1 // SPDX-License-Identifier: GPL-2.0-only
3 * linux/mm/memory_hotplug.c
8 #include <linux/stddef.h>
10 #include <linux/sched/signal.h>
11 #include <linux/swap.h>
12 #include <linux/interrupt.h>
13 #include <linux/pagemap.h>
14 #include <linux/compiler.h>
15 #include <linux/export.h>
16 #include <linux/pagevec.h>
17 #include <linux/writeback.h>
18 #include <linux/slab.h>
19 #include <linux/sysctl.h>
20 #include <linux/cpu.h>
21 #include <linux/memory.h>
22 #include <linux/memremap.h>
23 #include <linux/memory_hotplug.h>
24 #include <linux/vmalloc.h>
25 #include <linux/ioport.h>
26 #include <linux/delay.h>
27 #include <linux/migrate.h>
28 #include <linux/page-isolation.h>
29 #include <linux/pfn.h>
30 #include <linux/suspend.h>
31 #include <linux/mm_inline.h>
32 #include <linux/firmware-map.h>
33 #include <linux/stop_machine.h>
34 #include <linux/hugetlb.h>
35 #include <linux/memblock.h>
36 #include <linux/compaction.h>
37 #include <linux/rmap.h>
38 #include <linux/module.h>
40 #include <asm/tlbflush.h>
47 * memory_hotplug.memmap_on_memory parameter
49 static bool memmap_on_memory __ro_after_init;
50 #ifdef CONFIG_MHP_MEMMAP_ON_MEMORY
51 module_param(memmap_on_memory, bool, 0444);
52 MODULE_PARM_DESC(memmap_on_memory, "Enable memmap on memory for memory hotplug");
56 ONLINE_POLICY_CONTIG_ZONES = 0,
57 ONLINE_POLICY_AUTO_MOVABLE,
60 static const char * const online_policy_to_str[] = {
61 [ONLINE_POLICY_CONTIG_ZONES] = "contig-zones",
62 [ONLINE_POLICY_AUTO_MOVABLE] = "auto-movable",
65 static int set_online_policy(const char *val, const struct kernel_param *kp)
67 int ret = sysfs_match_string(online_policy_to_str, val);
71 *((int *)kp->arg) = ret;
75 static int get_online_policy(char *buffer, const struct kernel_param *kp)
77 return sprintf(buffer, "%s\n", online_policy_to_str[*((int *)kp->arg)]);
81 * memory_hotplug.online_policy: configure online behavior when onlining without
82 * specifying a zone (MMOP_ONLINE)
84 * "contig-zones": keep zone contiguous
85 * "auto-movable": online memory to ZONE_MOVABLE if the configuration
86 * (auto_movable_ratio, auto_movable_numa_aware) allows for it
88 static int online_policy __read_mostly = ONLINE_POLICY_CONTIG_ZONES;
89 static const struct kernel_param_ops online_policy_ops = {
90 .set = set_online_policy,
91 .get = get_online_policy,
93 module_param_cb(online_policy, &online_policy_ops, &online_policy, 0644);
94 MODULE_PARM_DESC(online_policy,
95 "Set the online policy (\"contig-zones\", \"auto-movable\") "
96 "Default: \"contig-zones\"");
99 * memory_hotplug.auto_movable_ratio: specify maximum MOVABLE:KERNEL ratio
101 * The ratio represent an upper limit and the kernel might decide to not
102 * online some memory to ZONE_MOVABLE -- e.g., because hotplugged KERNEL memory
103 * doesn't allow for more MOVABLE memory.
105 static unsigned int auto_movable_ratio __read_mostly = 301;
106 module_param(auto_movable_ratio, uint, 0644);
107 MODULE_PARM_DESC(auto_movable_ratio,
108 "Set the maximum ratio of MOVABLE:KERNEL memory in the system "
109 "in percent for \"auto-movable\" online policy. Default: 301");
112 * memory_hotplug.auto_movable_numa_aware: consider numa node stats
115 static bool auto_movable_numa_aware __read_mostly = true;
116 module_param(auto_movable_numa_aware, bool, 0644);
117 MODULE_PARM_DESC(auto_movable_numa_aware,
118 "Consider numa node stats in addition to global stats in "
119 "\"auto-movable\" online policy. Default: true");
120 #endif /* CONFIG_NUMA */
123 * online_page_callback contains pointer to current page onlining function.
124 * Initially it is generic_online_page(). If it is required it could be
125 * changed by calling set_online_page_callback() for callback registration
126 * and restore_online_page_callback() for generic callback restore.
129 static online_page_callback_t online_page_callback = generic_online_page;
130 static DEFINE_MUTEX(online_page_callback_lock);
132 DEFINE_STATIC_PERCPU_RWSEM(mem_hotplug_lock);
134 void get_online_mems(void)
136 percpu_down_read(&mem_hotplug_lock);
139 void put_online_mems(void)
141 percpu_up_read(&mem_hotplug_lock);
144 bool movable_node_enabled = false;
146 #ifndef CONFIG_MEMORY_HOTPLUG_DEFAULT_ONLINE
147 int mhp_default_online_type = MMOP_OFFLINE;
149 int mhp_default_online_type = MMOP_ONLINE;
152 static int __init setup_memhp_default_state(char *str)
154 const int online_type = mhp_online_type_from_str(str);
156 if (online_type >= 0)
157 mhp_default_online_type = online_type;
161 __setup("memhp_default_state=", setup_memhp_default_state);
163 void mem_hotplug_begin(void)
166 percpu_down_write(&mem_hotplug_lock);
169 void mem_hotplug_done(void)
171 percpu_up_write(&mem_hotplug_lock);
175 u64 max_mem_size = U64_MAX;
177 /* add this memory to iomem resource */
178 static struct resource *register_memory_resource(u64 start, u64 size,
179 const char *resource_name)
181 struct resource *res;
182 unsigned long flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
184 if (strcmp(resource_name, "System RAM"))
185 flags |= IORESOURCE_SYSRAM_DRIVER_MANAGED;
187 if (!mhp_range_allowed(start, size, true))
188 return ERR_PTR(-E2BIG);
191 * Make sure value parsed from 'mem=' only restricts memory adding
192 * while booting, so that memory hotplug won't be impacted. Please
193 * refer to document of 'mem=' in kernel-parameters.txt for more
196 if (start + size > max_mem_size && system_state < SYSTEM_RUNNING)
197 return ERR_PTR(-E2BIG);
200 * Request ownership of the new memory range. This might be
201 * a child of an existing resource that was present but
202 * not marked as busy.
204 res = __request_region(&iomem_resource, start, size,
205 resource_name, flags);
208 pr_debug("Unable to reserve System RAM region: %016llx->%016llx\n",
209 start, start + size);
210 return ERR_PTR(-EEXIST);
215 static void release_memory_resource(struct resource *res)
219 release_resource(res);
223 static int check_pfn_span(unsigned long pfn, unsigned long nr_pages,
227 * Disallow all operations smaller than a sub-section and only
228 * allow operations smaller than a section for
229 * SPARSEMEM_VMEMMAP. Note that check_hotplug_memory_range()
230 * enforces a larger memory_block_size_bytes() granularity for
231 * memory that will be marked online, so this check should only
232 * fire for direct arch_{add,remove}_memory() users outside of
233 * add_memory_resource().
235 unsigned long min_align;
237 if (IS_ENABLED(CONFIG_SPARSEMEM_VMEMMAP))
238 min_align = PAGES_PER_SUBSECTION;
240 min_align = PAGES_PER_SECTION;
241 if (!IS_ALIGNED(pfn, min_align)
242 || !IS_ALIGNED(nr_pages, min_align)) {
243 WARN(1, "Misaligned __%s_pages start: %#lx end: #%lx\n",
244 reason, pfn, pfn + nr_pages - 1);
251 * Return page for the valid pfn only if the page is online. All pfn
252 * walkers which rely on the fully initialized page->flags and others
253 * should use this rather than pfn_valid && pfn_to_page
255 struct page *pfn_to_online_page(unsigned long pfn)
257 unsigned long nr = pfn_to_section_nr(pfn);
258 struct dev_pagemap *pgmap;
259 struct mem_section *ms;
261 if (nr >= NR_MEM_SECTIONS)
264 ms = __nr_to_section(nr);
265 if (!online_section(ms))
269 * Save some code text when online_section() +
270 * pfn_section_valid() are sufficient.
272 if (IS_ENABLED(CONFIG_HAVE_ARCH_PFN_VALID) && !pfn_valid(pfn))
275 if (!pfn_section_valid(ms, pfn))
278 if (!online_device_section(ms))
279 return pfn_to_page(pfn);
282 * Slowpath: when ZONE_DEVICE collides with
283 * ZONE_{NORMAL,MOVABLE} within the same section some pfns in
284 * the section may be 'offline' but 'valid'. Only
285 * get_dev_pagemap() can determine sub-section online status.
