id to start the search
137 * Lookup the next closest node by distance if @nid is not online.
139 * Return: this @node if it is online, otherwise the closest node by distance
141 int numa_map_to_online_node(int node)
143 int min_dist = INT_MAX, dist, n, min_node;
145 if (node == NUMA_NO_NODE || node_online(node))
149 for_each_online_node(n) {
150 dist = node_distance(node, n);
151 if (dist < min_dist) {
159 EXPORT_SYMBOL_GPL(numa_map_to_online_node);
161 struct mempolicy *get_task_policy(struct task_struct *p)
163 struct mempolicy *pol = p->mempolicy;
169 node = numa_node_id();
170 if (node != NUMA_NO_NODE) {
171 pol = &preferred_node_policy[node];
172 /* preferred_node_policy is not initialised early in boot */
177 return &default_policy;
180 static const struct mempolicy_operations {
181 int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
182 void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes);
183 } mpol_ops[MPOL_MAX];
185 static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
187 return pol->flags & MPOL_MODE_FLAGS;
190 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
191 const nodemask_t *rel)
194 nodes_fold(tmp, *orig, nodes_weight(*rel));
195 nodes_onto(*ret, tmp, *rel);
198 static int mpol_new_nodemask(struct mempolicy *pol, const nodemask_t *nodes)
200 if (nodes_empty(*nodes))
206 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
208 if (nodes_empty(*nodes))
211 nodes_clear(pol->nodes);
212 node_set(first_node(*nodes), pol->nodes);
217 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
218 * any, for the new policy. mpol_new() has already validated the nodes
219 * parameter with respect to the policy mode and flags.
221 * Must be called holding task's alloc_lock to protect task's mems_allowed
222 * and mempolicy. May also be called holding the mmap_lock for write.
224 static int mpol_set_nodemask(struct mempolicy *pol,
225 const nodemask_t *nodes, struct nodemask_scratch *nsc)
230 * Default (pol==NULL) resp. local memory policies are not a
231 * subject of any remapping. They also do not need any special
234 if (!pol || pol->mode == MPOL_LOCAL)
238 nodes_and(nsc->mask1,
239 cpuset_current_mems_allowed, node_states[N_MEMORY]);
243 if (pol->flags & MPOL_F_RELATIVE_NODES)
244 mpol_relative_nodemask(&nsc->mask2, nodes, &nsc->mask1);
246 nodes_and(nsc->mask2, *nodes, nsc->mask1);
248 if (mpol_store_user_nodemask(pol))
249 pol->w.user_nodemask = *nodes;
251 pol->w.cpuset_mems_allowed = cpuset_current_mems_allowed;
253 ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
258 * This function just creates a new policy, does some check and simple
259 * initialization. You must invoke mpol_set_nodemask() to set nodes.
261 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
264 struct mempolicy *policy;
266 pr_debug("setting mode %d flags %d nodes[0] %lx\n",
267 mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE);
269 if (mode == MPOL_DEFAULT) {
270 if (nodes && !nodes_empty(*nodes))
271 return ERR_PTR(-EINVAL);
277 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
278 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
279 * All other modes require a valid pointer to a non-empty nodemask.
281 if (mode == MPOL_PREFERRED) {
282 if (nodes_empty(*nodes)) {
283 if (((flags & MPOL_F_STATIC_NODES) ||
284 (flags & MPOL_F_RELATIVE_NODES)))
285 return ERR_PTR(-EINVAL);
289 } else if (mode == MPOL_LOCAL) {
290 if (!nodes_empty(*nodes) ||
291 (flags & MPOL_F_STATIC_NODES) ||
292 (flags & MPOL_F_RELATIVE_NODES))
293 return ERR_PTR(-EINVAL);
294 } else if (nodes_empty(*nodes))
295 return ERR_PTR(-EINVAL);
296 policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
298 return ERR_PTR(-ENOMEM);
299 atomic_set(&policy->refcnt, 1);
301 policy->flags = flags;
302 policy->home_node = NUMA_NO_NODE;
307 /* Slow path of a mpol destructor. */
308 void __mpol_put(struct mempolicy *p)
310 if (!atomic_dec_and_test(&p->refcnt))
312 kmem_cache_free(policy_cache, p);
315 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes)
319 static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes)
323 if (pol->flags & MPOL_F_STATIC_NODES)
324 nodes_and(tmp, pol->w.user_nodemask, *nodes);
325 else if (pol->flags & MPOL_F_RELATIVE_NODES)
326 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
328 nodes_remap(tmp, pol->nodes, pol->w.cpuset_mems_allowed,
330 pol->w.cpuset_mems_allowed = *nodes;
333 if (nodes_empty(tmp))
339 static void mpol_rebind_preferred(struct mempolicy *pol,
340 const nodemask_t *nodes)
342 pol->w.cpuset_mems_allowed = *nodes;
346 * mpol_rebind_policy - Migrate a policy to a different set of nodes
348 * Per-vma policies are protected by mmap_lock. Allocations using per-task
349 * policies are protected by task->mems_allowed_seq to prevent a premature
350 * OOM/allocation failure due to parallel nodemask modification.
352 static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask)
354 if (!pol || pol->mode == MPOL_LOCAL)
356 if (!mpol_store_user_nodemask(pol) &&
357 nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
360 mpol_ops[pol->mode].rebind(pol, newmask);
364 * Wrapper for mpol_rebind_policy() that just requires task
365 * pointer, and updates task mempolicy.
367 * Called with task's alloc_lock held.
370 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new)
372 mpol_rebind_policy(tsk->mempolicy, new);
376 * Rebind each vma in mm to new nodemask.
378 * Call holding a reference to mm. Takes mm->mmap_lock during call.
381 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
383 struct vm_area_struct *vma;
384 VMA_ITERATOR(vmi, mm, 0);
387 for_each_vma(vmi, vma)
388 mpol_rebind_policy(vma->vm_policy, new);
389 mmap_write_unlock(mm);
392 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
394 .rebind = mpol_rebind_default,
396 [MPOL_INTERLEAVE] = {
397 .create = mpol_new_nodemask,
398 .rebind = mpol_rebind_nodemask,
401 .create = mpol_new_preferred,
402 .rebind = mpol_rebind_preferred,
405 .create = mpol_new_nodemask,
406 .rebind = mpol_rebind_nodemask,
409 .rebind = mpol_rebind_default,
411 [MPOL_PREFERRED_MANY] = {
412 .create = mpol_new_nodemask,
413 .rebind = mpol_rebind_preferred,
417 static int migrate_page_add(struct page *page, struct list_head *pagelist,
418 unsigned long flags);
421 struct list_head *pagelist;
426 struct vm_area_struct *first;
430 * Check if the page's nid is in qp->nmask.
432 * If MPOL_MF_INVERT is set in qp->flags, check if the nid is
433 * in the invert of qp->nmask.
435 static inline bool queue_pages_required(struct page *page,
436 struct queue_pages *qp)
438 int nid = page_to_nid(page);
439 unsigned long flags = qp->flags;
441 return node_isset(nid, *qp->nmask) == !(flags & MPOL_MF_INVERT);
445 * queue_pages_pmd() has three possible return values:
446 * 0 - pages are placed on the right node or queued successfully, or
447 * special page is met, i.e. huge zero page.
448 * 1 - there is unmovable page, and MPOL_MF_MOVE* & MPOL_MF_STRICT were
450 * -EIO - is migration entry or only MPOL_MF_STRICT was specified and an
451 * existing page was already on a node that does not follow the
454 static int queue_pages_pmd(pmd_t *pmd, spinlock_t *ptl, unsigned long addr,
455 unsigned long end, struct mm_walk *walk)
460 struct queue_pages *qp = walk->private;
463 if (unlikely(is_pmd_migration_entry(*pmd))) {
467 page = pmd_page(*pmd);
468 if (is_huge_zero_page(page)) {
469 walk->action = ACTION_CONTINUE;
472 if (!queue_pages_required(page, qp))
476 /* go to thp migration */
477 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
478 if (!vma_migratable(walk->vma) ||
479 migrate_page_add(page, qp->pagelist, flags)) {
491 * Scan through pages checking if pages follow certain conditions,
492 * and move them to the pagelist if they do.
494 * queue_pages_pte_range() has three possible return values:
495 * 0 - pages are placed on the right node or queued successfully, or
496 * special page is met, i.e. zero page.
497 * 1 - there is unmovable page, and MPOL_MF_MOVE* & MPOL_MF_STRICT were
499 * -EIO - only MPOL_MF_STRICT was specified and an existing page was already
500 * on a node that does not follow the policy.
502 static int queue_pages_pte_range(pmd_t *pmd, unsigned long addr,
503 unsigned long end, struct mm_walk *walk)
505 struct vm_area_struct *vma = walk->vma;
507 struct queue_pages *qp = walk->private;
508 unsigned long flags = qp->flags;
509 bool has_unmovable = false;
510 pte_t *pte, *mapped_pte;
513 ptl = pmd_trans_huge_lock(pmd, vma);
515 return queue_pages_pmd(pmd, ptl, addr, end, walk);
517 if (pmd_trans_unstable(pmd))
520 mapped_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
521 for (; addr != end; pte++, addr += PAGE_SIZE) {
522 if (!pte_present(*pte))
524 page = vm_normal_page(vma, addr, *pte);
525 if (!page || is_zone_device_page(page))
528 * vm_normal_page() filters out zero pages, but there might
529 * still be PageReserved pages to skip, perhaps in a VDSO.
531 if (PageReserved(page))
533 if (!queue_pages_required(page, qp))
535 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
536 /* MPOL_MF_STRICT must be specified if we get here */
537 if (!vma_migratable(vma)) {
538 has_unmovable = true;
543 * Do not abort immediately since there may be
544 * temporary off LRU pages in the range. Still
545 * need migrate other LRU pages.
547 if (migrate_page_add(page, qp->pagelist, flags))
548 has_unmovable = true;
552 pte_unmap_unlock(mapped_pte, ptl);
558 return addr != end ? -EIO : 0;
561 static int queue_pages_hugetlb(pte_t *pte, unsigned long hmask,
562 unsigned long addr, unsigned long end,
563 struct mm_walk *walk)
566 #ifdef CONFIG_HUGETLB_PAGE
567 struct queue_pages *qp = walk->private;
568 unsigned long flags = (qp->flags & MPOL_MF_VALID);
573 ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte);
574 entry = huge_ptep_get(pte);
575 if (!pte_present(entry))
577 page = pte_page(entry);
578 if (!queue_pages_required(page, qp))
581 if (flags == MPOL_MF_STRICT) {
583 * STRICT alone means only detecting misplaced page and no
584 * need to further check other vma.
590 if (!vma_migratable(walk->vma)) {
592 * Must be STRICT with MOVE*, otherwise .test_walk() have
593 * stopped walking current vma.
594 * Detecting misplaced page but allow migrating pages which
601 /* With MPOL_MF_MOVE, we migrate only unshared hugepage. */
602 if (flags & (MPOL_MF_MOVE_ALL) ||
603 (flags & MPOL_MF_MOVE && page_mapcount(page) == 1)) {
604 if (isolate_hugetlb(page, qp->pagelist) &&
605 (flags & MPOL_MF_STRICT))
607 * Failed to isolate page but allow migrating pages
608 * which have been queued.
620 #ifdef CONFIG_NUMA_BALANCING
622 * This is used to mark a range of virtual addresses to be inaccessible.
623 * These are later cleared by a NUMA hinting fault. Depending on these
624 * faults, pages may be migrated for better NUMA placement.
626 * This is assuming that NUMA faults are handled using PROT_NONE. If
627 * an architecture makes a different choice, it will need further
628 * changes to the core.
630 unsigned long change_prot_numa(struct vm_area_struct *vma,
631 unsigned long addr, unsigned long end)
633 struct mmu_gather tlb;
636 tlb_gather_mmu(&tlb, vma->vm_mm);
638 nr_updated = change_protection(&tlb, vma, addr, end, PAGE_NONE,
641 count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated);
643 tlb_finish_mmu(&tlb);
648 static unsigned long change_prot_numa(struct vm_area_struct *vma,
649 unsigned long addr, unsigned long end)
653 #endif /* CONFIG_NUMA_BALANCING */
655 static int queue_pages_test_walk(unsigned long start, unsigned long end,
656 struct mm_walk *walk)
658 struct vm_area_struct *next, *vma = walk->vma;
659 struct queue_pages *qp = walk->private;
660 unsigned long endvma = vma->vm_end;
661 unsigned long flags = qp->flags;
663 /* range check first */
664 VM_BUG_ON_VMA(!range_in_vma(vma, start, end), vma);
668 if (!(flags & MPOL_MF_DISCONTIG_OK) &&
669 (qp->start < vma->vm_start))
670 /* hole at head side of range */
673 next = find_vma(vma->vm_mm, vma->vm_end);
674 if (!(flags & MPOL_MF_DISCONTIG_OK) &&
675 ((vma->vm_end < qp->end) &&
676 (!next || vma->vm_end < next->vm_start)))
677 /* hole at middle or tail of range */
681 * Need check MPOL_MF_STRICT to return -EIO if possible
682 * regardless of vma_migratable
684 if (!vma_migratable(vma) &&
685 !(flags & MPOL_MF_STRICT))
691 if (flags & MPOL_MF_LAZY) {
692 /* Similar to task_numa_work, skip inaccessible VMAs */
693 if (!is_vm_hugetlb_page(vma) && vma_is_accessible(vma) &&
694 !(vma->vm_flags & VM_MIXEDMAP))
695 change_prot_numa(vma, start, endvma);
699 /* queue pages from current vma */
700 if (flags & MPOL_MF_VALID)
705 static const struct mm_walk_ops queue_pages_walk_ops = {
706 .hugetlb_entry = queue_pages_hugetlb,
707 .pmd_entry = queue_pages_pte_range,
708 .test_walk = queue_pages_test_walk,
712 * Walk through page tables and collect pages to be migrated.
714 * If pages found in a given range are on a set of nodes (determined by
715 * @nodes and @flags,) it's isolated and queued to the pagelist which is
716 * passed via @private.
718 * queue_pages_range() has three possible return values:
719 * 1 - there is unmovable page, but MPOL_MF_MOVE* & MPOL_MF_STRICT were
721 * 0 - queue pages successfully or no misplaced page.
722 * errno - i.e. misplaced pages with MPOL_MF_STRICT specified (-EIO) or
723 * memory range specified by nodemask and maxnode points outside
724 * your accessible address space (-EFAULT)
727 queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end,
728 nodemask_t *nodes, unsigned long flags,
729 struct list_head *pagelist)
732 struct queue_pages qp = {
733 .pagelist = pagelist,
741 err = walk_page_range(mm, start, end, &queue_pages_walk_ops, &qp);
744 /* whole range in hole */
751 * Apply policy to a single VMA
752 * This must be called with the mmap_lock held for writing.
754 static int vma_replace_policy(struct vm_area_struct *vma,
755 struct mempolicy *pol)
758 struct mempolicy *old;
759 struct mempolicy *new;
761 pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
762 vma->vm_start, vma->vm_end, vma->vm_pgoff,
763 vma->vm_ops, vma->vm_file,
764 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
770 if (vma->vm_ops && vma->vm_ops->set_policy) {
771 err = vma->vm_ops->set_policy(vma, new);
776 old = vma->vm_policy;
777 vma->vm_policy = new; /* protected by mmap_lock */
786 /* Step 2: apply policy to a range and do splits. */
787 static int mbind_range(struct mm_struct *mm, unsigned long start,
788 unsigned long end, struct mempolicy *new_pol)
790 MA_STATE(mas, &mm->mm_mt, start, start);
791 struct vm_area_struct *prev;
792 struct vm_area_struct *vma;
796 prev = mas_prev(&mas, 0);
798 mas_set(&mas, start);
800 vma = mas_find(&mas, end - 1);
804 if (start > vma->vm_start)
807 for (; vma; vma = mas_next(&mas, end - 1)) {
808 unsigned long vmstart = max(start, vma->vm_start);
809 unsigned long vmend = min(end, vma->vm_end);
811 if (mpol_equal(vma_policy(vma), new_pol))
814 pgoff = vma->vm_pgoff +
815 ((vmstart - vma->vm_start) >> PAGE_SHIFT);
816 prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags,
817 vma->anon_vma, vma->vm_file, pgoff,
818 new_pol, vma->vm_userfaultfd_ctx,
821 /* vma_merge() invalidated the mas */
826 if (vma->vm_start != vmstart) {
827 err = split_vma(vma->vm_mm, vma, vmstart, 1);
830 /* split_vma() invalidated the mas */
833 if (vma->vm_end != vmend) {
834 err = split_vma(vma->vm_mm, vma, vmend, 0);
837 /* split_vma() invalidated the mas */
841 err = vma_replace_policy(vma, new_pol);
852 /* Set the process memory policy */
853 static long do_set_mempolicy(unsigned short mode, unsigned short flags,
856 struct mempolicy *new, *old;
857 NODEMASK_SCRATCH(scratch);
863 new = mpol_new(mode, flags, nodes);
870 ret = mpol_set_nodemask(new, nodes, scratch);
872 task_unlock(current);
877 old = current->mempolicy;
878 current->mempolicy = new;
879 if (new && new->mode == MPOL_INTERLEAVE)
880 current->il_prev = MAX_NUMNODES-1;
881 task_unlock(current);
885 NODEMASK_SCRATCH_FREE(scratch);
890 * Return nodemask for policy for get_mempolicy() query
892 * Called with task's alloc_lock held
894 static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
897 if (p == &default_policy)
902 case MPOL_INTERLEAVE:
904 case MPOL_PREFERRED_MANY:
908 /* return empty node mask for local allocation */
915 static int lookup_node(struct mm_struct *mm, unsigned long addr)
917 struct page *p = NULL;
920 ret = get_user_pages_fast(addr & PAGE_MASK, 1, 0, &p);
922 ret = page_to_nid(p);
928 /* Retrieve NUMA policy */
929 static long do_get_mempolicy(int *policy, nodemask_t *nmask,
930 unsigned long addr, unsigned long flags)
933 struct mm_struct *mm = current->mm;
934 struct vm_area_struct *vma = NULL;
935 struct mempolicy *pol = current->mempolicy, *pol_refcount = NULL;
938 ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
941 if (flags & MPOL_F_MEMS_ALLOWED) {
942 if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
944 *policy = 0; /* just so it's initialized */
946 *nmask = cpuset_current_mems_allowed;
947 task_unlock(current);
951 if (flags & MPOL_F_ADDR) {
953 * Do NOT fall back to task policy if the
954 * vma/shared policy at addr is NULL. We
955 * want to return MPOL_DEFAULT in this case.