287 pgmap = get_dev_pagemap(pfn, NULL);
288 put_dev_pagemap(pgmap);
290 /* The presence of a pgmap indicates ZONE_DEVICE offline pfn */
294 return pfn_to_page(pfn);
296 EXPORT_SYMBOL_GPL(pfn_to_online_page);
298 int __ref __add_pages(int nid, unsigned long pfn, unsigned long nr_pages,
299 struct mhp_params *params)
301 const unsigned long end_pfn = pfn + nr_pages;
302 unsigned long cur_nr_pages;
304 struct vmem_altmap *altmap = params->altmap;
306 if (WARN_ON_ONCE(!params->pgprot.pgprot))
309 VM_BUG_ON(!mhp_range_allowed(PFN_PHYS(pfn), nr_pages * PAGE_SIZE, false));
313 * Validate altmap is within bounds of the total request
315 if (altmap->base_pfn != pfn
316 || vmem_altmap_offset(altmap) > nr_pages) {
317 pr_warn_once("memory add fail, invalid altmap\n");
323 err = check_pfn_span(pfn, nr_pages, "add");
327 for (; pfn < end_pfn; pfn += cur_nr_pages) {
328 /* Select all remaining pages up to the next section boundary */
329 cur_nr_pages = min(end_pfn - pfn,
330 SECTION_ALIGN_UP(pfn + 1) - pfn);
331 err = sparse_add_section(nid, pfn, cur_nr_pages, altmap);
336 vmemmap_populate_print_last();
340 /* find the smallest valid pfn in the range [start_pfn, end_pfn) */
341 static unsigned long find_smallest_section_pfn(int nid, struct zone *zone,
342 unsigned long start_pfn,
343 unsigned long end_pfn)
345 for (; start_pfn < end_pfn; start_pfn += PAGES_PER_SUBSECTION) {
346 if (unlikely(!pfn_to_online_page(start_pfn)))
349 if (unlikely(pfn_to_nid(start_pfn) != nid))
352 if (zone != page_zone(pfn_to_page(start_pfn)))
361 /* find the biggest valid pfn in the range [start_pfn, end_pfn). */
362 static unsigned long find_biggest_section_pfn(int nid, struct zone *zone,
363 unsigned long start_pfn,
364 unsigned long end_pfn)
368 /* pfn is the end pfn of a memory section. */
370 for (; pfn >= start_pfn; pfn -= PAGES_PER_SUBSECTION) {
371 if (unlikely(!pfn_to_online_page(pfn)))
374 if (unlikely(pfn_to_nid(pfn) != nid))
377 if (zone != page_zone(pfn_to_page(pfn)))
386 static void shrink_zone_span(struct zone *zone, unsigned long start_pfn,
387 unsigned long end_pfn)
390 int nid = zone_to_nid(zone);
392 if (zone->zone_start_pfn == start_pfn) {
394 * If the section is smallest section in the zone, it need
395 * shrink zone->zone_start_pfn and zone->zone_spanned_pages.
396 * In this case, we find second smallest valid mem_section
397 * for shrinking zone.
399 pfn = find_smallest_section_pfn(nid, zone, end_pfn,
402 zone->spanned_pages = zone_end_pfn(zone) - pfn;
403 zone->zone_start_pfn = pfn;
405 zone->zone_start_pfn = 0;
406 zone->spanned_pages = 0;
408 } else if (zone_end_pfn(zone) == end_pfn) {
410 * If the section is biggest section in the zone, it need
411 * shrink zone->spanned_pages.
412 * In this case, we find second biggest valid mem_section for
415 pfn = find_biggest_section_pfn(nid, zone, zone->zone_start_pfn,
418 zone->spanned_pages = pfn - zone->zone_start_pfn + 1;
420 zone->zone_start_pfn = 0;
421 zone->spanned_pages = 0;
426 static void update_pgdat_span(struct pglist_data *pgdat)
428 unsigned long node_start_pfn = 0, node_end_pfn = 0;
431 for (zone = pgdat->node_zones;
432 zone < pgdat->node_zones + MAX_NR_ZONES; zone++) {
433 unsigned long end_pfn = zone_end_pfn(zone);
435 /* No need to lock the zones, they can't change. */
436 if (!zone->spanned_pages)
439 node_start_pfn = zone->zone_start_pfn;
440 node_end_pfn = end_pfn;
444 if (end_pfn > node_end_pfn)
445 node_end_pfn = end_pfn;
446 if (zone->zone_start_pfn < node_start_pfn)
447 node_start_pfn = zone->zone_start_pfn;
450 pgdat->node_start_pfn = node_start_pfn;
451 pgdat->node_spanned_pages = node_end_pfn - node_start_pfn;
454 void __ref remove_pfn_range_from_zone(struct zone *zone,
455 unsigned long start_pfn,
456 unsigned long nr_pages)
458 const unsigned long end_pfn = start_pfn + nr_pages;
459 struct pglist_data *pgdat = zone->zone_pgdat;
460 unsigned long pfn, cur_nr_pages;
462 /* Poison struct pages because they are now uninitialized again. */
463 for (pfn = start_pfn; pfn < end_pfn; pfn += cur_nr_pages) {
466 /* Select all remaining pages up to the next section boundary */
468 min(end_pfn - pfn, SECTION_ALIGN_UP(pfn + 1) - pfn);
469 page_init_poison(pfn_to_page(pfn),
470 sizeof(struct page) * cur_nr_pages);
474 * Zone shrinking code cannot properly deal with ZONE_DEVICE. So
475 * we will not try to shrink the zones - which is okay as
476 * set_zone_contiguous() cannot deal with ZONE_DEVICE either way.
478 if (zone_is_zone_device(zone))
481 clear_zone_contiguous(zone);
483 shrink_zone_span(zone, start_pfn, start_pfn + nr_pages);
484 update_pgdat_span(pgdat);
486 set_zone_contiguous(zone);
489 static void __remove_section(unsigned long pfn, unsigned long nr_pages,
490 unsigned long map_offset,
491 struct vmem_altmap *altmap)
493 struct mem_section *ms = __pfn_to_section(pfn);
495 if (WARN_ON_ONCE(!valid_section(ms)))
498 sparse_remove_section(ms, pfn, nr_pages, map_offset, altmap);
502 * __remove_pages() - remove sections of pages
503 * @pfn: starting pageframe (must be aligned to start of a section)
504 * @nr_pages: number of pages to remove (must be multiple of section size)
505 * @altmap: alternative device page map or %NULL if default memmap is used
507 * Generic helper function to remove section mappings and sysfs entries
508 * for the section of the memory we are removing. Caller needs to make
509 * sure that pages are marked reserved and zones are adjust properly by
510 * calling offline_pages().
512 void __remove_pages(unsigned long pfn, unsigned long nr_pages,
513 struct vmem_altmap *altmap)
515 const unsigned long end_pfn = pfn + nr_pages;
516 unsigned long cur_nr_pages;
517 unsigned long map_offset = 0;
519 map_offset = vmem_altmap_offset(altmap);
521 if (check_pfn_span(pfn, nr_pages, "remove"))
524 for (; pfn < end_pfn; pfn += cur_nr_pages) {
526 /* Select all remaining pages up to the next section boundary */
527 cur_nr_pages = min(end_pfn - pfn,
528 SECTION_ALIGN_UP(pfn + 1) - pfn);
529 __remove_section(pfn, cur_nr_pages, map_offset, altmap);
534 int set_online_page_callback(online_page_callback_t callback)
539 mutex_lock(&online_page_callback_lock);
541 if (online_page_callback == generic_online_page) {
542 online_page_callback = callback;
546 mutex_unlock(&online_page_callback_lock);
551 EXPORT_SYMBOL_GPL(set_online_page_callback);
553 int restore_online_page_callback(online_page_callback_t callback)
558 mutex_lock(&online_page_callback_lock);
560 if (online_page_callback == callback) {
561 online_page_callback = generic_online_page;
565 mutex_unlock(&online_page_callback_lock);
570 EXPORT_SYMBOL_GPL(restore_online_page_callback);
572 void generic_online_page(struct page *page, unsigned int order)
575 * Freeing the page with debug_pagealloc enabled will try to unmap it,
576 * so we should map it first. This is better than introducing a special
577 * case in page freeing fast path.