958 vma = vma_lookup(mm, addr);
960 mmap_read_unlock(mm);
963 if (vma->vm_ops && vma->vm_ops->get_policy)
964 pol = vma->vm_ops->get_policy(vma, addr);
966 pol = vma->vm_policy;
971 pol = &default_policy; /* indicates default behavior */
973 if (flags & MPOL_F_NODE) {
974 if (flags & MPOL_F_ADDR) {
976 * Take a refcount on the mpol, because we are about to
977 * drop the mmap_lock, after which only "pol" remains
978 * valid, "vma" is stale.
983 mmap_read_unlock(mm);
984 err = lookup_node(mm, addr);
988 } else if (pol == current->mempolicy &&
989 pol->mode == MPOL_INTERLEAVE) {
990 *policy = next_node_in(current->il_prev, pol->nodes);
996 *policy = pol == &default_policy ? MPOL_DEFAULT :
999 * Internal mempolicy flags must be masked off before exposing
1000 * the policy to userspace.
1002 *policy |= (pol->flags & MPOL_MODE_FLAGS);
1007 if (mpol_store_user_nodemask(pol)) {
1008 *nmask = pol->w.user_nodemask;
1011 get_policy_nodemask(pol, nmask);
1012 task_unlock(current);
1019 mmap_read_unlock(mm);
1021 mpol_put(pol_refcount);
1025 #ifdef CONFIG_MIGRATION
1027 * page migration, thp tail pages can be passed.
1029 static int migrate_page_add(struct page *page, struct list_head *pagelist,
1030 unsigned long flags)
1032 struct page *head = compound_head(page);
1034 * Avoid migrating a page that is shared with others.
1036 if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(head) == 1) {
1037 if (!isolate_lru_page(head)) {
1038 list_add_tail(&head->lru, pagelist);
1039 mod_node_page_state(page_pgdat(head),
1040 NR_ISOLATED_ANON + page_is_file_lru(head),
1041 thp_nr_pages(head));
1042 } else if (flags & MPOL_MF_STRICT) {
1044 * Non-movable page may reach here. And, there may be
1045 * temporary off LRU pages or non-LRU movable pages.
1046 * Treat them as unmovable pages since they can't be
1047 * isolated, so they can't be moved at the moment. It
1048 * should return -EIO for this case too.
1058 * Migrate pages from one node to a target node.
1059 * Returns error or the number of pages not migrated.
1061 static int migrate_to_node(struct mm_struct *mm, int source, int dest,
1065 struct vm_area_struct *vma;
1066 LIST_HEAD(pagelist);
1068 struct migration_target_control mtc = {
1070 .gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE,
1074 node_set(source, nmask);
1077 * This does not "check" the range but isolates all pages that
1078 * need migration. Between passing in the full user address
1079 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail.
1081 vma = find_vma(mm, 0);
1082 VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)));
1083 queue_pages_range(mm, vma->vm_start, mm->task_size, &nmask,
1084 flags | MPOL_MF_DISCONTIG_OK, &pagelist);
1086 if (!list_empty(&pagelist)) {
1087 err = migrate_pages(&pagelist, alloc_migration_target, NULL,
1088 (unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL, NULL);
1090 putback_movable_pages(&pagelist);
1097 * Move pages between the two nodesets so as to preserve the physical
1098 * layout as much as possible.
1100 * Returns the number of page that could not be moved.
1102 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1103 const nodemask_t *to, int flags)
1109 lru_cache_disable();
1114 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
1115 * bit in 'to' is not also set in 'tmp'. Clear the found 'source'
1116 * bit in 'tmp', and return that <source, dest> pair for migration.
1117 * The pair of nodemasks 'to' and 'from' define the map.
1119 * If no pair of bits is found that way, fallback to picking some
1120 * pair of 'source' and 'dest' bits that are not the same. If the
1121 * 'source' and 'dest' bits are the same, this represents a node
1122 * that will be migrating to itself, so no pages need move.
1124 * If no bits are left in 'tmp', or if all remaining bits left
1125 * in 'tmp' correspond to the same bit in 'to', return false
1126 * (nothing left to migrate).
1128 * This lets us pick a pair of nodes to migrate between, such that
1129 * if possible the dest node is not already occupied by some other
1130 * source node, minimizing the risk of overloading the memory on a
1131 * node that would happen if we migrated incoming memory to a node
1132 * before migrating outgoing memory source that same node.
1134 * A single scan of tmp is sufficient. As we go, we remember the
1135 * most recent <s, d> pair that moved (s != d). If we find a pair
1136 * that not only moved, but what's better, moved to an empty slot
1137 * (d is not set in tmp), then we break out then, with that pair.
1138 * Otherwise when we finish scanning from_tmp, we at least have the
1139 * most recent <s, d> pair that moved. If we get all the way through
1140 * the scan of tmp without finding any node that moved, much less
1141 * moved to an empty node, then there is nothing left worth migrating.
1145 while (!nodes_empty(tmp)) {
1147 int source = NUMA_NO_NODE;
1150 for_each_node_mask(s, tmp) {
1153 * do_migrate_pages() tries to maintain the relative
1154 * node relationship of the pages established between
1155 * threads and memory areas.
1157 * However if the number of source nodes is not equal to
1158 * the number of destination nodes we can not preserve
1159 * this node relative relationship. In that case, skip
1160 * copying memory from a node that is in the destination
1163 * Example: [2,3,4] -> [3,4,5] moves everything.
1164 * [0-7] - > [3,4,5] moves only 0,1,2,6,7.
1167 if ((nodes_weight(*from) != nodes_weight(*to)) &&
1168 (node_isset(s, *to)))
1171 d = node_remap(s, *from, *to);
1175 source = s; /* Node moved. Memorize */
1178 /* dest not in remaining from nodes? */
1179 if (!node_isset(dest, tmp))
1182 if (source == NUMA_NO_NODE)
1185 node_clear(source, tmp);
1186 err = migrate_to_node(mm, source, dest, flags);
1192 mmap_read_unlock(mm);
1202 * Allocate a new page for page migration based on vma policy.
1203 * Start by assuming the page is mapped by the same vma as contains @start.
1204 * Search forward from there, if not. N.B., this assumes that the
1205 * list of pages handed to migrate_pages()--which is how we get here--
1206 * is in virtual address order.
1208 static struct page *new_page(struct page *page, unsigned long start)
1210 struct folio *dst, *src = page_folio(page);
1211 struct vm_area_struct *vma;
1212 unsigned long address;
1213 VMA_ITERATOR(vmi, current->mm, start);
1214 gfp_t gfp = GFP_HIGHUSER_MOVABLE | __GFP_RETRY_MAYFAIL;
1216 for_each_vma(vmi, vma) {
1217 address = page_address_in_vma(page, vma);
1218 if (address != -EFAULT)
1222 if (folio_test_hugetlb(src))
1223 return alloc_huge_page_vma(page_hstate(&src->page),
1226 if (folio_test_large(src))
1227 gfp = GFP_TRANSHUGE;
1230 * if !vma, vma_alloc_folio() will use task or system default policy
1232 dst = vma_alloc_folio(gfp, folio_order(src), vma, address,
1233 folio_test_large(src));
1238 static int migrate_page_add(struct page *page, struct list_head *pagelist,
1239 unsigned long flags)
1244 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1245 const nodemask_t *to, int flags)
1250 static struct page *new_page(struct page *page, unsigned long start)
1256 static long do_mbind(unsigned long start, unsigned long len,
1257 unsigned short mode, unsigned short mode_flags,
1258 nodemask_t *nmask, unsigned long flags)
1260 struct mm_struct *mm = current->mm;
1261 struct mempolicy *new;
1265 LIST_HEAD(pagelist);
1267 if (flags & ~(unsigned long)MPOL_MF_VALID)
1269 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1272 if (start & ~PAGE_MASK)
1275 if (mode == MPOL_DEFAULT)
1276 flags &= ~MPOL_MF_STRICT;
1278 len = PAGE_ALIGN(len);
1286 new = mpol_new(mode, mode_flags, nmask);
1288 return PTR_ERR(new);
1290 if (flags & MPOL_MF_LAZY)
1291 new->flags |= MPOL_F_MOF;
1294 * If we are using the default policy then operation
1295 * on discontinuous address spaces is okay after all
1298 flags |= MPOL_MF_DISCONTIG_OK;
1300 pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1301 start, start + len, mode, mode_flags,
1302 nmask ? nodes_addr(*nmask)[0] : NUMA_NO_NODE);
1304 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
1306 lru_cache_disable();
1309 NODEMASK_SCRATCH(scratch);
1311 mmap_write_lock(mm);
1312 err = mpol_set_nodemask(new, nmask, scratch);
1314 mmap_write_unlock(mm);
1317 NODEMASK_SCRATCH_FREE(scratch);
1322 ret = queue_pages_range(mm, start, end, nmask,
1323 flags | MPOL_MF_INVERT, &pagelist);
1330 err = mbind_range(mm, start, end, new);
1335 if (!list_empty(&pagelist)) {
1336 WARN_ON_ONCE(flags & MPOL_MF_LAZY);
1337 nr_failed = migrate_pages(&pagelist, new_page, NULL,
1338 start, MIGRATE_SYNC, MR_MEMPOLICY_MBIND, NULL);
1340 putback_movable_pages(&pagelist);
1343 if ((ret > 0) || (nr_failed && (flags & MPOL_MF_STRICT)))
1347 if (!list_empty(&pagelist))
1348 putback_movable_pages(&pagelist);
1351 mmap_write_unlock(mm);
1354 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
1360 * User space interface with variable sized bitmaps for nodelists.