579 debug_pagealloc_map_pages(page, 1 << order);
580 __free_pages_core(page, order);
581 totalram_pages_add(1UL << order);
583 EXPORT_SYMBOL_GPL(generic_online_page);
585 static void online_pages_range(unsigned long start_pfn, unsigned long nr_pages)
587 const unsigned long end_pfn = start_pfn + nr_pages;
591 * Online the pages in MAX_ORDER - 1 aligned chunks. The callback might
592 * decide to not expose all pages to the buddy (e.g., expose them
593 * later). We account all pages as being online and belonging to this
595 * When using memmap_on_memory, the range might not be aligned to
596 * MAX_ORDER_NR_PAGES - 1, but pageblock aligned. __ffs() will detect
597 * this and the first chunk to online will be pageblock_nr_pages.
599 for (pfn = start_pfn; pfn < end_pfn;) {
600 int order = min(MAX_ORDER - 1UL, __ffs(pfn));
602 (*online_page_callback)(pfn_to_page(pfn), order);
603 pfn += (1UL << order);
606 /* mark all involved sections as online */
607 online_mem_sections(start_pfn, end_pfn);
610 /* check which state of node_states will be changed when online memory */
611 static void node_states_check_changes_online(unsigned long nr_pages,
612 struct zone *zone, struct memory_notify *arg)
614 int nid = zone_to_nid(zone);
616 arg->status_change_nid = NUMA_NO_NODE;
617 arg->status_change_nid_normal = NUMA_NO_NODE;
619 if (!node_state(nid, N_MEMORY))
620 arg->status_change_nid = nid;
621 if (zone_idx(zone) <= ZONE_NORMAL && !node_state(nid, N_NORMAL_MEMORY))
622 arg->status_change_nid_normal = nid;
625 static void node_states_set_node(int node, struct memory_notify *arg)
627 if (arg->status_change_nid_normal >= 0)
628 node_set_state(node, N_NORMAL_MEMORY);
630 if (arg->status_change_nid >= 0)
631 node_set_state(node, N_MEMORY);
634 static void __meminit resize_zone_range(struct zone *zone, unsigned long start_pfn,
635 unsigned long nr_pages)
637 unsigned long old_end_pfn = zone_end_pfn(zone);
639 if (zone_is_empty(zone) || start_pfn < zone->zone_start_pfn)
640 zone->zone_start_pfn = start_pfn;
642 zone->spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - zone->zone_start_pfn;
645 static void __meminit resize_pgdat_range(struct pglist_data *pgdat, unsigned long start_pfn,
646 unsigned long nr_pages)
648 unsigned long old_end_pfn = pgdat_end_pfn(pgdat);
650 if (!pgdat->node_spanned_pages || start_pfn < pgdat->node_start_pfn)
651 pgdat->node_start_pfn = start_pfn;
653 pgdat->node_spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - pgdat->node_start_pfn;
657 static void section_taint_zone_device(unsigned long pfn)
659 struct mem_section *ms = __pfn_to_section(pfn);
661 ms->section_mem_map |= SECTION_TAINT_ZONE_DEVICE;
665 * Associate the pfn range with the given zone, initializing the memmaps
666 * and resizing the pgdat/zone data to span the added pages. After this
667 * call, all affected pages are PG_reserved.
669 * All aligned pageblocks are initialized to the specified migratetype
670 * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
671 * zone stats (e.g., nr_isolate_pageblock) are touched.
673 void __ref move_pfn_range_to_zone(struct zone *zone, unsigned long start_pfn,
674 unsigned long nr_pages,
675 struct vmem_altmap *altmap, int migratetype)
677 struct pglist_data *pgdat = zone->zone_pgdat;
678 int nid = pgdat->node_id;
680 clear_zone_contiguous(zone);
682 if (zone_is_empty(zone))
683 init_currently_empty_zone(zone, start_pfn, nr_pages);
684 resize_zone_range(zone, start_pfn, nr_pages);
685 resize_pgdat_range(pgdat, start_pfn, nr_pages);
688 * Subsection population requires care in pfn_to_online_page().
689 * Set the taint to enable the slow path detection of
690 * ZONE_DEVICE pages in an otherwise ZONE_{NORMAL,MOVABLE}
693 if (zone_is_zone_device(zone)) {
694 if (!IS_ALIGNED(start_pfn, PAGES_PER_SECTION))
695 section_taint_zone_device(start_pfn);
696 if (!IS_ALIGNED(start_pfn + nr_pages, PAGES_PER_SECTION))
697 section_taint_zone_device(start_pfn + nr_pages);
701 * TODO now we have a visible range of pages which are not associated
702 * with their zone properly. Not nice but set_pfnblock_flags_mask
703 * expects the zone spans the pfn range. All the pages in the range
704 * are reserved so nobody should be touching them so we should be safe
706 memmap_init_range(nr_pages, nid, zone_idx(zone), start_pfn, 0,
707 MEMINIT_HOTPLUG, altmap, migratetype);
709 set_zone_contiguous(zone);
712 struct auto_movable_stats {
713 unsigned long kernel_early_pages;
714 unsigned long movable_pages;
717 static void auto_movable_stats_account_zone(struct auto_movable_stats *stats,
720 if (zone_idx(zone) == ZONE_MOVABLE) {
721 stats->movable_pages += zone->present_pages;
723 stats->kernel_early_pages += zone->present_early_pages;
726 * CMA pages (never on hotplugged memory) behave like
729 stats->movable_pages += zone->cma_pages;
730 stats->kernel_early_pages -= zone->cma_pages;
731 #endif /* CONFIG_CMA */
734 struct auto_movable_group_stats {
735 unsigned long movable_pages;
736 unsigned long req_kernel_early_pages;
739 static int auto_movable_stats_account_group(struct memory_group *group,
742 const int ratio = READ_ONCE(auto_movable_ratio);
743 struct auto_movable_group_stats *stats = arg;
747 * We don't support modifying the config while the auto-movable online
748 * policy is already enabled. Just avoid the division by zero below.
754 * Calculate how many early kernel pages this group requires to
755 * satisfy the configured zone ratio.
757 pages = group->present_movable_pages * 100 / ratio;
758 pages -= group->present_kernel_pages;
761 stats->req_kernel_early_pages += pages;
762 stats->movable_pages += group->present_movable_pages;
766 static bool auto_movable_can_online_movable(int nid, struct memory_group *group,
767 unsigned long nr_pages)
769 unsigned long kernel_early_pages, movable_pages;
770 struct auto_movable_group_stats group_stats = {};
771 struct auto_movable_stats stats = {};
772 pg_data_t *pgdat = NODE_DATA(nid);
776 /* Walk all relevant zones and collect MOVABLE vs. KERNEL stats. */
777 if (nid == NUMA_NO_NODE) {
778 /* TODO: cache values */
779 for_each_populated_zone(zone)
780 auto_movable_stats_account_zone(&stats, zone);
782 for (i = 0; i < MAX_NR_ZONES; i++) {
783 zone = pgdat->node_zones + i;
784 if (populated_zone(zone))
785 auto_movable_stats_account_zone(&stats, zone);
789 kernel_early_pages = stats.kernel_early_pages;
790 movable_pages = stats.movable_pages;
793 * Kernel memory inside dynamic memory group allows for more MOVABLE
794 * memory within the same group. Remove the effect of all but the
795 * current group from the stats.
797 walk_dynamic_memory_groups(nid, auto_movable_stats_account_group,
798 group, &group_stats);
799 if (kernel_early_pages <= group_stats.req_kernel_early_pages)
801 kernel_early_pages -= group_stats.req_kernel_early_pages;
802 movable_pages -= group_stats.movable_pages;
804 if (group && group->is_dynamic)
805 kernel_early_pages += group->present_kernel_pages;
808 * Test if we could online the given number of pages to ZONE_MOVABLE
809 * and still stay in the configured ratio.
811 movable_pages += nr_pages;
812 return movable_pages <= (auto_movable_ratio * kernel_early_pages) / 100;
816 * Returns a default kernel memory zone for the given pfn range.
817 * If no kernel zone covers this pfn range it will automatically go
818 * to the ZONE_NORMAL.
820 static struct zone *default_kernel_zone_for_pfn(int nid, unsigned long start_pfn,
821 unsigned long nr_pages)
823 struct pglist_data *pgdat = NODE_DATA(nid);
826 for (zid = 0; zid < ZONE_NORMAL; zid++) {
827 struct zone *zone = &pgdat->node_zones[zid];
829 if (zone_intersects(zone, start_pfn, nr_pages))
833 return &pgdat->node_zones[ZONE_NORMAL];
837 * Determine to which zone to online memory dynamically based on user
838 * configuration and system stats. We care about the following ratio:
842 * Whereby MOVABLE is memory in ZONE_MOVABLE and KERNEL is memory in
843 * one of the kernel zones. CMA pages inside one of the kernel zones really
844 * behaves like ZONE_MOVABLE, so we treat them accordingly.
846 * We don't allow for hotplugged memory in a KERNEL zone to increase the
847 * amount of MOVABLE memory we can have, so we end up with:
849 * MOVABLE : KERNEL_EARLY
851 * Whereby KERNEL_EARLY is memory in one of the kernel zones, available sinze
852 * boot. We base our calculation on KERNEL_EARLY internally, because:
854 * a) Hotplugged memory in one of the kernel zones can sometimes still get
855 * hotunplugged, especially when hot(un)plugging individual memory blocks.
856 * There is no coordination across memory devices, therefore "automatic"
857 * hotunplugging, as implemented in hypervisors, could result in zone
859 * b) Early/boot memory in one of the kernel zones can usually not get
860 * hotunplugged again (e.g., no firmware interface to unplug, fragmented
861 * with unmovable allocations). While there are corner cases where it might
862 * still work, it is barely relevant in practice.
864 * Exceptions are dynamic memory groups, which allow for more MOVABLE
865 * memory within the same memory group -- because in that case, there is
866 * coordination within the single memory device managed by a single driver.
868 * We rely on "present pages" instead of "managed pages", as the latter is
869 * highly unreliable and dynamic in virtualized environments, and does not
870 * consider boot time allocations. For example, memory ballooning adjusts the
871 * managed pages when inflating/deflating the balloon, and balloon compaction
872 * can even migrate inflated pages between zones.
874 * Using "present pages" is better but some things to keep in mind are:
876 * a) Some memblock allocations, such as for the crashkernel area, are
877 * effectively unused by the kernel, yet they account to "present pages".
878 * Fortunately, these allocations are comparatively small in relevant setups
879 * (e.g., fraction of system memory).
880 * b) Some hotplugged memory blocks in virtualized environments, esecially
881 * hotplugged by virtio-mem, look like they are completely present, however,
882 * only parts of the memory block are actually currently usable.
883 * "present pages" is an upper limit that can get reached at runtime. As
884 * we base our calculations on KERNEL_EARLY, this is not an issue.
886 static struct zone *auto_movable_zone_for_pfn(int nid,
887 struct memory_group *group,
889 unsigned long nr_pages)
891 unsigned long online_pages = 0, max_pages, end_pfn;
894 if (!auto_movable_ratio)
897 if (group && !group->is_dynamic) {
898 max_pages = group->s.max_pages;
899 online_pages = group->present_movable_pages;
901 /* If anything is !MOVABLE online the rest !MOVABLE. */
902 if (group->present_kernel_pages)
904 } else if (!group || group->d.unit_pages == nr_pages) {
905 max_pages = nr_pages;
907 max_pages = group->d.unit_pages;
909 * Take a look at all online sections in the current unit.
910 * We can safely assume that all pages within a section belong
911 * to the same zone, because dynamic memory groups only deal
912 * with hotplugged memory.
914 pfn = ALIGN_DOWN(pfn, group->d.unit_pages);
915 end_pfn = pfn + group->d.unit_pages;
916 for (; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
917 page = pfn_to_online_page(pfn);
920 /* If anything is !MOVABLE online the rest !MOVABLE. */
921 if (page_zonenum(page) != ZONE_MOVABLE)
923 online_pages += PAGES_PER_SECTION;
928 * Online MOVABLE if we could *currently* online all remaining parts
929 * MOVABLE. We expect to (add+) online them immediately next, so if
930 * nobody interferes, all will be MOVABLE if possible.
932 nr_pages = max_pages - online_pages;
933 if (!auto_movable_can_online_movable(NUMA_NO_NODE, group, nr_pages))
937 if (auto_movable_numa_aware &&
938 !auto_movable_can_online_movable(nid, group, nr_pages))
940 #endif /* CONFIG_NUMA */
942 return &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
944 return default_kernel_zone_for_pfn(nid, pfn, nr_pages);
947 static inline struct zone *default_zone_for_pfn(int nid, unsigned long start_pfn,
948 unsigned long nr_pages)
950 struct zone *kernel_zone = default_kernel_zone_for_pfn(nid, start_pfn,
952 struct zone *movable_zone = &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
953 bool in_kernel = zone_intersects(kernel_zone, start_pfn, nr_pages);
954 bool in_movable = zone_intersects(movable_zone, start_pfn, nr_pages);
957 * We inherit the existing zone in a simple case where zones do not
958 * overlap in the given range
960 if (in_kernel ^ in_movable)
961 return (in_kernel) ? kernel_zone : movable_zone;
964 * If the range doesn't belong to any zone or two zones overlap in the
965 * given range then we use movable zone only if movable_node is
966 * enabled because we always online to a kernel zone by default.
968 return movable_node_enabled ? movable_zone : kernel_zone;
971 struct zone *zone_for_pfn_range(int online_type, int nid,
972 struct memory_group *group, unsigned long start_pfn,
973 unsigned long nr_pages)
975 if (online_type == MMOP_ONLINE_KERNEL)
976 return default_kernel_zone_for_pfn(nid, start_pfn, nr_pages);
978 if (online_type == MMOP_ONLINE_MOVABLE)
979 return &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
981 if (online_policy == ONLINE_POLICY_AUTO_MOVABLE)
982 return auto_movable_zone_for_pfn(nid, group, start_pfn, nr_pages);
984 return default_zone_for_pfn(nid, start_pfn, nr_pages);
988 * This function should only be called by memory_block_{online,offline},
989 * and {online,offline}_pages.
991 void adjust_present_page_count(struct page *page, struct memory_group *group,
994 struct zone *zone = page_zone(page);
995 const bool movable = zone_idx(zone) == ZONE_MOVABLE;
998 * We only support onlining/offlining/adding/removing of complete
999 * memory blocks; therefore, either all is either early or hotplugged.
1001 if (early_section(__pfn_to_section(page_to_pfn(page))))
1002 zone->present_early_pages += nr_pages;
1003 zone->present_pages += nr_pages;
1004 zone->zone_pgdat->node_present_pages += nr_pages;
1006 if (group && movable)
1007 group->present_movable_pages += nr_pages;
1008 else if (group && !movable)
1009 group->present_kernel_pages += nr_pages;
1012 int mhp_init_memmap_on_memory(unsigned long pfn, unsigned long nr_pages,
1015 unsigned long end_pfn = pfn + nr_pages;
1018 ret = kasan_add_zero_shadow(__va(PFN_PHYS(pfn)), PFN_PHYS(nr_pages));
1022 move_pfn_range_to_zone(zone, pfn, nr_pages, NULL, MIGRATE_UNMOVABLE);
1025 * It might be that the vmemmap_pages fully span sections. If that is
1026 * the case, mark those sections online here as otherwise they will be
1029 if (nr_pages >= PAGES_PER_SECTION)
1030 online_mem_sections(pfn, ALIGN_DOWN(end_pfn, PAGES_PER_SECTION));
1035 void mhp_deinit_memmap_on_memory(unsigned long pfn, unsigned long nr_pages)
1037 unsigned long end_pfn = pfn + nr_pages;
1040 * It might be that the vmemmap_pages fully span sections. If that is
1041 * the case, mark those sections offline here as otherwise they will be
1044 if (nr_pages >= PAGES_PER_SECTION)
1045 offline_mem_sections(pfn, ALIGN_DOWN(end_pfn, PAGES_PER_SECTION));
1048 * The pages associated with this vmemmap have been offlined, so
1049 * we can reset its state here.
1051 remove_pfn_range_from_zone(page_zone(pfn_to_page(pfn)), pfn, nr_pages);
1052 kasan_remove_zero_shadow(__va(PFN_PHYS(pfn)), PFN_PHYS(nr_pages));
1055 int __ref online_pages(unsigned long pfn, unsigned long nr_pages,
1056 struct zone *zone, struct memory_group *group)
1058 unsigned long flags;
1059 int need_zonelists_rebuild = 0;
1060 const int nid = zone_to_nid(zone);
1062 struct memory_notify arg;
1065 * {on,off}lining is constrained to full memory sections (or more
1066 * precisely to memory blocks from the user space POV).