1362 static int get_bitmap(unsigned long *mask, const unsigned long __user *nmask,
1363 unsigned long maxnode)
1365 unsigned long nlongs = BITS_TO_LONGS(maxnode);
1368 if (in_compat_syscall())
1369 ret = compat_get_bitmap(mask,
1370 (const compat_ulong_t __user *)nmask,
1373 ret = copy_from_user(mask, nmask,
1374 nlongs * sizeof(unsigned long));
1379 if (maxnode % BITS_PER_LONG)
1380 mask[nlongs - 1] &= (1UL << (maxnode % BITS_PER_LONG)) - 1;
1385 /* Copy a node mask from user space. */
1386 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1387 unsigned long maxnode)
1390 nodes_clear(*nodes);
1391 if (maxnode == 0 || !nmask)
1393 if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1397 * When the user specified more nodes than supported just check
1398 * if the non supported part is all zero, one word at a time,
1399 * starting at the end.
1401 while (maxnode > MAX_NUMNODES) {
1402 unsigned long bits = min_t(unsigned long, maxnode, BITS_PER_LONG);
1405 if (get_bitmap(&t, &nmask[(maxnode - 1) / BITS_PER_LONG], bits))
1408 if (maxnode - bits >= MAX_NUMNODES) {
1411 maxnode = MAX_NUMNODES;
1412 t &= ~((1UL << (MAX_NUMNODES % BITS_PER_LONG)) - 1);
1418 return get_bitmap(nodes_addr(*nodes), nmask, maxnode);
1421 /* Copy a kernel node mask to user space */
1422 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1425 unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1426 unsigned int nbytes = BITS_TO_LONGS(nr_node_ids) * sizeof(long);
1427 bool compat = in_compat_syscall();
1430 nbytes = BITS_TO_COMPAT_LONGS(nr_node_ids) * sizeof(compat_long_t);
1432 if (copy > nbytes) {
1433 if (copy > PAGE_SIZE)
1435 if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1438 maxnode = nr_node_ids;
1442 return compat_put_bitmap((compat_ulong_t __user *)mask,
1443 nodes_addr(*nodes), maxnode);
1445 return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1448 /* Basic parameter sanity check used by both mbind() and set_mempolicy() */
1449 static inline int sanitize_mpol_flags(int *mode, unsigned short *flags)
1451 *flags = *mode & MPOL_MODE_FLAGS;
1452 *mode &= ~MPOL_MODE_FLAGS;
1454 if ((unsigned int)(*mode) >= MPOL_MAX)
1456 if ((*flags & MPOL_F_STATIC_NODES) && (*flags & MPOL_F_RELATIVE_NODES))
1458 if (*flags & MPOL_F_NUMA_BALANCING) {
1459 if (*mode != MPOL_BIND)
1461 *flags |= (MPOL_F_MOF | MPOL_F_MORON);
1466 static long kernel_mbind(unsigned long start, unsigned long len,
1467 unsigned long mode, const unsigned long __user *nmask,
1468 unsigned long maxnode, unsigned int flags)
1470 unsigned short mode_flags;
1475 start = untagged_addr(start);
1476 err = sanitize_mpol_flags(&lmode, &mode_flags);
1480 err = get_nodes(&nodes, nmask, maxnode);
1484 return do_mbind(start, len, lmode, mode_flags, &nodes, flags);
1487 SYSCALL_DEFINE4(set_mempolicy_home_node, unsigned long, start, unsigned long, len,
1488 unsigned long, home_node, unsigned long, flags)
1490 struct mm_struct *mm = current->mm;
1491 struct vm_area_struct *vma;
1492 struct mempolicy *new;
1493 unsigned long vmstart;
1494 unsigned long vmend;
1497 VMA_ITERATOR(vmi, mm, start);
1499 start = untagged_addr(start);
1500 if (start & ~PAGE_MASK)
1503 * flags is used for future extension if any.
1509 * Check home_node is online to avoid accessing uninitialized
1512 if (home_node >= MAX_NUMNODES || !node_online(home_node))
1515 len = PAGE_ALIGN(len);
1522 mmap_write_lock(mm);
1523 for_each_vma_range(vmi, vma, end) {
1524 vmstart = max(start, vma->vm_start);
1525 vmend = min(end, vma->vm_end);
1526 new = mpol_dup(vma_policy(vma));
1532 * Only update home node if there is an existing vma policy
1538 * If any vma in the range got policy other than MPOL_BIND
1539 * or MPOL_PREFERRED_MANY we return error. We don't reset
1540 * the home node for vmas we already updated before.
1542 if (new->mode != MPOL_BIND && new->mode != MPOL_PREFERRED_MANY) {
1548 new->home_node = home_node;
1549 err = mbind_range(mm, vmstart, vmend, new);
1554 mmap_write_unlock(mm);
1558 SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1559 unsigned long, mode, const unsigned long __user *, nmask,
1560 unsigned long, maxnode, unsigned int, flags)
1562 return kernel_mbind(start, len, mode, nmask, maxnode, flags);
1565 /* Set the process memory policy */
1566 static long kernel_set_mempolicy(int mode, const unsigned long __user *nmask,
1567 unsigned long maxnode)
1569 unsigned short mode_flags;
1574 err = sanitize_mpol_flags(&lmode, &mode_flags);
1578 err = get_nodes(&nodes, nmask, maxnode);
1582 return do_set_mempolicy(lmode, mode_flags, &nodes);
1585 SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask,
1586 unsigned long, maxnode)
1588 return kernel_set_mempolicy(mode, nmask, maxnode);
1591 static int kernel_migrate_pages(pid_t pid, unsigned long maxnode,
1592 const unsigned long __user *old_nodes,
1593 const unsigned long __user *new_nodes)
1595 struct mm_struct *mm = NULL;
1596 struct task_struct *task;
1597 nodemask_t task_nodes;
1601 NODEMASK_SCRATCH(scratch);
1606 old = &scratch->mask1;
1607 new = &scratch->mask2;
1609 err = get_nodes(old, old_nodes, maxnode);
1613 err = get_nodes(new, new_nodes, maxnode);
1617 /* Find the mm_struct */
1619 task = pid ? find_task_by_vpid(pid) : current;
1625 get_task_struct(task);
1630 * Check if this process has the right to modify the specified process.
1631 * Use the regular "ptrace_may_access()" checks.
1633 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1640 task_nodes = cpuset_mems_allowed(task);
1641 /* Is the user allowed to access the target nodes? */
1642 if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1647 task_nodes = cpuset_mems_allowed(current);
1648 nodes_and(*new, *new, task_nodes);
1649 if (nodes_empty(*new))
1652 err = security_task_movememory(task);
1656 mm = get_task_mm(task);
1657 put_task_struct(task);
1664 err = do_migrate_pages(mm, old, new,
1665 capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1669 NODEMASK_SCRATCH_FREE(scratch);
1674 put_task_struct(task);
1679 SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1680 const unsigned long __user *, old_nodes,
1681 const unsigned long __user *, new_nodes)
1683 return kernel_migrate_pages(pid, maxnode, old_nodes, new_nodes);
1687 /* Retrieve NUMA policy */
1688 static int kernel_get_mempolicy(int __user *policy,
1689 unsigned long __user *nmask,
1690 unsigned long maxnode,
1692 unsigned long flags)
1698 if (nmask != NULL && maxnode < nr_node_ids)
1701 addr = untagged_addr(addr);
1703 err = do_get_mempolicy(&pval, &nodes, addr, flags);
1708 if (policy && put_user(pval, policy))
1712 err = copy_nodes_to_user(nmask, maxnode, &nodes);
1717 SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1718 unsigned long __user *, nmask, unsigned long, maxnode,
1719 unsigned long, addr, unsigned long, flags)
1721 return kernel_get_mempolicy(policy, nmask, maxnode, addr, flags);
1724 bool vma_migratable(struct vm_area_struct *vma)
1726 if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1730 * DAX device mappings require predictable access latency, so avoid
1731 * incurring periodic faults.
1733 if (vma_is_dax(vma))
1736 if (is_vm_hugetlb_page(vma) &&
1737 !hugepage_migration_supported(hstate_vma(vma)))
1741 * Migration allocates pages in the highest zone. If we cannot
1742 * do so then migration (at least from node to node) is not
1746 gfp_zone(mapping_gfp_mask(vma->vm_file->f_mapping))
1752 struct mempolicy *__get_vma_policy(struct vm_area_struct *vma,
1755 struct mempolicy *pol = NULL;
1758 if (vma->vm_ops && vma->vm_ops->get_policy) {
1759 pol = vma->vm_ops->get_policy(vma, addr);
1760 } else if (vma->vm_policy) {
1761 pol = vma->vm_policy;
1764 * shmem_alloc_page() passes MPOL_F_SHARED policy with
1765 * a pseudo vma whose vma->vm_ops=NULL. Take a reference
1766 * count on these policies which will be dropped by
1767 * mpol_cond_put() later
1769 if (mpol_needs_cond_ref(pol))
1778 * get_vma_policy(@vma, @addr)
1779 * @vma: virtual memory area whose policy is sought
1780 * @addr: address in @vma for shared policy lookup
1782 * Returns effective policy for a VMA at specified address.
1783 * Falls back to current->mempolicy or system default policy, as necessary.
1784 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1785 * count--added by the get_policy() vm_op, as appropriate--to protect against
1786 * freeing by another task. It is the caller's responsibility to free the
1787 * extra reference for shared policies.
1789 static struct mempolicy *get_vma_policy(struct vm_area_struct *vma,
1792 struct mempolicy *pol = __get_vma_policy(vma, addr);
1795 pol = get_task_policy(current);
1800 bool vma_policy_mof(struct vm_area_struct *vma)
1802 struct mempolicy *pol;
1804 if (vma->vm_ops && vma->vm_ops->get_policy) {
1807 pol = vma->vm_ops->get_policy(vma, vma->vm_start);
1808 if (pol && (pol->flags & MPOL_F_MOF))
1815 pol = vma->vm_policy;
1817 pol = get_task_policy(current);
1819 return pol->flags & MPOL_F_MOF;
1822 bool apply_policy_zone(struct mempolicy *policy, enum zone_type zone)
1824 enum zone_type dynamic_policy_zone = policy_zone;
1826 BUG_ON(dynamic_policy_zone == ZONE_MOVABLE);
1829 * if policy->nodes has movable memory only,
1830 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only.
1832 * policy->nodes is intersect with node_states[N_MEMORY].
1833 * so if the following test fails, it implies
1834 * policy->nodes has movable memory only.
1836 if (!nodes_intersects(policy->nodes, node_states[N_HIGH_MEMORY]))
1837 dynamic_policy_zone = ZONE_MOVABLE;
1839 return zone >= dynamic_policy_zone;
1843 * Return a nodemask representing a mempolicy for filtering nodes for
1846 nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1848 int mode = policy->mode;
1850 /* Lower zones don't get a nodemask applied for MPOL_BIND */
1851 if (unlikely(mode == MPOL_BIND) &&
1852 apply_policy_zone(policy, gfp_zone(gfp)) &&
1853 cpuset_nodemask_valid_mems_allowed(&policy->nodes))
1854 return &policy->nodes;
1856 if (mode == MPOL_PREFERRED_MANY)
1857 return &policy->nodes;
1863 * Return the preferred node id for 'prefer' mempolicy, and return
1864 * the given id for all other policies.
1866 * policy_node() is always coupled with policy_nodemask(), which
1867 * secures the nodemask limit for 'bind' and 'prefer-many' policy.
1869 static int policy_node(gfp_t gfp, struct mempolicy *policy, int nd)
1871 if (policy->mode == MPOL_PREFERRED) {
1872 nd = first_node(policy->nodes);
1875 * __GFP_THISNODE shouldn't even be used with the bind policy
1876 * because we might easily break the expectation to stay on the
1877 * requested node and not break the policy.
1879 WARN_ON_ONCE(policy->mode == MPOL_BIND && (gfp & __GFP_THISNODE));
1882 if ((policy->mode == MPOL_BIND ||
1883 policy->mode == MPOL_PREFERRED_MANY) &&
1884 policy->home_node != NUMA_NO_NODE)
1885 return policy->home_node;
1890 /* Do dynamic interleaving for a process */
1891 static unsigned interleave_nodes(struct mempolicy *policy)
1894 struct task_struct *me = current;
1896 next = next_node_in(me->il_prev, policy->nodes);
1897 if (next < MAX_NUMNODES)
1903 * Depending on the memory policy provide a node from which to allocate the
1906 unsigned int mempolicy_slab_node(void)
1908 struct mempolicy *policy;
1909 int node = numa_mem_id();
1914 policy = current->mempolicy;
1918 switch (policy->mode) {
1919 case MPOL_PREFERRED:
1920 return first_node(policy->nodes);
1922 case MPOL_INTERLEAVE:
1923 return interleave_nodes(policy);
1926 case MPOL_PREFERRED_MANY:
1931 * Follow bind policy behavior and start allocation at the
1934 struct zonelist *zonelist;
1935 enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1936 zonelist = &NODE_DATA(node)->node_zonelists[ZONELIST_FALLBACK];
1937 z = first_zones_zonelist(zonelist, highest_zoneidx,
1939 return z->zone ? zone_to_nid(z->zone) : node;
1950 * Do static interleaving for a VMA with known offset @n. Returns the n'th
1951 * node in pol->nodes (starting from n=0), wrapping around if n exceeds the
1952 * number of present nodes.
1954 static unsigned offset_il_node(struct mempolicy *pol, unsigned long n)
1956 nodemask_t nodemask = pol->nodes;
1957 unsigned int target, nnodes;
1961 * The barrier will stabilize the nodemask in a register or on
1962 * the stack so that it will stop changing under the code.
1964 * Between first_node() and next_node(), pol->nodes could be changed
1965 * by other threads. So we put pol->nodes in a local stack.
1969 nnodes = nodes_weight(nodemask);
1971 return numa_node_id();
1972 target = (unsigned int)n % nnodes;
1973 nid = first_node(nodemask);
1974 for (i = 0; i < target; i++)
1975 nid = next_node(nid, nodemask);
1979 /* Determine a node number for interleave */
1980 static inline unsigned interleave_nid(struct mempolicy *pol,
1981 struct vm_area_struct *vma, unsigned long addr, int shift)
1987 * for small pages, there is no difference between
1988 * shift and PAGE_SHIFT, so the bit-shift is safe.
1989 * for huge pages, since vm_pgoff is in units of small
1990 * pages, we need to shift off the always 0 bits to get
1993 BUG_ON(shift < PAGE_SHIFT);
1994 off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
1995 off += (addr - vma->vm_start) >> shift;
1996 return offset_il_node(pol, off);
1998 return interleave_nodes(pol);
2001 #ifdef CONFIG_HUGETLBFS
2003 * huge_node(@vma, @addr, @gfp_flags, @mpol)
2004 * @vma: virtual memory area whose policy is sought
2005 * @addr: address in @vma for shared policy lookup and interleave policy
2006 * @gfp_flags: for requested zone
2007 * @mpol: pointer to mempolicy pointer for reference counted mempolicy
2008 * @nodemask: pointer to nodemask pointer for 'bind' and 'prefer-many' policy
2010 * Returns a nid suitable for a huge page allocation and a pointer
2011 * to the struct mempolicy for conditional unref after allocation.
2012 * If the effective policy is 'bind' or 'prefer-many', returns a pointer
2013 * to the mempolicy's @nodemask for filtering the zonelist.
2015 * Must be protected by read_mems_allowed_begin()
2017 int huge_node(struct vm_area_struct *vma, unsigned long addr, gfp_t gfp_flags,
2018 struct mempolicy **mpol, nodemask_t **nodemask)
2023 *mpol = get_vma_policy(vma, addr);
2025 mode = (*mpol)->mode;
2027 if (unlikely(mode == MPOL_INTERLEAVE)) {
2028 nid = interleave_nid(*mpol, vma, addr,
2029 huge_page_shift(hstate_vma(vma)));
2031 nid = policy_node(gfp_flags, *mpol, numa_node_id());
2032 if (mode == MPOL_BIND || mode == MPOL_PREFERRED_MANY)
2033 *nodemask = &(*mpol)->nodes;
2039 * init_nodemask_of_mempolicy
2041 * If the current task's mempolicy is "default" [NULL], return 'false'
2042 * to indicate default policy. Otherwise, extract the policy nodemask
2043 * for 'bind' or 'interleave' policy into the argument nodemask, or
2044 * initialize the argument nodemask to contain the single node for
2045 * 'preferred' or 'local' policy and return 'true' to indicate presence
2046 * of non-default mempolicy.
2048 * We don't bother with reference counting the mempolicy [mpol_get/put]
2049 * because the current task is examining it's own mempolicy and a task's
2050 * mempolicy is only ever changed by the task itself.
2052 * N.B., it is the caller's responsibility to free a returned nodemask.