1067 * memmap_on_memory is an exception because it reserves initial part
1068 * of the physical memory space for vmemmaps. That space is pageblock
1071 if (WARN_ON_ONCE(!nr_pages ||
1072 !IS_ALIGNED(pfn, pageblock_nr_pages) ||
1073 !IS_ALIGNED(pfn + nr_pages, PAGES_PER_SECTION)))
1076 mem_hotplug_begin();
1078 /* associate pfn range with the zone */
1079 move_pfn_range_to_zone(zone, pfn, nr_pages, NULL, MIGRATE_ISOLATE);
1081 arg.start_pfn = pfn;
1082 arg.nr_pages = nr_pages;
1083 node_states_check_changes_online(nr_pages, zone, &arg);
1085 ret = memory_notify(MEM_GOING_ONLINE, &arg);
1086 ret = notifier_to_errno(ret);
1088 goto failed_addition;
1091 * Fixup the number of isolated pageblocks before marking the sections
1092 * onlining, such that undo_isolate_page_range() works correctly.
1094 spin_lock_irqsave(&zone->lock, flags);
1095 zone->nr_isolate_pageblock += nr_pages / pageblock_nr_pages;
1096 spin_unlock_irqrestore(&zone->lock, flags);
1099 * If this zone is not populated, then it is not in zonelist.
1100 * This means the page allocator ignores this zone.
1101 * So, zonelist must be updated after online.
1103 if (!populated_zone(zone)) {
1104 need_zonelists_rebuild = 1;
1105 setup_zone_pageset(zone);
1108 online_pages_range(pfn, nr_pages);
1109 adjust_present_page_count(pfn_to_page(pfn), group, nr_pages);
1111 node_states_set_node(nid, &arg);
1112 if (need_zonelists_rebuild)
1113 build_all_zonelists(NULL);
1115 /* Basic onlining is complete, allow allocation of onlined pages. */
1116 undo_isolate_page_range(pfn, pfn + nr_pages, MIGRATE_MOVABLE);
1119 * Freshly onlined pages aren't shuffled (e.g., all pages are placed to
1120 * the tail of the freelist when undoing isolation). Shuffle the whole
1121 * zone to make sure the just onlined pages are properly distributed
1122 * across the whole freelist - to create an initial shuffle.
1126 /* reinitialise watermarks and update pcp limits */
1127 init_per_zone_wmark_min();
1132 writeback_set_ratelimit();
1134 memory_notify(MEM_ONLINE, &arg);
1139 pr_debug("online_pages [mem %#010llx-%#010llx] failed\n",
1140 (unsigned long long) pfn << PAGE_SHIFT,
1141 (((unsigned long long) pfn + nr_pages) << PAGE_SHIFT) - 1);
1142 memory_notify(MEM_CANCEL_ONLINE, &arg);
1143 remove_pfn_range_from_zone(zone, pfn, nr_pages);
1148 static void reset_node_present_pages(pg_data_t *pgdat)
1152 for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
1153 z->present_pages = 0;
1155 pgdat->node_present_pages = 0;
1158 /* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */
1159 static pg_data_t __ref *hotadd_init_pgdat(int nid)
1161 struct pglist_data *pgdat;
1164 * NODE_DATA is preallocated (free_area_init) but its internal
1165 * state is not allocated completely. Add missing pieces.
1166 * Completely offline nodes stay around and they just need
1169 pgdat = NODE_DATA(nid);
1171 /* init node's zones as empty zones, we don't have any present pages.*/
1172 free_area_init_core_hotplug(pgdat);
1175 * The node we allocated has no zone fallback lists. For avoiding
1176 * to access not-initialized zonelist, build here.
1178 build_all_zonelists(pgdat);
1181 * When memory is hot-added, all the memory is in offline state. So
1182 * clear all zones' present_pages because they will be updated in
1183 * online_pages() and offline_pages().
1184 * TODO: should be in free_area_init_core_hotplug?
1186 reset_node_managed_pages(pgdat);
1187 reset_node_present_pages(pgdat);
1193 * __try_online_node - online a node if offlined
1195 * @set_node_online: Whether we want to online the node
1196 * called by cpu_up() to online a node without onlined memory.
1199 * 1 -> a new node has been allocated
1200 * 0 -> the node is already online
1201 * -ENOMEM -> the node could not be allocated
1203 static int __try_online_node(int nid, bool set_node_online)
1208 if (node_online(nid))
1211 pgdat = hotadd_init_pgdat(nid);
1213 pr_err("Cannot online node %d due to NULL pgdat\n", nid);
1218 if (set_node_online) {
1219 node_set_online(nid);
1220 ret = register_one_node(nid);
1228 * Users of this function always want to online/register the node
1230 int try_online_node(int nid)
1234 mem_hotplug_begin();
1235 ret = __try_online_node(nid, true);
1240 static int check_hotplug_memory_range(u64 start, u64 size)
1242 /* memory range must be block size aligned */
1243 if (!size || !IS_ALIGNED(start, memory_block_size_bytes()) ||
1244 !IS_ALIGNED(size, memory_block_size_bytes())) {
1245 pr_err("Block size [%#lx] unaligned hotplug range: start %#llx, size %#llx",
1246 memory_block_size_bytes(), start, size);
1253 static int online_memory_block(struct memory_block *mem, void *arg)
1255 mem->online_type = mhp_default_online_type;
1256 return device_online(&mem->dev);
1259 bool mhp_supports_memmap_on_memory(unsigned long size)
1261 unsigned long nr_vmemmap_pages = size / PAGE_SIZE;
1262 unsigned long vmemmap_size = nr_vmemmap_pages * sizeof(struct page);
1263 unsigned long remaining_size = size - vmemmap_size;
1266 * Besides having arch support and the feature enabled at runtime, we
1267 * need a few more assumptions to hold true:
1269 * a) We span a single memory block: memory onlining/offlinin;g happens
1270 * in memory block granularity. We don't want the vmemmap of online
1271 * memory blocks to reside on offline memory blocks. In the future,
1272 * we might want to support variable-sized memory blocks to make the
1273 * feature more versatile.
1275 * b) The vmemmap pages span complete PMDs: We don't want vmemmap code
1276 * to populate memory from the altmap for unrelated parts (i.e.,
1277 * other memory blocks)
1279 * c) The vmemmap pages (and thereby the pages that will be exposed to
1280 * the buddy) have to cover full pageblocks: memory onlining/offlining
1281 * code requires applicable ranges to be page-aligned, for example, to
1282 * set the migratetypes properly.
1284 * TODO: Although we have a check here to make sure that vmemmap pages
1285 * fully populate a PMD, it is not the right place to check for
1286 * this. A much better solution involves improving vmemmap code
1287 * to fallback to base pages when trying to populate vmemmap using
1288 * altmap as an alternative source of memory, and we do not exactly
1289 * populate a single PMD.
1291 return memmap_on_memory &&
1292 !hugetlb_free_vmemmap_enabled() &&
1293 IS_ENABLED(CONFIG_MHP_MEMMAP_ON_MEMORY) &&
1294 size == memory_block_size_bytes() &&
1295 IS_ALIGNED(vmemmap_size, PMD_SIZE) &&
1296 IS_ALIGNED(remaining_size, (pageblock_nr_pages << PAGE_SHIFT));
1300 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1301 * and online/offline operations (triggered e.g. by sysfs).
1303 * we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG
1305 int __ref add_memory_resource(int nid, struct resource *res, mhp_t mhp_flags)
1307 struct mhp_params params = { .pgprot = pgprot_mhp(PAGE_KERNEL) };
1308 enum memblock_flags memblock_flags = MEMBLOCK_NONE;
1309 struct vmem_altmap mhp_altmap = {};
1310 struct memory_group *group = NULL;
1312 bool new_node = false;
1316 size = resource_size(res);
1318 ret = check_hotplug_memory_range(start, size);
1322 if (mhp_flags & MHP_NID_IS_MGID) {
1323 group = memory_group_find_by_id(nid);
1329 if (!node_possible(nid)) {
1330 WARN(1, "node %d was absent from the node_possible_map\n", nid);
1334 mem_hotplug_begin();
1336 if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK)) {
1337 if (res->flags & IORESOURCE_SYSRAM_DRIVER_MANAGED)
1338 memblock_flags = MEMBLOCK_DRIVER_MANAGED;
1339 ret = memblock_add_node(start, size, nid, memblock_flags);
1341 goto error_mem_hotplug_end;
1344 ret = __try_online_node(nid, false);
1350 * Self hosted memmap array
1352 if (mhp_flags & MHP_MEMMAP_ON_MEMORY) {
1353 if (!mhp_supports_memmap_on_memory(size)) {
1357 mhp_altmap.free = PHYS_PFN(size);
1358 mhp_altmap.base_pfn = PHYS_PFN(start);
1359 params.altmap = &mhp_altmap;
1362 /* call arch's memory hotadd */
1363 ret = arch_add_memory(nid, start, size, ¶ms);
1367 /* create memory block devices after memory was added */
1368 ret = create_memory_block_devices(start, size, mhp_altmap.alloc,
1371 arch_remove_memory(start, size, NULL);
1376 /* If sysfs file of new node can't be created, cpu on the node
1377 * can't be hot-added. There is no rollback way now.
1378 * So, check by BUG_ON() to catch it reluctantly..
1379 * We online node here. We can't roll back from here.
1381 node_set_online(nid);
1382 ret = __register_one_node(nid);
1386 register_memory_blocks_under_node(nid, PFN_DOWN(start),
1387 PFN_UP(start + size - 1),
1390 /* create new memmap entry */
1391 if (!strcmp(res->name, "System RAM"))
1392 firmware_map_add_hotplug(start, start + size, "System RAM");
1394 /* device_online() will take the lock when calling online_pages() */
1398 * In case we're allowed to merge the resource, flag it and trigger
1399 * merging now that adding succeeded.
1401 if (mhp_flags & MHP_MERGE_RESOURCE)
1402 merge_system_ram_resource(res);
1404 /* online pages if requested */
1405 if (mhp_default_online_type != MMOP_OFFLINE)
1406 walk_memory_blocks(start, size, NULL, online_memory_block);
1410 if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK))
1411 memblock_remove(start, size);
1412 error_mem_hotplug_end:
1417 /* requires device_hotplug_lock, see add_memory_resource() */
1418 int __ref __add_memory(int nid, u64 start, u64 size, mhp_t mhp_flags)
1420 struct resource *res;
1423 res = register_memory_resource(start, size, "System RAM");
1425 return PTR_ERR(res);
1427 ret = add_memory_resource(nid, res, mhp_flags);
1429 release_memory_resource(res);
1433 int add_memory(int nid, u64 start, u64 size, mhp_t mhp_flags)
1437 lock_device_hotplug();
1438 rc = __add_memory(nid, start, size, mhp_flags);
1439 unlock_device_hotplug();
1443 EXPORT_SYMBOL_GPL(add_memory);
1446 * Add special, driver-managed memory to the system as system RAM. Such
1447 * memory is not exposed via the raw firmware-provided memmap as system
1448 * RAM, instead, it is detected and added by a driver - during cold boot,
1449 * after a reboot, and after kexec.
1451 * Reasons why this memory should not be used for the initial memmap of a
1452 * kexec kernel or for placing kexec images:
1453 * - The booting kernel is in charge of determining how this memory will be
1454 * used (e.g., use persistent memory as system RAM)
1455 * - Coordination with a hypervisor is required before this memory
1456 * can be used (e.g., inaccessible parts).
1458 * For this memory, no entries in /sys/firmware/memmap ("raw firmware-provided
1459 * memory map") are created. Also, the created memory resource is flagged
1460 * with IORESOURCE_SYSRAM_DRIVER_MANAGED, so in-kernel users can special-case
1461 * this memory as well (esp., not place kexec images onto it).
1463 * The resource_name (visible via /proc/iomem) has to have the format
1464 * "System RAM ($DRIVER)".
1466 int add_memory_driver_managed(int nid, u64 start, u64 size,
1467 const char *resource_name, mhp_t mhp_flags)
1469 struct resource *res;
1472 if (!resource_name ||
1473 strstr(resource_name, "System RAM (") != resource_name ||
1474 resource_name[strlen(resource_name) - 1] != ')')
1477 lock_device_hotplug();
1479 res = register_memory_resource(start, size, resource_name);
1485 rc = add_memory_resource(nid, res, mhp_flags);
1487 release_memory_resource(res);
1490 unlock_device_hotplug();
1493 EXPORT_SYMBOL_GPL(add_memory_driver_managed);
1496 * Platforms should define arch_get_mappable_range() that provides
1497 * maximum possible addressable physical memory range for which the
1498 * linear mapping could be created. The platform returned address
1499 * range must adhere to these following semantics.
1501 * - range.start <= range.end
1502 * - Range includes both end points [range.start..range.end]
1504 * There is also a fallback definition provided here, allowing the
1505 * entire possible physical address range in case any platform does
1506 * not define arch_get_mappable_range().
1508 struct range __weak arch_get_mappable_range(void)
1510 struct range mhp_range = {
1517 struct range mhp_get_pluggable_range(bool need_mapping)
1519 const u64 max_phys = (1ULL << MAX_PHYSMEM_BITS) - 1;
1520 struct range mhp_range;
1523 mhp_range = arch_get_mappable_range();
1524 if (mhp_range.start > max_phys) {
1525 mhp_range.start = 0;
1528 mhp_range.end = min_t(u64, mhp_range.end, max_phys);
1530 mhp_range.start = 0;
1531 mhp_range.end = max_phys;
1535 EXPORT_SYMBOL_GPL(mhp_get_pluggable_range);
1537 bool mhp_range_allowed(u64 start, u64 size, bool need_mapping)
1539 struct range mhp_range = mhp_get_pluggable_range(need_mapping);
1540 u64 end = start + size;
1542 if (start < end && start >= mhp_range.start && (end - 1) <= mhp_range.end)
1545 pr_warn("Hotplug memory [%#llx-%#llx] exceeds maximum addressable range [%#llx-%#llx]\n",
1546 start, end, mhp_range.start, mhp_range.end);
1550 #ifdef CONFIG_MEMORY_HOTREMOVE
1552 * Scan pfn range [start,end) to find movable/migratable pages (LRU pages,
1553 * non-lru movable pages and hugepages). Will skip over most unmovable
1554 * pages (esp., pages that can be skipped when offlining), but bail out on
1555 * definitely unmovable pages.
1558 * 0 in case a movable page is found and movable_pfn was updated.
1559 * -ENOENT in case no movable page was found.
1560 * -EBUSY in case a definitely unmovable page was found.
1562 static int scan_movable_pages(unsigned long start, unsigned long end,
1563 unsigned long *movable_pfn)
1567 for (pfn = start; pfn < end; pfn++) {
1568 struct page *page, *head;
1571 if (!pfn_valid(pfn))
1573 page = pfn_to_page(pfn);
1576 if (__PageMovable(page))
1580 * PageOffline() pages that are not marked __PageMovable() and
1581 * have a reference count > 0 (after MEM_GOING_OFFLINE) are
1582 * definitely unmovable. If their reference count would be 0,
1583 * they could at least be skipped when offlining memory.
1585 if (PageOffline(page) && page_count(page))
1588 if (!PageHuge(page))
1590 head = compound_head(page);
1592 * This test is racy as we hold no reference or lock. The
1593 * hugetlb page could have been free'ed and head is no longer
1594 * a hugetlb page before the following check. In such unlikely
1595 * cases false positives and negatives are possible. Calling
1596 * code must deal with these scenarios.
1598 if (HPageMigratable(head))
1600 skip = compound_nr(head) - (page - head);
1610 do_migrate_range(unsigned long start_pfn, unsigned long end_pfn)
1613 struct page *page, *head;
1616 static DEFINE_RATELIMIT_STATE(migrate_rs, DEFAULT_RATELIMIT_INTERVAL,
1617 DEFAULT_RATELIMIT_BURST);
1619 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1620 struct folio *folio;
1622 if (!pfn_valid(pfn))
1624 page = pfn_to_page(pfn);
1625 folio = page_folio(page);
1626 head = &folio->page;
1628 if (PageHuge(page)) {
1629 pfn = page_to_pfn(head) + compound_nr(head) - 1;
1630 isolate_huge_page(head, &source);
1632 } else if (PageTransHuge(page))
1633 pfn = page_to_pfn(head) + thp_nr_pages(page) - 1;
1636 * HWPoison pages have elevated reference counts so the migration would
1637 * fail on them. It also doesn't make any sense to migrate them in the
1638 * first place. Still try to unmap such a page in case it is still mapped
1639 * (e.g. current hwpoison implementation doesn't unmap KSM pages but keep
1640 * the unmap as the catch all safety net).
1642 if (PageHWPoison(page)) {
1643 if (WARN_ON(folio_test_lru(folio)))
1644 folio_isolate_lru(folio);
1645 if (folio_mapped(folio))
1646 try_to_unmap(folio, TTU_IGNORE_MLOCK);
1650 if (!get_page_unless_zero(page))
1653 * We can skip free pages. And we can deal with pages on
1654 * LRU and non-lru movable pages.
1657 ret = isolate_lru_page(page);
1659 ret = isolate_movable_page(page, ISOLATE_UNEVICTABLE);
1660 if (!ret) { /* Success */
1661 list_add_tail(&page->lru, &source);
1662 if (!__PageMovable(page))
1663 inc_node_page_state(page, NR_ISOLATED_ANON +
1664 page_is_file_lru(page));
1667 if (__ratelimit(&migrate_rs)) {
1668 pr_warn("failed to isolate pfn %lx\n", pfn);
1669 dump_page(page, "isolation failed");
1674 if (!list_empty(&source)) {
1675 nodemask_t nmask = node_states[N_MEMORY];
1676 struct migration_target_control mtc = {
1678 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
1682 * We have checked that migration range is on a single zone so
1683 * we can use the nid of the first page to all the others.