2054 bool init_nodemask_of_mempolicy(nodemask_t *mask)
2056 struct mempolicy *mempolicy;
2058 if (!(mask && current->mempolicy))
2062 mempolicy = current->mempolicy;
2063 switch (mempolicy->mode) {
2064 case MPOL_PREFERRED:
2065 case MPOL_PREFERRED_MANY:
2067 case MPOL_INTERLEAVE:
2068 *mask = mempolicy->nodes;
2072 init_nodemask_of_node(mask, numa_node_id());
2078 task_unlock(current);
2085 * mempolicy_in_oom_domain
2087 * If tsk's mempolicy is "bind", check for intersection between mask and
2088 * the policy nodemask. Otherwise, return true for all other policies
2089 * including "interleave", as a tsk with "interleave" policy may have
2090 * memory allocated from all nodes in system.
2092 * Takes task_lock(tsk) to prevent freeing of its mempolicy.
2094 bool mempolicy_in_oom_domain(struct task_struct *tsk,
2095 const nodemask_t *mask)
2097 struct mempolicy *mempolicy;
2104 mempolicy = tsk->mempolicy;
2105 if (mempolicy && mempolicy->mode == MPOL_BIND)
2106 ret = nodes_intersects(mempolicy->nodes, *mask);
2112 /* Allocate a page in interleaved policy.
2113 Own path because it needs to do special accounting. */
2114 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
2119 page = __alloc_pages(gfp, order, nid, NULL);
2120 /* skip NUMA_INTERLEAVE_HIT counter update if numa stats is disabled */
2121 if (!static_branch_likely(&vm_numa_stat_key))
2123 if (page && page_to_nid(page) == nid) {
2125 __count_numa_event(page_zone(page), NUMA_INTERLEAVE_HIT);
2131 static struct page *alloc_pages_preferred_many(gfp_t gfp, unsigned int order,
2132 int nid, struct mempolicy *pol)
2135 gfp_t preferred_gfp;
2138 * This is a two pass approach. The first pass will only try the
2139 * preferred nodes but skip the direct reclaim and allow the
2140 * allocation to fail, while the second pass will try all the
2143 preferred_gfp = gfp | __GFP_NOWARN;
2144 preferred_gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2145 page = __alloc_pages(preferred_gfp, order, nid, &pol->nodes);
2147 page = __alloc_pages(gfp, order, nid, NULL);
2153 * vma_alloc_folio - Allocate a folio for a VMA.
2155 * @order: Order of the folio.
2156 * @vma: Pointer to VMA or NULL if not available.
2157 * @addr: Virtual address of the allocation. Must be inside @vma.
2158 * @hugepage: For hugepages try only the preferred node if possible.
2160 * Allocate a folio for a specific address in @vma, using the appropriate
2161 * NUMA policy. When @vma is not NULL the caller must hold the mmap_lock
2162 * of the mm_struct of the VMA to prevent it from going away. Should be
2163 * used for all allocations for folios that will be mapped into user space.
2165 * Return: The folio on success or NULL if allocation fails.
2167 struct folio *vma_alloc_folio(gfp_t gfp, int order, struct vm_area_struct *vma,
2168 unsigned long addr, bool hugepage)
2170 struct mempolicy *pol;
2171 int node = numa_node_id();
2172 struct folio *folio;
2176 pol = get_vma_policy(vma, addr);
2178 if (pol->mode == MPOL_INTERLEAVE) {
2182 nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order);
2185 page = alloc_page_interleave(gfp, order, nid);
2186 if (page && order > 1)
2187 prep_transhuge_page(page);
2188 folio = (struct folio *)page;
2192 if (pol->mode == MPOL_PREFERRED_MANY) {
2195 node = policy_node(gfp, pol, node);
2197 page = alloc_pages_preferred_many(gfp, order, node, pol);
2199 if (page && order > 1)
2200 prep_transhuge_page(page);
2201 folio = (struct folio *)page;
2205 if (unlikely(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && hugepage)) {
2206 int hpage_node = node;
2209 * For hugepage allocation and non-interleave policy which
2210 * allows the current node (or other explicitly preferred
2211 * node) we only try to allocate from the current/preferred
2212 * node and don't fall back to other nodes, as the cost of
2213 * remote accesses would likely offset THP benefits.
2215 * If the policy is interleave or does not allow the current
2216 * node in its nodemask, we allocate the standard way.
2218 if (pol->mode == MPOL_PREFERRED)
2219 hpage_node = first_node(pol->nodes);
2221 nmask = policy_nodemask(gfp, pol);
2222 if (!nmask || node_isset(hpage_node, *nmask)) {
2225 * First, try to allocate THP only on local node, but
2226 * don't reclaim unnecessarily, just compact.
2228 folio = __folio_alloc_node(gfp | __GFP_THISNODE |
2229 __GFP_NORETRY, order, hpage_node);
2232 * If hugepage allocations are configured to always
2233 * synchronous compact or the vma has been madvised
2234 * to prefer hugepage backing, retry allowing remote
2235 * memory with both reclaim and compact as well.
2237 if (!folio && (gfp & __GFP_DIRECT_RECLAIM))
2238 folio = __folio_alloc(gfp, order, hpage_node,
2245 nmask = policy_nodemask(gfp, pol);
2246 preferred_nid = policy_node(gfp, pol, node);
2247 folio = __folio_alloc(gfp, order, preferred_nid, nmask);
2252 EXPORT_SYMBOL(vma_alloc_folio);
2255 * alloc_pages - Allocate pages.
2257 * @order: Power of two of number of pages to allocate.
2259 * Allocate 1 << @order contiguous pages. The physical address of the
2260 * first page is naturally aligned (eg an order-3 allocation will be aligned
2261 * to a multiple of 8 * PAGE_SIZE bytes). The NUMA policy of the current
2262 * process is honoured when in process context.
2264 * Context: Can be called from any context, providing the appropriate GFP
2266 * Return: The page on success or NULL if allocation fails.
2268 struct page *alloc_pages(gfp_t gfp, unsigned order)
2270 struct mempolicy *pol = &default_policy;
2273 if (!in_interrupt() && !(gfp & __GFP_THISNODE))
2274 pol = get_task_policy(current);
2277 * No reference counting needed for current->mempolicy
2278 * nor system default_policy
2280 if (pol->mode == MPOL_INTERLEAVE)
2281 page = alloc_page_interleave(gfp, order, interleave_nodes(pol));
2282 else if (pol->mode == MPOL_PREFERRED_MANY)
2283 page = alloc_pages_preferred_many(gfp, order,
2284 policy_node(gfp, pol, numa_node_id()), pol);
2286 page = __alloc_pages(gfp, order,
2287 policy_node(gfp, pol, numa_node_id()),
2288 policy_nodemask(gfp, pol));
2292 EXPORT_SYMBOL(alloc_pages);
2294 struct folio *folio_alloc(gfp_t gfp, unsigned order)
2296 struct page *page = alloc_pages(gfp | __GFP_COMP, order);
2298 if (page && order > 1)
2299 prep_transhuge_page(page);
2300 return (struct folio *)page;
2302 EXPORT_SYMBOL(folio_alloc);
2304 static unsigned long alloc_pages_bulk_array_interleave(gfp_t gfp,
2305 struct mempolicy *pol, unsigned long nr_pages,
2306 struct page **page_array)
2309 unsigned long nr_pages_per_node;
2312 unsigned long nr_allocated;
2313 unsigned long total_allocated = 0;
2315 nodes = nodes_weight(pol->nodes);
2316 nr_pages_per_node = nr_pages / nodes;
2317 delta = nr_pages - nodes * nr_pages_per_node;
2319 for (i = 0; i < nodes; i++) {
2321 nr_allocated = __alloc_pages_bulk(gfp,
2322 interleave_nodes(pol), NULL,
2323 nr_pages_per_node + 1, NULL,
2327 nr_allocated = __alloc_pages_bulk(gfp,
2328 interleave_nodes(pol), NULL,
2329 nr_pages_per_node, NULL, page_array);
2332 page_array += nr_allocated;
2333 total_allocated += nr_allocated;
2336 return total_allocated;
2339 static unsigned long alloc_pages_bulk_array_preferred_many(gfp_t gfp, int nid,
2340 struct mempolicy *pol, unsigned long nr_pages,
2341 struct page **page_array)
2343 gfp_t preferred_gfp;
2344 unsigned long nr_allocated = 0;
2346 preferred_gfp = gfp | __GFP_NOWARN;
2347 preferred_gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2349 nr_allocated = __alloc_pages_bulk(preferred_gfp, nid, &pol->nodes,
2350 nr_pages, NULL, page_array);
2352 if (nr_allocated < nr_pages)
2353 nr_allocated += __alloc_pages_bulk(gfp, numa_node_id(), NULL,
2354 nr_pages - nr_allocated, NULL,
2355 page_array + nr_allocated);
2356 return nr_allocated;
2359 /* alloc pages bulk and mempolicy should be considered at the
2360 * same time in some situation such as vmalloc.