1685 mtc.nid = page_to_nid(list_first_entry(&source, struct page, lru));
1688 * try to allocate from a different node but reuse this node
1689 * if there are no other online nodes to be used (e.g. we are
1690 * offlining a part of the only existing node)
1692 node_clear(mtc.nid, nmask);
1693 if (nodes_empty(nmask))
1694 node_set(mtc.nid, nmask);
1695 ret = migrate_pages(&source, alloc_migration_target, NULL,
1696 (unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_HOTPLUG, NULL);
1698 list_for_each_entry(page, &source, lru) {
1699 if (__ratelimit(&migrate_rs)) {
1700 pr_warn("migrating pfn %lx failed ret:%d\n",
1701 page_to_pfn(page), ret);
1702 dump_page(page, "migration failure");
1705 putback_movable_pages(&source);
1712 static int __init cmdline_parse_movable_node(char *p)
1714 movable_node_enabled = true;
1717 early_param("movable_node", cmdline_parse_movable_node);
1719 /* check which state of node_states will be changed when offline memory */
1720 static void node_states_check_changes_offline(unsigned long nr_pages,
1721 struct zone *zone, struct memory_notify *arg)
1723 struct pglist_data *pgdat = zone->zone_pgdat;
1724 unsigned long present_pages = 0;
1727 arg->status_change_nid = NUMA_NO_NODE;
1728 arg->status_change_nid_normal = NUMA_NO_NODE;
1731 * Check whether node_states[N_NORMAL_MEMORY] will be changed.
1732 * If the memory to be offline is within the range
1733 * [0..ZONE_NORMAL], and it is the last present memory there,
1734 * the zones in that range will become empty after the offlining,
1735 * thus we can determine that we need to clear the node from
1736 * node_states[N_NORMAL_MEMORY].
1738 for (zt = 0; zt <= ZONE_NORMAL; zt++)
1739 present_pages += pgdat->node_zones[zt].present_pages;
1740 if (zone_idx(zone) <= ZONE_NORMAL && nr_pages >= present_pages)
1741 arg->status_change_nid_normal = zone_to_nid(zone);
1744 * We have accounted the pages from [0..ZONE_NORMAL); ZONE_HIGHMEM
1745 * does not apply as we don't support 32bit.
1746 * Here we count the possible pages from ZONE_MOVABLE.
1747 * If after having accounted all the pages, we see that the nr_pages
1748 * to be offlined is over or equal to the accounted pages,
1749 * we know that the node will become empty, and so, we can clear
1750 * it for N_MEMORY as well.
1752 present_pages += pgdat->node_zones[ZONE_MOVABLE].present_pages;
1754 if (nr_pages >= present_pages)
1755 arg->status_change_nid = zone_to_nid(zone);
1758 static void node_states_clear_node(int node, struct memory_notify *arg)
1760 if (arg->status_change_nid_normal >= 0)
1761 node_clear_state(node, N_NORMAL_MEMORY);
1763 if (arg->status_change_nid >= 0)
1764 node_clear_state(node, N_MEMORY);
1767 static int count_system_ram_pages_cb(unsigned long start_pfn,
1768 unsigned long nr_pages, void *data)
1770 unsigned long *nr_system_ram_pages = data;
1772 *nr_system_ram_pages += nr_pages;
1776 int __ref offline_pages(unsigned long start_pfn, unsigned long nr_pages,
1777 struct zone *zone, struct memory_group *group)
1779 const unsigned long end_pfn = start_pfn + nr_pages;
1780 unsigned long pfn, system_ram_pages = 0;
1781 const int node = zone_to_nid(zone);
1782 unsigned long flags;
1783 struct memory_notify arg;
1788 * {on,off}lining is constrained to full memory sections (or more
1789 * precisely to memory blocks from the user space POV).
1790 * memmap_on_memory is an exception because it reserves initial part
1791 * of the physical memory space for vmemmaps. That space is pageblock
1794 if (WARN_ON_ONCE(!nr_pages ||
1795 !IS_ALIGNED(start_pfn, pageblock_nr_pages) ||
1796 !IS_ALIGNED(start_pfn + nr_pages, PAGES_PER_SECTION)))
1799 mem_hotplug_begin();
1802 * Don't allow to offline memory blocks that contain holes.
1803 * Consequently, memory blocks with holes can never get onlined
1804 * via the hotplug path - online_pages() - as hotplugged memory has
1805 * no holes. This way, we e.g., don't have to worry about marking
1806 * memory holes PG_reserved, don't need pfn_valid() checks, and can
1807 * avoid using walk_system_ram_range() later.
1809 walk_system_ram_range(start_pfn, nr_pages, &system_ram_pages,
1810 count_system_ram_pages_cb);
1811 if (system_ram_pages != nr_pages) {
1813 reason = "memory holes";
1814 goto failed_removal;
1818 * We only support offlining of memory blocks managed by a single zone,
1819 * checked by calling code. This is just a sanity check that we might
1820 * want to remove in the future.
1822 if (WARN_ON_ONCE(page_zone(pfn_to_page(start_pfn)) != zone ||
1823 page_zone(pfn_to_page(end_pfn - 1)) != zone)) {
1825 reason = "multizone range";
1826 goto failed_removal;
1830 * Disable pcplists so that page isolation cannot race with freeing
1831 * in a way that pages from isolated pageblock are left on pcplists.
1833 zone_pcp_disable(zone);
1834 lru_cache_disable();
1836 /* set above range as isolated */
1837 ret = start_isolate_page_range(start_pfn, end_pfn,
1839 MEMORY_OFFLINE | REPORT_FAILURE);
1841 reason = "failure to isolate range";
1842 goto failed_removal_pcplists_disabled;
1845 arg.start_pfn = start_pfn;
1846 arg.nr_pages = nr_pages;
1847 node_states_check_changes_offline(nr_pages, zone, &arg);
1849 ret = memory_notify(MEM_GOING_OFFLINE, &arg);
1850 ret = notifier_to_errno(ret);
1852 reason = "notifier failure";
1853 goto failed_removal_isolated;
1859 if (signal_pending(current)) {
1861 reason = "signal backoff";
1862 goto failed_removal_isolated;
1867 ret = scan_movable_pages(pfn, end_pfn, &pfn);
1870 * TODO: fatal migration failures should bail
1873 do_migrate_range(pfn, end_pfn);
1877 if (ret != -ENOENT) {
1878 reason = "unmovable page";
1879 goto failed_removal_isolated;
1883 * Dissolve free hugepages in the memory block before doing
1884 * offlining actually in order to make hugetlbfs's object
1885 * counting consistent.
1887 ret = dissolve_free_huge_pages(start_pfn, end_pfn);
1889 reason = "failure to dissolve huge pages";
1890 goto failed_removal_isolated;
1893 ret = test_pages_isolated(start_pfn, end_pfn, MEMORY_OFFLINE);
1897 /* Mark all sections offline and remove free pages from the buddy. */
1898 __offline_isolated_pages(start_pfn, end_pfn);
1899 pr_debug("Offlined Pages %ld\n", nr_pages);
1902 * The memory sections are marked offline, and the pageblock flags
1903 * effectively stale; nobody should be touching them. Fixup the number
1904 * of isolated pageblocks, memory onlining will properly revert this.
1906 spin_lock_irqsave(&zone->lock, flags);
1907 zone->nr_isolate_pageblock -= nr_pages / pageblock_nr_pages;
1908 spin_unlock_irqrestore(&zone->lock, flags);
1911 zone_pcp_enable(zone);
1913 /* removal success */
1914 adjust_managed_page_count(pfn_to_page(start_pfn), -nr_pages);
1915 adjust_present_page_count(pfn_to_page(start_pfn), group, -nr_pages);
1917 /* reinitialise watermarks and update pcp limits */
1918 init_per_zone_wmark_min();
1920 if (!populated_zone(zone)) {
1921 zone_pcp_reset(zone);
1922 build_all_zonelists(NULL);
1925 node_states_clear_node(node, &arg);
1926 if (arg.status_change_nid >= 0) {
1928 kcompactd_stop(node);
1931 writeback_set_ratelimit();
1933 memory_notify(MEM_OFFLINE, &arg);
1934 remove_pfn_range_from_zone(zone, start_pfn, nr_pages);
1938 failed_removal_isolated:
1939 /* pushback to free area */
1940 undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
1941 memory_notify(MEM_CANCEL_OFFLINE, &arg);
1942 failed_removal_pcplists_disabled:
1944 zone_pcp_enable(zone);
1946 pr_debug("memory offlining [mem %#010llx-%#010llx] failed due to %s\n",
1947 (unsigned long long) start_pfn << PAGE_SHIFT,
1948 ((unsigned long long) end_pfn << PAGE_SHIFT) - 1,
1954 static int check_memblock_offlined_cb(struct memory_block *mem, void *arg)
1956 int ret = !is_memblock_offlined(mem);
1960 if (unlikely(ret)) {
1961 phys_addr_t beginpa, endpa;
1963 beginpa = PFN_PHYS(section_nr_to_pfn(mem->start_section_nr));
1964 endpa = beginpa + memory_block_size_bytes() - 1;
1965 pr_warn("removing memory fails, because memory [%pa-%pa] is onlined\n",
1973 static int get_nr_vmemmap_pages_cb(struct memory_block *mem, void *arg)
1976 * If not set, continue with the next block.
1978 return mem->nr_vmemmap_pages;
1981 static int check_cpu_on_node(int nid)
1985 for_each_present_cpu(cpu) {
1986 if (cpu_to_node(cpu) == nid)
1988 * the cpu on this node isn't removed, and we can't
1989 * offline this node.
1997 static int check_no_memblock_for_node_cb(struct memory_block *mem, void *arg)
1999 int nid = *(int *)arg;
2002 * If a memory block belongs to multiple nodes, the stored nid is not
2003 * reliable. However, such blocks are always online (e.g., cannot get
2004 * offlined) and, therefore, are still spanned by the node.
2006 return mem->nid == nid ? -EEXIST : 0;
2013 * Offline a node if all memory sections and cpus of the node are removed.
2015 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
2016 * and online/offline operations before this call.
2018 void try_offline_node(int nid)
2023 * If the node still spans pages (especially ZONE_DEVICE), don't
2024 * offline it. A node spans memory after move_pfn_range_to_zone(),
2025 * e.g., after the memory block was onlined.
2027 if (node_spanned_pages(nid))
2031 * Especially offline memory blocks might not be spanned by the
2032 * node. They will get spanned by the node once they get onlined.
2033 * However, they link to the node in sysfs and can get onlined later.
2035 rc = for_each_memory_block(&nid, check_no_memblock_for_node_cb);
2039 if (check_cpu_on_node(nid))
2043 * all memory/cpu of this node are removed, we can offline this
2046 node_set_offline(nid);
2047 unregister_one_node(nid);
2049 EXPORT_SYMBOL(try_offline_node);
2051 static int __ref try_remove_memory(u64 start, u64 size)
2053 struct vmem_altmap mhp_altmap = {};
2054 struct vmem_altmap *altmap = NULL;
2055 unsigned long nr_vmemmap_pages;
2056 int rc = 0, nid = NUMA_NO_NODE;
2058 BUG_ON(check_hotplug_memory_range(start, size));
2061 * All memory blocks must be offlined before removing memory. Check
2062 * whether all memory blocks in question are offline and return error
2063 * if this is not the case.
2065 * While at it, determine the nid. Note that if we'd have mixed nodes,
2066 * we'd only try to offline the last determined one -- which is good
2067 * enough for the cases we care about.
2069 rc = walk_memory_blocks(start, size, &nid, check_memblock_offlined_cb);
2074 * We only support removing memory added with MHP_MEMMAP_ON_MEMORY in
2075 * the same granularity it was added - a single memory block.
2077 if (memmap_on_memory) {
2078 nr_vmemmap_pages = walk_memory_blocks(start, size, NULL,
2079 get_nr_vmemmap_pages_cb);
2080 if (nr_vmemmap_pages) {
2081 if (size != memory_block_size_bytes()) {
2082 pr_warn("Refuse to remove %#llx - %#llx,"
2083 "wrong granularity\n",
2084 start, start + size);
2089 * Let remove_pmd_table->free_hugepage_table do the
2090 * right thing if we used vmem_altmap when hot-adding
2093 mhp_altmap.alloc = nr_vmemmap_pages;
2094 altmap = &mhp_altmap;
2098 /* remove memmap entry */
2099 firmware_map_remove(start, start + size, "System RAM");
2102 * Memory block device removal under the device_hotplug_lock is
2103 * a barrier against racing online attempts.
2105 remove_memory_block_devices(start, size);
2107 mem_hotplug_begin();
2109 arch_remove_memory(start, size, altmap);
2111 if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK)) {
2112 memblock_phys_free(start, size);
2113 memblock_remove(start, size);
2116 release_mem_region_adjustable(start, size);
2118 if (nid != NUMA_NO_NODE)
2119 try_offline_node(nid);
2126 * __remove_memory - Remove memory if every memory block is offline
2127 * @start: physical address of the region to remove
2128 * @size: size of the region to remove
2130 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
2131 * and online/offline operations before this call, as required by
2132 * try_offline_node().
2134 void __remove_memory(u64 start, u64 size)
2138 * trigger BUG() if some memory is not offlined prior to calling this
2141 if (try_remove_memory(start, size))
2146 * Remove memory if every memory block is offline, otherwise return -EBUSY is
2147 * some memory is not offline
2149 int remove_memory(u64 start, u64 size)
2153 lock_device_hotplug();
2154 rc = try_remove_memory(start, size);
2155 unlock_device_hotplug();
2159 EXPORT_SYMBOL_GPL(remove_memory);
2161 static int try_offline_memory_block(struct memory_block *mem, void *arg)
2163 uint8_t online_type = MMOP_ONLINE_KERNEL;
2164 uint8_t **online_types = arg;
2169 * Sense the online_type via the zone of the memory block. Offlining
2170 * with multiple zones within one memory block will be rejected
2171 * by offlining code ... so we don't care about that.
2173 page = pfn_to_online_page(section_nr_to_pfn(mem->start_section_nr));
2174 if (page && zone_idx(page_zone(page)) == ZONE_MOVABLE)
2175 online_type = MMOP_ONLINE_MOVABLE;
2177 rc = device_offline(&mem->dev);
2179 * Default is MMOP_OFFLINE - change it only if offlining succeeded,
2180 * so try_reonline_memory_block() can do the right thing.
2183 **online_types = online_type;
2186 /* Ignore if already offline. */
2187 return rc < 0 ? rc : 0;
2190 static int try_reonline_memory_block(struct memory_block *mem, void *arg)
2192 uint8_t **online_types = arg;
2195 if (**online_types != MMOP_OFFLINE) {
2196 mem->online_type = **online_types;
2197 rc = device_online(&mem->dev);
2199 pr_warn("%s: Failed to re-online memory: %d",
2203 /* Continue processing all remaining memory blocks. */
2209 * Try to offline and remove memory. Might take a long time to finish in case
2210 * memory is still in use. Primarily useful for memory devices that logically
2211 * unplugged all memory (so it's no longer in use) and want to offline + remove
2214 int offline_and_remove_memory(u64 start, u64 size)
2216 const unsigned long mb_count = size / memory_block_size_bytes();
2217 uint8_t *online_types, *tmp;
2220 if (!IS_ALIGNED(start, memory_block_size_bytes()) ||
2221 !IS_ALIGNED(size, memory_block_size_bytes()) || !size)
2225 * We'll remember the old online type of each memory block, so we can
2226 * try to revert whatever we did when offlining one memory block fails
2227 * after offlining some others succeeded.
2229 online_types = kmalloc_array(mb_count, sizeof(*online_types),
2234 * Initialize all states to MMOP_OFFLINE, so when we abort processing in
2235 * try_offline_memory_block(), we'll skip all unprocessed blocks in
2236 * try_reonline_memory_block().
2238 memset(online_types, MMOP_OFFLINE, mb_count);
2240 lock_device_hotplug();
2243 rc = walk_memory_blocks(start, size, &tmp, try_offline_memory_block);
2246 * In case we succeeded to offline all memory, remove it.
2247 * This cannot fail as it cannot get onlined in the meantime.
2250 rc = try_remove_memory(start, size);
2252 pr_err("%s: Failed to remove memory: %d", __func__, rc);
2256 * Rollback what we did. While memory onlining might theoretically fail
2257 * (nacked by a notifier), it barely ever happens.
2261 walk_memory_blocks(start, size, &tmp,
2262 try_reonline_memory_block);
2264 unlock_device_hotplug();
2266 kfree(online_types);
2269 EXPORT_SYMBOL_GPL(offline_and_remove_memory);
2270 #endif /* CONFIG_MEMORY_HOTREMOVE */