2362 * It can accelerate memory allocation especially interleaving
2365 unsigned long alloc_pages_bulk_array_mempolicy(gfp_t gfp,
2366 unsigned long nr_pages, struct page **page_array)
2368 struct mempolicy *pol = &default_policy;
2370 if (!in_interrupt() && !(gfp & __GFP_THISNODE))
2371 pol = get_task_policy(current);
2373 if (pol->mode == MPOL_INTERLEAVE)
2374 return alloc_pages_bulk_array_interleave(gfp, pol,
2375 nr_pages, page_array);
2377 if (pol->mode == MPOL_PREFERRED_MANY)
2378 return alloc_pages_bulk_array_preferred_many(gfp,
2379 numa_node_id(), pol, nr_pages, page_array);
2381 return __alloc_pages_bulk(gfp, policy_node(gfp, pol, numa_node_id()),
2382 policy_nodemask(gfp, pol), nr_pages, NULL,
2386 int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst)
2388 struct mempolicy *pol = mpol_dup(vma_policy(src));
2391 return PTR_ERR(pol);
2392 dst->vm_policy = pol;
2397 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
2398 * rebinds the mempolicy its copying by calling mpol_rebind_policy()
2399 * with the mems_allowed returned by cpuset_mems_allowed(). This
2400 * keeps mempolicies cpuset relative after its cpuset moves. See
2401 * further kernel/cpuset.c update_nodemask().
2403 * current's mempolicy may be rebinded by the other task(the task that changes
2404 * cpuset's mems), so we needn't do rebind work for current task.
2407 /* Slow path of a mempolicy duplicate */
2408 struct mempolicy *__mpol_dup(struct mempolicy *old)
2410 struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2413 return ERR_PTR(-ENOMEM);
2415 /* task's mempolicy is protected by alloc_lock */
2416 if (old == current->mempolicy) {
2419 task_unlock(current);
2423 if (current_cpuset_is_being_rebound()) {
2424 nodemask_t mems = cpuset_mems_allowed(current);
2425 mpol_rebind_policy(new, &mems);
2427 atomic_set(&new->refcnt, 1);
2431 /* Slow path of a mempolicy comparison */
2432 bool __mpol_equal(struct mempolicy *a, struct mempolicy *b)
2436 if (a->mode != b->mode)
2438 if (a->flags != b->flags)
2440 if (a->home_node != b->home_node)
2442 if (mpol_store_user_nodemask(a))
2443 if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
2448 case MPOL_INTERLEAVE:
2449 case MPOL_PREFERRED:
2450 case MPOL_PREFERRED_MANY:
2451 return !!nodes_equal(a->nodes, b->nodes);
2461 * Shared memory backing store policy support.
2463 * Remember policies even when nobody has shared memory mapped.
2464 * The policies are kept in Red-Black tree linked from the inode.
2465 * They are protected by the sp->lock rwlock, which should be held
2466 * for any accesses to the tree.
2470 * lookup first element intersecting start-end. Caller holds sp->lock for
2471 * reading or for writing
2473 static struct sp_node *
2474 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
2476 struct rb_node *n = sp->root.rb_node;
2479 struct sp_node *p = rb_entry(n, struct sp_node, nd);
2481 if (start >= p->end)
2483 else if (end <= p->start)
2491 struct sp_node *w = NULL;
2492 struct rb_node *prev = rb_prev(n);
2495 w = rb_entry(prev, struct sp_node, nd);
2496 if (w->end <= start)
2500 return rb_entry(n, struct sp_node, nd);
2504 * Insert a new shared policy into the list. Caller holds sp->lock for
2507 static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2509 struct rb_node **p = &sp->root.rb_node;
2510 struct rb_node *parent = NULL;
2515 nd = rb_entry(parent, struct sp_node, nd);
2516 if (new->start < nd->start)
2518 else if (new->end > nd->end)
2519 p = &(*p)->rb_right;
2523 rb_link_node(&new->nd, parent, p);
2524 rb_insert_color(&new->nd, &sp->root);
2525 pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
2526 new->policy ? new->policy->mode : 0);
2529 /* Find shared policy intersecting idx */
2531 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
2533 struct mempolicy *pol = NULL;
2536 if (!sp->root.rb_node)
2538 read_lock(&sp->lock);
2539 sn = sp_lookup(sp, idx, idx+1);
2541 mpol_get(sn->policy);
2544 read_unlock(&sp->lock);
2548 static void sp_free(struct sp_node *n)
2550 mpol_put(n->policy);
2551 kmem_cache_free(sn_cache, n);
2555 * mpol_misplaced - check whether current page node is valid in policy
2557 * @page: page to be checked
2558 * @vma: vm area where page mapped
2559 * @addr: virtual address where page mapped
2561 * Lookup current policy node id for vma,addr and "compare to" page's
2562 * node id. Policy determination "mimics" alloc_page_vma().
2563 * Called from fault path where we know the vma and faulting address.
2565 * Return: NUMA_NO_NODE if the page is in a node that is valid for this
2566 * policy, or a suitable node ID to allocate a replacement page from.
2568 int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr)
2570 struct mempolicy *pol;
2572 int curnid = page_to_nid(page);
2573 unsigned long pgoff;
2574 int thiscpu = raw_smp_processor_id();
2575 int thisnid = cpu_to_node(thiscpu);
2576 int polnid = NUMA_NO_NODE;
2577 int ret = NUMA_NO_NODE;
2579 pol = get_vma_policy(vma, addr);
2580 if (!(pol->flags & MPOL_F_MOF))
2583 switch (pol->mode) {
2584 case MPOL_INTERLEAVE:
2585 pgoff = vma->vm_pgoff;
2586 pgoff += (addr - vma->vm_start) >> PAGE_SHIFT;
2587 polnid = offset_il_node(pol, pgoff);
2590 case MPOL_PREFERRED:
2591 if (node_isset(curnid, pol->nodes))
2593 polnid = first_node(pol->nodes);
2597 polnid = numa_node_id();
2601 /* Optimize placement among multiple nodes via NUMA balancing */
2602 if (pol->flags & MPOL_F_MORON) {
2603 if (node_isset(thisnid, pol->nodes))
2609 case MPOL_PREFERRED_MANY:
2611 * use current page if in policy nodemask,
2612 * else select nearest allowed node, if any.
2613 * If no allowed nodes, use current [!misplaced].
2615 if (node_isset(curnid, pol->nodes))
2617 z = first_zones_zonelist(
2618 node_zonelist(numa_node_id(), GFP_HIGHUSER),
2619 gfp_zone(GFP_HIGHUSER),
2621 polnid = zone_to_nid(z->zone);
2628 /* Migrate the page towards the node whose CPU is referencing it */
2629 if (pol->flags & MPOL_F_MORON) {
2632 if (!should_numa_migrate_memory(current, page, curnid, thiscpu))
2636 if (curnid != polnid)
2645 * Drop the (possibly final) reference to task->mempolicy. It needs to be
2646 * dropped after task->mempolicy is set to NULL so that any allocation done as
2647 * part of its kmem_cache_free(), such as by KASAN, doesn't reference a freed
2650 void mpol_put_task_policy(struct task_struct *task)
2652 struct mempolicy *pol;
2655 pol = task->mempolicy;
2656 task->mempolicy = NULL;
2661 static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2663 pr_debug("deleting %lx-l%lx\n", n->start, n->end);
2664 rb_erase(&n->nd, &sp->root);
2668 static void sp_node_init(struct sp_node *node, unsigned long start,
2669 unsigned long end, struct mempolicy *pol)
2671 node->start = start;
2676 static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2677 struct mempolicy *pol)
2680 struct mempolicy *newpol;
2682 n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2686 newpol = mpol_dup(pol);
2687 if (IS_ERR(newpol)) {
2688 kmem_cache_free(sn_cache, n);
2691 newpol->flags |= MPOL_F_SHARED;
2692 sp_node_init(n, start, end, newpol);
2697 /* Replace a policy range. */
2698 static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
2699 unsigned long end, struct sp_node *new)
2702 struct sp_node *n_new = NULL;
2703 struct mempolicy *mpol_new = NULL;
2707 write_lock(&sp->lock);
2708 n = sp_lookup(sp, start, end);
2709 /* Take care of old policies in the same range. */
2710 while (n && n->start < end) {
2711 struct rb_node *next = rb_next(&n->nd);
2712 if (n->start >= start) {
2718 /* Old policy spanning whole new range. */
2723 *mpol_new = *n->policy;
2724 atomic_set(&mpol_new->refcnt, 1);
2725 sp_node_init(n_new, end, n->end, mpol_new);
2727 sp_insert(sp, n_new);
2736 n = rb_entry(next, struct sp_node, nd);
2740 write_unlock(&sp->lock);
2747 kmem_cache_free(sn_cache, n_new);
2752 write_unlock(&sp->lock);
2754 n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2757 mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2760 atomic_set(&mpol_new->refcnt, 1);
2765 * mpol_shared_policy_init - initialize shared policy for inode
2766 * @sp: pointer to inode shared policy
2767 * @mpol: struct mempolicy to install
2769 * Install non-NULL @mpol in inode's shared policy rb-tree.
2770 * On entry, the current task has a reference on a non-NULL @mpol.
2771 * This must be released on exit.
2772 * This is called at get_inode() calls and we can use GFP_KERNEL.
2774 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2778 sp->root = RB_ROOT; /* empty tree == default mempolicy */
2779 rwlock_init(&sp->lock);
2782 struct vm_area_struct pvma;
2783 struct mempolicy *new;
2784 NODEMASK_SCRATCH(scratch);
2788 /* contextualize the tmpfs mount point mempolicy */
2789 new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2791 goto free_scratch; /* no valid nodemask intersection */
2794 ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch);
2795 task_unlock(current);
2799 /* Create pseudo-vma that contains just the policy */
2800 vma_init(&pvma, NULL);
2801 pvma.vm_end = TASK_SIZE; /* policy covers entire file */
2802 mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
2805 mpol_put(new); /* drop initial ref */
2807 NODEMASK_SCRATCH_FREE(scratch);
2809 mpol_put(mpol); /* drop our incoming ref on sb mpol */
2813 int mpol_set_shared_policy(struct shared_policy *info,
2814 struct vm_area_struct *vma, struct mempolicy *npol)
2817 struct sp_node *new = NULL;
2818 unsigned long sz = vma_pages(vma);
2820 pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2822 sz, npol ? npol->mode : -1,
2823 npol ? npol->flags : -1,
2824 npol ? nodes_addr(npol->nodes)[0] : NUMA_NO_NODE);
2827 new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
2831 err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
2837 /* Free a backing policy store on inode delete. */
2838 void mpol_free_shared_policy(struct shared_policy *p)
2841 struct rb_node *next;
2843 if (!p->root.rb_node)
2845 write_lock(&p->lock);
2846 next = rb_first(&p->root);
2848 n = rb_entry(next, struct sp_node, nd);
2849 next = rb_next(&n->nd);
2852 write_unlock(&p->lock);
2855 #ifdef CONFIG_NUMA_BALANCING
2856 static int __initdata numabalancing_override;
2858 static void __init check_numabalancing_enable(void)
2860 bool numabalancing_default = false;
2862 if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED))
2863 numabalancing_default = true;
2865 /* Parsed by setup_numabalancing. override == 1 enables, -1 disables */
2866 if (numabalancing_override)
2867 set_numabalancing_state(numabalancing_override == 1);
2869 if (num_online_nodes() > 1 && !numabalancing_override) {
2870 pr_info("%s automatic NUMA balancing. Configure with numa_balancing= or the kernel.numa_balancing sysctl\n",
2871 numabalancing_default ? "Enabling" : "Disabling");
2872 set_numabalancing_state(numabalancing_default);
2876 static int __init setup_numabalancing(char *str)
2882 if (!strcmp(str, "enable")) {
2883 numabalancing_override = 1;
2885 } else if (!strcmp(str, "disable")) {
2886 numabalancing_override = -1;
2891 pr_warn("Unable to parse numa_balancing=\n");
2895 __setup("numa_balancing=", setup_numabalancing);
2897 static inline void __init check_numabalancing_enable(void)
2900 #endif /* CONFIG_NUMA_BALANCING */
2902 /* assumes fs == KERNEL_DS */
2903 void __init numa_policy_init(void)
2905 nodemask_t interleave_nodes;
2906 unsigned long largest = 0;
2907 int nid, prefer = 0;
2909 policy_cache = kmem_cache_create("numa_policy",
2910 sizeof(struct mempolicy),
2911 0, SLAB_PANIC, NULL);
2913 sn_cache = kmem_cache_create("shared_policy_node",
2914 sizeof(struct sp_node),
2915 0, SLAB_PANIC, NULL);
2917 for_each_node(nid) {
2918 preferred_node_policy[nid] = (struct mempolicy) {
2919 .refcnt = ATOMIC_INIT(1),
2920 .mode = MPOL_PREFERRED,
2921 .flags = MPOL_F_MOF | MPOL_F_MORON,
2922 .nodes = nodemask_of_node(nid),
2927 * Set interleaving policy for system init. Interleaving is only
2928 * enabled across suitably sized nodes (default is >= 16MB), or
2929 * fall back to the largest node if they're all smaller.
2931 nodes_clear(interleave_nodes);
2932 for_each_node_state(nid, N_MEMORY) {
2933 unsigned long total_pages = node_present_pages(nid);
2935 /* Preserve the largest node */
2936 if (largest < total_pages) {
2937 largest = total_pages;
2941 /* Interleave this node? */
2942 if ((total_pages << PAGE_SHIFT) >= (16 << 20))
2943 node_set(nid, interleave_nodes);
2946 /* All too small, use the largest */
2947 if (unlikely(nodes_empty(interleave_nodes)))
2948 node_set(prefer, interleave_nodes);
2950 if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
2951 pr_err("%s: interleaving failed\n", __func__);
2953 check_numabalancing_enable();
2956 /* Reset policy of current process to default */
2957 void numa_default_policy(void)
2959 do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
2963 * Parse and format mempolicy from/to strings
2966 static const char * const policy_modes[] =
2968 [MPOL_DEFAULT] = "default",
2969 [MPOL_PREFERRED] = "prefer",
2970 [MPOL_BIND] = "bind",
2971 [MPOL_INTERLEAVE] = "interleave",
2972 [MPOL_LOCAL] = "local",
2973 [MPOL_PREFERRED_MANY] = "prefer (many)",
2979 * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option.
2980 * @str: string containing mempolicy to parse
2981 * @mpol: pointer to struct mempolicy pointer, returned on success.
2984 * <mode>[=<flags>][:<nodelist>]
2986 * Return: %0 on success, else %1
2988 int mpol_parse_str(char *str, struct mempolicy **mpol)
2990 struct mempolicy *new = NULL;
2991 unsigned short mode_flags;
2993 char *nodelist = strchr(str, ':');
2994 char *flags = strchr(str, '=');
2998 *flags++ = '\0'; /* terminate mode string */
3001 /* NUL-terminate mode or flags string */
3003 if (nodelist_parse(nodelist, nodes))
3005 if (!nodes_subset(nodes, node_states[N_MEMORY]))
3010 mode = match_string(policy_modes, MPOL_MAX, str);
3015 case MPOL_PREFERRED:
3017 * Insist on a nodelist of one node only, although later
3018 * we use first_node(nodes) to grab a single node, so here
3019 * nodelist (or nodes) cannot be empty.
3022 char *rest = nodelist;
3023 while (isdigit(*rest))
3027 if (nodes_empty(nodes))
3031 case MPOL_INTERLEAVE:
3033 * Default to online nodes with memory if no nodelist
3036 nodes = node_states[N_MEMORY];
3040 * Don't allow a nodelist; mpol_new() checks flags
3047 * Insist on a empty nodelist
3052 case MPOL_PREFERRED_MANY:
3055 * Insist on a nodelist
3064 * Currently, we only support two mutually exclusive
3067 if (!strcmp(flags, "static"))
3068 mode_flags |= MPOL_F_STATIC_NODES;
3069 else if (!strcmp(flags, "relative"))
3070 mode_flags |= MPOL_F_RELATIVE_NODES;
3075 new = mpol_new(mode, mode_flags, &nodes);
3080 * Save nodes for mpol_to_str() to show the tmpfs mount options
3081 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo.
3083 if (mode != MPOL_PREFERRED) {
3085 } else if (nodelist) {
3086 nodes_clear(new->nodes);
3087 node_set(first_node(nodes), new->nodes);
3089 new->mode = MPOL_LOCAL;
3093 * Save nodes for contextualization: this will be used to "clone"
3094 * the mempolicy in a specific context [cpuset] at a later time.
3096 new->w.user_nodemask = nodes;
3101 /* Restore string for error message */
3110 #endif /* CONFIG_TMPFS */
3113 * mpol_to_str - format a mempolicy structure for printing
3114 * @buffer: to contain formatted mempolicy string
3115 * @maxlen: length of @buffer
3116 * @pol: pointer to mempolicy to be formatted
3118 * Convert @pol into a string. If @buffer is too short, truncate the string.
3119 * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the
3120 * longest flag, "relative", and to display at least a few node ids.
3122 void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
3125 nodemask_t nodes = NODE_MASK_NONE;
3126 unsigned short mode = MPOL_DEFAULT;
3127 unsigned short flags = 0;
3129 if (pol && pol != &default_policy && !(pol->flags & MPOL_F_MORON)) {
3138 case MPOL_PREFERRED:
3139 case MPOL_PREFERRED_MANY:
3141 case MPOL_INTERLEAVE:
3146 snprintf(p, maxlen, "unknown");
3150 p += snprintf(p, maxlen, "%s", policy_modes[mode]);
3152 if (flags & MPOL_MODE_FLAGS) {
3153 p += snprintf(p, buffer + maxlen - p, "=");
3156 * Currently, the only defined flags are mutually exclusive
3158 if (flags & MPOL_F_STATIC_NODES)
3159 p += snprintf(p, buffer + maxlen - p, "static");
3160 else if (flags & MPOL_F_RELATIVE_NODES)
3161 p += snprintf(p, buffer + maxlen - p, "relative");
3164 if (!nodes_empty(nodes))
3165 p += scnprintf(p, buffer + maxlen - p, ":%*pbl",
3166 nodemask_pr_args(&nodes));